
 123

LN
BI

P
24

0

7th International Conference, ICSOB 2016
Ljubljana, Slovenia, June 13–14, 2016
Proceedings

Software Business

Andrey Maglyas
Anna-Lena Lamprecht (Eds.)

Lecture Notes
in Business Information Processing 240

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Andrey Maglyas • Anna-Lena Lamprecht (Eds.)

Software Business
7th International Conference, ICSOB 2016
Ljubljana, Slovenia, June 13–14, 2016
Proceedings

123

Editors
Andrey Maglyas
Lappeenranta University of Technology
Lappeenranta
Finland

Anna-Lena Lamprecht
University of Limerick
Lero-The Irish Software Research Centre
Limerick
Ireland

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-40514-8 ISBN 978-3-319-40515-5 (eBook)
DOI 10.1007/978-3-319-40515-5

Library of Congress Control Number: 2016940883

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Welcome to the proceedings of the 7th International Conference on Software Business
(ICSOB)!

The ICSOB conference is intended for researchers and practitioners who are involved
in software business in different ways, including large organizations and start-ups with a
focus on different types of software products and services. This year, we selected as the
conference theme “Software as a New Way of Providing Cutting-Edge Solutions” to
focus on the innovative solutions that we see around us and that are attempting to engage
in our life. Advancements in the software industry have had a substantial impact on
productivity and GDP growth globally. There is a noticeable spillover within other
industries (e.g., manufacturing) enabling new business models. Software business refers
to commercial activities in and around the software industry aimed at generating income
from the delivery of software products and services.

Although the business of software shares common features with other international
knowledge-intensive businesses, it carries many inherent features. It is making it a
challenging domain for research. The examples of many successful companies show
that software provides unique benefit to its users. Moreover, software has spread all
over the world and has permeated in many industries, which are not usual for software.
In particular, software companies have to depend on one another to deliver a unique
value proposition to their customers or a unique experience to their users.

Cross-functional use of software is a challenge for industry and academia, studying
not only the use of software but also software business, software production, and other
surrounding themes. This year the conference attracted practitioners and researchers
who are concerned with software business in different ways as well as its introduction
to new areas of research and practice.

For this 7th International Conference on Software Business, we received 38 research
paper submissions from all over the world. The papers went through a thorough review
process by at least two, typically three, knowledgeable reviewers for each paper. The
Program Committee deliberated over all the reviews and accepted 10 full and five short
submissions, yielding an acceptance rate of less than 40 %. The accepted papers follow
various methodologies and represent the diversity in our research community. The
papers span a wide range of issues related to contemporary software business – from
strategic aspects to operational challenges. The strong presence of software ecosystem
papers confirms the importance of this topic and its influence on software business.

This year the 7th International Conference on Software Business was co-located with
the 28th International Conference on Advanced Information System Engineering
(CAiSE). We extend our heartfelt thanks to everyone from the CAiSE Organizing
Committee and Marko Bajec, the general chair.

April 2016 Andrey Maglyas
Anna-Lena Lamprecht

Organization

Program Chairs

Andrey Maglyas Lappeenranta University of Technology, Finland
Anna-Lena Lamprecht University of Limerick & Lero, Ireland and University

of Potsdam, Germany

Program Committee

Sergey Avdoshin National Research University Higher School of
Economics, Russia

Jan Bosch Chalmers University of Technology, Sweden
Sjaak Brinkkemper Utrecht University, The Netherlands
David Callele University of Saskatchewan, Canada
João M. Fernandes University of Minho, Portugal
Samuel A. Fricker University of Applied Sciences and Arts Northwestern

Switzerland FHNW, Switzerland
Thomas Hess Munich School of Management, Germany
Georg Herzwurm University of Stuttgart, Germany
Slinger Jansen Utrecht University, The Netherlands
Thomas Kude University of Mannheim, Germany
Stig Larsson Effectve Change AB, Sweden
Casper Lassenius Aalto University, Finland
Ulrike Lechner Universität der Bundeswehr München, Germany
Ricardo J. Machado Universidade do Minho, Portugal
Konstantinos Manikas University of Copenhagen, Denmark
John McFregor Clemson University, USA
Rory O’Connor Dublin City University, Ireland
Efi Papatheocharous SICS, Sweden
Samuli Pekkola Tampere University of Technology, Finland
Wolfram Pietsch Aachen University of Applied Sciences, Germany
Karl Michael Popp SAP AG, Germany
Björn Regnell Lund University, Sweden
Dirk Riehle Friedrich-Alexander University of Erlangen-Nürnberg,

Germany
Matti Rossi Aalto University, Finland
Kari Smolander Aalto University, Finland
Richard Berntsson

Sventsson
Blekinge Institute of Technology, Sweden

Tobias Tauterat University of Stuttgart, Germany

Pasi Tyrväinen University of Jyväskylä, Finland
Krzysztof Wnuk Blekinge Institute of Technology, Sweden

Steering Committee

Jan Bosch Chalmers University of Technology, Sweden
Sjaak Brinkkemper Utrecht University, The Netherlands
João M. Fernandes University of Minho, Portugal
Georg Herzwurm University of Stuttgart, Germany
Slinger Jansen Utrecht University, The Netherlands (chair)
Casper Lassenius Aalto University, Finland
Eetu Luoma University of Jyväskylä, Finland (chair)
Ricardo J. Machado University of Minho, Portugal
Tiziana Margaria University of Limerick & Lero, Ireland
Björn Regnell Lund University, Sweden
Kari Smolander Aalto University, Finland
Pasi Tyrväinen University of Jyväskylä, Finland
Krzysztof Wnuk Blekinge Institute of Technology, Sweden

VIII Organization

Software Product Categories in the Automotive
Industry and How to Manage Them

(Keynote)

1 Peter Lick and 2 Hans-Bernd Kittlaus

1 AVL List GmbH
Hans-List-Platz 1, 8020 Graz, Austria

peter.lick@avl.com
2 InnoTivum Consulting

Im Sand 86, 53619 Rheinbreitbach, Germany
hbk@innotivum.com

Abstract. AVL List GmbH is the world market leader for powertrain devel-
opment and test systems in the automotive industry. Software plays an ever
more important role in this industry, not only as the backbone of manufacturing
and administration, but increasingly as the main driver of customer value cre-
ation. Important categories are embedded software, pure standalone software
products, or software products with a tight hardware-software system integra-
tion. In this talk we look at these categories in more detail, and analyze the
consequences for product management.

Keywords: Software product management • Software product categories •
Automotive industry

Peter Lick is the process and skills manager for product management at AVL List
GmbH. He has been reporting to the executive vice presidents of AVL since 2007.
Before that, Peter worked for several years as a product manager for process software
and testing software. Peter’s professional experiences are in the field of portfolio and
innovation management, marketing, product and process management, and he also
managed software development cooperations and software projects. Peter holds an
academic degree in electrical engineering and automation from the Technical
University of Graz and additional degrees in coaching, marketing and management.

Hans-Bernd Kittlaus is the owner and CEO of InnoTivum Consulting (www.
innotivum.com) which he founded in 2001. Before he was Director of SIZ GmbH
(Computing Center of the German Savings Banks Organization, Germany) and Head of
Software Product Management and Development units of IBM. His main focus area is
software product management. Hans-Bernd has been working as a trainer, coach and
consultant for both corporate IT organizations and companies in the IT industry. He has
published numerous books and articles, his latest being “Software Product Manage-
ment and Pricing” [1]. He is Diplom-Informatiker (corresponds to M.S. in Computer
Science) and certified as ISPMA Certified Software Product Manager, Certified Scrum

http://www.innotivum.com
http://www.innotivum.com

Product Owner (CSPO), and PRINCE2 Practitioner. He is a member of ACM
(Association for Computing Machinery, USA), GI (Gesellschaft für Informatik, Ger-
many) and board member of ISPMA (International Software Product Management
Association).

Reference

1. Kittlaus, H.-B., Clough, P.N. (eds.): Software Product Management and Pricing. In: Key
Success Factors for Software Organizations. Springer, Heidelberg (2009)

X P. Lick and H.-B. Kittlaus

Contents

Supporting Strategic Decision-Making for Selection of Software Assets 1
Claes Wohlin, Krzysztof Wnuk, Darja Smite, Ulrik Franke,
Deepika Badampudi, and Antonio Cicchetti

Software Analytics for Planning Product Evolution 16
Farnaz Fotrousi and Samuel A. Fricker

Ecosystems Here, There, and Everywhere: A Barometrical Analysis
of the Roots of ‘Software Ecosystem’ . 32

Arho Suominen, Sami Hyrynsalmi, and Marko Seppänen

PDISC – Towards a Method for Software Product DISCovery: Type:
Exploratory Paper . 47

Karl Werder, Benedikt Zobel, and Alexander Maedche

Supporting the Evolution of Research in Software Ecosystems:
Reviewing the Empirical Literature . 63

Konstantinos Manikas

A Survey of Modeling Approaches for Software Ecosystems 79
Oskar Pettersson and Jesper Andersson

The Impact of Internet of Things on Software Business Models 94
Krzysztof Wnuk and Bhanu Teja Murari

Leveraging Bitcoin Blockchain Technology to Modernize Security
Perfection Under the Uniform Commercial Code. 109

David S. Gerstl

To Network or not to Network? Analysis of the Finnish Software
Industry – A Networking Approach. 124

Katariina Yrjönkoski, Nina Helander, and Hannu Jaakkola

A Dynamic Pricing Model for Software Products Incorporating Human
Experiences . 135

Andrey Saltan, Uolevi Nikula, Ahmed Seffah, and Alexander Yurkov

A Case Study of the Health of an Augmented Reality Software Ecosystem:
Vuforia . 145

Lamia Soussi, Zeena Spijkerman, and Slinger Jansen

http://dx.doi.org/10.1007/978-3-319-40515-5_1
http://dx.doi.org/10.1007/978-3-319-40515-5_2
http://dx.doi.org/10.1007/978-3-319-40515-5_3
http://dx.doi.org/10.1007/978-3-319-40515-5_3
http://dx.doi.org/10.1007/978-3-319-40515-5_4
http://dx.doi.org/10.1007/978-3-319-40515-5_4
http://dx.doi.org/10.1007/978-3-319-40515-5_5
http://dx.doi.org/10.1007/978-3-319-40515-5_5
http://dx.doi.org/10.1007/978-3-319-40515-5_6
http://dx.doi.org/10.1007/978-3-319-40515-5_7
http://dx.doi.org/10.1007/978-3-319-40515-5_8
http://dx.doi.org/10.1007/978-3-319-40515-5_8
http://dx.doi.org/10.1007/978-3-319-40515-5_9
http://dx.doi.org/10.1007/978-3-319-40515-5_9
http://dx.doi.org/10.1007/978-3-319-40515-5_10
http://dx.doi.org/10.1007/978-3-319-40515-5_10
http://dx.doi.org/10.1007/978-3-319-40515-5_11
http://dx.doi.org/10.1007/978-3-319-40515-5_11

Towards ‘Human/System Synergistic Development’: How Emergent
System Characteristics Change Software Development. 153

Helena Holmström Olsson and Jan Bosch

User Dimensions in ‘Internet of Things’ Systems: The UDIT Model 161
Helena Holmström Olsson, Jan Bosch, and Brian Katumba

How Do Software Startups Pivot? Empirical Results from a Multiple
Case Study. 169

Sohaib Shahid Bajwa, Xiaofeng Wang, Anh Nguven Duc,
and Pekka Abrahamsson

Mobile Gamification Principles Applied to Social Engagement: Short Paper
of Industry Experience. 177

Ethan Hadar

Author Index . 185

XII Contents

http://dx.doi.org/10.1007/978-3-319-40515-5_12
http://dx.doi.org/10.1007/978-3-319-40515-5_12
http://dx.doi.org/10.1007/978-3-319-40515-5_13
http://dx.doi.org/10.1007/978-3-319-40515-5_14
http://dx.doi.org/10.1007/978-3-319-40515-5_14
http://dx.doi.org/10.1007/978-3-319-40515-5_15
http://dx.doi.org/10.1007/978-3-319-40515-5_15

Supporting Strategic Decision-Making
for Selection of Software Assets

Claes Wohlin1, Krzysztof Wnuk1(&), Darja Smite1, Ulrik Franke2,
Deepika Badampudi1, and Antonio Cicchetti3

1 Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
{claes.wohlin,krzysztof.wnuk,darja.smite,

deepika.badampudi}@bth.se
2 Swedish Institute of Computer Science (SICS),

Box 1263, 164 29 Kista, Sweden
ulrik.franke@sics.se

3 Mälardalen University, Box 883, 721 23 Västerås, Sweden
antonio.cicchetti@mdh.se

Abstract. Companies developing software are constantly striving to gain or
keep their competitive advantage on the market. To do so, they should balance
what to develop themselves and what to get from elsewhere, which may be
software components or software services. These strategic decisions need to be
aligned with business objectives and the capabilities and constraints of possible
options. These sourcing options include: in-house, COTS, open source and
outsourcing. The objective of this paper is to present an approach to support
decision-makers in selecting appropriate types of origins in a specific case that
maximizes the benefits of the selected business strategy. The approach consists
of three descriptive models, as well as a decision process and a knowledge
repository. The three models are a decision model that comprises three
cornerstones (stakeholders, origins and criteria) and is based on a taxonomy for
formulating decision models in this context, and two supporting models
(property models and context models).

Keywords: Component-based software engineering � Service-oriented
software engineering � Decision-making

1 Introduction

In the advent of software development, companies developed their own operating
systems using proprietary programming languages and compilers (e.g. AXE10 devel-
oped by Ericsson). Later, companies moved away from this approach to focus their
software development efforts on their core business (e.g. telecommunication systems
and features). This maturing software business has spawned two significant trends:
specialization and commoditization [11]. Specialization became a direct result of
commoditization as companies discovered that to stay competitive they needed to
specialize and optimize the costs of developing the commodity parts of their products.
At the same time, the increasing popularity of Open Source Software (OSS) accelerated

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 1–15, 2016.
DOI: 10.1007/978-3-319-40515-5_1

the commoditization process and forced many software companies to look for alter-
native or multiple revenue streams and new sources of novelty and value. As a result,
the primary focus is now on developing software that provides a competitive advantage
(e.g. killer apps).

Thus, it is very important for companies to decide what to develop themselves and
what to get from elsewhere. On the strategic (executive) level, the strategy of mergers
and acquisitions becomes a relevant option of obtaining software and organizations that
develop it [31]. However, acquisitions may not always be feasible or possible, e.g. for
open source communities that may not be “for sale”. Thus, decision-making efficiency
also becomes critical for software components that can be realized using internal
development resources (in-house), buying COTS, subcontracting or utilizing OSS
software. Each of these four sourcing alternatives provides different benefits, conse-
quences and impacts or shapes the business models. For example, obtaining OSS
software is often related to joining and participating in a software ecosystem [16] that
entails changes in ways of working and potential challenges. Moreover, the selection of
one of the four strategies directs the company towards one of the four business model
archetypes: creator, distributor, lessor and broker [26]. For many software companies,
the time when they could only focus on being creators and thus solving technical
challenges is history.

Component-based software engineering has been an important area of research for
almost three decades [34, 35]. As a complement to components, the concept of
service-oriented software engineering has emerged [14]. An attempt to bring the two
paradigms closer and to use them in a complementary way has been presented in [6].
Here, we use the term “software asset” to denote any type of software, including
components and services that can be used for achieving the business objective for a
specific system, product or service being developed. Software assets may be divided
into four main types when it comes to the source or origin of the asset (henceforth
denoted asset origin): in-house, COTS, open source and outsourcing. Within each of
these asset origins different assets may fulfill the identified needs, for example, several
different COTS may provide the same functionality to the user. In-house refers to assets
developed or reused internally within an organization. Thus, in-house includes software
having been developed within the same organization, independent of location (e.g. sites
in another country), subsidiaries or organizational structure (e.g. different business
area). The other three types of asset origins are external, and hence outsourcing is here
used as a sourcing option outside the organization that needs a software asset [32].

The key decision to make is what sourcing strategy is the most optimal for an asset.
Should it be developed in-house or should we look elsewhere? To date, research has
focused on comparing just a few of these asset origins, in particular, in-house versus
COTS, and in-house versus outsourcing, and to the best of our knowledge no paper has
addressed all four asset origins [2]. To be able to support these types of decisions in
industry, a decision-making approach is outlined here that will form the basis for
further research on the topic. The approach consists of three types of descriptive
models: decision model, property model and context model, as well as a decision
process and a knowledge repository. The main focus here is to look at decision-making
between the four different types of asset origins (in-house, COTS, open source and
outsourcing), although the models and process described in the paper are expected to be

2 C. Wohlin et al.

able to adapt to also selecting between different components or services of the same
type of asset origin. We do not focus here on mergers or acquisitions as a sourcing
strategy for software assets [31].

The remainder of the paper is outlined as follows. Section 2 presents related work
from general decision-making theory, decision-making related to different asset origins,
and a specific taxonomy intended to help formulating the three descriptive models for
the purpose of making the types of decisions discussed in this paper. In Sect. 3, the
proposed models are presented, and in particular their different parts are discussed.
Section 4 introduces the concept of an evidence-based knowledge repository to support
the decision-making process. A decision-making process outlining how the three
descriptive models can be used is presented in Sect. 5. Section 6 provides a summary
and pointers to further work.

2 Related Work

2.1 Decision-Making

Decision theory largely deals with actors making decisions (e.g. bring an umbrella or
not) in the face of uncertain events (e.g. rainfall or not), leading to different outcomes
(e.g. wet or dry) and pay-offs (e.g. dry and burdened by umbrella though there is no
rain). There are many textbook introductions to the subject, e.g. [28], as well as
extensive literature reviews on theories of decision-making under risk [33].

In the area of software engineering research, decision theory has been applied to
diverse problems such as evaluating COTS [21], determining optimal intervals for
testing and debugging [30], evaluating software designs [7] and assessing
non-functional requirements [13]. Decision theory is also one of the cornerstones in the
theory of value-based software engineering [4]. Empirical research includes studies on
how people make decisions about service level agreements [11, 12].

The purpose of this paper is not to make a theoretical contribution to decision
theory in software engineering and software business, but rather to apply it to a par-
ticular problem class: how to select an appropriate asset origin for a particular piece of
software (component or service). In so doing, we use decision theory terminology and
concepts to reason about the problem and present an approach that will make it possible
to reuse previous experience and published results alike to make the best possible
decision, given the knowledge available.

2.2 Deciding on Origin

The research related to selecting between different software asset origins is quite
limited. In a recent systematic literature review [2], which is summarized here, no
papers addressing all four types of asset origins were identified. However, some papers
addressing two or in a few cases three origins were found.

The decision models for in-house vs. COTS are mainly based on optimization
models. The optimization models proposed in [9, 10, 17, 18, 27, 34] help to decide
which components should be developed in-house and which should be bought. Cost,

Supporting Strategic Decision-Making 3

delivery time, and reliability are the common objectives and constraints considered in
all the proposed optimization models. The optimization models either consider single
objective or multiple objectives in the decision model.

The objective in the optimization models proposed in [9, 10, 27, 34] is to minimize
cost under reliability and delivery time constraints. The CODER framework proposed
in [9] consists of a decision model based on optimization and accepts UML notations as
an input. In [31, 34], the authors propose an architecture optimization approach based
on a swarm intelligence algorithm. The CODER framework [9] is extended in [26, 27],
allowing decision-making as early as requirements are available. Similarly, a general
non-linear optimization model is proposed in [10] for the same objective and con-
straints i.e. minimizing cost under reliability and time constraints.

Multi-objective optimization models have been proposed in [17, 18]. A decision
model for fault-tolerant systems is proposed in [15, 17] with two objectives – to
maximize reliability and minimize cost under a time constraint. In addition, coupling
and cohesion have been considered in the decision model proposed in [18]. The
objectives in [18] are to maximize intra-modular coupling density and functionality
under time, cost and reliability constraints.

Two papers focus on deciding between in-house and outsourcing [19, 20] were
identified. The model in [19] provides tool support for requirements clustering to find a
cohesive group of requirements using a graph-based model. In [20], the authors pro-
pose a decision model using decision tables. The input is the knowledge specificity
(business, functional and technical), and interdependencies (priority between software
components and communication intensity among developers).

2.3 GRADE Taxonomy

The work presented in this paper is grounded in the GRADE taxonomy [22, 24].
The GRADE taxonomy summarizes the relevant concepts and definitions for building
models related to decision-making and supporting decision processes. On the highest
level, the GRADE taxonomy combines five fundamental concepts of decision-making
for software intensive systems: Goals, Roles, Assets, Decision and Environment
(GRADE). These five fundamental concepts can be used as building blocks for creating
models supporting decision-making.

Goals represent the starting point for a decision. They represent the internal
business goals and customer goals, and have a broad impact on the entire product or
even organization. The goals form an important input to the decision-making.

Roles in the GRADE taxonomy represent individuals involved in the
decision-making. The roles are classified into types, functions, levels and perspectives.

The assets concept in the GRADE taxonomy describes the decision assets (often
encapsulated in a software component or software service) characterized by: origin,
attributes, type, usage and realization options.

The decision concept of GRADE contains the decision methods that can be used for
estimating outcomes for a specific option among those evaluated in the
decision-making process.

4 C. Wohlin et al.

The environment concept of the GRADE taxonomy describes the environment
before the decision was analyzed or made. It includes the characteristics of organiza-
tions, products, stakeholders, markets and business prior to making a decision.

2.4 Decision-Making in Software Business

Running a software business requires making several decisions on multiple levels [1],
ranging from strategic decisions about mergers, acquisition and take-overs [31], via
tactical decisions on which ecosystem to join and support [16] to highly technical
decisions on how to realize customer requirements in software. An increasing number
of software companies evolve from the pure creator business archetype that implies
code ownership but also development risk, high maintenance cost and full responsi-
bility for delivering the required quality towards mixed or hybrid business models that
imply taking on several business archetype roles [26]. At the same time, small and large
companies take on outsourcing initiatives to reduce development costs and obtain
valuable knowledge and inspiration. This shifts the center of gravity towards integra-
tion work and coordination of outsourced (often also offshored) sites into software
products that deliver the value that customers expect. Finally, joining or creating an
ecosystem entails a series of decisions regarding growing a healthy ecosystem [16],
participating in ecosystem development and gaining importance and influence or dis-
rupting markets by commoditization of ecosystem software. Each of the mentioned
four asset origins thus has different implications both in the short term and in the long
term. They come with different costs and prices and can bring different benefits.
Decision-makers responsible for running their software businesses are faced with
increased decision complexity and frequency that they need to cope with to succeed
with their business endeavors. An example here is decision-making in cloud computing
environments for selecting appropriate services from different providers [22].

3 Descriptive Models

Three descriptive models are built from the GRADE taxonomy to ensure that no
decision-aspect is missed. Thus, the descriptive models become part of an instantiation
of the taxonomy. The instantiation includes two main parts: description of the concepts
based on GRADE (the three descriptive models) and the actual decision-making
process.

Fig. 1. Mapping of GRADE to concepts in the decision model and the supporting models.

Supporting Strategic Decision-Making 5

The main objective of the decision approach presented is to enable a systematic
way to select between different software asset origins, including potentially both
software components and software services. The types considered represent four main
asset origins: in-house, COTS, open source and outsourcing.

The three descriptive models correspond to the five fundamental concepts in
GRADE, as described and mapped in Fig. 1. In particular, the five concepts comprise:
(1) the three decision model cornerstones: stakeholders (roles), origins (assets) and
criteria (goals); and (2) two supporting models – property models (decision) and
context models (environment). The decision model with its three decision cornerstones
are described in Sect. 3.1, the property models are discussed in Sect. 3.2 and the
context models are further elaborated in Sect. 3.3.

In addition to experience of the involved stakeholders, it is beneficial to support the
decision-making with related historical evidence and experiences. This can be captured
in an evidence-based knowledge repository, which is elaborated in some more detail in
Sect. 4.

3.1 Decision Model

The decision model consists of three main cornerstones:
Stakeholders – which stakeholders (and hence different perspectives) need to be

involved? The stakeholders should be identified from the roles in GRADE that should
be involved in the decision-making. The creator, distributor, lessor and broker business
archetypes [26] help in identifying relevant stakeholders that influence the value cre-
ation and delivery processes. The current model involved both internal stakeholders as
well as end customers and external stakeholders. As many software companies cur-
rently run hybrid business models with additional revenue streams originating from
cross-selling and complementariness, the set of potential stakeholders is much broader
than in the in-house scenario.

The stakeholders have different perspectives (as described through the Roles con-
cept in GRADE) that should be taken into account in the decision-making process. This
could be exemplified with the following five software engineering areas: (1) business
and requirements engineering, (2) non-functional properties, (3) life-cycle perspective,
(4) architecture, and (5) implementation and integration, including verification and
validation. The business and requirements engineering perspective is responsible for
capturing the customer value and translating it to the form that can be used for
decision-making. Business analysts and requirements engineers play key roles in
capturing and prioritizing customer needs. Other perspectives may also be relevant, for
example the strategic management perspective.

Origins – which type of asset origins should be considered (in-house, open source,
COTS and/or outsourcing)? In this case, the asset concept in GRADE is defined as
potentially coming from four different asset origins. Thus, it is assumed that the main
decision to be taken relates to where a software component or service needed in a
product or system is developed, obtained or acquired. The actual choice of, for
example, a specific COTS component is not considered, i.e. the selection between
competing alternative assets of the same origin.

6 C. Wohlin et al.

Criteria – which criteria should be evaluated to ensure an informed decision? The
criteria are based on the Goal concept in GRADE. Since the goals may be quite
general, some goals may not be relevant for a specific decision. It is important to
acknowledge here that criteria can have at least three perspectives: customer per-
spective, internal-business perspective, and community (or ecosystem perspective). The
goals and criteria should be identified and tagged by the relevant perspective and
potential conflicts between perspectives should be identified and mitigated. The
involved stakeholder roles should review the goals, mitigate potential conflicts and
translate them into defined decision criteria to be used in the decision-making. Criteria
should be more detailed than the goals and need to be measurable, i.e. contain a
threshold for a certain property attribute (e.g. a specific attribute of software quality or
gaining 1 000 000 users of a software service within 2 months after the service is
launched). Thus, criteria should be possible to evaluate, for example, they could state
that a certain property should be above a certain threshold, and each criterion should be
evaluated for each viable asset origin. The chosen criteria should be evaluated, where
business risk most likely is always one of the criteria. Risk is a criterion by itself in
relation to a specific asset origin, e.g. the risk of a COTS supplier going bankrupt.
However, risk is also related to the uncertainty in specific decisions, their criteria, and
the data they are based on, e.g. uncertainty in historical cost or reliability figures.

The stakeholders contribute to the decision model as experts in their own area, for
example, business, architecture or requirements. They are involved in evaluating
possible asset origins viable for the specific case and formulating the criteria for the
decision based on the goals. Furthermore, the experts provide input to the property
models (see Sect. 3.2), they should describe the context of the decision (see Sect. 3.3)
and they should help in identifying similar historical evidence and experiences using
the evidence-based knowledge repository (see Sect. 4). The latter includes prioritizing
among important factors to compare with historical evidence.

3.2 Property Model

The decision concept in GRADE includes both models to estimate specific properties
and methods to, for example, weigh different criteria. The property models come into
play in estimating outcomes of the criteria for different asset origins, i.e. there is a need
to make the estimations wrt to different criteria for the relevant origins.

A property model is an estimation model with respect to a decision criterion. The
property model consists of a well-defined property and an evaluation method. For
example, the property can be the number of active users and the evaluation method can
be to check how many of these users have used the service the last seven days.
A property model may contain other property models. Examples of properties include
coordination costs, IT service costs and maintenance costs for selecting cloud com-
puting services [22]. The evaluation method may be quite simplistic, for example,
expert opinion or based on a sophisticated formal mathematical decision model [1].
Property models can also be more advanced, e.g. for the reliability criterion using
software reliability growth models (SRGM) based on historical data from similar sit-
uations. Furthermore, some evaluation methods use generic statistical methods such as

Supporting Strategic Decision-Making 7

regression analysis, while others are based on general methods but still are tailored for a
specific purpose such as SRGMs. Properties can and should also be estimated for
aspects relevant for communities, ecosystems and markets and not only for a com-
pany’s internal or a project’s internal aspects. A good example here could be the degree
of influence on ecosystem members or the state of a company’s reputation in a given
ecosystem [16].

Property models provide estimates of values for the different criteria, and in most
cases the property models only handle one or a few properties at the time. Thus, there is
a need to decide the priorities of the different criteria and hence the weighing between
them, for example is cost more or less important than security. The methods for
managing the priorities between criteria, or for combining outcomes in different ways
are referred to as decision methods. For this purpose, it would be possible to use, for
example, methods such as AHP [29] and HCV [3].

As part of the decision-making, it should be decided, for example, whether the
stakeholders should try to take different time perspectives into account “manually” or if
the property models should instead be used more than once, for example, to make
estimations both for a short-term and a long-term perspective.

3.3 Context Model

The context model is a representation of the environment in which the decision is
taken. There are two main objectives of the context model. First, it helps in identifying
relevant criteria, property models and solutions previously used by others. Second, it
structures the decision at hand for future use in the evidence-based knowledge
repository. An example of a context model representation is presented in [25]. It
comprises six dimensions of the environment, four that capture the organizational
characteristics (including practices and tools) and two that are external to the organi-
zation (business environment characteristics). The context model also extends the
environment concept in GRADE as it helps to understand the context in the future and
is integrated with the evidence-based knowledge repository described in Sect. 4.

The context model should capture the current situation within an organization with
respect to (1) product before the decision, (2) people involved in relation to the
decision, (3) processes as well as (4) practices, techniques and tools. Furthermore,
(5) the organization as such should be captured, (6) the market should be described as a
part of the context and other relevant aspects from the ecosystem that a company is
involved in. We believe that for a comprehensive context description that includes
business characteristics and can be effectively used for guiding business decisions, a
possible future area of research is to expand the six dimensions described in [25] to
better cover aspects such as the market, ecosystems and also business models.

4 Evidence-Based Knowledge Repository

Historical information should be structured so that it is possible to find relevant or
similar cases, for example, similar context, prioritized similar criteria or an interest in
the same asset origins. The stored information may facilitate decision-making, but also

8 C. Wohlin et al.

to provide what is generically known as traceability of a decision: what a decision was
about, who made the decision, and why the decision was made. This is often referred to
as the rationale for a decision. In this respect, any repository ought to record all relevant
aspects of a decision-making scenario. Furthermore, a repository ought to contain other
available information such as research articles on the topic, and in particular systematic
literature reviews, as well as publically available data or data shared between trusted
partners that can help support different steps of decision-making.

Former decision information can represent an important support in the
decision-making process, at least to avoid errors made in the past. Therefore, if the
repository was considered as a mere post-decision storage support, it is difficult to
justify and motivate the effort of documenting decisions in detail. Furthermore, the
repository would miss a lot of its potentials: (1) as mentioned before, recurring deci-
sions might contain important lessons learned; and (2) multiple decisions could entail
an agreement about a more general development vision (e.g., different properties
derivable from the same goal by different stakeholders), thus requiring consistency.
Thus, continuous and reliable data collection, as well as use of the data, should be
performed to unlock the full potential that an evidence-based knowledge repository
offers.

The repository should be able to smoothly manage large amounts of data and
should offer meaningful mechanisms to retrieve decisions as filtered by their prominent
characteristics (i.e., the cornerstones of the decision model), and pointers to relevant
studies on the topic. Compatibility and interoperability are important quality attributes
of a good decision knowledge repository and therefore we recommend using open data
standards supported by reliable quality management measures, e.g. ISO/IEC 25012
SQuaRE [15], OGD eight principles [23] or Web Information Quality assessment [5].

5 Decision-Making Process

The decision-making process represents the actual conduct of decision-making, and it
is illustrated in Fig. 2 using the numbering of the recommended steps below. Some
steps may be perceived as more important than others. However, it has been chosen to
present all steps as recommended steps, since the actual usefulness of the different steps
and preferred order of the steps may vary from case to case. Thus, the order of the steps
should be seen as one possible suitable order. Furthermore, an evidence-based
knowledge repository may not be available in all cases, and hence those steps may not
be applicable in all cases. It should also be noted that iterations are expected. They may
appear between any steps depending on the specific decision, or the specific circum-
stances in relation to a decision. Thus, Fig. 2 only illustrates the expected iterations
based on the evidence-based knowledge repository.

The recommended steps in the decision-making process are as follows:

(1) Identify stakeholders to be involved in the decision – It is important to ensure
coverage of roles and persons to make sure that the decision made is possible to
implement efficiently. Each stakeholder that is relevant for the decision and its
consequences for the business should be identified here.

Supporting Strategic Decision-Making 9

(2) Evaluate the suitability of the four asset origins – The possible origins for a
software asset should be identified. This includes investigating the technical and
business compatibilities and the short and long term costs of selecting each asset
option. In certain cases, not all asset origins are allowed or suitable. In some
cases, the main decision is whether to do development in-house or going
externally. Sometimes, open source solutions are not an option. Thus, the pos-
sible asset origins need to be identified carefully.

(3) Decide criteria from goals – Based on the goals of the development, criteria
(both business and technical) have to be decided and suitable targets have to be
set. The latter should be done so that different asset origins can be evaluated and
compared with each other. In most cases, risk needs to be considered as one
criterion, since it may differ substantially for different asset origins (in-house,
COTS, open source and outsourcing).

(4) Decide on priorities of criteria – In addition to deciding on targets for each
criterion, it is also important to decide how they should be prioritized, e.g. using
AHP [29] or HCV [3]. It may also be the case that certain stakeholders have
more say in a decision, which has to be taken into account, i.e. different
stakeholder roles may need to be weighed differently in the prioritization
process.

(5) Decide on how to handle the time aspect – Certain solutions may be perceived
better or worse in the short-term and long-term respectively. For example, a
certain solution may be very good to get a product on the market, but it is not
very good for the long-term architecture of the product. The time aspect is highly
relevant for decisions that concern ecosystem participation or OSS involvement
as in these two cases the competitive advantage created based on the ecosystem
or OSS commodity layer comes with a long term maintenance cost. Thus,
selective revealing should be considered and based on competitive advantage
time estimates. The degree of commoditization or commoditization index should
be projected onto the average sale time for new products. To cope with the time
aspect, the decision-makers either have to take time aspects into account when
prioritizing between different asset origins or evaluations have to be done sep-
arately for different time aspects, e.g. short-term and long-term, and the tradeoff
between them has to be agreed upon.

Fig. 2. The decision-making process including having a knowledge repository.

10 C. Wohlin et al.

(6) Describe the context – To enable comparison with previous cases internally and
externally as well as with the research literature, the case has to be described.
This should be done using the context model, where salient aspects have to be
captured. This may include business model(s) used, application domain, system
size and development method as well as a range of other aspects [25]. Inde-
pendently, it is crucial to capture these aspects to enable identification of similar
cases and hence relevant evidence and experiences.

(7) Look for similar cases in a knowledge repository – The identification of similar
cases is done using the context model as well as the asset origins considered as
suitable and the criteria. Thus, a similar case is defined as having some key
aspects of the context in common (from Step 6) as well as a focus on similar
criteria (from Steps 3 and 4) and similar suitable asset origins (Step 2). Similar
cases are identified and studied to identify evidence and experience that are
perceived important in the current case and to uncover potential alternative
decision scenarios [8]. The knowledge repository could be solely based on
internal cases or a more elaborate database containing both internal and external
cases. The information in the knowledge repository may indicate that in other
similar cases other asset origins, criteria, property models or decisions have been
considered. Thus, it is important to be able to challenge the choices made in the
other steps as illustrated in Fig. 2.

(8) Decide on property models to use – Once the criteria are decided, there is a need
to decide how the criteria should be evaluated. If having a knowledge repository,
this can be done by retrieving valuable information from the knowledge
repository in terms of what others have used in similar cases (Step 7). If there is
no knowledge repository, the property models for each criterion have to be
decided without additional support, whether they are expert opinions or more
advanced estimation models.

(9) Make estimations using the property models – Given the chosen property
models, estimations need to be done for each criterion for the asset origins under
consideration and potentially for different time aspects based on the approach
decided in Step 5.

(10) Weigh the estimation results of the selected properties based on the priorities of
criteria – Based on the priorities of the different criteria, the estimation results
from the different property models should be weighed together. This is
non-trivial given that the values as such cannot be combined easily in many
cases. It is rather the estimation of each criterion and its distance from the targets
that need to be weighed together.

(11) Make a tentative decision – Once the outcomes from the property models have
been weighed together, it should be possible for the decision-makers to make a
tentative decision. If a knowledge repository is available, it is recommended to
browse previous decisions and review relevant tentative scenarios and compare
the tentative decision with decisions from similar cases as described in Step 7.
Relevant business context factors should be evaluated here based on similar
cases. This should be done to make a final evaluation of the decision, and ensure
that the reasoning done is as correct as possible and that no relevant available
information is ignored.

Supporting Strategic Decision-Making 11

(12) Make a final decision – This has been the objective of the decision-making
process and hence it is a very important step for the development. It is important
that the stakeholders are able to communicate both the actual decision and the
rationale for the decision.

(13) Store the case in the knowledge repository – The case information, including the
context model, the criteria used, the stakeholders involved and the asset origins
considered should be carefully documented. This step is important as it allows
for transparency if the case is properly documented (including the decision
rationale) and helps to organically grow the evidence-base knowledge reposi-
tory. It is important to add new cases given the speed of change and hence
ensure that recent cases are available for decisions to come.

(14) At the end of the decision-making process, the objective is that the stakeholders
should have come to either a consensus or at least that the involved stakeholders
know why the decision was made, and are able to communicate it in the
organization.

6 Summary and Further Work

The decision support models and process may seem complex, but they address a
challenging area for companies. The development of today’s software products, sys-
tems and services is a complex endeavor. The decisions of choosing software com-
ponents (or services), whether being in-house development vs. external options such as
COTS, open source and outsourcing, are most often strategic decisions and they
heavily influence competitiveness. The approach presented in this paper provides a
starting point for supporting such decisions and address the research gap identified in a
recent systematic literature review [2].

The approach addresses several key questions to make a decision with respect to
selecting the origin of software assets (components and services). However, before
using the approach the actual decision needs (what) should be determined. The decision
process as such illustrates how a decision may be made. Furthermore, who makes the
decision is determined by the identification of the stakeholders. The main reasons for
the decision, i.e. why a decision is made, are captured through the criteria in the
decision model.

The focus of this work is on selecting between different types of asset origins, and
not between different actual components or services of the same type. The objective is
to integrate selection of competing specific alternatives into the models and process,
including both the tradeoffs between components and services as well as between
different components or services of the same asset origin. This is part of further work as
well as to empirically evaluate the proposal through case studies.

The presented models and process is based on the assumption that the stakeholders
involved into the decision-making process capture customer needs and values. Thus,
the model can be applied for both B2B and B2C contexts as long as all relevant
stakeholders are identified and involved in decision-making. For B2C contexts, end
users and other external stakeholders need to be involved and accurately represented.

12 C. Wohlin et al.

In future work, we plan to survey a number of business scenarios that involve
diverse business models, asset origins, company characteristics and ecosystem partic-
ipation models. We aim at characterizing these scenarios by identifying common and
variable parts and clearly outlining short- and long-term consequences of each decision
alternative. These should form guidelines that software business practitioners may use
when considering various sourcing options. Moreover, we plan to expand our research
on the evidence-based knowledge repository and create the first implementation of a
repository that can support decision-makers. Finally, we plan to conduct an empirical
study that will evaluate the presented decision-making approach and identify future
work directions.

Acknowledgments. The work is supported by a research grant for the ORION project (refer-
ence number 20140218) from The Knowledge Foundation in Sweden. Furthermore, we would
like to thank our colleagues in the ORION project for fruitful discussions and the external
reviewers that have helped improving the paper.

References

1. Aurum, A., Wohlin, C.: The fundamental nature of requirements engineering activities as a
decision-making process. Inf. Softw. Technol. 45, 945–954 (2003)

2. Badampudi, D., Wohlin, C., Petersen, K.: Software Component Decision-Making: In-House,
Open Source, COTS or Outsourcing - A Systematic Literature Review. In revision after
review for journal publication (2016)

3. Berander, P., Jönsson, P.: Hierarchical Cumulative Voting (HCV) - prioritization of
requirements in hierarchies. Int. J. Softw. Eng. Knowl. Eng. 16, 819–849 (2006)

4. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.): Value-Based
Software Engineering. Springer, Heidelberg (2006)

5. Bizer, C., Cyganiak, R.: Quality-Driven Information Filtering Using the WIQA Policy
Framework. Web Semant. Sci. Serv. Agents WWW 7, 1–10 (2009)

6. Breivold, H.P., Larsson, M.: Component-based and service-oriented software engineering:
key concepts and principles. In: Proceedings of the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA, pp. 13–20 (2007)

7. Cárdenas-Garcia, S., Zelkowitz, M.V.: A management tool for evaluation of software
design. IEEE Trans. Softw. Eng. 17, 961–971 (1991)

8. Cicchetti, A., Borg, M., Sentilles, S., Wnuk, K., Carlson, J., Papatheocharous, E.: Towards
software assets origin selection supported by a knowledge repository. In: 1st MARCH
Workshop at WICSA and CompArch 2016, April 5, Venice (Italy) (2016)

9. Cortellessa, V., Marinelli, F., Potena, P.: Automated selection of software components based
on cost/reliability tradeoff. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344,
pp. 66–81. Springer, Heidelberg (2006)

10. Cortellessa, V., Marinelli, F., Potena, P.: An optimization framework for “build-or-buy”
decisions in software architecture. Comput. Oper. Res. 35, 3090–3106 (2008)

11. Cusumano, M.A.: The Business of Software: What Every Manager, Programmer, and
Entrepreneur Must Know to Thrive and Survive in Good Times and Bad. Simon and
Schuster, New York (2004)

12. Franke, U., Buschle, M.: Experimental evidence on decision-making in availability service
level agreements. IEEE Trans. Netw. Serv. Manage. 13, 58–70 (2016)

Supporting Strategic Decision-Making 13

13. Gregoriades, A., Sutcliffe, A.: Scenario-based assessment of nonfunctional requirements.
IEEE Trans. Softw. Eng. 31, 392–409 (2005)

14. Huhns, M., Singh, M.P.: Service-oriented computing: key concepts and principles. IEEE
Internet Comput. 9, 75–81 (2005)

15. ISO/IEC 25012: http://iso25000.com/index.php/en/iso-25000-standards/iso-25012
16. Jansen, S., Brinkkemper, S., Cusumano, M.A.: Software Ecosystems: Analyzing and

Managing Business Networks in the Software Industry. Edward Elgar Publishing,
Cheltenham (2013)

17. Jha, P.C., Bali, S., Kumar, U., Pham, H.: Fuzzy optimization approach to component
selection of fault-tolerant software system. Memetic Comput. 6, 49–59 (2014)

18. Jha, P.C., Bali, V., Narula, S., Kalra, M.: Optimal component selection based on cohesion &
coupling for component based software system under build-or-buy scheme. J. Comput. Sci.
5, 233–242 (2014)

19. Kramer, T., Eschweiler, M.: Outsourcing location selection with SODA: a requirements
based decision support methodology and tool. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.)
CAiSE 2013. LNCS, vol. 7908, pp. 530–545. Springer, Heidelberg (2013)

20. Kramer, T., Heinzl, A., Spohrer, K.: Should this software component be developed inside or
outside our firm? - a design science perspective on the sourcing of application systems. In:
Kotlarsky, J., Willcocks, L.P., Oshri, I. (eds.) Global Sourcing 2011. LNBIP, vol. 91,
pp. 115–132. Springer, Heidelberg (2011)

21. Lawlis, P.K., Mark, K.E., Thomas, D.A., Courtheyn, T.: A formal process for evaluating
COTS software products. Computer 34, 58–63 (2001)

22. Martens, B., Teuteberg, F.: Decision-making in cloud computing environments: a cost and
risk based approach. Inf. Syst. Front. 14, 871–893 (2012)

23. Open Government Data (OGD). https://opengovdata.org/
24. Papatheocharous, E., Petersen, K., Cicchetti, A., Sentilles, S., Shah, S.M.A., Gorschek, T.:

Decision support for choosing architectural assets in the development of software-intensive
systems: the GRADE taxonomy. In: Proceedings of the 1st International Workshop on
Software Architecture Asset Decision-making, Article No. 48 (2015)

25. Petersen, K., Wohlin, C.: Context in industrial software engineering research. In:
Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, pp. 401–404 (2009)

26. Popp, K.M.: Software industry business models. IEEE Softw. 28, 26–30 (2011)
27. Potena, P.L.: Composition and tradeoff of non-functional attributes in software systems. In:

European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 583–585 (2007)

28. Resnik, M.D.: Choices: An Introduction to Decision Theory. University of Minnesota Press,
Minneapolis (1987)

29. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 1–83
(2008)

30. Singpurwalla, N.D.: Determining an optimal time interval for testing and debugging
software. IEEE Trans. Soft. Eng. 17, 313–319 (1991)

31. Schief, M., Buxmann, P., Schiereck, D.: Mergers and acquisitions in the software industry.
Bus. Inf. Syst. Eng. 5, 421–431 (2013)

32. Šmite, D., Wohlin, C., Galviņa, Z., Prikladnicki, R.: An empirically based terminology and
taxonomy for global software engineering. Empirical Softw. Eng. 19, 105–153 (2014)

33. Starmer, C.: Developments in non-expected utility theory: the hunt for a descriptive theory
of choice under risk. J. Econ. Lit. 38, 332–382 (2000)

14 C. Wohlin et al.

http://iso25000.com/index.php/en/iso-25000-standards/iso-25012
https://opengovdata.org/

34. Ssaed, A.A., Wan Kadir, W.M.N., Hashim, S.Z.M.: Metaheuristic search approach based on
in-house/out-sourced strategy to solve redundancy allocation problem in component-based
software systems. Int. J. Softw. Eng. Appl. 6, 143–154 (2012)

35. Vale, T., Crnkovic, I., de Almeida, E.S., da Mota Silveira Neto, P.A., Cerqueira Cavalcantic,
Y., de Lemos Meira, S.R.: Twenty-eight years of component-based software engineering.
J. Syst. Softw. 111, 128–148 (2016)

Supporting Strategic Decision-Making 15

Software Analytics for Planning
Product Evolution

Farnaz Fotrousi1,2(&) and Samuel A. Fricker1,2

1 SERL-Sweden, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
{farnaz.fotrousi,samuel.fricker}@bth.se

2 i4Ds Centre for Requirements Engineering, FHNW, 5210
Windisch, Switzerland

{farnaz.fotrousi,samuel.fricker}@fhnw.ch

Abstract. Evolution of a software product is inevitable as product context
changes and the product gradually becomes less useful if it is not adapted.
Planning is a basis to evolve a software product. The product manager, who
carries responsibilities of planning, requires but does not always have access to
high-quality information for making the best possible planning decisions. The
current study aims to understand whether and when analytics are valuable for
product planning and how they can be interpreted to a software product plan. The
study was designed with an interview-based survey methodology approach
through 17 in-depth semi-structured interviews with product managers. Based on
results from qualitative analysis of the interviews, we defined an analytics-based
model. The model shows that analytics have potentials to support the interpre-
tation of product goals while is constrained by both product characteristics and
product goals. The model implies how to use analytics for a good support of
product planning evolution.

1 Introduction

Software products are evolved throughout their life cycle through extension and
adaptation of functionality and quality [1]. Such evolution is inevitable as product
context changes and a software gradually becomes less useful if it is not adapted [2].
The flexibility of service-oriented approaches enables such evolution thinking [3].
Early release of a minimal viable product followed by evolution is beneficial for the
product organization because it allows increasing return on investment when compared
with a late release of a near-perfect product [4, 5]. Also, early release of a product
allows learning about actual customer wants and needs; and the use of such market
information in later product evolution is determinant for product success [6].

Mature companies plan how they intend to achieve their strategic objectives and
satisfy market needs [7, 8]. Planning concerns the product portfolio, the long-term
roadmap of each product, and the short-term release plans [9]. Portfolio management is
about the strategic choice of which markets, products, and technologies the product
organization addresses and, consequently, how it intends to spend its scarce resources
on marketing, engineering, and research [10]. Roadmapping supports strategic and
long-range planning for exploring evolving markets, products, and technologies and for

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 16–31, 2016.
DOI: 10.1007/978-3-319-40515-5_2

coordinating the actions of the product organization to address opportunities and threats
[11]. Release planning, finally, addresses the short-term time horizon by selecting an
optimum set of features to be delivered in a release so that competing stakeholder
demands, benefits for the product organization, and available resources are balanced
[12]. The impact of product planning, in comparison to the absence of such planning,
are shorter projects, fewer delays, and improved quality [13].

Product plans are based on information about company goals, market trends,
product requirements, and stakeholder priorities [9]. That information is collected and
the resulting plans validated by consulting company-external stakeholders such as
customers, partners, and consultants that monitor the market and company-internal
stakeholders such as marketing, sales, research, development, support, sales, and
company board representatives. Many techniques exist for such consultation of
stakeholders, including workshops [14], focus groups [15], and surveys [16]. Stake-
holder consultation is essential for achieving clarity, support, and stability of the
product vision and the plans that refine it [17].

Even-though stakeholder consultation is widely established and considered good
practice; the value of information obtained by this approach is limited, especially in a
context with many users and customers. The consulted representatives are intermedi-
aries to the real stakeholders. Non-probabilistic sampling, especially convenience
sampling, tends to produce biased input [18]. Even if a representative set of stake-
holders is identified, it is questionable whether their expressed opinion corresponds to
the actual interest. An expressed customer wish does not necessarily translate to a
buying decision [19]. Finally, dependency on stakeholders exposes the product man-
ager to power and politics. Stakeholders exert their power by telling the product
manager what to do and by creating a reality in which the product manager has to act
according to these instructions [20]. The resulting political decisions risk benefiting the
most powerful of these stakeholders, but not necessarily the product.

This paper proposes the use of software analytics [21] as a new source of infor-
mation for product planning evolution. Analytics are the quantitative measures of an
entity [22], which provide insight and actionable information [21] for a data-driven
decision making [23, 24]. Analytics have the potential to become useful
decision-support for software made available to customers and users, but still is
undergoing evolution. In contrast to stakeholder consultation, measurement of product
use and quality provides evidence that is representative, unbiased, and free from power
and politics.

Based on a review of existing literature on software product planning and analytics,
the paper introduces a conceptual model that connects measurements of the software
product to product planning decisions. The study explores the connection by discussing
it in interviews with 17 software product managers. The Inductive content analysis
method [25] was used to identify how the measurements would be interpreted and used
for product planning decision-support. The results provide insights for method and tool
engineering [26] and for research targeted at simplifying product planning and
improving the reliability product planning decisions.

This paper extends an earlier paper that presented the statistical analysis performed
to understand product manager preferences for analytics [27]. The present paper gives
an in-depth analysis whether and when analytics are valuable for product planning and

Software Analytics for Planning Product Evolution 17

how the interviewed product managers would use analytics for obtaining product
planning decision-support for evolution.

The remainder of the paper is structured as follows. Section 2 reviews existing
work in software analytics and introduces a conceptual model that describes how
software analytics provide decision-support for product planning. Section 3 describes
the research design used in the study. Section 4 presents the empirical results and
analyze the collected data. Section 5 discusses the results and their implications on
practice and research. Section 6 summarizes and concludes the paper.

2 Background

Software product analytics are the quantitative measures, collected during product use,
giving actionable insight [21] for deciding about product evolution [23]. The actionable
insight characteristics of analytics differentiate it from measures or metrics terms,
which are used interchangeably in literature (e.g. ISO-9126 used the term metrics but
replaced by measures in ISO 15393). Some literature refers to analytics as the process
of developing actionable insight [28]. However, our definition emphasizes analytics as
quantitative measures.

In product planning context, analytics measures a product, feature, or quality attri-
bute. A product consists of features [29] and each feature is composed of a set of
functional and non-functional requirements [30]. A product manager should deal with
decision-making about creation, change, deletion, prioritization or allocation concerning
product, features or requirements. Table 1 gives an overview of decisions that can be
made during the planning of a software product. The decisions are distributed based on
the practice areas including portfolio management, roadmapping, and release planning.

The decisions of product planning have a strong relationship with software product
delivery. The trend of changing the software delivery from packaged product to SaaS
(Software as a Service) delivery model [31] implies faster and smaller release of new
features [4], ease of developing more features upon request [4] in addition to facili-
tating data collection to support planning decisions. SaaS delivery model enables
monitoring of software use and provides first hand information about market, attrac-
tiveness of software and its features.

Table 1. Taxonomy of product planning decisions

Practice area Decision
object

Decision alternatives

Portfolio
Management

Products in the
company’s
portfolio

Create Enhance,
Change

Prioritize Remove Allocate
Resource

Allocate
to
Release

Confirm
Technology

Product
Roadmapping

Features of a
product

Release
Planning

Requirement in
a feature
selected for
release

18 F. Fotrousi and S.A. Fricker

Table 2 illustrates a taxonomy of the measurement attributes in SasS based prod-
ucts. For such products, the measurement attributes belong to entities such as a product,
feature/content or GUI requirement that can be mapped to entities of a website, page or
GUI element in a general web application. Product managers conceptualize a web
application as a product that consists of features instead of pages. Page is the definable
unit of content. A feature can be one page, part of a page or distributed among pages.
A request for the feature can be defined as a page request. Similar to a feature, a page
can be conceptualized as a content, since it provides an additional information resource
for the feature contributing to the end user knowledge. In a SaaS-based product,
functional requirements may belong to graphical elements of a feature (i.e. page)
measurable for a GUI requirement entity.

Table 2. Taxonomy of measurements for SaaS-based applications

Mapped
entities to
product

Entities Attributes
Health Usage Context

Product Website Errors,
Downtime,
Response
time,
Throughput,
Attacks

Use, Time
between uses,
Duration of use.

Users, New users,
Returning users,
Referrers,
Location/ISP
per use, Search
engines and
keywords,
Campaigns,
Browsers,
Operating
systems,
Languages,
Plugins, Screen
resolutions.

Feature/content Page Errors,
Response
time

Use, Time
between uses,
Duration of use,
Entrance, Click
activity, Depth
of use, Click
stream/path,
Exit, Bounce.

Users, Search
engines and
keywords,
Campaigns

GUI
Requirement

GUI
Element

– Use, Time
between uses,
Click activity,
Click
stream/path.

–

Software Analytics for Planning Product Evolution 19

The second part of the taxonomy presented in Table 2 categorizes the corre-
sponding measurement attributes based on the measurement purpose for products’
health, usage and context. The attributes corresponding to health of entities inform
technical quality of services [32]. The category of usage measurement attributes
specifies the key data for understanding a traffic behavior of users [33] from the
entity-use perspective. Context measurement attributes address the circumstances of
users or sources in which entities’ requests are issued from [34].

The taxonomy in Table 2 introduces the measurement attributes belong to web
analytics context [35]. The taxonomy excludes other attributes such as those discussed
in business analytics [36], which support broader aspect than customer centric appli-
cation. Business analytics provide better insights particularly from operational data
stored in transactional systems to inform sales, marketing, price optimization and
workforce analysis [35]. The data are usually collected offline by the executive staff in a
company [37] or an e-commerce platform [35].

