
Chapter 11
Temporal Logic Modeling
of Biological Systems

Jean-Marc Alliot, Robert Demolombe, Martín Diéguez,
Luis Fariñas del Cerro, Gilles Favre, Jean-Charles Faye,
Naji Obeid and Olivier Sordet

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract Metabolic networks, formed by a series of metabolic pathways, are made
of intracellular and extracellular reactions that determine the biochemical properties
of a cell, and by a set of interactions that guide and regulate the activity of these
reactions. Cancer, for example, can sometimes appear in a cell as a result of some
pathology in a metabolic pathway. Most of these pathways are formed by an intricate
and complex network of chain reactions, and can be represented in a human readable
formusing graphswhich describe the cell signaling pathways. In this paper, we define
a logic, called Molecular Interaction Logic (MIL), able to represent these graphs and
we present a method to automatically translate graphs into MIL formulas. Then we
show how MIL formulas can be translated into linear time temporal logic, and then
grounded into propositional classical logic. This enables us to solve complex queries
on graphs using only propositional classical reasoning tools such as SAT solvers.

Keywords Metabolic networks · Molecular interaction logic (MIL) · Temporal
reasoning

11.1 Introduction

Metabolic networks, formed by a series of metabolic pathways, are made of intra-
cellular and extracellular reactions that determine the biochemical properties of a
cell by consuming and producing proteins, and by a set of interactions that guide

J.-M. Alliot · R. Demolombe · M. Diéguez · L. Fariñas del Cerro (B) ·
G. Favre · J.-C. Faye · N. Obeid · O. Sordet
INSERM/IRIT, University of Toulouse, Toulouse, France
e-mail: luis.farinas@irit.fr

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_11

205

206 J.-M. Alliot et al.

and regulate the activity of these reactions. These reactions are at the center of a
cell’s existence, and are regulated by other proteins, which can either activate these
reactions or inhibit them.

These pathways form an intricate and complex network of chain reactions, and
can be represented in a human readable form using graphs which describe the cell
signaling pathways.

These graphs can become extremely large, and although essential for knowledge
capitalization and formalization, they are difficult to use:

• Reading is complex due to the very large number of elements, and reasoning is
even more difficult.

• Using a graph to communicate goals is only partially suitable because the repre-
sentation formalism requires expertise.

• Graphs often contain implicit knowledge, that is taken for granted by one expert,
but is missed by another one.

Here, we show how classical propositional reasoning tools can be used to detect
problems on these graphs, such as missing knowledge, and to answer complex
queries.

The rest of this paper is organized as follows. Section11.2 presents the impor-
tant concepts and the problems to solve in layman’s words with a simple example,
Sect. 11.3 describes the concepts of production and regulation which are the basic
operations present in a graph, Sect. 11.4 presents the Molecular Interaction Logic
(MIL) capable of describing and reasoning about general pathways, Sect. 11.5 stud-
ies the relation between MIL and Linear Time Temporal Logic, Sect. 11.6 presents
temporal reasoning and a method for grounding temporal theories into classical
propositional formulas, when assuming bounded time, Sect. 11.7 explains what kind
of queries on graphs can be answered using classical propositional reasoning tools
such as SAT solvers, Sect. 11.8 describes the current state of the operational imple-
mentation of this tool, and at last Sect. 11.9 gives a summary and discusses future
works.

11.2 A Simple Classical Example

We are first going to describe a simple graph, which represents the regulation of the
lac operon.1 A detailed presentation is available at [21].

The lac operon (lactose operon) is an operon required for the transport and
metabolism of lactose in many bacteria. Although glucose is the preferred carbon
source for most bacteria, the lac operon allows for the effective digestion of lactose
when glucose is not available. The lac operon is a sequence of three genes (lacZ,

1The Nobel prize was awarded to Monod, Jacob and Lwoff in 1965 partly for the discovery of
the lac operon by Monod and Jacob [16], which was the first genetic regulatory mechanism to be
understood clearly, and is now a “standard” introductory example in molecular biology classes.

11 Temporal Logic Modeling of Biological Systems 207

lacY and lacA) which encode 3 enzymes. Then, these enzyms carry the transfor-
mation of lactose into glucose. We will concentrate here on lacZ. LacZ encodes the
β-galactosidase which cleaves lactose into glucose and galactose.

The lac operon uses a two-part control mechanism to ensure that the cell expends
energy producing the enzymes encoded by the lac operon only when necessary. First,
in the absence of lactose, the lac repressor halts production of the enzymes encoded
by the lac operon. Second, in the presence of glucose, the catabolite activator protein
(CAP), required for production of the enzymes, remains inactive.

Figure11.1 describes this regulatory mechanism. The expression of lacZ gene is
only possible when RNA polymerase (pink) can bind to a promotor site (marked P,
black) upstream the gene. This binding is aided by the cyclic adenosine monophos-
phate (cAMP in blue) which binds before the promotor on the CAP site (dark blue).

