
Chapter 5
A Survey of Annotated Logics

Seiki Akama

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract Annotated logics have been originally developed as foundations for para-
consistent logic programming, and later developed as paracomplete and paraconsis-
tent logics by J.M. Abe and others. In this paper, we present the formalization of
propositional and predicate annotated logics. We also review some formal issues.

Keywords Paraconsistent logics · Annotated logics · Paraconsistency · Paracom-
pleteness · Paraconsistent logic programming

5.1 Introduction

One of J.M. Abe’s contributions to paraconsistent logics is to establish the so-called
annotated logics, which are paraconsistent and in general paracomplete. They have
been developed as theoretical foundations for paraconsistent logic programming for
inconsistent knowledge; see Subrahmanian [45] and Blair and Subrahmanian [22].
Later, they have been studied as the systems of paraconsistent logic by many people;
see [1, 26, 30].

Abe explored many applications of annotated logics to various areas, including
engineering. It is thus interesting to sketch the basics of annotated logics. We show
their formal aspects without proofs. The complete exposion of annotated logics can
be found in Abe et al. [8].

S. Akama (B)
C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-ku, Kawasaki 215-0012, Japan
e-mail: akama@jcom.home.ne.jp

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_5

49

50 S. Akama

The chapter is structured as follows. In Sect. 5.2, we present propositional anno-
tated logics Pτ. In Sect. 5.3, we describe predicate annotated logics Qτ. Section5.4
gives Curry algebras as an algebraic semantics for annotated logics. We give some
conclusions in Sect. 5.5.

5.2 Propositional Annotated Logics Pτ

As reviewed in Chap.2, paraconsistent logics have been developed as the basis to
formalize inconsistent but non-trivial theories, and many systems of paraconsistent
logic have been proposed in the literature. Recently, we can find several interest-
ing applications of paraconsistent logics for various areas including mathematics,
philosophy and computer science.

There are historically three important systems of paraconsistent logic; see Priest
et al. [40]. Jaśkowski proposed a paraconsistent propositional logic called discursive
logic (or discussive logic) in 1948; see Jaśkowski [33, 34]. Discursive logic is a kind
of modal approach to paraconsistency.

Da Costa proposed the so-called C-system, which is based on the non-standard
interpretation of negation which is dual to intuitionistic negation. He developed
propositional and predicate logic for C-system.

Relevance logic (or relevant logic) due to Anderson and Belnap formalizes a
correct interpretation of implication, and some of relevant systems can be viewed as
paraconsistent; see Anderson and Belnap [15] and Anderson et al. [16] and Routley
et al. [44]. For a comprehensive survey, consult Dunn [31].

Since then, a lot of work has been done to develop a paraconsistent logic from
some motivation. For a recent survey of paraconsistent logic, see Priest [42].

In 1979, Priest [41] proposed a logic of paradox, denoted LP , to deal with the
semantic paradox.

Batens developed the so-called adaptative logics in Batens [18, 19] as improve-
ments of dynamic dialectical logics developed inBatens [17]. Inconsistency-adaptive
logics as developed by Batens [18] can be regarded as paraconsistent and non-
monotonic logics.

Carnelli’s Logics of Formal Inconsistency (LFI) are logical systems that deal with
consistency and inconsistency as object-level concept; see Carnelli et al. [23]. And
several paraconsistent systems can be interpreted in LFI.

Now, we turn to a formal presentation of annotated logics. Before doing it, we
introduce some basic concepts. Let T be a theory whose underlying logic is L . T is
called inconsistent when it contains theorems of the form A and ¬A (the negation
of A), i.e.,

T �L A and T �L ¬A

where �L denotes the provability relation in L . If T is not inconsistent, it is called
consistent.

http://dx.doi.org/10.1007/978-3-319-40418-9_2

5 A Survey of Annotated Logics 51

T is said to be trivial, if all formulas of the language are also theorems of T .
Otherwise, T is called non-trivial. Then, for trivial theory T , T �L B for any formula
B. Note that trivial theory is not interesting since every formula is provable.

If L is classical logic (or one of several others, such as intuitionistic logic), the
notions of inconsistency and triviality agree in the sense that T is inconsistent iff T
is trivial. So, in trivial theories the extensions of the concepts of formula and theorem
coincide.

A paraconsistent logic is a logic that can be used as the basis for inconsistent but
non-trivial theories. In this regard, paraconsistent theories do not satisfy, in general,
the principle of non-contradiction, i.e., ¬(A ∧ ¬A).

We can also define a paracomplete logic. A paracomplete logic is a logic, in
which the principle of excluded middle, i.e., A ∨ ¬A is not a theorem. In this sense,
intuitionistic logic is one of the paracomplete logics. A paracomplete theory is a
theory based on paracomplete logic.

Finally, the logic which is simultaneously paraconsistent and paracomplete is
called non-alethic logic.

The important problems handled by paraconsistent logics include the paradoxes
of set theory, the semantic paradoxes, and some issues in dialectics. These problems
are central to philosophy and philosophical logic. However, paraconsistent logics
have later found interesting applications in AI, in particular, expert systems, belief,
and knowledge, among others, since the 1980s; see da Costa and Subrahmanian [29].

Annotated logics were introduced by Subrahmanian to provide a foundation for
paraconsistent logic programming; see Subrahmanian [45] and Blair and Subrah-
manian [22]. Paraconsistent logic programming can be seen as an extension of logic
programming based on classical logic.

In 1989, Kifer and Lozinskii proposed a logic for reasoning with inconsistency,
which is related to annotated logics; see Kifer and Lozinskii [35, 36]. In the same
year, Kifer and Subrahmanian extended annotated logics by introducing generalized
annotated logics in the context of logic programming; see Kifer and Subrahmanian
[37]. In 1990, a resolution-style automatic theorem-proving method for annotated
logics was implemented; see da Costa et al. [28].

Of course, annotated logics were developed as a foundation for paraconsistent
logic programming, but they have interesting features to be examined by logicians.
Formally, annotated logics are ingeneral non-alethic in the sense of the above termi-
nology. From a viewpoint of paraconsistent logicians, annotated logicswere regarded
as new systems.

In 1991, da Costa and others started to study annotated logics from a foundational
point of view; see da Costa et al. [26, 30]. In these works, propositional and predicate
annotated logics were formally investigated by presenting axiomatization, semantics
and completeness results, and some applications of annotated logics were briefly
surveyed.

In 1992, Jair Minoro Abe wrote Ph.D. thesis on the foundations of annotated
logics under Prof. Newton C.A. da Costa at University of São Paulo; see Abe [1].
Abe proposed annotated modal logics which extend annotated logics with modal
operator in Abe [2]; also see Akama and Abe [9].

52 S. Akama

Some formal results including decidability annotated logics were presented in
Abe and Akama [6]. Abe and Akama also investigated predicate annotated logics
by the method of ultraproducts in Abe and Akama [5]. Abe [3] studied an algebraic
semantics of annotated logics.

Now, we formally introduce annotated logics. The language of the propositional
annotated logics Pτ . We denote by L the language of Pτ . Annotated logics are
based on some arbitrary fixed finite lattice called a lattice of truth-values denoted by
τ = 〈|τ |,≤,∼〉, which is the complete lattice with the ordering ≤ and the operator
∼:|τ |→|τ |.

Here,∼ gives the “meaning” of atomic-level negation of Pτ . We also assume that

 is the top element and ⊥ is the bottom element, respectively. In addition, we use
two lattice-theoretic operations: ∨ for the least upper bound and ∧ for the greatest
lower bound.1

Definition 5.1 (Symbols) The symbols of Pτ are defined as follows:

1. Propositional symbols: p, q, . . . (possibly with subscript)
2. Annotated constants: μ, λ, . . . ∈ |τ |
3. Logical connectives: ∧ (conjunction), ∨ (disjunction), → (implication), and

¬ (negation)
4. Parentheses: (and)

Definition 5.2 (Formulas) Formulas are defined as follows:

1. If p is a propositional symbol and μ ∈ |τ | is an annotated constant, then pμ is a
formula called an annotated atom.

2. If F is a formula, then ¬F is a formula.
3. If F and G are formulas, then F ∧ G, F ∨ G, F → G are formulas.
4. If p is a propositional symbol andμ ∈ |τ | is an annotated constant, then a formula

of the form¬k pμ (k ≥ 0) is called a hyper-literal. A formulawhich is not a hyper-
literal is called a complex formula.