This section confirms the usage of software analytics for product planning, but that
it is yet to be understood how the measurements would be used for product planning
evolution. These are the aims of the current study.

3 Research Design

To achieve the discussed aims, we designed an inductive study based on product
managers’ interpretations of analytics for product planning. We explored the following
research question:

RQ: How are analytics used for planning product evolution?
To answer the research question, we conducted an interview-based survey with the

purpose of identifying the relation between analytics and decisions of product planning.
We performed data collection using semi-structured phone interviews. For the inter-
views, we initially designed the questionnaires, but we also asked the interviewees
about their motivations for the provided answers. To avoid disadvantages of telephone
survey related to lack of visual material and avoid complexity, the screen of the
interviewer’s computer that presents the questionnaire was shared with interviewees
through web-based screen sharing applications.

Samples: We asked a well-established consultancy company in software product
management to introduce experienced SaaS product managers in a wide variety of SaaS
contexts. We selected 17 product managers from 3 micro, 4 small, 7 medium, and 3
large companies. The product managers managed 7 new respectively 10 already
existing software products. All interviews were structured alike. The similarity of
questions, homogeneity of interviewees and number of interviews could make the
saturation of the interview results [38].

Designing the Instrument: We designed a questionnaire in which the taxonomy of
measurement attributes discussed in Sect. 2 was a base for asking product managers how
they would use analytics. The questionnaire was started with questions about context
facets of the product, organization (company size and development team size) and people
(role and experience). Questions about product planning formed the core of the interview,

20 F. Fotrousi and S.A. Fricker

in two parts: “Planning Decisions” and “Analytics”. In the first set of questions, the
interviewees were asked to select a product that they have planned and are most satisfied
with. Then questions were asked about the planning decisions that the interviewees
usually take for the selected product. Later on, the interviewees were asked to rate the
importance level of measurement-categories and measurement-attributes for taking the
decisions and provide comments for their reasons behind the selections.

Interviews were piloted by two product managers and two students having product
planning knowledge. After initial testing and several refinements, the interviews with
the product managers were scheduled.

Selecting and Presenting the Results: We recorded the interviews by getting per-
missions from interviewees for the sake of future reference and transcribed for quali-
tative analysis of their argumentations. From the selected applications, 4 were “Business
oriented”, 7 were “Consumer-oriented” software and 5 were “information display and
transaction entry”. 41.2 % of the products were new products, and 58.8 % of the
responses were evolutionary products. The distribution of interviews among different
application magnifies the difference of product characteristics on interview results.

Analysis Method: We used inductive content analysis approach [25] for analyzing and
coding the argumentations of the interviewees. In the first step of the analysis, we
selected a unit of arguments, tagged with the headings describing the argumentations’
concepts for the role of analytics, and repeated the process for all arguments. In the next
steps, we grouped the headings in two rounds to reduce the number of similar cate-
gories in each round. The categorization provided a mean of interpreting the phe-
nomenon, increasing understandability, and facilitating decision making ability [25]. At
the end of the content analysis, we performed abstraction, which led to general
descriptions and further discussions based on the categories. During the process, initial
codes were gradually improved to form the final codes.

4 Analysis and Results

4.1 A Model for Analytics-Based Product Planning

By the analysis of interviewees’ argumentations, we could conclude that product
managers use analytics to interpret the product goals while the analytics are con-
strained by both product characteristics and product goals. This relation has been
illustrated in Fig. 1.

For building and evolution of a product, product managers define product goals
aligned with the companies’ business goals. The essential goal of a product is to ensure
that a product is built to deliver business values to a specific set of customers and meet
important business goals of companies.

Fig. 1. A model for analytics-based product planning

Software Analytics for Planning Product Evolution 21

The analysis of interviewees’ argumentations showed that product managers did
not recognize some analytics useful for specific characteristics of a software product. In
another word, product characteristics limit the scope of using analytics. Table 3 in
Appendix provides a list of product characteristics and corresponding supportive
quotes about constraining analytics. As an example, the application type filters and
constrains the applicable measurements:

“For our specific product, error and response time could be used, but others healthiness
measurements did not have a role in our intranet-based product.”

Coding the argumentations clarified that analytics can be used to interpret products’
goal in terms of assisting product manager to evaluate how far product goals are
achieved. These products’ goals might also constrain the analytics. Table 4 in
Appendix outlines the interviewees’ interpretation of analytics for product planning.
The extracted codes for product goal characteristics (i.e. the left column of Table 4)
reveal that product managers mostly addressed a dimension of product quality as a
goal. “User satisfaction”, “customer satisfaction”, and “freedom from risk” are quality
in use attributes in ISO/IEC 25010. The usability, functional suitability, maintain-
ability, reliability, and performance efficiency codes are static and dynamic properties
of software products in the quality model of ISO/IEC 25010. Such analytics support
product evolution decisions from the technical perspectives.

Also, extracted code “market positioning” for product goal characteristics (i.e. the
left column of Table 4), introduces a business goal [39], to be interpreted by analytics.
Such goals complement the technical evaluation of the product to give 360-degree view
to the product manager for taking decisions [40].

Product managers define product goals alongside with business goals considering
inputs from stakeholders. So analytics can point out to the level that a product goal has
been achieved. On the other hand, the product goals can constrain analytics and specify
which measurements have more or less value to achieve the desired level of the goals:

“For referral source measures, if I can find out in what segment the user belongs to, and then it
is very important. If from the measures, I can find out from which country they use it, it is mostly
less important.”

The example indicates that extracting statistics about user’s segment from referral
source attributes is valuable and can be interpreted toward a product goal, while other
statistics of referral sources might not be valuable for this case. For all codes, although
interviewees’ argumentations were not available to support both interpretations and
constraints, the logical relations between interpreting product goals and constraining
analytics can cover the argumentation shortage:

“Click steam is important to see the sequence of clicking to track the usage and see do the users
follow the pattern in a right way or not.”

The example illustrates that high level of click streams might interpret a good level
of user satisfaction for the feature and can strengthen the quality of the feature. Log-
ically it is evident that achieving user satisfaction wishes to have information about
click streams, which strengthen the constrained relations.

22 F. Fotrousi and S.A. Fricker

4.2 Validation of the Model

The model in Fig. 1 was validated by examples of product managers’ experiences. We
mapped argumentations of product managers (i.e. interviewees) for different groups of
products to the model. The mapping helped us to check whether the chains of argu-
ments can support the model. The products that interviewees selected during the
interviews belonged to three product types: “Consumer-oriented software”, “Business
oriented” and “Information display and transaction entry”. For each product type, one
interview was selected to show how the shifting from constraining the analytics to
interpretation of the product goal is performed. Table 5 in Appendix presents three
examples of different products. The following example shows how argumentations of
an interview (first row in Table 5) can support the proposed model.

Based on the characteristics of a mobile application, “referral source is not
important [analytics] because users are from all over the world”. “Dos and worm
attacks are not important [analytics] in an IPhone application” but when the product is
mature, the other “product healthiness statistics are extremely important because
having errors and bad usability makes it hard [for users] to understand a feature”. By
collecting data about product healthiness “The errors [analytics] can be seen very
quickly and repaired in each month release”. So product manager will monitor ana-
lytics to find out error and take an action toward a healthy product. Having a healthy
product will facilitate the customer benefit goal.

In this example “mobile application” is the product with specific characteristics,
“referral source, Dos attacks and worm attacks” are analytics and “customer benefit
goal” is the product goal. The relations between product characteristics, analytics, and
product goals could confirm the relations defined in Fig. 1. Similarly, the other argu-
mentations can also confirm the defined relations in the model.

5 Discussions

In this paper, we contribute to creating a model for understanding how analytics are
used for planning of a software product. The study introduces a new perspective for
product planning by applying analytics. Analytics are filtered based on product char-
acteristics and product goals. The analytics are interpreted to evaluate the level of
product goals’ fulfillments. The evaluation enhances a product manager’s intuitions to
help to find out the rationales for his decisions. Deviation from the product goal
requires an action that reflects a new decision in the product plan [8].

The results have implications for research on understanding the relations between
product characteristics, analytics and product goals for supporting product evolution.
The results have also implications for product managers of software vendors on
interpreting analytics to use data science as a basis for decision supports of product
planning. In Fig. 2, we propose a product manager to carry out a chain of activities to
take planning decisions for product evolution by the supports of analytics.

In step 1, the product manager prepares a list of goals corresponding to the can-
didate product. The study showed in a SaaS-based product, most of the product
managers set quality goals with the focus on quality-in-use (ISO/IEC 25010). In this

Software Analytics for Planning Product Evolution 23

study product managers looked for acceptable perceived experience of use (efficiency),
acceptable perceived results of use (effectiveness), acceptable perceived consequences
of use (Freedom from risks) and the customer’s satisfaction in a particular context of
use [41]. Quality of services and marketing goals were also on the list of goals, with
lower priority than the quality-in-use goals.

In step 2, from the general list of analytics (i.e. created using a general list of
measurement attributes such as Table 2), the product manager excludes those with less
importance based on the defined product characteristics and goals. The study showed
some of the factors that constrain the analytics for product planning. Product charac-
teristics such as product’s context, features, users, platform, network type and maturity
constrain the analytics for product planning. Also, product goals such as managing the
quality of product, managing market positioning and organization grows can constrain
the analytics. Although few goals were discussed by the interviewees, it is not a big
deal to generalize to different goals such as growth and continuity of the organization,
meeting financial, personal objectives, and etc. [39].

In step 3, the included analytics are measured, analyzed, and interpreted to provide
required information and inform the product managers’ decisions. The alignment of the
decisions with the product goals is investigated in step 4. Argumentations of interviews
showed, product managers usually benefit from analytics about product and feature
usages, which supports goals corresponding to functional suitability and usability.
Product healthiness analytics support performance efficiency, reliability and security
goals. The result is in the same direction with the study that recognized feature use,
product use, response time, users, error and downtime as the most preferred mea-
surements for planning, despite planning decisions’ types [27]. To create, remove, or
enhance a feature, the data trends provide a broad view of requirements or feature
desirability in the current or even future time and clarify how these changes can impact
the product’s goal. Comparing the corresponding measurements’ impacts on the
defined goals can prioritize features. This impact can support both reactive and
proactive planning for an evolution of the product.

The chains of interrelated activities explained in step 3 are mapped to the mea-
surement information model defined in ISO 15939. We propose to enhance the model
by adding a box for product goals with two outgoing arrows: One to constrain mea-
surement attributes and one to support the information needs. The enhancement would
adapt the ISO 15939 to support product evolution using analytics.

Fig. 2. Suggested activities for product managers to support planning decisions and product
evolution by analytics

24 F. Fotrousi and S.A. Fricker

The proposed model in Fig. 1 is not specific to product planning of a traditional
software development, but the model may support planning of products using modern
development approaches [42] such as an agile development, continuous integration,
and continuous deployment. In such approaches instead of listing the product goals in
the beginning (i.e. refer to step1), sub-goals of the corresponding iteration are identified
instead. However, for the iterations that do not release a software product or prototype,
analytics approach is not applicable. Because the prerequisite for using runtime ana-
lytics for product planning is to have a software prototype or product.

The study was limited to 17 answers of product managers experienced in SaaS-based
products. However, the stratified sampling ensured the results are from the variety of
product managers. Although the study focused on analytics of SaaS-based products, the
model in Fig. 1 could be generalized to the other application domains, by considering
that meaningful analytics may vary in different categories of products. For example,
Throughput measurement does only make sense in networked-based applications.
Furthermore, another limitation was due to the choice of product managers for focusing
on roadmapping decisions. More detailed study of portfolio management and release
planning decisions may reveal other constraints on analytics in future. It is also valuable
for researchers to know which measurements support each product goal and how the
product manager may prioritize the measures, which we propose as future work.

6 Conclusions

Products are the artifacts to satisfy the customers’ needs, and hence product managers
require bringing the voice of market and customer to the product planning processes,
where this happens effectively through a data-driven endeavor of sensing and under-
standing the requirements. Different types of analytics assist a product manager in
product planning, where each might be gathered through a different channel and
process. SaaS-based product delivery facilitates gathering a new range of detailed,
usable and real-time product-use data. Measuring and analyzing the data to support
product-planning decisions are targeted by analytics.

This study introduced two taxonomies as inputs for the other parts of the study: A
taxonomy of SaaS-based measurements in categories of two dimensions: “Product”,
“Feature/content”, “GUI Elements” in the first dimension, and “healthiness”, “usage”,
and “context” in the second dimension. The second taxonomy was related to planning
decisions taken in portfolio management, roadmapping and release planning.

To present how analytics assist product managers and contribute to product plan-
ning, an interview-based survey was conducted with professionals in the product
management area by focusing on roadmapping decisions since the interviewees were
experienced more. Through the interview-based survey, the justifications of intervie-
wees for assigning a value to a measurement show that both product characteristics and
product goals constrain analytics, while it is interpreted to product goals. In the other
word, product characteristics and product goals specify which analytics can assist
product managers in achieving the product goals.

The findings helped us to propose an analytics-based model. Some parameters such
as product maturity, users, network type, context, and technology change the scope of

Software Analytics for Planning Product Evolution 25

analytics usefulness for product planning. Analytics can be motivators for product
managers to achieve goals for market positioning, meeting quality-in-use (i.e. customer
and user satisfaction) and improving product quality (usability, functional suitability,
maintainability, reliability and performance efficiency). Therefore, even limited list of
analytics will be helpful to gain good support for taking planning decisions aligned
with the product goals. In the case that analytics shows any deviation from the product
goal, the product manager takes a constructive decision to prevent its occurrence or, at
least, decrease negative effects. The analytics-based model can be used in various
application domains rather than SaaS, when collecting the customized analytics for a
particular domain is applicable.

Acknowledgments. Parts of this work have been done with the support of the SUPERSEDE
project funded by the European Union’s ICT 2014 under grant agreement no 644018.

Appendix: Tables of Qualitative Analysis

Table 3. Constraining analyticsa

Product
characteristics

Constraints

Product maturity “When you are creating an immature product, it is hard to base your
decision based on these kinds of statistics. Instead of analytics for
creating decision for an immature product, we create a prototype and
test the prototype. But for tuning functionality and enhancing, these
statistics can have benefits.”

“From a second release to third release, definitely analytics can be
helpful. Product-use [measurement] affects their allocation of feature in
third release. But not from first release to second, because first release is
mainly about how to build a product.”

Product users “Referral source attribute is not important because our users are from
all over the world as they use their mobile phone.”

“End users are within some specific organizations so statistics about
referral sources are not important.”
“Statistics about new user are not important because we are dealing with
available users, not new users.”

Being Web
based

“Technology and channel [measurement] is very important because the
product is a web-based tool.”

“Technology and channel data is less important. We need to support all
browsers and cover related technology as it is a web based product.”

Network type “For our specific product, error and response time could be used, and
others [other healthiness measurements] did not have a role in the
intranet-based product.”

Product context “Dos and worm attacks are not important in an IPhone application.”

(Continued)

26 F. Fotrousi and S.A. Fricker

Table 3. (Continued)

Product
characteristics

Constraints

Product
technology

“Technology and channel data are less important. We have to support all
browsers and cover related technology as it is a web based product.”

“Inside our organization it is clear which OS or browsers the product has
to work with, so we did not have too many challenges about it
[Technology and channels measurement attributes]”

Product features “Language attribute is not important. Our product only supports English
language, and there is no different to know what languages have the
users.”

aWords given in the brackets (i.e. []) have not been directly mentioned in the quotes, and were
added to make the interviewees quotes more clear.

Table 4. Examples of Analytics Interpretation for product goals and the constraints that a
product goal provides for analytics

Product goal
characteristics

Interpretation Constraint

Market
positioning

“Statistics about campaign are
important because they show how
efficient various marketing
campaigns are in bringing
visitors to be customers.”

“Referral source measurements can
be interesting as we can learn about
the structure of the market and then
they can map it to the feature use, by
that make it an input for prioritizing
features for further development. So
in combination with other studies of
a market, it is important but alone
and in isolated manner.”
“Our goal is to increase web users,
if product use is not too many then
action should be taken to find the
reason..”

“For referral source measures, if I
can find out in what segment the
user belongs to then it is very
important. If from the measure I
find out from which country they
use it, it is mostly less important.”

“Referral source is not importance
since we sell product to an
organization not end users. So they
do not care where the customers are
coming from.”

Customer
Satisfaction

“Our main role is to create
customer benefit to the product
and give them functionality that is
useful. For example by analytics,
finding errors can be seen very
quickly and repaired in each
month release.”

“In our product, it is good to create
more customer benefit which are
got from an interview with
customers and customer feedback
from their service organizations.
If we agree on prioritizing
feature, the statistics are not
useful for them.”

(Continued)

Software Analytics for Planning Product Evolution 27

Table 4. (Continued)

Product goal
characteristics

Interpretation Constraint

Functional
Suitability

“Referral source measure attributes
are important because you can
help to adapt User Interfaces.”

“Statistics in Technology and
channels are important because we
do not want to support all versions
and will support technologies that
are used more.”
“Technology and channels statistics
are very important- Depending on
which mobile they have accessed
from they have to provide a service
according to that.”

“Technology is a tricky category,
what do you mean by technology?
Technology that used for
development, or technology that
is related to users. They are
different with each other. For
development part the analytics is
not important, although for user
side that plays important role.”

Reliability “Product healthiness [analytics] is
very important. If we cannot
achieve desire reliability and
performance we can go home.”

“All healthiness measures are
important, especially error,
people do not accept faulty
product and error.”

Table 5. Examples of shifting from constraining analytics use to interpretation of analytics for
product planning

Product
characteristics

Constrain (by
product
characteristics)

Interpretation Product goal Constraint (by
product goal)

Social ERP
(Business
oriented
product)

“Exit and
entrance
feature is
mostly good to
know when you
have a product
like a website.
For other
product it
might be
different
entrances and
exits, and might
not so differ to
each other.”

“Referral source
measurements are
not so interesting.
I think they are
mostly useful for
websites, like
online shopping to
know the source of
customers. For us,
the current users
location is clear.”

“Quality adds
value to the
product. If not,
you [i.e. your
products] are
definitely dead.
Faulty product
ends in no user
satisfaction. So
It’s good to
know before
lose all users.”

“Feature
measurements
Provide a good
picture of
interesting
features”

“Planning a high
quality
product is that
makes users
satisfied is
important.”

“Product user is
very important
to monitor the
popularity
level of
product
during time
period.”

(Continued)

28 F. Fotrousi and S.A. Fricker

References

1. Rajlich, V.C.T., Bennett, K.H.: A staged model for the software life cycle. Computer 33, 66–
71 (2000)

2. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE 68, 1060–
1076 (1980)

3. Gold, N., Mohan, A., Knight, C., Munro, M.: Understanding service-oriented software.
IEEE Softw. 21, 71–77 (2004)

4. Choudhary, V.C.: Software as a service: implications for investment in software
development. In: 40th Annual Hawaii International Conference on System Sciences,
HICSS 2007, Waikoloa, Big Island, Hawaii (2007)

5. Denne, M., Cleland-Huang, J.: The incremental funding method: Data-driven software
development. IEEE Softw. 21, 39–47 (2004)

6. Ottum, B.D., Moore, W.L.: The role of market information in new product success/failure.
J. Prod. Innov. Manag. 14, 258–273 (1997)

7. Fricker, S.A.: Software Product Management. In: Maedche, A., Botzenhardt, A., Neer, L.
(eds.) Software for People, pp. 53–81. Springer, Heidelberg (2012)

8. Kittlaus, H.-B., Clough, P.N.: Software Product Management and Pricing: Key Success
Factors for Software Organizations. Springer-Verlag New York Inc., New York (2009)

Table 5. (Continued)

Product
characteristics

Constrain (by
product
characteristics)

Interpretation Product goal Constraint (by
product goal)

SaaS-based
Knowledge
Management
(Information
display and
transaction
entry product
type)

“End users are
inside some
specific
organizations,
so referral
source
measurements
are not
important for
us. Also inside
each
organization it
is clear which
OS or browser
are available
so we do not
have too much
challenges
about it.”

“Lead users have
special roles in
patterns related
to gathering
tacit knowledge
in the
organizations.
So it is
important to
understand
who are the
lead users to
target specific
users. So user
classification
based on their
activities on the
product is
useful.”

“Depth of use
analytic helps us
to understand that
users are involved
with the product
and do not have
random visiting.”

“The product
suppose to
grab tacit
knowledge in
the
organization
so it was
important that
adequate
number of
users would
engaged in
different parts
of the system.”

“Feature use is
very important
because it
shows which
parts of the
system the
users are
engaged.”

Software Analytics for Planning Product Evolution 29

9. Bekkers, W., van de Weerd, I., Spruit, M., Brinkkemper, S.: A framework for process
improvement in software product management. In: Riel, A., O’Connor, R., Tichkiewitch, S.,
Messnarz, R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 1–12. Springer, Heidelberg (2010)

10. Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J.: New product portfolio management: practices
and performance. J. Prod. Innov. Manag. 16, 333–351 (1999)

11. Phaal, R., Farrukh, C.J., Probert, D.R.: Technology roadmapping—a planning framework
for evolution and revolution. Technol. Forecast. Soc. Change 71, 5–26 (2004)

12. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.: A
systematic review on strategic release planning models. Inf. Softw. Technol. 52, 237–248
(2010)

13. Ebert, C.: The impacts of software product management. J. Syst. Softw. 80, 850–861 (2007)
14. Phaal, R., Farrukh, C.J., Probert, D.R.: Strategic roadmapping: a workshop-based approach

for identifying and exploring innovation issues and opportunities. Eng. Manag. J. 19, 3–12
(2007)

15. Krueger, R.A.: Focus Groups: A Practical Guide for Applied Research. Sage, Los Angeles
(2009)

16. Fowler, F.J.: Survey Research Methods. Sage, Los Angeles (2009)
17. Lynna, G.S., Akgünb, A.E.: Project visioning: Its components and impact on new product

success. J. Prod. Innov. Manag. 18, 374–387 (2001)
18. Robson, C.: Real World Research: A Resource for Social Scientists and

Practitioner-Researchers. Blackwell, Oxford (2002)
19. Howard, J.A., Sheth, J.N.: The Theory of Buyer Behavior. Wiley, New York (1969)
20. Milne, A., Maiden, N.: Power and politics in requirements engineering: embracing the dark

side? Requir. Eng. 17, 83–98 (2012)
21. Zhang, D., Dang, Y., Lou, J.-G., Han, S., Zhang, H., Xie, T.: Software analytics as a

learning case in practice: Approaches and experiences. In: International Workshop on
Machine Learning Technologies in Software Engineering, pp. 55–58. Lawrence, Kansas
(2011)

22. Davenport, T.H., Harris, J.G.: Competing on Analytics: The New Science of Winning.
Harvard Business Press, Boston (2007)

23. Buse, R., Zimmermann, T.: Analytics for software development. In: Foundations of
Software Engineering (FSE)/SDP Workshop on Future of Software Engineering Research.
ACM, Santa Fe (2010)

24. Buse, R., Zimmermann, T.: Information needs for software development analytics. In:
International Conference on Software Engineering, ICSE 2012, pp. 987–996. IEEE Press,
Zurich (2012)

25. Elo, S., Kyngäs, H.: The qualitative content analysis process. J. Adv. Nurs. 62, 107–115
(2008)

26. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Softw. Technol. 38, 275–280 (1996)

27. Fotrousi, F., Izadyan, K., Fricker, S.A.: Analytics for product planning: in-depth interview
study with SaaS product managers. In: IEEE 6th International Conference on Cloud
Computing, Santa Clara Marriott, CA, USA (2013)

28. Cooper, A.: What is analytics? Definition and essential characteristics. CETIS Anal. Ser. 1,
1–10 (2012)

29. Gorchels, L.: The Product Manager’s Handbook: The Complete Product Management
Resource. NTC Business Books, Illinois (2000)

30. Fricker, S., Schumacher, S.: Release planning with feature trees: industrial case. In: Regnell,
B., Damian, D. (eds.) REFSQ 2011. LNCS, vol. 7195, pp. 288–305. Springer, Heidelberg
(2012)

30 F. Fotrousi and S.A. Fricker

31. Cusumano, M.A.: The changing software business: Moving from products to services.
Computer 41, 20–27 (2008)

32. Menasce, D.A.: QoS issues in web services. IEEE Internet Comput. 6, 72–75 (2002)
33. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: Discovery and

applications of usage patterns from web data. ACM SIGKDD Explor. Newslett. 1, 12–23
(2000)

34. Clifton, B.: Advanced Web Metrics with Google Analytics. Wiley. com, New York (2012)
35. Kohavi, R., Rothleder, N.J., Simoudis, E.: Emerging trends in business analytics. Commun.

ACM 45, 45–48 (2002)
36. Holsapple, C., Lee-Post, A., Pakath, R.: A unified foundation for business analytics. Decis.

Support Syst. 64, 130–141 (2014)
37. Shung, K.P., Junyu, M.C.: Application of analytics in business strategy. Bus. Intell. J. 5,

190–193 (2012)
38. Guest, G., Bunce, A., Johnson, L.: How many interviews are enough? An experiment with

data saturation and variability. Field Methods 18, 59–82 (2006)
39. Clements, P., Bass, L.: Using business goals to inform a software architecture. In: 18th IEEE

International on Requirements Engineering Conference (RE 2010), Sydney, NSW, Australia
(2010)

40. Ebert, C., Brinkkemper, S.: Software product management–An industry evaluation. J. Syst.
Softw. 95, 10–18 (2014)

41. Herrera, M., Moraga, M.Å., Caballero, I., Calero, C.: Quality in use model for web portals
(QiUWeP). In: Facca, F.M., Daniel, F. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 91–101.
Springer, Heidelberg (2010)

42. Olsson, H.H., Bosch, J.: Climbing the “Stairway to Heaven”: evolving from agile
development to continuous deployment of software. In: Bosch, J. (ed.) Continuous Software
Engineering, pp. 15–27. Springer, New York (2014)

Software Analytics for Planning Product Evolution 31

Ecosystems Here, There, and Everywhere

A Barometrical Analysis of the Roots of ‘Software
Ecosystem’

Arho Suominen1(B), Sami Hyrynsalmi2, and Marko Seppänen3

1 VTT Technical Research Centre of Finland, Innovations, Economy, and Policy,
Espoo, Finland

arho.suominen@vtt.fi
2 Department of Information Technology, University of Turku, Turku, Finland

sthyry@utu.fi
3 Department of Pori, Tampere University of Technology, Tampere, Finland

marko.seppanen@tut.fi

Abstract. This study structures the ecosystem literature by using a bib-
liometrical approach in analysing theoretical roots of ecosystem studies.
Several disciplines, such as innovation, management and software stud-
ies have established own streams in the ecosystem research. This paper
reports the results of analysing 601 articles from the Thomson Reuters
Web of Science database, and identifies ten separate research commu-
nities which have established their own thematic ecosystem disciplines.
We show that five sub-communities have emerged inside the field of soft-
ware ecosystems. The software ecosystem literature draws its theoretical
background from (1) technical, (2) research methodology, (3) business,
(4) management, and (5) strategy oriented disciplines. The results pave
the way for future research by illustrating the existing and missing links
and directions in the field of the software ecosystem.

Keywords: Business ecosystem · Software ecosystem · Bibliometric

1 Introduction

Managerial fads and fashions come and go (see [1,2]). The recent, even hyped
buzzword “ecosystem” has its conceptual roots in 1930s in the context of bio-
logical ecosystems [3], and re-established and reinforced by Moore as business
ecosystems in 1990s [4]. A vast amount of scholarly and other literature have
been published around the topic and scholars are still arguing on the conceptual
definitions and even foundations. However, this conceptual underdevelopment
has not restrained any consultant or manager using the concept for their own
purposes; one of the key characteristics of handy management concept is its
intellectual and content-wise flexibility.

There are several sub-types of ecosystems, coined and defined for different
purposes; business ecosystem (e.g. [5]), industrial ecosystem (e.g. [6]), innova-
tion ecosystem (e.g. [7]), knowledge ecosystem [8], mobile ecosystem (e.g. [9]),
c© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 32–46, 2016.
DOI: 10.1007/978-3-319-40515-5 3

Ecosystems Here, There, and Everywhere 33

and software ecosystem (e.g. [10]). These sub-types usually have some common
roots, and their definitional overlapping is remarkable. In this paper, we focus
on exploring and making sense on the recent trends and trajectories of soft-
ware ecosystem by using bibliographical methods to analyze and demonstrate
the development and show possible future research avenues.

We use bibliometric approach integrated with a qualitative analysis on the
selected core documents. The data was gathered from Thomson Reuters Web
of Science database in January 2016. The internal structures the sample publi-
cations was examined using two bibliometric approaches: bibliographic coupling
and co-citation analysis. Bibliographic coupling reveals to what extent the pub-
lication use shared intellectual background whereas the co-citation analysis was
used to explore what is the shared background for the publications.

It seems that the concepts of ecosystems do have some theoretical and prac-
tical value, especially since the economy is transforming into a full-pull economy.
In other words, the traditional economy has been dominated by a mass market,
economies of scale and ‘pushing’ goods and services to customers. The Inter-
net has enabled firms to target customers at the individual level. Thus, “now
every company is a software company”1 and analyzing the software ecosystem
will provide us a better understanding how and where the scholarly attention
has been developing, and more importantly, where the current research gaps are
that academia should be targeting to fulfill.

2 Background

The complex relationships in business have, for a long time, been explained and
studied with metaphors derived from the nature. Whereas the metaphors such as
‘jungle’ and ‘rainforest’ [11] have not been widely adapted, the ‘business ecosys-
tem’ metaphor by Moore [4] in 1993 is nowadays widely used both in academia
as well as in industry. A business ecosystem, according to Moore [12, p. 26], is
“an economic community supported by a foundation of interacting organizations
and individuals–the organisms of the business world.” According to his view,
ecosystems are born from companies working around an innovation [4]. The
business ecosystem research field was later remarkably advanced by Iansiti and
Levien [13,14] with their definition of healthiness of a business ecosystem.

Since the introduction of the concept, a series of different artificial ecosys-
tems has been presented; e.g. ‘software ecosystems’ [10,15,16], ‘mobile ecosys-
tems’ [9,17,18], ‘innovation ecosystems’ [19–21], ‘digital ecosystems’ [22–24] in
addition to those mentioned in earlier. However, the relationship between dif-
ferent types of ecosystems are not clear [25], nor it has been defined what are
the boundaries between different ecosystems [26]. As an example, under the
umbrella term ‘software ecosystem’, there have been research on ecosystems

1 Kirkpatrick, D. Now Every Company Is A Software Company. http://www.forbes.
com/sites/techonomy/2011/11/30/now-every-company-is-a-software-company/#
1505e9a21100.

http://www.forbes.com/sites/techonomy/2011/11/30/now-every-company-is-a-software-company/#1505e9a21100
http://www.forbes.com/sites/techonomy/2011/11/30/now-every-company-is-a-software-company/#1505e9a21100
http://www.forbes.com/sites/techonomy/2011/11/30/now-every-company-is-a-software-company/#1505e9a21100

34 A. Suominen et al.

formed around a geographical location [27–29] as well as on closed market-
places [25,30]. These two types represent almost the different ends of the spec-
trum where software ecosystem conceptualization has been applied.

Previously there have been attempts to organize the emerged ecosystem lit-
erature by literature reviews [10,31,32] as well as identify the theoretical back-
grounds of the studies [33]. However, recently there have been discussions what
is the relationship between, e.g., the concept of software and business ecosys-
tems [25,32]. We contribute this ongoing discussion by analyzing the different
ideological backgrounds of the published studies with a bibliometrical approach.

3 Data and Research Method

The study follows bibliometric approach integrated with a qualitative analysis
of selected core documents. The data was downloaded from Thomson Reuters
Web of Science (WoS) database in January 2016. WoS database was selected as
a source as, with Scopus, it is one of the largest science publication database
both by volume and coverage. The selection between Scopus and WoS is in many
cases irrelevant as the results derived from either correlate highly [34]. A more
important aspect in the selection is the access to data, which is proprietary,
and the authors had broadest access to WoS supporting its selection as data-
source. The dataset was compiled by searching with one of the terms “innovation
ecosystem(s)”, “business ecosystem(s)”, “software ecosystem(s)” being used in
the title, abstract, author keywords or the WoS enhanced metadata Keywords
Plus R© field. These are the among largest artificial ecosystem fields. The search
resulted in 601 articles. This includes all type of articles indexed in WoS e.g.
journal publications, conference proceedings, reviews, and letters.

Since 2005 there has been a rapid increase in publication volume relating to
the search terms (Fig. 1). The first publications in the dataset was published in
1991 is by Zeleny et al. [35] titled “Applying a new set of lenses – implications
for managers of managing in the business ecosystem”. The most highly cited
article in the set is by Teece [36] on dynamic capabilities. Roughly 1/6 of the
articles were published in 2014, as seen in Fig. 1. The downturn in publishing in
2015 may be explained by the fact that conference proceedings for 2015 will be
added to the WoS during 2016, thus increasing the 2015 publications count.

The 11 most active publication outlets have published roughly 1/4 of the
publications in the dataset. Most active has been the Proceedings of the Interna-
tional Conference on Digital Ecosystems and Technologies (DEST) followed by
two Springer lecture notes series, which also originate from a number of confer-
ences. Major journal outlets are Journal of Systems and Software and Technology
and Innovation Management among other mentioned in Table 1.

The knowledge structure of the before mentioned 601 publications was stud-
ied using two established bibliometric approaches. First, Bibliographic cou-
pling [37] was used to study the shared intellectual background of publications.
BC measures the shared intellectual background among documents, where a
strength value is calculated between each document in the dataset based on the

Ecosystems Here, There, and Everywhere 35

1991 1996 2001 2006 2011 2016

0

20

40

60

80

100

120

Fig. 1. Histogram of article publication by years

Table 1. The largest, by volume, research outlets for the sample publications. The list
is limited the outlets having more than 10 publications. Full table available at http://
goo.gl/qJ03tB

Publication forums Publications

International Conference on Digital Ecosystems and Technologies 45

Lecture Notes in Business Information Processing 27

Lecture Notes in Computer Science 14

The Technology Innovation Management Review 10

number of shared references. [37] states that “...a single item of reference shared
by two documents is defined as a unit of coupling between them”. Based on
these definition of a unit we can create a network of documents mentioned in
the references of the dataset, where a vertices is formed between two documents
if there is one or more times the documents co-occur in a reference list. Edges are
also weighted by the count of occurrences of the two documents in the dataset,
where weight is [1,601]. The BC approach works on the assumption that the
more shared references, the stronger theoretical foundation the two documents
share. By this process, BC method has been shown to be able identify documents
with a shared research focus [38]. Calculating the BC weight to all documents
in the dataset, we can cluster and visualize a network of shared knowledge.

After identifying the cluster relevant to software ecosystem, we use a co-
citation (CoC) analysis [39] to show what is the shared background that the
publications use. In CoC two documents are co-cited if there is one or more
documents that cite both articles. The weight of co-citation is based on the
count of articles that co-cite the two documents. CoC creates a network of cited
documents rather than linking the documents in the dataset. [40] When iden-
tifying the software ecosystem community, similar clustering and visualization

http://goo.gl/qJ03tB
http://goo.gl/qJ03tB

36 A. Suominen et al.

where done to cited publications than BC analysis. We used the VOSviewer soft-
ware [41] to pre-process the WoS data and calculate the bibliographic coupling
and co-citation weights. VOSviewer also transformed the original data to a net-
work based on the bibliographical links between documents. The parameters for
the analysis are given in Table 2.

Table 2. Parameters used in the bibliometric analysis.

Analysis Unit of analysis Counting methods

Bibliographic coupling Documents Full Counting

Co-citation analysis Cited references Full Counting

Additional network metrics were calculated using Gephi network visualiza-
tion software. Latent patterns in the network were uncovered using a Modularity
algorithm developed by Blonder et al. [42]. The Modularity algorithm was run
using randomized, edge weighted and a resolution of 1.0 as parameters. Searching
for central nodes in the network was done by two approaches. First we calculated
the Eigenvector Centrality for each node. In graph theory and network analysis,
centralilty is used as a measure to identify the most important vertices within a
graph. The Eigenvector Centrality measure assigns a score for each node based
on its connections with the concept that connections to high-scoring nodes con-
tribute more to the Eigenvector Centrality score of a node than connections to
low-scoring nodes. To create a more comprehensive picture of important nodes,
we also used an algorithm developed by Kleinberg [43] to find authoritative
nodes in a network. The algorithm, originally developed for hyperlink analysis,
searches for hub and authorities in a network. A hub is a node that points to
many other nodes, an authority is a page that is by many hubs. In this we look
for authoritative nodes, publications, in the network and compare the results to
Eigenvector Centrality results.

The graph is visualized using the Force Layout algorithm using Gephi. The
visualization was used to qualitative evaluate the structure of different research
communities identified and to communicate the results. For each main stream,
or community produced by the Modularity algorithm, of the literature the most
central publications were selected for qualitative evaluation. Documents were
selected by ranking documents based on community it belongs, Eigenvector Cen-
trality and Authority value. The documents selected from each community were
used to create a qualitative narrative to each of the main research streams.

4 Results

Analyzing the 601 publications by the means of BC revealed a portion of articles
not linked to the majority of the sample. The largest set of connected articles
has 470 articles, leaving 131 articles that are not connected to the core sample.

Ecosystems Here, There, and Everywhere 37

These 131 articles were excluded for any further analysis. For the 470 articles
remaining publications, VOSViewer was used to calculate BC weight values for
each node and the coupling strength between documents. The highest BC weight
in the set is by Weber and Hine [5] titled “Who inhabits a business ecosystem?
The technospecies as a unifying concept” (weight = 601). The average BC weight
is 103,29 (N=470, s.d. 119,26).

Employing the Modularity algorithm we identify 10 communities in the BC
network seen in Fig. 2 and described in Table 3. We focus on the four largest
communities: Community 1 in blue (N=133), Community 2 in orange (N=111),
Community 5 in lilac (N=109), and Community 9 in green (N=91) seen in Fig. 2.
From the communities, Community 9 is most connected with approximately 30
edges per node and Community 9 has the highest number of edges to nodes.

Literature in Community 1 focuses on industry platforms, ecosystem dynam-
ics and value creation in ecosystem. This community is not specific to the soft-
ware ecosystem concept, but analyses the ecosystem concept at a more general

Fig. 2. Bibliographic coupling network of 470 publications relating to software and
innovation ecosystems. Data: WoS. Graph is available online for a more in-depth analy-
sis of labels at http://goo.gl/NytKiG (Color figure online)

http://goo.gl/NytKiG

38 A. Suominen et al.

Table 3. Largest communities in the sample data. Top publications by bibliographic
coupling weight are given for each community. Data: WoS. Full table available at
http://goo.gl/xTa8EN

Community Nodes Edges Top publications by BC weight

1 133 2321 Gawer 2014 [44], Brusoni 2013 [45], Adner 2010 [46]

2 111 987 Nikayin 2013 [47], Shang 2013 [48], Gueguen 2009 [49]

5 109 1518 Hyrynsalmi 2015 [32], Manikas 2013 [10], Crooymans 2015 [50]

9 91 2728 Weber 2015 [5], Liu 2015 [51], Kang 2011 [52]

level. Community 2 focuses on service innovation and digital ecosystem. Topics
range from service quality management to mobile handset ecosystems. Commu-
nity 5 focuses specifically on software ecosystem and the majority of publica-
tions in the community clearly highlight the software ecosystem concept. The
most interconnected sub-network in the dataset is Community 9 that focuses
on business ecosystems broadly. The publications highlight the dynamics and
evolutionary processes in business ecosystems.

Table 4 shows central and authoritative publications for each of the core
clusters. These clusters are not central in the sense that they would be highly
cited as the calculations are based on the BC analysis. The central publications
describe more, what are publications that are central in that they reference key
literature to the specific community. For example for Community 1, [46,53,54]
references key literature for the community and by analyzing these we are able
to further understand the content of the cluster.

The central publications support our analysis of the content of communities.
In Community 1 [46,53] focus on value creation and competitive dynamics of
ecosystem at an general level. [54] looks at open source innovation practises in
non–software domains and is more loosely connected to [46,53]. Central pub-
lications for Community 2 focuses on business models and ecosystems [55,56]
and the digital and mobile domain [49]. For Community 5, the central docu-
ments focus specifically on software ecosystem [57,58] and on service innovation

Table 4. The most central publications for each of the four core communities. Cen-
trality is evaluated by both HITS algorithm and Eigenvector centrality.

Com. Authoritative Publication Authority Central publications Centrality

1 Adner 2010 [46], Pierce
2009 [53]

0.009 & 0.008 Taney 2007 [54], Pierce
2009 [53]

0.75 & 0.72

2 Fragidis 2007 [55],
Gueguen 2009 [49]

0.007 & 0.007 Fragidis 2007 [55], Fan
2004 [56]

0.79 & 0.7

5 Popp 2010 [57],
Kabbedijk 2011 [58]

0.007 & 0.007 Arndt 2006 [59], Popp
2010 [57]

0.43 & 0.37

9 Kang 2011 [52], Zhang
2008 [60]

0.011 & 0.010 Scarlat 2007 [61], Zhang
2008 [60]

1 & 0.99

http://goo.gl/xTa8EN

Ecosystems Here, There, and Everywhere 39

Fig. 3. Bibliographic coupling subnetwork for Community 5. Data: WoS

specifically in information system [59]. For the final core community, Commu-
nity 9, our evaluation of the BC weight suggested that the community focuses on
business ecosystems broadly. Looking at the central publications [52] does just
this, but [60,61] clearly focus on the digital and mobile domains. This suggest
that in parts the content of the community is more focused.

Focusing on the software context our focus turns towards Community 5, seen
in Fig. 3. In the figure, the nodes are sized based on the Eigenvector Centrality.
This reduces the size of the review article by [32] and highlights articles that are
at by definition most important vertices within a graph. The subnetwork seen
in Fig. 3 has been clustered using the Modularity algorithm highlighting four
subcommunities.

Finally we reflect on the BC analysis by looking at the CoC results. Under-
standing the shared knowledge bases of the sample publications, we highlight the
citations, not the publications. This shows what is the underlying shared back-
ground of the software ecosystem literature. This background is seen in Fig. 4.

The total amount of cited references for the 109 publications is 2357. Due to
the unpracticality of visualizing a network so large, we set the minimum number
of citations a cited reference has to have to 2. This excludes a significant amount
of references that occur in the network only once, leaving the final analysis
data with 273 cited publications. For these, we created a network based on

40 A. Suominen et al.

Fig. 4. Co-citation network of 273 publications core to software ecosystem literature
(defined as Community 5). Data: WoS. The graph is available online at http://goo.gl/
SMCHus (Color figure online)

co-citations. Using VOSviewer we identified that 2 documents from the 273 were
not connected to the rest of the network and the largest set of connected nodes
is 271. We excluded the two singular nodes, keeping the rest for the analysis.

The modularity algorithm highlighted five communities, seen in Fig. 4, of
background literature in software ecosystems; Community 1 in red (N=55), Com-
munity 2 in blue (N=74), Community 3 in green (N=31), Community 4 in light
green (N=60) and Community 5 in lilac (N=51). The size of the nodes reflects
the number of connections to each node (Degree).

Analyzing the content of the communities further we identify thematic dif-
ferences between the clusters. Community 1 (red,top) is the most technically
oriented. In this the term software ecosystem refers to technical ecosystems
exemplified by for example [62] focusing on open source ecosystems. Commu-
nity 2 (blue, left) is based on case study research work. Central articles to the
community focus on reporting case study research in software engineering [63]
and the handbook to software ecosystems [64]. Community 3 (green, right) high-
lights background articles such as [65], which are at the core of strategic manage-

http://goo.gl/SMCHus
http://goo.gl/SMCHus

Ecosystems Here, There, and Everywhere 41

ment literature. This stream of background literature ties the software ecosystem
literature to the business ecosystem literature where publications, such as the
before mentioned article by Gawer and Henderson, has received a significant
interest. The central article to the community is Zhu’s [66] strategic manage-
ment article on entering platform markets. Community 4 (light green, bottom
middle) focuses on modeling the ecosystem structures. This is exemplified by
background on ecosystem modelling [67] and architecture [68]. Community 5
(lilac, bottom right) draws heavily from the management literature. Background
highlights Moore’s seminal article of Predator Pray competition as well as other
management publications (e.g. [13,69]).

5 Discussion and Conclusions

Managerial and business strategy is riddled with fashionable terms – currently
the ecosystem analogy by Moore [4] is very much in fashion. With the plethora
of literature on the topic, we assume that the concept creates theoretical and
practical value. There is, however, a clear need to identify what that value is
and which communities are taking this analogy to use.

We used well-established bibliometric methods to uncover thematic differ-
ences in innovation, business and software ecosystem literature. These difference
highlighted four larger thematic areas, one of which is software related. Looking
at Table 4, we notice that the most central articles in Community 5 have a low
Eigenvector centrality in the overall network. This suggest that when analyzing
software ecosystem literature in its broader context it remains as more isolated
than other communities. Using weather terminology, we may see how and where
these low-pressure areas have emerged, and what is the current reading at the
barometer, equaling the speed of development in that particular area.

Looking deeper to the sub–network of software ecosystem we uncovered five
bibliographically coupled sub–communities seen in Fig. 3. We remain skeptical
whether the figure is able to elaborate on the underlying structure of scientific
research in software ecosystems. This suggests that we should look at the docu-
ments cited by the sub–community to create further insight.

The co-citation analysis highlighted the theoretical origins of software ecosys-
tem research papers. It is apparent that the literature has a more technically
oriented stream, but this is smaller in size comparison to the managerial and
business oriented areas. The technically oriented research stream can also explain
the isolation of the community seen in Table 4 as literature in this stream does
not draw from the innovation and business ecosystem literature.

We also identifies a stream of literature focusing on research methods, specif-
ically case study research in software engineering. This highlights the need for
structured case studies, but also the large quantity of case study work pub-
lished in recent years. Finally, we see three larger sub–communities focusing
on managerial, strategy and business aspect of software ecosystems. This broad
community need further analysis to understand the thematic differences between
the communities. This is left for future work.

42 A. Suominen et al.

The study is limited by the selection of key search terms for the bibliometric
analysis – as this also impacts the later qualitative analysis. Adding term, such
as “mobile ecosystem” or “digital ecosystem” would have produced an different
type of thematic clustering. A test of adding terms suggest that by adding more
focused terms, such as the before mentioned, we would increase the document
volume by approximately 25 %. We argue that our approach covers the largest
artificial ecosystem fields, but further work should consider the possibility that
a broader scope could create more insight to the structure or the field.

As a summary, our results highlighted that the “innovation ecosystem(s)”,
“business ecosystem(s)”, “software ecosystem(s)” literature draws from four
major thematical areas based on their background. One distinct area is the
software ecosystem literature. The software ecosystem literature draws its the-
oretical background from five communities, one more technically oriented, one
research methodology oriented and three business, management and strategy
oriented themes. The barometer shows that there are several developing areas,
and likely new ones are to be formed from the current ones.

References

1. Abrahamson, E.: Managerial fads and fashions: the diffusion and rejection of inno-
vations. Acad. Manage. Rev. 16(3), 586–612 (1991)

2. Furnham, A.: Fads and fashions in management (2015)
3. Tansley, A.G.: The use and abuse of vegetational concepts and terms. Ecology

16(3), 284–307 (1935)
4. Moore, J.F.: Predators and prey: a new ecology of competition. Harvard Bus. Rev.

71(3), 75–86 (1993)
5. Weber, M.L., Hine, M.J.: Who inhabits a business ecosystem? the technospecies

as a unifying concept. Technol. Innov. Manage. Rev. 5(5), 31–44 (2015)
6. Frosch, R.A., Gallopoulos, N.E.: Strategies for manufacturing. Sci. Am. 261(3),

144–152 (1989)
7. Dedehayir, O., Ortt, J.R., Seppänen, M.: Reconfiguring the innovation ecosystem:

an explorative study of disruptive change. In: International ICE Conference on
Engineering, Technology and Innovation (ICE), pp. 1–9. IEEE (2014)

8. Clarysse, B., Wright, M., Bruneel, J., Mahajan, A.: Creating value in ecosystems:
crossing the chasm between knowledge and business ecosystems. Res. Policy 43(7),
1164–1176 (2014)

9. Basole, R.C.: Visualization of interfirm relations in a converging mobile ecosystem.
J. Inf. Technol. 24(2), 144–159 (2009)

10. Manikas, K., Hansen, K.M.: Software ecosystems – a systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

11. H̊akansson, H., Ford, D., Gadde, L.E., Snehota, I., Waluszewski, A.: Business in
Networks. Wiley, Chichester (2009)

12. Moore, J.F.: The Death of Competition: Leadership and Strategy in the Age of
Business Ecosystems. Harper Business, New York (1996)

13. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Bus. Rev. 82(3), 68–78 (2004)
14. Iansiti, M., Levien, R.: The Keystone Advantage: What the New Dynamics of

Business Ecosystems Mean for Strategy, Innovation, and Sustainability. Harvard
Business School Press, Boston (2004)

Ecosystems Here, There, and Everywhere 43

15. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, SPLC 2009, pp. 111–119.
Carnegie Mellon University, Pittsburgh (2009)

16. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering – Companion Volume, ICSE-Companion 2009, pp. 187–190. IEEE,
May 2009

17. Basole, R.C., Karla, J.: On the evolution of mobile platform ecosystem structure
and strategy. Bus. Inf. Syst. Eng. 3, 313–322 (2011)

18. Hyrynsalmi, S., Suominen, A., Mäkilä, T., Knuutila, T.: The emerging mobile
ecosystems: an introductory analysis of Android Market. In: Proceedings of the
21st International Conference on Management of Technology, IAMOT 2012, pp.
1–16. International Association for Management of Technology, Hsinchu, March
2012

19. Adner, R.: Match your innovation strategy to your innovation ecosystem. Harvard
Bus. Rev. 84(4), 98–107 (2006)

20. Rohrbeck, R., Hözle, K., Gemünden, H.G.: Opening up for competitive advantage
– how Deutsche Telekom creates an open innovation ecosystem. R&D Manage.
39(4), 420–430 (2009)

21. Adner, R., Kapoor, R.: Innovation ecosystems and the pace of substitution: re-
examining technology s-curves. Forthcoming, December 2011

22. Briscoe, G., De Wilde, P.: Digital ecosystems: evolving service-orientated architec-
tures. In: Proceedings of the 1st International Conference on Bio Inspired Models of
Network, Information and Computing Systems, BIONETICS 2006, pp. 1–6. ACM,
New York (2006)

23. Dini, P., Lombardo, G., Mansell, R., Razavi, A.R., Moschoyiannis, S., Krause,
P., Nicolai, A., León, L.R.: Beyond interoperability to digital ecosystems: regional
innovation and socio-economic development led by SMEs. Int. J. Technol. Learn.
Innov. Dev. 1(3), 410–426 (2008)

24. Stanley, J., Briscoe, G.: The ABC of digital business ecosystems. Commun. Law –
J. Comput. Media Telecommun. Law 15(1), 12–25 (2010)

25. Hyrynsalmi, S.:Letters from the war of ecosystems — an analysis of indepen-
dentsoftware vendors in mobile application marketplaces. Doctoral dissertation,
University of Turku, Turku, Finland, TUCS Dissertations No 188, December 2014

26. Gueguen, G., Isckia, T.: The borders of mobile handset ecosystems: is coopetition
inevitable? Telematics Inform. 28(1), 5–11 (2011)

27. Larrucea, X., Nanclares, F., Santamaria, I.: A method for defining a regional soft-
ware ecosystem strategy: colombia as a case study. Technol. Forecast. Soc. Change
104, 247–258 (2016)

28. Ben Hadj Salem Mhamdia, A.: Performance measurement practices in software
ecosystem. Int. J. Prod. Perform. Manage. 62(5), 514–533 (2013)

29. den Hartigh, E., Visscher, W., Tol, M., Salas, A.J.: Measuring the health of a busi-
ness ecosystem. In: Jansen, S., Brinkkemper, S., Cusumano, M.A. (eds.) Software
Ecosystems: Analyzing and Managing Business Networks in the Software Industry,
pp. 221–246. Edward Elgar Publisher Inc., Northampton (2013)

30. Hyrynsalmi, S., Suominen, A., Mäntymäki, M.: The influence of developer multi-
homing on competition between software ecosystems. J. Syst. Softw. 111, 119–127
(2016)

44 A. Suominen et al.

31. Barbosa, O., dos Santos, R.P., Alves, C., Werner, C., Jansen, S.: A systematic
mapping study on software ecosystems from a three-dimensional perspective. In:
Jansen, S., Brinkkemper, S., Cusumano, M.A. (eds.) Software Ecosystems: Analyz-
ing and Managing Business Networks in the Software Industry, pp. 59–81. Edward
Elgar Publisher Inc., Northampton (2013)

32. Hyrynsalmi, S., Seppänen, M., Nokkala, T., Suominen, A., Järvi, A.: Wealthy,
healthy and/or happy — what does ‘ecosystem health’ stand for? In: Fernandes,
J.M., Machado, R.J., Wnuk, K. (eds.) Software Business. LNBIP, vol. 210, pp.
272–287. Springer, Heidelberg (2015)

33. Hanssen, G.K., Dyb̊a, T.: Theoretical foundations of software ecosystems. In:
Jansen, S., Bosch, J., Alves, C.F. (eds.) Proceedings of the International Work-
shop on Software Ecosystems, CEUR Workshop Proceedings, vol. 879, pp. 2–13.
MIT Sloan School of Management, Cambridge, June 2012. CEUR-WS

34. Archambault, É., Campbell, D., Gingras, Y., Larivière, V.: Comparing bibliometric
statistics obtained from the web of science and scopus. J. Am. Soc. Inf. Sci. Technol.
60(7), 1320–1326 (2009)

35. Zeleny, M., Cornet, R., Stoner, J.: Applying the new set of lenses - implications
for managers of managing in the business ecosystem. In: Hennessy, J.E., Robins,
S. (eds.) Managing toward the millennium. Fordham Univ Press (1991)

36. Teece, D.J.: Explicating dynamic capabilities: the nature and microfoundations
of (sustainable) enterprise performance. Strateg. Manage. J. 28(13), 1319–1350
(2007)

37. Kessler, M.: An experimental study of bibliographic coupling between technical
papers (corresp.). IEEE Trans. Inf. Theory 9(1), 49–51 (1963)

38. Peters, H.P., Braam, R.R., van Raan, A.F.: Cognitive resemblance and citation
relations in chemical engineering publications. J. Am. Soc. Inf. Sci. 46(1), 9 (1995)

39. Small, H.: Co-citation in the scientific literature: a new measure of the relationship
between two documents. J. Am. Soc. Inf. Sci. 24(4), 265–269 (1973)

40. Garfield, E.: From bibliographic coupling to co-citationanalysis via algorithmic
historio-bibliography: a citationist’s tribute to belverc. griffith. Drexel University,
Philadelphia, PA (2001)

41. van Eck, N., Waltman, L.: Software survey: vosviewer, a computer program for
bibliometric mapping. Scientometrics 84(2), 523–538 (2009)

42. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008
(2008)

43. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
(JACM) 46(5), 604–632 (1999)

44. Gawer, A., Cusumano, M.A.: Industry platforms and ecosystem innovation. J.
Prod. Innov. Manage. 31(3), 417–433 (2014)

45. Brusoni, S., Prencipe, A.: The organization of innovation in ecosystems: problem
framing, problem solving, and patterns of coupling. Adv. Strat. Manage. 30(2013),
167–194 (2013)

46. Adner, R., Kapoor, R.: Value creation in innovation ecosystems: How the struc-
ture of technological interdependence affects firm performance in new technology
generations. Strat. Manage. J. 31(3), 306–333 (2010)

47. Nikayin, F., De Reuver, M., Itälä, T.: Collective action for a common service plat-
form for independent living services. Int. J. Med. Inform. 82(10), 922–939 (2013)

48. Shang, T., Shi, Y.: The dynamics of business ecosystems in the context of industrial
emergence. In: GMC 2013: Proceedings of the Ninth International Symposium on
Global Manufacturing and China, pp. 168–172 (2013)

http://ceur-ws.org/

Ecosystems Here, There, and Everywhere 45

49. Gueguen, G., Isckia, T.: The borders of mobile handset ecosystems: is coopetition
inevitable? In: Hesselman, C., Giannelli, C. (eds.) Mobile Wireless Middleware,
Operating Systems, and Applications-Workshops, vol. 12, pp. 45–54. Springer,
Heidelberg (2009)

50. Crooymans, W., Pradhan, P., Jansen, S.: Exploring network modelling and strat-
egy in the dutch software business ecosystem. In: Fernandes, J.M., Machado,
R.J., Wnuk, K. (eds.) Software Business. LNBIP, vol. 210, pp. 45–59. Springer,
Heidelberg (2015)

51. Liu, G., Rong, K.: The nature of the co-evolutionary process complex product
development in the mobile computing industrys business ecosystem. Group Organ.
Manage. 40(6), 809–842 (2015)

52. Kang, C., Hong, Y.S., Kim, K.J., Park, K.T., et al.: Representation and analysis of
business ecosystems co-specializing products and services. In: DS 68–4: Proceedings
of the 18th International Conference on Engineering Design (ICED 2011), Impact-
ing Society through Engineering Design, vol. 4. Product and Systems Design, Lyn-
gby/Copenhagen, 15–19 August 2011

53. Pierce, L.: Big losses in ecosystem niches: How core firm decisions drive comple-
mentary product shakeouts. Strat. Manage. J. 30(3), 323–347 (2009)

54. Tanev, S.: Toward a methodology for studying the application of open source inno-
vation practices in non-software domains. In: Saratov Fall Meeting 2006: Optical
Technologies in Biophysics and Medicine VIII, p. 65350T. International Society for
Optics and Photonics (2007)

55. Fragidis, G., Tarabanis, K., Koumpis, A.: Conceptual and business models for
customer-centric business ecosystems. In: Digital EcoSystems and Technologies
Conference, DEST 2007. Inaugural IEEE-IES, pp. 94–99. IEEE (2007)

56. Fan, B.: Competitive strategy: a business eco-system perspective. In: ISMOT 2004:
Proceedings of the Fourth International Conference on Management of Innova-
tion and Technology: Managing Total Innovation in the 21st Century, pp. 281–284
(2004)

57. Popp, K.M., Meyer, R.: Profit from Software Ecosystems: Business Models, Ecosys-
tems and Partnerships in the Software Industry. Books on Demand GmbH,
Norderstedt (2010)

58. Kabbedijk, J., Jansen, S.: Steering insight: an exploration of the ruby software
ecosystem. In: Regnell, B., van de Weerd, I., De Troyer, O. (eds.) ICSOB 2011.
LNBIP, vol. 80, pp. 44–55. Springer, Heidelberg (2011)

59. Arndt, J.M., Dibbern, J.: Co-innovation in a service oriented strategic network.
In: IEEE International Conference on Services Computing, SCC2006, pp. 285–288.
IEEE (2006)

60. Zhang, J., Huo, Y., Liang, X.J.: Business ecosystem strategies of mobile network
operators in the 3G era: the case of china mobile. China Commun. 5(3), 114–118
(2008)

61. Scarlat, E.: From virtual enterprises to digital business ecosystems: a survey on
the modeling and simulation methods. Econ. Comput. Econ. Cybern. Stud. Res.
41(1–2), 17–29 (2007)

62. Scacchi, W., Alspaugh, T.A.: Understanding the role of licenses and evolution in
open architecture software ecosystems. J. Syst. Softw. 85(7), 1479–1494 (2012).
Software Ecosystems special issue

63. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

64. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indis-
pensable Technology and Industry. The MIT Press, Cambridge (2003)

46 A. Suominen et al.

65. Gawer, A., Henderson, R.: Platform owner entry and innovation in complementary
markets: evidence from intel. J. Econ. Manage. Strat. 16(1), 1–34 (2007)

66. Zhu, F., Iansiti, M.: Entry into platform-based markets. Strat. Manage. J. 33(1),
88–106 (2012)

67. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem mod-
eling. In: Proceedings of the 1st International Workshop on Open Component-
Ecosystems, IWOCE 2009, pp. 41–50. ACM, New York (2009)

68. Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software plat-
forms. In: Proceedings of the Fourth European Conference on Software Architec-
ture: Companion Volume, ECSA 2010, pp. 85–92. ACM, New York (2010)

69. Viljainen, M., Kauppinen, M.: Software ecosystems: a set of management practices
for platform integrators in the telecom industry. In: Regnell, B., van de Weerd, I.,
De Troyer, O. (eds.) ICSOB 2011. LNBIP, vol. 80, pp. 32–43. Springer, Heidelberg
(2011)

PDISC – Towards a Method
for Software Product DISCovery

Type: Exploratory Paper

Karl Werder1(&), Benedikt Zobel2, and Alexander Maedche3

1 University of Mannheim, Mannheim, Germany
werder@es.uni-mannheim.de

2 Osnabrueck University, Osnabrueck, Germany
benedikt.zobel@uni-osnabrueck.de

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
alexander.maedche@kit.edu

Abstract. For the creation of software products, the idea of iterative and
incremental development and design is widely accepted and embedded in various
methodologies. However, earlier activities within software projects are often the
cause for the projects termination. Such activities are often described as the
product discovery phase. Therefore, this study develops PDISC, a method for
software product discovery. Following a design science research approach, a
systematic literature review extracts design requirements and method fragments
from literature. The method fragments describe early activities and are docu-
mented using process deliverable diagrams. Collectively, such method fragments
form a method database that is used to develop PDISC. PDISC helps practitioners
to conduct early activities in a systematic way in order to create a product vision.