The lacl gene (yellow) encodes the repressor protein Lacl (yellow) which binds to
the promotor site of the RNA polymerase when lactose is not available, preventing
the RNA polymerase to bind to the promoter and thus blocking the expression of the
following genes (lacZ, lacY and lacA): this is a negative regulation, or inhibition,
as it blocks the production of the proteins. When lactose is present, the repressor
protein Lacl binds with lactose and is converted to allolactose, which is not able to

Fig. 11.1 Lac operon

208 J.-M. Alliot et al.

bind to the promotor site, thus enabling RNA polymerase to bind to the promotor
site and to start expressing the lacZ gene if cAMP is bound to CAP.

cAMP is on the opposite a positive regulation, or an activation, as its presence
is necessary to express the lacZ gene. However, cAMP is itself regulated negatively
by glucose: when glucose is present, the concentration of cAMP becomes low, and
thus cAMP does not bind to the CAP site, blocking the expression of lacZ.

In this graph, we have three kinds of entities which have different initial settings
and temporal dynamics:

• lacl, lacZ and cAMP are initial external conditions of the model and they do not
evolve in time.

• galactosidase and the repressor protein can only be produced inside the graph, and
are always absent at the start (time 0) of the modeling. Their value will then evolve
in time according to the processes described by the graph.

• glucose and lactose also evolve in time (like galactosidase and the repressor pro-
tein) according to the processes described by the graph, but they are also initial
conditions of the system, and can either be present or absent at time 0, like lacl,
lacZ and cAMP.

So, an entity must be classified according to two main characteristics:

C1: It can evolve in time according to the cell reactions (appear and disappear), or it
can be fixed, such as a condition which is independent of the cell reactions (tem-
perature, protein always provided in large quantities by the external environment,
etc…).

C2: It can be an initial condition of the cell model (present or absent at the beginning
of the modeling), or can only be produced by the cell.

There are thus three kind of entities, which have three kind of behaviour:

Exogenous entities: an exogenous entity satisfies C1 and ¬C2; their status never
change through time: they are set once and for all by the environment or by the
experimenter at the start of the simulation; the graph never modifies their value,
and if they are used in a reaction, the environment will always provide “enough”
of them.

Pure endogenous entities: on the opposite, a pure endogenous entity satisfies ¬C1
and C2; their status evolves in time and is set only by the dynamic of the graph.
They are absent at the beginning of the reaction, and can only appear if they are
produced inside the graph.

Weak endogenous entities: weak endogenous entities satisfy C2 and C1; they can
be present or absent at the beginning of the process (they are initial conditions of
the model), however their value after the start of the process is entirely set by the
dynamic of the graph. So they roughly behave like pure endogenous entities, but
the initial condition can be set by the experimenter.

11 Temporal Logic Modeling of Biological Systems 209

The status of a protein/condition is somethingwhich is set by the biologist, regard-
ing his professional understanding of the biological process described by the graph.2

However a rule of thumb is that exogenous entities are almost never produced inside
the graph (they never appear at the right side of a production arrow), while endoge-
nous entities always appear on the right side of a production arrow (but they can also
appear on the left side of a production rule, especially weak endogenous entities).

These distinctions are fundamental, because the dynamics of these entities are
different and they will have to be formalized differently.

11.3 Fundamental Operations

The mechanism described in the previous section is summarized in the simplified
graph in Fig. 11.2. This example contains all the relationship operators that will be
used in the rest of this document. We are going to present them one by one.

We separate these operations in two main sets: productions and regulations.
Productions can take two different forms, depending on whether the reactants

are consumed by the reactions or not:

• In Fig. 11.2, lactose and galactosidase produce glucose, and are consumed while
doing so, which is thus noted (galactosidase, lactose glucose).

• On the opposite, the expression of the lacZ gene to produce galactosidase (or of
the lacl gene to produce the Lacl repressor protein) does not consume the gene,
and we have thus (lacZ galactosidase).

Generally speaking:

• If the reaction consumes completely the reactant(s) we write: a1, a2, . . . , an b.
Here the production of b completely consumes a1, . . . , an

• If the reactants are not completely consumed by the reaction, we write a1, a2, . . . ,
an b. Here b is produced but a1, a2, . . . , an are still present after the production
of b.

Regulations can also take two forms: every reaction can be either inhibited or
activated by other proteins or conditions.

• In the example above, the production of galactosidase from the expression of the
lacZ gene is activated by cAMP (we use cAMP to express activation)

• At the same time the same production of galactosidase is blocked (or inhibited)
by the Lacl repressor protein (noted Repressor �).
Generally speaking:

2It is important here to notice that lactose can be either considered as a weak endogenous variable,
or as an exogenous variable if we consider that the environment is always providing “enough”
lactose. It is a simple example which shows that variables in a graph can be interpreted differently
according to what is going to be observed.

