
Chapter 2
Why Paraconsistent Logics?

Seiki Akama and Newton C.A. da Costa

Dedicated to Jair Minoro Abe for his 60th birthday.

Abstract In this chapter, we briefly review paraconsistent logics which are closely
related to the topics in this book. We give an exposition of their history and formal
aspects. We also address the importance of applications of paraconsistent logics to
engineering.
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2.1 Introduction

Paraconsistent logic is a logical system for inconsistent but non-trivial formal the-
ories. It is classified as non-classical logic in the sense that it can be employed as a
rival to classical logic. Paraconsistent logic has many applications and it can serve as
a foundation for engineering because some engineering problems must solve incon-
sistent information. However standard classical logic cannot tolerate it. In this regard,
paraconsistent is promising.

Here, we give a quick review of paraconsistent logic that is helpful to the reader.
Let T be a theory whose underlying logic is L. T is called inconsistent when it
contains theorems of the form A and ¬A (the negation of A), i.e.,
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T �L A and T �L ¬A

where �L denotes the provability relation in L. If T is not inconsistent, it is called
consistent.

T is said to be trivial, if all formulas of the language are also theorems of T .
Otherwise, T is called non-trivial. Then, for trivial theory T , T �L B for any formula
B. Note that trivial theory is not interesting since every formula is provable.

If L is classical logic (or one of several others, such as intuitionistic logic), the
notions of inconsistency and triviality agree in the sense that T is inconsistent iff T is
trivial. So, in trivial theories the extensions of the concepts of formula and theorem
coincide.

A paraconsistent logic is a logic that can be used as the basis for inconsistent
but non-trivial theories. In this regard, sentences of paraconsistent theories do not
satisfy, in general, the principle of non-contradiction, i.e., ¬(A ∧ ¬A).1

Similarly, we can define the notions of paracomplete logic and theory. A paracom-
plete logic is a logic, in which the principle of excluded middle, i.e., A ∨ ¬A is not
a theorem of that logic. In this sense, intuitionistic logic is one of the paracomplete
logics. A paracomplete theory is a theory based on paracomplete logic.

Finally, a logic which is simultaneously paraconsistent and paracomplete is called
non-alethic logic.

The structure of this paper is as follows. In Sect. 2.2, we describe the history
of paraconsistent logic. In Sect. 2.3, major approaches to paraconsistent logic are
given with formal descriptions. In Sect. 2.4, other paraconsistent logics are briefly
reviewed.

2.2 History

This section surveys the history of paraconsistent logic. Paraconsistent logics have
recently proved attracted tomany people, but they have a longer history than classical
logic. For example, Aristotle developed a logical theory that can be interpreted to be
paraconsistent. But, paraconsistent logics in the modern sense were formally devised
in the 1950s.

In 1910, the Russian logician Nikolaj A. Vasil’ev (1880–1940) and the Polish
logician Jan Łukasiewicz (1878–1956) independently glimpsed the possibility of
developing paraconsistent logics. Vasil’ev’s imaginary logic can be seen as a para-
consistent reformulation of Aristotle’s syllogistic; see Vasil’ev [54].

It was here pointed out that Łukasiewicz’s three-valued logic is a forerunner of
the many-valued approach to paraconsistency, although he did not explicitly discuss
paraconsistency; see Łukasiewicz [43].

1In fact, in some systems of paraconsistent logic, like daCosta’s systemsCn, the “good” propositions
do satisfy this principle.



2 Why Paraconsistent Logics? 9

However, we believe that the history of paraconsistent logic started in 1948.
Stanislaw Jaśkowski (1896–1965) proposed a paraconsistent propositional logic,
now called discursive logic (or discussive logic) in 1948; see Jaśkowski [37, 38].
Discursive logic is based on modal logic, and it is classified as the modal approach
to paraconsistency.

Independently, some years later, the Brazilian logician Newton C.A. da Costa
(1929-) constructed for the first time hierarchies of paraconsistent propositional cal-
culi Ci(1 ≤ i ≤ ω) and its first-order and higher-order extensions; see da Costa [28].
da Costa’s logics are called the C-system, which is based on the non-standard inter-
pretation of negation which is dual to intuitionistic negation.

A different route to paraconsistent logic may be found in the so-called relevance
logic (or relevant logic), which was originally developed by Anderson and Belnap
in the 1960s; see Anderson and Belnap [11] and Anderson, Belnap and Dunn [12].
Anderson and Belnap’s approach addresses a correct interpretation of implication
A → B, in which A and B should have some connection. Its semantic interpretation
raises the issues of paraconsistency, and some (not all) relevance logics are in fact
paraconsistent.