Keywords: Software product � Discovery � Method engineering � Product
vision

1 Introduction

Product discovery phase is the term used to describe early activities collectively in
order to create a viable, desirable and feasible product vision. These early activities
provide a different set of challenges and our understanding of their precise influence on
a product remains unclear [1, 2]. Hence, practitioners require actionable guidance in the
form of a method for the discovery of software products [1, 2]. Such method can help
practitioners to structure their early activities. Moreover, it assures the correct shaping
and documentation of the product idea in the form of a product vision.

More recently, scholars explore the combination of different methodologies. For
example, the combination of agile software development (ASD) and user-centered
design (UCD), i.e. blending practices and techniques for development with those
established in the design discipline (e.g. [1, 3, 4]). Fox et al. [3] for example, suggest a
method combining ASD and UCD through a cycle zero and parallel yet interwoven
tracks. Focusing on the individual, da Silva [5] worked extensively to identify the role of

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 47–62, 2016.
DOI: 10.1007/978-3-319-40515-5_4

UX designers within agile teams and the integration of interaction design into ASD [6].
In a similar vein, Ferreira, Noble, and Biddle [7] suggest steps towards the cooperation of
user experience designers and agile developers. Brhel et al. [1] identified five principles
along the processes and practices of UCD and ASD domains, establishing a
user-centered agile software development approach. However, we lack systematic
knowledge on how to conduct early activities and deliverables during the product dis-
covery phase [1, 2]. The objective of such phase is the creation of a product vision that
improves the software’s success. To the author’s knowledge, there is no discovery
method for software products suggested in the literature.

Therefore, we follow calls for more research on product discovery [1, 2, 8] and seek
to develop a method for software product discovery. Our research objectives are to:
(a) review existing literature on methods regarding the discovery of software products,
(b) extract and formalize existing methods from such literature to establish clear design
requirements and design principles, and (c) translate those design requirements into a
formalized method for software product discovery. We formulate the following
research question: How to design a method for a software product discovery phase?

The paper contributes to practice and theory. The practical contribution is PDISC, a
method for software product discovery. Such method helps practitioners to articulate
needed activities and deliverables when discovering software products. In addition, it
provides a checklist in the form of a comprehensive list of activities and deliverables
during such process. While processes within firms may vary depending on situational
factors, such list creates awareness of fundamental activities and deliverables of product
discovery. The theoretical contribution of the paper is the systematic extraction of
design requirements and subsequent formulation of clear design principles. These
principles categorize the requirements along product-, user- and team-related aspects
and therefore, address concerns of viability, desirability and feasibility of the envi-
sioned product. We establish clear phases within product discovery that form a
framework for future research.

2 Foundations and Related Work

The term product discovery has been heavily used in the pharmaceutical domain and
the area of drug discovery (e.g. [9]). However, in recent years the term is used to
describe a phase of upfront activities preceding the product development and product
design phases [1]. In the field of new product development, it describes the ideation
generation stage [10]. Others highlight the importance of this phase to determine the
actual need for such a product and the existence of a user base on the one hand, and the
actual feasibility of such a solution on the other hand [11].

As shown in Fig. 1, ASD is one possible representation of product development
phase, while UCD serves as representation of product design. Product design is a key
element in various software development methodologies. Some authors describe it as
conceptualization of a solution prior to programming activities [12]. Product devel-
opment, in turn, describes the creation or implementation of software artifacts, e.g. by
programming [13]. In iterative or agile frameworks these two phases are executed
multiple times, and are thus depicted as parallel to one another (e.g. [1, 3]).

48 K. Werder et al.

The combination of ASD and UCD becomes more and more a research stream by
itself. In ASD and UCD, the strict separation of upfront and development and design
phase (as it is done e.g. in waterfall-models) was changed to an iterative process, leaving
early activities mostly out of scope [1, 3, 12, 14]. Scrum as methodology proposing
concrete guidelines for agile development in formulating teams and roles also does not
focus on activities prior to building software artifacts [15, 16]. More insights could stem
from the not software-related areas of New Product Development and Innovation
Management. In these, Product Discovery was introduced as so called front-end phases,
with buzzwords such as “fuzzy front-end” and “front-end innovation” [17–19]. The key
goal of these phases is to reduce uncertainty and equivocality that is largely present at the
early stages of product development [17–21]. Therefore, a method summarizing and
structuring early activities related to software development and design is entitled PDISC.

3 Research Method

For the development of the software product discovery method, we opt for a design
science research (DSR) approach [22, 23] in combination with the discipline of method
engineering [24–26]. The study investigates the method for product discovery as its
central artifact. Moreover, the study aims at solving a practical problem by designing
an appropriate artifact [27]. First, the problem is identified (cf. Sect. 1). In order to
define the solutions objective, the study reviews the literature, defines the term software
product discovery and extracts design requirements. Next, the study develops design
principles that guide the design and development of PDISC. For the design and
development, the study relies on a method database.

In order to extract design requirements and method fragments, the study starts with
a systematic literature review (SLR) [28, 29]. A systematic process and transparent
documentation of the literature allows the reader to assess the completeness of the
review [29]. Hence, the first step in conducting a SLR is the development of a study
protocol. The protocol documents the main research questions, key decisions along the
scope (e.g. search strategy; databases; inclusion, exclusion, and quality criteria), and a
concept-matrix. Figure 2 presents the search strategy. Hereafter, the studies inclusion

Fig. 1. Placement of a method for product discovery in existing methods and phases

PDISC – Towards a Method for Software Product DISCovery 49

and exclusion criteria, the data sources and search strategy, and the data extraction and
analysis process are described in more details.

3.1 Inclusion and Exclusion Criteria

The study includes articles that provide insights on potential shortcomings w.r.t. the
product discovery phase of software products. In addition, articles that describe possible
solutions and/or recommendations of a product discovery phase are included. The
investigated timeframe is from 1997 until mid-2015, given the origins of agile as an
established reference methodology. After the initial query of the databases, the exclusion
of duplicates reduces the initial set of 654 articles to 593 articles. Thereafter, the exclusion
based on the title, e.g. with an irrelevant industrial focus such as biology and pharmacy or
industrial engineering, leads to a selection of 394 articles. Following, reading the
abstracts excludes those articles that do not focus or contribute to product discovery.
Consequently, 127 articles remain for further assessment. Based on this assessment,
every paper receives a score on a 5-point Likert scale assessing their applicability to four
questions. The questions assess whether a goal is mentioned by the authors, whether there
is an empirical part of this paper, whether shortcomings or challenges related to product
discovery are mentioned and whether recommendation to product discovery are docu-
mented. The study excludes articles that receive a score of less than three. As a result, 35

Fig. 2. Search strategy diagram

50 K. Werder et al.

articles are relevant for this study. Conducting a forward and backward search leads to the
inclusion of another nine articles, resulting in 44 articles.

3.2 Data Sources and Search Strategy

The sources focus on databases that include publications from the field of information
systems discipline, computer science and general management. Hence, following a
rather inclusive approach in response to some critics and therefore, also identifying less
impactful yet still relevant publications in the search results [30]. We include the
following nine databases: Elsevier ScienceDirect, EBSCO Host, JSTOR, IEEE Xplore,
ACM Digital Library, AIS Electronic Library, Informs, Springer Link and Reuter’s
Web of Science. Given that different synonyms exist for the term product discovery, a
preceding exploratory literature search identifies the keyword-matrix. In order to assure
that the correct keywords are in the search string and the study identifies relevant
articles, we conduct a pilot test using IEEE as the sample database. We analyze the
resulting 134 articles for plausibility and soundness. Thereafter, the keyword-matrix
builds the basis for the search string in order to identify and evaluate prevalent matches
in research literature. Consequently, we formulated the following search string:

(“product discovery” OR “product vision” OR “little design up
front” OR “phase zero” OR “product exploration” OR “product
scoping” OR “product ideation”)
AND
(“agile software development” OR “user-centered design” OR “new
product development” OR “innovation management” OR “scrum”)

3.3 Data Extraction and Data Analysis

In order to extract information, the study analyzes 44 articles for their shortcomings and
proposed actions related to product discovery. Clusters start to form and the articles
build groups along identified commonalities (see Table 1). During the full text review,
the authors highlight critical sections and aggregate them in order to transfer them into
the research database. The database documents key information, such as the dimension,
the corresponding activity, phase and methodology, and their use in design require-
ments and design principles. While 28 articles suggest shortcomings of current prac-
tices in a discovery phase, 30 articles provide suggestions on the implementation of
early activities. Articles proposing activities are potential contributions towards the
method database. Thereafter, nine articles with concrete and multiple activities form the
method database. A Process-Deliverable-Diagram (PDD) models and documents the
activities of each article. Documenting the activities using a PDD enriches the methods’
understanding and structures the method fragments.

4 Results

From the final list of articles, we identify eight common challenges (see Table 1).
Overall, we see three related groups of challenges, i.e. product-related, user-related and
team-related. First, challenges related to the product, i.e. the need to define the product

PDISC – Towards a Method for Software Product DISCovery 51

Table 1. Challenges related to the discovery of products mentioned in primary articles.

Challenges References

Product vision needs to be defined earlier
and clearer that it is current practice

Ferreira, Noble, & Biddle, 2007 [7]; Heikkilä
et al., 2015 [15]; Hildenbrand & Meyer, 2012
[30]; Hollis & Maiden, 2013 [31];
Kajko-Mattsson & Nyfjord, 2009 [32]; Kakar
& Carver, 2012 [20]; Nyfjord &
Kajko-Mattsson, 2008 [33]; Qumer &
Henderson-Sellers, 2007 [34]; Sarpong &
Maclean, 2012 [35]; Sibghatullah & Hussain,
2006 [36]; Stevens, 2014 [17]; Tessarolo, 2007
[37]; Vanhanen, Itkonen, & Sulonen, 2003
[38]

User involvement as early as possible Brhel, Meth, Maedche, & Werder, 2015 [3];
Cloyd, 2001 [39]; T. S. Da Silva, Martin,
Maurer, & Silveira, 2011 [8]; Ferreira et al.,
2007 [7]; Fox, Sillito, & Maurer, 2008 [1];
Hildenbrand & Meyer, 2012 [30]; Kuusinen,
2014 [16]; Patton, 2002 [40]; Rejeb, Boly, &
Morel-Guimaraes, 2008 [41]; Salah, Paige, &
Cairns, 2014 [42]; Sibghatullah & Hussain,
2006 [36]; Sohaib & Khan, 2010 [14]

Conduct little design upfront Adikari, McDonald, & Campbell, 2009 [43];
Brhel et al., 2015 [3]; T. S. Da Silva et al.,
2011 [8]; Ferreira et al., 2007 [7]; Kuusinen,
2014 [16]; Miller, 2005 [44]; Salah et al., 2014
[45]; Salah, Paige, & Cairns, 2014 [42]

Utilize fuzzy front end and front end
innovation

Frishammar, Florén, & Wincent, 2011 [18];
Kakar & Carver, 2012 [20]; Khurana &
Rosenthal, 1998 [21]; Knoll & Horton, 2011
[46]; Oliveira & Rozenfeld, 2010 [47]; Rejeb
et al., 2008 [41]; Sperry & Jetter, 2009 [19];
Stevens, 2014 [17]

Establish a sprint zero Adikari et al., 2009 [43]; Heikkilä et al., 2015
[15]; Inayat, Salim, Marczak, Daneva, &
Shamshirband, 2015 [48]; Kajko-Mattsson &
Nyfjord, 2009 [32]; Loniewski, Armesto, &
Insfran, 2011 [49]; Sibghatullah & Hussain,
2006 [36]

Developing a low-fidelity prototype Cloyd, 2001 [39]; T. S. da Silva et al., 2011 [6];
Fox et al., 2008 [1]; Salvador, Nakasone, &
Pow-Sang, 2014 [50]

Moving items from product vision to
product backlog

Cloyd, 2001 [39]; Hildenbrand & Meyer, 2012
[30]; Qumer & Henderson-Sellers, 2007 [34];
Vanhanen et al., 2003 [38]

Using the concept of design thinking Hildenbrand & Meyer, 2012 [30]

52 K. Werder et al.

vision early and communicate its practice clearly. Second, when working with users,
developers and designer face a common challenge, i.e. early user involvement. Orga-
nizations often delay such involvement, resulting in negative consequences. Third,
teams need to adopt the correct practices, such as little design upfront and the devel-
opment of low-fidelity prototypes.

5 Designing a Method for Software Product Discovery

Product Related Requirements. While ASD is an established method with a focus on
the software’s functionality, it is vague about the starting conditions. Examples are the
desirable upfront-activities that are not planned in development projects [43]. As a
result, these steps often lack time and budget during their execution [43, 46, 48]. Other
appeals include calls for a clearer position of exploratory activities in software
development projects, insufficiently addressed by current agile methods [52], as well as
calls for less uncertainty and ignorance within pre-implementation phases of agile
projects [34]. Furthermore, reflecting mentions criticize the implementation of opera-
tional planning activities only in later development phases, and a lack of describing
activities required for the creation of product visions or product backlogs, even in cases
the notion of these documents is used by scholars [15, 31]. Hence, we formulate the
first Design Requirement (DR1): A method for Software Product Discovery should
articulate early activities that improve the software product development environment.

Idea generation is a key activity in a proposed pre-phase 0 [21], executed prior to
the development of a new product, and prior to the identification of detailed customer
needs, technological capabilities, or core product requirements [17]. Menor, Tatikonda,
and Sampson [53] describe a similar idea generating activity in the area of new service
development. An initial ideation step as well as idea generation technique is also used
in new product development [19, 47]. Therefore, we formulate (DR2): A method for
Software Product Discovery should collect initial product ideas.

Some sources mention that agile practices only start after a vision or more concrete
artifacts are established [31]. According to Sarpong and Maclean [36], a product vision
can be defined as the “mental image of a yet to be realized product”. Others try to
conceptualize ways to reach a useful vision. An extended envisioning process is sug-
gested as a way to identify high-level requirements [32]. More explicitly, the product
vision serves as a key input element for all further activities [39]. Kajko-Mattsson and
Nyfjord [33] even describe a product vision planning phase in detail, aiming at iden-
tifying a so-called product vision plan. Sibghatullah and Hussain [37] introduce the
so-called product vision statement as a result of visioning activities, and state that the
product vision becomes more important, the higher the uncertainty or complexity of the
product goal is. Using the term “High-Level Product Scope”, others propose the up-front
activity of building a visionary scope initially, and revising it through all iterations to
come [49]. In design thinking, the vision is frequently enriched in the ideate-phase [31].
Furthermore, counting towards a vision is the “holistic design vision” as a result of an
iteration 0 [43]. As a result of a pre-phase 0 different kinds of a version can be possible,

PDISC – Towards a Method for Software Product DISCovery 53

for example for the business, a project, and a product simultaneously [21]. Kakar and
Carver [20] state that the creation of a clearly defined product concept is important in
order to effectively manage the software development process. Tessarolo [38] states that
a product vision can further be important for on-time performance. The process of
product vision planning is described by Nyfjord and Kajko-Mattsson [34]. A developed
vision can be used for sharing a unified picture, for example, with the developers [54].
This in turn constitutes towards a unified understanding of the product in the project
team [55]. Ferreira et al. [7] recommend that usability concerns should be a part of the
vision, while Ebert [56] sees translated market needs as input for the vision. In order to
include this upfront visioning work in the product discovery phase, we derive (DR3): A
method for Software Product Discovery should form a product vision.

When taking a closer look at the results of the process, scholars mention that agile
development practices should pay more attention to usability concerns. Literature often
states that either pragmatic and hedonic qualities do not play a role at all [1, 3, 14,
41, 44], or only at a time much too late to have a major impact on the resulting product
[40, 51]. One goal should thus be to include a user-focus during the process. This is
supported by the statement that User-Centered Design would be “a perfect fit for an
agile environment” [57], and that “requirements should be based on what users would
be doing with the product”. Hence, we derive (DR4): A method for Software Product
Discovery should extract users’ needs for pragmatic and hedonic qualities.

To improve software product development process and environment early activities
have to be embedded and clearly articulated (DR1). A focus on the software product is
broken down into elements, stating that a first instance collects initial product ideas
(DR2). Such ideas will be developed into and form a concrete product vision (DR3).
Furthermore, the two basic requirements of a software product, i.e. the software needs
to be usable and useful are to be considered. As these four Design Requirements all
share the focus of the software product itself, the first Design Principle (DP1) sum-
marizes them: Product context, goals, purposes and key requirements require clarifi-
cation in order to improve product success.

User Related Requirements. In ASD as well as UCD, users and customers play a
larger role through a principle called “frequent stakeholder involvement” in comparison
to traditional development or design techniques. Stakeholders are important in every
development project. While there are many stakeholders available, the user is one of
the most important ones. However, the creation process of a software product often
neglects the user. For example, ASD does not provide concrete guidance on how to
develop software that is user-friendly [43]. However, this poses difficulties during the
development, especially in terms of software’s usability. Often, a reason for the lack of
usability is the low prioritization of usability during the development. In addition, there
is often no guidance on user experience activities [16]. Some point out that the lack of
user-focus in agile practices is a key reason for a lack in innovation management [42].
In order to cope with this issue, the literature presents different suggestions. One
example is a condensed up-front user analysis [40, 45]. Therefore, we derive (DR5): A
method for Software Product Discovery should improve the adoption of practices for
researching users’ needs.

54 K. Werder et al.

Eventually, user requirements have to be collected and evaluated [58]. Hildenbrand
and Meyer [31] mention that even mature processes, such as lean thinking do not
provide descriptions on how to gain knowledge of user requirements. Sohaib and Khan
[14] ask how user requirements could be gained from the stakeholders usually involved
in agile feedback rounds. In most cases, this is the customer rather than the end-user. Sy
[54] propose their version of a cycle zero, also incorporating user research. In order to
process such requirements effectively, they need to a proper documentation. We
identify (DR6): A method for Software Product Discovery should properly document
and record user requirements as a basis for further design and development activities.

Building on the two prior design requirements, both, practices and documentation
need to be integrated into the ongoing developments [50]. Even without starting actual
programming activities, it is still necessary to prepare for a later phase. It ensures the
ability to integrate collected requirements. For cycle zero, Sy [54] proposes the detailed
inquiry of collecting data in order to support later phases. For example, the provision of
exact target user descriptions. The process following the design thinking principles can
also help to include the users’ wishes into the finished product [31]. Other agile
techniques, such as user-goal-analysis followed by prototyping activities, also try to
improve this process [35, 40]. Following, we identify (DR7): A method for Software
Product Discovery should enable the integration of user requirements and user-cen-
tered practices into further design and development activities.

The need to improve the adoption of user research practices (DR5) and the proper
documentations of their results (DR6) provides a sound basis. However, these also
need a successful integration into further design and development activities (DR7). As
these requirements are user related and aim to include the user into the design and
development activities, they are summarized into DP2: A method of Software Product
Discovery should provide methods to research and integrate specific users’ needs and
demands into the software product design and development process in order to the
product’s usability and user experience.

Team Related Requirements. Furthermore, we find shortcomings of the overall
understanding or “picture” by the design and development team. For example, da Silva
et al. [8] points out that the “big picture” of what is expected is gone missing at some
point in time throughout the project. This issue can be attributed to the fact that either
there is not enough detail of the concepts to begin with, or the formulated product
vision poses inconsistencies [33, 38, 39]. Countermeasures propose the constitution of
a shared vision amongst all project members [18, 43, 46, 54, 59]. Hence, we suggest
(DR8): A method for Software Product Discovery should enable the product team to
develop a unified understanding of the product.

Hollis & Maiden [32] and Adikari et al. [44] further focus on requirements and
requirements engineering, and how these processes lack creative thinking and a dedi-
cated focus when implemented today. In current development projects, a lack of
guidance can be observed that leads to either bad quality or longer development times
[37]. The challenging combination of creative thinking and structured stepwise progress
comes from fundamental difference between design and development. While the design
emphasizes the creative part that can be hard to articulate and document, development

PDISC – Towards a Method for Software Product DISCovery 55

stemming from the engineering disciplines builds on stepwise and sequential process
improvements. A design and development team needs to master both. Hence, we derive
(DR9): A method for Software Product Discovery should enable the product team to
master both, development maturity and creative thinking.

The lack of up-front activities as mentioned in the literature (e.g. [43, 46]) can be
rooted back to a lack of management support and appreciation [52]. Consequently, a
lack of other elements, such as maintenance, is found in the literature [33]. In describing
general problems in ASD, Hollis & Maiden [32] state that the principle of simplicity
found throughout agile processes has been taken too far to still provide any contribution
towards innovation, while Ebert [56] finds fault with agile cycle times being too long to
still be productive. In addition, the coordination in agile teams between the different
functions leads to project delays [56]. Both, cycle time and project coordination are
common management decisions. From a different perspective, Gamble & Hale [60]
describe that scalability is difficult or problematic to achieve in ASD projects. Also,
UCD is prone to management challenges. For example, Salah et al. [43] often find a lack
of support by management roles towards user-centered activities, making it difficult for
the team to execute them. Summarizing, we formulate (DR10): A method for Software
Product Discovery should assure management support for the product team.

Furthermore, the need to clearly separate product discovery from product creation
has been stressed in literature [1]. Such separation helps to clearly separate roles and
responsibilities. For example, within UCD it is important to distinguish between the
researcher and a prototyper [57]. Within ASD, the importance of clearly upfront
specified roles and responsibilities have been suggested [55]. Given its importance, we
also find it rooted in SCRUM, one example method of ASD. Therefore, we suggest
(DR12): A method for Software Product Discovery should clearly distinguish different
roles and their responsibilities for the product team.

Gaining a unified understanding of the product in planning (DR9), providing
thorough guidance for designers and developers (DR10), ensuring management support
(DR11) as well was specifying and separating team roles and responsibilities (DR12)
are design requirements focusing on the team, i.e. all human resources involved. The
last design principle DP3 summarizes these team requirements: A method of Software
Product Discovery should guide a diverse team of specialists to develop a unified
understanding of the product and its importance.

6 The PDISC Method

Following the extraction of the methods and method fragments from prior literature,
PDISC - a method for product discovery – is built. Starting with an initial idea gen-
eration (cf. [21, 39, 53]), each stakeholder can make suggestions in order to develop an
idea pool. Interviews or focus groups help to gather ideas early on. Thereafter, an
iterative process allows the execution of activities multiple times. Three main activities
follow and can be executed in parallel. First, users are engaged and integrated into the
discovery process [21, 31, 37, 40, 43, 54]. Marketers or developers use general or
contextual interviews, task analysis or other practices to engage the user and collect
requirement. Second, a central product vision document is created, so that a common

56 K. Werder et al.

Fig. 3. PDISC, method for software product discovery. Described as a PDD with an overlay of
the associated design principles related to the activities.

PDISC – Towards a Method for Software Product DISCovery 57

understanding is developed and documented for management approval [33, 37, 39, 54].
Management and the development team use prioritization techniques to select
requirements and convert them into the product backlog. Third, requirements are
generated, initially based on the idea pool [21, 31, 33, 37, 43]. In later iterations, such
requirements are refined using the results from the user engagement. The documen-
tation of user stories or scenarios can help the development team to communicate such
requirements to management (Fig. 3).

The product vision draft and the requirements list form the product backlog
[33, 39]. Until this point, the product backlog is the central element combining different
activities and serving as input for any later phases. While this rather technical pool of
functionality provides a valuable source for developers, different roles might need other
types of documentation. The iterative cycle of the main activities ends when sufficient
information for an initial design draft or low-fidelity prototype are available [31, 37, 43].
Design drafts are generated using sketching or mock-up applications. Early prototypes
are created using paper. Later, tools help to create digital and interactive prototypes.
However, the up-front development and design activities can only start after there are
user inputs or requirements. However, once a design suggestion is available, feedback
and a jump to the beginning of the iterative cycle are possible.

7 Conclusion

The study successfully derives design principles for a software product discovery
method. Their implementation leads to the design of PDISC. Our theoretical contribution
is the design principles, which categorizes product-, user- and team-related requirements.
PDISC balances requirements for all three areas in order to deliver a viable, desirable,
and feasible product vision. The product-related requirements help the organization to
design a viable product. Implementing user-related requirements into the method assures
that the product vision proposes a desirable product. In addition, team-related require-
ments of the method suggest the design of a feasible product. The design principles allow
practitioners to challenge their own processes for comprehensiveness and completeness.
While they may not implement all steps, depending on the size of the organization,
PDISC helps practitioners to design a product that is viable, feasible and desirable. If a
product falls short on any of these three dimensions, the product’s success is at risk.
Furthermore, the implementation and individual activities provide stepwise tutorial for
creating a product vision. This is especially valuable for those organizations that yet have
to define a software product discovery process for themselves.

References

1. Fox, D., Sillito, J., Maurer, F.: Agile methods and user-centered design: how these two
methodologies are being successfully integrated in industry. In: Agile 2008 Conference,
pp. 63–72. IEEE Computer Society, Toronto (2008)

2. The Standish Group: Chaos Report, Las Vegas, NV, US (2014)

58 K. Werder et al.

3. Brhel, M., Meth, H., Maedche, A., Werder, K.: Exploring principles of user-centered agile
software development: a literature review. Inf. Softw. Technol. 61, 163–181 (2015)

4. Barksdale, J.T., McCrickard, D.S.: Software product innovation in agile usability teams: an
analytical framework of social capital, network governance, and usability knowledge
management. Int. J. Agile Extreme Softw. Dev. 1, 52 (2012)

5. da Silva, T.S., Silveira, M.S., de O. Melo, C., Parzianello, L.C.: Understanding the UX
designer’s role within agile teams. In: Marcus, A. (ed.) DUXU 2013, Part I. LNCS, vol.
8012, pp. 599–609. Springer, Heidelberg (2013)

6. da Silva, T.S., Silveira, M., Maurer, F.: Best practices for integrating user-centered design
and agile software development. In: 10th Brazilian Symposium on Human Factors in
Computing Systems and the 5th Latin American Conference on Human-Computer
Interaction, pp. 43–45. Brazilian Computer Society, Porto Alegre, Brazil (2011)

7. Ferreira, J., Boyland, J., Biddle, R.: Up-Front Interaction Design in Agile Development. In:
Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 9–16.
Springer, Heidelberg (2007)

8. da Silva, T.S., Martin, A., Maurer, F., Silveira, M.S.: User-centered design and agile
methods: a systematic review. In: 2011 AGILE Conference, pp. 77–86. IEEE, Salt Lake City
(2011)

9. Nwaka, S., Hudson, A.: Innovative lead discovery strategies for tropical diseases. Nat. Rev.
Drug Discov. 5, 941–955 (2006)

10. Cooper, R.G.: Winning at New Products: Creating Value Through Innovation. Basic Books,
New York (2011)

11. Cagan, M.: Product Discovery. http://www.svpg.com/product-discovery
12. Freeman, P., Hart, D.: A science of design for software-intensive systems. Commun. ACM

47, 19 (2004)
13. Boehm, B.W.: A spiral model of software development and enhancement. Computer (Long.

Beach. Calif.) 21, 61–72 (1988)
14. Sohaib, O., Khan, K.: Integrating usability engineering and agile software development: a

literature review. In: 2010 International Conference on Computer Design and Applications,
pp. V2-32–V2-38. IEEE, Qinhuangdao (2010)

15. Heikkilä, V.T., Paasivaara, M., Rautiainen, K., Lassenius, C., Toivola, T., Järvinen, J.:
Operational release planning in large-scale Scrum with multiple stakeholders–A longitudinal
case study at F-Secure Corporation. Inf. Softw. Technol. 57, 116–140 (2015)

16. Kuusinen, K.: Improving UX work in scrum development: a three-year follow-up study in a
company. In: Sauer, S., Bogdan, C., Forbrig, P., Bernhaupt, R., Winckler, M. (eds.) HCSE
2014. LNCS, vol. 8742, pp. 259–266. Springer, Heidelberg (2014)

17. Stevens, E.: Fuzzy front-end learning strategies: exploration of a high-tech company.
Technovation 34, 431–440 (2014)

18. Frishammar, J., Florén, H., Wincent, J.: Beyond managing uncertainty: insights from
studying equivocality in the fuzzy front end of product and process innovation projects.
IEEE Trans. Eng. Manag. 58, 551–563 (2011)

19. Sperry, R., Jetter, A.: Theoretical framework for managing the front end of innovation under
uncertainty. In: Portland International Conference on Management of Engineering &
Technology, pp. 2021–2028. IEEE, Portland (2009)

20. Kakar, A., Carver, J.: Best practices for managing the fuzzy front-end of software
development (SD): insights from a systematic review of new product development
(NPD) literature. In: Proceedings of International Research Workshop on IT Project
Management, p. 14., AISeL, Orlando, FL, US (2012)

21. Khurana, A., Rosenthal, S.R.: Towards holistic front ends in new product development.
J. Prod. Innov. Manag. 15, 57–74 (1998)

PDISC – Towards a Method for Software Product DISCovery 59

http://www.svpg.com/product-discovery

22. Kuechler, B., Vaishnavi, V.: On theory development in design science research: anatomy of
a research project. Eur. J. Inf. Syst. 17, 489–504 (2008)

23. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)

24. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly techniques for
situational method engineering. Inf. Syst. 24, 209–228 (1999)

25. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Softw. Technol. 38, 275–280 (1996)

26. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. Manag. Inf. Syst. Q. 28, 75–105 (2004)

27. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering (2007)

28. Brocke, J. vom, Simons, A., Niehaves, B., Reimer, K., Plattfaut, R., Cleven, A.:
Reconstructing the giant: on the importance of rigour in documenting the literature search
process. In: European Conference on Information Systems, p. 161. AISeL, Verona, IT
(2009)

29. Boell, S.K., Cecez-Kecmanovic, D.: On being systematic in literature reviews in IS. J. Inf.
Technol. 30, 161–173 (2015)

30. Hildenbrand, T., Meyer, J.: Intertwining lean and design thinking: software product
development from empathy to shipment. In: Maedche, A., Botzenhardt, A., Neer, L. (eds.)
Software for People, pp. 217–237. Springer, Heidelberg (2012)

31. Hollis, B., Maiden, N.: Extending agile processes with creativity techniques. IEEE Softw.
30, 78–84 (2013)

32. Kajko-Mattsson, M., Nyfjord, J.: A model of agile evolution and maintenance process. In:
42nd Hawaii International Conference on System Sciences, pp. 1–10. IEEE, Big Island
(2009)

33. Nyfjord, J., Kajko-Mattsson, M.: Degree of agility in pre-implementation process phases. In:
Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 234–245.
Springer, Heidelberg (2008)

34. Qumer, A., Henderson-Sellers, B.: Construction of an agile software product-enhancement
process by using an agile software solution framework (ASSF) and situational method
engineering. In: 31st Annual International Computer Software and Applications Conference,
vol. 1, pp. 539–542. IEEE, Beijing (2007)

35. Sarpong, D., Maclean, M.: Mobilising differential visions for new product innovation.
Technovation 32, 694–702 (2012)

36. Sibghatullah, M., Hussain, S., Hussain, S.: An approach to effective product development
life cycle. In: International Conference on Emerging Technologies, pp. 719–726. IEEE,
Peshawar (2006)

37. Tessarolo, P.: Is integration enough for fast product development? An empirical
investigation of the contextual effects of product vision. J. Prod. Innov. Manag. 24, 69–
82 (2007)

38. Vanhanen, J., Itkonen, J., Sulonen, P.: Improving the interface between business and product
development using agile practices and the cycles of control framework. In: Proceedings of
the Agile Development Conference, pp. 71–80. IEEE, Salt Lake City (2003)

39. Cloyd, M.H.: Designing user-centered web applications in web time. IEEE Softw. 18, 62–69
(2001)

40. Patton, J.: Hitting the target: adding interaction design to agile software development. In:
OOPSLA 2002 Practitioners Reports, Salt Lake City, p. 7 (2002)

60 K. Werder et al.

41. Ben Rejeb, H., Boly, V., Morel-Guimaraes, L.: A new methodology based on Kano model
for the evaluation of a new product acceptability during the front-end phases. In: 32nd
Annual IEEE International Computer Software and Applications Conference, pp. 619–624.
IEEE, Turku (2008)

42. Salah, D., Paige, R., Cairns, P.: A practitioner perspective on integrating agile and user
centred design. In: 28th International BCS Human Computer Interaction Conference,
Southport, UK, pp. 100–109 (2014)

43. Adikari, S., McDonald, C., Campbell, J.: Little design up-front: a design science approach to
integrating usability into Agile requirements engineering. In: Jacko, J.A. (ed.) HCI
International 2009, Part I. LNCS, vol. 5610, pp. 549–558. Springer, Heidelberg (2009)

44. Miller, L.: Case study of customer input for a successful product. In: Agile Conference,
pp. 225–234. IEEE, Denver (2005)

45. Salah, D., Paige, R.F., Cairns, P.: A systematic literature review for agile development
processes and user centred design integration. In: 18th International Conference on
Evaluation and Assessment in Software Engineering, pp. 1–10. ACM Press, New York
(2014)

46. Knoll, S.W., Horton, G.: The impact of stimuli characteristics on the ideation process: an
evaluation of the change of perspective “Analogy.” In: 44th Hawaii International Conference
on System Sciences, pp. 1–10. IEEE, Kauai (2011)

47. Oliveira, M.G., Rozenfeld, H.: Integrating technology roadmapping and portfolio
management at the front-end of new product development. Technol. Forecast. Soc.
Change 77, 1339–1354 (2010)

48. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Comput. Hum. Behav.
51, 915–929 (2015)

49. Loniewski, G., Armesto, A., Insfran, E.: An architecture-oriented model-driven requirements
engineering approach. In: Model-Driven Requirements Engineering Workshop, pp. 31–38.
IEEE, Trento (2011)

50. Salvador, C., Nakasone, A., Pow-Sang, J.A.: A systematic review of usability techniques in
agile methodologies. In: 7th Euro American Conference on Telematics and Information
Systems, pp. 1–6. ACM Press, New York (2014)

51. Ferre, X., Medinilla, N.: How a human-centered approach impacts software development.
In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4550, pp. 68–77. Springer, Heidelberg (2007)

52. Menor, L.J., Tatikonda, M.V., Sampson, S.E.: New service development: areas for
exploitation and exploration. J. Oper. Manag. 20, 135–157 (2002)

53. Sy, D.: Adapting usability investigations for agile user-centered design. J. Usability Stud. 2,
112–132 (2007)

54. Jain, R., Suman, U.: A systematic literature review on global software development life
cycle. ACM SIGSOFT Softw. Eng. Notes 40, 1–14 (2015)

55. Ebert, C.: Understanding the product life cycle: four key requirements engineering
techniques. IEEE Softw. 23, 19–25 (2006)

56. Williams, H., Ferguson, A.: The UCD perspective: before and after agile. In: Agile
Conference, pp. 285–290. IEEE, Washington, D.C. (2007)

57. Liskin, O.: How artifacts support and impede requirements communication. In: Fricker, S.
A., Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp. 132–147. Springer, Heidelberg
(2015)

PDISC – Towards a Method for Software Product DISCovery 61

58. Gaubinger, K., Rabl, M.: Structuring the front end of innovation. In: Gassmann, O.,
Schweitzer, F. (eds.) Management of the Fuzzy Front End of Innovation, pp. 15–30.
Springer International Publishing, Cham (2014)

59. Gamble, R.F., Hale, M.L.: Assessing individual performance in Agile undergraduate
software engineering teams. In: IEEE Frontiers in Education Conference, pp. 1678–1684.
IEEE, Oklahoma City (2013)

62 K. Werder et al.

Supporting the Evolution of Research
in Software Ecosystems: Reviewing

the Empirical Literature

Konstantinos Manikas(B)

Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
kmanikas@di.ku.dk

Abstract. The field of software ecosystems is gradually transiting
towards an established means of software development and distribution,
counting numerous areas of applicability. However, research in software
ecosystems, although the activity of over 10 years, is still characterized
as premature with significant lack of software ecosystem specific theories
that are solid, mature, generic, and detailed enough to be measurable
and transferable. In this study, we intent to come closer to an evolution
of the field by supporting the “localization” of research, i.e. the focus
on specific types of software ecosystems. To do so, we investigate the
literature of empirical, non open source ecosystem studies and intent to
identify the various aspects and perspectives studied.

In total, we review 56 empirical studies that investigate 55 software
ecosystems. Our analysis confirms the assumption that proprietary soft-
ware ecosystem studies lack deeper investigation of technical and collabo-
rative aspects. Moreover, we identify an increased focus on organizational
aspects and a rather limited focus on business. Furthermore, we identify
common technology as the component investigated most in the ecosys-
tems, both from the technical aspects, but also as means of applying
orchestration. Finally, comparing the main areas with the overall ecosys-
tem literature, we identify that empirical studies lack representation of
health, motivation, actor activity, reusability, integration, and quality of
ecosystems.

Keywords: Software ecosystems · Literature review · Empirical study
review · Proprietary software ecosystems

1 Introduction

The field of software ecosystems has arguably moved from a new and upcoming
field to an established means of developing and distributing software products,
functions, or services. Currently, it is the most viable option of software product
development in several domains and is counting examples in numerous other.
Although the field has been active in research in the course of more than ten
years, it can be argued that research is still scratching the surface of the field.
The field can be characterized as one that is counting numerous and constantly
c© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 63–78, 2016.
DOI: 10.1007/978-3-319-40515-5 5

64 K. Manikas

increasing studies that might go into depth in a specific aspect and/or type of
software ecosystems, but find it challenging to make contributions that robust,
while abstract enough to be applied to different types of ecosystems.

The case of software ecosystem health is a representative example of the evo-
lution that theories in the field have been following. Software ecosystem health
can be described as “the ability of the ecosystem to endure and remain variable
and productive over time” [1]. It has been defined in the context of natural (bio-
logical) ecosystems and has appeared in software ecosystems mainly inspired by
business ecosystems health1. Health, has been of focus and an important aspect
from the early times of software ecosystem research [7], however the work on
this aspect can be mainly characterized as either (a) too abstract, and thus not
directly applicable (e.g. [1,8,9]), or (b) too specific, and thus challenging to be
transfered to other (types of) ecosystems (e.g. [10–12]). Similar challenges can
be noted in the governance2 of software ecosystems [15–18].

This has as a result that, although theories and concepts evolve in the field,
software ecosystems are still lacking a basic level of knowledge that is tailored
to the specific needs of problems in the field. These theories are not solid and
specific enough to allow for measurable results, while being abstract enough to
allow for transferability (i.e. applied on ecosystems of different characteristics).
This becomes magnified when taking into consideration the big variability in
and differentiation of types of ecosystems existing.

This lack of specific theories is something that is also noted in the most recent
and extensive systematic literature study of software ecosystems. [19] studies the
literature of the field consisting of a total of 231 papers, spanning form 2007 to
2014. While examining the evolution of the field to characterize, among other,
the field maturity, it is identified that the existing literature can be categorized
as: empirical but specific, where one or more ecosystems are studied as means
of addressing a problem, while the problem or the solution being highly coupled
to these ecosystems; temperature measuring, where different theories, tools,
or methods, usually imported from another field, investigate a problem that
results in interpreting results based on assumptions. Furthermore, two steps for
the evolution of research in the field towards its better maturity are proposed:
(i) research scoping, where research should set more focus on defining the
specific ecosystem parameters that study results are applicable, and (ii) theory
building, where research should focus on defining theories that are designed for
the specific characteristics and problems of software ecosystems. In order for (i)
to be accelerated and have better results, some “ground-work” should be done
on identifying and defining sets of parameters that separate the different types
of ecosystems and their variability.

In this study, we intent to contribute towards an arguably higher level of
maturity in the field by supporting work towards a better scoping of future
research, as mentioned in (i). Our aim is to investigate the work studying

1 E.g. [2–6].
2 An arguably more accurate term is orchestration [13,14] that better describes more

“loose” organizational structures or ecosystems with voluntary contributions.

Reviewing the Ecosystem Empirical Literature 65

existing ecosystems and identify what aspects of (existing) software ecosystems
are (empirically) studied. One of the most common differentiation of ecosystem
types is the separation between ecosystems that are driven or supported by free
and open source software (FOSS) and ecosystems that are driven or supported by
proprietary software. Literature studying FOSS ecosystems, as identified by [7],
tends to have deeper study of technical and collaborative aspects but might
lack organizational and business perspectives. On the other hand, proprietary
ecosystem studies tend to have do the opposite. In reality, the boarders of this
polarization tend to be more obscure, as there are several ecosystems that sup-
port both FOSS and proprietary contributions or are based on both FOSS or
proprietary common technologies.

In this study, we focus on proprietary ecosystems and intent to identify the
various aspects and perspectives studied. More specifically, we review the empir-
ical literature of proprietary software ecosystems, i.e. the literature of that stud-
ies some aspect(s) of an existing non-FOSS software ecosystem, to identify what
ecosystem characteristics are defined. We do so, by reviewing 56 papers that
study a total of 55 existing and non-FOSS software ecosystems. Our results
reveal an increased focus in organizational aspects of software ecosystems, a
restricted focus on business, with rather limited aspects of revenues and mon-
etization. Moreover, our analysis confirms the view of proprietary ecosystem
studies having limited access to proprietary information, such as source code,
with a distinct lack of studies of the software perspectives of ecosystem con-
tributions. The literature puts the most focus on the common technology both
from the technical perspective but also as a means to apply orchestration to the
ecosystem. Another main focus of the studies is the actors of the ecosystem and
the relations among them. Finally, we compare the main areas of the empirical
studies with the overall ecosystem literature and identify that ecosystem aspects
such as health, motivation, actor activity, reusability, integration, and quality
are not represented.

2 Related Work

The field of software ecosystems counts a number of secondary studies, but
to our knowledge, none with primary focus on investigating the implications
of empirical studies of existing software ecosystems. The systematic literature
review of [7] identifies, among other, 42 software ecosystems in a literature body
of 90 papers from 2007 to 2012. Manikas [19] expands this list to 108 for a
literature body of 231 papers from 2007 to 2014.

In the context of secondary studies, Barbosa and Alves [20] conduct a map-
ping study of the literature of software ecosystems up to 2010 identifying 44
papers. Among their findings, they note that 10 studies were based on case
studies. Santos et al. [21] combining the literature from that study and their
previous study [22], identify four dimensions of software ecosystems: technical,
business, social, and management - engineering. Hansen and Dyb̊a [23] intent to
build an overview of theories used in the literature. By reviewing a literature

66 K. Manikas

body of 40 papers, they identify a set of theoretical areas while using the concept
of “organizational ecology”. Handoyo et al. [24] use the roles identified [7] and
[20] to create a classification of ecosystem roles. Manikas and Hansen [1] focus
on the context of health and review the literature of software ecosystem health
and related areas. They find that software ecosystem health is heavily inspired
from business ecosystems and propose a framework for the measurable definition
of software ecosystem health. Fotrousi et al. [25] map the literature of software
ecosystems to identify key performance indicators used in software ecosystems.
They map 34 papers from software and digital ecosystems and identify right
measurement attributes spread across seven entities. Franco-Bedoya et al [26]
review part of the literature of open source software ecosystems (a total of 17
papers) to identify quality measures and provide input to their proposed quality
model.

3 Method

In this study, we review the empirical literature of software ecosystems that is not
build on a FOSS ecosystem, i.e. the academic literature that includes the study
or investigation of an existing proprietary software ecosystem. This literature
was identified as part of the analysis of the software ecosystem literature in the
systematic literature study of [19]. This literature study was designed according
to the guidelines of Kitchenham and Charters [27], using a similar protocol with
the second most recent and extensive systematic literature study of software
ecosystems [7]. This protocol includes the literature search in a list of academic
libraries3. Moreover, the literature body was expanded with the papers from the
International Workshop of Software Ecosystem (IWSECO) for years 2007-2004,
the Workshop on Ecosystem Architectures (WEA) for years 2013-2014, the spe-
cial issue on software ecosystems of the Journal of Systems and Software, and
the special issue on software ecosystems of the Journal of Information Technol-
ogy. All the identified literature contains the words “software ecosystem(s)” in
either of the fields title, abstract, or keywords.

After we define the collected literature, we analyze it using the three struc-
tures of “software ecosystem architecture”, proposed by [28], and the ecosystem
components, proposed by [29].

Christensen et al. in [28] investigate means of modeling software ecosystems
where, based on the design of a software ecosystem, they propose the ecosystem
analysis and modeling using the concept of software ecosystem architecture. This
concept consists of three main structures that are necessary for the design and
well-functioning of a software ecosystem:

Organizational structure. That covers aspects of the ecosystem related to the
orchestration of the ecosystem elements, such as actor and software elements,
as much as possible connections and interactions among these elements.

3 The digital libraries are: IEEE Explore, SpringerLink, ACM Digital Library, Sci-
enceDirect, and Web of Science.

Reviewing the Ecosystem Empirical Literature 67

Business structure. That covers aspects of the ecosystem related to the cre-
ation of value. This is examined both from the perspective of the ecosystem,
i.e. how is value added to the ecosystem, and the perspective of the ecosys-
tem element, e.g. how is an actor gaining value from the contribution to the
ecosystem.

Software structure. Covers aspects that relate to the software elements of the
ecosystem, such as the structure of the common technology or the contribu-
tions to the ecosystem.

Moreover, in order to be specific and identify what elements of the ecosys-
tems are studied, we use the approach of the ecosystem components. Knodel
and Manikas in [29] propose a typification of software ecosystems challenging
the existing ecosystems definitions. In this work they identify a number of com-
ponents that ecosystems are consisted of4. They describe that an ecosystem is
build on top of a common technology, that supports the interaction of a set of
actors. The actors are part of the ecosystem by having an activity that results
in one or several contributions to the ecosystem. The contributions can be of
variable nature such as a (software) product or component, a service, or data
(information). Each actor’s activity in the ecosystem is motivated by one or
several incentives. Moreover, the ecosystem exists and operates on a specific
environment. The environment might include the domain of the ecosystem
and the physical or digital aspects surrounding the ecosystem, while it can pose
different requirements, or constraints to the ecosystem.

We use the three ecosystem structures and the five ecosystem components to
analyze the ecosystem studies. Each study was analyzed and categorized accord-
ing to what structure(s) it addresses and what are the main components inves-
tigated. One study can be categorized in more than one structure (e.g. both
organizational and business) and have up to three components. The components
classification was prioritized, e.g. a study can primarily focus on the common
technology of an ecosystem with (secondary) focus on contributions.

4 Analysis

Our literature body includes 56 studies spanning from 2008 to 20145. In total
the literature studies 37 different, existing, named, software ecosystems and 18
anonymized.

Figure 1, shows how the papers are distributed in the three structures and
what ecosystem components are the main focus for each structure. As it can be
seen, the organizational structure has the largest focus with roughly 61% of the
total literature, while business has 37%, and software 39%6.

4 In their work, they are mentioned as “ecosystem building blocks”.
5 The count of papers per year is 2008:2, 2009:2, 2010:6, 2011:7, 2012:6, 2013:11,

2014:22.
6 One paper can be categorized in more than one structure.

68 K. Manikas

Organizational Business Software
Structures

0

5

10

15

20

25

30

35

N
o

of
 p

ap
er

s

Actor
Incentive
Contribution
Common technology
Environment

Fig. 1. Number of papers and ecosystem components according to ecosystem structures
(Color figure online).

The most common component analyzed in the studies focusing on organiza-
tional structures is the ‘actor’, being the main focus of approximately 47% of the
studies within this structure. The most common second component appearing
after actor in the organizational structure is ‘incentive’ and the third ‘common
technology’. This gives a good indication that many of the studies have been
focusing on the network and relationships of actors and examining those from
two main perspectives: the actor incentives and the common platform as means
of facilitating actor relationship. In the business structure, it is not a surprise that
the most common component is ‘incentive’ (33% of the studies in the structure).
As expected, the most common component that comes with ‘incentive’ is ‘actor’.
In the software structure, the most common component is ‘common technology’
(77%) with most of those studies having ‘contribution’ as the second component.

If we examine the components independently from the architecture struc-
tures, we note that ‘common technology’ is the most common component7. Com-
mon technology usually has as a second component ‘contribution’ and that is
mainly in the studies belonging to the software structure. These studies typically
investigate the influence of software engineering aspects, such as software archi-
tecture, to the ecosystem. Another component that comes (to a less extent than
the contribution) is ‘environment’. These studies typically investigate the tech-
nical aspects of the common technology and how it poses additional restrictions,

7 The percentage distribution of components is common technology: 34 %, actor: 30%,
environment: 14 %, incentive: 13%, and contribution: 9%.

Reviewing the Ecosystem Empirical Literature 69

limitations, or specific rules to the ecosystem. The second most common com-
ponent studied is ‘actor’. Actor usually has a second component ‘incentive’ and,
to a less extent, ‘common technology’. What might come as a surprise in this
context is the fact that contribution is not one of the most common components
coming after actor. So there is not many studies8 that investigate the actors and
their contributions in this data set. This can be explained by two reasons: (i) the
nature of the empirical sets, i.e. non-FOSS ecosystems, make it hard to study
specific contributions in detail and (ii) the contribution component is in general
not very studied (possibly also due to (i)).