210 J.-M. Alliot et al.

Fig. 11.2 Functional representation of the lac operon

• we write a1, a2, ...an if the simultaneous presence of a1, a2, ...an activates a
production or another regulation.

• we write a1, a2, ...an � if the simultaneous presence of a1, a2, ...an inhibits a pro-
duction or another regulation.

On Fig. 11.3, we have a summary of basic inhibitions/activations on a reaction:
the production of b from a1, . . . , an is activated by the simultaneous presence of

Fig. 11.3 Activations/Inhibitions

11 Temporal Logic Modeling of Biological Systems 211

Fig. 11.4 Stacking

c1, . . . , cn or by the simultaneous presence of d1, . . . , dn, and inhibited by the simul-
taneous presence of e1, . . . , en or by the simultaneous presence of f1, . . . , fn.

These regulations are often “stacked”, onmany levels (see Fig. 11.4). For example
in Fig. 11.2, the inhibition by the Lacl repressor protein of the production of galac-
tosidase can itself be inhibited by the presence of lactose, while the activation of the
same production by cAMP is inhibited by the presence of glucose.

A final word of warning is necessary. Graphs pragmatically describe sequences
of operations that biologists find important. They are only a model of some of the
biological, molecular and chemical reactions that take place inside the cell; they
can also be written in many different ways, depending on the functional block or
operations that biologists want to describe, and some relationships are sometimes
simply left out because they are considered not important for the function which is
described in a particular graph.

11.4 Molecular Interaction Logic

In this section we extend a previous approach to logical modelling of graphs made in
terms of first-order logic with equality [8–10]. Our approach, Molecular Interaction
Logic (MIL), is based on modal temporal logic, which will help us later to define
connections with other logical approaches to temporal reasoning as well as study-
ing graphs behaviour in the context of a modal approach. We start this section by
introducing the concepts of pathway context and pathway formula. The former corre-
sponds to the formalization of regulationwhile the latter is the formal representation
of the production rules, both concepts were presented in Sect. 11.3.

Definition 11.1 (Pathway context) Given a set of entities, a pathway context is
formed by expressions defined by the following grammar:

212 J.-M. Alliot et al.

where P and Q are sets (possibly empty) of propositional variables representing
the conditions of activation () and inhibition (�) of the reaction. Every context
can be associated with a (possibly empty) set of activation (αi, with 1 ≤ i ≤ n) and
inhibition (αj, with n < j ≤ m) contexts. One, or both sets can be empty. �

Definition 11.2 (Pathway formula)
A Pathway formula is generated by the following grammar:

F ::= [α] (P∧ � q
) | F ∧ F

where α represents a context, �∈ , P∧ stands for a conjunction of all atoms
in the set P and q corresponds to a propositional variable. �

11.4.1 MIL Semantics

Before introducing the semantics we need to give a formal definition of the activation
and inhibition expressions, since both concepts play an important role in the definition
of the semantics.

Definition 11.3 (Activation and inhibition expressions)
Given a context of the form

we define the corresponding expressions A(α) and I(α) recursively as follows:

A(α) =
∧

p∈P
p ∧

n∧

i=1

A(αi) ∧ (
∨

q∈Q
¬q ∨

m∧

j=n+1

I(βj))

I(α) =
∨

p∈P
¬p ∨

n∨

i=1

I(αi) ∨ (
∧

q∈Q
q ∧

m∧

j=n+1

A(βj)).

�

Informally speaking,A(α) characterizes when the context α is active while I(α)

defines when it is inhibited. If one part of the context α is empty, then the corre-
sponding part is of course absent in A(α) and I(α).

Definition 11.4 (Extended signature) Given a set of atoms Σ , its corresponding
extended signature, Σ̂ , is defined by the following expression:

11 Temporal Logic Modeling of Biological Systems 213

Σ̂ = Σ ∪ {Pr (p) | p ∈ Σ} ∪ {Cn (p) | p ∈ Σ},

where p is an endogenous variable. �

Informally speaking, every atom of the form Pr (p) means that p is produced as
a result of a chemical reaction. On the other hand, Cn (p) means that the reactive p
has been consumed in a reaction. From now on, we will use the symbols Σ and Σ̂

referring to, respectively, the signature and its corresponding extension.

