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Abstract Paraconsistency and its dual paracompleteness are now counted as key
concepts in intelligent decision systems because somuch inconsistent and incomplete
information can be found around us. In this paper, a framework of conditional models
for conditional logic and their measure-based extensions are introduced in order to
represent association rules in a logical way. Then paracomplete and paraconsistent
aspects of conditionals are examined in the framework. Finally we apply conditionals
into the definition of association rules in data mining with confidence and consider
their extension to the case of Dempster-Shaer theory of evidence serving double-
indexed confidence.
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9.1 Introduction

The authors have tried to give a kind of logical foundation to data mining.Murai et al.
[15–17] tried to present a logical formulation of association rules [1–3] using Chel-
las’s conditionalmodels for conditional logics [7] and theirmeasure-based extensions
(cf. [12–14]). Akama and Abe [6] proposed a comprehensive idea of paraconsistent
logic databases as data warehouse based on paraconsistent and annotated logics [4,
5, 8].

In our opinion, paraconsistency and its dual paracompleteness become key con-
cepts in future development of intelligent decision systems because nowadays there
are so much inconsistent and incomplete information around us. In classical logic,
inconsistency means triviality in the sense that all sentences become theorems. Para-
consistency means inconsistency but non-triviality. Thus we need new kinds of logic
like paraconsistent and annotated logics [4, 5, 8]. Paracompleteness is the dual con-
cept of paraconsistency where the excluded middle is not true.

In this paper, we put association rules in a framework of conditional models [7]
and their measure-based extensions (cf. [12–14]) and examine their paracomplete
and paraconsistent aspects in the framework.

Then we notice that the standard confidence [1] is nothing but a conditional
probability where even weights are a priori assigned to each transaction that contains
the items in question at the same time. All of such transactions, however, do not
necessarily give us such evidence because some co-occurrences might be contingent.
For describing such cases we further introduce double-indexed confidence based on
Dempster-Shafer theory [19].

9.2 Chellas’s Conditional Models and Their
Measure-Based Extensions for Conditional Logics

9.2.1 Standard and Minimal Conditional Models

Given a finite setP of items as atomic sentences, a language LCL(P) for conditional
logic is formed from P as the set of sentences closed under the usual propositional
operators such as �, ⊥, ¬, ∧, ∨, →, and ↔ as well as �→ and ♦→1 (two kinds of
conditionals) in the following usual way.

1. If x ∈ P then x ∈ LCL(P).
2. �,⊥ ∈ LCL(P).
3. If p ∈ LCL(P) then ¬p ∈ LCL(P).
4. If p, q ∈ LCL(P) then p ∧ q, p ∨ q, p → q, p ↔ q, p�→q, p♦→q ∈ LCL(P).

1In [7], Chellas used only �→. The latter connective ♦→ follows Lewis [11].
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Chellas [7] introduces two kind of models called standard and minimal. There rela-
tionship is similar to Kripke and Scott-Montague models for modal logics.

Definition 9.1 (Chellas [7], p. 268) A standard conditional modelMCL for condi-
tional logic is a structure

〈W, f, v〉,

where W is a non-empty set of possible worlds, v is a truth-assignment function

v : P × W → {0, 1},

and f is a function
f : W × 2W → 2W . �

The truth conditions for �→ and ♦→ in standard conditional models are given by

1. MCL, w |= p�→q
def⇐⇒ f (w, ‖p‖MCL) ⊆ ‖q‖MCL ,

2. MCL, w |= p♦→q
def⇐⇒ f (w, ‖p‖MCL) ∩ ‖q‖MCL �= ∅,

where ‖p‖MCL = {w ∈ W | MCL, w |= p}. Thuswe have the following relationship
between the two kind conditionals:

p�→q ↔ ¬(p♦→¬q).

The function f can be regarded as a kind of selection function. That is, p�→q is
true at a world w when q is true at any world selected by f with respect p and w.
Similarly, p♦→q is true at a world w when q is true at least at one of the worlds
selected by f with respect p and w.