The above three approaches are considered themajor approaches to paraconsistent
logics, many paraconsistent logics have been proposed in the literature. They have
been developed from some motivation.

2.3 Approaches to Paraconsistent Logic

The section formally reviews several paraconsistent logics, restricting to the principal
paraconsistent logics. But, it is far from complete, and the reader should consult in-
depth exposition in the relevant reference.

We can list the three logics as the major approaches:

• Discursive logic
• C-systems
• Relevant (relevance) logic

Discursive logic, also known as discussive logic, was proposed by Jaśkowski [37,
38], which is regarded as a non-adjunctive approach.Adjunction is a rule of inference
of the form: from � A and � B to � A ∧ B. Discursive logic can avoid explosion by
prohibiting adjunction.

It was a formal system J satisfying the conditions: (a) from two contradictory
propositions, it should not be possible to deduce any proposition; (b) most of the
classical theses compatible with (a) should be valid; (c) J should have an intuitive
interpretation.

Such a calculus has, among others, the following intuitive properties remarked
by Jaśkowski himself: suppose that one desires to systematize in only one deductive
system all theses defended in a discussion. In general, the participants do not confer
the same meaning to some of the symbols.
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One would have then as theses of a deductive system that formalize such a dis-
cussion, an assertion and its negation, so both are “true” since it has a variation in
the sense given to the symbols. It is thus possible to regard discursive logic as one
of the so-called paraconsistent logics.

Jaśkowski’s D2 contains propositional formulas built from logical symbols of
classical logic. In addition, the possibility operator ♦ in S5 is added. Based on the
possibility operator, three discursive logical symbols can be defined as follows:

discursive implication: A →d B =def ♦A → B
discursive conjunction: A ∧d B =def ♦A ∧ B
discursive equivalence: A ↔d B =def (A →d B) ∧d (B →d A)

Additionally, we can define discursive negation ¬dA as A →d false. Jaśkowski’s
original formulation of D2 in [38] used the logical symbols: →d,↔d,∨,∧,¬, and
he later defined ∧d in [38].

The following axiomatization due to Kotas [42] has the following axioms and the
rules of inference.

Axioms
(A1) �(A → (¬A → B))

(A2) �((A → B) → ((B → C) → (A → C))

(A3) �((¬A → A) → A)

(A4) �(�A → A)

(A5) �(�(A → B) → (�A → �B))

(A6) �(¬�A → �¬�A)

Rules of Inference
(R1) substitution rule
(R2) �A,�(A → B)/�B
(R3) �A/��A
(R4) �A/A
(R5) ¬�¬�A/A

There are other axiomatizations of D2, but we omit the details here. Discursive
logics are consideredweak as a paraconsistent logic, but they have some applications,
e.g. logics for vagueness.

C-systems are paraconsistent logics due to da Costa which can be a basis for
inconsistent but non-trivial theories; see da Costa [28]. The important feature of
da Costa systems is to use novel interpretation, which is non-truth-functional, of
negation avoiding triviality.

Here, we review C-system C1 due to da Costa [28]. The language of C1 is based
on the logical symbols:∧,∨,→, and¬.↔ is defined as usual. In addition, a formula
A◦, which is read “A is well-behaved”, is shorthand for ¬(A ∧ ¬A). The basic ideas
ofC1 contain the following: (1) most valid formulas in the classical logic hold, (2) the
law of non-contradiction ¬(A ∧ ¬A) should not be valid, (3) from two contradictory
formulas it should not be possible to deduce any formula.

The Hilbert system of C1 extends the positive intuitionistic logic with the axioms
for negation.
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da Costa’s C1

Axioms
(DC1) A → (B → A)

(DC2) (A → B) → ((A → (B → C)) → (A → C))

(DC3) (A ∧ B) → A
(DC4) (A ∧ B) → B
(DC5) A → (B → (A ∧ B))

(DC6) A → (A ∨ B)

(DC7) B → (A ∨ B)

(DC8) (A → C) → ((B → C) → ((A ∨ B) → C))

(DC9) B◦ → ((A → B) → ((A → ¬B) → ¬A))

(DC10) (A◦ ∧ B◦) → (A ∧ B)◦ ∧ (A ∨ B)◦ ∧ (A → B)◦
(DC11) A ∨ ¬A
(DC12) ¬¬A → A

Rules of Inference
(MP) � A, � A → B ⇒ � B

Here, (DC1)–(DC8) are axioms of the positive intuitionistic logic. (DC9) and
(DC10) play a role for the formalization of paraconsistency.