Here, some remarks are in order. The annotation is attached only at the atomic level.
An annotated atom of the form pμ can be read “it is believed that p’s truth-value is
at least μ”. In this sense, annotated logics incorporate the feature of many-valued
logics.

A hyper-literal is special kind of formula in annotated logics. In the hyper-literal
of the form ¬k pμ, ¬k denotes the k’s repetition of ¬. More formally, if A is an
annotated atom, then ¬0A is A, ¬1A is ¬A, and ¬k A is ¬(¬k−1A). The convention
is also use for ∼.

Next, we define some abbreviations.

1We employ the same symbols for lattice-theoretical operations as the corresponding logical con-
nectives.

5 A Survey of Annotated Logics 53

Definition 5.3 Let A and B be formulas. Then, we put:

A ↔ B =de f (A → B) ∧ (B → A)

¬∗A =de f A → (A → A) ∧ ¬(A → A)

Here, ↔ is called the equivalence and ¬∗ strong negation, respectively.

Observe that strong negation in annotated logics behaves classically in that it has all
the properties of classical negation.

We turn to a semantics for Pτ . We here describe a model-theoretic semantics
for Pτ . Let P is the set of propositional variables. An interpretation I is a function
I : P → τ . To each interpretation I , we associate a valuation vI : F → 2, where
F is a set of all formulas and 2 = {0, 1} is the set of truth-values. Henceforth, the
subscript is suppressed when the context is clear.

Definition 5.4 (Valuation) A valuation v is defined as follows:
If pλ is an annotated atom, then

v(pλ) = 1 iff I (p) ≥ λ,
v(pλ) = 0 otherwise,
v(¬k pλ) = v(¬k−1 p∼λ), where k ≥ 1.

If A and B are formulas, then

v(A ∧ B) = 1 iff v(A) = v(B) = 1,
v(A ∨ B) = 0 iff v(A) = v(B) = 0,
v(A → B) = 0 iff v(A) = 1 and v(B) = 0.

If A is a complex formula, then

v(¬A) = 1 − v(A).

Say that the valuation v satisfies the formula A if v(A) = 1 and that v falsifies A if
v(A) = 0. For the valuation v, we can obtain the following lemmas.

Lemma 5.1 Let p be a propositional variable and μ ∈ |τ | (k ≥ 0), then we have:

v(¬k pμ) = v(p∼kμ).

Lemma 5.2 Let p be a propositional variable, then we have:

v(p⊥) = 1

Lemma 5.3 For any complex formula A and B and any formula F, the valuation v

satisfies the following:

1. v(A ↔ B) = 1 iff v(A) = v(B)

2. v((A → A) ∧ ¬(A → A)) = 0

3. v(¬∗A) = 1 − v(A)

4. v(¬F ↔ ¬∗F) = 1

54 S. Akama

We here define the notion of semantic consequence relation denoted by |=. Let
Γ be a set of formulas and F be a formula. Then, F is a semantic consequence of
Γ , written Γ |= F , iff for every v such that v(A) = 1 for each A ∈ Γ , it is the case
that v(F) = 1. If v(A) = 1 for each A ∈ Γ , then v is called a model of Γ . If Γ is
empty, then Γ |= F is simply written as |= F to mean that F is valid.

Lemma 5.4 Let p be a propositional variable and μ, λ ∈|τ |. Then, we have:
1. |= p⊥
2. |= pμ → pλ, μ ≥ λ

3. |= ¬k pμ ↔ p∼kμ, k ≥ 0

The consequence relation |= satisfies the next property.

Lemma 5.5 Let A, B be formulas. Then, if |= A and |= A → B then |= B.

Lemma 5.6 Let F be a formula and p a propositional variable. (μi)i∈J be an
annotated constant, where J is an indexed set. Then, if |= F → pμ, then F → pμi ,
where μ = ∨

μi .

As a corollary to Lemma 5.6, we can obtain the following lemma.

Lemma 5.7 |= pλ1 ∧ pλ2 ∧ · · · ∧ pλm → pλ, where λ =
m∨

i=1

λi .

Next, we discuss some results related to paraconsistency and paracompleteness.

Definition 5.5 (Complementary property) A truth-value μ ∈ τ has the complemen-
tary property if there is a λ such that λ ≤ μ and ∼ λ ≤ μ. A set τ ′ ⊆ τ has the
complementary property iff there is some μ ∈ τ ′ such that μ has the complementary
property.

Definition 5.6 (Range) Suppose I is an interpretation of the language L . The range
of I , denoted range(I), is defined to be range(I) = {μ | (∃A ∈ BL)I (A) = μ},
where BL denotes the set of all ground atoms in L .

For Pτ , ground atoms correspond to propositional variables. If the range of the
interpretation I satisfies the complementary property, then the following theorem
can be established.

Theorem 5.1 Let I be an interpretation such that range(I) has the complementary
property. Then, there is a propositional variable p and μ ∈ |τ| such that

v(pμ) = v(¬pμ) = 1.

Theorem 5.1 states that there is a case in which for some propositional variable
it is both true and false, i.e., inconsistent. The fact is closely tied with the notion of
paraconsistency.

5 A Survey of Annotated Logics 55

Definition 5.7 (¬-inconsistency) We say that an interpretation I is ¬-inconsistent
iff there is a propositional variable p and an annotated constant μ ∈ |τ | such that
v(pμ) = v(¬pμ) = 1.

Therefore, ¬-inconsistency means that both A and ¬A are simultaneously true
for some atomic A. Below, we formally define the concepts of non-triviality, para-
consistency and paracompleteness.

Definition 5.8 (Non-triviality) We say that an interpretation I is non-trivial iff there
is a propositional variable p and an annotated constantμ ∈ |τ | such that v(pμ) = 0.

By Definition 5.8, we mean that not every atom is valid if an interpretation is
non-trivial.

Definition 5.9 (Paraconsistency) We say that a interpretation I is paraconsistent iff
it is both ¬-inconsistent and non-trivial. Pτ is called paraconsistent iff there is an
interpretation of I of Pτ such that I is paraconsistent.

Definition 5.9 allows the case in which both A an ¬A are true, but some formula
B is false in some paraconsistent interpretation I .

Definition 5.10 (Paracompleteness)We say that an interpretation I is paracomplete
iff there is a propositional variable p and a annotated constant λ ∈ |τ | such that
v(pλ) = v(¬pλ) = 0. Pτ is called paracomplete iff there is an interpretation I of
Pτ such that I is paracomplete.

From Definition 5.10, we can see that in the paracomplete interpretation I , both
A and ¬A are false. We say that Pτ is non-alethic iff it is both paraconsistent and
paracomplete. Intuitively speaking, paraconsistent logic can deal with inconsistent
information and paracomplete logic can handle incomplete information.

This means that non-alethic logics like annotated logics can serve as logics for
expressing both inconsistent and incomplete information. This is one of the starting
points of our study of annotated logics.

As the following Theorems 5.2 and 5.3 indicate, paraconsistency and paracom-
pleteness in Pτ depend on the cardinality of τ .

Theorem 5.2 Pτ is paraconsistent iff card(τ) ≥ 2, where card(τ) denotes the
cardinality (cardinal number) of the set τ .

Theorem 5.3 If card(τ) ≥ 2, then there are annotated systems Pτ such that they
are paracomplete.

The above two theorems imply that to formalize a non-alethic logic based on
annotated logics we need at least both the top and bottom elements of truth-values.
The simplest lattice of truth-values is FOU R in Belnap [20, 21].

56 S. Akama

Definition 5.11 (Theory) Given an interpretation I , we can define the theory Th(I)
associated with I to be a set:

Th(I) = Cn({pμ | p ∈ P and I (p) ≥ μ}).
Here, Cn is the semantic consequence relation, i.e.,

Cn(Γ) = {F | F ∈ F and Γ |= F}.
Here, Γ is a set of formulas.

Th(I) can be extended for any set of formulas.

Theorem 5.4 An interpretation I is ¬-inconsistent iff T h(Γ) is ¬-inconsistent.

Theorem 5.5 An interpretation I is paraconsistent iff T h(I) is paraconsistent.

The next lemma states that the replacement of equivalent formulas within the
scope of ¬ does not hold in Pτ as in other paraconsistent logics.

Lemma 5.8 Let A be any hyper-literal. Then, we have:

1. |= A ↔ ((A → A) → A)

2. �|= ¬A ↔ ¬(((A → A) → A))

3. |= A ↔ (A ∧ A)

4. �|= ¬A ↔ ¬(A ∧ A)

5. |= A ↔ (A ∨ A)

6. �|= ¬A ↔ ¬(A ∨ A)

As obvious from the above proofs, (1), (3) and (5) hold for any formula A. But,
(2), (4) and (6) cannot be generalized for any A.