A minimal conditional models is a Scott-Montague-like extension of standard
conditional model [7].

Definition 9.2 (Chellas [7], p. 270) A minimal conditional modelMCL for condi-
tional logic is a structure

〈W, g, v〉,

whereW andv are the sameones as in the standard conditionalmodels. Thedifference
is the second term

g : W × 2W → 22
W
. �

The truth conditions for �→ and ♦→ in a minimal conditional model are given by

1. MCL, w |= p�→q
def⇐⇒ ‖q‖MCL ∈ g(w, ‖p‖MCL),

2. MCL, w |= p♦→q
def⇐⇒ (‖q‖MCL)

C
/∈ g(w, ‖p‖MCL),

Thus we have also the following relationship:

p�→q ↔ ¬(p♦→¬q).
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Note that, if the function g satisfies the following condition

X ∈ g(w, ‖p‖MCL) ⇔ ∩g(w, ‖p‖MCL) ⊆ X

for every world w and every sentence p, then, by defining

fg(w, ‖p‖MCL)
def= ∩g(w, ‖p‖MCL),

we have the standard conditional model 〈W, fg, v〉 that is equivalent to the original
minimal model.

9.2.2 Measure-Based Extensions

Next we introduce measure-based extensions of the previous minimal conditional
models. Such extensions are models for graded conditional logics.

Given a finite set P of items as atomic sentences, a language LgCL(P) for graded
conditional logic is formed from P as the set of sentences closed under the usual
propositional operators such as �, ⊥, ¬, ∧, ∨, →, and ↔ as well as �→k and ♦→k
(graded conditionals) for 0 < k ≤ 1 in the usual way.

1. If x ∈ P then x ∈ LgCL(P).
2. �,⊥ ∈ LgCL(P).
3. If p ∈ LgCL(P) then ¬p ∈ LgCL(P).
4. If p, q ∈ LgCL(P) then p ∧ q, p ∨ q, p → q, p ↔ q ∈ LgCL(P),
5. If [p, q ∈ LgCL(P) and 0 < k ≤ 1] then p�→kq, p♦→kq ∈ LgCL(P).

A graded conditional model is defined as a family of minimal conditional model (cf.
Chellas [7]):

Definition 9.3 Given a fuzzy measure

m : 2W × 2W → [0, 1],

ameasure-based conditional modelMm
gCL for graded conditional logic is a structure

〈W, {gk}0<k≤1, v〉,

whereW and V are the same ones as in the standard conditional models. gk is defined
by a fuzzy measure m as

gk(t, X)
def= {Y ⊆ 2W | m(Y, X) ≥ k}. �



9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 183

The model Mm
gCL is called finite because so is W . Further, in this paper, we call

the model Mm
gCL uniform since functions {gk} in the model does not depend on any

world inMm
gCL.

The truth conditions for�→k and♦→k in a measure-based conditional model are
given by

Mm
gCL, t |= p�→kq iff ‖q‖Mm

gCL ∈ gk(t, ‖p‖Mm
gCL),

Mm
gCL, t |= p♦→kq iff (‖q‖Mm

gCL)
C

/∈ gk(t, ‖p‖Mm
gCL).

The basic idea of these definitions is the same as in fuzzy-measure-based semantics
for graded modal logic defined in [12–14].

When we take m as a conditional probability, the truth conditions of graded
conditional becomes

MPr
gCL, t |= p�→kq iff Pr(‖q‖MPr

gCL | ‖p‖MPr
gCL) ≥ k.

We have several soundness results based on probability-measure-based semantics
(cf. [12–14]) shown in Table9.1.