A semantics for C1 can be given by a two-valued valuation; see da Costa and
Alves [29]. We denote by F the set of formulas of C1. A valuation is a mapping v

from F to {0, 1} satisfying the following:
v(A) = 0 ⇒ v(¬A) = 1
v(¬¬A) = 1 ⇒ v(A) = 1
v(B◦) = v(A → B) = v(A → ¬B) = 1 ⇒ v(A) = 0
v(A → B) = 1 ⇔ v(A) = 0 or v(B) = 1
v(A ∧ B) = 1 ⇔ v(A) = v(B) = 1
v(A ∨ B) = 1 ⇔ v(A) = 1 or v(B) = 1
v(A◦) = v(B◦) = 1 ⇒ v((A ∧ B)◦) = v((A ∨ B)◦) = v((A → B)◦) = 1

Note here that the interpretations of negation and double negation are not given
by biconditional. A formula A is valid, written |= A, if v(A) = 1 for every valuation
v. Completeness holds for C1. It can be shown that C1 is complete for the above
semantics.

Da Costa system C1 can be extended to Cn (1 ≤ n ≤ ω). Now, A1 stands for A◦
and An stands for An−1 ∧ (A(n−1))◦, 1 ≤ n ≤ ω.

Then, daCosta systemCn (1 ≤ n ≤ ω) can be obtained by (DC1)–(DC8), (DC12),
(DC13) and the following:

(DC9n) B(n) → ((A → B) → ((A → ¬B) → ¬A))

(DC10n) (A(n) ∧ B(n)) → (A ∧ B)(n) ∧ (A ∨ B)(n) ∧ (A → B)(n)

Note that the da Costa system Cω has the axioms (DC1)–(DC8), (DC12) and
(DC13). Later, da Costa investigated first-order and higher-order extensions of C-
systems.
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Relevance logic, also called relevant logic is a family of logics based on the notion
of relevance in conditionals. Historically, relevance logic was developed to avoid the
paradox of implications; see Anderson and Belnap [11, 12].

Anderson and Belnap formalized a relevant logic R to realize a major motivation,
in which they do not admit A → (B → A). Later, various relevance logics have
been proposed. Note that not all relevance logics are paraconsistent but some are
considered important as paraconsistent logics.

Routley and Meyer proposed a basic relevant logic B, which is a minimal system
having the so-called Routley-Meyer semantics. Thus, B is an important system and
we review it below; see Routley et al. [51].

The language of B contains logical symbols: ∼,&,∨ and → (relevant implica-
tion). A Hilbert system for B is as follows:

Relevant Logic B
Axioms
(BA1) A → A
(BA2) (A&B) → A
(BA3) (A&B) → B
(BA4) ((A → B)&(A → C)) → (A → (B&C))

(BA5) A → (A ∨ B)

(BA6) B → (A ∨ B)

(BA7) (A → C)&(B → C)) → ((A ∨ B) → C)

(BA8) (A&(B ∨ C)) → (A&B) ∨ C)

(BA9) ∼∼ A → A
Rules of Inference
(BR1) � A,� A → B ⇒ � B
(BR2) � A,� B ⇒ � A&B
(BR3) � A → B,� C → D ⇒ � (B → C) → (A → D)

(BR4) � A → ∼ B ⇒ � B → ∼ A

A Hilbert system for Anderson and Belnap’s R is as follows:

Relevance Logic R
Axioms
(RA1) A → A
(RA2) (A → B) → ((C → A) → C → B))

(RA3) (A → (A → B) → (A → B)

(RA4) (A → (B → C)) → (B → (A → C)

(RA5) (A&B) → A
(RA6) (A&B) → B
(RA7) ((A → B)&(A → C)) → (A → (B&C))

(RA8) A → (A ∨ B)

(RA9) B → (A ∨ B)

(RA10) ((A → C)&(B ∨ C)) → ((A ∨ B) → C))

(RA11) (A&(B ∨ C)) → ((A&B) ∨ C)

(RA12) (A →∼ A) →∼ A
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(RA13) (A →∼ B)) → (B →∼ A)

(RA14) ∼∼ A → A
Rules of Inference
(RR1) � A,� A → B ⇒ � B
(RR2) � A,� B ⇒ � A&B

Routley et al. considered some axioms of R are too strong and formalized rules
instead of axioms. Notice that B is a paraconsistent but R is not.