By the next theorem, we can find the connection of Pτ and the positive fragment
of classical propositional logic C .

Theorem 5.6 If F1, . . . , Fn are complex formulas and K (A1, . . . , An) is a tautology
ofC,where A1, . . . , An are the sole propositional variable occurring in the tautology,
then K (F1, . . . , Fn) is valid in Pτ . Here, K (F1, . . . , Fn) is obtained by replacing
each occurrence of Ai , 1 ≤ i ≤ n, in K by Fi .

Next, we consider the properties of strong negation ¬∗.

Theorem 5.7 Let A, B be any formulas. Then,

1. |= (A → B) → ((A → ¬∗B) → ¬∗A)

2. |= A → (¬∗A → B)

3. |= A ∨ ¬∗A

5 A Survey of Annotated Logics 57

Theorem 5.7 tells us that strong negation has all the basic properties of classical
negation. Namely, (1) is a principle of reductio ad abusurdum, (2) is the related
principle of the law of non-contradiction, and (3) is the law of excluded middle.
Note that ¬ does not satisfy these properties. It is also noticed that for any complex
formula A |= ¬A ↔ ¬∗A but that for any hyper-literal Q �|= ¬Q ↔ ¬∗Q.

From these observations, Pτ is a paraconsistent and paracomplete logic, but
adding strong negation enables us to perform classical reasoning.

Next, we provide an axiomatization of Pτ in the Hilbert style. There are many
ways to axiomatize a logical system, one of which is the Hilbert system. Hilbert
system can be defined by the set of axioms and rules of inference. Here, an axiom
is a formula to be postulated as valid, and rules of inference specify how to prove a
formula.

We are now ready to give a Hilbert style axiomatization of Pτ , called Aτ . Let
A, B,C be arbitrary formulas, F,G be complex formulas, p be a propositional
variable, and λ,μ, λi be annotated constant. Then, the postulates are as follows (cf.
Abe [1]):

Postulates for Aτ

(→1) (A → (B → A)

(→2) (A → (B → C)) → ((A → B) → (A → C))

(→3) ((A → B) → A) → A
(→4) A, A → B/B
(∧1) (A ∧ B) → A
(∧2) (A ∧ B) → B
(∧3) A → (B → (A ∧ B))

(∨1) A → (A ∨ B)

(∨2) B → (A ∨ B)

(∨3) (A → C) → ((B → C) → ((A ∨ B) → C))

(¬1) (F → G) → ((F → ¬G) → ¬F)

(¬2) F → (¬F → A)

(¬3) F ∨ ¬F
(τ1) p⊥
(τ2) ¬k pλ ↔ ¬k−1 p∼λ

(τ3) pλ → pμ, where λ ≥ μ

(τ4) pλ1 ∧ pλ2 ∧ · · · ∧ pλm → pλ, where λ =
m∨

i=1

λi

Here, except (→4), these postulates are axioms. (→4) is a rule of inferences called
modus ponens (MP).

In da Costa et al. [30], a different axiomatization is given, but it is essentially the
same as ours. There, the postulates for implication are different. Namely, although
(→1) and (→3) are the same (although the naming differs), the remaining axiom is:

(A → B) → ((A → (B → C)) → (A → C))

58 S. Akama

It is well known that there are many ways to axiomatize the implicational fragment
of classical logic C . In the absence of negation, we need the so-called Pierce’s law
(→3) for C .

In (¬1), (¬2), (¬3), F and G are complex formulas. In general, without this
restriction on F and G, these are not sound rules due to the fact that they are not
admitted in annotated logics.

da Costa et al. [30] fuses (τ1) and (τ2) as the single axiom in conjunctive form.
But, we separate it in two axioms for our purposes. Also there is a difference in the
final axiom. They present it for infinite lattices as

A → pλ j for every j ∈ J , then A → pλ, where λ =
∨

j∈J

λ j .

If τ is a finite lattice, this is equivalent to the form of (τ2).
As usual, we can define a syntactic consequence relation in Pτ . Let Γ be a set

of formulas and G be a formula. Then, G is a syntactic consequence of Γ , written
Γ � G, iff there is a finite sequence of formulas F1, F2, . . . , Fn , where Fi belongs to
Γ , or Fi is an axiom (1 ≤ i ≤ n), or Fj is an immediate consequence of the previous
two formulas by (→4). This definition can extend for the transfinite case in which n
is an ordinal number. If Γ = ∅, i.e. � G, G is a theorem of Pτ .

LetΓ,Δ be sets of formulas and A, B be formulas. Then, the consequence relation
� satisfies the following conditions.

1. if Γ � A and Γ ⊂ Δ then Δ � A.

2. if Γ � A and Δ, A � B then Γ,Δ � B.
3. if Γ � A, then there is a finite subset Δ ⊂ Γ such that Δ � A.

In the Hilbert system above, the so-called deduction theorem holds.

Theorem 5.8 (Deduction theorem)LetΓ be a set of formulas and A, B be formulas.
Then, we have:

Γ, A � B ⇒ Γ � A → B.

The following theorem shows some theorems related to strong negation.

Theorem 5.9 Let A and B be any formula. Then,

1. � A ∨ ¬∗A
2. � A → (¬∗A → B)

3. � (A → B) → ((A → ¬∗B) → ¬∗A)

From Theorems 5.9, 5.10 follows.

5 A Survey of Annotated Logics 59

Theorem 5.10 For arbitrary formulas A and B, the following hold:

1. � ¬∗(A ∧ ¬∗A)

2. � A ↔ ¬∗¬∗A
3. � (A ∧ B) ↔ ¬∗(¬∗A ∨ ¬∗B)

4. � (A → B) ↔ (¬∗A ∨ B)

5. � (A ∨ B) ↔ ¬∗(¬∗A ∧ ¬∗B)

Theorem 5.10 implies that by using strong negation and a logical connective
other logical connectives can be defined as in classical logic. If τ = {t, f }, with
its operations appropriately defined, we can obtain classical propositional logic in
which ¬∗ is classical negation.

Now, we provide some formal results of Pτ including completeness and decid-
ability.

Lemma 5.9 Let p be a propositional variable andμ, λ, θ ∈ |τ |. Then, the following
hold:

1. � pλ∨μ → pλ

2. � pλ∨μ → pμ

3. λ ≥ μ and λ ≥ θ ⇒ � pλ → pμ∨θ

4. � pμ → pμ∧θ .

5. � pθ → pμ∧θ .

6. λ ≤ μ and λ ≤ θ ⇒ � pμ∧θ

7. � pμ ↔ pμ∨μ, � pμ ↔ pμ∧μ

8. � pμ∨λ ↔ pλ∨μ, � pμ∧λ ↔ pλ∧μ

9. � p(μ∨λ)∨θ∨ → pμ∨(λ∨θ), � p(μ∧λ)∧θ∨ → pμ∧(λ∧θ)

10. p(μ∨λ)∧μ → pμ, p(μ∧λ)∨μ → pμ

11. λ ≤ μ ⇒ � pλ∨μ → pμ

12. λ ∨ μ = μ ⇒ � pμ → pλ

13. μ ≥ λ ⇒ ∀θ ∈|τ | (� pμ∨θ → pλ∨θ and � pμ∧θ → pλ∧θ)

14. μ ≥ λ and θ ≥ ϕ ⇒ � pμ∨θ → pλ∨ϕ and pμ∧θ → pλ∧ϕ

15. � pμ∧(λ∨θ) → p(μ∧λ)∨(μ∧θ), � pμ∨(λ∧θ) → p(μ∨λ)∧(μ∨θ)

16. � pμ ∧ pλ ↔ pμ∧λ

17. � pμ∨λ → pμ ∨ pλ

Example 5.1 Consider the complete lattice τ = N ∪ {ω}, where N is the set of
natural numbers. The ordering on τ is the usual ordering on ordinals, restricted
to the set τ . Consider the set Γ = {p0, p1, p2, . . .}, where pω /∈ Γ . It is clear that
Γ � pω, but an infinitary deduction is required to establish this.

60 S. Akama

Definition 5.12 Δ = {A ∈ F | Δ � A}
Definition 5.13 Δ is said to be trivial iffΔ = F (i.e., every formula in our language
is a syntactic consequence of Δ); otherwise, Δ is said to be non-trivial. Δ is said to
be inconsistent iff there is some formula A such thatΔ � A andΔ � ¬A; otherwise,
Δ is consistent.