Table 1 contains the identified main foci of the studies according to the ecosys-
tem structures and components. Looking at the table, our first remark is that
incentive and environment do not appear in the software structure. Moreover, the
contribution component is not very studied in this structure. That, in combina-
tion with what is actually studied in the software structure, makes the statement
of the nature of the ecosystems not allowing for deep analysis into contributions
even stronger.

Examining the organizational structure, we note that actor, environment, and
common technology are of focus. The representation of the common technology
here provides the view of a common technology used as a means of imposing
orchestration rules and strategies.

Looking at the business structure, we note a more spread distribution in the
foci of components with the other two structures. This implies that different
aspects of the business and value creation on software ecosystem are investi-
gated. From the other side, it is notable that the central aspects of business,
i.e. monetization and revenues, are arguably under-represented. While, intersec-
tion of business structures and organizational structure is more emphasized in
the studies. This is also explained by the fact that many (52%) of the business
structure studies are also categorized as organizational structure.

Finally, when examining the focus areas of all the studies, we notice that
there are several perspectives9 that appear across components and structures.
Furthermore, we notice that some of the ecosystem aspects that the literature
has been focusing, including non-empirical literature, are not represented here.
Comparing with the analysis of [19], that analyzes the literature and identifies
trends, we note the following:

Organizational structure is lacking or is under-represented in studies of the
aspects of health, and actor activity.

Business structure lacks focus on motivation, process, and innovation.
Software structure is focusing on the software architecture only in the level

of the common technology (not contribution). Moreover, aspects like reusability,
evolution, integration, and quality are not adequately represented.

8 Less than 4 % of the total.
9 An example of this is the partnerships modeling/management/networks.

70 K. Manikas

T
a
b
le

1
.
A

n
a
ly

si
s

o
f
so

ft
w

a
re

ec
o
sy

st
em

st
ru

ct
u
re

s
a
n
d

co
m

p
o
n
en

ts
.

C
a
te
g
o
ry

O
rg

a
n
iz
a
ti
o
n
a
l

B
u
si
n
e
ss

S
o
ft
w
a
re

A
c
to

r
-
P
a
rt
n
e
rs
h
ip

m
o
d
e
l

-
V
e
n
d
o
r
m
o
d
e
li
n
g

-
D
e
v
e
lo
p
e
r
in
fo
rm

a
ti
o
n

n
e
e
d
s

-
V
e
n
d
o
r
m
o
d
e
li
n
g

-
S
o
ft
w
a
re

su
p
p
ly

n
e
tw

o
rk

-
In

n
e
r
so

u
rc
e
in

sm
a
ll

te
a
m

o
rg

a
n
iz
a
ti
o
n
s

-
S
o
ft
w
a
re

su
p
p
ly

n
e
tw

o
rk

-
A
c
to

r
(v

e
n
d
o
r
-
re
se
ll
e
r)

re
la
ti
o
n
sh

ip
s

-
A
c
to

r
a
n
d

so
ft
w
a
re

n
e
tw

o
rk

s
[3
7
,3

8
,4

6
]

-
A
c
to

r
re
la
ti
o
n
sh

ip
s
-
in
v
o
lv
e
m
e
n
t
-

-
P
a
rt
n
e
r
m
a
n
a
g
e
m
e
n
t

p
a
rt
ic
ip
a
ti
o
n

-
A
c
to

r
p
a
rt
ic
ip
a
ti
o
n

[3
1
,3

2
,4

0
,4

3
,4

5
]

-
M

o
d
e
li
n
g
c
o
-i
n
n
o
v
a
ti
o
n

se
rv

ic
e
sy

st
e
m
s

-
C
o
n
c
e
p
t
b
u
il
d
in
g

-
E
c
o
sy

st
e
m

ch
a
ra

c
te
ri
st
ic
s

-
In

n
e
r
so

u
rc
e

-
A
c
to

r
a
n
d

so
ft
w
a
re

n
e
tw

o
rk

s

-
H
e
a
lt
h

-
A
c
to

r
(v

e
n
d
o
r
-
re
se
ll
e
r)

re
la
ti
o
n
sh

ip
s

-
N
e
tw

o
rk

a
n
a
ly
si
s

-
C
o
ll
a
b
o
ra

ti
o
n

m
o
d
e
ls

-
P
a
rt
n
e
r
m
a
n
a
g
e
m
e
n
t
[3
0
–
4
5
]

In
c
e
n
ti
v
e

-
P
a
rt
n
e
rs
h
ip

m
o
d
e
ls

[4
7
]

-
P
a
rt
n
e
rs
h
ip

m
o
d
e
ls

N
A

-
B
u
si
n
e
ss

m
o
d
e
l
a
n
a
ly
si
s
fo
r
n
e
w

S
E
C
O
s

-
V
a
lu
e
ch

a
in

m
o
d
e
ls

-
A
c
to

r
m
o
ti
v
a
ti
o
n

-
B
u
si
n
e
ss

a
n
d

v
a
lu
e
ch

a
in

ch
a
ll
e
n
g
e
s

-
R
e
v
e
n
u
e
m
o
d
e
ls

-
A
c
to

r
in
c
e
n
ti
v
e
in
fl
u
e
n
c
e
[4
7
–
5
3
]

C
o
n
tr
ib
u
ti
o
n

-
P
ro

d
u
c
t
re
q
u
ir
e
m
e
n
t
in
fo
rm

a
ti
o
n

fl
o
w

[5
4
]

-
M

u
lt
i-
h
o
m
in
g

-
V
a
ri
a
b
il
it
y
m
o
d
e
li
n
g

-
U
se
r
fe
e
d
b
a
ck

[5
4
–
5
6
]

-
S
o
ft
w
a
re

im
p
le
m
e
n
ta

ti
o
n

[5
7
,5

8
]

C
o
m
m
o
n

te
ch

n
o
lo
g
y

-
S
o
ft
w
a
re

se
rv

ic
e
su

p
p
ly

ch
a
in

m
o
d
e
l
a
n
d

-
A
rc
h
it
e
c
tu

ra
l
d
e
c
is
io
n
s

-
A
rc
h
it
e
c
tu

ra
l
d
e
c
is
io
n
s

a
rc
h
it
e
c
tu

re
-
A
p
p

S
to

re
s

-
S
o
ft
w
a
re

se
rv

ic
e
su

p
p
ly

ch
a
in
s

-
C
re
a
ti
n
g
S
E
C
O

fo
r
e
m
b
e
d
d
e
d

so
ft
w
a
re

Reviewing the Ecosystem Empirical Literature 71

T
a
b
le

1
.
(C

o
n
ti
n
u
ed

)

C
a
te
g
o
ry

O
rg

a
n
iz
a
ti
o
n
a
l

B
u
si
n
e
ss

S
o
ft
w
a
re

-
E
c
o
sy

st
e
m

e
st
a
b
li
sh

m
e
n
t

-
S
E
C
O

p
ro

c
e
ss

[6
2
,6

7
,6

8
]

-
S
o
ft
w
a
re

p
o
rt
a
b
il
it
y

-
A
p
p

S
to

re
s

-
P
la
tf
o
rm

b
o
u
n
d
a
ry

re
so

u
rc
e
s

-
C
lo
u
d
-b

a
se
d

p
la
tf
o
rm

d
e
sc
ri
p
ti
o
n

-
In

fr
a
st
ru

c
tu

re
a
rc
h
it
e
c
tu

re

-
E
c
o
sy

st
e
m

m
o
d
e
li
n
g

-
V
a
ri
a
b
il
it
y
is
su

e
s

-
M

u
lt
ip
le

so
ft
w
a
re

p
ro

d
u
c
t
li
n
e
s

-
E
c
o
sy

st
e
m

e
st
a
b
li
sh

m
e
n
t

-
P
a
rt
n
e
rs
h
ip

im
p
a
c
t
in

re
q
u
ir
e
m
e
n
ts

-
S
E
C
O

p
ro

c
e
ss

e
n
g
in
e
e
ri
n
g
[5
9
–
6
6
]

-
C
o
-d

e
v
e
lo
p
m
e
n
t
in

th
e
c
lo
u
d

-
C
lo
u
d
-b

a
se
d

p
la
tf
o
rm

d
e
sc
ri
p
ti
o
n

-
D
e
v
e
lo
p
m
e
n
t
a
n
d

v
a
ri
a
b
il
it
y
m
a
n
a
g
e
m
e
n
t

-
E
v
o
lu
ti
o
n

in
in
d
u
st
ri
a
l
a
u
to

m
a
ti
o
n

-
R
e
v
e
rs
e
e
n
g
in
e
e
ri
n
g

-
E
c
o
sy

st
e
m

m
o
d
e
li
n
g

-
P
la
tf
o
rm

a
rc
h
it
e
c
tu

re

-
M

u
lt
ip
le

so
ft
w
a
re

p
ro

d
u
c
t
li
n
e
s

-
P
a
rt
n
e
rs
h
ip

im
p
a
c
t
in

re
q
u
ir
e
m
e
n
ts

[5
9
,6

1
,6

3
–
7
7
]

E
n
v
ir
o
n
m
e
n
t

-
E
c
o
sy

st
e
m

d
e
sc
ri
p
ti
o
n

-
S
tr
a
te
g
ic

n
e
tw

o
rk

(p
la
n
n
in
g
)

N
A

-
E
c
o
sy

st
e
m

m
o
d
e
li
n
g

-
C
o
ll
a
b
o
ra

ti
o
n

a
n
d

v
a
lu
e
c
re
a
ti
o
n

ch
a
ll
e
n
g
e
s

-
S
tr
a
te
g
ic

n
e
tw

o
rk

(p
la
n
n
in
g
)

-
G
o
v
e
rn

a
n
c
e
fr
a
m
e
w
o
rk

[1
7
,8

0
,8

1
]

-
C
o
ll
a
b
o
ra

ti
o
n

a
n
d

v
a
lu
e
c
re
a
ti
o
n

ch
a
ll
e
n
g
e
s

-
M

o
d
e
li
n
g
e
c
o
sy

st
e
m
s

-
K
n
o
w
le
d
g
e
p
ro

p
a
g
a
ti
o
n

-
E
c
o
sy

st
e
m

m
a
n
a
g
e
m
e
n
t

-
G
o
v
e
rn

a
n
c
e
fr
a
m
e
w
o
rk

[9
,1

7
,7

8
–
8
3
]

72 K. Manikas

5 Summary

In this study we review the empirical literature of existing proprietary (non-
FOSS) software ecosystems to identify studied ecosystem aspects and perspec-
tives. We identify a literature body of 56 empirical studies, studying a total of
55 software ecosystems. Our analysis includes the use of the concept of software
ecosystem architecture and the three structures of software ecosystem modeling:
organizational, business, and software structures. Moreover, we identify the main
components studied in software ecosystem using the five ecosystem components:
actor, incentive, common technology, contribution, and environment.

Our study confirms the assumption that proprietary software ecosystem stud-
ies lack deeper investigation of technical and collaborative aspects. Moreover, it
reveals an increased focus on organizational structures and a rather limited focus
on business with lack of revenue and monetization aspects. The most investigated
ecosystem component is common technology, that is studied both as a technical
but also as an orchestration element. Furthermore, actors, their incentives, and
their influence to and from the common technology is also of focus in the stud-
ies. Finally, we compare the main areas of the empirical studies with the overall
ecosystem literature and identify that ecosystem aspects such as health, moti-
vation, actor activity, reusability, integration, and quality are not represented.

Acknowledgments. This work has been supported by the SCAUT (http://www.
scaut.dk/) project, partially funded by Innovation Fund Denmark, grant #72-2014-1.

Appendix: Literature body

[9,17,30–83]

References

1. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems-a con-
ceptual framework proposal. In: Alves, C.F., Hanssen, G.K., Bosch, J., Jansen,
S. (eds.) Proceedings of the 5th International Workshop on Software Ecosystems,
Potsdam, Germany, June 11, 2013, vol. 987, pp. 33–44 (2013)

2. Iansiti, M., Levien, R.: Keystones and Dominators: Framing Operating and Tech-
nology Strategy in a Business Ecosystem. Harvard Business School, Boston (2004)

3. Iansiti, M., Richards, G.L.: The information technology ecosystem: structure,
health, and performance. Antitrust Bull. 51, 77 (2006)

4. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Bus. Rev. 82(3), 68–81 (2004)
5. Iansiti, M., Levien, R.: The Keystone Advantage: What the New Dynamics of

Business Ecosystems Mean for Strategy, Innovation, and Sustainability. Harvard
Business Press, Boston (2004)

6. den Hartigh, E., Tol, M., Visscher, W.: The health measurement of a business
ecosystem. In: Proceedings of the European Network on Chaos and Complexity
Research and Management Practice Meeting (2006)

http://www.scaut.dk/
http://www.scaut.dk/

Reviewing the Ecosystem Empirical Literature 73

7. Manikas, K., Hansen, K.M.: Software ecosystems-a systematic literature review. J.
Syst. Softw. 86(5), 1294–1306 (2013)

8. Hyrynsalmi, S., Seppänen, M., Nokkala, T., Suominen, A., Järvi, A.: Wealthy,
healthy and/or happy—what does ‘Ecosystem Health’ stand for? In: Fernandes,
J.M., Machado, R.J., Wnuk, K. (eds.) Software Business. LNBIP, vol. 210, pp.
272–287. Springer, Heidelberg (2015)

9. Berk, I.v.d., Jansen, S., Luinenburg, L.: Software ecosystems: a software ecosystem
strategy assessment model. In: Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, ECSA 2010, pp. 127–134. ACM, New
York (2010)

10. Eckhardt, E., Kaats, E., Jansen, S., Alves, C.: The merits of a meritocracy in open
source software ecosystems. In: Proceedings of the 2014 European Conference on
Software Architecture Workshops, ECSAW 2014, pp. 7:1–7:6. ACM, New York
(2014)

11. Jansen, S.: Measuring the health of open source software ecosystems: beyond the
scope of project health. Inf. Softw. Technol. 56(11), 1508–1519 (2014)

12. Lingen, S.V., Palomba, A., Lucassen, G.: On the software ecosystem health of
open source content management systems. In: Alves, C.F., Hanssen, G.K., Bosch,
J., Jansen, S. (eds.) Proceedings of the 5th International Workshop on Software
Ecosystems, Potsdam, Germany, June 11, 2013, vol. 987, pp. 45–56. CEUR-WS.org
(2013)

13. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering-Companion, ICSE-Companion 2009, vol. 2009, pp. 187–190, May 2009

14. Manikas, K.: Analyzing, Modelling, and Designing Software Ecosystems - Towards
the Danish Telemedicine Software Ecosystem. Ph.D. thesis, University of Copen-
hagen (2015)

15. Albert, B., Santos, R., Werner, C.: Software ecosystems governance to enable it
architecture based on software asset management. In: 2013 7th IEEE International
Conference on Digital Ecosystems and Technologies (DEST), pp. 55–60, July 2013

16. Jansen, S., Cusumano, M.: Defining software ecosystems: a survey of software
platforms and business network governance. In: Jansen, S., Bosch, J., Alves, C.
(eds.) Proceedings of the Forth International Workshop on Software Ecosystems,
Cambridge, MA, USA, June 18th, 2012, vol. 879, pp. 40–58. CEUR-WS.org (2012)

17. Wnuk, K., Manikas, K., Runeson, P., Lantz, M., Weijden, O., Munir, H.: Evaluating
the governance model of hardware-dependent software ecosystems – a case study
of the axis ecosystem. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 212–226. Springer, Heidelberg (2014)

18. Manikas, K., Wnuk, K., Shollo, A.: Defining decision making strategies in soft-
ware ecosystem governance. Technical report, Department of Computer Science,
University of Copenhagen (2015)

19. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature
study. J. Syst. Softw. 117, 84 (2016)

20. Barbosa, O., Alves, C.: A systematic mapping study on software ecosystems. In:
Third International Workshop on Software Ecosystems (IWSECO-2011), pp. 15–
26. CEUR-WS (2011)

21. Santos, R., Werner, C., Barbosa, O., Alves, C.: Software ecosystems: trends and
impacts on software engineering. In: 2012 26th Brazilian Symposium on Software
Engineering (SBES), pp. 206–210, Sept 2012

74 K. Manikas

22. Santos, R.P., Werner, C.M.L.: A proposal for software ecosystem engineering. In:
Third International Workshop on Software Ecosystems (IWSECO-2011), pp. 40–
51. CEUR-WS (2011)

23. Hanssen, G.K., Dyb̊a, T.: Theoretical foundations of software ecosystems. In:
Jansen, S., Bosch, J., Alves, C. (eds.) Proceedings of the Forth International Work-
shop on Software Ecosystems, Cambridge, MA, USA, June 18th, 2012, vol. 879,
pp. 6–17. CEUR-WS.org (2012)

24. Handoyo, E., Jansen, S., Brinkkemper, S.: Software ecosystem roles classification.
In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 212–216.
Springer, Heidelberg (2013)

25. Fotrousi, F., Fricker, S.A., Fiedler, M., Le-Gall, F.: KPIs for software ecosystems:
a systematic mapping study. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014.
LNBIP, vol. 182, pp. 194–211. Springer, Heidelberg (2014)

26. Franco-Bedoya, O., Ameller, D., Costal, D., Franch, X.: Queso a quality model for
open source software ecosystems. In: 2014 9th International Conference on Software
Engineering and Applications (ICSOFT-EA), pp. 209–221, Aug 2014

27. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Engineering 2(EBSE 2007–001) (2007)

28. Christensen, H.B., Hansen, K.M., Kyng, M., Manikas, K.: Analysis and design
of software ecosystem architectures - towards the 4s telemedicine ecosystem. Inf.
Softw. Technol. 56(11), 1476–1492 (2014)

29. Knodel, J., Manikas, K.: Towards a typification of software ecosystems. In: Fer-
nandes, J.M., Machado, R.J., Wnuk, K. (eds.) Software Business. LNBIP, vol. 210,
pp. 60–65. Springer, Heidelberg (2015)

30. van Angeren, J., Jansen, S., Brinkkemper, S.: Exploring the relationship between
partnership model participation and interfirm network structure: an analysis of the
office365 ecosystem. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 1–15. Springer, Heidelberg (2014)

31. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem mod-
eling. In: Proceedings of the 1st International Workshop on Open Component
Ecosystems, IWOCE 2009, pp. 41–50. ACM, New York (2009)

32. Costa, G., Silva, F., Santos, R., Werner, C., Oliveira, T.: From applications
to a software ecosystem platform: an exploratory study. In: Proceedings of the
Fifth International Conference on Management of Emergent Digital EcoSystems,
MEDES 2013, pp. 9–16. ACM, New York (2013)

33. Hilkert, D., Wolf, C.M., Benlian, A., Hess, T.: The “as-a-service”-paradigm and its
implications for the software industry–insights from a comparative case study in
CRM software ecosystems. In: Tyrväinen, P., Jansen, S., Cusumano, M.A. (eds.)
ICSOB 2010. LNBIP, vol. 51, pp. 125–137. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13633-7 11

34. Janner, T., Schroth, C., Schmid, B.: Modelling service systems for collaborative
innovation in the enterprise software industry-the st. gallen media reference model
applied. In: IEEE International Conference on Services Computing, SCC 2008, vol.
2, pp. 145–152, July 2008

35. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as a
survival strategy: a tale of two software ecosystems. In: First International Work-
shop on Software Ecosystems (IWSECO-2009), pp. 34–48. Citeseer (2009)

36. Lettner, D., Angerer, F., Prähofer, H., Grünbacher, P.: A case study on software
ecosystem characteristics in industrial automation software. In: Proceedings of the
2014 International Conference on Software and System Process, ICSSP 2014, pp.
40–49. ACM, New York (2014)

http://dx.doi.org/10.1007/978-3-642-13633-7_11
http://dx.doi.org/10.1007/978-3-642-13633-7_11

Reviewing the Ecosystem Empirical Literature 75

37. Lin̊aker, J., Krantz, M., Höst, M.: On infrastructure for facilitation of inner source
in small development teams. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M.,
Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892,
pp. 149–163. Springer, Heidelberg (2014)

38. Manikas, K., Hansen, K.M.: Characterizing the danish telemedicine ecosystem:
making sense of actor relationships. In: Proceedings of the Fifth International
Conference on Management of Emergent Digital EcoSystems, MEDES 2013, pp.
211–218 (2013)

39. Monteith, J.Y., McGregor, J.D., Ingram, J.E.: Proposed metrics on ecosystem
health. In: Proceedings of the 2014 ACM International Workshop on Software-
defined Ecosystems. BigSystem 2014, pp. 33–36. ACM, New York (2014)

40. Riis, P., Schubert, P.: Upgrading to a new version of an erp system: a multilevel
analysis of influencing factors in a software ecosystem. In: 2012 45th Hawaii Inter-
national Conference on System Science (HICSS), pp. 4709–4718, Jan 2012

41. Scholten, U., Fischer, R., Zirpins, C.: The dynamic network notation: harnessing
network effects in paas-ecosystems. In: Proceedings of the Fourth Annual Workshop
on Simplifying Complex Networks for Practitioners, SIMPLEX 2012, pp. 25–30.
ACM, New York (2012)

42. Schultis, K.B., Elsner, C., Lohmann, D.: Architecture challenges for internal soft-
ware ecosystems: a large-scale industry case study. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, pp. 542–552. ACM, New York (2014)

43. Schütz, S.W., Kude, T., Popp, K.M.: The impact of software-as-a-service on soft-
ware ecosystems. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol.
150, pp. 130–140. Springer, Heidelberg (2013)

44. Molder, J., van Lier, B., Jansen, S.: Clopenness of systems: the interwoven nature of
ecosystems. In: Third International Workshop on Software Ecosystems (IWSECO-
2011), pp. 52–64. CEUR-WS (2011)

45. Wnuk, K., Runeson, P., Lantz, M., Weijden, O.: Bridges and barriers to hardware-
dependent software ecosystem participation-a case study. Inf. Softw. Technol.
56(11), 1493–1507 (2014)

46. Haenni, N., Lungu, M., Schwarz, N., Nierstrasz, O.: A quantitative analysis of
developer information needs in software ecosystems. In: Proceedings of the 2014
European Conference on Software Architecture Workshops, ECSAW 2014, pp.
12:1–12:6. ACM, New York (2014)

47. Andresen, K., Brockmann, C., Drager, C.: A classification of ecosystems of enter-
prise system providers - an empirical analysis. In: 2013 46th Hawaii International
Conference on System Sciences (HICSS), pp. 4034–4044, Jan 2013

48. Axelsson, J., Papatheocharous, E., Andersson, J.: Characteristics of software
ecosystems for federated embedded systems: a case study. Inf. Softw. Technol.
56(11), 1457–1475 (2014)

49. Handoyo, E., Jansen, S., Brinkkemper, S.: Software ecosystem modeling: the value
chains. In: Proceedings of the Fifth International Conference on Management of
Emergent Digital EcoSystems, MEDES 2013, pp. 17–24. ACM, New York (2013)

50. Howison, J., Herbsleb, J.D.: Incentives and integration in scientific software produc-
tion. In: Proceedings of the 2013 Conference on Computer Supported Cooperative
Work, CSCW 2013, pp. 459–470. ACM, New York (2013)

51. Olsson, H.H., Bosch, J.: Ecosystem-driven software development: a case study on
the emergingchallenges in inter-organizational R&D. In: Lassenius, C., Smolander,
K. (eds.) Software Business. Towards Continuous Value Delivery. LNBIP, vol. 182,
pp. 16–26. Springer, Switzerland (2014)

76 K. Manikas

52. Popp, K.M.: Hybrid revenue models of software companies and their relationship to
hybrid business models. In: Third International Workshop on Software Ecosystems
(IWSECO-2011), pp. 77–88. CEUR-WS (2011)

53. Ververs, E., van Bommel, R., Jansen, S.: Influences on developer participation in
the debian software ecosystem. In: Proceedings of the International Conference on
Management of Emergent Digital EcoSystems, MEDES 2011, pp. 89–93. ACM,
New York (2011)

54. Knauss, E., Damian, D., Knauss, A., Borici, A.: Openness and requirements: oppor-
tunities and tradeoffs in software ecosystems. In: 2014 IEEE 22nd International
Requirements Engineering Conference (RE), pp. 213–222, Aug 2014

55. Idu, A., van de Zande, T., Jansen, S.: Multi-homing in the apple ecosystem: why
and how developers target multiple apple app. stores. In: Proceedings of the Inter-
national Conference on Management of Emergent Digital EcoSystems, MEDES
2011, pp. 122–128. ACM, New York (2011)

56. Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschbach, J., Aguirre,
L.: Feedback in context: supporting the evolution of IT-ecosystems. In: Ali Babar,
M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 191–205.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13792-1 16

57. Brummermann, H., Keunecke, M., Schmid, K.: Formalizing distributed evolution
of variability in information system ecosystems. In: Proceedings of the Sixth Inter-
national Workshop on Variability Modeling of Software-Intensive Systems, VaMoS
2012, pp. 11–19. ACM, New York (2012)

58. Keunecke, M., Brummermann, H., Schmid, K.: The feature pack approach: sys-
tematically managing implementations in software ecosystems. In: Proceedings of
the Eighth International Workshop on Variability Modelling of Software-Intensive
Systems, VaMoS 2014, pp. 20:1–20:7. ACM, New York (2013)

59. Aoyama, M.: Model and its management architecture of software service supply
chains. In: Mochimaru, M., Ueda, K., Takenaka, T. (eds.) Serviceology for Services,
pp. 181–189. Springer, Japan (2014)

60. Eklund, U., Bosch, J.: Introducing software ecosystems for mass-produced embed-
ded systems. In: Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012.
LNBIP, vol. 114, pp. 248–254. Springer, Heidelberg (2012)

61. Hanssen, G.K.: A longitudinal case study of an emerging software ecosystem: impli-
cations for practice and theory. J. Syst. Softw. 85(7), 1455–1466 (2011)

62. Jansen, S., Bloemendal, E.: Defining app stores: the role of curated marketplaces in
software ecosystems. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP,
vol. 150, pp. 195–206. Springer, Heidelberg (2013)

63. Kruize, J., Wolfert, S., Goense, D., Veenstra, T., Scholten, H., Beulens, A.: Inte-
grating ICT applications for farm business collaboration processes using fi space.
In: 2014 Annual SRII Global Conference (SRII), pp. 232–240, April 2014

64. McGregor, J.D.: A method for analyzing software product line ecosystems. In: Pro-
ceedings of the Fourth European Conference on Software Architecture: Companion
Volume, ECSA 2010, pp. 73–80. ACM, New York (2010)

65. Urli, S., Blay-Fornarino, M., Collet, P., Mosser, S., Riveill, M.: Managing a software
ecosystem using a multiple software product line: a case study on digital signage
systems. In: 2014 40th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), pp. 344–351, Aug 2014

66. Valenca, G., Alves, C., Heimann, V., Jansen, S., Brinkkemper, S.: Competition and
collaboration in requirements engineering: a case study of an emerging software
ecosystem. In: 2014 IEEE 22nd International Requirements Engineering Confer-
ence (RE), pp. 384–393, Aug 2014

http://dx.doi.org/10.1007/978-3-642-13792-1_16

Reviewing the Ecosystem Empirical Literature 77

67. Anvaari, M., Conradi, R., Jaccheri, L.: Architectural decision-making in enter-
prises: preliminary findings from an exploratory study in norwegian electricity
industry. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 162–175. Springer,
Heidelberg (2013)

68. Järvinen, J., Huomo, T., Mikkonen, T., Tyrväinen, P.: From agile software devel-
opment to mercury business. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014.
LNBIP, vol. 182, pp. 58–71. Springer, Heidelberg (2014)

69. Bhowmik, T., Alves, V., Niu, N.: An exploratory case study on exploiting aspect
orientation in mobile game porting. In: Bouabana-Tebibel, T., Rubin, S.H. (eds.)
Integration of Reusable Systems. Advances in Intelligent Systems and Computing,
vol. 263, pp. 241–261. Springer, Switzerland (2014)

70. Dal Bianco, V., Myllarniemi, V., Komssi, M., Raatikainen, M.: The role of plat-
form boundary resources in software ecosystems: a case study. In: 2014 IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 11–20, April 2014

71. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: on the impact of
software product lines, global development and ecosystems. J. Syst. Softw. 83(1),
67–76 (2010)

72. Brummermann, H., Keunecke, M., Schmid, K.: Variability issues in the evolution
of information system ecosystems. In: Proceedings of the 5th Workshop on Vari-
ability Modeling of Software-Intensive Systems, VaMoS 2011, pp. 159–164. ACM,
New York (2011)

73. Kourtesis, D., Bratanis, K., Bibikas, D., Paraskakis, I.: Software co-development
in the era of cloud application platforms and ecosystems: the case of CAST. In:
Camarinha-Matos, L.M., Xu, L., Afsarmanesh, H. (eds.) Collaborative Networks
in the Internet of Services. IFIP AICT, vol. 380, pp. 196–204. Springer, Heidelberg
(2012)

74. Lettner, D., Petruzelka, M., Rabiser, R., Angerer, F., Prähofer, H., Grünbacher,
P.: Custom-developed vs. model-based configuration tools: experiences from an
industrial automation ecosystem. In: Proceedings of the 17th International Soft-
ware Product Line Conference Co-located Workshops, SPLC 2013 Workshops, pp.
52–58. ACM, New York (2013)

75. Lettner, D., Angerer, F., Grunbacher, P., Prahofer, H.: Software evolution in an
industrial automation ecosystem: an exploratory study. In: 2014 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA),
pp. 336–343, Aug 2014

76. Lungu, M.: Towards reverse engineering software ecosystems. In: IEEE Interna-
tional Conference on Software Maintenance, ICSM 2008, pp. 428–431 (2008)

77. Schultis, K.B., Elsner, C., Lohmann, D.: Moving towards industrial software ecosys-
tems: are our software architectures fit for the future? In: 2013 4th International
Workshop on Product Line Approaches in Software Engineering (PLEASE), pp.
9–12, May 2013

78. Alves, A.M., Pessôa, M.: Brazilian public software: beyond sharing. In: Proceedings
of the International Conference on Management of Emergent Digital EcoSystems,
MEDES 2010, pp. 73–80. ACM, New York (2010)

79. Bosch, J., Bosch-Sijtsema, P.: ESAO: a holistic ecosystem-driven analysis model.
In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP, vol. 182, pp. 179–193.
Springer, Heidelberg (2014)

80. Nordström, H., Sääksjärvi, M.: Application service provisioning as a strategic
network. In: Lamersdorf, W., Tschammer, V., Amarger, S. (eds.) Building the
E-Service Society. IFIP, vol. 146, pp. 171–186. Springer, US (2004)

78 K. Manikas

81. Pichlis, D., Raatikainen, M., Sevón, P., Hofemann, S., Myllärniemi, V., Komssi,
M.: The challenges of joint solution planning: three software ecosystem cases. In:
Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J., Raatikainen,
M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 310–313. Springer, Heidelberg
(2014)

82. van der Schuur, H., Jansen, S., Brinkkemper, S.: The power of propagation: on the
role of software operation knowledge within software ecosystems. In: Proceedings
of the International Conference on Management of Emergent Digital EcoSystems,
MEDES 2011, pp. 76–84. ACM, New York (2011)

83. Viljainen, M., Kauppinen, M.: Software ecosystems: a set of management practices
for platform integrators in the telecom industry. In: Regnell, B., van de Weerd, I.,
De Troyer, O. (eds.) ICSOB 2011. LNBIP, vol. 80, pp. 32–43. Springer, Heidelberg
(2011)

A Survey of Modeling Approaches for Software
Ecosystems

Oskar Pettersson(B) and Jesper Andersson

Linnaeus University, Växjö, Sweden
oskar.pettersson@lnu.se, jesper.andersson@lnu.se

Abstract. Software ecosystems is one promising strategy for organiza-
tions to find new market segments, new innovative value propositions
creating new value streams. However, understanding internal and exter-
nal actors, resources and relationships that could be leveraged in a SECO
is critical for their strategic decisions. The consequence of mistakes may
be costly failures that can force an organization to move out of a market.
This paper describes a systematic mapping study that targets descrip-
tion of software ecosystems. Our conjecture is that adequate description
support leads to modeling, which will improve information and in turn
strategic decisions. The survey searches existing literature for description
techniques and their application for comprehensive description.

The study identifies and maps 63 primary studies out of 937 candi-
dates according to their degree of modeling support and several other
important aspects for SECO description. The analysis indicates that no
approach fully supports comprehensive SECO descriptions, supporting
domain specific and view specific modeling of ecosystem concerns. The
analysis is used to highlight areas for a future research agenda.

Keywords: Software ecosystems · Mapping study · Domain specific ·
View

1 Introduction

Recent technology development has triggered strategy development for how com-
panies collaborate with end users, partners, and other stakeholders on their mar-
kets. For software intensive systems, organizations apply strategies that define
Software Ecosystems (SECO). As a consequence SECOs have become a part
of companies daily operations, peoples daily life, and thus it has attracted the
interest of researchers [1]. SECOs have contributed to new and innovative value
propositions for new and old customer segments creating new revenue streams
for players active in a SECO. The importance of understanding the business
landscape your organization is active in is emphasized in the business literature.
Johnson et al. [2] describe business model comprehension as a critical success
criterion for any business model innovation activities.

Failures where organisations overshoot their targeted platform, partially or
completely, could mean the demise of a product [3]. SECOs are encompassing far
c© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 79–93, 2016.
DOI: 10.1007/978-3-319-40515-5 6

80 O. Pettersson and J. Andersson

more than a business model and a software platform with its APIs. Full compre-
hension of a SECO requires understanding of many more dimensions [4]. These
dimensions are arguably well understood when they are contained within one
organisation [5], but when they are cross-cutting multiple organizations, com-
prehension is a much more complex endeavor. Risk management is critical from
a business perspective, that is first identifying risks and then understand the
consequences. For example, before deciding to open up a platform and set up
a SECO that involves external parties, all consequences should be known. Ade-
quate modeling support is critical for such activities, supporting both business
and technical decisions concerning a SECOs and its core assets.

Several literature surveys have investigated the definition of SECOs [6,7].
Jansen et al. [8], presents findings regarding modeling approaches based on
Manikas et al. [6] data. It is however unclear from existing research how SECOs
are modeled, what is included in a SECO model and which notations practition-
ers and researchers have used. It is however clear that no consensus or standard
exist. To that end we performed a systematic mapping of existing literature
where we attempt to pin-point how SECOs are currently modeled. Adequate
modeling support assist SECO stakeholder communication and as a consequence
augments decision-making.

The survey shows that mainly three entities are modeled for SECOs; actors,
static relationships, and dynamic flows. It also identifies three focal points for
modeling; social networking models, goal oriented models, and software sup-
ply networks. The study indicates that current modeling approaches not fully
capture all aspects of SECO architectures [9]. The root cause is that models
adopted from other areas are not designed to account for the interconnected and
inter-organizational aspects of SECOs [10].

The remainder of the paper is organized as follows. Section 2 describes the
study’s setup, including research questions and research methodology. In Sect. 3,
we describe the data we extracted, the maps created, and map the studies accord-
ingly. Section 4 answers the research questions. In Sect. 5 we conclude and discuss
future research.

2 Systematic Mapping Study

In this section we describe the research context, research goals, and questions.
We also describe the planning for the mapping study, including the selection
process and how the data extraction performed.

2.1 Research Context

We have adopted Perry and Wolf’s model of architecture [11] as a theoretical
description framework for our research. Perry and Wolf defines architecture as
a model consisting of elements, form, and rationale. Our conjecture is that this
model can act as a basis for ecosystem description.

A Survey of Modeling Approaches for Software Ecosystems 81

The model defines three elements; data, processing, and connecting elements.
Data elements define and hold data, processing elements transform data ele-
ments, while connecting elements connects them. The architecture’s form capture
how elements are structured, while the rationale include information concerned
with architecture decisions.

Our research goal is to provide a framework for SECO modeling and descrip-
tion. Complete modeling support for software ecosystem is required for maximum
benefit. Completeness implies support more modeling all concerns relevant for
different stakeholders. Completeness also implies modeling support for different
context and different domains. A framework must ensure consistent usage of ter-
minology, models, and hierarchies in this multi faceted modeling landscape. As
a first step in the research project we set the goal to survey the state-of-research
and state-of-practice.

2.2 Research Questions

We reformulated our research goal into three research questions.

RQ1. What constitutes a Software Ecosystem and how may it be documented?
Documentation or description is broad and include both models and tech-
niques for populating the models. It could also be part of a methodology or
based on meta-models that frames a problem or domain.

RQ2. What domains are primarily described in a SECO? We would like to
understand if domain specific variations exists and characterize them

RQ3. To what degree are established standards used in these descriptions? Stan-
dards play an increasingly important role in software and system documen-
tation. We would like to incorporate standard notations and techniques in a
description framework.

2.3 Systematic Mapping

We decided to conduct a systematic mapping [12] to better understand the field.
A systematic mapping is a research method which is suitable for charting an area
where an overview is lacking, providing structure to existing research and results.
The systematic mapping analyzes a set of primary studies, which are retrieved
from databases using a search-string. The set retrieved from the databases is
pruned in multiple steps based on inclusion criteria. The selection results in the
set of primary studies, which are studied and analyzed more in-depth. We deviate
from the rules of a systematic mapping slightly and created a mapping scheme
based on our research questions in advance. The intention was to guide both our
primary and in-depth analysis. We depict the mapping scheme in Fig. 1.

2.4 Search String

A systematic mapping starts with a broad search in multiple databases to pop-
ulate the set of candidate studies. We use our research goal and research ques-
tions to formulate a search string. (‘‘software ecosystem’’ OR ‘‘software

82 O. Pettersson and J. Andersson

SECO
Description

Challenges Concepts

Description
Languages

Meta Support

Tooling Standards
General
Model

Partial
Model

Domain

Model

Styles &
Patterns

Fig. 1. The hierarchical mapping scheme

ecosystems’’) AND (Documentation OR Model OR Modeling OR Documenting OR
View OR Viewpoint OR ‘‘ISO42010’’). We apply the search string on three digi-
tal databases; ACM, IEEE, and Science Direct. We also include all IWSECO pro-
ceedings not indexed by these three databases. These are the 2009 and 2011 to
2013 editions.

2.5 Inclusion Criteria

We apply four criteria to decide whether a candidate study should be included in
the analysis or not. These criteria focus the selection further and remove studies
that can not contribute to the result.

1. Does the study describe a Software Ecosystem?
2. Does the study explicitly describe a description approach for SECOs in one

or more domains?
3. Is the study already included in the set of primary studies?
4. Is the study written in English?

In addition we applied a publication type filter that excluded book chapters,
introductions or summaries of conferences, proposals, technical reports.

2.6 Selection Process

The selection process contains four steps. The first step retrieves the documents
that satisfy the search string from three digital databases. The title, abstract,
and keywords are extracted from matching studies. The second step applies the
inclusion criteria based on reading of the abstract and keywords. Step three is
similar to step number two, however in step three the full paper is read before the
criteria is applied. The final stage looks for duplicates such as papers from the
same authors with a similar content and papers published as conference papers
first and then as journal papers. In that case, journal papers were prioritized.

2.7 Data Extraction

The next step in a mapping study is data extraction from the publications in
the set of primary studies. The mapping structure in Fig. 1 was derived based

A Survey of Modeling Approaches for Software Ecosystems 83

on our understanding of general modeling. Based on this model we defined four
data extraction criteria that maps research questions to the mapping structure.
The first data extraction criterion (DE1) to find out how SECOs are described
in the primary studies, which is important for RQ1. The second goal was to
understand SECO description constituents and how these are combined in com-
prehensive documentation. DE2 focuses on what domain the information rele-
vant for answering RQ2. DE3 and DE4 targets aspects of documentation, such
as standards and how domains, which will be used to answer RQ3.

DE1. Strategies for describing a SECO
Description strategies could include models, frameworks, tools, views or
elements.

DE2. Domains the work is conducted in.
That is, if the authors explicitly place the work in a domain.

DE3. Established standards used or proposed
Standards here refers to common standards and concepts in architecture
description. The terms specifically searched for here are SysML, Enterprise
Architecture, TOGAF, Zachman framework, ISO 19439, ISO 42010, UML,
and SPEM.

DE4. Systematic approaches to accounting for domains
In short, how does the description strategy account for what domains it
describes.

3 Data Collection and Mapping

In this section we describe the data collection and mapping of primary studies.
The map consists of three main categories and eight subcategories. A complete
index for the mapping is available online1.

The collection and selection process is depicted in Table 1. Applying the
inclusion criteria to the candidates sets reduced the numbers from the initial 937
publications to 63. The study identified publications from 2007 and onwards, 55
of the 63 studies were conference, symposium or workshop papers. We found
in total studies from thirty-two venues.

3.1 Map Description

We conducted an initial analysis of the primary studies, applying the pre-defined
map. The map defines three categories for an initial classification;meta, descrip-
tions, and support. We provide a high-level description of the categories below
and continue with a more detailed description of subcategories for a more precise
characterization (Table 2).

The meta category is focused on things that define descriptions, but does
not describe how to describe or document an ecosystem. Studies in this category
can be further categorized into concepts or challenges. Concept publications
1 https://github.com/oskarp/icsob2016/blob/master/index.pdf.

https://github.com/oskarp/icsob2016/blob/master/index.pdf

84 O. Pettersson and J. Andersson

Table 1. Number of studies per database and inclusion criteria.

Database Publications Filter 1 Filter 2 Filter 3

ACM 352 42 28 25

Science Direct 126 12 7 7

IEEE Explore 434 42 21 18

IWSECO-09&11-13 25 12 12 12

Total 937 109 69 63

describe SECOs using high-level concepts and can be used to guide descriptions.
Examples include general views on SECOs and ecosystem life-cycles. Challenges
describe limitations or impediments for SECO description. These are described
as areas where a best-practice is not known or areas where no feasible practices
exist.

Descriptions contains studies that include a description or application of
at least one of element, form, and rationale in a SECO description. This cate-
gory can be further decomposed into four subcategories; general, partial, domain
specific, and styles & patterns. General refers to studies that claim support
for describing complete SECOs, while partial refers to studies with specialized
descriptions for an aspect or part of a SECO. For example, ecosystem roles
or requirements. The ‘domain specific’ subcategory includes studies that tar-
get descriptions for a particular domain, for example, embedded systems. This
does however not imply that the description is domain specific per se, it merely
under-lines that the description approach has been applied to a single domain.
Patterns & Styles include publications that utilize or derive patterns or styles
for SECO descriptions.

The third category is support, which has two subcategories; tooling and stan-
dards. Tooling refers to tools available for describing SECOs. These tools come
in many forms, however the criterion is that it can be used to at least partially
describe a SECO. The standards subcategory include studies that describe or
discuss standards in connection to SECOs.

3.2 Meta Categories

Concepts. The study identified seven publications that are concerned with
description concepts. These can be characterized as addressing views, life-cycles
or elements. Campbell [4] identifies three views, business, social, and architec-
ture for SECOs. The discussion on the social view is extended by dos San-
tos [13]. Yakakami [14] proposes a view set containing consortium, code manage-
ment, and open source. A life-cycle for SECOs is described by Hartmann [15].
It focuses on the openness in consumer electronics software and how openness
impacts the software architecture. Kazman [16] introduces the metropolis model
for commons-based peer production. Both life-cycle models highlights challenges
related to managing external contributions in open organisations. In the elements

A Survey of Modeling Approaches for Software Ecosystems 85

Table 2. Primary studies — Complete map.

Category Characteristic Papers

Meta Concepts S37, S38, S39, S40, S41, S42, S53, S54, S56, S60,
S61

Challenges S43, S44, S45 , S46 , S47 , S48 , S49, S50 , S51

Descriptions General S3, S4, S5, S6, S57, S63

Partial S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18,
S19, S20, S21, S22, S7, S52, S55, S58, S59, S62

Domain specific S23, S24 , S25 , S26, S27, S28, S29 , S30 , S31

Styles S2

Patterns S1

Support Tooling S32, S33 , S34, S35, S36

Standards

Table 3. Primary studies — Concepts map

Characteristic Area Publication

Elements User generated content S38

Activity Theory S42

Life-cycle Openness S40

Metropolis life-cycle S39

Views Business, Social, Architecture S37, S54, S56, S60

Social S17

Business S53, S61

Consortium, Management, Open source S41

category, Musil [17] discusses user generated content and elements in a stigmer-
gic information system, while Uden [18] attempts to map SECOs onto activity
theory elements (Table 3).

Challenges. The studies that primarily focus on challenges are mapped in
Table 4. The challenges found can be related to the software and social views
specifically, or challenges spanning multiple views. Challenges related to gen-
eral architecture are common in the primary studies, one example is patterns
and anti-patterns for SECO architecture, which is discussed by two of primary
studies. For the social view, Schultis et al. [19] identify the need for collabo-
ration models in order to augment SECO platforms. Serebrenik and Mens [20]
point at the need to investigate domain specific aspects of SECOs. Furthermore,
both Jansen [21], and Serebrenik and Mens [20] request more understanding and
further investigation of quality attributes in SECOs.

86 O. Pettersson and J. Andersson

Table 4. Primary studies — Challenges map

View Challenge Publication

Software General Architecture S43, S44, S50, S48, S45

Patterns S49, S47

Social Collaboration models S45

Multiple Domain Specific Ecosystems S46

Quality attributes S47, S46

Topics S51

Table 5. Primary studies — General approaches map.

Ref Element Connectors Form Rationale

S4 Agent, Medium, Object Communication Logical, channel
and organization

-

S5, S57 Soft & Hard goals,
Resource, Task

Means-ends, Decom-
position, Dependency

Role, Stage -

S6 Agents, Features - Context -

S3 Product, Product of Inter-
est, Platform product,
Hardware Product

Medium SEM -

S3 Company of Interest, Sup-
plier, Customer, Intermedi-
ary, Customer’s Customer

Flow, OR, XOR SEM -

S63 Project, Organization Dependency, Contri-
bution

Business, Soft-
ware, Innovation

-

3.3 Description Categories

In this section we describe the mapping of primary studies to the description
subcategories; general, partial, domain-specific, and patterns & styles.

General. The study found six publications describing general description
approaches. Janner et al. [22] present a methodology where they adapt the St.
Gallen Media Reference for SECO modeling. Boucharas et al. [23] propose that
software supply networks and product deployment contexts can be used to model
SECOs. The I* modeling framework is used by Sadi and Yu [24]. Fontana et al.
suggests an agent based approach where a set of tasks, agents and their context
aware activation describe a SECO [25]. The final study from Monteith et al. [26]
adapts the STREAM framework to a SECO context. We map the studies in this
category onto the elements suggested by Perry and Wolf [11]. Table 5 maps the
studies onto elements, form, and rationale [11].

Janner et al. [22] describe communities of co-creation through elements of
agents and objects that are connected trough a communication medium. Such
communication media is constrained by three different components, logical space,

A Survey of Modeling Approaches for Software Ecosystems 87

Table 6. Primary studies —“Partial”
descriptions map

View Publication

Social S17, S7

Software S20, S21, S19, S13, S11, S9, S8, S52, S62

Business S10, S14, S15, S16, S18, S58, S58

Roles S22, S12, S55

Table 7. Primary studies — “Domain
specific” descriptions map.

Domain Publication

Enterprise resource planning S23

Embedded systems S24, S26, S27

Technology-enhanced Learning S25

Mobile Learning S28

Mashups S29

Collective intelligence S30

Service ecosystem S31

channel system, and organization. The I* extensions by Sadi and Yu [24] set up
soft goals, hard goals, resources, and tasks as elements to describe a SECO,
connected trough either means-ends, decomposition or dependencies and put
into configurations for each stage of the SECO. Fontana et al. [25] present an
approach that decouples the computation from coordination. This approach is
not at the same level of abstraction as the others found by the survey, its more
software than ecosystem. It utilizes agents with features that can be instantiated
in different contexts. Monteith et al. [26] gives a high level overview of projects,
organizations and their interactions over three different views. They argue for
an iterative and view based method of modeling SECOs. Boucharas et al. [23]
propose two approaches combined describe SECOs: SSN (Software Supply Net-
works) and PDC (Product Deployment Contexts). SSNs specifies the product,
product of interest, platform product, and hardware product elements, which
use a medium as a connector. A medium specify a stack for each connection.
The PDC specifies elements such as company of interest, supplier, customer,
intermediary, and customer’s customer. It connects these trough flows that can
have either OR or XOR gates.

Partial. We categorized sixteen of the primary studies as partial descriptions.
Table 6 maps them onto the principal view they are describing. In the map we
have seven studies in the software system category, six studies with a business
model focus, two with a focus on social ecosystems and two focusing entirely on
roles. A majority of the studies focus on software and business. Roles are in most
of the other studies included in one of the other principal dimensions, that is as
an aspect of software, business, or social views. However, two studies explicitly
address the roles as a separate view.

Domain Specific. The sub category ‘domain’ specific includes studies concerned
with ecosystems for a specific application domain. We identified nine publications
included in the set of primary studies, which primarily described SECOs in
relation to a specific domain. These are mapped onto the domains in Table 7.
The domains are covering a wide spectra. One possible interpretation is that
SECOs are investigated in many different areas of research. Embedded systems
appear as the most popular domain with about one-third of the primary studies.

88 O. Pettersson and J. Andersson

Table 8. Primary studies — Tools map

Domain Publication

Product line / Variability S34, S35, S33

Visualization S36

Architecture spec. support S32

Styles & Patterns. We included the ’styles & patterns category to specifically
identify studies with that focus. The study identified one primary study that was
categorized as architectural styles and one classified as architectural patterns.
Styles are proposed by Taylor [27], as a foundation for multiple stakeholders that
independently would like to extend an ecosystems platform. More specifically the
COAST architectural style might be that foundation. The single publication that
addresses patterns is a literature study from Syeed et al. [28], which investigates
the benefits of the plug-in pattern in a SECO environments.

3.4 Support Categories

In this section we describe the mapping of publications for the support categories
tools and standards.

Tools. Five publications describing documentation tools for SECOs were identi-
fied among the primary studies. Three however describe faucets of the same tool,
the EASY-producer [29]. This tool is an Eclipse plug-in that aids the design of
variability-rich product line SECOs. Lungu et al. [30] present an approach for
visualizing SECOs using a tool called the small project observatory. The fifth
and final publication in this category mentions a collection of tools to support
architectural design decisions and merely touches ecosystem concerns (Table 8).

Standards. Another area of interest in our map are studies that address stan-
dards. The map use ‘standard’, characteristic, and usage for a more fine-grained
categorization. Standard refers to which standard a study is concerned with.
Characteristic maps the primary study to the meta and description categories.
Usage can be either implementation, proposal, challenge or related research.
Implementation include studies that illustrate that applies (parts of) a standard.
Proposal means that the study proposes an implementation of the standard,
while related research means that the study compares some aspect of standard
to position itself.

We found a discussion on standards in seven of the primary studies.
UML appeared in three studies covering implementation, proposal and related
research. A further analysis revealed that the studies explicitly referred to UML
for their models. The ISO 42010 Standard for architecture documentation was
identified in three publications. Both Musil et al. [31], and Ruokolainen and
Kutvonen [32] show implementations of the standards, while Pelliccione [9]

A Survey of Modeling Approaches for Software Ecosystems 89

Table 9. Primary studies — Standards map

Standard Characteristic Usage Publication

UML Domain Specific Implementation S30, S31, S25

General Related research S3

Challenges Proposal S50

ISO42010 Domain Specific Implementation S30, S31

Challenges Proposal S50

SPEM General Related research S5

Domain Specific Implementation S25

Enterprise architecture Domain Specific Challenge S27

proposes it as a part of solution. The two implementations are both explic-
itly demonstratinghow the standard can be implemented for their respective
domains. One of the studies proposes both ISO42010 and UML as part of a
solution. The Software & Systems Process Engineering Meta-model (SPEM)
was discussed in two studies. Pettersson et al. [33] provide an actual implemen-
tation, where SPEM is used to describe SECO views. Sadi and Yu [24] position
their work to SPEM discussing it as related research. None of the established
enterprise architecture standards was found in the study. However enterprise
architecture was identified as a challenge by Axelsson et al. [34] (Table 9).

4 Analysis

The data we extracted and mapped in the previous section, is further analyzed
in this section to answer our research questions.

4.1 RQ1: Software Ecosystem Architecture Documentation

The study has found a large number of primary studies concerned with SECO
description. It is difficult to identify recurring patterns, directions or trends for
how to best describe SECOs in the primary studies after an initial review. How-
ever, a more in-depth analysis of the five general approaches we identified, more
specifically investigating elements, connectors, form, and rationale, reveals sev-
eral similarities at more abstract levels. All approaches in these studies provide
mechanisms for describing functionality and making connections. Further, all
approaches, except SSN/PDC, utilize form to provide different spaces, contexts
or stages to their models. None of the general approaches however addressed
rationale explicitly.

The partial descriptions focus primarily on software and business views.
Social views and pure role views have also been identified in the map. These
views are all discussed in the studies that proposed either I*, SSN/PDC or the
St. Gallen Media Reference Model, however without any demonstration. The I*

90 O. Pettersson and J. Andersson

and St Gallen approaches also attempt to model user generated content, which
mapped in concept category. Life cycles in general and support for a diverse
set of views are not discussed by any study. The studies point at patterns and
quality attributes as principal, SECO documentation challenges.

The analysis paints a diverse landscape where the general approaches appar-
ently does not provide comprehensive support for modeling all specific domains
or facets of ecosystems. Our analysis shows that it is impossible to claim gen-
erality without supporting openness and flexibility to support concern specific
ecosystem views.

4.2 RQ2: SECO Domains

The study identifies seven domains in the domain-specific studies. If we consider
mobile learning as a sub-field of TEL we see that all domain specific implemen-
tations can be found in studies that implement SECOs to a principal domain.

What is notable is that four out of seven [31–33,35] of the proposed descrip-
tion approaches include explicit meta-models of the domain they describe. In
addition they are adopting the common views, such as business, software, and
social. This is an indication that support for domain specific descriptions that
can be tailored, expanded, compared and transferred between domains is highly
desirable. In order to be able to achieve that openness, flexibility, and some stan-
dardization of these descriptions are required. Openness and flexibility appear
as key properties to support domain specific ecosystem modeling.

4.3 RQ3: Standardization

The study indicates that the domain specific approaches are more open to adopt
established standards. We include I* and the St Gallen Media Reference Model
among the standards, although each is found in one study.

The study indicates that UML is the most widely used notation standard.
In addition, ISO42010 is applied in all studies that implements UML. The open
definition of viewpoints and views in ISO42010 lead to several viewpoints using
UML notations. SPEM on the other hand is mentioned once as related research
and implemented in one approach. Enterprise architecture is mentioned once as
a challenge, its complete absence from SECO descriptions is somewhat surpris-
ing. The ISO42010 appears to be a good starting point for standardization as
would allow for the inclusion of any other standard notation for models in the
viewpoints. It supports definition of viewpoints and configuration of description
frameworks by including or excluding viewpoints in the description frameworks.
This would provide for concern and stakeholder specific configuration, support-
ing different domains and their specific requirements.