Table 9.1 Soundness results of graded conditionals by probability measures

0 < k ≤ 1
2

1
2 < k < 1 k = 1 Rules and axiom schemata

© © © RCEA. p↔q
(p�→kq)↔(q�→kq)

© © © RCEC. q↔q ′
(p�→kq)↔(p�→kq ′)

© © © RCM. q→q ′
(p�→kq)→(p�→kq ′)

© RCR. (q∧q ′)→r
((p�→kq)∧(p�→kq ′))→(p�→kr)

© © © RCN. q
p�→kq

© RCK. (q1∧···∧qn)→q
((p�→kq1)∧···∧(p�→kqn ))→(p�→kq)

© © © CM. (p�→k(q ∧ r)) → (p�→kq) ∧ (p�→kr)

© CC. (p�→kq) ∧ (p�→kr) → (p�→k(q ∧ r))

© CR. (p�→k(q ∧ r)) ↔ (p�→kq) ∧ (p�→kr)

© © © CN. p�→k�
© © © CP. ¬(p�→k⊥)

© CK. (p�→k(q → r)) → (p�→kq) → (p�→kr)

© © CD. ¬((p�→kq) ∧ (p�→k¬q))

© CDC. (p�→kq) ∨ (p�→k¬q)
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9.3 Paraconsistency and Paracompleteness in Conditionals

AsChellas pointed out in his book [7] (p. 269), conditionals p�→q (and also p♦→q)
is regarded as relative modal sentences like [p]q (and also 〈p〉q). So we first see
paraconsistency and paracompleteness in the usual modal setting for convenience.

9.3.1 Modal Logic Case

Let us define some standard language L for modal logic with two modal operators
� and ♦. In [18], we examined some relationship between modal logics and para-
consistency and paracompleteness. Let us assume a language L of modal logic as
usual. In terms of modal logic, paracompleteness and paraconsistency have a close
relation to the following axiom schemata:

D. �p → ¬�¬p,
DC. ¬�¬p → �p,

because they have their equivalent expressions

¬(�p ∧ �¬p),
�p ∨ �¬p,

respectively. That is, given a system of modal logic Σ , define the following set of
sentences

T
def= {p ∈ L | �Σ �p},

where �Σ �p means �p is a theorem of Σ . Then the above two schemata mean
that, for any sentence p

not(p ∈ T and ¬p ∈ T )

p ∈ T or ¬p ∈ T

respectively, and obviously the former describes the consistency of T and the latter
the completeness of T . Thus

• T is inconsistent when Σ does not contain D.
• T is incomplete when Σ does not contain DC.

A system Σ is regular when it contains the following rule and axiom schemata

p ↔ q ⇒ �p ↔ �q
(�p ∧ �q) ↔ �(p ∧ q)

Note that any normal system is regular.
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In [18] we pointed out the followings. If Σ is regular, then we have

(�p ∧ �¬p) ↔ �¬� (9.1)

where ⊥ ↔ ¬� and ⊥ is falsity constant, which means inconsistency itself. Thus
we have triviality:

T = L.

But if Σ is not regular, then we have no longer (9.1), thus, in general

T �= L,

which means T is paraconsistent. That is, local inconsistency does not generate
triviality as global inconsistency.

9.3.2 Conditional Logic Case

Next we apply the previous idea into conditional logics. In conditional logics, the
corresponding axiom schemata

CD. ¬((p�→q) ∧ (p�→¬q))

CDC. (p�→q) ∨ (p�→¬q)

Given a system CL of conditional logic, define the following set of conditionals
(rules):

R
def= {p�→q ∈ LCD | �CL p�→q}.

where LCD is a language for conditional logic and �CL p�→q means p�→q is a
theorem of CL . Then the above two schemata mean that, for any sentence p

not(p�→q ∈ R and p�→¬q ∈ R)

p�→q ∈ R or p�→¬q ∈ R

respectively, and obviously the former describes the consistency of R and the latter
the completeness of R. Thus, for the set R of conditionals (rules)

• R is inconsistent when CL does not contain CD.
• R is incomplete when CL does not contain CDC.
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9.4 Paraconsistency and Paracompleteness
in Association Rules

9.4.1 Association Rules

Let I be a finite set of items. Any subset X in I is called an itemset in I. A data-
base is comprised of transactions, which are actually obtained or observed itemsets.
Formally, we give the following definition:

Definition 9.4 A database D on I is defined as

〈T, V 〉,

where

1. T = {1, 2, . . . , n} (n is the size of the database),
2. V : T → 2I . �

Thus, for each transaction i ∈ T , V gives its corresponding set of items V (i) ⊆ I.
For an itemset X , its degree of support s(X) is defined by

s(X)
def= |{t ∈ T | X ⊆ V (t)}|

|T | ,

where | · | is a size of a finite set.
Definition 9.5 (Agrawal et al. [1]) Given a set of items I and a database D on I,
an association rule is an implication of the form

X =⇒ Y,

where X and Y are itemsets in I with X ∩ Y = ∅. �

The following two indices were introduced in [1].

Definition 9.6 (Agrawal et al. [1])

1. An association rule r = (X =⇒ Y ) holds with confidence c(r) (0 ≤ c(r) ≤ 1)
in D if and only if

c(r) = s(X ∪ Y )

s(X)
.

2. An association rule r = (X =⇒ Y ) has a degree of support s(r) (0 ≤ s(r) ≤ 1)
in D if and only if

s(r) = s(X ∪ Y ). �

In this paper, we will deal with the former index.
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Mining of association rules is actually performed by generating all rules that
have certain minimum support (denoted minsup) and minimum confidence (denoted
minconf) that a user specifies. See, e.g., [1–3] for details of such algorithms for
finding association rules.

For example, consider the movie database in Table9.2, where AH and HMmeans
Ms. Audrey Hepburn and Mr. Henry Mancini, respectively. If you have watched
several (famous) Ms. Hepburn’s movies, you might hear some wonderful music
composed by Mr. Mancini. This can be represented by the association rule

r = {AH} =⇒ {HM}

with its confidence

c(r) = s({AH} ∪ {HM})
s({AH}) = 0.5

and its degree of support

s(r) = |{T | T ⊆ {AH} ∪ {HM}}|
|D| = 4

100
= 0.04.

Table 9.2 Movie database No. Transaction (movie) AH HM

1 Secret people 1

2 Monte Carlo baby 1

3 Roman holiday 1

4 My fair lady 1

5 Breakfast at Tiffany’s 1 1

6 Charade 1 1

7 Two for the road 1 1

8 Wait until dark 1 1

9 Days of wine and rose 1

10 The great race 1

11 The pink panther 1

12 Sunflower 1

13 Some like it hot

14 12 Angry men

15 The apartment

· · · · · ·
100 Les aventuriers
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9.4.2 Measure-Based Conditional Models for Databases

Let us regards a finite set I of items as atomic sentences. Then, a language LgCL(I)

for graded conditional logic is formed from I as the set of sentences closed under
the usual propositional operators such as �, ⊥, ¬, ∧, ∨, →, and ↔ as well as �→k

and ♦→k (graded conditionals) for 0 < k ≤ 1 in the usual way.

1. If x ∈ I then x ∈ LgCL(I).
2. �,⊥ ∈ LgCL(I).
3. If p ∈ LgCL(I) then ¬p ∈ LgCL(I).
4. If p, q ∈ LgCL(I) then p ∧ q, p ∨ q, p → q, p ↔ q ∈ LgCL(I),
5. If [p, q ∈ LgCL(I) and 0 < k ≤ 1] then p�→kq, p♦→kq ∈ LgCL(I).

A measure-based conditional model is defined as a family of minimal conditional
model (cf. Chellas [7]):

Definition 9.7 Given a database D = 〈T, V 〉 on I and a fuzzy measure m, a
measure-based conditional model Mm

gD for D is a structure

〈W, {gk}0<k≤1, v〉,

where (1) W = T , (2) for any world (transaction) t in W and any set of itemsets X
in 2I , gk is defined by a fuzzy measure m as

gk(t, X)
def= {Y ⊆ 2W | m(Y, X) ≥ k},

and (3) for any item x in I, v(x, t) = 1 iff x ∈ V (t). �
The model Mm

gD is called finite because so is W . Further, in this paper, we call the
modelMm

gD uniform since functions {gk} in the model does not depend on any world
inMm

gD.
The truth condition for �→k in a grade conditional model is given by

Mm
gD, t |= p�→kq iff ‖q‖Mm

gD ∈ gk(t, ‖p‖Mm
gD ),

where
‖p‖Mm

gD def= {t ∈ W (= T ) | Mm
gD, t |= p}.