From the definition of triviality, the next theorem follows:

Theorem 5.11 Δ is trivial iff Δ � A ∧ ¬A (or Δ � A and Δ � ¬∗A) for some
formula A.

Theorem 5.12 Let Γ be a set of formulas, A, B be any formulas, and F be any
complex formula. Then, the following hold.

1. Γ � A and Γ � A → B ⇒ Γ � B

2. A ∧ B � A

3. A ∧ B � B

4. A, B � A ∧ B

5. A � A ∨ B

6. B � A ∨ B

7. Γ, A � C and Γ, B � C ⇒ Γ, A ∨ B � C

8. � F ↔ ¬∗F
9. Γ, A � B and Γ, A � ¬∗B ⇒ Γ � ¬∗A

10. Γ, A � B and Γ,¬∗A � B ⇒ Γ � B.

Note here that the counterpart of Theorem 5.12 (10) obtained by replacing the
occurrence of ¬∗ by ¬ is not valid.

Now, we are in a position to prove the soundness and completeness of Pτ . Our
proof method for completeness is based on maximal non-trivial set of formulas; see
Abe [1] and Abe and Akama [6]. da Costa et al. [30] presented another proof using
Zorn’s Lemma.

Theorem 5.13 (Soundness) Let Γ be a set of formulas and A be any formula. Aτ

is a sound axiomatization of Pτ , i.e., if Γ � A then Γ |= A.

For proving the completeness theorem, we need some theorems.

Theorem 5.14 Let Γ be a non-trivial set of formulas. Suppose that τ is finite. Then,
Γ can be extended to a maximal (with respect to inclusion of sets) non-trivial set
with respect to F.

5 A Survey of Annotated Logics 61

Theorem 5.15 Let Γ be a maximal non-trivial set of formulas. Then, we have the
following:

1. if A is an axiom of Pτ , then A ∈ Γ

2. A, B ∈ Γ iff A ∧ B ∈ Γ

3. A ∨ B ∈ Γ iff A ∈ Γ or B ∈ Γ

4. if pλ, pμ ∈ Γ , then pθ ∈ Γ , where θ = max(λ, μ)

5. ¬k pμ ∈ Γ iff ¬k−1 p∼μ ∈ Γ , where k ≥ 1

6. if A, A → B ∈ Γ , then B ∈ Γ

7. A → B ∈ Γ iff A /∈ Γ or B ∈ Γ

Theorem 5.16 Let Γ be a maximal non-trivial set of formulas. Then, the character-
istic function χ of Γ , that is, χΓ → 2 is the valuation function of some interpretation
I : P → |τ |.

Here is the completeness theorem for Pτ .

Theorem 5.17 (Completeness) Let Γ be a set of formulas and A be any formula. If
τ is finite, thenAτ is a complete axiomatization for Pτ , i.e., if Γ |= A then Γ � A.

The decidability theorem also holds for finite lattice.

Theorem 5.18 (Decidability) If τ is finite, then Pτ is decidable.

The completeness does not in general hold for infinite lattice. But, it holds for
special case.

Definition 5.14 (Finite annotation property) Suppose that Γ be a set of formulas
such that the set of annotated constants occurring in Γ is included in a finite sub-
structure of τ (Γ itself may be infinite). In this case, Γ is said to have the finite
annotation property.

Note that if τ ′ is a substructure of τ then τ ′ is closed under the operations ∼,∨
and ∧. One can easily prove the following from Theorem 5.17.

Theorem 5.19 (Finitary Completeness) Suppose that Γ has the finite annotation
property. If A is any formula such that Γ � A, then there is a finite proof of A
from Γ .

Theorem 5.19 tells us that even if the set of the underlying truth-values of Pτ

is infinite (countably or uncountably), as long as theories have the finite annotation
property. The completeness result applied to them, i.e.,Aτ is complete with respect
to such theories.

In general, when we consider theories that do not possess the finite annotation
property, it may be necessary to guarantee completeness by adding a new infinitary
inference rule (ω-rule), similar in spirit to the rule used by da Costa [24] in order to

62 S. Akama

cope with certain models in a particular family of infinitary language. Observe that
for such cases a desired axiomatization of Pτ is not finitary.

From the classical result of compactness,we can state a version of the compactness
theorem.

Theorem 5.20 (Weak Compactness) Suppose that Γ has the finite annotation prop-
erty. If A is any formula such that Γ � A, then there is a finite subset Γ ′ of Γ such
that Γ ′ � A.

Annotated logics Pτ provide a general framework, and can be used to reasoning
about many different logics. Below we present some examples.

The set of truth-values FOU R = {t, f,⊥,
}, with¬ defined as:¬t = f,¬ f =
t,¬⊥ = ⊥,¬
 =
. Four-valued logic based on FOU R was originally due to
Belnap [20, 21] to model internal states in a computer.

Subrahmanian [45] formalized an annotated logic with FOU R as a foundation
for paraconsistent logic programming; also see Blair and Subrahmanian [22].

Their annotated logic may be used for reasoning about inconsistent knowledge
bases. For example, we may allow logic programs to be finite collections of formulas
of the form:

(A : μ0) ↔ (B1 : μ1)& · · ·&(Bn : μn)

where A and Bi (1 ≤ i ≤ n) are atoms and μ j (0 ≤ j ≤ n) are truth-values in
FOU R.

Intuitively, such programs may contain “intuitive” inconsistencies–for example,
the pair

((p : f), (p : t))
is inconsistent. If we append this program to a consistent program P , then the result-
ing union of these two programs may be inconsistent, even though the predicate
symbols p occurs nowhere in program P .

Such inconsistencies can easily occur in knowledge based systems, and should
not be allowed to trivialize the meaning of a program. However, knowledge based
systems based on classical logic cannot handle the situation since the program is
trivial.

In Blair and Subrahmanian [22], it is shown how the four-valued annotated logic
may be used to describe this situation. Later, Blair and Subrahmanian’s annotated
logic was extended as generalized annotated logics by Kifer and Subrahmanian [37].

There are also other examples which can be dealt with by annotated logics. The
set of truth-values FOU R with negation defined as boolean complementation forms
an annotated logic.

The unit interval [0, 1] of truth-values with ¬x = 1 − x is considered as the base
of annotated logic for qualitative or fuzzy reasoning. In this sense, probabilistic and
fuzzy logics could be generalized as annotated logics.

5 A Survey of Annotated Logics 63

The interval [0, 1] × [0, 1] of truth-values can be also used for annotated logics for
evidential reasoning. Here, the assignment of the truth-value (μ1, μ2) to proposition
p may be thought of as saying that the degree of belief in p is μ1, while the degree
of disbelief is μ2. Negation can be defined as ¬(μ1, μ2) = (μ2, μ1).

Note that the assignment of [μ1, μ2] to a proposition p by an interpretation I does
not necessarily satisfy the condition μ1 + μ2 ≤ 1. This contrasts with probabilistic
reasoning. Knowledge about a particular domain may be gathered from different
experts (in that domain), and these experts may different views.

Some of these views may lead to a “strong” belief in a proposition; likewise, other
experts may have a “strong” disbelief in the same proposition. In such a situation,
it seems appropriate to report the existence of conflicting opinions, rather than use
ad-hoc means to resolve this conflict.

5.3 Predicate Annotated Logics Qτ

As mentioned above, da Costa et al. [30] investigated propositional annotated logics
Pτ , and suggested their predicate extension Qτ (also denoted QT). We can look at
the detailed formulation of Qτ in da Costa et al. [26]; also see Abe [1].

Predicate annotated logics Qτ can be formalized as a two-sorted first-order logic.
We repeat some definitions below. τ = 〈|τ|,≤,∼〉 is some arbitrary, but fixed com-
plete lattice, with the ordering ≤ and the operator ∼:|τ|→|τ|. The bottom element
of this lattice is denoted by ⊥, and top element is denoted by
.

The language Lτ of Qτ is a first-order language without equality. Abe [1] intro-
duced equality into Qτ.

Definition 5.15 (Symbols) Primitive symbols are the following:

1. Logical connectives: ∧ (conjunction), ∨ (disjunction), → (implication), and
¬ (negation)

2. Individual variables: a denumerably infinite set of variable symbols

3. Individual constants: an arbitrary family of constant symbols

4. Quantifiers: ∀ (for all) and ∃ (exists)

5. Function symbols: for each natural number n > 0, a collection of function
symbols of arity n

6. Annotated predicate symbols: for any natural number n ≥ 0, and any λ ∈ τ ,
a family of annotated predicate symbols pτ

7. Parentheses: (and)

Here, ∀ is called the universal quantifier and ∃ the existential quantifier. We define
the notion of term as usual. Given an annotated predicate symbol pλ of arity n and
n terms t1, . . . , tn , an annotated atom is an expression of the form pλ(t1, . . . , tn).