Next, we give a Routley-Meyer semantics for B. A model structure is a tuple
M = 〈K,N,R, ∗, v〉, where K is a non-empty set of worlds, N ⊆ K , R ⊆ K3 is a
ternary relation on K , ∗ is a unary operation on K , and v is a valuation function from
a set of worlds and a set of propositional variables P to {0, 1}.

There are some restrictions on. v satisfies the condition that a ≤ b and v(a, p)
imply v(b, p) = 1 for any a, b ∈ K and any p ∈ P . a ≤ b is a pre-order relation
defined by ∃x(x ∈ N and Rxab). The operation ∗ satisfies the condition a∗∗ = a.

For any propositional variable p, the truth condition |= is defined: a |= p iff
v(a, p) = 1. Here, a |= p reads “p is true at a”. |= can be extended for any formulas
in the following way:

a |= ∼ A ⇔ a∗ �|= A
a |= A&B ⇔ a |= A and a |= B
a |= A ∨ B ⇔ a |= A or a |= B
a |= A → B ⇔ ∀bc ∈ K(Rabc and b |= A ⇒ c |= B)

A formula A is true at a in M iff a |= A. A is valid, written |= A, iff A is true on
all members of N in all model structures.

Routley et al. provides the completeness theorem for B with respect to the above
semantics using canonical models; see [51].

A model structure for R needs the following conditions.

R0aa
Rabc ⇒ Rbac
R2(ab)cd ⇒ R2a(bc)d Raaa
a∗∗ = a
Rabc ⇒ Rac∗b∗
Rabc ⇒ a′ ≤ a ⇒ Ra′bc

where R2abcd is shorthand for ∃x(Raxd and Rxcd). The completeness theorem
for the Routley-Meyer semantics can be proved for R; see [11, 12].

The reader is advised to consult Anderson and Belnap [11], Anderson et al. [12],
and Routley et al. [51] for details. A more concise survey on the subject may be
found in Dunn [32].

Belnap proposed a famous four-valued logic in Belnap [21, 22], which is closely
related to relevant logic and paraconsistent logic. Belnap’s four-valued logic aims to
formalize the internal states of a computer.

There are four states, i.e. (T), (F), (None) and (Both), to recognize an input in
a computer. Based on these states, a computer can compute the following suitable
outputs.
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(T) a proposition is true.
(F) a proposition is false.
(N) a proposition is neither true nor false.
(B) a proposition is both true and false.

Here, (N) and (B) abbreviate (None) and (Both), respectively. From the above,
(N) corresponds to incompleteness and (B) inconsistency. Four-valued logic can be
thus seen as a natural extension of three-valued logic. In fact, Belnap’s four-valued
logic can model both incomplete information (N) and inconsistent information (B).

Belnap proposed two four-valued logics A4 and L4. The former can cope only
with atomic formulas, whereas the latter can handle compound formulas.A4 is based
on the approximation lattice, which is shown in Fig. 2.1.

Here, B is the least upper bound and N is the greatest lower bound with respect
to the ordering ≤. Observe that in the lattice FOUR in Fig. 2.1, we used t, f ,⊥,�
instead of T ,F,N,B, respectively.

The logic L4 has logical symbols; ∼,∧,∨. Its truth-values is 4 = {T ,F,N,B}
with a different ordering. The lattice L4 is shown in Fig. 2.2.

One of the features ofL4 is the monotonicity of logical symbols. Let f be a logical
operation. It is said that f is monotonic iff a ⊆ b ⇒ f (a) ⊆ f (b). To guarantee the
monotonicity of conjunction and disjunction, they must satisfy the following:

a ∧ b = a ⇔ a ∨ b = b
a ∧ b = b ⇔ a ∨ b = a

Logical symbols in L4 obey th truth-value tables in Table2.1.

Fig. 2.1 Approximation
lattice L4

Fig. 2.2 Logical lattice L4
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Table 2.1 Truth-value tables of L4

Belnap gave a semantics for the language with the above logical symbols. A setup
is a mapping a set of atomic formulas Atom to the set 4. Then, formulas of L4 are
defined as follows:

s(A ∧ B) = s(A) ∧ s(B)

s(A ∨ B) = s(A) ∨ s(B)

s(∼ A) = ∼ s(A)

Further, Belnap defined an entailment relation → as follows:

A → B ⇔ s(A) ≤ s(B)

for all setups s. Note that → is not a logical connective for implication but an
entailment relation. The entailment relation → can be axiomatized as follows:

(A1 ∧ ... ∧ Am) → (B1 ∨ ... ∨ Bn) (Ai shares some Bj)
(A ∨ B) → C ↔ (A → C) and (B → C)