The basic idea of this definition is the same as in fuzzy-measure-based semantics for
graded modal logic defined in [12–14].

9.4.3 Association Rules and Graded Conditionals

For example, the usual degree of confidence [1] is nothing but the well-known con-
ditional probability, so we define function gk by conditional probability.
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Definition 9.8 For a given databaseD = 〈T, V 〉 on I and a conditional probability

Pr(B|A) = |A ∩ B|
|A| ,

its corresponding probability-based graded conditional model MPr
gD is defined as a

structure
〈W, {gk}0<k≤1, v〉,

where
gk(w, X)

def= {Y ⊆ 2W | Pr(t (Y ) | t (X)) ≥ k},

where
t (X)

def= {w ∈ W | X ⊆ w}. �

The truth condition of graded conditional is given by

MPr
gD, t |= p�→kq iff Pr(‖q‖MPr

gD | ‖p‖MPr
gD ) ≥ k.

Then we can have the following theorem:

Theorem 9.1 Given a database D on I and its corresponding probability-based
graded conditional model MgD, for an association rule X =⇒ Y , we have

c(X =⇒ Y ) ≥ k iff MPr
gD |= pX�→k pY . �

9.4.4 Paraconsistency and Paracompleteness in Association
Rules

We formulated association rules as graded conditionals based on probability. Define
the following set of rules with confidence k:

Rk
def= {p�→kq ∈ LgCD | �gCL p�→kq}.

Agraded conditional p�→kq is also regarded as a relative necessary sentences [p]kq
and the properties of relative modal operator [·]k are examined in Murai et al. [12,
13], [14] in the following correspondence:

Confidence k Systems
0 < k ≤ 1

2 EMDCN P
1
2 < k < 1 EMDN P
k = 1 K D
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The former two systems are not regular, so Rk may be paraconsistent. The last one
is normal so regular.

For 0 < k ≤ 1
2 , Rk is complete but for some p and q, the both rules p�→kq and

p�→k¬q may be generated. This should be avoided.
For 1

2 < k < 1, Rk is consistent but may be paracomplete.

9.5 Dempster-Shafer-Theory-Based Confidence

9.5.1 D-S Theory and Confidence

The standard confidence [1] described in the previous section is based on the idea
that co-occurrences of items in one transaction are evidence for association between
the items. Since the definition of confidence is nothing but a conditional probability,
even weights are a priori assigned to each transaction that contains the items in
question at the same time. All of such transactions, however, do not necessarily
give us such evidence because some co-occurrences might be contingent. Thus we
need a framework that can differentiate proper evidence from contingent one and
we introduce Dempster-Shafer theory of evidence [9, 19] to describe such a more
flexible framework to compute confidence. There are a variety of ways of formalizing
D-S theory and, in this paper, we adopt multivalued-mapping-based approach, which
was originally used by Dempster [9]. In the approach, we need two frames, one of
which has a probability defined, and a multivalued mapping between the two frames.
Given a databaseD = 〈T, V 〉 on I and an association rule r = (X =⇒ Y ) inD, one
of frames is the set T of transactions. Another one is defined by

R = {r, r},

where r denotes the negation of r . The remaining tasks are (1) to define a probability
distribution Pr on T : Pr : T → [0, 1], and (2) to define a multivalued mapping Γ :
T → 2R . Given Pr and Γ , we can define the well-known two kinds of functions in
Dempster-Shafer theory: for X ⊆ 2R ,

Bel(X)
def= Pr({t ∈ T | Γ (t) ⊆ X}),

Pl(X)
def= Pr({t ∈ T | Γ (t) ∩ X �= ∅})

which are called belief and plausibility functions, respectively. Now we have the
following double-indexed confidence:

c(r) = 〈Bel(r),Pl(r)〉.
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9.5.2 Multi-graded Conditional Models for Databases

Given a finite set I of items as atomic sentences, a language LmgCL(I) for graded
conditional logic is formed from I as the set of sentences closed under the usual
propositional operators as well as�→k and ♦→k (graded conditionals) for 0 < k ≤
1 in the usual way. Note that, in particular,

(p, q ∈ LmgCL(I) and 0 < k ≤ 1) ⇒ p�→kq, p♦→kq ∈ LmgCL(I).