64 S. Akama

Definition 5.16 (Formulas) Formulas are defined as follows:

1. An annotated atom is a formula.

2. If F is a formula, then ¬F is a formula.

3. If F and G are formulas, then F ∧ G, F ∨ G, F → G are formulas.

4. If F is a formula and x is an individual variable, then ∀xF and ∃xF are
formulas.

Definition 5.17 (Hyper-literal and complex formulas) Hyper-literal and complex
formulas are defined as follows. A formula of the form ¬k pμ(t1, . . . , tn) (k ≥ 0)
is called a hyper-literal. A formula which is not a hyper-literal is called a complex
formula

As in Pτ , we may also use the formulas of the form A ↔ B and ¬∗A in Qτ .
Here, ↔ denotes the equivalence and ¬∗ strong negation, respectively. We can also
introduce the equality, denoted =, into Qτ . If t and s are terms, then s = t is also a
formula. s = t is read “s and t are equal”.

Now, we describe a semantics for Qτ , which is a variant of the semantics for
standard first-order logic.

Definition 5.18 (Interpretation) An interpretation I for the language Lτ of Qτ

consists of a non-empty set, denoted by dom(I), and called the domain, together
with

1. a function ηI that maps constants of Lτ to dom(I)

2. a function ζI that assigns, to each function symbol f of arity n in Lτ , a function
from (dom(I))n to dom(I)

3. a function χI that assigns, to each predicate symbol of arity n in Lτ , a function
from (dom(I))n to τ .

Definition 5.19 (Variable assignment) Suppose I is an interpretation for Lτ . Then,
a variable assignment v for Lτ with respect to I is a map from the set of variables
symbols of Lτ to dom(I).

Definition 5.20 (Denotation) The denotation dI,v(t) of a term t with reference to
an interpretation I and variable assignment v is defined inductively as follows:

1. If t is a constant symbol, then dI,v(t) = η(t).

2. If t is a variable symbol, then dI,v(t) = v(t).

3. If t is a function symbol, then dI,v(t) = ζ(f)(dI,v(t1), . . . , dI,v(tn)).

Definition 5.21 (Truth relation) Let I and v be an interpretation of Lτ and a variable
assignment with reference to I , respectively. We also suppose that A is an ordinary
atom, and that F,G and H are any formulas whatsoever. Then, the truth relation
I, v |= A, saying that A is true with reference to an interpretation I and variable
assignment v, is defined as follows:

5 A Survey of Annotated Logics 65

1. I, v |= pμ(t1, . . . , tn) iff χI (p)(dI,v(t1), . . . , dI,v(tn)) ≥ μ

2. I, v |= ¬k Aμ iff I, v |= ¬k−1A∼μ

3. I, v |= F ∧ G iff I, v |= F and I, v |= G

4. I, v |= F ∨ G iff I, v |= F or I, v |= G

5. I, v |= F → G iff I, v �|= F or I, v |= G

6. I, v |= ¬F iff I, v �|= F , where F is not a hyper-literal

7. I, v |= ∃xH iff for some variable assignment v′ such that for all variables y
different from x , v(y) = v′(y), we have that I, v′ |= H

8. I, v |= ∀xH iff for all variable assignments v′ such that for all variables y
different from x , v(y) = v′(y), we have that I, v′ |= H

9. I |= H iff for all variable assignments v associated with I , I, v |= H

The equality s = t is interpreted as follows:

I, v |= s = t iff dI,v(s) = dI,v(t)

Here, = at the right hand side of ‘iff’ denotes the equality symbol in the meta-
language, and it reads classically. We could also introduce annotated quality =λ as a
binary annotated atom. However, we do not go into details here.

We can define the notions of validity, model and semantic consequence as in
Sect. 5.2. Let Γ ∪ {H} be a set of formulas. We write |= H , and say that H is valid
(in Qτ) if, for every interpretation I , I |= H . If I |= A for each A ∈ Γ , I is amodel
of Γ . We say that H is a semantic consequence of Γ iff for any interpretation I such
that I |= G for all G ∈ Γ , it is the case that I |= F .

The following lemmas concerns the properties of |=, whose proofs are immediate
from the corresponding proof in the previous chapter.

Lemma 5.10 For any complex formula A and B and any formula F, the valuation
v satisfies the following:

1. |= A ↔ B iff |= A → B and |= B → A

2. �|= (A → A) ∧ ¬(A → A)

3. |= ¬∗A iff �|= A

4. |= ¬F ↔ ¬∗F

Lemma 5.11 Let pμ(t1, . . . , tn) be an annotated atom and μ, λ ∈ |τ |. Then, we
have:

1. |= p⊥(t1, . . . , tn)

2. |= pμ(t1, . . . , tn) → pλ(t1, . . . , tn), μ ≥ λ

3. |= ¬k pμ(t1, . . . , tn) ↔ ¬k−1 p∼μ(t1, . . . , tn), k ≥ 0

Next, we show a Hilbert style axiomatization of Qτ , calledA. In the formulation
of the postulates of A, the symbols A, B,C denote any formula whatsoever, F and
G denote complex formulas, and Pλ is an annotated atom.

66 S. Akama

Postulates forA described in Abe [1] are as follows; also see da Costa et al. [26].

Postulates for A
(→1) (A → (B → A)

(→2) (A → (B → C)) → ((A → B) → (A → C))

(→3) ((A → B) → A) → A
(→4) A, A → B/B
(∧1) (A ∧ B) → A
(∧2) (A ∧ B) → B
(∧3) A → (B → (A ∧ B))

(∨1) A → (A ∨ B)

(∨2) B → (A ∨ B)

(∨3) (A → C) → ((B → C) → ((A ∨ B) → C))

(¬1) (F → G) → ((F → ¬G) → ¬F)

(¬2) F → (¬F → A)

(¬3) F ∨ ¬F
(∃1) A(t) → ∃x A(x)
(∃2) A(x) → B/∃x A(x) → B
(∀1) ∀x A(x) → A(t)
(∀2) A → B(x)/A → ∀x B(x)
(τ1) p⊥(a1, . . . , an)
(τ2) ¬k pλ(a1, . . . , an) ↔ ¬k−1 p∼λ(a1, . . . , an)
(τ3) pλ(a1, . . . , an) → pμ(a1, . . . , an), where λ ≥ μ

(τ4) If A → pλ j (a1, . . . , an), then A → pλ(a1, . . . , an) for every j ∈ J,

whereλ =
m∨

i=1

λi

As τ is a complete lattice, the supremum in (τ4) is well-defined. The postulates for
quantifiers are subject to the usual restrictions. When τ is finite, (τ4) can be replaced
by the schema:

pλ1 (a1, . . . , an) ∧ pλ2 (a1, . . . , an) ∧ · · · ∧ pλm (a1, . . . , an) → pλ(a1, . . . , an),

where λ =
m∨

i=1

λi

Here, (→4), (∃4), (∀4) and (τ4) are regarded as rules of inference
Abe [1] also added the following three axioms for equality:

(=1) x = x
(=2) x1 = y1 → (. . . → (xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn)))
(=3) x1 = y1 → (. . . → (xn = yn → P(x1, . . . , xn) → P(y1, . . . , yn)))

Here, f and P are function symbol and predicate symbol, respectively.
As in Aτ , we easily define the syntactic concepts related to A; in particular the

concepts of syntactic consequence � is defined in the normal way. We only note that
the notion of deduction (proof) is not finitary if τ is infinite.

5 A Survey of Annotated Logics 67

da Costa, Abe and Subrahmanian’s axiomatization of A adopts different naming
for postulates, but it is equivalent to the above axiomatization. The deduction theorem
(Theorem 2.8) also holds for A.

Theorem 5.21 The following dualities of quantifiers hold:

1. � ∀x A ↔ ¬∗∃x¬∗A
2. � ∃x A ↔ ¬∗∀x¬∗A

Here are some formal results of Qτ . The first result is soundness of Qτ .

Theorem 5.22 (Soundness) Let Γ ∪ {A} be a set of formulas of Qτ . Then, Γ � A
(in A) implies that Γ � A, i.e., A is sound with respect to the semantics of Qτ .