5 Conclusions

This study describes a systematic mapping of software ecosystem description
and documentation. The goal is to gain a deeper understanding of the area

A Survey of Modeling Approaches for Software Ecosystems 91

and guide future research on SECO modeling and documentation. The primary
studies are mapped onto three principal categories covering description, concepts
and challenges, and support categories. The study covers one decade and while
we can see that the community has converged towards a consensus in recent
years, no widely adopted approach for SECO description and documentation
has been found. The map points at important aspects of SECO description and
documentation, which combines into requirements on a SECO documentation
framework. These make up a roadmap for future research and contributions.
The framework must support modeling of complete ecosystems, support differ-
ent views and SECO domains. The key requirements for this are openness and
flexibility. The framework should be configurable for domains and specific mod-
eling concerns. The use of standards is an example of important knowledge for
continued activities. Standards frame the documentation with strict guidelines
for what is included and not, and how models are specified. Future research and
development activities in this field must take this into account to be relevant for
practitioners.

Some of the domain specific approaches have adopted the ISO42010 for sys-
tem and software architecture. Our analysis indicates that this standard is a good
starting point, being open providing support for flexible viewpoint inclusion and
exclusion. Specific viewpoints for SECOs may be added to a viewpoint library. In
our ongoing and future research we now use the ISO42010 as a foundation, devel-
oping a methodology for creating domain specific SECO documentation frame-
works. The approach defines processes and activities that define the domain
specific framework and later populate the views for a specific SECO in that
domain. We believe that an open and configurable framework approach based
on standards best support precise modeling, which is a prerequisite for correct
and informed strategic business decisions in the software intensive industries.

References

1. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indis-
pensable Technology and Industry. The MIT Press, Cambridge (2005). Number
0262633310 in MIT Press Books

2. Johnson, M.W., Christensen, C.M., Kagermann, H.: Reinventing your business
model. Harvard Bus. Rev. 86(12), 50–59 (2008)

3. Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software plat-
forms. In: Proceedings of the Fourth European Conference on Software Architec-
ture: Companion Volume. ECSA 2010, pp. 85–92. ACM, New York (2010)

4. Campbell, P.R.J., Ahmed, F.: A three-dimensional view of software ecosystems. In:
Proceedings of the Fourth European Conference on Software Architecture: Com-
panion Volume, ECSA 2010, pp. 81–84. ACM, New York (2010)

5. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co. Inc, Boston (2002)

6. Manikas, K., Hansen, K.M.: Software ecosystems a systematic literature review. J.
Syst. Softw. 86(5), 1294–1306 (2013)

7. De Lima Fontao, A., Pereira Dos Santos, R., Dias-Neto, A.: Mobile software ecosys-
tem (mseco): a systematic mapping study. In: 2015 IEEE 39th Annual Computer
Software and Applications Conference (COMPSAC), vol. 2, pp. 653–658 (2015)

92 O. Pettersson and J. Andersson

8. Jansen, S., Handoyo, E., Alves, C.: Scientists’ needs in modelling software ecosys-
tems. In: Proceedings of the 2015 European Conference on Software Architecture
Workshops, ECSAW 2015, pp. 44:1–44:6. ACM, New York (2015)

9. Pelliccione, P.: Open architectures and software evolution: the case of software
ecosystems. In: 2014 23rd Australian Software Engineering Conference (ASWEC),
pp. 66–69, April 2014

10. Schultis, K.B., Elsner, C., Lohmann, D.: Moving towards industrial software ecosys-
tems: are our software architectures fit for the future?. In: 2013 4th International
Workshop on Product Line Approaches in Software Engineering (PLEASE), pp.
9–12, May 2013

11. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

12. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical report, Technical report, Ver. 2.3 EBSE
Technical Report. EBSE (2007)

13. dos Santos, R., Werner, C.: Treating social dimension in software ecosystems
through reuseecos approach. In: 2012 6th IEEE International Conference on Digital
Ecosystems Technologies (DEST), pp. 1–6, June 2012

14. Yamakami, T.: A three-dimensional view model of open source-aware software
development for large-scale mobile software platforms. In: 2010 4th IEEE Interna-
tional Conference on Digital Ecosystems and Technologies (DEST), pp. 130–135,
April 2010

15. Hartmann, H., Trew, T., Bosch, J.: The changing industry structure of software
development for consumer electronics and its consequences for software architec-
tures. J. Syst. Softw. 85(1), 178–192 (2012). Dynamic Analysis and Testing of
Embedded Software

16. Kazman, R., Chen, H.M.: The metropolis model and its implications for the engi-
neering of software ecosystems. In: Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, FoSER 2010, pp. 187–190. ACM, New
York (2010)

17. Musil, J., Musil, A., Winkler, D., Biffl, S.: A first account on stigmergic informa-
tion systems and their impact on platform development. In: Proceedings of the
WICSA/ECSA 2012 Companion Volume, WICSA/ECSA 2012, pp. 69–73. ACM,
New York (2012)

18. Uden, L., Damiani, E., Gianini, G., Ceravolo, P.: Activity theory for oss ecosystems.
In: Digital EcoSystems and Technologies Conference, DEST 2007, Inaugural IEEE-
IES, pp. 223–228, February 2007

19. Schultis, K.B., Elsner, C., Lohmann, D.: Architecture challenges for internal soft-
ware ecosystems: a large-scale industry case study. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, pp. 542–552. ACM, New York (2014)

20. Serebrenik, A., Mens, T.: Challenges in software ecosystems research. In: Pro-
ceedings of the 2015 European Conference on Software Architecture Workshops,
ECSAW 2015, pp. 40:1–40:6. ACM, New York (2015)

21. Jansen, S.: How quality attributes of software platform architectures influence soft-
ware ecosystems. In: Proceedings of the 2013 International Workshop on Ecosystem
Architectures, WEA 2013, pp. 6–10. ACM, New York (2013)

22. Janner, T., Schroth, C., Schmid, B.: Modelling service systems for collaborative
innovation in the enterprise software industry - the st. gallen media reference model
applied. In: IEEE International Conference on Services Computing, SCC 2008, vol.
2, pp. 145–152, July 2008

A Survey of Modeling Approaches for Software Ecosystems 93

23. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem mod-
eling. In: Proceedings of the 1st International Workshop on Open Component
Ecosystems, IWOCE 2009, pp. 41–50. ACM, New York (2009)

24. Sadi, M., Yu, E.: Analyzing the evolution of software development: from creative
chaos to software ecosystems. In: 2014 IEEE Eighth International Conference on
Research Challenges in Information Science (RCIS), pp. 1–11, May 2014

25. Fontana, F.A., Braione, P., Roveda, R., Zanoni, M.: A context-aware style of soft-
ware design. In: Proceedings of the Second International Workshop on Context for
Software Development, CSD 2015, pp. 15–19. IEEE Press, Piscataway (2015)

26. Monteith, J.Y., McGregor, J.D., Ingram, J.E.: Hadoop and its evolving ecosys-
tem. In: Proceedings of the 5th International Workshop on Software Ecosystems,
Potsdam, Germany, 11 June 2013, pp. 57–68 (2013)

27. Taylor, R.N.: The role of architectural styles in successful software ecosystems. In:
Proceedings of the 17th International Software Product Line Conference, SPLC
2013, pp. 2–4. ACM, New York (2013)

28. Syeed, M.M.M., Lokhman, A., Mikkonen, T., Hammouda, I.: Pluggable systems
as architectural pattern: an ecosystemability perspective. In: Proceedings of the
2015 European Conference on Software Architecture Workshops, ECSAW 2015,
pp. 42: 1–42: 6. ACM, New York (2015)

29. Eichelberger, H., El-Sharkawy, S., Kröher, C., Schmid, K.: Easy-producer: product
line development for variant-rich ecosystems. In: Proceedings of the 18th Inter-
national Software Product Line Conference: Companion Volume for Workshops,
Demonstrations and Tools, SPLC 2014, vol. 2, pp. 133–137. ACM, New York (2014)

30. Lungu, M., Lanza, M., Grba, T., Robbes, R.: The small project observatory: visual-
izing software ecosystems. Sci. Comput. Programm. 75(4), 264–275 (2010). Exper-
imental Software and Toolkits (EST 3): A special issue of the Workshop on Acad-
emic Software Development Tools and Techniques, WASDeTT (2008)

31. Musil, J., Musil, A., Weyns, D., Biffl, S.: An architecture framework for collective
intelligence systems. In: 2015 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA), pp. 21–30, May 2015

32. Ruokolainen, T., Kutvonen, L.: An architecture framework for facilitating sustain-
ability in open service ecosystems. In: 2012 IEEE 16th International Enterprise
Distributed Object Computing Conference Workshops (EDOCW), pp. 84–93, Sep-
tember 2012

33. Pettersson, O., Gil, D.: On the issue of reusability and adaptability in m-learning
systems. In: 2010 6th IEEE International Conference on Wireless, Mobile and
Ubiquitous Technologies in Education (WMUTE), pp. 161–165, April 2010

34. Axelsson, J., Papatheocharous, E., Andersson, J.: Characteristics of software
ecosystems for federated embedded systems: a case study. Inf. Softw. Technol.
56(11), 1457–1475 (2014). Special issue on Software Ecosystems

35. Pettersson, O., Svensson, M., Gil, D., Andersson, J., Milrad, M.: On the role of
software process modeling in software ecosystem design. In: Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume, ECSA
2010, pp. 103–110. ACM, New York (2010)

The Impact of Internet of Things on Software
Business Models

Krzysztof Wnuk(B) and Bhanu Teja Murari

Department of Software Engineering, Blekinge Insitute of Technology,
Karlskrona, Sweden

Krzysztof.Wnuk@bth.se, bhmu14@student.bth.se

http://www.bth.se

Abstract. Context. Internet of Things (IoT) technology is signifi-
cantly impacting software business. Several contributions were made in
the literature regarding IoT. However, the importance of various busi-
ness model elements for IoT and the impact of IoT on requirements
engineering activities remains greatly unexplored. This paper focuses on
the impact of IoT on software business models and requirements engi-
neering. The objectives for this research include: (1) summarizing the
current business models for IoT, (2) analyzing the impact of IoT on soft-
ware business models (3) analyzing the impact of IoT on requirements
engineering. We conducted a systematic snowballing literature review,
followed by an industrial survey. We identified 21 peer reviewed papers
which were analyzed in relation to their rigor and relevance and received
56 survey responses. The results of the literature review indicate 9 busi-
ness model elements that IoT literature focus on. Morevoer, 4 business
model aspects were described with respect to the business model struc-
ture, context and governance. The industrial survey results highlighted
that value proposition, followed by customer segmentation and revenue
streams were the most important business model elements for IoT. More-
over, the survey results suggest that requirement management, require-
ment prioritization and requirement modeling and analysis are highly
impacted by IoT.

Keywords: Internet of Things · Software business models · Software
development · Requirement engineering

1 Introduction

A world where the physical objects are connected with each other using a network
is not a distant future anymore [1,2]. These objects interact with people, systems
or other objects in a so called Internet of Things (IoT). IoT is on the edge of
a huge market explosion, where the number of machines that are connected
to the internet has increased by three times and resulting in over 12 billion of
connected devices, according to Cisco [3]. Furthermore, Cisco predicted that the
international market for IoT would achieve $15 trillion of profit over the next
decade [4].
c© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 94–108, 2016.
DOI: 10.1007/978-3-319-40515-5 7

IoT and Business Models 95

According to the recent survey regarding IoT based business, 46 % of respon-
dents believe the existing business model will change due to IoT, 30 % respon-
dents believe IoT will unlock new revenue opportunities from the existing prod-
uct or services and 29 % believe that IoT will inspire new business process [5].
Therefore, many business models [6–11] are created for the IoT. IoT is also going
to unravel the new revenues for the current products that will change the exist-
ing business model. Despite the growing importance of IoT, no study has yet
primarily focused on the impact of IoT on business model canvas elements and
requirements engineering. For example, Zhuming Bi [12] investigated the impact
of IoT on enterprises, but not on software business model elements.

This paper focuses on the impact of IoT on business models and requirements
engineering. The following research questions are investigated in this work:

RQ1: What are the publication trends in IoT business models research?
RQ2: What is the impact of IoT on business model canvas elements?
RQ3: What is the impact of IoT on requirements engineering?

This paper is structured as follows: Sect. 2 presents background and related
work while Sect. 3 outlines selected research methods. Section 4 presents and
discusses literature review findings while Sect. 5 presents and discusses survey
findings. Section 6 concludes the paper.

2 Background and Related Work

Kevin Ashton, was the first who used the word Internet of Things in 2002 and
the first conference about IoT was held in 2005 [13]. Nowadays, IoT devices
are very affordable and offer acceptable performance and small size. According
to Cisco, the number of connected devices by 2050 will increases to 50 billion
[14]. Figure 1 depicts the Gartner’s hype cycle indicating that IoT for emerging
technologies is at peak position.

Business Models. Zott et al. [16] gave a synopsis of definitions of business
models. The most recent definition by Teece [17] defines a business model as
the model that express the logic, data and other information that supports the
value proposition for the customer and usable structure of revenue and expen-
diture for the enterprise that delivers this value. Osterwalder [18] defined the
business model as a tool that has a set of elements and relationships and allows
to explicit the business logic of an organization in order to generate a profitable
and sustainable revenue streams [19].

The Osterwalder’s business model canvas [19] consists of nine blocks: cus-
tomer segmentation, value proposition, channels, customer relationships, rev-
enue stream, key resources, key partnerships and cost structure. In this paper,
these blocks are referred as ‘elements’. The archetypal business model descrip-
tion divides the business model into “Who (customers), what (value proposition),
how (value delivered to the customer) and why (essential model for capturing

96 K. Wnuk and B.T. Murari

Fig. 1. Gartner’s 2015 Hype Cycle [15]

the value)” [20]. In this work, we use Osterwalder’s business model (canvas) ele-
ments [19] for describing IoT business models as they describe all the significant
elements of the business and are widely used and cited in the literature.

Several authors focused on the business models associated with IoT
[6–11,21–24]. Turber [6] suggested a framework for IoT business models that
includes value network, value creation and benefits and conducted 34 case stud-
ies which concluded that this framework is able to represent the business model
for IoT. Liu [7] used value proposition and revenue streams to identify how value
is created and exchanged between the actors. Fan and Zhou [8] and Glova et al.
used e3-value methodology for describing value proposition [8] or creating sus-
tainable business models for IoT applications [10]. Berkers et al. [9] used value
net analysis for creating an IoT business model for a vehicle traffic concept.
Bucherer and Uckelmann [22] used value proposition for creating value and rev-
enue in IoT. Finally, Shi [21] proposed a strategy for IoT business models that
includes: (1) focusing on improvement of high-quality network for IoT, (2) estab-
lishing the value proposition, (3) building key partnerships and (4) launching the
IoT products.

3 Research Methods

In this paper we conducted a systematic literature review using the snowballing
search method suggested by Wohlin [25] and an industrial survey.

IoT and Business Models 97

3.1 Literature Review

The snowballing procedure contains two steps: (1) acquiring the start set papers
and (2) performing iteration in backward and forward snowballing [25]. The
reason for not choosing the database search approach was because it is both
complex and difficult to accurately identify the search terms for cross-domain
reviews across various databases [25,26].

Start Set Identification. The initial keywords were identified from the research
questions and related work, see Sect. 2, and expanded by the vocabulary or
synonyms. The following search string was used to derive the start set:

(Internet of Things OR IoT OR Web of Things OR Industrial Internet OR
Internet of Everything) AND (Business Models)- we obtained 191 articles

Finding a good start set is similar to the challenges in finding the search string
in database search. We used the Engineering Village database for selecting the
start set of papers [27]. Google scholar was not used here because our study
implies one term, that should be expanded by synonyms such as Web of things
or Internet for everything and business models. This indicates that our study
requires flexibility and findings relevant papers that required more hence we did
not use Google scholar. We used the following inclusion criteria to screen the
database results:

– IC1: Papers that are published from 2010–2015 and are peer-reviewed.
– IC2: Papers that are only related to IoT and business models.
– IC3: Articles that are available in full text.
– IC4: Papers which are written in English.
– IC5: Studies that are related to software engineering or requirements engi-

neering, excluding the studies that are related to hardware, system program-
ming etc.

The search string execution resulted in 191 records, after applying IC1 we
received 176 candidates. After applying IC2 and IC3 we received 121 candidates
and included 62 after title and abstract screening. 30 papers remained after
introduction and conclusions reading and 10 after reading the full paper. From
the start set of 10 papers (P1 [8], P2 [6], P3 [28], P4 [10], P5 [29], P6 [9], P7
[30], P8 [31], P9 [23], P10 [24]), we performed three snowballing iterations1.

First Iteration. 253 references were fully examined and evaluated, 71 were
removed on basis of publication type, 13 were removed due to language, 108
were removed based on titles and 16 were duplicates. 40 references were removed
based on abstract and full text screening. 5 papers were extracted (P11 [32], P12
[33], P13 [22], P14 [34], P15 [21]). 60 citations were screened from the start set:
10 were removed based on language, 27 were removed based on title screening,
5 were duplicates, 16 were removed based on the abstract and full text read.
Lastly, 4 papers were included for the next phase (P16 [35], P17 [36], P18 [24]
and P19 [30]).
1 For improved readability we provide the mapping between paper IDs (P1, P2 etc.)

and references only here and use paper IDs when presenting literature review results.

98 K. Wnuk and B.T. Murari

Second Iteration. 298 references were examined and evaluated, 129 were
removed based on the publication type, 116 were removed based on title screen-
ing and 9 were duplicates and 43 were removed after abstract or full text read.
Only one paper was (P20 [37]). 232 citations were analyzed, 101 were screened
based on the title, 62 based on the publication type, 23 based on the lan-
guage, 10 were duplicates and finally 35 were removed based on the abstract
or full text. One paper was extracted from forward snowballing in this iteration
(P21 [38]).

Third Iteration. 44 reverences were examined and evaluated, in which 22 were
removed based on title, 17 were removed based on paper type, 2 were removed
based on the language, and 3 were removed based on the abstract or full text. 8
citation were examined thoroughly examined, among which 3 were found dupli-
cates, 4 were screened based on the title and one were removed based on the full
text. No new papers were identified in this iteration and thus the snowballing
has ended.

The extracted data was analyzed using narrative analysis according to the
guidelines suggested by Cruzes et al. [39]. We also used the qualitative compar-
ative technique to compare the likeliness between the entities and the types of
techniques used by the researchers [40].

3.2 Industrial Survey

The survey questions were based on the literature review and identified related
work. The first survey question considered the involvement in IoT software
development or sales. Respondents who are or were involved in IoT projects
answer additional demographics questions about their role in the IoT project,
the domain that the IoT project was targeted at, the size and age of their organi-
zation. Next, the importance of business model canvas elements for IoT was mea-
sured using a five point Likert scale with a “Don’t know” option to be selected if
respondents were unsure about the impact. Finally, the impact of IoT on various
requirements engineering phases and activities was estimated, followed by open
questions about possible improvements for IoT business models2.

Survey Distribution. The survey was made using the online survey tool
“Survio”3. A pilot study was conducted beforehand to identify potential issues
and mitigate them. The updated survey was distributed in various online groups
(LinkeIn, MeetUp, Facebook, mailing lists) related to IoT that had expressed
interest in business models or business aspects of IoT. We assumed that all par-
ticipants of these groups have good understanding of IoT and the challenges that
it brings to business modeling. The survey took on average 8 min to complete.

2 The survey questionnaire is available at this link http://serg.cs.lth.se/fileadmin/
serg/IoTBusinessModelsSurveyQuestions.pdf.

3 www.survio.com.

http://serg.cs.lth.se/fileadmin/serg/IoTBusinessModelsSurveyQuestions.pdf
http://serg.cs.lth.se/fileadmin/serg/IoTBusinessModelsSurveyQuestions.pdf
www.survio.com

IoT and Business Models 99

Statistical Analysis. The survey results were statistically analyzed [41] using
Chi-square test to find statistical difference between the obtained answers and
demographics and the Cramer’s V score for the strength of relationship among
two variables [42].

3.3 Validity Threats

We discuss the validity threats following Wohlin et al. [43].

Construct validity covers potential issues in establishing appropriate methods
and measures for the studied phenomenon. In our case, we used systematic
literature review as input to industrial survey. Using two sources of evidence
helped us to better understand the studied phenomenon. The way how survey
questions are phrased remains a threat to construct validity as they could have
been differently interpreted. During survey pilots, we identified and eliminated
potential sources of question misinterpretations. Moreover, a risk remains that
we generalized from experience that could be based on biased opinions [44].
Finally, the search string was iteratively developed and discussed between the
two authors to avoid possible construct validity threats.

Internal validity is concerned with unknown or uncontrolled confounding fac-
tors that may affect the studied causal relationships. In this work, we focused
on business model canvas and requirements engineering phases as factors that
may impact IoT. Therefore a threat remains that other significant factors may
impact successful IoT software development. Considering the literature review
part of the study, all steps were discussed between the two authors and any
disagreements were discussed and resolved.

External Validity is considered as a potential to generalize the results. In this
study, most of the identified papers received high rigor and relevance scores and
represent industrial contexts. Therefore, the final outcomes are generalizable and
are appropriate to the industry. The fact that we obtained over 50 answers in
the survey also straightens external validity.

Reliability is concerned with the degree of repeatability of the study. During
the literature review, we documented each step to enable replication4. Paper
screening and analysis procedures were defined beforehand and rigidly followed.
Quality assessment based on the rigor and relevance scores was based on the
guidelines suggested by Ivarsson and Gorschek [45]. The survey questions are
available online to enable replications and further studies. Finally, the charac-
teristics of the population that answered the survey are also outlined.

4 Results and Analysis

4.1 Literature Review Results and Analysis

The identified papers were classified based on the research methodology (survey,
case study, experiment etc.) and type of study (evaluation, proposal, solution
4 The details of the process can be obtained upon request.

100 K. Wnuk and B.T. Murari

etc. [46]), see Fig. 2. 7 papers were classified as framework proposals [P6, P10,
P11, P14, P16, P17, P19] and these papers have followed the Osterwalder’s [19]
business model elements for proposing IoT frameworks. 3 papers [P9, P13, P20]
proposed business modeling framework solutions evaluated in industry at IBM
[P9], SAP [P13] and RFID identification for logistics [P20]. All three contexts
are large and involve millions of potential devices even in the smallest scale,
thus emphasizing the challenges that business modeling brings for IoT in terms
of creating sustainable solutions that can easily scale up.

6 papers were categorized as case studies - evaluations [P1, P2, P4, P7, P8,
P15] in postal logistics [P1], in heating, home security, smart lighting, mobility,
smart city [P2], healthcare [P4], Amazon as the evaluation object [P8] or machine
to machine communication [P15]. This indicates that although IoT is a new
concept it has penetrated several business domains.

Five papers were categorized as survey evaluations [P3, P5, P12, P18, P21]
in selecting the business model elements that are used for IoT business mod-
els. Paper P3 also studies business model canvas elements for IoT with over
70 respondents. Paper P5 provides an interview survey at Ericsson and Tele2
regarding Smart Grid while paper P18 focuses on smart thermostat technology
or supply chain management [P21].

Fig. 2. Classification of papers

The papers were categorized into four quadrants (A, B, C and D) according
to the rigor and relevance scores assessment suggested by Ivarsson and Gorschek
[47], see Fig. 3. 7 papers were found with high rigor and relevance, 6 papers are
found with high relevance and low rigor, 5 papers were found with high rigor
and low relevance, 3 papers were found with low rigor and low relevance.

IoT and Business Models 101

Fig. 3. Quality assessment based on rigor and relevance

Aspects of Value Creation in IoT. We analyzed the value creation aspects
in IoT following the four dimensions introduced by Amit and Zott for e-
business [48], namely: efficiency, complementaries, lock-in and novelty.

Efficiency is the efficiency of the transaction that the business creates [48].
In the IoT case it includes the values appropriated by each party involved in
the transaction. 9 papers [P2, P5, P6, P8, P11, P14, P16, P18, P20] discussed
efficiency. Among the papers with high rigor and relevance scores, paper P20
designed a framework for IoT business models for machine to machine commu-
nications and smart energy contexts of IoT while paper P14 provided a tool for
designing the business model for the IoT that improves the transaction speed
and simplicity. Both papers highlight the importance of dynamic adaptations to
rapidly changing situation in the IoT business landscape and therefore put the
emphasis on efficiency. Paper P5 proposed a combination of offline and online
transactions IoT-based healthcare services. This approach enables cross selling
between the participants and the IoT product. Interestingly, high efficiency is
required for regulated domains, e.g. healthcare or energy. This is a clear indica-
tion of the disruption potential of IoT in heavily regulated domains.

Among the papers that were classified in the B quadrant for rigor and rele-
vance, two papers (P2 and P6) focused on reducing the transaction asymmetry
for improved efficiency and sustainability of IoT business models. This is impor-
tant for IoT as they offer new opportunities for devices that used to be passive
receivers of commands or data. Three studies P11, P16 (both B category) P18

102 K. Wnuk and B.T. Murari

(C category) focused on value capturing for IoT. The suggested business models
reduce information asymmetry and increase the transparency in the flow of infor-
mation. Finally, paper P8 (C category) focused on business model information
flow transparency by identifying the value network for the collaborating part-
ners. They proposed a new model where efficiency is supported by information
transparency.

Complementarities represent the situation when a bundle of goods or ser-
vices represents more value than the individual elements [48]. Brandenburger
et al. [49] identified that complimentarities are also the source of value creation
in IoT software business. Gulati et al. [50] stressed that if the customer is satisfied
they purchase the complements and increase revenue. Three papers [P13, P19,
P20] focused on complementarities for IoT product and services. Papers P13
and P19 (both in category B for rigor and relevance) focused on the benefits for
IoT products and the customers satisfaction when offering complimentary ser-
vices. As IoT offers access to extensive network of devices, there is a significant
potential in providing dynamic complementary services that can answer rapidly
changing demands. In paper P20, the importance of richness in the virtual mar-
ket for large scale industries in the context of IoT is stressed.

Lock-in is a mechanism to engage the customer in repeat transactions and pre-
vent them from migrating to competitors [51]. Lock-in creates positive effect
on efficiency and complementarities and greatly supports value creation [48].
Five papers [P2, P5, P8, P15, P17] focused on lock-in for IoT business models.
Two papers received high rigor and relevance scores. Paper P5 designed a IoT
business model that includes strategic lock-in while Paper P17 compared sev-
eral successful IoT business models and analyzed lock-in mechanisms. Paper P2
(category B) suggested that the customers should be able to compare and select
the most relevant IoT features and in this way ensure lock-in. In papers P8 and
P15, lock-in was introduced by following customers’ preferences and flexibility
in the feature offering and context variables.

Novelty strengthens the potential for value creation. Five papers [P4, P7, P8,
P9, P11] looked into novel ways for value creation in IoT. In papers P4, P8, P11,
the authors have proposed business model framework tools which enable novel
capabilities for new IoT business models. The authors have also addressed inno-
vative solutions through this tool which expands the business market. In papers
P7 and P9, the authors focused on novel value creation techniques originating
from the interactions between the IoT business context players.

Business Model Canvas Elements. We classified the identified studies
according to the business model canvas elements suggested by Ostewalder and
Pigneur [19]. The classification was reused for the survey part of the study and is
presented in Table 1. Value proposition was discussed in 13 studies while revenue
streams were discussed in 11 studies. Customer segmentation was discussed in
9 studies while all remaining business model canvas were discussed in five stud-
ies each. This indicates that IoT offers new ways to create and deliver value to

IoT and Business Models 103

Table 1. Business model elements, adapted from [19]

Business model elements Description Papers

Customer Segmentation The value that is offered by the
company to segments of the
customers.

P1, P3, P6, P7, P10,
P11, P13, P15,
P20

Value proposition Complete view of the companys
products and services.

P1, P2, P3, P4, P6,
P7, P10, P11,
P12, P13, P15,
P20, P21

Channels Numerous ways of company to get
in touch with the customers

P3, P6, P10, P13,
P20

Customer Relationships Different types of relationship
between a company and
different segments of
customers.

P1, P3, P6, P10,
P13, P15, P20

Revenue streams The ways a company can make
money through revenue flows

P1, P3, P4, P6, P7,
P10, P13, P11,
P15, P20, P21

Key Resources Adjustment of activities and
resources.

P3, P6, P10, P13,
P20

Key Activities Necessary flow to execute the
companys business model

P3, P6, P10, P13,
P20

Key Partnerships Agreement with other companies
to offer and degrade the value

P3, P6, P10, P13,
P20

Cost Structure Describes the cost structure of
business models.

P3, P6, P10, P13,
P20

potential customers. What appears to be surprising is that channels and key
partnerships were mentioned only in five studies each. This may suggest that
companies who are entering IoT business can, to a large degree, reuse the exist-
ing partnership networks and channels to bring successful IoT products. At the
same time, our results confirm the strategic importance of defining the relevant
value elements and perspectives for successful product development [52].

5 Survey Results and Analysis

The survey received 61 responses, 5 respondents had no experience in IoT, so
they were removed and the remaining 56 responses were analyzed. The comple-
tion rate of the survey is 92 % as per Kitchenham et al. [53] this is sufficient. 10
respondents were software developers, 9 were project managers, 7 were product
managers, 7 were hardware suppliers, 9 worked with services, 4 were customer
developer, 4 worked with support and 3 with logistics, and three with other
roles. Next, questionnaire question 3 aimed to identify the department which

104 K. Wnuk and B.T. Murari

Table 2. The importance of business model canvas elements for IoT. Bold text indicates
the most commonly selected option.

Strongly disagree Disagree Neutral Agree Strongly agree

Customer Segmentation 0 0 0 24 32

Value proposition 0 0 6 17 33

Channels 0 0 13 43 0

Customer Relationship 0 0 3 34 19

Revenue Streams 0 0 10 19 27

Key Resources 0 0 9 28 19

Key Activities 0 0 15 24 18

Key Partnership 0 0 20 21 17

Cost Structure 0 0 22 22 12

their IoT project is targeted at. The following applications were mentioned by
our respondents: smart cities (12), smart home and buildings (10), automotive
(8), education (6), telecom (5), manufacturing (5), supply chain management
(4), security (3), logistics (2) and other(1).

The level of involvement in IoT project was measured in survey questions
1.1 and 2.55. 34 % of respondents how reported any involvement in IoT has
0-1 years of involvement, 28 % respondent has 1–3 years of involvement, 38 %
respondent has more than 3 years. Furthermore, 38 % of respondent had 0-1 years
of experience in IoT projects, 30 % had 1–3 years of experience and 32 % had
over three years. 44.6 % of the respondents worked for large scale organizations
(>100), 37.4 % worked for medium scale organizations and 18 % worked for small
scale organizations.

The level of importance of the business model canvas elements for IoT was
measured among the survey respondents (question 3.1), see Table 2. Value propo-
sition received mean rank of 5.78, followed by customer segmentation (mean rank
5.26), customer relationship (mean rank: 4.89) and revenue streams (mean rank:
4.94). This result confirms the literature review results about the importance
of value proposition for IoT, e.g. Gloze [10] emphasized that value proposition
is crucial in the business model canvas for IoT business models for e-health
care. The cost structures received the most neutral answers indicating that this
aspect does not change significantly in IoT. Moreover, key partnerships received
less importance according to our respondents indicating that companies that
enter the IoT business can put less emphasis on making strategic partnerships
and more dynamically make or change them based on changing demands.

Impact of IoT on Requirement Engineering. The respondents were asked
to grade the impact of IoT on requirements engineering, see Table 3. 54 % of
respondents who had worked with IoT identified that IoT has high impact
on requirement management, 52 % of respondents identified that IoT has high

5 http://serg.cs.lth.se/fileadmin/serg/IoTBusinessModelsSurveyQuestions.pdf.

http://serg.cs.lth.se/fileadmin/serg/IoTBusinessModelsSurveyQuestions.pdf

IoT and Business Models 105

Table 3. Heat map for Impact of IoT on requirement engineering

Low Medium High

Requirement Elicitation 9 26 21

Requirement Modeling & analysis 7 23 29

Requirement Specification 8 22 26

Requirement Validation 8 21 27

Requirement Management 6 19 31

Requirement Prioritization 10 16 30

Release planning 5 24 27

impact on requirement prioritization while 51 % of respondents indicates that
IoT impacts requirements modeling (we allowed mulitple answers to this ques-
tion). The Chi-square test results indicated no significant relation between
respondents’ experience and the impact of IoT on requirements engineering.
This indicates that companies who develop IoT products should focus on both
value propositions and requirements prioritization and keep track of product
requirements by utilizing robust requirements management methods.

6 Conclusions and Future Work

With rapid increase in the IoT technology, software organizations need to better
understand and utilize its potential in creating business opportunities. Business
model tools, e.g. business model canvas, help IoT organizations create value for
customers [22]. This paper focuses on exploring the current IoT business models
in the literature and industrial practice. We also focus on the impact of IoT on
business model canvas elements and requirements engineering.

Answering research question RQ1 frameworks and case studies dominated
among the identified papers. Moreover, only three identified papers received low
rigor and relevance scores, indicating that the studies were mostly rigorously
conducted and the results are relevant and creditable. Efficiency of the transac-
tions that the business creates was the most commonly studied aspect among
the identified papers. Lock-in mechanisms for IoT and novelty were also often
considered, followed by complementarities.

Answering research question RQ2 our investigations uncovered that value
proposition and revenue streams are the most commonly mentioned business
model canvas elements in the surveyed literature. The survey respondents
confirmed the importance of these two aspects, however customer segmentation
and relationships were also considered as important.

Answering research question RQ3 requirements management and prioriti-
zation are highly impacted by IoT. Interestingly, IoT has less impact on require-
ments elicitation and release planning according to the survey respondents.

The main limitation of this work is that it explored IoT only through the lens
of business model canvas and requirements engineering. We are aware the IoT

106 K. Wnuk and B.T. Murari

is much richer than its business model and impacts other software development
and product management activities. Thus, we plan to expand the understanding
provided in this paper in future research activities. We also plan to conduct case
studies at IoT companies to better understand how requirements engineering
activities impact business modeling and realization and if any patterns can be
identified. We would also like to explore possible improvements to requirements
engineering practice that could better support IoT.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

2. Steen, G., Robinson, J., Dwyer, R., Brown, G.: Intel’s APAC internet ofthings
day event report (2013). http://www.digitimes.com/supply chain window/story.
asp?datepublish=2013/12/04&pages=PR&seq=202. Accessed February 5, 2016

3. Bradley, J.: Cisco’s internet of everything (ioe) (2013). https://www.cisco.com/
web/about/business-insights/docs/ioe-value-index-top-10-insights.pdf. Accessed
2016

4. Bort, J.: Cisco’s john chambers (2013). http://www.businessinsider.com/
ciscos-john-chambers-has-found-a-new-14-trillion-market-2013-5?IR=T.
Accessed Feb 5, 2016

5. E. I. U. report, The internet of things business index (2013). http://www.
economistinsights.com/analysis/internet-things-business-index. Accessed Febru-
ary 5, 2016

6. Turber, S., vom Brocke, J., Gassmann, O., Fleisch, E.: Designing business mod-
els in the era of internet of things. In: Tremblay, M.C., VanderMeer, D., Rothen-
berger, M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 17–31.
Springer, Heidelberg (2014)

7. Liu, L., Jia, W.: Business model for drug supply chain based on the internet of
things. In: 2010 2nd IEEE InternationalConference on Network Infrastructure and
Digital Content, pp. 982–986 (2010)

8. Fan, P.-F., Zhou, G.-Z.: Analysis of the business model innovation of the technology
of internet of things in postal logistics. In: 2011 IEEE 18th International Conference
on Industrial Engineering and Engineering Management (IE&EM), pp. 532–536.
IEEE (2011)

9. Berkers, F., Roelands, M., Bomhof, F., Bachet, T., Van Rijn, M., Koers, W.: Con-
structing a multi-sided business model for a smart horizontal iot service platform.
In: 17th International Conference on Intelligence in Next Generation Networks,
ICIN 2013, October 2013, Venice, pp. 126–132 (2013)

10. Glova, J., Sabol, T., Vajda, V.: Business models for the internet of things environ-
ment. Procedia Econ. Finance 15, 1122–1129 (2014)

11. Meyer, S., Ruppen, A., Magerkurth, C.: Internet of things-aware process modeling:
integrating IoT devices as business process resources. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 84–98. Springer, Heidelberg
(2013)

12. Bi, Z., Da Xu, L., Wang, C.: Internet of things for enterprise systems of modern
manufacturing. IEEE Trans. Ind. Inf. 10(2), 1537–1546 (2014)

13. Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of
things. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) Buchmann Festschrift. LNCS,
vol. 6462, pp. 242–259. Springer, Heidelberg (2010)

http://www.digitimes.com/supply_chain_window/story.asp?datepublish=2013/12/04&pages=PR&seq=202
http://www.digitimes.com/supply_chain_window/story.asp?datepublish=2013/12/04&pages=PR&seq=202
https://www.cisco.com/web/about/business-insights/docs/ioe-value-index-top-10-insights.pdf
https://www.cisco.com/web/about/business-insights/docs/ioe-value-index-top-10-insights.pdf
http://www.businessinsider.com/ciscos-john-chambers-has-found-a-new-14-trillion-market-2013-5?IR=T
http://www.businessinsider.com/ciscos-john-chambers-has-found-a-new-14-trillion-market-2013-5?IR=T
http://www.economistinsights.com/analysis/internet-things-business-index
http://www.economistinsights.com/analysis/internet-things-business-index

IoT and Business Models 107

14. Cisco: Cisco’s connections counter: The internet of everything in motion (2013).
http://newsroom.cisco.com/feature-content?articleId=1208342. Accessed Feb 5,
2016

15. G. A. 2015: Gartner’s 2015 Hype Cycle for emerging technologies identifiesthe com-
puting innovations that organizations should monitor (2015). http://www.gartner.
com/newsroom/id/3114217. Accessed Feb. 2016

16. Zott, C., Amit, R., Massa, L.: The business model: recent developments and future
research. J. Manag. 37(4), 1019–1042 (2011)

17. Teece, D.J.: Business models, business strategy and innovation. Long Range Plann.
43(2), 172–194 (2010)

18. Osterwalder, A.: The business model ontology: A proposition in a design science
approach (2004)

19. Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying business models: Origins,
present, and future of the concept. Commun. Assoc. Inf. Syst. 16(1), 1 (2005)

20. Gassmann, O., Frankenberger, K., Csik, M.: Revolutionizing the business model.
In: Gassmann, O., Schweitzer, F. (eds.) Management of the Fuzzy Front End of
Innovation, pp. 89–97. Springer, New York (2014)

21. Shi, X.: A research on internet-of-things-based business model of china mobile. In:
International Conference on Logistics Engineering, Management and Computer
Science (LEMCS 2014). Atlantis Press (2014)

22. Bucherer, E., Uckelmann, D.: Business models for the internet of things. In: Uckel-
mann, D., Harrison, M., Michahelles, F. (eds.) Architecting the Internet of Things,
pp. 253–277. Springer, Heidelberg (2011)

23. He, M., Ren, C., Wang, Q., Shao, B., Dong, J.: The internet of things as an
enabler to supply chain innovation. In: 2010 IEEE 7th International Conference on
e-Business Engineering (ICEBE), pp. 326–331. IEEE (2010)

24. Leminen, S., Westerlund, M., Rajahonka, M., Siuruainen, R.: Towards IOT ecosys-
tems and business models. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.)
NEW2AN/ruSMART 2012. LNCS, vol. 7469, pp. 15–26. Springer, Heidelberg
(2012)

25. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, p. 38. ACM (2014)

26. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman,
S.: Systematic literature reviews in software engineering-a systematic literature
review. Inf. Soft. Technol. 51(1), 7–15 (2009)

27. Charles, K.I.K., Knisely, W.: Engineering communication (2015). http://www.
wadsworthmedia.com/marketing/sample chapters/2013/9781133114703 ch02.pdf.
Accessed Feb. 2016

28. Dijkman, R., Sprenkels, B., Peeters, T., Janssen, A.: Business models for the inter-
net of things. Int. J. Inf. Manag. 35(6), 672–678 (2015)

29. Alvarez, O., Ghanbari, A., Markendahl, J.: Smart energy: Competitive landscape
and collaborative business models. In: 2015 18th International Conference on Intel-
ligence in Next Generation Networks (ICIN), pp. 114–120. IEEE (2015)

30. Westerlund, M., Leminen, S., Rajahonka, M.: Designing business models for the
internet of things. Techn. Innov. Manag. Rev. 4(7), 5–14 (2014)

31. Keskin, T., Kennedy, D.: Strategies in smart service systems enabled multi-sided
markets: Business models for the internet of things. In: 48th Hawaii International
Conference on System Sciences, pp. 1443–1452. IEEE (2015)

32. Haller, S., Karnouskos, S., Schroth, C.: The Internet of Things in an Enterprise
Context. Springer, New York (2009)

http://newsroom.cisco.com/feature-content?articleId=1208342
http://www.gartner.com/newsroom/id/3114217
http://www.gartner.com/newsroom/id/3114217
http://www.wadsworthmedia.com/marketing/sample_chapters/2013/9781133114703_ch02.pdf
http://www.wadsworthmedia.com/marketing/sample_chapters/2013/9781133114703_ch02.pdf

108 K. Wnuk and B.T. Murari

33. Mejtoft, T.: Internet of things and co-creation of value. In: Internet of Things
(iThings/CPSCom), 2011 International Conference on and 4th International Con-
ference on Cyber, Physical and Social Computing, pp. 672–677. IEEE (2011)

34. Mazhelis, O., Luoma, E., Warma, H.: Defining an internet-of-things ecosystem.
In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2012.
LNCS, vol. 7469, pp. 1–14. Springer, Heidelberg (2012)

35. Chan, H.C.: Internet of things business models. J. Serv. Sci. Manag. 8(04), 552
(2015)

36. Blythe, C.: Business models for value generation in the internet of things. Data-and
Value-Driven Software Engineering with Deep Customer Insight, p. 8

37. Sun, Y., Yan, H., Lu, C., Bie, R., Thomas, P.: A holistic approach to visualizing
business models for the internet of things. Commun. Mobile Comput. 1(1), 1–7
(2012)

38. Wagenaar, J.: The impact of the internet of things on revenue in supply chains.
In: 17th Twente Student Conference on IT, Netherlands (2012)

39. Cruzes, D.S., Dyb̊a, T.: Research synthesis in software engineering: A tertiary
study. Inf. Soft. Technol. 53(5), 440–455 (2011)

40. Spitzlinger, R.: Mixed method research-qualitative comparative analysis (2006)
41. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, New York

(2014)
42. Rea, L.M., Parker, R.A.: Designing and Conducting Survey Research: A Compre-

hensive Guide. Wiley, New York (2014)
43. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-

imentation in Software Engineering. Springer Science & Business Media, New York
(2012)

44. Siegmund, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring and
modeling programming experience. Emp. Soft. Eng. 19(5), 1299–1334 (2013)

45. Ivarsson, M., Gorschek, T.: A method for evaluating rigor and industrial relevance
of technology evaluations. Emp. Softw. Eng. 16(3), 365–395 (2011)

46. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Requir. Eng.
11(1), 102–107 (2006)

47. Ivarsson, M., Gorschek, T.: A method for evaluating rigor and industrial relevance
of technology evaluations. Emp. Soft. Eng. 16(3), 365–395 (2011)

48. Amit, R., Zott, C.: Value creation in e-business. INSEAD (2000)
49. Brandenburger, A.M., Stuart, H.W.: Value-based business strategy. J. Econ.

Manag. Strategy 5, 5–24 (1996)
50. Gulati, R., et al.: Network location and learning: The influence of network resources

and firm capabilities on alliance formation. Strateg. Manag. J. 20(5), 397–420
(1999)

51. Williamsson, O.: Markets and hierarchies, analysis and antitrust implications: A
study in the economics of internal organization (1975)

52. Khurum, M., Gorschek, T., Wilson, M.: The software value map an exhaustive
collection of value aspects for the development of software intensive products. J.
Softw. Evol. Process 25(7), 711–741 (2013)

53. Kitchenham, B., Pfleeger, S.L.: Principles of survey research: part 5: populations
and samples. ACM Soft. Eng. Notes 27(5), 17–20 (2002)

Leveraging Bitcoin Blockchain Technology
to Modernize Security Perfection Under

the Uniform Commercial Code

David S. Gerstl(B)

Department of Computer Systems, School of Business,
Farmingdale State College, The State University of New York,

2350 Broadhollow Road, Farmingdale, NY 11735, USA
GERSTLD@farmingdale.edu

Abstract. The states of the United States operate parallel registration
systems under the rules of the Uniform Commercial Code to provide
notice of existing security interests in collateral to lenders. The current
system is primarily a paper-based system more suited to the 19th than
the 21st century. While the states have implemented varying degrees
of computerization and modernization, dealing with fifty separate regis-
tration databases has made it difficult for banks and their attorneys to
automate their processes, leading to errors and loss. The system could
be modernized by storing the records for all 50 states in a single shared
database with external electronic access. In this paper, we propose an
implementation of a distributed, replicated database utilizing a variation
on the Bitcoin blockchain for data storage and validation.

Keywords: Uniform Commercial Code · Secured transactions · UCC
Filing · Bitcoin · Blockchain · Distributed databases · Government
records

1 Introduction

Commercial and industrial loans not tied to real estate are big business for US
banks, with outstanding balances of about US$1.8 trillion [1]. A key enabler of
the large indebtedness is the notion of a secured loan, a loan where after a
default the lenders have recourse to a specific set of assets, called collateral, in
preference to other creditors. In cases of bankruptcy, where the existing assets are
insufficient to cover all obligations, the effectiveness of agreements for preferential
treatment and for creation of tiers of creditors with respect to collateral are vital
to increasing loan availability by reducing risk and therefore reducing the expense
of commercial loans.

In the United States, the laws governing most classes of collateral are state
laws, not U.S. federal laws. A long standing effort to harmonize state laws on
commercial transactions has resulted in all states having broadly similar laws

c© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 109–123, 2016.
DOI: 10.1007/978-3-319-40515-5 8

110 D.S. Gerstl

for secured loans (those with collateral) based upon Article 9 of the Uni-
form Commercial Code (UCC, hereafter). The fundamental rule in priority of
security interests (interests in collateral by a lender) is that a borrower can
effectively designate an object as collateral by contract and be bound by that
designation. This designation, however, has limited effectiveness against com-
peting claims by third parties unless the lender takes steps to give others actual
or constructive notice of the status of collateral in accord with specific statuto-
rily defined steps, a process known as perfection. For most types of collateral,
registration of the security interest with the state serves this purpose. Other
potential lenders can then query the state and receive copies of the registration.

States maintain independent perfection databases. In many states the parties
and their attorneys interface with the state through paper or facsimile forms
and signatures, not electronic access. Without a unified system, the standard
procedure on the termination of the loan requires the attorney for the lender to
perform searches for security interests tied to the borrower’s legal name, filter
them manually by lender and deal, and then to draft forms to terminate the
relevant security interests. In a recent case in New York [2], in the process of a
loan payoff by General Motors, Chase Manhattan Bank released three security
interests, one of which was related to a different loan, not in payoff. The third
security interest, with a value of over $1.5 Billion, was released soon before the
bankruptcy of General Motors, leaving the lenders unsecured creditors with a
much lower priority and no special access to the collateral. While one would like
to claim that a number of safeguards failed in this case, in fact few safeguards
exist. The current system is almost entirely dependent on ad-hoc processes at
law firms and banks, and on multiple sets of eyes checking documents to ensure
that the registration of a security interest is filed in the correct state, with the
correct name of the borrower, is manually renewed at exactly the required time,
and that the proper liens are released upon loan payoff.

While unified electronic registration system would not solve all of these prob-
lems, it would make technological and process solutions to the problem much
easier, and likely lead to increased penetration of commercial and proprietary
software to manage loans and file electronically. There is already a standard for
electronic interface for collateral filings, but requirements that dictate different
filing locations and uneven implementation have meant that most banks and law
firms have felt reduced urgency to move their in-house systems to directly file.

The questions of distributed databases, distributed authority, and record
integrity have been well explored in the realm of cryptocurrencies. The current
darling of cryptocurrencies, the Bitcoin protocol, uses an innovated design called
the blockchain to record and protect the integrity of transaction information. The
blockchain is well suited to storing small amounts of public data in a tamper
resistant distributed database. In this paper we show how the blockchain algo-
rithm can be adapted to form the basis for a multi-state system that distributes
and duplicates collateral registration data.

Prior work connecting the UCC with Bitcoin has been almost entirely con-
cerned with the status of Bitcoin itself as either a currency or an asset when

Leveraging Bitcoin Blockchain Technology to Modernize Security Perfection 111

creating a security interest on Bitcoin [3]. The work presented here is more
akin to companies advocating using a new Blockchain as a data storage medium
[4], although much of the commercial activity in this area is utilizing the exist-
ing Bitcoin blockchain as an unwilling medium for storing hashes to prove data
existed at a point in time [5].

While UCC filings are made at various levels of government in the United
States, from the U.S. Federal Government down, for the purposes of clarity in
exposition, we use the term state to refer to any entity able to receive UCC
filings, including but not limited to the 50 states of the United States as well as
to other entities similarly situated with respect to property records. We refer to
the party that grants collateral as the debtor and the party with recourse to
the collateral as a lender or a secured party.

Section 2 discusses the Uniform Commercial Code, the legal framework that
defines the rights of a creditor to collateral. Section 3 discusses the Bitcoin
Blockchain algorithm. Section 4 describes a method of using some of the techni-
cal aspects of the Bitcoin Blockchain as the basis for a distributed database to
store Uniform Commercial Code records. Finally, Sect. 5 discusses the barriers
to implementation.

2 Secured Transactions and the UCC

In granting a loan, a financial institution looks at a number of factors that bear
on the ability and willingness of the borrower to repay the loan as well as well as
the damage should the loan not be repaid in full. One key tool to reduce the risk
to the bank is to use collateral, assets to which the holder of a loan can resort
should the debtor default on the associated loan obligation. A specific debtor may
have a number of secured and unsecured lenders. A particular piece of property
may be collateral for a number of obligations. The typical commercial credit
agreement contains a cross default provision that puts every loan containing
the provision in default when any loan to the borrower is in default [6]. The
result is that when a default occurs on one loan, often all loans to that borrower
go into default, and all lenders may start trying to claim the assets forming
collateral. The commercial loan world thus requires a mechanism to determine
the priority of competing claims on the collateralized assets of a debtor. Article
9 of the Uniform Commercial Code serves this purpose.

Article 9 is written to encourage lending by making it easier and cheaper to
create and enforce contractual arrangements involving collateral, but must bal-
ance the rights of a secured creditor against those of other secured and unsecured
creditors in the event of a default. The method the UCC uses to prioritize cred-
itors makes it easy to make an asset collateral (called attachment) but limits
the effect of attachment alone on third parties (those other than the specific
secured party and debtor) without an additional step called perfection. The
steps required to perfect a security interest vary somewhat with the nature of the
collateral, but a major goal is to provide actual or constructive notice to subse-
quent lenders, informing them that there may be an existing security interest on

112 D.S. Gerstl

this collateral (see e.g., note 7 of the official comments to UCC §9-301) [9]. The
effect of perfection is that, absent an explicit inter-creditor agreement, priority
on an item of collateral is in order of perfection.

Article 9 has a complex set of rules for deciding on the government entity with
which registration must be made. For most collateral, the place of business of
the debtor governs. The place of business, defined in UCC §9-307, is not always
clear. In fact the official comments to the UCC advocate perfection in multi-
ple places when the secured party is unclear as to where the filing should take
place (see, e.g., note 2 of the official comments to UCC §9-307 [9]). The result
may be a significant number of unnecessary filings as well as follow-on legal
work to maintain and terminate the filings. In about three quarters of states [7],
notice is given by filing a standardized UCC Financing Statement form (UCC1
hereafter) either directly with the state or with an independent service provider
authorized by that state. The form itself requires the debtors legal name, and
a textual description of the collateral [8]. Subsequent potential lenders (secured
and unsecured) can then file an information request form (UCC11) and the
state will return UCC1s as well as any amendments, changes, or continuations
(renewals) (UCC3 form) where the debtor name matches exactly. The regis-
tration of a security interest will be ineffective if a search by a potential lender
with the correct name of the debtor would not find the UCC as filed, putting
the onus on the lender to get it exactly correct in the registration. Many states
also offer additional services returning unofficial results that use non-standard
enhanced search logic to return variants on the debtor name. allowing for a UCC1
to slightly vary from the correct name and still be correct.

3 The Bitcoin Protocol and the Blockchain

As internet commerce has become ubiquitous, the inadequacies of credit cards
and electronic bank transfers for some transactions has become evident. Credit
cards are widely accepted on the internet, but expose the buyer’s identity (much
to the chagrin of recent users of the Ashley Madison dating site) and have high
transaction fees that impact minimum practical transaction size. Bank transfers
have lower transaction fees, but are just as identifying. The identification associ-
ated with these payment methods is not an unintended side effect. Bank transfers
and credit cards are reversible, so identification gives the vendor recourse should
the buyer try to reverse the transactions after goods are delivered. In face-to-face
transactions, cash provides a non-reversible anonymous alternative. Electronic
cash, and Bitcoin [9] in particular are efforts to create an electronic currency
that has the advantages of cash and coins, the ability to be spent with virtual
anonymity, but with protections for the seller to ensure that they get paid by
making the transactions irreversible.

3.1 The Problem of Double Spending

The name Bitcoin is itself somewhat of a misnomer. An important feature of
coins [and cash] is that they are hard to duplicate well, and therefore once

Leveraging Bitcoin Blockchain Technology to Modernize Security Perfection 113

a party spends them the buyer cannot simply spend another copy of the same
coin. With electronic currency, the bits are easily duplicated, so a pure electronic
coin is subject to counterfeiting. One solution to the double spending problem
is to create a ledger, in which every grant of money and transaction is recorded.
The problem is that a ledger usually implies a bookkeeper, and thus requires a
trusted bookkeeping party and a loss of anonymity.

The Bitcoin protocol retains anonymity without trust by introducing a dis-
tributed ledger called the blockchain and a peer-to-peer network of untrusted
computers, called nodes, to administer it. The distributed ledger is designed in
such a way that tampering with records in the ledger is self evident unless the
tampering party is willing to allocate significant computational resources. The
network of nodes, as a group, decides on the canonical version of the blockchain
by ‘voting with their feet’, choosing to accept or reject blocks added to the
blockchain, and building upon the blocks they accept. The protocol has been
designed so that the verification of other’s work is relatively easy and the incen-
tives are for parties to verify each work. Thus even untrusted nodes can form
the network as long as most nodes are not colluding as a single group.

3.2 The Blockchain and Proof of Work

We presume that the reader is familiar with public key encryption [10], authen-
tication and digital signatures [11], and with one-way hash functions [12].

A typical bitcoin transaction records the transfer of some [fractional or whole]
number of bitcoin from one party to another. For example if a party B (buyer) is
shopping with S (seller) and B transfers bitcoin to S, the transaction is recorded
as shown in the right side of Fig. 1. The ability of B to transfer the bitcoin is
validated in three ways. First, examining the prior history of valid transactions,
a node should find the record encoding that the coin was transferred to B1 (the
left side of Fig. 1). Second, the node can verify that B has not spent that bitcoin
in the interim using the history (blockchain). Finally, in the original transaction
that granted B the coin, B’s public key was recorded as the recipient. As part
of the transaction process for this sale, B takes the prior block and takes S’s
public key, hashes both and signs the hash. A node checking the transaction can
validate B’s signature (on the right side of Fig. 1) using the public key recorded
in the transfer of the coin to B (on the left side).