A → B ⇔ ∼ B →∼ A
A ∨ B ↔ B ∨ A, A ∧ B ↔ B ∧ A
A ∨ (B ∨ C) ↔ (A ∨ B) ∨ C
A ∧ (B ∧ C) ↔ (A ∧ B) ∧ C
A ∧ (B ∨ C) ↔ (A ∧ B) ∨ (A ∧ C)

A ∨ (B ∧ C) ↔ (A ∨ B) ∧ (A ∨ C)

(B ∨ C) ∧ A ↔ (B ∧ A) ∨ (C ∧ A)

(B ∧ C) ∨ A ↔ (B ∨ A) ∧ (C ∨ A)

∼∼ A ↔ A
∼ (A ∧ B) ↔ ∼ A∨ ∼ B, ∼ (A ∨ B) ↔ ∼ A∧ ∼ B
A → B,B → C ⇔ A → C
A ↔ B,B ↔ C ⇔ A ↔ C
A → B ⇔ A ↔ (A ∧ B) ⇔ (A ∨ B) ↔ B

Note here that (A∧ ∼ A) → B and A → (B∨ ∼ B) cannot be derived in this
axiomatization. It can be shown that the logic given above is shown to be equiv-
alent to the system of tautological entailment; see [11, 12].

An alternative semantics for tautological entailment based on the notion of fact
was worked out by van Fraassen [53]. Belnap’s A4 is used as one of the lattice of
truth-values as FOUR. In this regard, Belnap’s four-valued logic is considered as the
important background on annotated logics.
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2.4 Other Paraconsistent Logics

Although the above three logics are famous approaches to paraconsistent logics,
there is a rich literature on paraconsistent logics. Arruda [15] reviewed a survey on
paraconsistent logics, and Priest et al. [49] contains interesting papers on paracon-
sistent logics in the 1980s. For a recent survey, we refer Priest [47]. We can also
find a Handbook surveying various subjects related to paraconsistency by Beziau
et al. [23].

In 1997, The First World Congress on Paraconsistency (WCP’1997) was held at
the University of Ghent, Belgium; see Batens et al. [20]. The SecondWorld Congress
on Paraconsistency (WCP’200) was held at Juquehy-Sao Paulo, Brazil; see Carnielli
et al. [26].

In the 1990s paraconsistent logics became one of the major topics in logic in
connection with other areas, in particular, computer science. Below we review some
of those systems of paraconsistent logics.

The modern history of paraconsistent logic started with Vasil’ev’s imaginary
logic. In 1910, Vasil’ev proposed an extension of Aristotle’s syllogistic allowing the
statement of the form S is both P and not-P; see Vasil’ev [54].

Thus, imaginary logic can be viewed as a paraconsistent logic. Unfortunately,
little work has been done on focusing on its formalization from the viewpoint of
modern logic. A survey of imaginary logic can be found in Arruda [15].

In 1954, Asenjo developed a calculus of antinomies in his dissertation; see
Asenjo [16]. Asenjo’s work was published before da Costa’s work, but it seems that
Asenjo’s approach has been neglected. Asenjo’s idea is to interpret the truth-value
of antinomy as both true and false using Kleene’s strong three-valued logic.

His proposed calculus is non-trivially inconsistent propositional logic, whose
axiomatization can be obtained fromKleene’s [39] axiomatization of classical propo-
sitional logic by deleting the axiom (A → B) → ((A → ¬B) → ¬A).

In constructivism, an idea of constructing paraconsistent logics may be found. In
1949, Nelson [44] proposed a constructive logic with strong negation as an alter-
native to intuitionistic logic, in which strong negation (or constructible negation) is
introduced to improve some weaknesses of intuitionistic negation.

Constructive logic N extends positive intuitionistic logic Int+ with the following
axioms for strong negation ∼:

(N1) (A∧ ∼ A) → B
(N2) ∼∼ A ↔ A
(N3) ∼ (A → B) ↔ (A∧ ∼ B)

(N4) ∼ (A ∧ B) ↔ (∼ A∨ ∼ B)

(N5) ∼ (A ∨ B) ↔ (∼ A∧ ∼ B)

In N , intuitionistic negation¬ can be defined as¬A ↔ A → (B∧ ∼ B). If we delete
(N1) from N , we can obtain a paraconsistent constructive logic N− of Almukdad
and Nelson [10]. Akama [3–8] extensively studied Nelson’s constructive logics with
strong negation; also see Wansing [55].
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Table 2.2 Truth-value tables of Kleene’s strong three-valued logic

In 1959, Nelson [45] developed a constructive logic S which lacks contraction
(A → (A → B)) → (A → B) and discussed its aspects as a paraconsistent logic.
Akama [7] gave a detailed presentation of Nelson’s paraconsistent constructive log-
ics. Akama et al. [9] proposed a constructive discursive logic based on Nelson’s
constructive logic.