The next result is completeness of Qτ in a restricted sense.

Theorem 5.23 (Completeness) Let Γ ∪ {A} be a set of formulas of Qτ . Then, if τ

is finite or if Γ ∪ {A} possesses the finite annotation property, we have that Γ |= A
entails Γ � A, i.e., A is complete with respect to the semantics of Qτ .

When τ is infinite, it seems that completeness can be obtained only by augmenting
A with an extra infinitary rule.

Qτ belong to the class of non-classical logics, and they are paraconsistent and
paracomplete. They have a weak negation ¬, but we can define the strong negation
¬∗, which is classical.

daCosta et al. [26] presented another axiomatization of Qτ with a different nature,
which is obtained by adjoining to the classical first-order logic, a weak negation ¬
plus some extra convenient postulates.

Let C be an axiomatization of classical first-order logic (without equality), in
which negation is denoted by ∼. The remaining primitives defined symbols of C are
the same as the corresponding one of Qτ . We also suppose that the atomic formulas
of the language of C are annotated atoms, as in Lτ . Furthermore, we suppose that we
have added to C a weak negation ¬.

We denote by A′ the axiomatic system obtained from C by adding the axioms
(¬1), (¬2), (¬3), (τ1), (τ2), (τ3), (τ4), and the rule:

If F and G are formulas such that G is obtained from F by the replacement
of a sub-formula of the form ¬∗A by A → (A → A) ∧ ¬(A → A) or by the
replacement of a sub-formula of the latter from by one of the first form, then
infer F ↔ G.

Theorem 5.24 A and A′ are equivalent; both characterize Qτ .

Theorem 5.24 reveals that annotated logic Qτ can be interpreted as an extension
of classical first-order logic C . This fact seems interesting theoretically as well as
practically.

Annotated logics can be used for various mathematical subjects. For example,
it is possible to work out a set theory based on Qτ . We will explore annotated set
theory. For this purpose, we need the notion of normal structure, and need to define
a fragment of Qτ .

http://dx.doi.org/10.1007/978-3-319-40418-9_2

68 S. Akama

Definition 5.22 (Normal structure) Let X be a non-empty set. A normal structure
based on X is a function f : X × X → τ .

We denote by Qτ 2 the logic Qτ obtained by suppressing all function symbols
and all predicate symbols, with the exception of one predicate symbol of arity 2 (a
binary predicate symbol) which we represent by ∈. Aτ 2 is then a dyadic predicate
calculus whose atoms are annotated by τ . An annotated atom of Qτ 2 has the form
∈λ (a, b), where a and b are terms and λ ∈ τ. This atom will be written a ∈λ b.

Intuitively, ∈ is the membership predicate symbol. The subscript λ denotes a
“degree” of membership. A normal structure is basically just a first-order interpre-
tation as defined earlier with the following differences. First, Qτ 2 contains only
one predicate symbol ∈ associated with different members of τ. Second, the normal
structures are the interpretations of ∈.
Theorem 5.25 Qτ 2 is sound with respect to the semantics of normal structures. If
τ is finite or we consider only sets of formulas sharing the finite annotation property,
then Qτ 2 is also complete.

5.4 Curry Algebras

We can develop an algebraic semantics for Pτ. Algebraic semantics is mathemat-
ically more elegant than model-theoretic semantics. However, algebraic semantics
for paraconsistent logics challenges standard formulation, since known techniques
cannot be properly used. Abe [3] proposed Curry algebra Pτ that algebraizes propo-
sitional annotated logics Pτ. Abe proved the completeness theorem for Pτ with
respect to the algebraic semantics.

In order to obtain algebraic versions of the majority of logical systems the pro-
cedure is the following: we define an appropriate equivalence relation in the set
of formulas (e.g. identifying equivalent formulas in classical propositional logic),
in such a way that the primitive connectives are compatible with the equivalence
relation, i.e., a congruence.

The resulting quotient system is the algebraic structure linked with the corre-
sponding logical system. By this process, Boolean algebra constitutes the algebraic
version of classical propositional logic, Heyting algebra constitutes the algebraic
version of intuitionistic propositional logic, and so on. Thus, the procedure is to
formulate an algebraic semantics.

However, in some non-classical logics, it is not always clear what “appropriate”
equivalence relation here can be; the non-existence of any significant equivalence
relation among formulas of the calculus can also take place. This occurs, for instance,
with some paraconsistent systems; see Mortensen [39]. Indeed, as pointed out by
Eytan [32], even for classical logic, it may not always be convenient to apply these
ideas.

5 A Survey of Annotated Logics 69

Now, we give some basic definitions related to Curry algebras. In Pτ , we define
A ≤ B by setting � A → B, and A ≡ B by setting A ≤ B and B ≤ A. Here, ≤ is
a quasi-order and ≡ is an equivalence relation, respectively. Let R be a set whose
elements are denoted by x, y, z, x ′, y′.

Definition 5.23 (Curry pre-ordered system) A system (R,≡,≤) is called a Curry
pre-ordered system, if

1. ≡ is an equivalence relation on R

2. x ≤ x

3. x ≤ y and y ≤ z imply x ≤ z

4. x ≤ y, x ′ ≡ and y′ ≡ y imply x ′ ≤ y′.

Definition 5.24 (Pre-lattice) A system (R,≡,≤) is called a pre-lattice, if (R,≡,≤)

is a Curry pre-ordered system and

1. inf{x, y} �= ∅
2. sup{x, y} �= ∅.
We denote by x ∧ y one element of the set of inf{x, y} and by x ∨ y one element of
the set of sup{x, y}.
Definition 5.25 (Implicative pre-lattice) A system (R,≡,≤) is called a implicative
pre-lattice, if

1. (R,≡,≤) is a pre-lattice

2. x ∧ (x → y) ≤ y

3. x ∧ y ≤ z iff x ≤ y → z.

Definition 5.26 An implicative pre-lattice (R,≡,≤) is called classic if (x → y) →
x ≤ y (Peirce’s law).

As is obvious from the above definitions, a classic implicative pre-lattice is a
pre-algebraic structure which can characterize positive classical propositional logic,
i.e., classical propositional logic without negation. As is well known, Peirce’s law
corresponds to the law of excluded middle.

We are now ready to define a Curry algebra Pτ . Let S be a non-empty set and
τ = (|τ|,≤) be a finite lattice with the operation ∼:|τ|→|τ|. We denote by S∗ the set
of all pairs (p, λ), where p ∈ S and λ ∈|τ|.

We now consider the set S∗ ∪ {¬,∧,∨,→}. Let S∗∗ be the smallest algebraic
structure freely generated by the set S∗ ∪ {¬,∧,∨,→} by the usual algebraic
method. Elements of S∗∗ are classified in two categories: hyper-literal elements are
of the form ¬k(p, λ) and complex elements are the remaining elements of S∗∗.

Now, we introduce the concept of a Curry algebra Pτ.

Definition 5.27 (Curry algebra Pτ) A Curry algebra Pτ (abbreviated by Pτ -
algebra) is a structure Rτ = (R, (|τ|,≤,∼),≡,→,¬) and, for p ∈ R, a ∈ R∗, x, y ∈
R∗∗:

70 S. Akama

1. R∗∗ is a classical implicative lattice with a greatest element 1

2. ¬ is a unary operator ¬ : R∗∗ → R∗∗

3. x → y ≤ (x → ¬y) → ¬x

4. x ≤ ¬x → a

5. p⊥ ≡ 1

6. x ∨ ¬x ≡ 1

7. ¬k(p, λ) ≡ ¬k−1(p,∼ λ), k ≥ 1

8. If μ ≤ λ then (p, μ) ≤ (p, λ)

9. (p, λ1) ∧ (p, λ2) ∧ · · · ∧ (p, λn) ≤ (p, λ), where λ =
n∨

i=1

λi

One can easily see that a Pτ -algebra is distributive and has a greatest element as
well as a first element.

Definition 5.28 Let x be an element of a Pτ -algebra. We put:

¬∗x = x → ((x → x) ∧ ¬(x → x))

In a Pτ -algebra, ¬∗x is a Boolean complement of x , so both x ∨ ¬∗x ≡ 1 and
x ∧ ¬∗x ≡ 0 hold.

Theorem 5.26 In a Pτ -algebra, the structure composed by the underlying set and
by operations ∧,∨ and ¬∗ is a pre-Boolean algebra. If we pass to the quotient
through the basic relation ≡, we obtain a Boolean algebra in the usual sense.