While B could use a well known public/private key combination, there is
actually no need for this, just that a matching pair of keys is used to acquire
and to transfer the bitcoin. Therefore, a certification authority is unnecessary,
and B is free to generate a new key combination every time it acquires new
bitcoin, frustrating efforts to connect different transactions and get a picture of
B’s activity using its public key.

When a transaction is completed, the previous owner releases the transaction
to the network. Nodes receive these transactions and construct blocks, which

1 To simplify this explanation, we omit the cases where only a fraction of a Bitcoin or
only part of a grant of Bitcoin is spent. We briefly discuss coin creation below.

114 D.S. Gerstl

Fig. 1. Signing a bitcoin transfer (adapted from [9])

are packaged groups of possibly unrelated transactions. A node’s goal is to cre-
ate a block that is accepted by the peer-to-peer network as each constructed
block is currently associated with a payment that accrues to the creator (min-
ing). Additional fees may accrue to the block creator from transactions paying
a transaction fee, incentivizing nodes to include that transaction in their blocks.

The Bitcoin network is calibrated to produce an average of one block every
10 min. In addition to housekeeping fields and the transactions, the block con-
tains a filler field called a nonce. The content of the nonce is not itself mean-
ingful, but the nonce is used as part of the mechanism to pace the production
of new blocks and to require CPU cycles to create a block. In order to maintain
the 10 min pace, the network has a difficulty value that represents a threshold
above which it will not accept a block’s hash. The difficulty value is adjusted to
maintain a 10 min pace.

Since the hash is one-way, the mining node cannot analytically determine the
value for the nonce that will yield a hash below the threshold. Thus all the nodes,
many with a slightly different set or order of transactions, will be trying various
values for the nonce that result in a hash to an acceptable value. The average
duration of the process can be statistically determined, but the process itself
is entirely by chance, and is akin to a lottery game where the odds of winning
are in proportion to the number of tickets bought. Here the odds of successfully
finding an acceptable value for the nonce are roughly proportional to the fraction
of the network’s computational resources working on behalf of this node. Once
a node finds a valid nonce, it publishes the block. Since the average frequency
is set, this scheme is zero-sum. Nodes have an incentive to validate blocks that
claim to be correct. Once other nodes validate the block, they then start building
new blocks on it, expressing their ‘vote’ that the block should be added to the
blockchain. In the event two valid blocks are found simultaneously, the nodes
will accept the block representing the most computational difficulty. In the case
there is a tie, the network will fork into partitions working on one chain or the

Leveraging Bitcoin Blockchain Technology to Modernize Security Perfection 115

other, but the chains will reunite eventually when one chain grows longer. In
this manner, the entire network eventually agrees on a specific order and list of
valid transactions, a form of eventual consistency.

This scheme makes altering old blocks computationally difficult or impossi-
ble. If B wishes to transfer bitcoins to D that it already paid to S some time ago,
B must manage to remove the payment to S from the block that contained it and
then create a subsequent sequence of blocks longer than the current blockchain
in order to be accepted by the network. As finding each nonce takes time, and
as the remainder of the network is also moving forward, it becomes increas-
ingly unlikely that B can find the correct nonce values and overtake the current
blockchain unless B controls a significant amount of processing power relative to
the remainder of the network [9].

4 Using the Blockchain for Security Registration

The current Article 9 is an imperfect system that has had trouble with incorrect
debtor names [13], with clerical errors [14], with mistaken releases of significant
size collateral, and with unauthorized filings [2]. Additionally, the current sys-
tem relies on a single state to hold the canonical version of all security interest
records recorded in that state. While the records themselves are generally pub-
lic, implying that a breach and publication is not a major problem, a hacker
unhappy with the banking system could do significant damage by altering or
destroying records and creating temporary uncertainty as to collateral. Given
the frequency with which businesses need loans for working capital, this may
prove fatal to businesses unable to refinance promptly.

As early as 1996 the authors of the UCC addressed the possibility of elec-
tronic filing, noting that nothing in the UCC prevents states from adopting this
technology [15]. An XML specification for an Article 9 filing interface has existed
since at least 2001, and was most recently revised in 2013 [16]. Yet it was only in
2012 that Colorado became the first state to require electronic filing, followed by
New Jersey (2015), Delaware (2015), and North Dakota (2016) [17]. Delaware is
an instructive case, as it’s a major destination for filings due to the favorable tax,
legal, and business climate that has seen 65 % of large U.S. public corporations
incorporate in the state [18]. Despite transitioning to electronic filing, the state
still has a list of authorized service companies to perform the filing on behalf of
customers and is explicit that they continue to accept paper forms [19].

Properly implemented electronic filings fixes some but not all issues with the
current UCC. The mistaken release of collateral relating to different loans by the
same parties, as in [2], can be eliminated with software that clearly relates loans
to filing numbers for UCC1s and files the UCC3 terminations, rather than relying
on a manual process. A unified database would allow electronic filing, even for
states that do not maintain that capability. It would also allow the filing in only
one jurisdiction in cases where the secured party is not clear about the correct
venue. A single national system would have security and financial implications. If
the states could distribute the database, duplicate it in each state, and make the

116 D.S. Gerstl

database tamper evident, the problem of database hacking is reduced. Instead
of relying on a system that merely converts the current scheme into a unified
electronic doppelganger, we suggest an overhaul of the way that notifications
are processed and stored based upon the blockchain, with some differences in
distributed consensus.

4.1 Replacing Names with Public Keys

The current identification system in the UCC is based upon the legal corporate
name of the debtor. The standard UCC1 form instructions admonish the user
to enter debtor’s “exact full legal name” (emphasis in original) [8], recognizing
that instances of variants and trade names have caused ineffective perfection in
the past. Unfortunately, even with this warning, names are imperfect identifiers.
Filers continue to have problems using the full legal name and this continues
to cause ineffective perfection (e.g., [13]). Names are also not unique, especially
with smaller companies that might not hold a U.S. federal trademark.

If the blockchain is to be used, every company will require at least one pub-
lic/private key combination. In the Bitcoin protocol the public keys may be
anonymous. In most uses other than Bitcoin, however, the public key is pub-
lished with identity information and can be used to verify both the integrity of
messages as well as the identity of the counterparty using digital signatures [11].
Anonymity of both parties is a valued commodity in cash transactions. In the
case of a security interest, however, anonymity of the debtor makes no sense.
For notice to function as intended, subsequent lenders must be able to search on
the debtor and find all filed UCC1s. Thus the debtor in a UCC filing must be
identifiable. A Bitcoin adapted protocol already requires a public key which can
be used for identification. The risk of accidentally changing a key and having it
match another debtor should be less than that of having a key collision, which
is known to be vanishingly small [20].

While anonymity of the borrower makes no sense in recording secured trans-
actions, anonymity of the secured parties might be desirable for some lenders.
A secured party could theoretically generate a public/private key pair for each
loan or item of collateral and remain anonymous, at least to the government
and third parties. This turns the loan into something like a bearer instrument,
where anyone who holds the private key can release the collateral, prove to a
court that they own the loan and should collect payment, or be entitled to the
collateral. This also raises the real possibility that a lender could lose the private
key associated with a loan and thus the borrower would need to wait 5 years for
it to expire (UCC §9-515). We leave to law reviews and politicians the public
policy implications of lenders that are anonymous to even the government.

4.2 Building Records and Blocks

A Bitcoin analogue could be used to encode the UCC records with some
minor differences driven by known identity of the nodes in the UCC context.
The UCC system has three fundamental types of transactions: establishing a

Leveraging Bitcoin Blockchain Technology to Modernize Security Perfection 117

security interest (UCC1), modifying, continuing (renewing), or deleting a secu-
rity interest (UCC3) and querying a security interest (UCC11). Only the first
two produce transaction records within the database. UCC transaction records
would be encapsulated into blocks which would be attached to a blockchain.

While the UCC is explicitly exempted from the coverage by the two US
Federal laws covering electronic signatures, the UCC has provisions for allowing
for electronic signatures to evidence consent to the filing of a UCC1 [21]. Under
the current UCC (§9-509) permission of the debtor is necessary to file a UCC1,
but the permission may be in another document, not filed with the government.
In the event of a possibly unauthorized UCC filing, the question of whether the
filing is authorized would be dealt with in litigation. The current XML standard
for Article 9 filings has a Document element, for filings, that contains a field
FileSignature and a Names element, for filers or debtors, that contains a field
Mark. Both are apparently placeholders to enable digital signatures, but are
marked as “not used” and “not currently . . . implemented” [16]. Implementing
these would allow the current XML standard to be used with digitally signed
UCC records.

For the UCC blockchain, provisions for digital signatures would be made,
but per UCC §9-509 the record cannot be required to be signed by the debtor.
Another potential lender, finding the absence of a borrower’s signature on a filing,
would have inquiry notice and would be presumed to have sufficient suspicions
that they should inquire about the situation. If a debtor’s signature is evident,
the nodes creating blocks will validate the signature against the debtor’s public
key, which can be done without reference to an outside directory as the public
key is also being used to identify the debtor in the record. The UCC1 must be
signed by the secured party, and should contain a one-time or permanent public
key. For a UCC3 modifying, renewing or terminating the security interest, the
UCC3 should be signed using the corresponding private key so authorization
for the UCC3 can be checked against the original UCC1. Thus, presumably, the
field FileSignature would be required in a version of the XML specification
that is modified to interface with any new systems using digital signatures on
filings (as we have here) while the Mark element would remain optional.

A fundamental characteristic of the Bitcoin protocol is that the past is sacro-
sanct. Once a transaction has been recorded in a block and the block added to the
blockchain, the only way to modify the transaction is to supersede the block and
all subsequent blocks in the blockchain with a longer chain, a rare occurrence.
For legal records, such as UCC records, this is exactly the behavior expected. Old
records are never deleted, just amended or superseded. To handle the inevitable
litigation, courts would require their own well known public/private key combi-
nation with the power to remove or modify security interests on court order, and
to record a report of a lost or stolen private key to prevent subsequent signatures
with the same key [11].

There are two search modes for UCC records on the standard UCC11 form
[8]. A UCC search is either requesting a specific record by number or [more
frequently] requesting information relating to a specific debtor. The mixed blocks

118 D.S. Gerstl

of UCC transaction records are essentially a log file. Each security interest is a
series of records that will be linked directly in a list from the first filing (UCC1)
to the final filing, just as an database transaction log would contain undo and
redo log entries linked by transaction. Since records cannot be modified once
the nonce for their block has been computed, the chain must start at the most
recent record and point backwards, forming a linked list by referencing the date
and unique ID of the preceding filing record relating to that security interest. An
index structure, for example using a B+ trees, can be used to find records. Since
the chain of pointers to related records moves backwards, the index need only
point to the latest record for each security interest chain. A similar chain and
structure can be used to index debtors, pointing only to the latest record relating
to that debtor, with each record pointing to the prior debtor record, whether
or not that record is in reference to the same security interest. A representative
tail end of a UCC blockchain with associated indices is illustrated in Fig. 2.
Additional functionality could be added to link and search by secured party in a
straightforward manner, although the current UCC11 form lacks this capability.

4.3 Assembling a UCC Blockchain

After blocks are created they can be added to the blockchain. While it would be
possible for each state to have its own blockchain, this would eliminate many of
the benefits of a distributed database and each state would only have incentive
to verify its own transactions. A single national blockchain has a few major
advantages. Significant redundancy is introduced by having multiple copies of
every UCC record. In the event of a system failure or hack in one state, a live
backup exists and UCC processing can continue. Additionally, if the incentives
are well designed, multiple states will examine each UCC filing while trying to
create blocks and while verifying other’s blocks, ensuring the prompt discovery
of invalid filings.

The advantages of a distributed blockchain also accrue for customers. A
lender searching for UCC records need no longer access multiple states or guess
as to the location of the records. Every state will have a duplicate of the entire
blockchain and searches can be made from any state. Every state should theo-
retically have the ability to accept UCC1 registrations and perhaps UCC3 mod-
ifications/terminations, ameliorating some filing location ambiguities.

Differences in Distributed Consensus. There are a few aspects of the UCC
blockchain that will be very different than those in Bitcoin. The Bitcoin network,
composed of anonymous and untrusted nodes, uses CPU cycles as a proxy for
investment. Voting on the correct blockchain is on this basis, under the assump-
tion that most of the investment will be among nodes that are, if not honest,
at least are not colluding, and so are unlikely to reach a distributed consensus
on acceptable blocks that does not satisfy the protocol. The nonce serves dual
purposes, as proof of [computational] work and to randomize the distribution of
rewards in rough proportion to that computational work. With the UCC, the

Leveraging Bitcoin Blockchain Technology to Modernize Security Perfection 119

Fig. 2. A representative UCC Blockchain Tail Fragment

States are known [and somewhat trusted] parties. The nonce is not needed as
proof of work, as voting on the correct blockchains will have to be on the basis of
one state, one vote to avoid disenfranchising almost all states from the oligopoly
of Delaware, New York, California, D.C., and few other jurisdictions.

Without compensation for creating a block, no state has an incentive to
do the work to create blocks. With a nonce providing some randomness, each
state has an opportunity to create an accepted block. States cannot create blocks
containing only their own transactions, as a network so dominated by major pro-
ducers of UCC records will be quickly abandoned by the smaller states unable to
record their filings, risking the entire enterprise. Rather states will form consortia
which share UCC transactions with each other and place each other’s transac-
tions in their own blocks. A maximum market share for each consortium can be
assured by restricting each consortium to only contain one member of the afore-
mentioned oligopoly and to limit the total percentage of UCC filings accounted
for by any consortium. The filing state will offer revenue sharing on the record to
the state who completes the block, much as transaction fees operate in Bitcoin.
Thus even those states outside a consortium might choose to include another
state’s filings to reap the financial benefits. Other jurisdictions with very small
filing volume may choose to forgo their own recording system, and rely on peer
states. Since the effectiveness of a UCC filing is dependent on recognition in the
law of the state where the filing would take place under the current system, and
since a state could restrict the effectiveness depending on where the UCC1 is
filed, revenue sharing with that state is also likely to emerge.

120 D.S. Gerstl

In contrast to registrations, states have no pricing power on lookups. Unless
one state has a monopoly on a particular technical or process innovation that
makes their lookup service far better than others, states will compete on lookup
price and a race to the bottom will ensue. Instead, lookups should be free or
almost free, and fees should be shifted to filings. Enhanced lookup services, for
example monitoring of other security interests to your borrowers, can be offered
by private service providers

The Bitcoin algorithm is designed to produce a block every 10 min. Finding
a valid nonce, however, is a random process and the actual distribution of solu-
tion times likely follows a Poisson distribution with significant variability. While
response times for UCC filings are on the order of a day, a target of a block
per day would be exceedingly dangerous as the variability will result in periods
of multiple days without a block. The actual target rate, and the periods when
blocks are produced is likely to require at least high granularity data on filing
frequency. Thus far New York and Delaware have been unable or unwilling to
provide the author with even aggregate statistics, and thus we omit an analytical
determination of even an initial rate. Likely an initial target of 10 min per block
would be reasonable.

In Bitcoin, the system is optimized for eventual consistency, allowing for a
temporary fork (partition) of the network until eventual agreement is reached on
the blockchain. It’s rare that the partition lasts any significant period of time.
The single exception, when in 2013 the blockchain was split for 24 blocks before
returning to consistency was the result of a software error [22]. In a system
using proof of work such as Bitcoin, the appearance of a longer blockchain is
evidence of computational expenditure greater than that incurred building the
older blockchain. In Bitcoin the magnitude of computation required for this is
suggestive that the shorter blockchain only existed on a small partition of the
network. With the UCC, the parties are known. A partition of the network would
be evident relatively quickly. Without the possibility of a sustained partition, the
introduction of a new, longer blockchain is suggestive of nothing more than a
state’s node being hacked and a new, false, blockchain introduced. Given the
aggregate CPU cycles expected to be devoted to the UCC by the states is likely
to be a fraction of that devoted to Bitcoin, blockchain decisions should become
more or less permanent after a fixed period, perhaps 24 h or even less.

Truncating the UCC Blockchain. UCC §9-515 sets the maximum dura-
tion of most UCC1 financing statements at 5 years and the longest duration of
effectiveness at 30 years. After this time, a financing statement without a UCC3
continuation expires and will not be reported in a UCC11 search and cannot be
continued by a later UCC3. Thus the blockchain used in active searches can be
truncated after 30 years of records, but only if the integrity of the blockchain
can be protected by ensuring that the hashes on old transactions cannot be
changed. To facilitate the discarding of old records while ensuring the integrity
of the blockchain, the Bitcoin algorithm uses a Merkle tree [11]. The same method
should work here. The actual records will need to be stored forever as government
records, but need not be available on a live system.

Leveraging Bitcoin Blockchain Technology to Modernize Security Perfection 121

Creating the Links Within a Block. Pseudo code to link a new UCC3 record
(termination, modification or continuance) record rcd just prior to adding it to
a block blk under construction to create the structure in Fig. 2 is as follows:

ucc3Link(blk: UCCBlock, rcd: UCC3Record) {
// If this borrower already appears in this block
rcd.lastBorrower = blk.findLast(rcd.borrower)
// If that didn’t work, then check existing blockchain
if nil == rcd.lastBorrower

rcd.lastBorrower = borrowerIdx.lookup(rcd.borrower)
// Same process for the chain of this security interest
rcd.lastInterest = blk.findLast(rcd.interest)
if nil == rcd.lastInterest

rcd.lastInterest = interestIdx.lookup(rcd.interest)
}

Linking UCC1 records is a straightforward extension with the caveat that the
borrower might not exist and the security interest should not exist in the index.

Adjusting the Indices. If the block is successfully added to the blockchain,
the implication is that every node accepting this new block has an identical
blockchain, and thus the links created above will be correct. After a block has
been added to the blockchain, the local index itself can be adjusted for each
entry in the new block:

adjustIndices(blk: UCCBlock) {
foreach rcd in blk { // starts at beginning

// Set index for rcd.borrower to rcd
borrowerIdx.update(rcd, rcd.borrower)
interestIdx.update(rcd, rcd.interest)

}
}

Finally, should it be necessary to remove a block because it was superseded by
a longer/more difficult block, the block is read in reverse, using the links in the
block to point the index to the prior value for the index (essentially undo log
processing:

removeAdjustedIndices(blk: UCCBlock) {
foreach_reverse rcd in blk {

// This starts at the end in case borrower appears >1x
// in block. Set index for rcd.borrower to prior value
borrowerIdx.update(rcd.lastBorrower, rcd.borrower)
interestIdx.update(rcd.lastInterest, rcd.interest)

}
}

122 D.S. Gerstl

5 Barriers to Implementation

As was demonstrated here, the technological barriers to implementation of a
national distributed UCC security interest registration system are surmountable.
The main barriers to implementation will be the entrenched interests, of which
there are three, states, lawyers, and service companies.

States have pricing power over registrations since it is state law that gives
them effectiveness, so the states are unlikely to object as long as they continue
to reap filing fees roughly equivalent to their current revenues. While the current
system encourages filing in multiple locations, the use of a standardized identi-
fier based on the public key should allow a directory of corporations and their
principal places of business for the purpose of determining the location of legal
effectiveness and revenue sharing. Thus filing fees could be increased under the
assumption that filing need only occur once. The current inconsistencies in state
laws, including the single state giving 10 years of effectiveness to a UCC1 [23]
and the two states requiring non-public information in UCC filings [23] may be
a bigger barrier, as these are evidence of state legislatures picking and choosing
among the provisions of “uniform” laws. While both of these differences can be
dealt with, the possibility of future inconsistencies makes it difficult to commit
to a system that may cease to work if the inconsistencies grow. Some sort of a-
priori agreement would be required of the states before transitioning to a unified
system. In an era of the ascendancy of the philosophy of “states’ rights”, this
may remain a problem.

The attorneys that prepare UCC filing might be seen as opposing changes to
their cash cow. The authors think this unlikely. The major job of the attorneys
working on deals requiring UCC filings is not the filing of the rote paperwork,
but in committing the [often bespoke] agreements of the parties to writing. The
UCC filings themselves are often delegated to support staff (as is illustrated in
the court record in [2] which contains the disclosure that the original paperwork
error on the $1.5 billion release was that of a paralegal). Unifying the registration
databases will have little or no effect on the content of the filings, only the
processes and forms.

Finally, the service providers may be opposed to these changes because they
will adversely effect their revenue streams. While service providers may be able
to make up some of this revenue loss with search revenue, the authors assume
they will still be opposed to the change in the status quo. As the vast majority
of the stakeholders are attorneys and not service providers, this change should
be able to overcome their objections.

References

1. Federal Deposit Insurance Corporation (USA): Quarterly banking profile: Third
quarter 2015 (2015). https://www.fdic.gov/bank/analytical/quarterly/2015 vol9
4/FDIC 3Q2015 v9n4 QBP.pdf

2. United States Court of Appeals for the 2nd Circuit: In re motors liquidation co.
2015 U.S. App. Lexis 859

https://www.fdic.gov/bank/analytical/quarterly/2015_vol9_4/FDIC_3Q2015_v9n4_QBP.pdf
https://www.fdic.gov/bank/analytical/quarterly/2015_vol9_4/FDIC_3Q2015_v9n4_QBP.pdf

Leveraging Bitcoin Blockchain Technology to Modernize Security Perfection 123

3. Schroeder, J.L.: Bitcoin and the uniform commercial code. Available at SSRN
2649441 (2015)

4. Wilkinson, S., Boshevski, T., Brandoff, J., Buterin, V.: Storj: A peer-to-peer cloud
storage network (2014). http://storj.io/storj.pdf

5. Kirk, J.: Could the bitcoin network be used as an ultrasecure notary ser-
vice?, May 2013. http://www.computerworld.com/article/2498077/desktop-apps/
could-the-bitcoin-network-be-used-as-an-ultrasecure-notary-service-.html

6. Wight, R., Cooke, W., Gray, R.: The LSTA’s Complete Credit Agreement Guide.
McGraw Hill Professional, New York (2009)

7. Duncan, R.F., Lyons, W.H., Wilson, C.L.: The Law and Practice of Secured Trans-
actions: Working with Article 9. Law Journal Press, New York (2015)

8. International Association of Commercial Administrators: UCC Forms. https://
www.iaca.org/secured-transactions/forms/

9. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

11. Merkle, R.C.: Protocols for public key cryptosystems. In: Proceedings of the IEEE
Symposium on Security and Privacy, pp. 122–133. IEEE (1980)

12. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004)

13. US Bankruptcy Court, E.D. Virginia: In re tyringham holdings inc. (2006)
14. Minnesota Supreme Court: Borg Warner Accept. v. ITT Diversified Credit (1984)
15. Permanent Editorial Board for the Uniform Commercial Code: PEB Commentary

No. 15 ((electronic filing under Article 9) (1996)
16. Ose, T.M.: XML Technical Specifications For Uniform Commercial Code Revised

Article 9. Technical report, International Association of Commercial Administra-
tors, May 2013

17. National Corporate Research: North dakota to require electronic UCC filing:
Review of requirements for all e-filing only states, February 2016. http://info.
nationalcorp.com/blog

18. State of Delaware, Division of CorporationsD: Delaware Division of Corpo-
rations 2014 Annual Report (2015). https://corp.delaware.gov/Corporations
2014AnnualReport.pdf

19. State of Delaware: UCC Authorized Filers. http://corp.delaware.gov/uccauthfilers.
shtml

20. Lenstra, A., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.: Ron
was wrong, whit is right. Technical report, IACR (2012). https://eprint.iacr.org/
2012/064.pdf

21. Tank, M., Emley, S., Whitakey, R.D.: A brief guide to using electronic signatures
in security transactions. Practical Compliance and Risk Management for the Secu-
rities Industry, pp. 23–34, July-August 2013

22. Buterin, V.: Bitcoin network shaken by blockchain fork (2013). https://bitco
inmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork-1363144448

23. National Corporate Research: UCC article 9 filing and searching info. http://
www.nationalcorp.com/ncr/resources/UCC-Resources/UCC-Article-9-Filing-and-
Searching-Info

http://storj.io/storj.pdf
http://www.computerworld.com/article/2498077/desktop-apps/could-the-bitcoin-network-be-used-as-an-ultrasecure-notary-service-.html
http://www.computerworld.com/article/2498077/desktop-apps/could-the-bitcoin-network-be-used-as-an-ultrasecure-notary-service-.html
https://www.iaca.org/secured-transactions/forms/
https://www.iaca.org/secured-transactions/forms/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://info.nationalcorp.com/blog
http://info.nationalcorp.com/blog
https://corp.delaware.gov/Corporations_2014AnnualReport.pdf
https://corp.delaware.gov/Corporations_2014AnnualReport.pdf
http://corp.delaware.gov/uccauthfilers.shtml
http://corp.delaware.gov/uccauthfilers.shtml
https://eprint.iacr.org/2012/064.pdf
https://eprint.iacr.org/2012/064.pdf
https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork-1363144448
https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork-1363144448
http://www.nationalcorp.com/ncr/resources/UCC-Resources/UCC-Article-9-Filing-and-Searching-Info
http://www.nationalcorp.com/ncr/resources/UCC-Resources/UCC-Article-9-Filing-and-Searching-Info
http://www.nationalcorp.com/ncr/resources/UCC-Resources/UCC-Article-9-Filing-and-Searching-Info

To Network or not to Network? Analysis
of the Finnish Software Industry –

A Networking Approach

Katariina Yrjönkoski(&), Nina Helander, and Hannu Jaakkola

Tampere University of Technology, Tampere, Finland
katariina.yrjonkoski@tut.fi

Abstract. The purpose of this paper is to study the role of networking in the
development and present situation of Finnish software companies. Although the
target of interest of this study is Finland, the conclusions can also to some extent
be applied to other countries with mature software industries. In Finland there is
uniquely wide longitudinal material on the software business available; the
software industry survey is an annual study targeted for the branch, which has
already been repeated for 18 consecutive years. The study shows that net-
working has been a key trend in the industry and also a driver for internation-
alization, but as it has not been identified very well in networking literature
concerning the software industry, there is a clear need for further examination of
software industry networks.

Keywords: Networks � Software business

1 Introduction

This paper focuses on the development curve of the Finnish software business during
the last ten years (2005–2015). Finland is an interesting target for examination because
the development of the Finnish software industry represents an example of the
establishing and maturing of the industry into one of the world’s most high-quality
software countries. ICT has also long been one of the central elements of the national
strategy in Finland. Uniquely longitudinal research data is also available in Finland; the
software industry survey is an annual study targeting the branch, which has been
repeated for 18 consecutive years, starting from 1997. This paper aims to give an initial
understanding of the development of the Finnish software industry and the role and
state of networking within the industry, based on these annual Finnish Software
Industry Survey reports.

The role of the software industry has become critical in modern society, as software
plays a key role in many contemporary activities, services, and devices, and overall its
secondary impact on the remainder of the economy is disproportionate (Jansen et al.
2013; Popp 2011). It is argued that the software business differs from other business
sectors due to the following special characteristics: software differs from information as
an economic good as software is valued for what it does; substantial economies of scale
are much greater than in material goods, leading to the law of increasing returns;

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 124–134, 2016.
DOI: 10.1007/978-3-319-40515-5_9

development of software is expensive, but reproducing and distribution are cheap;
shorter technology cycles than in many other industries and partly due to this, the first
mover advantages are not always as clear, as there are schedule and bug challenges.
However, usually the trust in market leaders facilitates the buying decision and the
lock-in effects can be great for several reasons, like personal switching costs that
increase over time. (See e.g. Cusumano 2008; Messerschmitt and Szyperski 2005)
Earlier literature on the software business has also brought up the importance of
networking (including ecosystems, alliances, and business networks) in the industry
(Jansen et al. 2013). In particular, in order to sustain growth and to support interna-
tionalization, networking has been seen as a prerequisite for small and medium-sized
(SME) software companies (Ojala and Tyrväinen 2006).

In the present study, the aim is to take a closer look at the networking phenomenon,
as well as its role and importance in software industry development. We have chosen
the Finnish software industry as the context of this study, as the annual software
industry offers the possibility to follow the development curve of this interesting sector
and the networking phenomenon in the industry. For the purposes of this study, we
have chosen to analyze the results of the annual software industry survey systematically
for a ten-year time period, from 2005 to 2015. In this way the present study is able to
take an overall look at the development of the Finnish software industry, especially
from the networking perspective. The research questions of the present study are:

1) How has the Finnish software industry developed in the last ten years?
2) How does networking manifest itself in the Finnish software industry?

The objective is to identify networking indicators from the previous ten-year his-
tory of the Finnish software industry. Systematically collected longitudinal data (The
Finnish Software Industry Survey) is used as material. The study offers exceptional
data because its history is long and the collecting method repeated consistently in a
similar manner. The paper proceeds as follows: in the first phase, the longitudinal
research material based on annual software industry survey reports is explored (Sect. 2,
“Recent 10 Years in the Finnish Software Industry Development”). The second phase
consists of an examination of networking structures based on selected theoretical
frameworks (Sects. 3, “A networking framework” and 4, “Challenges and Opportu-
nities of Networking”). Finally, in the third part, the theoretical framework is applied to
the analysis material covering the development of the software industry (Sect. 5,
“Answers to Research Questions and Conclusions”).

2 Recent 10 Years in the Finnish Software Industry
Development

It is justified to concentrate on examining the time period of the last 10 years for
various reasons. Even though the software industry has existed since the 1980s in
Finland, the industry has taken shape during the last ten years and has become
established at international level. In the first half of the 2000s, the software business
was only starting to form and find its own role in the field of Finnish industry. By the
latter half of the 2010s, the Finnish software business has become a stable business and

To Network or not to Network? 125

has also been ranked high in global comparisons. The business is consolidating more
and more all the time, and growth forecasts have settled to a conservative level, while
still remaining positive. (Kuitunen et al. 2005; Rönkkö and Peltonen 2012; Peltonen
et al. 2013; Luoma and Rönkkö 2014).

It is significant that the definition and borders of the industry are somewhat
ambiguous in industry surveys and other literature. At the beginning of the present
century, particularly the product business was considered of interest and worthy of
research. With the development of the field, the need for software-related services has
also increased. The services have gradually become an independent sector, with a
turnover that already accounts for more than half of the total turnover of the industry.

The growth of the industry branch in Finland has followed the international growth
trend. In a European comparison, the growth rate of the Finnish software industry
represents the middle level. The growth of the branch in Finland has been about 47 %
(from 2,077 b€ to 3,053 b€) in the period of this examination, depending on the
industry definition. The estimate cited above includes both Finnish and foreign com-
panies operating in the Finnish software market. The annual growth rate has been
between 3 – 10 %, with the exception of 2009, when there was a decrease of about 9 %
in the business, due to the worldwide economic recession. The economic downturn
caused a downswing in the growth of the branch and in the profitability of the com-
panies – but nevertheless, the effect of the recession on the software field was smaller
than in many other industries. After the recession, growth has continued to be more
moderate, staying under 10 %. During the whole ten-year examination period, growth
has occurred mainly in small and medium-sized companies. (Kuitunen et al. 2005;
Lassila et al. 2006; Rönkkö et al. 2007; 2008; 2009, 2010; 2011; Rönkkö and Peltonen
2012; Peltonen et al. 2013; Luoma and Rönkkö 2014; Luoma and Kinnunen 2015). In
2013, the growth curve turned upwards a little more with 11.6 % and as much as
20.4 % growth in 2014 (Luoma and Rönkkö 2014; Luoma and Kinnunen 2015).

Attention must be paid to the fact that along with the development of the industry,
its definition in the literature has also varied. In the middle of the 2000s, the software
business was mainly studied as a product business; a traditional way to sell packaged
software products and the services related to them, like installation, maintenance, and
customer training. Nowadays, software is an organic part of a growing group of
products. This makes the definition of the borders of the industry challenging. The
Internet has changed the environment of the field, affecting all the central functions
hugely. As it has become more common, it has offered a base for quite new products
and services, like SaaS, ASP, and later, cloud services. It has also partly replaced the
traditional sales and distribution channels. The biggest change in the share of revenue
has taken place in packaged software license sales; in 2005 license sales provided 49 %
of total revenue, but had fallen to 15 % by 2008. ASP and SaaS were first identified in
the Software Industry Survey in 2009, and then accounted for about 10 % of the total
revenue. However, the growth of SaaS has not been quite as expected and revenues
have accumulated more slowly than first thought. (Kuitunen et al. 2005; Lassila et al.
2006; Rönkkö et al. 2007; 2008; 2009, 2010; 2011; Rönkkö and Peltonen 2012;
Peltonen et al. 2013; Luoma and Rönkkö 2014; Luoma and Kinnunen 2015).

The majority of Finnish software companies are small – there are even companies
that employ only a few persons. In 2005, 40 % of the companies achieved a turnover of

126 K. Yrjönkoski et al.

less than one million euros. Only in 28 % of the companies did turn over exceed three
million euros. The number of small firms is increasing; for example, in 2011 over 70 %
of all companies had a total revenue of less than 1 m€ (Rönkkö et al. 2008). However,
regarding this result, the expanded definition of the branch should also be taken into
account. During the “IT bubble” in the 1990s, the company birth rate was momentarily
exceptionally high. Although the software business has been growing slowly but
steadily ever since, there is a continuous public debate on entrepreneurship, willingness
to establish a company, and supporting entrepreneurship and growth. Committing to
entrepreneurship does not seem to be attractive enough. With a majority of companies,
there does not seem to be a desire for aggressive growth and internationalization. One
reason for this may be the limited access to capital, which is a challenge in the Finnish
business field. Especially start-ups and small companies experience difficulties with
financing. Despite these challenges, many of the crucial success factors are at least at a
moderate level in Finland; availability of skilled labor is good, the pass rate of uni-
versity exams in math and sciences is high, and ICT is valued highly in both national
and European Union level strategies. Although technological capability in Finland is at
a good level, sales, marketing, and productization skills are also needed to run a
successful national or global business. All three were identified as targets for devel-
opment during the last ten-year period. (Kuitunen et al. 2005; Lassila et al. 2006;
Rönkkö et al. 2007; 2008; 2009, 2010; 2011; Rönkkö and Peltonen 2012; Peltonen
et al. 2013; Luoma and Rönkkö 2014; Luoma and Kinnunen 2015).

3 A Networking Framework

Networking as a phenomenon can be examined through different frameworks, for
example:

• Network taxonomies based on the identification of different network types. Tax-
onomy takes into account organization borders and location aspects (e.g. Jaakkola
et al. 2015)

• The IMP approach to networks: a network approach based on several
base/background theories, e.g. the so-called interaction approach, which has
emerged from the research of business dyads (See e.g. Håkansson 1992)

• Networks as a strategic value adding system (see e.g. Möller et al. 2004; Jarillo
1988): networks appear as a system to add value. They consist of the value func-
tions commanded by the companies and by other actors, in other words of those
activities and activity chains through which things and services are refined from
different raw materials, materials and knowledge reserves to the customers. The
model differs from the IMP model by perceiving networks as meaningfully estab-
lished and strategically managed objects.

In the present study, a closer look is taken at both the distribution taxonomy of
Jaakkola et al. (2015) and the IMP network approach.

Networking is based on the organizations’ need to distribute their activities. It is an
organized, in most cases contract-based, collaboration model that cultivates a pro-
ductive relationship between the parties. The networking emphasizes the importance of

To Network or not to Network? 127

the communication and the need for the exchange of information between the parties.
This is especially suitable in the software business, which is characterized by close
collaboration and communication between individual developers and teams. (Jaakkola
et al. 2015).

Table 1 introduces the taxonomy of the complex phenomenon of organizational
distribution defined by Jaakkola et al. (2015). The term “networking” has aspects
related to both organizational and location. In the discussion below, networking refers
to the organizational dimension - how activities are organized in the network. The term
“decentralization” or “distribution,” on the other hand, refers to a location and to
geographical distance. The third concept, which it is important to identify in this
context, is globalization. It refers to the distribution of activities over geographical or
cultural borders.

In the row dimension, the table covers two categories, national (networking parties
are located in one country, following the same legal rules, adopting more or less the
same business environment) and international (referring to global, multicultural col-
laboration). The three main columns refer to the organizational complexity of the
distribution – intraorganizational (parties inside one legal unit; also called “in-
sourcing”), interorganizational (parties belong to different legal units), and outside
(subcontracting, based on a loose level of collaboration and reasonably high inde-
pendence between parties). Outsourcing covers the transfer of work related to one
activity outside one’s own organization to an external contractor. Rightsourcing means
the transfer of activities related to one activity to several external contractors, and
multisourcing the transfer of several activities outsourced to several contractors.
Co-sourcing describes the situation in which several organizations have a permanent
collaboration network to implement several related activities. The broker role indicates
the situation in which the work is outsourced to independent external contractors that
have loose connections to the “activity owner.” All distribution types provide different
benefits and challenges. (Jaakkola et al. 2015).

Table 1. Organizational distribution taxonomy (Jaakkola et al. 2015)

128 K. Yrjönkoski et al.

In taxonomies based on structure, a network may appear as an object controlled by
a single strong company. In that kind of stereotype, a network might be seen only as a
group of companies working together for a certain project. However, these types are
generally the picture of a network as seen from a particular perspective or those held by
a particular company. However, these same networks are of a different type if seen
from a different perspective. The IMP approach represents the opposite school of
thought: it does not involve identifying any “types” or taxonomies of networks.
According to the IMP approach, it is important to emphasize that there are no absolute
or objective network types. All networks consist of actors, relationships, and activities.
Actors are a large number of active and heterogeneous companies, each interacting
with others and seeking solutions to their different problems. However, networks have
different elements, characteristics, and possibilities when seen from different perspec-
tives or when parts of the network outside their considerations of any one company are
included. There is no single, objective network, “correct” definition, or specific owner
of the network. Also, the outcomes of the actions of any company in the network
cannot just be related to that single company – many of them will be more or less
collective. (Ford et al. 2003).

However, all the different network approaches have at least one thing in common:
networking is seen as based on mutual communication. Communication has three
dimensions that can cause challenges: the type of distribution (Table 1), the amount of
collaboration (needed to conduct activities; partially included in Table 1, depends on
the independence between activities), and cultural diversity. In multicultural collabo-
ration, the parties have to take into account the differences that have their root in
national cultures. Multicultural collaboration is a natural part of the globalized work
context, but also has a growing role in all organizations as a consequence of the free
mobility of labor. (Hofstede et al. 2010; 2016; Lewis 2011; 2016).

Internationalization is a special case of networking. It is based on the openness of
economic and societal systems. It implies the opening of local and nationalistic per-
spectives to a broader outlook of an interconnected and interdependent world with free
transfer of capital, goods, and services across national frontiers. From the individual
company or organization point of view, globalization is driven by several forces,
including:

• the ambition towards bigger business units and the need to connect activities after
corporate acquisition and mergers;

• the need for networking and specialization;
• the need to operate (geographically) close to clients;
• the need for skilled personnel or other scant key resources;
• the costs of the strategic business factors (work, office space, etc.);
• the importance of operating in different time zones (to guarantee a 24/7 operation

level);
• the desire to extend the market;
• the desire to be located closer to the sources of innovations;
• the recognized differences between and gaps in the skill profiles in different

locations.

To Network or not to Network? 129

It is also worth noticing that the same driving forces fit the distribution of activities
on local (national) level. To summarize and simplify – the motivation factors may be
both organizational and economic. In many cases, globalization is also seen as a path to
growth (of business and company size/value). (Hofstede et al. 2010; 2016) In the
Finnish software industry, internationalization has progressed in waves. The out-
sourcing progress has roots in the late 1990s and early 2000s. The first wave was
targeted at China and India; the main driving force was the availability and low cost
(<50 % of the Finnish level) of the skilled workforce. Some companies also moved
their activities close to the key client – the production industry operating in those areas.
Partially simultaneously and somewhat later, the second internationalization wave
started with the target of Russia, the Baltic countries (Estonia, Latvia, Lithuania), and
the former socialist bloc countries (Hungary, Poland, Romania, Czech Republic,
Belarus) – in the form of nearshoring/offshoring. The third wave of internationalization
had its target in new/fast-growing economies, like Vietnam, Indonesia, Brazil, and
Mexico. Throughout this time, additional global level operations were being imple-
mented as a part of normal business progress in Scandinavia, Western Europe, Japan,
and the USA. The main factors for outsourcing were economic and the availability of a
skilled workforce. Simultaneously to the “outbound” direction, there was also some
“inbound” outsourcing – e.g. Indian and Chinese companies bought Finnish software
companies or established their own branch organizations in Finland. (Jaakkola 2009;
2012; Jaakkola et al. 2011).

4 Challenges and Opportunities of Networking

Networking with other companies is a significant way to improve one’s competitive
advantage. The advantages of networking may be for example achieving resource
flexibility, expanding one’s market area in either domestic or global markets, increasing
marketing and sales force, boosting competence, or developing new technologies and
offerings. Successful networking can enhance the interfaces between companies and
thereby also decrease transaction costs. It may also allow a company to focus on its own
core competencies while someone else in the network takes care of the parts outside of
the core business. (Valkokari et al. 2006; Möller et al. 2004) In some cases, networking
is necessary in order to gain credibility among customers and/or investors. Networks are
also a way to expand business for many SME enterprises (Senik et al. 2011).

Software projects, for example, always require good communication in the network
for success. However, software projects quite often fail. When the reasons behind
software project failures have been examined, bad or deficient communication between
the parties is often found, especially at the initial stage of the project. The most typical
mistakes caused by defective communication between parties that have led to failure
include deficient specifications, changing and non-fixed requirements, unclear expec-
tations, or unrealistic schedule expectations. (Elzamly and Hussin 2014; Savolainen
2011) To reduce these risks, all the parties must commit themselves to the cooperation
and must consider the partnership as so important that it is motivating to reserve time
and resources for the work and communication that takes place at the company
interface.

130 K. Yrjönkoski et al.

According to the CHAOS report published by Standish Group, the reality is dark;
in the American software project business as many as 31.1 % of projects are uncom-
pleted. About 52 % of the projects exceed their costs by nearly 90 %. According to the
Standish Group estimate, failed projects cost American software companies 81 billion
dollars annually. Only 16.2 % of all projects are successful. (Standish Group 2014) The
findings of the report are also partly applicable to Finland’s conditions in which the
software industry is at a similar, stable level. One can estimate that the costs of
unsuccessful software projects will be of the order of at least half a billion euros, which
is a great deal when proportioned to the total industry size. (Standish Group 2014).

Networking often adds transaction costs, compared to the arranging of the same
function internally with the company’s own resources. Networked companies also
often become dependent on each other to some extent. According to resource depen-
dency theories, this in particular pushes companies towards interaction with each other.
Small companies often have limited resources, and networking has to be done in order
to survive. If the advantages of networking are examined merely through the immediate
economic advantages, actors may start to behave opportunistically and will not per-
severe in their commitment to the network, its common goals, or to other actors in the
network. (See e.g. Mittilä 2006).

5 Answers to Research Questions and Conclusions

In answer to the research question “How has the Finnish software industry developed
in the last ten years?” it can be stated that, during a ten-year examination period, the
Finnish software industry has established its place as a mature and nationally signifi-
cant sector. During the period in question the industry has diversified. In the middle of
the 2000s, the focus was on a packaged, licensed software product. After ten years the
field has been taken over by the Internet, mobile platforms, SaaS and cloud services,
leaving traditional licensing models behind. In addition, the consumerization of soft-
ware has appeared during the last ten years. The use of different software is part of the
everyday life of ordinary consumers through personal computers, tablets, smartphones,
and the numerous applications that are used in them.

The major finding of this study is that although a number of articles have been
published during the last ten years studying the Finnish software industry from different
business aspects (e.g. Helander and Ulkuniemi 2012; Luoma et al. 2012; Harison and
Koski 2010; Sainio and Marjakoski 2009; Rajala and Westerlund 2008; Ojala and
Tyrväinen 2006), and even specifically on the networking aspect of the software
industry (e.g. Ojala and Helander 2014; Jansen et al. 2013; 2007), there is still a lack of
studies that look at the overall development of software industry from the viewpoint of
networking, its state and its role in software business development. In the longitudinal
material used in the present study, networking is considered to be crucial to the success
of small companies in particular, and it has been identified as a target for development,
year after year. However, there are still no statistics or even a single case study
covering the state of networking among software companies. Networking theories are
mainly developed within the context of the manufacturing industry, which does not
allow software industry specific questions to be covered.

To Network or not to Network? 131

There have been some successful networking stories in the history of the Fin-
nish ICT and software industry – like the cell phone manufacturer Nokia. Nokia built a
global, strategic product development and production network, which was more flex-
ible and cost-effective than the affiliate company structures used by Nokia’s com-
petitors (Mittilä 2006). However, these kinds of cases are examples of networks with a
single, powerful company, whose goals and strategies the rest of the actors serve. The
model does not represent a balanced network with common goals.

In answer to the research question “How does networking manifest itself in the
Finnish software industry?” it can be generally stated that networking has been a key
trend in the industry year after year, and it has also been a driver for international-
ization. However, at the same time, networking has not been covered very widely in
previous literature. Networking capabilities have been identified as a success factor in
every industry field including the software industry. However, there is little material
examining the network from all the parties’ point of view. In forthcoming studies the
examination of networks should concentrate on the network as balanced entities in
which the interaction and advantages works both ways.

Internationalization can be regarded as closely connected to networking, and this
would be worthy of its own study. Internationalization seems to have already lived
through a full cycle with a rise and fall; lately there have even been reverses of the
globalization decisions made some years ago. For example, Helsingin Sanomat
(10.2.2016) reports cases in which operations have been relocated from China back to
Finland – not to be done by humans but by various automated solutions and robotics.
The current trend is to return functions to Finland and to close down activities abroad.
The reasons may be manifold and not reported in public. One of the main reasons
seems to be cost erosion - in “cheap labor” countries, the wage level has risen close to
that of Finland. Additionally, due to the recession, the need for labor has diminished.

The present study shows a clear need to examine networks in the context of the
software business in more detail. It shows that networking would be a crucial factor
among SME software companies, which represent the majority of Finnish software
companies, but even the state of networking has not been identified very well. In
further studies, the network has to be examined as a balanced object in which all the
parties have committed themselves congruently to the objectives of the network and
will also receive consistent value-added. The present study will be expanded and
complemented by a case study, which examining networking in one or two software
companies. The case study will be carried out during the spring and summer of 2016.
The main author of the present study will also focus more deeply on the networking
theme in the near future. This study will also be followed by a systematic literature
review covering network management literature.

References

Cusumano, M.: The changing software business: moving from products to services. Computer 41
(1), 20–27 (2008)

Elzamly, A., Hussin, B.: Identifying and Managing Software project risks with proposed fuzzy
regression analysis techniques: maintenance phase. In: 2014 International Conference on
Management and Engineering (CME 2014) (2014)

132 K. Yrjönkoski et al.

Ford, D., Gadde, L.-E., Håkansson, H., Snehota, I.: Managing networks. http://impgroup.org/
uploads/papers/4198.pdf. Accessed 3rd Feb 2016. (A modified version of the paper is to form
Chapter 8 of “Managing Business Relationships: A Network Perspective, Second Edition,
Chichester, John Wiley (2003))

Harison, E., Koski, H.: Applying open innovation in business strategies: evidence from finnish
software firms. Res. Policy 39(3), 351 (2010)

Helander, N., Ulkuniemi, P.: Customer perceived value in the software business. J. High
Technol. Manag. Res. 23(1), 26–35 (2012)

Håkansson, H.: Evolution process in industrial networks. In: Axelsson, B., Easton, G. (eds.)
Industrial Network: A New View of Reality, pp. 28–34. Routledge, London (1992)

Hofstede, G., Hofstede, G.J., Minkow, M.: Cultures and Organizations: Software of the Mind:
Intercultural Cooperation and its Importance for Survival. McGraw-Hill, New York (2010)

Hofstede, G.: Geert Hofstede Resource Pages (2016). http://www.geert-hofstede.com. Accessed
7th Jan 2016

Jaakkola, H.: Culture sensitive aspects in software engineering. In: Düsterhöft, A., Klettke, M.,
Schewe, K.-D. (eds.) Conceptual Modelling and its Theoretical Foundations. LNCS,
vol. 7260, pp. 291–315. Springer, Heidelberg (2012)

Jaakkola, H.: towards a globalized software industry. Acta Polytech. Hung. 6(5), 69–84 (2009)
Jaakkola, H., Henno, J., Linna, P.: From local to global - path towards multicultural software

engineering. Int. J. Knowl. Learn. (IJKL) 7(1/2), 5–24 (2011)
Jaakkola, H., Henno, J., Thalheim, B., Mäkelä, J.: Collaboration, Distribution and Culture –

Challenges for Communication. In: Biljanovic, P. (eds.) Proceedings of the MIPRO 2015
Conference, Opatija, pp. 758–765. Mipro and IEEE (2015)

Jansen, S., Cusumano, M.A., Brinkkemper, S. (eds.): Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Publishing,
Cheltenham (2013)

Jansen, S., Brinkkemper, S., Finkelstein, A.: Providing transparency in the business of software:
a modeling technique for software supply networks. In: Camarinha-Matos, L.M.,
Afsarmanesh, H., Novais, P., Analide, C. (eds.) Establishing the Foundation of Collaborative
Networks. IFIP, vol. 243, pp. 677–686. Springer, US (2007)

Jarillo, C.: On strategic networks. Strateg. Manag. J. 9(1), 31–41 (1988)
Kuitunen, H., Jokinen, J.-P., Lassila, A., Mäkelä, M., Huurinainen, P., Maula, M., Ahokas, M.,

Kontio, J.: Finnish Software Product Business: Results from the National Software Industry
Survey. Centre of Expertise for Software Product Business, Espoo (2005)

Lassila, A., Jokinen, J.-P., Nylund, J., Huurinainen, P., Maula, M., Kontio, J.: Finnish Software
Product Business: Results of the National Software Industry Survey. Centre of Expertise for
Software Product Business, Espoo (2006)

Lewis, R.D.: When Cultures Collide. Leading Across Cultures, 3rd edn. Nicholas Brealey
International, London (2011)

Lewis, R.D.: Richard Lewis Resource Pages-Cross-culture (2016). http://www.crossculture.com/
services/cross-culture/ and http://www.cultureactive.com. Accessed 7th Jan, 2016

Luoma, E., Kinnunen, H.: Software Industry Survey, Overview of the Finnish Software and IT
Services Sector (2015)

Luoma, E., Rönkkö, M.: Software Industry Survey, Summary of Results (2014)
Luoma, E., Rönkkö, M., Tyrväinen, P.: Current software-as-a-service business models: evidence

from Finland. In: Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP,
vol. 114, pp. 181–194. Springer, Heidelberg (2012)

Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indispensable
Technology and Industry. MIT Press Books, Massachusetts (2005)

To Network or not to Network? 133

http://impgroup.org/uploads/papers/4198.pdf
http://impgroup.org/uploads/papers/4198.pdf
http://www.geert-hofstede.com
http://www.crossculture.com/services/cross-culture/
http://www.crossculture.com/services/cross-culture/
http://www.cultureactive.com

Mittilä, T.: Verkosto-osaaminen – liiketoimintaosaamisen uusi mantra. “Liiketoimintaosaaminen
kilpailukykymme keskiössä”. Kauppatieteellinen yhdistys (2006)

Möller, K., Rajala, A., Svahn, S.: Tulevaisuutena liiketoimintaverkot. Johtaminen ja arvonluonti.
Helsinki: Teknologiateollisuuden julkaisuja 11/2004 (2004)

Ojala A., Helander, N.: Value creation and evolution of a value network: a longitudinal case
study on a Platform-as-a-Service provider. In: 2014 47th Hawaii International Conference on
System Sciences (HICSS), pp. 975–984. IEEE (2014)

Ojala, A., Tyrväinen, P.: Business models and market entry mode choice of small software firms.
J. Int. Entrepreneurship 4(2–3), 69–81 (2006)

Peltonen, J., Rönkkö, M., Mutanen, O.-P.: Growth Forum 2013. Summary Report. Aalto
University, School of Science (2013)

Popp, K.: Software industry business models. IEEE Softw. 28(4), 26 (2011)
Rajala, R., Westerlund, M.: Capability perspective of business model innovation: analysis in the

software industry. Int. J. Bus. Innov. Res. 2(1), 71–89 (2008)
Rönkkö, M., Eloranta, E., Mustaniemi, H., Mutanen, O.-P., Kontio, J.: Finnish Software Product

Business: Results of the National Software Industry Survey. Helsinki University of
Technology (2007)

Rönkkö, M., Mutanen, O.-P., Koivisto, N., Ylitalo, J., Peltonen, J., Touru, A.-M., Hyrynsalmi,
S., Poikonen, P., Junna, O. Ali-Yrkkö, J., Valtakoski, A., Huang, Y., Kantola, J.: National
Software Industry Survey 2008: The Finnish Software Industry on 2007. Helsinki University
of Technology (2008)

Rönkkö, M., Peltonen, J.: Software Industry Survey 2012. Aalto University, School of Science
(2012)

Rönkkö, M., Peltonen, J., Pärnänen, D.: Software Industry Survey 2011. Aalto University,
School of Science (2011)

Rönkkö, M., Ylitalo, J., Peltonen, J., Koivisto, N., Mutanen, O.-P., Autere, J., Valtakoski, A.,
Pentikäinen, P.: National Software Industry Survey 2009. Helsinki University of Technology
(2009)

Rönkkö, M., Ylitalo, J., Peltonen, J., Parkkila, K., Valtakoski, A., Koivisto, N., Alanen, L.,
Mutanen, O.-P.: Software Industry Survey 2010. Aalto University, School of Science and
Technology (2010)

Sainio, L.M., Marjakoski, E.: The logic of revenue logic? Strategic and operational levels of
pricing in the context of software business. Technovation 29(5), 368–378 (2009)

Savolainen, P.: Why do software projects fail? Emphasising the Supplier’s Perspective and the
Project Start-up. Doctoral dissertation. University of Jyväskylä (2011)

Senik, S.C., Scott-Lad, B., Entrekin, L., Adham, K.A.: Networking and internationalization of
SMEs in emerging economies. J. Int. Entrepreneurship 9(4), 259–281 (2011)

The Standish Group: Report CHAOS (2014)
Valkokari, K., Airola, M., Hakanen, T., Hyötyläinen, R., Ilomäki, S.-K., Salkari, I.:

Yritysverkoston strateginen kehittäminen. VTT:n tiedotteita 2348 (2006)

134 K. Yrjönkoski et al.

A Dynamic Pricing Model for Software
Products Incorporating Human Experiences

Andrey Saltan1,2(&), Uolevi Nikula1, Ahmed Seffah1,
and Alexander Yurkov2

1 Department of Software and Innovation,
Lappeenranta University of Technology, Skinnarilankatu 34, 53851

Lappeenranta, Finland
{uolevi.nikula,ahmed.seffah}@lut.fi

2 Department of Information Systems in Economics,
St. Petersburg State University, 7/9 Universitetskaya nab.,

199034 St. Petersburg, Russia
{a.saltan,a.yurkov}@spbu.ru

Abstract. At the age of software as a service (SasS) and cloud computing as
compared to what is used to be earlier, designing product strategies is a chal-
lenging concern for software product management researchers. Comparative
statics models are considered to identify software market characteristics while
assessing the managerial decisions during the software product strategy design.
However, their applicability in dynamic market analysis is rather limited.
Important concerns in dynamic market such as dynamic pricing cannot be fully
estimated. This motivated the development of a simulation-based dynamic
model to evaluate the efficiency and effectiveness of using different pricing
models. The proposed (simulation) approach given in details in this paper can be
used in conducting complex analysis of software product strategy that involves
consideration of product strategy as a portfolio of interrelated solutions rather
than a set of independent managerial decisions.