In 1979, Priest [46] proposed a logic of paradox, denoted LP, to deal with the
semantic paradox. The logic is of special importance to the area of paraconsistent
logics. LP can be semantically defined by Kleene’s strong three-valued logic whose
truth-value tables are as Table2.2.

Here, T and F denote truth and falsity, and the third truth-value I reads “unde-
fined”; see Kleene [39].

Łukasiewicz’s three-valued logic is interpreted by the above truth-value tables
of Kleene’s three-valued logic except for implication. Let →L be the implication
in Łukasiewicz’s three-valued logic. Then, the truth-value tables are described as
Table2.3.

Here, the third truth-value reads “possible”; see Łukasiewicz [43]. Kleene’s three-
valued logic was used as a basis for reasoning about incomplete information in
computer science.

Priest re-interpreted the truth-value tables of Kleene’s strong three-valued logic,
namely read the third-truth value as both true and false (B) rather than neither true nor
false (I), and assumed that (T ) and (B) are designated values. The idea has already
been considered in Asenjo [16] and Belnap [21, 22].

Consequently, ECQ: A,∼ A |= B is invalid. Thus, LP can be seen as a paraconsis-
tent logic. Unfortunately, (material) implication in LP does not satisfymodus ponens.
It is, however, possible to introduce relevant implications as real implication into LP.
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Table 2.3 Truth-value tables of Łukasiewicz’s three-valued logic

Priest developed a semantics for LP bymeans of a truth-value assignment relation
rather than a truth-value assignment function. Let P be the set of propositional
variables. Then, an evaluation η is a subset of P × {0, 1}. A proposition may only
relate to 1 (true), it may only relate to 0 (false), it may relate to both 1 and 0 or it may
relate to neither 1 nor 0. The evaluation is extended to a relation for all formulas as
follows:

¬Aη1 iff Aη0
¬Aη0 iff Aη1
A ∧ Bη1 iff Aη1 and Bη1
A ∧ Bη0 iff Aη0 or Bη0
A ∨ Bη1 iff Aη1 or Bη1
A ∨ Bη0 iff Aη0 and Bη0

If we define validity in terms of truth preservation under all relational evaluations,
then we obtain first-degree entailment which is a fragment of relevance logics.

Using LP, Priest advanced his research program to tackle various philosophical
and logical issues; see Priest [47, 48] for details. For instance, in LP, the liar sentence
can be interpreted as both true and false. It is also observed that Priest promoted the
philosophical view called dialetheismwhich claims that there are true contradictions.
In fact, dialetheism has been extensively discussed by many people.

Since the beginning of the 1990s, Batens developed the so-called adaptative logics
in Batens [18, 19]. These logics are considered as improvements of dynamic dialecti-
cal logics investigated in Batens [17]. Inconsistency-adaptive logics as developed by
Batens [18] can serve as foundations for paraconsistent and non-monotonic logics.

Adaptive logics formalized classical logic as “dynamic logic”. Here, “dynamic
logic” is not the family of logics with the same name studied in computer science. A
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logic is adaptive iff it adapts itself to the specific premises to which it is applied. In
this sense, adaptive logics can model the dynamics of human reasoning. There are
two sorts of dynamics, i.e., external dynamics and internal dynamics.

The external dynamics is stated as follows. If newpremises become available, then
consequences derived from the earlier premise set may bewithdrawn. In other words,
the external dynamics results from the non-monotonic character of the consequence
relations.

Let � be a consequence relation, Γ,Δ be sets of formulas, and A be a formula.
Then, the external dynamics is formally presented as: Γ � A but Γ ∪ Δ � A for
some Γ,Δ and A. In fact, the external dynamics is closely related to the notion of
non-monotonic reasoning in AI.

The internal dynamics is very different from the external one. Even if the premise
set is constant, certain formulas are considered as derived at some stage of the reason-
ing process, but are considered as not derived at a later stage. For any consequence
relation, insight in the premises is gained by deriving consequences from them.

In the absence of a positive test, this results in the internal dynamics. Namely, in
the internal dynamics, reasoning has to adapt itself by withdrawing an application
of the previously used inference rule, if we infer a contradiction at a later stage.
Adaptive logics are logics based on the internal dynamics.