A pre-Boolean algebra is a partial preorder (R,≤) such that the quotient by
the relation ≡. Thus, by definition of Pτ -algebra, the mentioned structure is a pre-
Boolean algebra.

In addition, replacing the class of equivalent formulas by a formula can produce a
usual Boolean algebra in which the meet ∧ is conjunction, the join ∨ is disjunction,
and the complement is negation.

Definition 5.29 Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra, and (R, (|τ|,≤
,∼),≡,≤,→,¬∗) the Boolean algebra that is isomorphic to the quotient algebra
of (R, (|τ|,≤,∼),≡,≤,→,¬∗) by ≡ is called the Boolean algebra associated with
the Pτ -algebra.

Hence, we can establish the following first representation theorem for Pτ -algebra.

Theorem 5.27 Any Pτ -algebra is associated with a field of sets. Moreover, any
Pτ -algebra is associated with the field of sets simultaneously open and closed of a
totally disconnected compact Hausdorff space.

5 A Survey of Annotated Logics 71

This is not the only way of extracting Boolean algebra out of Pτ -algebra. There
is another natural Boolean algebra associated with a Pτ -algebra.

Definition 5.30 Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra. By RC we indi-
cate the set of all complex elements of (R, (|τ|,≤,∼),≡,≤,→,¬).

Then, the structure (RC, (|τ|,≤,∼),≡,≤,→,¬) constitutes a pre-Boolean alge-
bra which we call Boolean algebra c-associated with the Pτ -algebra (R, (|τ|,≤,∼
),≡,≤,→,¬). Thus, we obtain a second representation theorem for Pτ -algebra.

Theorem 5.28 Any Pτ -algebra is c-associated with a field of sets. Moreover, any
Pτ -algebra is c-associated with the field of sets simultaneously open and closed of
a totally disconnected compact Hausdorff space.

Theorems 5.27 and 5.28 show us that Pτ -algebra constitute interesting general-
izations of the concept of Boolean algebra. There are some open questions related
to these results. How many non-isomorphic Boolean algebra associated with a Pτ -
algebra is there? How many non-isomorphic Boolean algebra c-associated with a
Pτ -algebra is there? The answers to these questions can establish connections of
associated and c-associated algebra.

Next, we show soundness and completeness of Pτ -algebras using the notion of
filter and ideal of a Pτ -algebra.

Definition 5.31 (Filter) Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra. A subset
F of R is called a filter if:

1. x, y ∈ F imply x ∧ y ∈ F

2. x ∈ F and y ∈ R imply x ∨ y ∈ F

3. x ∈ F, y ∈ R, and x ≡ y imply y ∈ F .

Definition 5.32 (Ideal) Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra. A subset
I of R is called an ideal if:

1. x, y ∈ I imply x ∨ y ∈ I

2. x ∈ I and y ∈ R imply x ∧ y ∈ F

3. x ∈ I, y ∈ R, and x ≡ y imply y ∈ F .

Then, we have the following lemma whose proof is trivial.

Lemma 5.12 Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra. A subset F of R is
a filter iff:

1. x, y ∈ F imply x ∧ y ∈ F

2. x ∈ F, y ∈ R, and x ≤ y imply y ∈ F

3. x ∈ F, y ∈ R, and x ≡ y imply y ∈ F.

72 S. Akama

A subset I of R is an ideal iff:

1. x, y ∈ I imply x ∨ y ∈ I

2. x ∈ I, y ∈ R, and x ≤ y imply y ∈ I

3. x ∈ I, y ∈ R, and x ≡ y imply y ∈ I .

Filters are partially ordered by inclusion. Filters that are maximal with respect
to this ordering are called ultrafilters. By the Ultrafilter Theorem, every filter in
Pτ -algebra can be extended to an ultrafilter.

Theorem 5.29 Let F be an ultrafilter in a Pτ -algebra. Then, we have:

1. x ∧ y ∈ F iff x ∈ F and y ∈ F

2. x ∨ y ∈ F iff x ∈ F or y ∈ F

3. x → y ∈ F iff x /∈ F or y ∈ F

4. If pλ1 , pλ2 ∈ F, then pλ ∈ F, where λ = λ1 ∨ λ2

5. ¬k pλ ∈ F iff ¬k−1 p∼λ ∈ F

6. If x, x → y ∈ F, then y ∈ F

Definition 5.33 If Rτ1 = (R1, (|τ1|,≤1,∼1),≡1,≤1,→1,¬1) and Rτ2 = (R2,

(|τ1|,≤2,∼2),≡2,≤2,→2,¬2) are two Pτ -algebras, then a homomorphism of Rτ1
into Rτ2 is a map f of R1 into R2 which preserves the algebraic operations, i.e., such
that for x, y ∈ R1:

1. x ≤1 y iff f (x) ≤2 f (y)

2. f (x →1 y) ≡2 f (x) →2 f (y)

3. f (¬1x) ≡2 ¬2 f (x)

4. If x ≡1 y, then f (x) ≡2 f (y)

5. f is also extended to a homomorphism of (|τ1|,≤1,∼1) into (|τ2|,≤2,∼2) in
an obvious way (i.e., for instance, f (∼1 λ) = ∼2 f (λ)).

Then, as in the classical case, we can present the following theorem:

Theorem 5.30 Let Rτ1 and Rτ2 be two Pτ -algebras and f a homomorphism from
Rτ1 into Rτ2. Then, the set {x ∈ R1 | f (x) ≡2 12} (the shell of f) is a filter and the
set {x ∈ R2 | f (x) ≡2 02} (the kernel of f) is an ideal.

Theorem 5.31 If the shell of a homomorphism f of Pτ -algebra is an ultrafilter,
then

1. f (x) ≡ 1 and f (y) ≡ 1 iff f (x ∧ y) = 1

2. f (x) ≡ 1 or f (y) ≡ 1 iff f (x ∨ y) = 1

3. f (x) ≡ 0 or f (y) ≡ 1 iff f (x → y) = 1

5 A Survey of Annotated Logics 73

Definition 5.34 Let F be the set of all formulas of the propositional annotated logic
Pτ and f a homomorphism from F (considered as a Pτ -algebra) into an arbitrary
Pτ -algebra.Wewrite f |= Γ , whereΓ is a subset ofF, if for each A ∈ Γ , f (A) ≡ 1.
Γ |= A means that for all homeomorphisms f from F into an arbitrary Pτ -algebra,
if f |= Γ , then f (A) ≡ 1.

Basedon the above results,we can establish algebraic soundness and completeness
of the propositional annotated logic Pτ .

Theorem 5.32 (Soundness) If A is a provable formula of Pτ , i.e.,� A, then f (A) ≡
1 for any homomorphism f from F (considered as a Pτ -algebra) into an arbitrary
Pτ -algebra.

To prove completeness, we need the following theorem:

Theorem 5.33 Let U be an ultrafilter in F. Then, there is a homomorphism f from
F into 2 = {0, 1} such that the shell of f is U.

Theorem 5.34 (Completeness) Let F be the set of all formulas of the propositional
annotated logic Pτ and A ∈ F. Suppose that f (A) ≡ 1 for any homomorphism f
from F (considered as a Pτ -algebra) into an arbitrary Pτ -algebra. Then, A is a
provable formula of Pτ , i.e., � A.

Theorem 5.34 gives an alternative completeness result of propositional annotated
logics Pτ using Curry algebras Pτ . Curry algebras can also be applied to the com-
pleteness proof of other paraconsistent logics.

5.5 Formal Issues

There are several important formal issues about annotated logics. Annotated set
theory can be regarded as a generalization of classical set theory. Themost convenient
way to study normal structures is to start with a classical set theory, for instance,
Zermelo-Fraenkel set theory ZF and to treat them inside ZF . If we proceed this
way, then annotated set theory constitutes a natural and immediate extension of
fuzzy set theory.

A model theory based annotated predicate logics can be formalized as classical
model theory. It is shown that all classical results can be adapted to Qτ . For example,
Abe andAkama studied the ultraproductmethod forQτ in [5]. In fact,Qτ canprovide
a unified framework for paraconsistent model theory.

It is interesting to work out a proof theory for annotated logics. Indeed a Hilbert
system for annotated logics has been developed, but we need other proof methods for
practical applications. For example, a natural deduction formulation was explored in
Akama et al. [14] and a tableau formulation was given in Akama et al. [13]. It is also
possible to describe sequent calculi for annotated logics. A proof-theoretic study of
annotated logics is of help to automated reasoning.