Definition 9.9 Given a database D on I, a multi-graded conditional model MmgD
for D is a structure

〈W, {{g
k
, gk}}0<k≤1, v〉,

where (1) W=T , (2) for any world (transaction) t in W and any set of itemsets X in
2I , gk is defined by belief and plausibility functions:

g
k
(t,X )

def= {Y ⊆ 2W | Bel(Y,X ) ≥ k},
gk(t,X )

def= {Y ⊆ 2W | Pl(Y,X ) ≥ k},

and (3) for any item x in I, v(x, t) = 1 iff x ∈ V (t) �

The truth conditions for �→k and ♦→k are given by

MmgD, w |= p�→kq iff ‖q‖MmgD ∈ g
k
(t, ‖p‖MmgD )

MmgD, w |= p♦→kq iff ‖q‖MmgD ∈ gk(t, ‖p‖MmgD ),

respectively. Its basic idea is also the same as in fuzzy-measure-based semantics for
graded modal logic defined in [12–14]. Several soundness results based on belief-
and plausibility-function-based semantics (cf. [12–14]) are shown in Table 9.3.

9.5.3 Two Typical Cases

First we define a probability distribution on T by

Pr(t)
def=

{
1
a , if t ∈ ‖pX‖MmgD ,
0, otherwise,

where a = |‖pX‖MmgD |. This means that each world (transaction) t in ‖pX‖MmgD

is given an even mass (weight) 1a . To generalize the distribution is of course another
interesting task.
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Table 9.3 Soundness results of graded conditionals by belief and plausibility functions

Belied function Rules and axiom schemata Plausibility function

0 < k ≤ 1
2

1
2 < k < 1 k = 1 0 < k ≤ 1

2
1
2 < k < 1 k = 1

© © © RCEA © © ©
© © © RCEC © © ©
© © © RCM © © ©
© © © RCR ©
© © © RCN © © ©

© RCK

© © © CM © © ©
© © © CC ©
© © © CR ©
© © © CN © © ©
© © © CP © © ©

© CK

© © CD

CDC ©

Next we shall see two typical cases of definition of Γ . First we describe strongest
cases. When we define a mapping Γ by

Γ (t)
def=

{ {r}, if t ∈ ‖pX‖MmgD ,
{r}, otherwise.

This means that the transactions in ‖pX ∧ pY‖MmgD contribute as evidence to r ,
while the transactions in ‖pX ∧ ¬pY‖MmgD contribute as evidence to r . This is the
strongest interpretation of co-occurrences. Then, we can compute Bel(r) = 1

a ×
b and Pl(r) = 1

a × b, where b = |‖pX ∧ pY‖MmgD |. Thus the induced belief and
plausibility functions collapse to the same probability measure Pr: Bel(r) = Pl(r) =
Pr(r) = b

a , and thus

c(r) = 〈b
a

,
b

a
〉.

Hence this case represents the usual confidence. According to this idea, in our movie
database, we can define Pr and Γ in the way in Fig. 9.1. That is, any movie in
‖AH ∧ HM‖MmgD contributes as evidence to that the rule holds (r ), while all movie
in ‖AH ∧ ¬HM‖MmgD contributes as evidence to that the rule does not hold (r ).
Thus we have

c({AH} =⇒ {HM}) = 〈0.5, 0.5〉.
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No. Transaction (movie) AH HM Pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angry men 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r, r} 0

{r} 1
2

{r} 1
2∅ 0

Fig. 9.1 An example of the strongest cases

Next we describe weakest cases. In general, co-occurrences do not necessarily
mean actual association. The weakest interpretation of co-occurrences is to consider
transactions totally unknown as described as follows: When we define a mapping Γ

by

Γ (t)
def=

{ {r, r}, if t ∈ ‖pX‖MmgD ,
{r}, otherwise.