An Adaptive Logic AL can be characterized as a triple:

(i) A lower limit logic (LLL)
(ii) A set of abnormalities
(iii) An adaptive strategy

The lower limit logic LLL is any monotonic logic, e.g., classical logic, which is the
stable part of the adaptive logic. Thus, LLL is not subject to adaptation. The set of
abnormalities Ω comprises the formulas that are presupposed to be false, unless and
until proven otherwise.

Inmany adaptive logics,Ω is the set of formulas of the formA∧ ∼ A. An adaptive
strategy specifies a strategy of the applications of inference rules based on the set of
abnormalities.

If the lower limit logic LLL is extended with the requirement that no abnormality
is logically possible, one obtains a monotonic logic, which is called the upper limit
logic ULL. Semantically, an adequate semantics for the upper limit logic can be
obtained by selecting that lower limit logic models that verify no abnormality.

The name “abnormality” refers to the upper limit logic. ULL requires premise
sets to be normal, and ‘explodes’ abnormal premise sets (assigns them the trivial
consequence set).

If the lower limit logic is classical logicCL and the set of abnormalities comprises
formulas of the form ∃A ∧ ∃ ∼ A, then the upper limit logic obtained by adding to
CL the axioms ∃A → ∀A. If, as is the case for many inconsistency-adaptive logics,
the lower limit logic is a paraconsistent logic PL which contains CL, and the set of
abnormalities comprises the formulas of the form ∃(A∧ ∼ A), then the upper limit
logic is CL. The adaptive logics interpret the set of premises ‘as much as possible’ in
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agreement with the upper limit logic; it avoids abnormalities ‘in as far as the premises
permit’.

Adaptive logics provide a newway of thinking of the formalization of paraconsis-
tent logics in view of the dynamics of reasoning. Although inconsistency-adaptive
logic is paraconsistent logic, applications of adaptive logics are not limited to para-
consistency. From a formal point of view, we can count adaptive logics as promising
paraconsistent logics.

However, for applications, wemay face several obstacles in automating reasoning
in adaptive logics in that proofs in adaptive logics are dynamic with a certain adaptive
strategy. Thus, the implementation is not easy, and we have to choose an appropriate
adaptive strategy depending on applications.

Carnelli proposed the Logics of Formal Inconsistency (LFI), which are logical
systems that treat consistency and inconsistency asmathematical objects; seeCarnelli
et al. [27]. One of the distinguishing features of these logics is that they can internalize
the notions of consistency and inconsistency at the object-level.

Andmany paraconsistent logics including daCosta’sC-systems can be interpreted
as the subclass of LFIs. Therefore, we can regard LFIs as a general framework for
paraconsistent logics.

A Logic of Formal Inconsistency, which extends classical logic C with the con-
sistency operator ◦, is defined as any explosive paraconsistent logic, namely iff the
classical consequence relation � satisfies the following two conditions:

(a) ∃Γ ∃A∃B(Γ,A,¬A � B)

(b) ∀Γ ∀A∀B)(Γ, ◦A,A,¬A � B).

Here, Γ denotes a set of formulas and A,B are formulas. With the help of ◦, we can
express both consistency and inconsistency in the object-language. Therefore, LFIs
are general enough to classify many paraconsistent logics.

For example, da Costa’s C1 is shown to be an LFI. For every formula A, let ◦A
be an abbreviation of the formula ¬(A ∧ ¬A). Then, the logic C1 is an LFI such that
◦(p) = {◦p} = {¬¬(p ∧ ¬p} whose axiomatization as an LFI contains the positive
fragment of classical logic with the axiom ¬¬A → A, and some axioms for ◦.
(bc1) ◦A → (A → (¬A → B))

(ca1) (◦A ∧ ◦B) → ◦(A ∧ B)

(ca2) (◦A ∧ ◦B) → ◦(A ∨ B)

(ca3) (◦A ∧ ◦B) → ◦(A → B)

In addition, we can define classical negation ∼ by∼ A =def ¬A ∧ ◦A. If needed, the
inconsistency operator • is introduced by definition: •A =def ¬ ◦ A.

Carnielli et al. [27] showed classifications of existing logical systems. For exam-
ple, classical logic is not an LFI, and Jáskowski’sD2 is an LFI. They also introduced
a basic system of LFI, called LFI1 with a semantics and axiomatization.