74 S. Akama

Annotated modal logics can be formalized by extending annotated logics with
modal operators. Abe [2] proposed annotated modal logics S5τ whose modality can
be interpreted S5. Akama andAbe [9] investigated annotatedmodal logics K τ which
corresponds to the normal modal logic.

Annotated logics can be also extended to other modal logics, e.g. temporal, epis-
temic and deontic logic. Abe and Akama [7] annotated temporal logics for reasoning
about inconsistencies in temporal systems.

We can employ annotated logics as a basis for uncertain reasoning. In other words,
versions of annotated logics can be formalized as fuzzy, evidential or probabilistic
logics. We mentioned these possibilities above.

Work on fuzzy reasoning in annotated logics may be found in Akama et al.
[10, 12]. We also attempted to unify annotated and possibilistic logics in Akama
and Abe [11].

5.6 Conclusions

We gave a general introduction to annotated logics, which are now considered as
important paraconsistent systems. We surveyed propositional and predicate anno-
tated logics with proof and model theory. As an algebraic semantics based on Curry
algebras was reviewed. We also make some remarks on formal issues of annotated
logics.

We now know many systems of paraconsistent logic, but no systems can provide
a unified framework for real applications. Abe and his co-workers established real
applications using annotated logics for many years. In this sense, annotated logics
can be seen as one of the promising paraconsistent systems. Recent applications of
annotated logics to several areas may be found in Abe [4].

Acknowledgments We are grateful to the referee and J.M. Abe for useful comments.

References

1. Abe, J. M.: On the Foundations of Annotated Logics (in Portuguese). Ph.D. Thesis, University
of São Paulo, Brazil (1992)

2. Abe, J.M.: On annotated modal logics. Mathematica Japonica 40, 553–56 (1994)
3. Abe, J.M.: Curry algebra Pτ . Logique et Analyse 161-162-163, 5–15 (1998)
4. Abe, J.M. (ed.): Paraconsistent Intelligent Based-Systems. Springer, Heidelberg (2015)
5. Abe, J.M.,Akama, S.: Annotated logics Qτ and ultraproduct. Logique etAnalyse 160, 335–343

(1997) (published in 2000)
6. Abe, J.M., Akama, S.: On some aspects of decidability of annotated systems. In: Arabnia,

H.R. (ed.) Proceedings of the International Conference on Artificial Intelligence, vol. II, pp.
789–795. CREA Press (2001)

7. Abe, J.M., Akama, S.: Annotated temporal logics Δτ . In: Advances in Artificial Intelligence:
Proceedings of IBERAIA-SBIA 2000, LNCS 1952, pp. 217–226. Springer, Berlin (2000)

5 A Survey of Annotated Logics 75

8. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg
(2015)

9. Akama, S., Abe, J.M.: Many-valued and annotated modal logics. In: Proceedings of the 28th
International Symposium on Multiple-Valued Logic, pp. 114–119. Fukuoka (1998)

10. Akama, S., Abe, J.M.: Fuzzy annotated logics. In: Proceedings of IPMU’2000, pp. 504–508.
Madrid, Spain (2000)

11. Akama, S., Abe, J.M.: The degree of inconsistency in paraconsistent logics. In: Abe, J.M.,
da Silva Filho, J.I. (eds.) Logic, Artificial Intelligence and Robotics, pp. 13–23. IOS Press,
Amsterdam (2001)

12. Akama, S., Abe, J.M., Murai, T.: On the relation of fuzzy and annotated logics. In: Proceedings
of ASC’2003, pp. 46–51. Banff, Canada (2003)

13. Akama, S., Abe, J.M., Murai, T.: A tableau formulation of annotated logics. In: CialdeaMayer,
M., Pirri, F. (eds.) Proceedings of TABLEAUX’2003, pp. 1–13. Rome, Italy (2003)

14. Akama, S., Nakamatsu, K., Abe, J.M.: A natural deduction system for annotated predicate
logic. In: Knowledge-Based Intelligent Information and Engineering Systems: Proceedings of
KES 2007—WIRN 2007, Part II, pp. 861–868. Lecture Notes on Artificial Intelligence, vol.
4693. Springer, Berlin (2007)

15. Anderson, A., Belnap, N.: Entailment: The Logic of Relevance and Necessity I. Princeton
University Press, Princeton (1976)

16. Anderson, A., Belnap, N., Dunn, J.: Entailment: The Logic of Relevance and Necessity II.
Princeton University Press, Princeton (1992)

17. Batens, D.: Dynamic dialectical logics. In: Priest, G., Routley, R., Norman, J. (eds.) Paracon-
sistent Logic: Essay on the Inconsistent, pp 187–217. Philosophia Verlag, München (1989)

18. Batens, D.: Inconsistency-adaptive logics and the foundation of non-monotonic logics. Logique
et Analyse 145, 57–94 (1994)

19. Batens, D.: A general characterization of adaptive logics. Logique et Analyse 173–175, 45–68
(2001)

20. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of
Multi-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977)

21. Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of
Philosophy, pp. 30–55. Oriel Press (1977)

22. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68,
135–154 (1989)

23. Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn, vol. 14, pp. 1–93 Springer,
Heidelberg (2007)

24. da Costa, N.C.A.: α-models and the system T and T ∗. Notre Dame J. Form. Logic 14, 443–454
(1974)

25. da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Form. Logic
15, 497–510 (1974)

26. da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)

27. da Costa, N.C.A., Alves, E.H.: A semantical analysis of the calculi Cn . Notre Dame J. Form.
Logic 18, 621–630 (1977)

28. da Costa, N.C.A., Henschen, L.J., Lu, J.J., Subrahmanian, V.S.: Automatic theorem proving
in paraconsistent logics: foundations and implementation. In: Proceedings of the 10th Interna-
tional Conference on Automated Deduction, pp. 72–86, Springer, Berlin (1990)

29. da Costa, N.C.A., Subrahmanian: Paraconsistent logic as a formalism for reasoning about
inconsistent knowledge. Artif. Intell. Med. 1, 167–174 (1989)

30. da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic PT . Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)

31. Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Gunthner, F. (eds.) Handbook of
Philosophical Logic, vol. III, pp. 117–224. Reidel, Dordrecht (1986)

76 S. Akama

32. Eytan,M.: Tableaux deSmullyan, ensebles deHintikka et tour ya: un point de vueAlgebriquem.
Math. Sci. Hum. 48, 21–27 (1975)

33. Jaśkowski, S.: Propositional calculus for contradictory deductive systems (in Polish). Studia
Societatis Scientiarun Torunesis, Sectio A 1, 55–77 (1948)

34. Jaśkowski, S.: On the discursive conjunction in the propositional calculus for inconsistent
deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 8, 171–172
(1949)

35. Kifer, M., Lozinskii, E.L.: RI: a logic for reasoning with inconsistency. In: Proceedings of
LICS4, pp. 253–262 (1989)

36. Kifer, M., Lozinskii, E.L.: A logic for reasoning with inconsistency. J. Autom. Reason. 9,
179–215 (1992)

37. Kifer, M., Subrahmanian, V.S.: On the expressive power of annotated logic programs. In:
Proceedings of the 1989 North American Conference on Logic Programming, pp. 1069–1089
(1989)

38. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming. J. Logic
Program. 12, 335–367 (1992)

39. Mortensen, C.: Every quotient algebra for C1 is trivial. Notre Dame J. Formal Logic 21, 694–
700 (1980)

40. Priest, G., Routley, R., Norman, J. (eds.): Paraconsistent Logic: Essays on the Inconsistent.
Philosopia Verlag, München (1989)

41. Priest, G.: Logic of paradox. J. Philos. Logic 8, 219–241 (1979)
42. Priest, G.: Paraconsistent logic. In: Gabbay, D. Guenthner, F. (eds.) Handbook of Philosophical

Logic, 2nd edn., pp. 287–393. Kluwer, Dordrecht (2002)
43. Priest, G.: In Contradiction: A Study of the Transconsistent, 2nd edn. Oxford University Press,

Oxford (2006)
44. Routley, R., Plumwood, V., Meyer, R.K., Brady, R.: Relevant Logics and Their Rivals, vol. 1.

Ridgeview, Atascadero (1982)
45. Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceedings of the 4th

IEEE Symposium on Logic Programming, pp. 173–182 (1987)

	5 A Survey of Annotated Logics
	5.1 Introduction
	5.2 Propositional Annotated Logics Pτ
	5.3 Predicate Annotated Logics Qτ
	5.4 Curry Algebras
	5.5 Formal Issues
	5.6 Conclusions
	References