Keywords: Software product strategy � Software market � Decision making �
Pricing model � Simulation model

1 Introduction

The ever changing software markets make it difficult for software development com-
panies, big and small ones, to improve and package their products as well as to
customize it to the diverse markets and consumer needs. They also have to look for
other discontinuous innovation or disruptive technology that will revolutionize their
industry or require heavy reengineering and re-packing of their software products.
Furthermore, the rapid change that characterizes software industry today results in high
instability and uncertainty, which may make product strategy development meaning-
less. In reality, the inverse proves to be true, and in this case product strategy becomes
even more crucial than in other industries due to the nature of high-tech markets [5].

Two decades ago, the software companies’ product strategies were slightly different
from the strategies of any other goods. Software products were sold as physical

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 135–144, 2016.
DOI: 10.1007/978-3-319-40515-5_10

products on a CD or a floppy disc. Most often, they are packaged in two or three
versions (e.g. professional/domestic, beginner/advanced, etc.). Nowadays, software as
a service, mobile, web-service and the future services for the Internet of things are
making software very different from other goods. We see them as indestructibility,
transmutability, and reproducibility [9]. The evolution of the Internet has challenged
the company to reconstruct their product strategy.

From scientific point of view, product strategy lies in the intersection of product
design and development, marketing and sales, strategy and business. There is no
universal product strategy, neither a unifying theory is. Each company has its own
strategy that takes into account the software product specifications, the market segment
characteristics as well as the consumers’ experiences, needs and expectations. Various
models have tried to address these notions concerning product strategy.

The traditional comparative statics models were introduced first to identify software
market characteristics and qualitatively assess factors determining its development.
Software market and software product characteristics being identified offer unprece-
dented opportunities to companies. However, the application scope of these models as
a tool for qualitative and dynamic market analysis are very limited. The development of
simulation-based models to design a product strategy based on the dynamic presen-
tation of software users’ experiences seems to be potentially an efficient approach. The
mentioned task has both theoretical and practical effect on development of informa-
tional economy since business models and product strategies of todays market par-
ticipants – the software companies – up to now are being developed intuitively, and
later being corrected according to cut-and-try method. With this economic viability and
effectiveness of business models can be tested by their approbation at the real market,
while companies have no instruments for their justification in advance.

In this paper, we investigate one specific model for evaluating the potential of the
dynamic pricing strategy. The main objective of this paper is not only to develop a
practical model that industry can use. This is a long-term objective that requires years
of research. More precisely the key objective is to develop a ground for studying
market analysis at the research level. Still, possibility of carrying out complex analysis
of software product strategy based on the proposed model is discussed.

2 Background and Works Related

Our research is based on the previous investigations on software economics in general
and pricing aspects of product strategy in particular. Studying the existing academic
papers and analytical research reveals the following software market determinants
describing the fundamental characteristics of software as digital goods:

1. The software markets are determined by network effect. Direct network effect or the
so-called Demand Side Economies of Scale results in the fact that potential con-
sumers’ value and willingness to buy software correlates with total amount of users
existing. Indirect network effect or the so-called Supply Side Economies of Scale
create the situation in which the increase in sales of the original software results in
rising sales of complementary goods, which in turn increases the value of the
original product for users [10, 14].

136 A. Saltan et al.

2. Economies of scale and network effect cause non-stop price pressure for the
companies operating on software markets and make for the establishment of
monopolies and oligopolies on these markets [13].

3. In addition to the network effect, the important property of software being a digital
good is the possibility of being copied easily without significant loss in quality. This
results in unauthorized use or piracy. The practice shows that piracy being on high
level on a specific regional market prevents companies from reducing it by their
own. This makes companies design their product strategy taking piracy as one of
market characteristics and trying to minimize their financial losses or even
improving their non-financial indicators [3, 4, 12].

4. Extremely low costs of reproducing software results in the situation in which
companies have a structure of expenses with high fixed expenses for software
development and incomparably small variable expenses [1].

Under the name of a software company, we mean companies dealing with R&D,
distribution and maintenance of general software products aimed at the wide range of
consumers. Software consumers are natural persons who buy produced software
products for their own purposes.

The above mentioned software products and software markets characteristics result
in an extremely diverse list of options available for designing software product strategy.
While offering value to the consumers at the right price is the prime aim of software
companies, versioning and pricing plays a key role in most software companies’
product strategies [10]. Monopolistic competition market and costs structure let soft-
ware companies to establish any pricing policy they need. Its inadequacy, though, will
soon result in serious financial problems.

Recently, several studies [6, 8, 9] have examined the structure of the pricing policy.
Despite different approaches all the above mentioned studies identified dynamic pricing
as one of the key options in designing the pricing strategy supported by price bundling
and price discrimination. As far as we know, the problem of choosing the optimal
dynamic pricing model has not been tackled in the literature, especially with the
uncertainty in consumer valuation, network effect, and piracy. We believe it to be the
result of lack of opportunity to carry out such analysis by means of microeconomic
modeling. At the same time, the dynamic modification of existing models gives us a
chance to estimate efficiency of different methods of dynamic pricing in relation to
various market factors.

Traditionally, according to [6, 11] the dynamic pricing has been based on the
following four policies:

• Penetration pricing. Penetration strategy sees using of low prices in order to
maximize market penetration as its main objective. This is especially important for
software companies when entering the market if alternative software already have a
large installed base. Later on it will be possible to rise prices. This strategy is widely
used in the software industry due to low variable costs and network effect.

• Skimming pricing. Companies utilizing skimming strategy set rather high starting
prices to reduce them in the course of time. The aim is to skim consumers with high
willingness to pay first and then move to consumers with lower willingness to pay
and offer them lower prices.

A Dynamic Pricing Model for Software Products 137

• Long-term real price. The long-term real price strategy involves keeping the
product launch level price within the sustained period of time. So prices are not
adjusted as a predetermined part of the strategy.

• Free-pricing. In case of the follow-the-free strategy, consumers receive a product
for free. The software company’s objective is to create a lock-in effect on the
consumers’ side in order to generate revenues later on by means of complementary
products or premium versions.

Harmon et al. [6] indicate some possibilities for hybrid dynamic pricing associated
with bundling or versioning, but these options are out of scope of this study.

3 The Small Picture: Dynamic Pricing Model

Figure 1 demonstrates the proposed model for dynamic pricing. It differs substantially
from the microeconomic models that are most cited and used. We propose a dynamic
model that poses the properties allowing to solve the managerial problem of choosing
one out of three types of dynamic pricing: Penetration, Skimming or Long-term real
price. We’ve excluded Free-pricing because the assumptions behind this model do not
allow us to demonstrate possible attractiveness of this strategy for a particular type of
software products.

3.1 Basic Assumptions on Software Market Structure

The software market structure model is based on the following assumptions:

1. In this model we consider software market that consist of a certain number of
potential users for newly developed software product. Information about the new
product spreads according to the theory of diffusion and can be expressed by the
following equation:

mi ¼ mi�1 þ aþ bmi�1ð Þ mG�mi�1ð Þ; ð1Þ

where mG – total number of potential consumers on the software market, mi –

number of potential consumers who are informed about the new product by time

Fig. 1. Approach for developing Dynamic Pricing Model

138 A. Saltan et al.

period ti, i = 0,..,T, T – quantity of time periods when software will be available for
the consumers, a, b – parameters reflecting the speed of information spreading.

2. In addition to the original version provided by a software company, pirated version
is also available for consumers on the market. Consumers do not pay for pirated
version, but they bear costs of finding appropriate ones. These costs can be esti-
mated in monetary terms. Suppose that costs expected for obtaining pirated version
are the same for all consumers and equal to c.

3. Every time a consumer uses the product he/she gets some value out of it. This
short-term value can be estimated in monetary terms by a consumer and includes
two components both internal and network ones. The internal component is defined
as the value resulting from using the software in the situation when no one but the
user uses it. The network component is known as the benefit depending on the total
number of users of this software and is the same for all its users.

4. Let us assume that there is a complete awareness of all potential users that concerns
all major market parameters. Besides this, every consumer can calculate long-term
value over original and pirated versions and makes rational surplus-maximizing
decision on the necessity of using either the original or the pirated one. Consumer’s
rationality and awareness are traditional simplifications for economic models taking
into account consumers behavior. Consumers’ bounded rationality can still be
considered later and requires preliminary investigations connected with studying the
degree of users’ rationality in decision-making on software using which have not
been carried out.

5. Both software development and sales are considered by the company as investment
project. We shall assume that the software development costs are fixed and do not
depend on demand, while variable costs per software copy are equal to zero. The
software company needs to determine dynamic pricing strategy for its original
product that will maximize discounted revenue from selling the original version
within the given time horizon.

All the suggested market assumptions are traditional for economic models used for
both modelling and investigating markets for durable goods. Taking into account the
network effect as well as the availability of pirated versions and the opportunity of
different pricing policies is only possible through using simulation modelling.

3.2 Modelling Software Consumer Behavior

The market consists of surplus-maximizing potential consumers. Consumers are
heterogeneous in their valuation of the above mentioned software product. Let’s index
every individual consumer by k. The values for original and pirated versions for the
consumer k within the time period ti will be denoted by VO

k;i and VP
k;i respectively. We

define the log-normal distribution for the initial internal value (i = 0) of both product
versions for all consumers. We simulate internal consumer value for both original and
pirate versions within time period ti as the sum of both internal value within the
previous period of time and random variable ηO and ηP respectively. We believe these
random variable ηO and ηP to be independent and distributed identically according to

A Dynamic Pricing Model for Software Products 139

normal distribution with zero mean and variance σ for original version and mean -μ and
variance σ for the pirated. The assumption of diminishing utility of pirated version
takes place because of the fact that pirated product user does not receive software
updating service from the company. He also faces the risk that the program may be
suspended or the initial installation will lead to its being infected by a computer virus.

The network component of the software product value is defined as a
non-decreasing function of the total number of users. To make it simple lets consider
the linear type of this function: f nið Þ ¼ e � ni, where parameter e – the power of
network effect.

The consumer calculates the expected total value of using software for the original
(E½VO

k) and pirated (E½VP
k) versions by integrating over all the paths of valuations and

makes the decision either on buying, or using pirated version, or rejecting to use the
product according to rational and surplus-maximizing rules presented in Table 1.

3.3 Optimization Problem for Software Company

As is was discussed earlier, all market parameters and distribution of valuations across
consumers are well known by the software company. Still, the company knows nothing
about its particular consumer. The company should define dynamic pricing policy by
selecting one of these options:

• Using long-term real pricing;
• Using penetration pricing;
• Using skimming pricing.

According to our pricing model, we believe that the company denotes a “fair” price
for its product with p. This price is determined by two factors: current prices for similar
products as well as consumers’ willingness to pay for this product. Using long-term
real price strategy requires the company’s selling software at the given price over the
given time horizon. Using penetration pricing presupposes that the company should
initially offer its consumers the 50 % discount and then sequentially raises the price and
in the last period it sells software with the 50 % premium to the price considered “fair”.
The skimming pricing is completely opposite to the penetration pricing: the company
consistently drops the price over the given time horizon from a 50 % premium to a
50 % discount.

Table 1. Decision-making rules

DECISION RULE

BUY ORIGINAL VERSION E½VO
k �pi þ f nið Þ � 0

E½VO
k �pi �E½VP

k �c

�
USE PIRATED VERSION E½VP

k �cþ f nið Þ � 0
E½VO

k �pi\E½VP
k �c

�
DO NOT USE E½VO

k �pi þ f nið Þ\0
E½VP

k �cþ f nið Þ\0

�

140 A. Saltan et al.

The company is trying to maximize discounted revenue over the given time horizon
from selling the original version in respect to demand restrictions associated with their
consumer’s rational behavior and availability of pirated version on the market:

p ¼ PT
i¼0

pi�di pið Þ
1þ rð Þi ! max;

di pið Þ ¼ k 2 MinNi :
E VO

k

� ��pi þ f
Pi�1

j¼0
ðdj þ qjÞ

 !
� 0

E VO
k

� ��pi �E VP
k

� ��c

8><
>:

8><
>:

9>=
>;

�������
�������;

qi pið Þ ¼ k 2 MinNi :
E VP

k

� ��cþ f
Pi�1

j¼0
ðdj þ qjÞ

 !
� 0

E VO
k

� ��pi\E VP
k

� ��c

8><
>:

8><
>:

9>=
>;

�������
�������:

8>>>>>>>><
>>>>>>>>:

ð2Þ

To solve this maximization problem, methods of iteration searching, approximation
on a constant-pitch grid and simulation modeling are used.

3.4 Results

Figure 2 represents distribution of dynamic pricing strategies that the software com-
pany should follow depending on the strength of the network effect and expenses for
searching a pirated version. As Fig. 2 shows, dynamic pricing can result in increase of
revenue of software company.

The economic explanation of result given above is as follows: when the costs of
obtaining pirated version are low, the only option for the company is to decrease the
initial price to rise it only later when the network effect increases the consumers’ value

Fig. 2. Distribution of dynamic pricing strategies

A Dynamic Pricing Model for Software Products 141

and their willingness to pay. This is exactly what penetration strategy means, so with
costs being low companies should use penetration pricing.

In case of high searching costs for pirated versions the company may avoid
focusing on fighting the piracy and it may set a “fair” price from the very beginning.
This will bring to the increased revenue due to the time value of money. In addition,
with the network effect being strong, the company may even try to use skimming
strategy: we can always find people with high internal value. Even if the number of
such people is small, they will create network effect and attract other people to follow
their way.

4 The Big Picture: Software Product Strategy Design

Software pricing is a key issue that not only influences the commercial success of any
software product, but it is also an important activity in the software product strategy
design. Further we shall highlight and discuss the importance of the proposed model as
part of the big picture of the software product strategy design.

The issue of designing software product strategy is a matter of detailed study in the
sphere of information technologies. This resulted in the emergence of a whole stream of
academic research dealing with analyzing the software product strategy.

The proposed approach and the simulation model based on it can be easily adapted
to analyzing other managerial decisions with regard to product strategy design.
However, the product strategy mentioned is an aggregate portfolio of managerial
decisions similar to the discussed in the previous sections. The analysis of this product
strategy requires the portfolio approach.

There is no unified and conventional approach to determining the product strategy.
Still, a large variety of product strategy definitions and concepts can be found in the
economic literature. The restrained point of view suggests to focus exclusively on
marketing issues while the wider one doesn’t make distinction between product and
business strategies. The former approach is more typical for past year papers, when it
was believed that sales and marketing could be separated from development and other
business issues. The latter approach on software product strategy can be found in
papers on start-ups and entrepreneurship. In case of start-ups it can be difficult to
distinguish between product and business strategies mainly since the same people are in
charge of making all managerial decisions for different areas of business process.

Nowadays product strategy is believed to lie at the intersection of three business
functions: sales and marketing, strategy and finances, development and design.
Buxmann [2] suggests making a distinction between product design strategy, com-
munication strategy, distribution strategy, and pricing strategy. Buxmann separates the
product strategy component associated with software development. In line with the
proposed integration idea, though, it seems logical to rewrite the offered software
product strategy as follows: Communication and Promotion, Sales and Distribution,
Upgrade and Support, Versioning and Pricing.

Pricing decision is one of the most crucial decisions which a company can make
when planning the launch of any new software product. Comprehensive taxonomy of
pricing models for durable goods has been proposed by Iveroth [7] who also defines

142 A. Saltan et al.

pricing models as systems of price-related characteristics of the agreement between
buyer and seller. Price models are described with the help of 5 dimensions listed
without priority of anyone: Scope, Base, Influence, Formula, Temporal Rights. The
framework is called the SBIFT model that is the abbreviation of the dimensions
mentioned above. Laatikainen et al. [8] evaluated and adapted SBIFT model to by
applied in the sphere of cloud services. As a result, they suggested a 7-dimensional
pricing framework that added two more characteristics (Degree of discrimination and
Dynamic pricing strategy) to the five existing dimensions (SBIFT).

Another pricing framework was proposed by Lehmann and Buxmann [9] with the
following pricing parameters: Price formation, Structure of payment flow, Assessment
base, Price bundling, Price discrimination and Dynamic pricing strategies.

The described classification of options available for software companies in
designing product strategy demonstrates the importance of carrying out complex
analysis of software product strategy. This analysis involves taking product strategy as
a portfolio of interrelated solutions, rather than as a set of independent managerial
decisions.

5 Concluding Remarks

This paper is devoted to the matters of importance and challenges facing software
industry in designing software products strategy and, more precisely, in pricing. The
dynamic model for market analysis was developed through illustrating how it works
and how the model can be used. The proposed model as well as underlying theoretical
framework seem interesting and highly promising. The next important step demands a
large and wide empirical research to test and confirm the above mentioned theoretical
positions. So, this research will prove the applicability of the above mentioned
approach to the software product strategy design by real companies.

References

1. Bontis, N., Chung, H.: The evolution of software pricing: from box licenses to application
service provider models. Internet Res. 10(3), 246–255 (2000)

2. Buxmann, P.: Network effects on standard software markets: a simulation model to examine
pricing strategies. In: 2001 2nd IEEE Conference Standardization and Innovation in
Information Technology, pp. 229–240. IEEE (2001)

3. Chellappa, R.K., Shivendu, S.: Managing piracy: Pricing and sampling strategies for digital
experience goods in vertically segmented markets. Inf. Syst. Res. 16(4), 400–417 (2005)

4. Conner, K., Rumelt, R.P.: Software piracy: An analysis of protection strategies. Manage.
Sci. 37(2), 125–139 (1991)

5. Cusumano, M.A.: The changing software business: Moving from products to services.
Computer 41(1), 20–27 (2008)

6. Harmon, R., Raffo, D., Faulk, S.: Pricing strategies for information technology services:
A value-based approach. In: 42nd Hawaii International Conference on System Sciences,
HICSS 2009, pp. 1–10. IEEE (2009)

A Dynamic Pricing Model for Software Products 143

7. Iveroth, E., Westelius, A., Petri, C.-J., Olve, N.-G., Cöster, M., Nilsson, F.: How to
differentiate by price: Proposal for a five-dimensional model. Eur. Manag. J. 31(2), 109–123
(2013)

8. Laatikainen, G., Ojala, A., Mazhelis, O.: Cloud services pricing models. In: Herzwurm, G.,
Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 117–129. Springer, Heidelberg
(2013)

9. Lehmann, D.-W.-I.S., Buxmann, P.D.P.: Pricing strategies of software vendors. Bus. Inf.
Syst. Eng. 1(6), 452–462 (2009)

10. Shapiro, C., Varian, H.R.: Information Rules: A Strategic Guide to the Network Economy.
Harvard Business Press, Boston (1999)

11. Shipley, D., Jobber, D.: Integrative pricing via the pricing wheel. Ind. Mark. Manage. 30(3),
301–314 (2001)

12. Soloviev, V.: Mathematical modeling of strategic commitments and piracy in
Windows/Linux competition. In: 15th Annual Conference Proceedings., International
Conference on Management Science and Engineering, ICMSE 2008, pp. 10–12. IEEE
(2008)

13. Varian, H.R.: High-technology industries and market structure. University of California,
Berkeley. 33 (2001)

14. Weitzel, T., Wendt, O., von Westarp, F.G., Konig, W.: Network effects and diffusion theory:
Network analysis in economics. Int. J. IT Stan. Stand. Res. (IJITSR) 1(2), 1–21 (2003)

144 A. Saltan et al.

A Case Study of the Health of an Augmented
Reality Software Ecosystem: Vuforia

Lamia Soussi, Zeena Spijkerman, and Slinger Jansen(B)

Utrecht University, Utrecht, The Netherlands
{l.soussi,z.spijkerman}@students.uu.nl, slinger.jansen@uu.nl

Abstract. Augmented Reality is becoming increasingly popular. The
success of a platform is typically observed by measuring the health of
the software ecosystem surrounding it. In this paper, we take a closer
look at the Vuforia ecosystem’s health by mining the Vuforia platform
application repository. It is observed that the developer ecosystem is the
strength of the platform. We also determine that Vuforia could be the
biggest player in the market if they lay its focus on specific types of app
development.

1 Introduction

Software ecosystems (SECOs) are sets of businesses functioning as a unit and
interacting with a shared market for software and services, together with the
relationships among them. The inability to function in a software ecosystem has
already led to the demise of many software vendors, leading to loss of competi-
tion, intellectual property, and eventually jobs in the software industry [1].

Vuforia is a platform for Augmented Reality (AR) that provides Applica-
tion Programming Interfaces (API) in C++, Java, Objective-C, and the .Net
languages through an extension to the Unity game engine. With the use of 2D
and 3D targets, AR gives a new way to perceive the environment around com-
bining virtual to real. Vuforia was introduced by Qualcomm five years ago and
has become an industry-leading platform that has been supported by a global
ecosystem of developers. Vuforia was sold to PTC Inc. in 2015 and supported
a global ecosystem of 175,000+ registered developers and has powered 20,000+
apps with more than 200 million app installs worldwide [2].

The research question we try to answer is “Can Vuforia improve its position
in the market of AR platforms?” To that end the focus is on the involvement
of the developers and the analysis on the categories, maturity and ratings will
show us the position of Vuforia in the AR mobile app market. For instance if
the developers seem to be active, then Vuforia should focus on other parts to
improve the health of their ecosystem to get a better position in the market, for
example their marketing approach or their position in the mobile ecosystem.

2 Research Method

To measure the longevity and propensity for growth, as we define software
ecosystem health, of Vuforia a combined qualitative and quantitative research
c© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 145–152, 2016.
DOI: 10.1007/978-3-319-40515-5 11

146 L. Soussi et al.

is performed. The developer’s website is the main source of information for this
study. Forums on the developer network page provide information about Vufo-
ria’s developer ecosystem. These forums are important to get an insight on the
developer’s point of view on the ecosystem they shape and their opinion on the
changes between Qualcomm and PTC.

A study from 2013 by Chen et al. [3] introduces the maturity ratings by both
app providers, App Store and Google Play. With some minor differences the
maturity rating defined by minimum age is more regulated with the App Store
than Google Play. It provides a maturity rating based on the content of the app
with a minimum age of “4+”, “9+”,“12+”, or “17+”. In accordance, the health
measurement of the Vuforia applications is conducted within the AppStore only.
The apps are extracted manually in a table by name, category, customer rating,
maturity rating (rating based on minimum age), and provider. We expect that
AR will mostly be used for gaming. We state the following hypothesis:

– H1: Less serious categories get more ratings.
– H2: Apps with immature content get lower rates.
– H3: Apps with mature content are paid over apps with immature content.

We use Import.io [4], a Web Data Platform and free Web Scraping Tool, to
extract the needed data. With the tool’s feature “bulk extract”, which runs the
extraction method into multiple links at the same time, it is possible to extract
all data into tables from all paginations of the forum. The extracted data which
includes the discussed topics, the developer’s name, the number of views and
replies provides also an insight into the time line of the Vuforia platform since
2011.

3 Analysis and Results

3.1 The Developers Network and Applications

The extracted data from the forum of the website helps to determine how many
actual active actors there are among the developers. Currently the website is
changing as new topics are being added every day. Measurement on SPSS is
conducted in the data gathered previously from the forum. From the data it
has been determined that 4,803 different developers have created one topic or
more in the forum. And the first five most active users have respectively posted
between 125 and 61 topics. The first actor started being active in 2012, the
second in 2010, the third in 2011, the fourth and the fifth in 2013.

The data mining tool import.io has been used for extracting the topics dis-
cussed in the forum webpage, the number of replies and views, the name of the
active developer who posted the subject and the date of posting. The forum
consists of 11,248 topics, 63,353 posts and 184,289 users (developers) [5]. Within
the forum three topics have been created: News & Announcements, FAQ and
the AR Technical Discussion. The AR Technical Discussion consists itself of a
range of topics which have been added by developers.

A Case Study of the Health of an Augmented Reality Software Ecosystem 147

The analyzed apps are extracted from the marketing website of Vuforia [2].
The app data was collected and listed manually in a table with name, category,
satisfaction rating, maturity rating and the provider. After extracting only the
apps available in the EU App store, and only the apps of which the wanted
information was available, 848 apps have been analyzed.

Figure 1 shows the rating of the apps which varies from 1 to 5 stars in the App
Store. Most of the apps did not have enough ratings to calculate an average. We
can also see that the apps that have been rated, received a high rating, around
4 and 4.5 stars.

Fig. 1. Counted customer ratings of Vuforia’s Apps

To see if the apps that use Vuforia make profit on sales, the data on the price
of the apps have been collected. The percentage of free apps and paid apps is
considerably different. 97.4 % of the analyzed apps are free and the rest of the
apps have a price range from $1,99 to $3,99.

The apps were also divided across 18 categories, as shown on the website [2].
The maturity rating of the apps, can be respectively ages 4+, 9+, 12+ or 17+.
These age ratings are based on the content of the apps and shows if Vuforia is
mostly used for apps with a low or high minimum age for use. Most of the apps
(84.8 %) are suitable for persons of 4 years and older. The rest of the maturity
ratings are almost equally divided.

The categories : Advertising, Apparel, Architecture, Art, Automotive, Edu-
cation, Electronics, Politics, Publishing, Retail/Etail, Sports, Tourism and Toys
which scored an average age maturity equal or lower than 5 were placed as
less serious categories. The categories Entreprise, Entertainment, Food & Bev-
erage,Gaming and Health which received an age maturity average higher than
5 were placed as serious categories. Figure 2 details the different categories with
the less serious categories in green and serious categories in blue.

148 L. Soussi et al.

Fig. 2. Number of apps per category (Color figure online)

With the average age maturity of every category, a regression on the app
categories could be performed, therefore 2 groups were conducted: Group 1 are
the less serious apps and Group 2 are the serious apps. Three hypotheses have
been conducted to measure the correlations between the ratings, maturity ratings
and app categories.

– H1: Less serious categories get more ratings.

The Pearson correlation test gives us significance of 0,004 which means that
we are not able to reject hypothesis H1. There is a correlation between the
category of the apps and the number of ratings they get.

– H2: Apps with immature content get lower rates.

The test result from the Pearson correlation is 0,628 which is higher than the
significance level so we have to reject H2.

– H3: Apps with mature content are paid over apps with immature content.

The correlation test on the third hypothesis shows us that the apps with
mature content are not paid over apps with immature since the outcome is
0,939 on a significance level of 0,05.

A Case Study of the Health of an Augmented Reality Software Ecosystem 149

3.2 The Software Network of Augmented Reality SDKs

The software components that are part of Vuforia could be interacting and con-
necting with other components outside Vuforia’s own ecosystem like other AR
SDKs, together forming the software network [6]. A comparison of several AR
SDKs is made to find out where the other platforms of the software ecosystem
are placed in the overall AR SDK market, and which one is the best to use for
developers.

D. Amin and S. Govilkar [7] did an extensive comparison on the differences
between AR SDKs. Metaio [8] has recently stopped selling their products and
subscriptions because it was sold to Apple in 2015 [9]. It is not clear what Apple’s
plans are with the SDK therefore Metaio will not be taken into account in the
comparison.

The first point in the comparison made by Amin & Govilkar [7] is based on
the license type the mentioned companies use. As we can see in Table 1 only
ARToolkit provides an open source license, and is also available for free as for
commercial. The rest of the SDKs are available for free or can be bought as a
commercial version.

Table 1. Comparison based on license type and supported platform [7]

The second point in the comparison is the platform which the SDKs support,
the possibilities have been narrowed down to iOS, Android or Windows. Only
Vuforia and Wikitude are an exception because their SDKs does not support
iOS. The rest of the SDKs support every platform.

3.3 The Orchestrator: From Qualcomm to PTC

The first orchestrator of the Vuforia ecosystem was the company Qualcomm,
founded in July 1985 in San Diego (U.S.), which focuses on a variety of industries.
In an official statement on November 3rd Qualcomm presented the sale of Vuforia
to PTC Inc. PTC is a global provider of technology platforms and solutions and
is like Qualcomm also focusing on IoT, Smart Homes, and is deployed in 28,000
other businesses.

On the news page of PTC’s website [10] they state that PTC commits to not
only the continued growth of Vuforia technology, but also to the community, and
the Vuforia ecosystem. According to Qualcomm, the current apps will remain

150 L. Soussi et al.

unchanged and developers will continue to have the same level of support from
the Vuforia team [2]. PTC’s plan is to combine Vuforia more with the IoT:
“Vuforia has also captured the attention of industry leaders who envision the
potential for augmented reality to transform work.”

4 Discussion

4.1 The Developers Network and Applications

Within the research on the Vuforia SECO, the individual actors are the develop-
ers. According to Manikas and Hansen [6] it is important to look at the health of
the individual actors because they influence the overall health of the ecosystem
(p. 32).“The active participation and engagement of actors brings value to the
ecosystem, while the actor’s robustness increases the probability that the actor
exists and remains involved in the ecosystem activity in the future.” This state-
ment can be proved according to the findings of this study. With the 5 most active
users we notice an important number of contributions in the forum with publi-
cations from 129 topics to 61 topics. These topics generate other responses from
other actors in the ecosystem, making the network actors connecting between
each other. As noticed that those top actors are active already for several years
from 2010 up until now.

According to the data extracted the number of active developers posting in
the forum is important with 4.803 developers, although the website states a big-
ger number the assumption is made that this number includes all the registered
developers in the website.

The network of actors and their interaction within an ecosystem play an
important role in the SECO health of Vuforia and any other platform [6]. As
an addition to this, Manikas and Hansen state that the individual actor health
can be weighted according to the role of the actor in the network. The active
developers are more likely to make improved apps since they are more involved in
the ecosystem. If the developers feel confident in posting articles and information
on the developer portal, they will feel confident in the network. We have seen
that the network of actors is quite large with 184289 users and 63353 posts.

This research looked into the apps of Vuforia, the categories, the customer
ratings, the maturity ratings based on the content of each app and if it is a
free or paid app. This is done to see if it is interesting for Vuforia to invest in
apps with more mature content according to the number of ratings they get.
This is also interesting for the developers since they know if their apps with the
use of Vuforia make them successful or what kind of apps are most rated. The
correlation tests in SPSS showed us that there is a correlation between categories
and the customer rating, and between the app categories and the app ratings.

The conclusion from the first hypothesis is that less serious categories get
more ratings. This could be because of the number of users per category. Another
possible reason is because the less serious category contain more apps than the
serious ones (98 apps in category toys against 6 apps in the category health).

A Case Study of the Health of an Augmented Reality Software Ecosystem 151

The third hypothesis showed us that apps with more mature content are
not paid over apps appropriate for users with a lower minimum age, this means
that the apps with immature content can generate the same revenue as apps
with mature content. The developers will not gain more money with apps that
contain mature content and Vuforia does not really have to focus more on the
developers that make more serious app.

We noticed that after the release note of a new component or new version of
the SDK the publications about questions and tutorials on how to use them gets
higher. The library prepares a mention of frequently asked questions followed by
a detailed answer to it. Links to tutorials are provided to understand how to use
some features of the SDK. Adding to it a whole page following step by step how
to start a work space for beginners. All these subject are related effectively with
all the details and videos that explain the use of the tool and how to fix some
errors for example.

4.2 The Orchestrator: From Qualcomm to PTC

According to Syed and Jansen [11]: “SECO orchestrators can develop strategies
to keep a SECO vibrant and profitable for other organizations in the SECO”.
Manikas and Hansen [6] refer to the orchestrator as the one that can monitor
the health of the ecosystem and take measures to promote ecosystem health if
necessary. To monitor the health, the orchestrator needs a good overview of the
ecosystem and must consult effective measurements. In the case of PTC this can
be hard in the beginning because Qualcomm has already build an ecosystem on
its own. Additionally, the orchestrator can act by creating rules and processes
for the actors, this is also a point where PTC has to put effort to keep the
developers, which are part of the developer community, happy. The change of
orchestrator is not yet really visible and might indicate that it will take some
time to figure out which orchestrator will make/have made Vuforia a complete
and successful ecosystem.

5 Conclusion

This research paper focused on the health of the Vuforia platform ecosystem and
tried to answer the research question: Can Vuforia improve its position in
the market of AR platforms? The analysis on the developers and developer
network showed us that the actors of the ecosystem are well connected through
the forum in the developer portal.

The network consists of a large number of developers and the active ones
seemed to be active already for several years. For the complete ecosystem of
Vuforia, the developer network does not need extra attention, but PTC should be
aware of the possible changes it brings and should make sure that the developers
stay well connected and content. The Vuforia platform is well accessible for
developers and non-developers to gain information on the application and the
ecosystem.

152 L. Soussi et al.

After analyzing the apps on Qualcomm’s website not only a correlation
between the categories of the apps and their rating was found but also between
the app categories and the maturity ratings. Less serious categories seem to get
higher ratings, this means that for the revenue of the company and its position
in the market, the focus should be on these app categories. A reason might be
that the apps in a less serious category are used for entertainment and are more
fun to use in contrary to more serious apps. The actual reason of the outcome
could be measured and studied in further research. Less serious apps do not get
less or lower rates, and serious apps are not paid over less serious apps.

The comparison between AR SDKs in the software network showed us that
no framework is the best and the choice of SDK depends on the choice of the
developer. According to PTC, Vuforia is already the biggest player but Metaio
has been bought by Apple and could rise to become big competition for Vuforia.

References

1. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering-Companion Volume, ICSE-Companion 2009, pp. 187–190. IEEE
(2009)

2. Qualcomm: Vuforia Augmented Reality for 3D Mobile Content. https://www.
qualcomm.com/products/vuforia

3. Chen, Y., Xu, H., Zhou, Y., Zhu, S.: Is this app. safe for children?: a comparison
study of maturity ratings on android and ios applications. In: Proceedings of the
22nd International Conference on World Wide Web, pp. 201–212. International
World Wide Web Conferences Steering Committee (2013)

4. Import.io: Web Data Platform and Free Web Scraping Tool. https://www.import.
io/

5. Forums–Vuforia Developer Portal. https://developer.vuforia.com/forum
6. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems-a con-

ceptual framework proposal. In: IWSECO@ ICSOB, pp. 33–44. Citeseer (2013)
7. Amin, D., Govilkar, S.: Comparative study of augmented reality SDKs. Int. J.

Comput. Sci. Appl. (IJCSA) 5, 11–26 (2015)
8. Metaio: Metaio Product Support. https://www.metaio.com/product support.html
9. Miller, J., Constine, J.: Apple Acquires Augmented Reality Company Metaio –

TechCrunch, 28 May 2015
10. PTC to Acquire Augmented Reality Leader Vuforia from Qualcomm –

PTC. http://www.ptc.com/news/2015/ptc-to-acquire-vuforia-from-qualcomm#
sthash.3orEg4XO.dpuf

11. Syed, S., Jansen, S.: On clusters in open source ecosystems. In: IWSECO@ ICSOB,
pp. 19–32. Citeseer (2013)

https://www.qualcomm.com/products/vuforia
https://www.qualcomm.com/products/vuforia
https://www.import.io/
https://www.import.io/
https://developer.vuforia.com/forum
https://www.metaio.com/product_support.html
http://www.ptc.com/news/2015/ptc-to-acquire-vuforia-from-qualcomm#sthash.3orEg4XO.dpuf
http://www.ptc.com/news/2015/ptc-to-acquire-vuforia-from-qualcomm#sthash.3orEg4XO.dpuf

Towards ‘Human/System Synergistic
Development’: How Emergent System

Characteristics Change Software Development

Helena Holmström Olsson1(&) and Jan Bosch2

1 Faculty of Technology and Society, Malmö University,
Nordenskiöldsgatan 1, 211 19 Malmö, Sweden
helena.holmstrom.olsson@mah.se

2 Department of Computer Science & Engineering,
Chalmers University of Technology,

Hörselgången 11, 412 96 Gothenburg, Sweden
jan.bosch@chalmers.se

Abstract. With recent and rapid advances in areas such as online games,
embedded systems and Internet of Things, the traditional notion of what con-
stitutes a system, as well as how a system is typically developed, is fundamentally
changing. Instead of systems that are specified upfront, and for which there are
pre-defined purposes and tasks, we are increasingly experiencing a situation in
which interconnectivity and emergent configurations of systems allow dynamic
system capabilities that evolve and adjust over time. Regarded as the new digital
business paradigm, these types of systems offer fundamentally new ways for
software development companies in their service- and value creation. At the same
time, they present challenges in these organizations. In this paper, and based on
multiple case study research in three different domains, we identify emergent
system characteristics that pose new challenges on software development. We
present a model that outlines the transition from traditional development towards
‘Human/System Synergistic Development’ (HuSySD), in which software
development is a joint effort between software development teams and intelligent
systems.

Keywords: Online games � Embedded systems � Internet of Things �
Self-learning systems � Self-actuation � Decentralized control � ‘Human/System
Synergistic Development’

1 Introduction

With recent advances in software technology, we are experiencing a fundamental shift in
how people interact with software-intense systems and what is expected from these
systems. In different domains, new types of systems are emergingwith characteristics that
make them very different from the systems we are used to and that software development
organizations have traditionally developed. As one example, and as highlighted in a trend
forecast published by Gartner [1], Internet of Things systems offer fundamentally new
opportunities for value creation, and are rapidly permeating our everyday lives. These

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 153–160, 2016.
DOI: 10.1007/978-3-319-40515-5_12

systems incorporate a number of functions such as e.g. sensing, actuation and control, and
they use advanced data collection and analysismechanisms to initiate actions and tomake
decisions in a predictive or adaptive manner [2, 3]. As a result, these systems foster new
user behaviors and allow new forms of user interaction, they enable new service- and
value creation and they allow innovative business models and opportunities. However,
while these new types of systems offer a wide range of opportunities, they also pose
significant challenges to the organizations developing these. Instead of being systems that
are specified upfront, and for which there are pre-defined purposes and tasks, these
systems are interconnected systems in which emergent configurations allow for dynamic
system capabilities that evolve and adjust over time, and in which advanced data col-
lection and analysis mechanisms allow continuous and automated optimization of system
functionality. For most software development companies, these characteristics make the
systems we see emerge very different from the systems that they have traditionally
developed.

In this paper, and based on multiple case study research in three different domains,
we identify emergent system characteristics that pose new challenges on software
development. We present a model that outlines the transition that software development
companies experience when moving from traditional development towards what we
term ‘Human/System Synergistic Development’ (HuSySD). In this development
approach, software development is no longer only a human effort conducted by soft-
ware development teams, but instead a joint effort in which human development teams
and autonomous intelligent systems share effort and responsibility in development of
continuously evolving systems.

2 Background

Due to rapid advances in technology, new types of systems are emerging with char-
acteristics and capabilities that we didn’t experience up until now. With physical
objects becoming connected to the Internet, data revealing users’ behaviors being
collected and shared, and systems with computational power beyond what we can
imagine and abilities to learn, adjust and take action [4, 5], the potential of future
software systems and services is stunning. As a consequence, the ways in which
software systems are developed, and the ways in which development organizations and
teams traditionally work, are being disrupted. At the same time as these new types of
systems allow tremendous opportunities, they pose great challenges on current software
development practices. Below, we discuss some of the characteristics that distinguish
these systems from other systems, and that pose new challenges on current software
development practices.

First, today’s systems are becoming increasingly powerful with advanced data col-
lection and analysis mechanisms. They collect data continuously, they efficiently process
vast amounts of data, and they response to queries during run-time [6, 7]. For instance,
and as a well-established practice in the web and software-as-a-service industry, com-
panies increasingly adopt A/B testing techniques [8] as a way to continuously learn from
the data they collect, and to have this data inform experiments with different aspects of
their systems. Also, and with increasingly intelligent systems, there is the potential to

154 H.H. Olsson and J. Bosch

have the systems experiment with different behaviors and learn from these experiments
to more rapidly adjust according to e.g. user preferences. With rapid developments in the
areas of embedded intelligence and adaptive systems [5, 9], we will have systems that
can experiment within boundaries set by development teams, and perform automated and
frequent validation of functionality in relation to requests from these teams [10].

Second, as a means to accelerate the development of new innovative services,
systems are becoming increasingly interconnected [11–13]. Interconnectivity implies
having a multitude of heterogeneous systems dynamically discover one another, and
seamlessly interconnect at runtime. Typically, this is achieved by having mediators
[14], mediating adapters [15], or converters [16] perform the necessary coordination
and translation that allow applications to interoperate despite the heterogeneity of their
data models and interaction protocols. Given the huge heterogeneity and dynamism
characterizing these systems, automated solutions are used to achieve interoperability
timely and with the needed level of flexibility [17]. As a result, interconnected systems
can increasingly learn from each other and start to autonomously adapt, adjust and
predict actions [18, 19] based on the collective knowledge generated in the network.

Third, the concept of systems that adapt and improve over time has been a topic of
interest in the artificial intelligence and machine learning communities for a long time.
The basic premise is a software system that learns to reconfigure or adapt itself to new
or changing inputs [3, 9], and that take decisions based on continuous data collection.
In contrast to traditional systems, an adaptive system with embedded intelligence is the
one initiating action [9]. As a result, systems with adaptive characteristics require less
user interaction the more they learn about the user.

3 Research Methodology

3.1 Case Companies

The research presented in this paper builds on close collaboration with software
development companies in the online gaming, the embedded systems and the Internet
of Things domain. In Table 1, we describe the case companies that were involved in
our study, the domain in which they operate and the systems they produce.

3.2 Case Study Design

The research reported in this paper is based on longitudinal multi case study research
[20] in fourteen companies in three different domains: online games, embedded sys-
tems and Internet of Things. Our research is based on close collaboration and frequent
meetings with these companies over a period of more than five years. In each company,
we conducted interview studies, group interviews workshops, observations and vali-
dation sessions with people representing the software development teams, the release
organization, project and product management and sales and marketing. In this paper,
we present a summary of our learnings from the different domains, with a special focus
on how new types of systems, and emergent system characteristics, pose fundamentally
new challenges on software development.

Towards ‘Human/System Synergistic Development’ 155

4 Findings

Online Games. During the last two years, we have engaged with three companies in the
online gaming domain. In these companies, data is systematically collected from
products in the field, and there are defined metrics that serve different stakeholders and
teams in the organization. The companies run continuous experiments with customers
and they collect data revealing system performance and operation. There are specialized
data analytics teams that serve the organizations by processing requests, creating reports,
defining data dashboards and by automating analysis. Typically, management and
development teams have identified a set of key metrics that provide insights into how the
organization is delivering value to its customers, and there is a close collaboration

Table 1. Case companies in three domains.

Case
company

Domain System

Company
A

Embedded
systems

Developer of navigational information, operations management
and optimization solutions for the world’s largest aerospace
company

Company
B

Embedded
systems

Producer of circular pumps for heating and air conditioning, as
well as pumps for water supply

Company
C

Embedded
systems

Developer of network cameras, video encoders and camera
applications for professional IP video surveillance

Company
D

Embedded
systems

Manufacturer and supplier of transport solutions for
commercial use

Company
E

Embedded
systems

A premium automobile manufacturer

Company
F

Embedded
systems

Provider of telecommunication systems and equipment for
mobile and fixed network operators

Company
G

Online
gaming

Developer of mobile games

Company
H

Online
gaming

Developer of mobile games and online entertainment

Company
I

Online
gaming

Developer of IT solutions for businesses, developers,
individuals and children

Company
J

Internet of
Things

Provider of services in the heating and ‘smart energy’ domain

Company
K

Internet of
Things

Provider of waste monitoring and logistics solutions

Company
L

Internet of
Things

Developer of mobile phones, tablets, smart wear and associated
devices that enhance user experience for consumers and
businesses

Company
M

Internet of
Things

Developer of mesh network technology that enables mobile
devices to form instant networks

Company
N

Internet of
Things

Developer of connected monitoring and alarm solutions and
services for smart homes

156 H.H. Olsson and J. Bosch

between management, the development teams and the data analytics team. However, the
companies collect far more data than what they use, and they struggle with identifying
key indicators that effectively drive the overall business goals.

Embedded Systems. We have studied six companies in the embedded systems domain
for the last five years. In all companies, huge amounts of data are collected to help assess
product performance and operation. Primarily, this data works as the basis for trou-
bleshooting and support activities, and as input for understanding any misbehavior or
deviation in the system. However, although there are significant advances in data col-
lection and use, there is no systematic analysis and use of the data. Often, ad hoc
practices emerge in relation to individual or team needs or based on specific requests
from a customer. Analysis is not fully automated and some of the companies report on
tedious work for individuals when shifting through large sets of data to answer a query.

Internet of Things. We studied five companies developing Internet of Things systems
during the last two years. These companies experience an explosion in the amounts of
data that is generated from their systems, and they are in the midst of trying to
understand how to make effective use of this data in relation to systems that inter-
connect and interact with other systems in larger networks. The processing of the data
needs to become much quicker as the company feels that innovative value propositions
and interesting business cases might otherwise be lost.

In Table 2, we summarize the challenges we identify in the case companies.
To summarize our empirical findings, we see that the companies we studied are

experiencing major shifts in the types of systems they develop. Tomanage this transition,

Table 2. Summary of challenges identified in the case companies.

Area of concern: Challenges:

R&D process • The transition from development of standardized systems, towards
dynamic systems that continuously evolve

• The transition from long-term planning and pre-defined milestones,
towards continuous experimentation and evaluation of hypotheses

• The definition of rules, actions and control in decentralized systems
consisting of interconnected objects and devices

Data collection and
use

• The collection, analysis and visualization of data from multiple
sources

• The collection of real-time data for dynamic optimization of user
interfaces and data presented to the user

• The collection of data in systems where user interaction over time
decreases due to the intelligence of the system itself

• The collection of data revealing user behaviors and preferences in
relation to a larger system of which an individual device is only one
part

Business and
organization

• The alignment of R&D data collection practices and PdM
decision-making processes

• The interplay between R&D teams/human efforts, and smart
systems/automated efforts

Towards ‘Human/System Synergistic Development’ 157

there is the need for companies to move beyond current software development practices
and adopt new ways-of-working that support development of continuously evolving
systems.

5 Towards ‘Human/System Synergistic Development’

Based on the case, we see the first beginning of a number of emerging system char-
acteristics. These are: (1) self-learning systems, (2) self-actuation systems, and (3) de-
centralized control. First, self-learning systems refer to adaptive systems whose
operation algorithm improves based on trial and error. Second, self-actuation systems
refer to systems that actively initiate actions based on input from the environment in
which they operate [9]. Finally, decentralized control refers to systems in which each
master in the network has all data. This supports local decision-making and allows for
rapid actions to be taken in the network. A key challenge that all companies experience,
is how to transition towards new development approaches that cater for the emergent
system characteristics they experience. In a number of studies, the transition from
traditional development towards agile development has been outlined [22], as well as
the move beyond agile development practices [6]. Recently, and due to increasingly
intelligent systems [10], we are experiencing a shift towards intelligent systems that
experiment and adjust their responses and behaviors. To reflect this synergy between
development teams and systems, we coin the term ‘Human/System Synergistic
Development’ (HuSySD) to denote a development approach where the development
team provides functionality to the system in the field, and set boundaries within which
the system itself can run automatic experiments (Fig. 1).

Fig. 1. The challenges and emerging system characteristics influencing current software
development practices, and how the new development approach ‘Human/System Synergistic
Development’ (HuSySD) address these.

158 H.H. Olsson and J. Bosch

In the development approach we describe above, development teams do hypothesis
testing while smart systems do automated experimentation and adjust according to the
results from these. In Fig. 2, we outline the ‘Human/System Synergistic Development’
(HuSySD) model with regards to the human and system loops, as well as the steps that
can be deployed to confirm system behaviors.

6 Conclusion

In this paper, we identify emergent system characteristics that pose new challenges on
software development. We identify these challenges and we present a new develop-
ment approach in which software development is a joint effort between software
development teams and smart systems.

References

1. Levy, H.: What’s new in Gartner’s Hype cycle for emerging technologies (2015). http://
www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-
technologies-2015/

2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision,
architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660
(2013)

3. Kinsner, W.: Challenges in the design of adaptive, intelligent and cognitive systems. In:
Proceedings of the 6th IEEE International Conference on Cognitive Informatics, 6–8
August, Lake Tahoo, CA, pp. 13–25 (2007)

4. Kranz, M., Holleis, P., Schmidt, A.: Embedded interaction: interacting with the Internet of
Things. IEEE Internet Comput. 14, 46–53 (2010)

5. Chong, C.Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proc.
IEEE 91(8), 1247–1256 (2003)

6. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case study on
how to close the ‘Open Loop’ problem. In: Proceeding of the 40th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 27–29 August, Verona, Italy
(2014)

Fig. 2. The ‘Human/System Synergistic Development’ (HuSySD) model.

Towards ‘Human/System Synergistic Development’ 159

http://www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-technologies-2015/
http://www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-technologies-2015/
http://www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-technologies-2015/

7. Deng, A., Xu, Y., Kohavi, R., Walker, T.: Improving the sensitivity of online controlled
experiments by utilising pre-experiment data. In: Proceedings of the 6th ACM International
Conference on Web Search and Data Mining (WSDM 2013), 4–8 February, Rome, Italy
(2013)

8. Kohavi, R., Longbotham, R., Walker, T.: Online experiments: practical lessons. IEEE
Comput. 43(9), 82–85 (2010)

9. Peters, G.: Six necessary qualities of self-learning systems: a short brainstorming. In:
Proceedings of the International Conference of Neural Computation Theory and
Applications, pp. 358–364 (2015)

10. Bosch, J., Olsson, H.H.: Submitted. data-driven continuous evolution of smart systems.
Submitted to an International Workshop on Software Engineering

11. Evans, D.: The Internet of Things: how the next evolution of the internet is changing
everything. CISCO White Pap. 1, 14 (2011)

12. Leminen, S., Westerlund, M., Nyström, A.-G.: Living Labs as open-innovation networks.
Technol. Innov. Manag. Rev. 2 (2012)

13. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: Vi-sion,
applications and research challenges. Ad Hoc Netw. 10, 1497–1516 (2012)

14. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Comput.
25(3), 38–49 (1992)

15. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Trans.
Prog. Lang. Syst. 19(2), 292–333 (1997)

16. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE J. Sel. Areas
Commun. 8(1), 127–142 (1990)

17. Di Marco, A., Inverardi, P., Spalazzese, R.: Synthesizing self-adaptive connectors meeting
functional and performance concerns. In: Software Engineering for Adaptive and
Self-Managing (SEAMS) (2013)

18. Rowland, C., Goodman, E., Charlier, M., Light, A., Lui, A.: Designing Connect-ed
Products: UX for the Consumer Internet of Things. O’Reilly Media, Inc., Sebastopol (2015)

19. Liu, Y., Zhou, G.: Key technologies and applications of Internet of Things. In: 2012 Fifth
International Conference on Intelligent Computation Technology and Automation
(ICICTA), pp. 197–200 (2012)

20. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Los Angeles
(2009)

21. Tieben, R., Bekker, T., Schouten, B.: Curiosity and interaction: making people curious
through interactive systems. In: Proceedings of the 25th BCS Conference on
Human-Computer Interaction, pp. 361–370. British Computer Society, Swinton (2011)

22. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to heaven”: a multiple-case
study exploring barriers in the transition from agile development towards continuous
deployment of software. In: Proceedings of the 38th Euromicro Conference on Software
Engineering and Advanced Applications, 5–7 September, Cesme, Izmir, Turkey (2012)

160 H.H. Olsson and J. Bosch

User Dimensions in ‘Internet of Things’
Systems: The UDIT Model

Helena Holmström Olsson1(&), Jan Bosch2, and Brian Katumba1

1 Department of Computer Science, Malmö University, Nordenskiöldsgatan 1,
205 06 Malmö, Sweden

{helena.holmstrom.olsson,brian.katumba}@mah.se
2 Department of Computer Science and Engineering,
Chalmers University of Technology, Hörselgången 11,

412 96 Göteborg, Sweden
jan.bosch@chalmers.se

Abstract. ‘Internet of Things’ (IoT) systems are fundamentally changing the
way in which we interact and perceive technology. In this paper, we focus on
two dimensions of IoT systems; (1) the IoT user interface and (2) the IoT
ecosystem. We develop a model that identifies how data is presented to users
and how users interact with the system, and the level at which systems inter-
connect with, and collects data from, external systems. Companies can use the
model to map their systems according to the dimensions in order to: (1) identify
current state of their systems, (2) identify desired state and (3) better understand
the steps necessary to develop more advanced IoT systems. We evaluate the
dimensions in five case companies and provide empirical evidence on the
transition towards increasingly advanced IoT systems.

Keywords: Internet of Things � User interface � Ecosystem � User value

1 Introduction

Recently, Gartner published its ‘Hype Cycle for Emerging Technologies’, which
illustrates how a technology, IT method or management discipline stacks up against
others in terms of maturity [1]. In this trend forecast, the ‘Internet of Things’ (IoT) is
presented at the peak of the curve with high expectations as the new digital business
paradigm that will offer fundamentally new ways for service- and value creation [2, 3].
With technologies allowing interconnectivity of objects, unobtrusive user interfaces
and embedded intelligence, IoT applications will rapidly permeate our everyday lives
by transforming the way we interact with information technology and our surrounding
environment. Already now, we see examples of how IoT technologies change everyday
life. From being exceptions rather than the norm, concepts such as e.g. ‘smart cities’
[4], ‘smart homes’ [5] and ‘smart health [6] are rapidly changing how we interact with,
and what we expect from, technology.

In this paper, we identify and explore two of the many dimensions that make IoT
systems interesting: (1) the IoT user interface and (2) the IoT ecosystem. We develop a
model in which we: (1) identify the different formats in which data is presented to users

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 161–168, 2016.
DOI: 10.1007/978-3-319-40515-5_13

and the ways in which users interact with the system, and (2) the level to which systems
interconnect with external systems to allow data collection from multiple sources. We
evaluate the two dimensions in the model in five case companies and we outline the
typical evolution path that companies take when transitioning towards developing more
advanced IoT systems.

2 Background: IoT User Interfaces and Ecosystems

Already in 2000, Kevin Ashton envisioned a world where physical and electronic
objects would be networked and interconnected to each other. Currently, it is estimated
that by 2020, more than 50 billion devices will be connected to the Internet [7]. When
connected, these devices become active participants in business, information and social
processes where they are enabled to interact and communicate among themselves, and
with the environment, by exchanging data and information [8, 9].