We can thus see that the Logics of Formal Inconsistency are very interesting
from a logical point of view in that they can serve as a theoretical framework for
existing paraconsistent logics. In addition, there are tableau systems for LFIs; see
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Fig. 2.3 The bilattice FOUR

Carnielli andMarcos [25], and they can be properly applied to various areas including
computer science and AI.

The abovementioned logics have been worked as a paraconsistent logic. But there
are other logics which share the features of paraconsistent logics. The two notable
examples are possibilistic logic and logics based on bilattices. In fact, these logics
can properly deal both with incompleteness and inconsistency of information.

A bilattice was originally introduced by Ginsberg [35, 36] for the foundations of
reasoning in AI, which has two kinds of orderings, i.e., truth ordering and knowledge
ordering.

Later, it was extensively studied by Fitting in the context of logic programming
in [33] and of theory of truth in [34]. In fact, bilattice-based logics can handle both
incomplete and inconsistent information.

A pre-bilattice is a structure B = 〈B,≤t,≤k〉, where B denotes a non-empty set
and ≤t and ≤k are partial orderings on B. The ordering ≤k is thought of as ranking
“degree of information (or knowledge)”. The bottom in ≤k is denoted by ⊥ and the
top by �. If x <k y, y gives us at least as much information as x (and possibly more).

The ordering ≤t is an ordering on the “degree of truth”. The bottom in ≤t is
denoted by false and the top by true. A bilattice can be obtained by adding certain
assumptions for connections for two orderings.

One of themostwell-knownbilattices is the bilatticeFOUR as depicted as Fig. 2.3.
The billatice FOUR can be interpreted a combination of Belnap’s latticesA4 and L4
as is clear from Fig. 2.3.

The bilattice FOUR can be seen as Belnap’s lattice FOUR with two kinds of
orderings. Thus, we can think of the left-right direction as characterizing the ordering
≤t: a move to the right is an increase in truth.

The meet operation ∧ for ≤t is then characterized by: x ∧ y is rightmost thing
that is of left both x and y. The join operation ∨ is dual to this. In a similar way, the
up-down direction characterizes ≤k: a move up is an increase in information. x ⊗ y
is the uppermost thing below both x and y, and ⊕ is its dual.

Fitting [33] gave a semantics for logic programming using bilattices. Kifer and
Subrahmanian [41] interpreted Fitting’s semantics within generalized annotated log-
icsGAL. Fitting [34] tried to generalize Kripke’s [40] theory of truth, which is based



22 S. Akama and N.C.A. da Costa

on Kleene’s strong three-valued logic, in a four-valued setting based on the bilattice
FOUR.

A billatice has a negation operation ¬ if there is a mapping ¬ that reverse ≤t ,
leaves unchanged ≤k and ¬¬x = x. Likewise a bilattice has a conflation if there is
a mapping—that reverse ≤k , leaves unchanged ≤t . and − − x = x. If a bilattice has
both operations, they commute if −¬x = ¬ − x for all x.

In the billatice FOUR, there is a negation operator under which ¬t = f ,¬f = t,
and ⊥ and � are left unchanged. There is also a conflation under which −⊥ =
�,−� = ⊥ and t and f are left unchanged. And negation and conflation commute.
In any bilattice, if a negation or conflation exists then the extreme elements ⊥,�, f
and t will behave as in FOUR.

Bilattice logics are theoretically elegant in that we can obtain several algebraic
constructions, and are also suitable for reasoning about incomplete and inconsis-
tent information. Arieli and Avron [13, 14] studied reasoning with bilattices. Thus,
bilattice logics have many applications in AI as well as philosophy.

Annotated logic is a logic for paraconsistent logic programming; see Subrah-
manian [24, 52]. It is also regarded as one of the attractive paraconsistent logics; see
da Costa et al [30, 31]. Note that annotated logic has many applications for several
areas including engineering. And Abe studied annotated logic for many years.

Billatice logics described above are seen as a rival to annotated logics.We can also
unify annotated logics and billatice logics; see Rico [50]. We will review annotated
logic in details in Chap.5; see Abe, Akama and Nakamatsu [1, 2].

Finally, we make an important remark. The propositional calculus is the basis of
the usual classical and non-classical logics; however, a true and strong logical system
has to contain quantification and a theory of identity at least, and should in principle
incorporate a higher-order logic (a form of higher-order logic, some set theory or
some other more or less equivalent logical tool).

The relevance of people like Frege, Russell and Peirce, is that they created quan-
tification theory and other aspects of logic beyond the propositional level. Da Costa
was the first logician to present a system of paraconsistent logic in this extended
sense.

Acknowledgments The authors would like to thank the referee for constructive remarks.
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