This means that the transactions in ‖pX ∧ pY‖MgD contribute as evidence to R =
{r, r}, while the transactions in ‖pX ∧ ¬pY‖MgD contribute as evidence to r . Then,
we can compute Bel(r) = 0 and Pl(r) = 1

a × b, and thus

c(r) = 〈0, b
a

〉.

According to this idea, in our movie database, we can define Pr and Γ in the
way in Fig. 9.2. That is, all movie in ‖AH ∧ ¬HM‖MmgD contributes as evidence
to that the rule does not hold (r ), while we cannot expect whether each movie in
‖AH ∧ HM‖MmgD contributes or not as evidence to that the rule holds (r ). Thus we
have

c({AH} =⇒ {HM}) = 〈0, 0.5〉.

In the case, the induced belief and plausibility functions, denoted respectively Belbpa′

and Plbpa′ , become necessity and possibility measures in the sense of Dubois and
Prade [10]. We have several soundness results based on necessity- and possibility-
measure-based semantics (cf. [12–14]) shown in Table 9.4.
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No. Transaction (movie) AH HM Pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angrymen 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r, r} 1
2

{r} 0
{r} 1

2∅ 0

Fig. 9.2 An example of the weakest cases

Table 9.4 Soundness results
of graded conditionals by
necessity and possibility
measures

Necessity measure
0 < k ≤ 1

Rules and axiom
schemata

Possibility measure
0 < k ≤ 1

© RCEA ©
© RCEC ©
© RCM ©
© RCR

© RCN ©
© RCK

© CM ©
© CC

CF ©
© CR ©
© CN ©
© CP ©
© CK

© CD

CDC ©

9.5.4 General Cases

In the previous two typical cases, one of which coincides to the usual confidence,
any transaction in ‖AH ∧ HM‖MmgD (or in ‖AH ∧ ¬HM‖MmgD ) has the same
weight as evidence. It would be, however, possible that some of ‖AH ∧ HM‖MmgD
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No. Transaction (movie) AH HM Pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angry men 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r, r} 3
8

{r} 3
8

{r} 1
4∅ 0

Fig. 9.3 An example of general cases

(or ‖AH ∧ ¬HM‖MmgD ) does work as positive evidence to r (or r ) but other part
does not.

Thus we have a tool that allows us to introduce various kinds of ‘a posteriori’
pragmatic knowledge into the logical setting of association rules. As an example,
we assume that (1) the music of the first and second movies was not composed by
Mancini, but the fact does not affect the validity of r because they are not very
important ones, and (2) the music of the seventh movie was composed by Mancini,
but the fact does not affect the validity of r . Then we can define Γ in the way in
Fig. 9.3. Thus we have

c({AH} =⇒ {HM}) = 〈0.375, 0.75〉.

In general, users have such kind of knowledge ‘a posteriori.’ Thus the D-S based
approach allows us to introduce various kinds of ‘a posteriori’ pragmatic knowledge
into association rules.

9.6 Concluding Remarks

In this paper, we examined paraconsistency and paracompleteness that appear in
association rules in a framework of probability-based models for conditional logics.
For lower values of confidence (less than or equal to 1

2 ), both p�→kq and p�→k¬q
may be generated so we must be careful to use such lower confidence.

Further we extended the above discussion into the case of Dempster-Shafer the-
ory of evidence to double-indexed confidences. Users have, in general, such kind
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of knowledge ‘a posteriori’ describe in the previous section. Thus the D-S based
approach allows a sophisticated way of calculating confidence by introducing vari-
ous kinds of ‘a posteriori’ pragmatic knowledge into association rules.

Acknowledgments We are grateful to a referee for useful comments.
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