IoT systems offer radically new opportunities in how to present information to
users, and how to have users interact with the system [10, 11]. Today, users interact not
only by touching, pointing and scanning, but also by audio, video and gestures [12],
and as recognized in [13, 14], the desktop metaphor with windows, icons and pointers
is quickly being replaced with smartphone user interfaces and touch screen input. An
example is a smart home that possesses ambient intelligence and automatic control, and
where residents interact with different appliances via touch interfaces, mobile devices,
physical screens and gestures. With more advanced IoT systems we see a rapid growth
of subtle and smart devices that might not even have a screen, and where remotely
controlled, physical and even invisible user interfaces are becoming the norm. Physical
user interfaces support active interaction with IoT systems and they are designed with a
few buttons, a tiny display and/or some minimal audio output. Finally, some IoT
devices are so subtle that we don’t notice them at all. As an example, most thermostats
and alarms are designed to only demand user attention when there is urgency or when
the system recognizes a deviation from the normal state. With more advanced IoT
systems that automatically adjust to users’ context and goals, no interface might be the
best interface. For presentation and visualization of information, IoT systems use
formats ranging from static presentation of data to dynamic visualization of data. In
static user interfaces, the system presents available data for the user in a standard format
without the opportunity for the user to influence the format. Most often, IoT systems
for control and monitoring of devices such as e.g. applications for monitoring energy
consumption use this format. On the contrary, dynamic user interfaces adjust and adapt
continuously, and allow the users to explore and influence the way in which data is
presented. As an example, route optimization systems typically use this format.

IoT systems are networks of interconnected objects [15, 16]. In a post from
September 2015, Jim Hunter [17] presents a pyramid in which he outlines the different
needs of an IoT system. At the very top of the pyramid, “smart” needs are identified,
i.e. needs that are realized when multiple systems are connected and when analytics,
logic and distributed intelligence allow systems to learn about, and predict, user
behaviors. At this level, and when connected to other systems in the ecosystem, IoT
systems can collect data from multiple sources, combine and correlate real-time

162 H.H. Olsson et al.

information and merge large data sets to help answer queries by its users. Also, and as
the main characteristic, systems can learn from each other and from users and start to
autonomously adapt, adjust and predict behaviors [13, 18] based on the collective
knowledge generated in the ecosystem.

3 The UDIT Model: ‘User Dimension in IoT’

Based on literature, we develop the ‘User Dimensions In IoT’ (UDIT). The model
focuses on two dimensions of IoT systems: (1) the IoT user interface dimension and
(2) the IoT ecosystem dimension. In Fig. 1, we present the model and we define the
characteristics of systems in each quadrant. The model can be used to: (1) identify the
different formats in which data can be presented and the ways in which users interact
with the system, and (2) the level to which systems interconnect with external systems.
Also, companies can map their systems to identify their current state and identify the
desired state.

In being static/standardized, the system presents information in a display/dashboard
format, and users cannot influence this. Static/standardized IoT systems are typically
reactive and waiting for the user to initiate action. On the other end of the spectrum,
‘dynamic/exploratory’, refers to interfaces that continuously optimize and where users
can influence the way data is presented. The ‘IoT ecosystems’ dimension pictures the
ways in which the system interconnects with external systems. In being ‘homoge-
neous’, the system uses data from a single source. In being ‘heterogeneous’, the system
interconnects with external systems to present a merged and synthesized data set.

Fig. 1. The UDIT model: User dimensions in IoT.

User Dimensions in ‘Internet of Things’ Systems: The UDIT Model 163

4 Method

This paper reports on a five-months multi-case study (August–December 2015) in five
companies developing IoT systems. In our study, we adopt an exploratory approach
[19, 20]. As a research method, case study research is used [20], and a multi-case
approach was chosen. For the purpose of this study, we started with conducting a
literature review focusing on the ‘user interface’ and the ‘ecosystem’ dimensions of IoT
systems. Our choice of dimensions was based on the fact that while there is an
impressive amount on research focusing on the technological and architectural aspects
of IoT, there is less research focusing on the user interaction aspects. Based on our
literature review, we developed a model in which we capture the insights from liter-
ature and in which we picture the two dimensions. A draft of the model was presented
at a cross-company workshop to get feedback from the companies. To further evaluate
the model, we conducted expert interviews where we asked the company representa-
tives to map one of their systems according to the two dimensions in the model. As the
start for each interview, the interviewees were given the opportunity to select one
existing IoT system that they develop, and that they wanted to use as the basis for the
discussion. After presenting the model and the different dimensions to the interviewees,
we asked the interviewees to map the selected system according to the dimensions we
had defined. Also, we asked the interviewees to identify the desired state of the system
and how they pictured the transition towards this state. All interviews were carried out
face-to-face with 1-3 people in each company, and lasted for 1-1.5 h. After each
interview the researchers went through the notes, discussed the main items that had
been shared, and confirmed the mapping of the selected system.

4.1 Case Companies

Company A is a supplier of energy and energy related services. The company is
providing a mobile application that presents information about your electricity con-
sumption, and that be used remotely on any mobile device. For the purpose of this
study, we met with the project manager for business innovation.

Company B develops mobile phones, tablets, smart wear and associated devices
that enhance use and experience of information and communications technology for
consumers and businesses. For the purpose of this study, we met with one of the senior
research managers for technology research and advanced applications.

Company C offers a wide portfolio of IP-based products and solutions for security
and video surveillance, network cameras, video encoders, video management software
and camera applications for professional video surveillance. For the purpose of this
study, we met with two senior people from the core technology group.

Company D offers mesh network technology with a software package that enables
mobile devices to form instant networks. For the purpose of this study, we met with
two software developers.

Company E develops monitoring and alarm solutions for homes, and it provides
connected services for smart homes. For the purpose of this study, we met with three
people from the research and development unit.

164 H.H. Olsson et al.

5 Results

5.1 Current State: Homogeneous and Static IoT Systems

Company A. The application is a monitoring solution that helps users track and reduce
energy consumption. Data from two sensors is presented in a mobile app in a dash-
board format. Users can view energy consumption in the household and choose what
appliances to connect to the system, but they cannot influence how data is presented.
Currently, data is collected from a limited number of internal sources.

Company B. The application is an activity tracker application that presents infor-
mation in the form of ‘tiles’ via a mobile phone app interface. Users can easily switch
from one tile to another in order to monitor different activities, and they can choose
what tiles to view. The application is static in the way data is presented. Currently, data
is collected primarily from a few internal sources.

Company C. The product is a surveillance camera that streams video data from
surveillance systems at airports and grocery stores etc., and stores it for further analysis.
Currently, data is collected from one source. The products have standardized interfaces
that record and display video streams for the user without any opportunities to interact.

Company D. The company has so far not focused on user interfaces. However, with
new applications being under development it is only a matter of time before the user
interface will become an area of interest to the company. In providing instant con-
nection to other devices, the system has the opportunity to use data from several
external sources.

Company E. The system is a home security and surveillance system that allows the
user to keep in contact with the home. Information is presented to the user in a static
way and based on a few data sources. Users cannot influence presentation of data and
the system does not integrate with external systems.

5.2 Desired State: Heterogeneous and Dynamic IoT Systems

Company A. The goal is to have a heterogeneous system that connects with external
systems and collects data from these. The company wants to become an integrated part
in a larger ecosystem where several systems provide user value and customized
experiences in an increasingly autonomous way.

Company B. The company aims at providing a more dynamic system in which the
different tiles base their information on several data sources, and where the presentation
of data is continuously updated. If so, the system would require less user interaction
and it would act autonomously to satisfy user needs.

Company C. The company views the transition towards more heterogeneous sys-
tems as the most important step, and foresees great potential for new and innovative
services that combine surveillance with other monitoring tasks.

Company D. The flexibility of the mesh technology gives the company the
opportunity to cut across both business and consumer markets. There is a great
potential in building applications on top of the network in order to allow dynamic
interaction among multiple users, and with an interface that responds dynamically.

User Dimensions in ‘Internet of Things’ Systems: The UDIT Model 165

Company E. Company E aims at having the system collect data from several
sources, and to combine this data to enhance functionality and increase the value of the
product.

5.3 The UDIT Model: Mapping of IoT Systems

As part of the interview study, we asked the interviewees to map one of their systems
according to the dimensions in the UDIT model (Fig. 2).

As can be seen, the majority of the systems are placed within the lower left
quadrant implying that the user interface dimension is static/standardized and that users
cannot influence the way data is presented. Also, this quadrant implies that the systems
use one or a very limited number of data sources as input.

6 Discussion

Based on our interviews, we see that most of the companies identify the transition
towards heterogeneous ecosystems as critical. The main reason for this is the access to
multiple data sources that, if connected, could leverage new user value and innovative
business opportunities. Also, a heterogeneous ecosystem that connects with, and col-
lects data from, multiple sources would allow increasing system automation [18]. In
our case companies, the opportunity to have interconnected systems that learn from
each other, and that adjust based on input from each other, is seen as the next step
towards autonomous systems. With regard to the user interface dimension, our study
reveals that companies strive for increasingly dynamic user interfaces. Although they
all agree on that exploratory interfaces are important for improving user experience,
they emphasize that with increasingly intelligent systems user interaction will,

Fig. 2. Mapping of case study IoT systems according to the UDIT model.

166 H.H. Olsson et al.

and should, be reduced over time. Overall, and in similar with what previous research
suggests [11–14], the interviewees recognize the way in which information is presented
to the user as vital, and with increasingly intelligent systems users should only be
exposed to accurate information that help them accomplish a certain task, and with the
system being responsible for continuous presentation of the most attractive alternative.
Although the companies we studied target different domains, we identify a number of
similarities in relation to what drives the transition towards more advanced IoT sys-
tems. In Table 1, we outline the drivers for the transition towards (1) heterogeneous
ecosystems, and towards (2) dynamic interfaces.

7 Conclusion

In this paper, we explore the user interface and the ecosystem dimension of IoT
systems. We develop a model that captures these dimensions and we evaluate the
model in five case companies. Based on our findings, we conclude that (1) companies
transition towards heterogeneous ecosystems to increase system automation and
autonomy, (2) companies transition towards dynamic user interfaces to improve system
accuracy and optimization, and (3) companies foresee future IoT systems as increas-
ingly autonomous systems for which the desire for user interaction will decrease over
time.

References

1. Fenn, J., Raskino, M.: Mastering the Hype cycle: How to Choose the Right Innovation at the
Right Time. Harvard Business Press, Boston (2008)

2. Gartner’s 2015 Hype Cycle for Emerging Technologies Identifies the Computing
Innovations that Organizations Should Monitor. http://www.gartner.com/newsroom/id/
3114217

3. Levy, H.: What’s New in Gartner’s Hype Cycle for Emerging Technologies (2015). http://
www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-
technologies-2015/

4. Yonezawa, T., Galache, J.A., Gurgen, L., Matranga, I., Maeomichi, H., Shibuya, T.: A
citizen-centric approach towards global-scale smart city platform. In: 2015 International
Conference on Recent Advances in Internet of Things (RIoT), pp. 1–6 (2015)

Table 1. Drivers for transition towards more advanced IoT systems.

Transition: Definition: Drivers:

(1) Towards
heterogeneous
ecosystems

A heterogeneous system collects and combines
data from multiple sources.

∙ Automation
∙ Autonomy

(2) Towards dynamic
interfaces

A dynamic interface continually updates and
optimizes the information it presents.

∙ Optimization
∙ Accuracy

User Dimensions in ‘Internet of Things’ Systems: The UDIT Model 167

http://www.gartner.com/newsroom/id/3114217
http://www.gartner.com/newsroom/id/3114217
http://www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-technologies-2015/
http://www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-technologies-2015/
http://www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-technologies-2015/

5. De Silva, L.C., Morikawa, C., Petra, I.M.: State of the art of smart homes. Eng. Appl. Artif.
Intell. 25, 1313–1321 (2012)

6. Kovatcheva, E., Nikolov, R., Madjarova, M., Chikalanov, A.: Internet of things for
wellbeing – pilot case of a smart health cardio belt. In: Roa Romero, L.M. (ed.) XIII
Mediterranean Conference on Medical and Biological Engineering and Computing 2013.
IFMBE Proceedings, vol. 41, pp. 1221–1224. Springer, Heidelberg (2014)

7. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision,
applications and research challenges. Ad Hoc Netw. 10, 1497–1516 (2012)

8. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision,
architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660
(2013)

9. Chen, G., Huang, J., Cheng, B., Chen, J.: A social network based approach for IoT device
management and service composition. In: 2015 IEEE World Congress on Services
(SERVICES), pp. 1–8 (2015)

10. VentureScanner: The State of Internet of Things in Six Visuals. https://medium.com/
@VentureScanner/the-state-of-internet-of-things-in-six-visuals-a4b9cda3324c#.qu0y4pk2k

11. Kranz, M., Holleis, P., Schmidt, A.: Embedded interaction: interacting with the internet of
things. IEEE Internet Comput. 14, 46–53 (2010)

12. Rukzio, E., Leichtenstern, K., Callaghan, V., Holleis, P., Schmidt, A., Chin, J.: An
experimental comparison of physical mobile interaction techniques: touching, pointing and
scanning. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 87–104.
Springer, Heidelberg (2006)

13. Rowland, C., Goodman, E., Charlier, M., Light, A., Lui, A.: Designing Connected Products:
UX for the Consumer Internet of Things. O’Reilly Media Inc., Sebastopol (2015)

14. Yau, S.S., Buduru, A.B.: intelligent planning for developing mobile IoT applications using
cloud systems. In: 2014 IEEE International Conference on Mobile Services (MS), pp. 55–62
(2014)

15. Evans, D.: The Internet of Things: How the next evolution of the internet is changing
everything. CISCO White Paper, vol. 1, p. 14 (2011)

16. Leminen, S., Westerlund, M., Nyström, A.-G.: Living labs as open-innovation networks.
Technol. Innov. Manag. Rev. 2, 6–11 (2012)

17. Hunter, J.: The Hierarchy of IoT “Thing” Needs. http://social.techcrunch.com/2015/09/05/
the-hierarchy-of-iot-thing-needs/

18. Liu, Y., Zhou, G.: Key technologies and applications of internet of things. In: 2012 Fifth
International Conference on Intelligent Computation Technology and Automation
(ICICTA), pp. 197–200 (2012)

19. Dubé, L., Paré, G.: Rigor in information systems positivist case research: current practices,
trends, and recommendations. MIS Q. 27, 597–636 (2003)

20. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Los Angeles
(2009)

168 H.H. Olsson et al.

https://medium.com/%40VentureScanner/the-state-of-internet-of-things-in-six-visuals-a4b9cda3324c%23.qu0y4pk2k
https://medium.com/%40VentureScanner/the-state-of-internet-of-things-in-six-visuals-a4b9cda3324c%23.qu0y4pk2k
http://social.techcrunch.com/2015/09/05/the-hierarchy-of-iot-thing-needs/
http://social.techcrunch.com/2015/09/05/the-hierarchy-of-iot-thing-needs/

How Do Software Startups Pivot? Empirical
Results from a Multiple Case Study

Sohaib Shahid Bajwa1,3(&), Xiaofeng Wang1,3, Anh Nguven Duc2,3,
and Pekka Abrahamsson2,3

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
bajwa@inf.unibz.it

2 Norwegian University of Science and Technology, 7491 Trondheim, Norway
3 Software Startups Research Network, Trondheim, Norway

http://www.unibz.it,

http://softwarestartups.org

Abstract. In order to handle intense time pressure and survive in dynamic
market, software startups have to make crucial decisions constantly on whether
to change directions or stay on chosen courses, or in the terms of Lean Startup,
to pivot or to persevere. The existing research and knowledge on software
startup pivots are very limited. In this study, we focused on understanding the
pivoting processes of software startups, and identified the triggering factors and
pivot types. To achieve this, we employed a multiple case study approach, and
analyzed the data obtained from four software startups. The initial findings show
that different software startups make different types of pivots related to business
and technology during their product development life cycle. The pivots are
triggered by various factors including negative customer feedback.

Keywords: Software startup � Lean startup � Pivot � Validated learning

1 Introduction

Many people know Twitter as arguably the most famous microblogging platform.
Much less are aware that it was a podcast service provider back in its startup phase in
2005 [8]. Similarly, Instagram back in its early days was a social check-in application
called Burbn, combining features of a photo share app (Foursquare) and a game
(Mafiawars) [7]. As the examples show, very few software startups get their products or
business right immediately, and most do not end up with what they had initially started.

This is because software startups intend to produce cutting edge products and grow
fast under the condition of extreme technology and business uncertainty. In order to
obtain a sustainable business model, software startups change their direction relent-
lessly, or make a pivot in Lean Startup approach [1]. Ries [1] defines pivot as a strategic
change, designed to test a fundamental hypothesis about a product, business model or
engine of growth. Pivot is often considered the outcome of validated learning, another
key concept of the Lean Startup to test a business hypothesis and measure the result.
Software startups often neglect the validated learning process and avoid pivot when
needed, which is one of the reasons behind many startup failures [2]. Pivot is

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 169–176, 2016.
DOI: 10.1007/978-3-319-40515-5_14

considered vital for software startups to survive, grow, and eventually obtain a suitable
business model.

Due to the nascent nature of software startup research, previous empirical studies
specially focusing on pivot are scarce. To the best of our knowledge, no study has been
conducted exploring different types of pivots and identifying different triggering fac-
tors. This study attempts to fill this knowledge gap, examining pivots in software
startups during different product development stages, from concept to mature product.
The main objective of our study is to provide a better understanding of pivots hap-
pening in software startups. To this end, the main research question asked in the study
is: How do software startups pivot during different product development stages?

The rest of this paper is organized as follows. In Sect. 2, background and related
work is presented. Section 3 describes the empirical research approach. The findings
are presented in detail in Sect. 4 and further discussed in Sect. 5. The paper is sum-
marized in Sect. 6 outlining the future research.

2 Background and Related Work

Pivot is a core concept of Lean Startup [1], a startup methodology that focuses on the
Build-Measure-Learn (BML) loop with three steps: turn idea into product, measure its
effect, and learn from the result. This learning is referred to as validated learning [1].
Each hypothesis regarding the business model is tested, and a decision is made
accordingly on whether to pivot or persevere. Pivot is not about introducing just any
change, even though the two terms are often used as synonyms. Pivot is a special kind
of change designed to test and validate the assumptions a startup has about its product,
business model, and the engine of growth [1]. Ries presents ten different types of pivots
that can happen in a startup [1], listed in Table 1.

Only few studies touch upon the topic of startup pivot [2–4, 9, 10]. By providing
evidence of two real world software startup failures, Giardino et al. [2] concluded that
neglecting the learning process and avoiding pivot can become the reasons of software
startup failure. Bosch et al. [9] offer an alternative to pivot or persevere. They present a
software development model for early stage software startups. But the study is not
primarily focused on investigating pivot in software startups. Another study related to
pivot was conducted by Van der Van and Bosch [4], which gives a broader overview
on pivots in software startups. It compares the similarities and differences between
pivot decisions and software architecture decisions. The study considers a pivot as a
business decision only, and is not primarily focused on how software startups pivot
during their life cycles.

The work closely related to this study was from Terho et al. [3], in which the
authors explain how pivots can change business hypotheses in a lean canvas model.
They have identified some pivot types, e.g. zoom-out, customer segment, and platform
pivots. However, there is a lack of evidence of how they were identified and how the
link between pivot types and lean canvas was built.

Based on the observed knowledge gap, we focused our study on understanding
pivots in software startups by identifying their types and examining the factors

170 S.S. Bajwa et al.

triggering them. As Nguyen-Duc et al. [10] argue, different types of pivots might
happen in different phases of a startup’s lifecycle. Therefore we adopted a product
development perspective on the phases of a startup’s lifecycle. A startup goes through
different product development stages during their life cycles, which are: concept, in
development, working prototype, functional product with limited users, functional
product with high growth, and mature product [6]. The product development stages
allow us to obtain a contextualized understanding of pivots in software startups.

3 Research Approach

Given the exploratory nature of our study and the “how” research question, we
employed a multiple qualitative case study approach [11]. The selected four cases were
software-based startups. Each was covering a different product development stage at
the time of our study (Table 2). All pivoted during their product development.

The main data collection method was interviews. We conducted semi-structured
interviews with open-ended questions. Each interview lasted from 30 min to one hour,
and was transcribed for further analysis. All of the interviewees were the founders,
were involved in the decision making process and knew the journey of their startups
from the inception till today.

The data analysis followed the multiple-case analysis suggested by Yin [11].
Within-case analysis was conducted firstly. Then in the cross-case comparison, the
identified pivots and different triggering factors causing pivots across cases were
compared and contrasted.

Table 1. Pivot types [1]

Zoom-in A single feature of a product becomes the whole product itself.
Zoom-out The whole product becomes a single feature of a much larger product,

mainly because the original product is insufficient to address customer
needs.

Customer
segment

While trying to solve the right problem, a startup discovers a different
segment of customers than originally anticipated.

Customer need A startup realizes the problem they try to solve is not very important for
the customers, and discovers other related problems that are more
important.

Platform pivot An application is turned into its supporting platform or vice versa.
Business
Architecture

A startup switches its business architecture e.g. aiming for low volume,
high margin, instead of focusing on mass market.

Value Capture Changing the way/method to capture value (monetize) for a startup.
Engine of
Growth

A startup makes significant changes in its growth strategy to seek rapid
and more profitable growth.

Channel Pivot A startup has identified a more effective way to reach its customers than
its previous one.

Technology
Pivot

A startup delivers the same solution by using completely different
technology.

How Do Software Startups Pivot? 171

4 Results

Case 1: Dicy. Dicy is a software-based startup that provides video service specially
designed for other startups to create their promotion videos. It started as an online
community platform in 2014, where entrepreneurs could meet, share their ideas and
also ask for different resources according to their needs. In July 2014, when their online
platform already had limited users, they identified a different need of customers, and
pivoted from online community platform towards providing video service facilities for
startups.

The main factor causing this customer need pivot was feedback obtained from the
customers, according to the co-founder of Dicy we interviewed: “We realized that most
of the startups, especially software startups, don’t really want to talk about their ideas
because of people stealing their ideas.” The co-founder explained the rationale behind
conducting this pivot: “We decided if we want to help startups in this communication,
we need to find a different solution, in order to approach to investors in an easy and
comfortable way.” The outcome of this pivot was positive, as the co-founder stated:
“During the trial stage, we could see that the concept was kind of approved. We see
that this demand exists.”

When asked about the realization of being flexible and allowing pivot, the
co-founder suggested: “You would realize something is not coming up. And you need
change. That’s very important. You should allow this kind of change. You need to be
flexible. You need to try out what are you capable of doing and what it takes to.”

Case 2: DocMine. The original idea of DocMine when it started was to develop better
encryption software. They made their first significant change when they pivoted
towards providing a unified API to access different social media sources, such as
Facebook and Twitter. The founder commented on the reason behind this pivoting: “In
Sweden, another company is also working on this and developing better than us. So we
shifted and stopped working on this idea.” When describing the reason of not com-
peting with their competitors, the founder described: “You have to react very fast in
this IT world. If you have idea, you have to react fast and take your product into market

Table 2. Profiles of the software startups

Software
startup

Business
domain

Founded # of
Founders

Current product dev.
stage

Country

Dicy Video service 2014 2 Working prototype Italy
DocMine Software as a

service
2015 3 Functional product

with limited users
Austria

Hooka Event
Ticketing
system

2011 2 Functional product
with high growth

Norway

Easy
Learning

Game based
Learning

2006 2 Mature Product Norway

172 S.S. Bajwa et al.

quickly especially if there is another one.” Consequently DocMine conducted different
brainstorming and mind mapping sessions within the team to discover the new
direction of their startup.

Meanwhile, there has been significant change in the DocMine founding team.
Before the pivot described above, one of the co-founders left the team and worked for
Audi. While working on the new social media API idea and the working prototype of the
new product was developed, the left co-founder requested to rejoin the team. At that
time DocMine already hired one person due to this co-founder’s leaving. However
DocMine decided to take back their co-founder. The founder explained the rationale
behind this decision: “We decided to take him [back], not only because of performance,
but because we knew him. So when you are working together, you know who is he, how
he thinks, I think it’s very important for startup to have perfect group dynamic.”

In August 2015, DocMine discovered from the feedback of their customers that
their solution seemed to be more interesting for developers rather than the private
markets and different companies they initially conceived. Even though at that time the
new product was already functional with limited users, they shifted their focus to the
developers, therefore pivoted in terms of customer segment.

Case 3: Hooka. Hooka provides a ticketing system for different events focusing on
small companies in a user friendly way. The main focus is on small companies who
cannot afford expensive solutions to organize events. Their initial service, however,
was completely different: selling magnetic cubes. The business did not get much
traction and they made a complete pivot in 2011.

It is followed by another pivot related to customer segment in the concept stage of
the ticketing system idea. The initial focus of the idea was to develop a bidding system
for bar and nightclub seats. The founder described the situation before pivoting: “We
started to do some research and found out that discos and clubs would not want a
product. They manage things fine as it was.” Due to this negative feedback from the
potential customers, they pivoted towards providing a ticket validation system for small
companies who organize events.

At the same time, they also made significant change in their product from providing
a simple SMS-based application towards developing a complete ticket validation
system. This is an example of zoom-out (product) pivot.

A team pivot was made when the prototype did not work. The founder described:
“They (developers) use Google to search for the code. They are ‘copy-paste’ pro-
grammers. They are not skilled enough basically. They made a prototype that barely
held together… I need to hire the professionals. We did not find any previous work
useful and we scrapped everything.” As a result Hooka changed the whole develop-
ment team, and hired new professionals who could develop.

Case 4: EasyLearning. EasyLearning is a game-based learning platform to be used in
the classrooms (or in any other learning environment) in which a teacher asks a quiz
and students answer using their mobile devices. Initially it started with developing quiz
for Sony Phones or PC’s, but later pivoted to developing quiz for iPhone and Android.
The main factor causing this pivot was the emergence of the smartphone, as the

How Do Software Startups Pivot? 173

co-founder explained: “At that time, Android and iPhone was not available. It is a
major change. So after maybe in 2008 or 2009 we got smartphones and tablets with
proper web browsers then we could make a web-based client to make it a lot easier for
development and we make the whole platform from scratch.”

Although this technology pivot solved their problem of involving a maximum
number of students simultaneously, it had consequences. The co-founder recalled:
“The major issue is, due to the early web technology, due to slow, large latency, we did
not implement web socket or something like that. The client was just pulling the server,
the performance is horrible because client keep pulling the server all the time.”

In order to solve these issues, in the version 3.0, they threw away everything and
started from scratch. The CEO explained: “The main different is nice user interface,
java based server with graphic engine. Web based client as before, but we have editor
to create quiz which was not possible before.”

Table 3 provides a summary of the pivot types and triggering factors found in the
four studied software startup companies.

5 Discussion

Software startups often lie in the soil of extreme uncertainty, and do not know their
customers in advance. Although they are solving a problem, their initially perceived
customers may not be interested in that problem. Startups try their ideas and learn from
their failure, and pivot towards the real needs and right segments of the customers. As

Table 3. Summary of pivots in software startups

Case name Pivot type Triggering factor At which product dev. stage
pivot happened

Dicy Customer
need

Negative customer
feedback

Functional product with
limited users

DocMine Complete Failing to compete with
competitors

Functional product with
limited users

Team Founder’s decision Working prototype
Customer
segment

Negative customer
feedback

Functional product with
limited users

Hooka Complete Negative customer
feedback

Functional product with
limited users

Customer
segment

Negative customer
feedback

Concept

Product
Zoom-out

Negative customer
feedback

Concept

Team Missing team competence Working prototype
Easy
Learning

Technology Emergence of smartphone Working prototype
Technology Technology limitation Functional product with high

growth

174 S.S. Bajwa et al.

shown in the cases of Dicy, DocMine and Hooka, they all experienced customer need
or segment pivots. Learning from their initial failures, they identified the right problems
or customer segments and pivoted towards the new directions. In the cases of DocMine
and Hooka, some pivots were so profound that almost all aspects of the startups were
changed, product, targeted market and business model, only the original entrepreneurial
team remained the same. We termed this type of pivot complete pivot. This is an
addition to the pivot types listed in Table 1 [1].

Building an entrepreneurial team is one of the key challenges faced by many
software startups [5]. As a response to this challenge, the entrepreneurial teams go
through significant changes in team composition. This kind of pivot is termed as team
pivot. It is another addition to Table 1. The change can be related to key members (e.g.
co-founder) or having a new development team completely. Both Hooka and DocMine
experienced team pivots. A lack of competency needed can be one factor causing
software startup teams to pivot, as exhibited in the Hooka case. In contrast, DocMine
evidences the team pivots as consequences of their founders’ decision.

Our study also indicates the potential links between pivots. It happened in all but
Dicy case that one pivot caused another pivot, therefore an evidence of what Terho
et al. [3] call the “domino” effect. For example, after Hooka decided to make customer
segment pivot, they soon realized that their original solution was only a feature of a
much larger solution and therefore performed a product zoom-out pivot. Future studies
need to be conducted in order to investigate the effect of different types of pivots, and
the relationship among them.

The validity threats of our study are hereby discussed. One validity threat is related
to the generalizability of the results. As our study is exploratory in nature, qualitative
case study is a suitable approach to understand how software startups pivot in real
world. More case studies and further quantitative studies need to be conducted e.g.
survey, in order to make the result more generalizable. Another validity threat is related
to the interviewees and their knowledge about their startups’ history. It is mitigated to a
large extent by interviewing the founders who generally have the best knowledge of
their startup processes.

6 Conclusions

Software startups are developing cutting-edge software products significantly con-
tributing to the world economy. However, in order to achieve success, most of the
software startups need to learn and pivot continuously. This paper provides a deeper
contextual understanding of how software startups pivot, employing a multiple qual-
itative case study approach.

The findings of the study show that software startups make different pivots in early
product development stages. Customer segment and technology pivots are common.
The pivots can be triggered by different factors. Negative feedback from customers is
the major factor causing pivots.

We call for further investigation on the consequences and relationship among
different pivots. Further quantitative studies (e.g. survey) need to be conducted to
obtain quantitative validation and to generalize the results.

How Do Software Startups Pivot? 175

Acknowledgement. We are thankful to Pertti Seppänen from University of Oulu, Finland for
his help and support in conducting this study.

References

1. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Business, New York (2011)

2. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a
behavioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP, vol.
182, pp. 27–41. Springer, Heidelberg (2014)

3. Terho, H., Suonsyrjä, S., Karisalo, A., Mikkonen, T.: Ways to cross the rubicon: pivoting in
software startups. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES
2015. LNCS, vol. 9459, pp. 555–568. Springer, Heidelberg (2015). doi:10.1007/978-3-319-
26844-6_41

4. Van der Van, J.S., Bosch, J.: Pivots and architectural decisions: two sides of the same
medal? What architecture research and lean startup can learn from each other. In:
Proceedings of Eight International Conference on Software Engineering Advances (ICSEA
2013), Venice, Italy, pp. 310–317 (2013)

5. Giardino, C., Bajwa, S.S., Wang, X., Abrahamsson, P.: Key challenges in early-stage
software startups. In: Lassenius, C., Dingsøyr, T., Paasivaara, M., Abásolo, M.J. (eds.) XP
2015. LNBIP, vol. 212, pp. 52–63. Springer, Heidelberg (2015). doi:10.1007/978-3-319-
18612-2_5

6. Blank, S.: The Four Steps to the Epiphany, 1st edn. CafePress, San Mateo (2005)
7. Nazar, J.: 14 Fanous business pivots (2013). http://www.forbes.com/sites/jasonnazar/2013/

10/08/14famous-business-pivots/. Accessed on 03 Feb 2016
8. Carlson, N.: The real history of Twitter. Business Insider (2011). http://businessinsider.com/

how-twitter-was-founded-2011-4/. Accessed on 03 Feb 2016
9. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The Early stage software startup

development model: a framework for operationalizing lean principles in software startups.
In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013)

10. Nguyen-Duc, A., Seppänen, P., Abrahamsson, P.: Hunter-gatherer cycle: a conceptual
model of the evolution of software startups. In: Proceedings of the 2015 International
Conference on Software and System Process (ICSSP 2015), NY, USA, pp. 199–203 (2015)

11. Yin, R.: Case Study Research: Design and Methods. SAGE Publications, Thousand Oaks
(2003)

176 S.S. Bajwa et al.

http://dx.doi.org/10.1007/978-3-319-26844-6_41
http://dx.doi.org/10.1007/978-3-319-26844-6_41
http://dx.doi.org/10.1007/978-3-319-18612-2_5
http://dx.doi.org/10.1007/978-3-319-18612-2_5
http://www.forbes.com/sites/jasonnazar/2013/10/08/14famous-business-pivots/
http://www.forbes.com/sites/jasonnazar/2013/10/08/14famous-business-pivots/
http://businessinsider.com/how-twitter-was-founded-2011-4/
http://businessinsider.com/how-twitter-was-founded-2011-4/

Mobile Gamification Principles Applied
to Social Engagement

Short Paper of Industry Experience

Ethan Hadar(&)

Communities Informatics, Zefat Academic College, Zefat, Israel
ethan.hadar@gmail.com

Abstract. Gamification in consumer mobile applications involves unique
usability interaction and gestures, environmental setting, and consumers’ short
attention span. In addition, privacy concerns introduce constraints to the gamified
social activities particularly due to usage of social sharing. This paper presents
mobile gamification principles applied at GAMIFO PaaS, a gamification-based
social engagement cloud platform, and suggests requirements for constructing a
flexible gamification toolset tuned for mobile applications. A case study is dis-
cussed with regard to the impact of location detection, Gyro and alerting, as well
as gamification adjustment for mobile setting, such as the separation of allocated
and redeemed events and timing of consumers’ attention. During the field
experiments over 40 marketing campaigns were investigated, in which sales
conversion ratio varied from 5 % to 50 %.

Keywords: Gamification � Social engagement � Mobile application

1 Introduction

Gamification in the business context is considered as applying games methods to
non-game setting in order to increase users engagement and motivate actions [2]. Many
software business applications such as Support, Sales, and HR management tools,
utilize incentives and rewards as part of their challenge to engage and incentivize
employees to increase their productivity [4, 7, 10]. In the consumer and social networks
space, gamification supports individuals’ activities such as recognition of a contributor
in Trip Advisor [1], or expectation setting for task completion in LinkedIn. Some
systems also implement team gamification principles that incentivize collaboration or
competition amongst several users [9].

In the consumer mobile applications domain additional challenges are introduced,
due to unique usability interaction and gestures, environmental setting, and consumers’
short attention span [5, 14, 15]. Retina size and information overload limit complex
engagement scenarios. Usage of text and voice communication, alongside sensors of
location and motion, enrich the mobile device usability and situational awareness, thus
can contribute to social engagement opportunities [5].

Privacy risks and their effect on gamified social activities are intensified particularly
due to usage of the social sharing capabilities of the mobile operation system [8, 11].

© Springer International Publishing Switzerland 2016
A. Maglyas and A.-L. Lamprecht (Eds.): ICSOB 2016, LNBIP 240, pp. 177–183, 2016.
DOI: 10.1007/978-3-319-40515-5_15

The ease of creating apps that receive and transmit data via social sharing may damage
the effect of the intended social engagement acceptance of the application by exposing
users to privacy risks. Developers should carefully control the format, timing, and
content of the sharing action, adjusting the communication to the right social network
channel.

In this paper we present mobile gamification principles applied in GAMIFO PaaS, a
gamification-based social engagement platform, and propose a set of requirements for
constructing a flexible gamification toolset tuned for mobile applications. We pay
particular attention to privacy concerns in the context of social sharing and peer col-
laborations at the focal point of the business design. An industrial case study addressing
the defined set of requirements is described and discussed.

2 Gamification Requirements for Mobile Social Engagement

The goals of some of the mobile applications business owners include monetization of
the users community with targeted advertisements [6], such as the Facebook model, or
improving business process conversion stages towards a business goal, such as the
Amazon e-commerce model [12]. Monetization improvement is based on increasing
the number of active users and multiplying the conversion ratio with a larger set of
users, thus generating more user traffic towards the promoted website. Conversion rate
increase technologies are tuned to maximize the probability of a single user to complete
the process steps and engage with additional business processes [12, 13].

Targeting individuals [12] can be enhanced by a social proactive engagement that
addresses the bi-directional influence of peers for improving cohort ratio of a business
process [3, 14]. Trusted peers’ passive recommendations or active pressure for per-
forming an action have proved to be valuable in retail [3]. Common examples for such
activities are recommendation sections in Hospitality or e-commerce, or e-mail
automating for incentivizing and rewarding quality referrals [13].

Yet, incentivizing quality prospects requires that the influencer would be com-
fortable with the content and selected channel, such as e-mail, WhatsApp, Facebook,
texting, and other social sharing and invite methods [8, 14].

Considering the factors and background presented above, and based on our
experience, we recommend that a mobile application gamification technology should
provide:

• Adjustable content according to social channel capability. Users expect ready-
made content, yet that is adjustable for communicating with a referred party. The
readymade content should be adjustable to the social media channel via the social
sharing capability of the mobile apps. Examples are text message length adjustment
as required by Twitter, image resolution as limited by WhatsApp, and content
automated imaged as required by Facebook.

• Variable reward and social connectivity notification capability. The assigned
reward needs to be in proportion with the business value and divided between the
influencer and the target referred lead. In addition, the allocated reward budget may
be distributed not only between these parties, but also with consideration of the

178 E. Hadar

process stages. Incentives may be allocated when commencing the engagement
process, during and after the business goal is achieved by each party. Consider
purchasing an item in an e-commerce system. The first user may purchase an item,
and then influence another user. Upon providing a lead information to the
e-commerce site, the influencer may receive a reward. When the influenced party
accepts the invitation to purchase, the influencer may receive another reward. When
the influenced party purchases the goods, the influencer may receive yet additional
reward. The same stages and rewards may apply to the influenced party upon
opening the influencer message, and when conducting the purchase. In order to
expedite the success probability of the supporting referral system, a mobile appli-
cation can propose readymade content, adjusted and tuned to the most likely to be
used social network channel for influencing the prospect lead. In addition, the action
should be accompanied by a gamified value of the reward according to the business
value, business step and likelihood of success.

• Rewards allocation, flexible timing and non-stable mobile network connectiv-
ity. Reward allocation can occur immediately upon an engagement action by an
influencer, or following the completion of the task by an influenced party. An
example may be receiving a cash reward for each referred customer, whether the
customer has purchased the goods or not, or per a successful purchase of the
referred party. Reward allocation can be conducted directly via the mobile appli-
cation rich client, assuring rapid response for improved user experience, as it does
not require network connectivity. However, reward allocation following a com-
pletion of a requested task requires server-side follow-up of the business outcome.
Consequently, a non-completed activity should trigger a reminder to the influencer
to re-connect with the influenced party in order to ensure business process progress
and completion. Such reconnection requires additional reward allocation and
incentives. Namely, the rewards’ structure can be a monolithic one, or a breadcrumb
gradual incentive leading to task completion.

• Rewards redeeming management with gamified push-notification. Allocation
and redeeming of rewards are different. Allocation manages the potential usage of
rewards and the business future commitment. Redeeming is the substitution of the
allocated rewards voucher or token with goods, funds, or other business value
transactions as defined by the business and its consumer, impacting inventory and
profit. Businesses consider allocation of rewards as a future debt and business
exposure. Allocated rewards that were not redeemed should decrease risks and
obligations. Examples are expired loyally club points for aviation companies,
particularly points that should have been transferred to a third party, such as done
by Star Alliance travel affiliation. In mobile application design, adding a timer and
countdown to an allocated reward, and informing its status to the user by a
push-notification service, will assist in controlling such risks.

• Reward usage reminder using geo-location. In addition to the timer expiration of
a reward, regular geo-location based services [13] can inform a user on an unre-
deemed reward that is relevant to the transient location. Once allocated, a reward
can be self-aware of the physical environment and according to geo-location
proximity, trigger a notification to the user. Proactive notifications can increase
consumers’ traffic to physical stores, without spamming since the contextual

Mobile Gamification Principles Applied to Social Engagement 179

opportunity of a geographic proximity will be considered more appealing.
Redeeming fulfillment of an allocated reward is meant to increase customer satis-
faction. Just consider how many times you forgot to use a coupon that you placed in
your physical or digital wallet.

• Geo and Gyro mobile engagement capability. Usage of idle business time may
increase the probability for a user to engage and influence others. Geo location and
Gyro activity detection can indicate if a user is riding a train, or at home, sitting on a
couch. Mobile device sensors and applied analytics can support the detection of the
user situational condition. The mobile application can notify the user of an option to
influence others or conduct a task when the user’s attention is more focused and
relevant [11]. The timing of receiving a notification message is crucial for the
probability of reply according to the user attention span. As such, profiling the
consumer behavior and correlating it with location and activity of the mobile
device, will increase the probability of conversion or task completion.

3 The Case Study

Gamifo created a set of gamification technologies that employed all the above prin-
ciples and more. The gamification purpose was to support the promotion of hospitality,
restaurants, clothing and other retail small and medium businesses products and ser-
vices, while detecting micro-influencers. The technology set was comprised of a cloud
platform, NetSales, and a consumer mobile application, TaPrize (Fig. 1).

Fig. 1. A case study that exemplifies a gamified marketing campaign and social engagement
technology, implemented at Gamifo LTD.

180 E. Hadar

NetSales enables retailers to configure gamification parameters for their marketing
campaigns. More than 4300 different types of social gamified activities can be con-
structed by the NetSales platform, such as managing joint assignments, voting on
favorite items or product brand, answering questionnaires for contributing crowd
wisdom, setting an auction, and scheduling appointments. NetSales enabled rapid
creation of social engagement activities to support marketing campaigns over multiple
consumers’ social and mobile outlets.

TaPrize enables consumers to be exposed to campaigns, engage with other users,
and manage their personal allocated and redeemed rewards. TaPrize Social Engage-
ment mobile application is a word-of-mouth technology that assists people to collab-
orate around their social activities. Although constructed for mobile consumption
primarily, the HTML5-based application can also be used as embedded technology
within Facebook pages, brand websites and e-commerce sites, while maintaining the
mobile usability aspects.

The digital marketing manager can create increasing customer engagement with the
brand or products, and improve timing of targeted advertisements while adjusting the
social engagement activities to their business. In the case study, more than 40 mar-
keting campaigns were investigated. Conversion rates varied from 5 % to 50 %. In
some cases, when the engagement process and incentives were changed for combining
both pre and post rewards for a certain business process, the conversion rate increased
from 8 % to 32 % in average. Collaboration between businesses enabled allocation of
rewards by one business and redeeming by another, redirecting consumers’ traffic
between the businesses. An example is purchasing a vacation at a hotel and receiving a
free ticket to a tourist attraction that is valid for a year after the vacation. NetSales
ensures transactions integrity by funding a losing product, which is the incentive
reward such as the free ticket above, or commission for increasing sale of another
product (up-sale).

Figure 1 depicts the conceptual business flow of the technology as follows:

• Campaign Curation. Curated marketing campaigns in performed on NetSales,
controlling multiple parameters. An example is controlling participant number in a
purchasing group campaign. In case of multiple participants, incentive could be
allocated monolithically or proportional to the participants’ number as done with
prorated purchasing groups. Another example is the reward timing as detailed
above, ranging from a first exposure event, through the breadcrumb actions while
preforming a word-of-mouth task. A third example is privacy sensitivity of
proactive reminders by push-notification technology. Over-usage may cause con-
sumers to block the retailer, whereas under-usage may reduce conversation rates.

• Campaign Publishing. The curated campaign is published to the consumers via the
TaPrize technology set on their mobile applications and on the retailer Facebook
page or e-commerce site, yet while maintaining a mobile application UI layout for
usability. Namely, ensuring inception towards mobile application even when
interacted on a desktop screen.

• Social Engagement Adjustments of Word-of-Mouth. Consumers can interact
with a proposed business deal, receive allocated rewards, delegate to a friend,
influence a friend and propagate the campaign with the social sharing options of a

Mobile Gamification Principles Applied to Social Engagement 181

mobile app and redeem a reward. Content adjustment to the social channel capa-
bilities, method of redeeming and verification is automatically adjusted.

• Collaborative Social Activities. Consumers can also interact with their friends on a
non-commercial setting such as forming groups for going out to dinner or a movie.
Such social bonding activities, which are similar to WhatsApp groups, are rewarded
with discounts from the sponsoring retailer. Accordingly, the retailer can improve
the business branding and detect future retargeting audience.

• Sales Increase. New users receive notification and incentives from their trusted
friends and family, namely, their tribal-influencers. Retailers can leverage such
incoming traffic for up-sale, cross-sale, and expedite sales’ closure. Notifications on
allocated yet not redeemed rewards are monitored for increasing conversion rate, as
well as proximity sensitivity for increasing the probability of an opportunistic sale.

• Influencers Analytics. Extracted from the influencers’ invitation flow and type of
content, as well as the mobile device’s Geo-Location during interactions, the system
can deduce what topics are relevant to which user based on their preferences and
attention span.

4 Conclusions

This paper discussed an industrial experience for enhancing gamification by using
mobile devices’ unique properties. In particular, location detection services (GPS, Wi-Fi
and cellular grid), movement services (Gyro), and alerting services (push-notification).

In addition, while combining these mobile services into a gamified business pro-
cess, the fundamentals gamified parameters where also adjusted, such as:

• Separation of allocated and redeemed events.
• Motivating individuals to complete tasks for their own benefit, versus motivating

influencers to engage in a word-of-mouth activity.
• Timing of consumers’ attention to a gamified marketing campaign and rewards

based on location and activity.
• Increasing users’ confidence levels with the gamified business process, based on a

first exposure created by a trusted tribal-influencer.

A case study of a startup company called Gamifo was examined, and relevant
mobile attributes where discussed according to their implementation in Gamifo’s cloud
platform-as-a-service and a mobile hybrid application. The business results of
employing the requirements with the above technology yielded better conversion rates.
A future direction of the technology is to create a self-service gamification platform, in
which the most successful conversion campaigns would be pre-packaged for ease of
use and scalability.

References

1. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Steering user behavior with
badges. In: Proceedings of the 22nd International Conference on World Wide Web, Rio de
Janeiro, Brazil, pp. 95–106 (2013)

182 E. Hadar

2. Bittner, J.V., Shipper, J.: Motivational effects and age differences of gamification in product
advertising. J. Consum. Market. 31(5), 391–400 (2014)

3. Blohm, I., Leimeister, J.M.: Gamification. Bus. Inf. Syst. Eng. 5(4), 275–278 (2013)
4. Bohyun, K.: Understanding Gamification. ALA TechSource, Chicago (2015). Library

Technology Reports, vol. 51(2)
5. Crowley, D.N., Breslin, J.G., Corcoran, P., Young, K.: Gamification of citizen sensing

through mobile social reporting. In: IEEE International Games Innovation Conference
(IGIC), pp. 1–5 (2012)

6. Fields, T.: Mobile & Social Game Design: Monetization Methods and Mechanics. CRC
Press, Boca Raton (2014)

7. Gamification Market by Deployment, Application, Size: Worldwide Market Forecasts and
Analysis for 2013–2018, Markets and Markets (2015). http://www.marketsandmarkets.com/
PressReleases/gamification.asp

8. Hamari, J., Koivisto, J.: ‘Working out for likes’: an empirical study on social influence in
exercise gamification. Comput. Hum. Behav. 50, 333–347 (2015)

9. Hamari, J., Koivisto, J., Sarsh, H.: Does gamification work? A literature review of empirical
studies on gamification. In: 47th Hawaii International Conference on System Sciences,
pp. 6–9. IEEE, Hawaii, January 2014

10. Herzig, P., Ameling, M., Schill, A.: A generic platform for enterprise gamification. In: Joint
Working IEEE/IFIP Conference on Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 20 August 2012, pp. 219–223. IEEE (2012)

11. Keller, J.M.: Using the ARCS motivational process in computer-based instruction and
distance education. New Dir. Teach. Learn. 78, 37–47 (1999)

12. Saleh, K., Shukairy, A.: Conversion Optimization: The Art and Science of Converting
Prospects to Customers. O’Reilly Media Inc., Sebastopol (2010)

13. Sales Force.com.: 2015 State of Marketing, SalesForce Marketing Cloud (2015). https://
secure.sfdcstatic.com/assets/pdf/datasheets/mc_2015stateofmarketing.pdf

14. Van Der Heijden, H., Verhhagen, T., Creemers, M.: Understanding online purchase
intentions: contributions from technology and trust perspectives. Eur. J. Inf. Syst. 12(1), 41–
48 (2003)

15. Zichermann, G., Cunningham, C.: Gamification by Design: Implementing Game Mechanics
in Web and Mobile Apps. O’Reilly Media, Sebastopol (2011)

Mobile Gamification Principles Applied to Social Engagement 183

http://www.marketsandmarkets.com/PressReleases/gamification.asp
http://www.marketsandmarkets.com/PressReleases/gamification.asp
https://secure.sfdcstatic.com/assets/pdf/datasheets/mc_2015stateofmarketing.pdf
https://secure.sfdcstatic.com/assets/pdf/datasheets/mc_2015stateofmarketing.pdf

Author Index

Abrahamsson, Pekka 169
Andersson, Jesper 79

Badampudi, Deepika 1
Bajwa, Sohaib Shahid 169
Bosch, Jan 153, 161

Cicchetti, Antonio 1

Duc, Anh Nguven 169

Fotrousi, Farnaz 16
Franke, Ulrik 1
Fricker, Samuel A. 16

Gerstl, David S. 109

Hadar, Ethan 177
Helander, Nina 124
Hyrynsalmi, Sami 32

Jaakkola, Hannu 124
Jansen, Slinger 145

Katumba, Brian 161

Maedche, Alexander 47
Manikas, Konstantinos 63
Murari, Bhanu Teja 94

Nikula, Uolevi 135

Olsson, Helena Holmström 153, 161

Pettersson, Oskar 79

Saltan, Andrey 135
Seffah, Ahmed 135
Seppänen, Marko 32
Smite, Darja 1
Soussi, Lamia 145
Spijkerman, Zeena 145
Suominen, Arho 32

Wang, Xiaofeng 169
Werder, Karl 47
Wnuk, Krzysztof 1, 94
Wohlin, Claes 1

Yrjönkoski, Katariina 124
Yurkov, Alexander 135

Zobel, Benedikt 47

	Preface
	Organization
	Software Product Categories in the Automotive Industry and How to Manage Them (Keynote)
	Contents
	Supporting Strategic Decision-Making for Selection of Software Assets
	Abstract
	1 Introduction
	2 Related Work
	2.1 Decision-Making
	2.2 Deciding on Origin
	2.3 GRADE Taxonomy
	2.4 Decision-Making in Software Business

	3 Descriptive Models
	3.1 Decision Model
	3.2 Property Model
	3.3 Context Model

	4 Evidence-Based Knowledge Repository
	5 Decision-Making Process
	6 Summary and Further Work
	Acknowledgments
	References

	Software Analytics for Planning Product Evolution
	Abstract
	1 Introduction
	2 Background
	3 Research Design
	4 Analysis and Results
	4.1 A Model for Analytics-Based Product Planning
	4.2 Validation of the Model

	5 Discussions
	6 Conclusions
	Acknowledgments
	Appendix: Tables of Qualitative Analysis
	References

	Ecosystems Here, There, and Everywhere
	1 Introduction
	2 Background
	3 Data and Research Method
	4 Results
	5 Discussion and Conclusions
	References

	PDISC – Towards a Method for Software Product DISCovery
	Abstract
	1 Introduction
	2 Foundations and Related Work
	3 Research Method
	3.1 Inclusion and Exclusion Criteria
	3.2 Data Sources and Search Strategy
	3.3 Data Extraction and Data Analysis

	4 Results
	5 Designing a Method for Software Product Discovery
	6 The PDISC Method
	7 Conclusion
	References

	Supporting the Evolution of Research in Software Ecosystems: Reviewing the Empirical Literature
	1 Introduction
	2 Related Work
	3 Method
	4 Analysis
	5 Summary
	References

	A Survey of Modeling Approaches for Software Ecosystems
	1 Introduction
	2 Systematic Mapping Study
	2.1 Research Context
	2.2 Research Questions
	2.3 Systematic Mapping
	2.4 Search String
	2.5 Inclusion Criteria
	2.6 Selection Process
	2.7 Data Extraction

	3 Data Collection and Mapping
	3.1 Map Description
	3.2 Meta Categories
	3.3 Description Categories
	3.4 Support Categories

	4 Analysis
	4.1 RQ1: Software Ecosystem Architecture Documentation
	4.2 RQ2: SECO Domains
	4.3 RQ3: Standardization

	5 Conclusions
	References

	The Impact of Internet of Things on Software Business Models
	1 Introduction
	2 Background and Related Work
	3 Research Methods
	3.1 Literature Review
	3.2 Industrial Survey
	3.3 Validity Threats

	4 Results and Analysis
	4.1 Literature Review Results and Analysis

	5 Survey Results and Analysis
	6 Conclusions and Future Work
	References

	Leveraging Bitcoin Blockchain Technology to Modernize Security Perfection Under the Uniform Commercial Code
	1 Introduction
	2 Secured Transactions and the UCC
	3 The Bitcoin Protocol and the Blockchain
	3.1 The Problem of Double Spending
	3.2 The Blockchain and Proof of Work

	4 Using the Blockchain for Security Registration
	4.1 Replacing Names with Public Keys
	4.2 Building Records and Blocks
	4.3 Assembling a UCC Blockchain

	5 Barriers to Implementation
	References

	To Network or not to Network? Analysis of the Finnish Software Industry – A Networking Approach
	Abstract
	1 Introduction
	2 Recent 10 Years in the Finnish Software Industry Development
	3 A Networking Framework
	4 Challenges and Opportunities of Networking
	5 Answers to Research Questions and Conclusions
	References

	A Dynamic Pricing Model for Software Products Incorporating Human Experiences
	Abstract
	1 Introduction
	2 Background and Works Related
	3 The Small Picture: Dynamic Pricing Model
	3.1 Basic Assumptions on Software Market Structure
	3.2 Modelling Software Consumer Behavior
	3.3 Optimization Problem for Software Company
	3.4 Results

	4 The Big Picture: Software Product Strategy Design
	5 Concluding Remarks
	References

	A Case Study of the Health of an Augmented Reality Software Ecosystem: Vuforia
	1 Introduction
	2 Research Method
	3 Analysis and Results
	3.1 The Developers Network and Applications
	3.2 The Software Network of Augmented Reality SDKs
	3.3 The Orchestrator: From Qualcomm to PTC

	4 Discussion
	4.1 The Developers Network and Applications
	4.2 The Orchestrator: From Qualcomm to PTC

	5 Conclusion
	References

	Towards ‘Human/System Synergistic Development’: How Emergent System Characteristics Change Software Development
	Abstract
	1 Introduction
	2 Background
	3 Research Methodology
	3.1 Case Companies
	3.2 Case Study Design

	4 Findings
	5 Towards ‘Human/System Synergistic Development’
	6 Conclusion
	References

	User Dimensions in ‘Internet of Things’ Systems: The UDIT Model
	Abstract
	1 Introduction
	2 Background: IoT User Interfaces and Ecosystems
	3 The UDIT Model: ‘User Dimension in IoT’
	4 Method
	4.1 Case Companies

	5 Results
	5.1 Current State: Homogeneous and Static IoT Systems
	5.2 Desired State: Heterogeneous and Dynamic IoT Systems
	5.3 The UDIT Model: Mapping of IoT Systems

	6 Discussion
	7 Conclusion
	References

	How Do Software Startups Pivot? Empirical Results from a Multiple Case Study
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Research Approach
	4 Results
	5 Discussion
	6 Conclusions
	Acknowledgement
	References

	Mobile Gamification Principles Applied to Social Engagement
	Abstract
	1 Introduction
	2 Gamification Requirements for Mobile Social Engagement
	3 The Case Study
	4 Conclusions
	References

	Author Index