Definition 11.5 (MIL interpretation)
LetΣ be a set of propositional variables and Σ̂ its corresponding extended signa-

ture. We define aMIL interpretation, V = V0, V1, . . ., as an infinite sequence of sets
of atoms on Σ̂ such that every endogenous variable p ∈ Σ satisfies the following
constraint:

∀i ≥ 0 if Pr (p) ∈ Vi or (Cn (p) /∈ Vi and p ∈ Vi)

then p ∈ Vi+1. (11.1)

�

Definition 11.6 (Satisfaction relation) Given a MIL interpretation V = V0, V1, . . .,
i ≥ 0 and a pathway formula F on Σ , we will define recursively the satisfaction
relation (V, i |= F) as follows:

• V, i |= p iff p ∈ Vi, for any p ∈ Σ

• negation, disjunction and conjunction are satisfied as usual
• iff for all j ≥ i, if V, j |= A(α) and P ⊆ Vj, then Pr (q) ∈ Vj

and for all p ∈ P, Cn (p) ∈ Vj

• iff for all j ≥ i if V, j |= A(α) and P ⊆ Vj then Pr (q) ∈ Vj. �

11.5 Translating Molecular Interaction Logic into Linear
Time Temporal Logic

In this section, we consider the connection betweenMolecular Interaction Logic and
Linear TimeTemporal Logic (LTL) [19] by showing a translation fromour formalism
into a restricted subset of LTL in which only operators © and � are used. We start
this section by providing some background on LTL.

Definition 11.7 (Temporal language) Temporal formulas are generated by the fol-
lowing grammar:

ϕ :: = ⊥ | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ©ϕ1 | �ϕ1 |
♦ϕ1 | ϕ1Uϕ2 (11.2)

214 J.-M. Alliot et al.

where ϕ1 and ϕ2 are temporal formulas in their turn and p is any atom. Modal
operators ©, �, ♦ and U are respectively read as “next”, “forever”, “possible” and
“until”. �

Definition 11.8 (LTL semantics) Let Σ̂ be a set of propositional variables. An LTL
model is an infinite sequence, V = V1, V2, . . ., of sets of atoms on Σ̂ . Given an LTL
interpretation and i ≥ 0, the LTL satisfaction relation is defined as follows:

1. V, i |= p iff p ∈ Vi, for p ∈ Σ .
2. Negation, conjunction and disjunction are satisfied in the usual way.
3. V, i |= ϕ → ψ iff V, i �|= ϕ or V, i |= ψ .
4. V, i |= ©ϕ iff V, i + 1 |= ϕ.
5. V, i |= �ϕ iff for all j ≥ i, V, j |= ϕ.
6. V, i |= ♦ϕ iff there exists j ≥ i, V, j |= ϕ.
7. V, i |= ϕUψ iff ∃j ≥ i, V, j |= ψ and ∀k s.t. i ≤ k < j, M, k |= ϕ.

�

11.5.1 From MIL to LTL

Definition 11.9 (Inertia rule) Let p be an endogenous variable in a signatureΣ . We
define inertia(p) as the following formula built on Σ̂ :

inertia(p)
def= � ((Pr (p) ∨ (p ∧ ¬Cn (p))) → ©p) (11.3)

�

Thanks to these rules, we can specify how the truth values of biological substances
evolve along time. More specifically, this rule means that a protein p might become
true if it is the result of a production rule (concept represented by Pr (p)) or if
it is already present and it has not been used to produce other proteins (concept
represented by Cn (p)). By using structural induction we can prove the following
proposition:

Proposition 11.1 Let Σ be a finite signature. Given a LTL interpretation, V, on Σ̂ .
V, 0 |= ∧

p
inertia(p), with p and endogenous variable in Σ , iff V satisfies condi-

tion (11.1) of Definition 11.5. �

Definition 11.10 (Translation fromMIL into LTL) Let F be a pathway formula built
on a signature Σ . We define the formula tr (F), built on the signature Σ̂ , as follows:

11 Temporal Logic Modeling of Biological Systems 215

where both F1 and F2 stand for two arbitrary pathway formulas. �

In order to guarantee that our translation is correct with respect to theMIL seman-
tics presented in Sect. 11.4, we establish the following correspondence between both
formalisms:

Lemma 11.1 (Correspondence) Let F be a pathway formula built on a signatureΣ ,
and V a LTL interpretation on the extended signature Σ̂ . Then we have the following
equivalence:

V, 0 |= F iff V, 0 |= tr (F) ∧
∧

p

inertia(p),

where p is an endogenous variable in F. �

11.6 Temporal Reasoning

As shown in the previous section, we can establish a correspondence between a
graph and a temporal formula which describes its behaviour. However, in order to
perform temporal reasoning we need to add the supplementary hypothesis of closed
world assumption. This concept corresponds to the presumption that a statement
that is true is also known to be true. Conversely, what is not currently known to be
true, is false. This hypothesis fits perfectly in the biological process, as endogenous
proteins appear if and only if a production rule is triggered (except at time 0 for weak
endogenous variables) and, moreover, they are consumed only if they are used in a
reaction.

11.6.1 Completion Axioms

In order to incorporate this hypothesis we define the Completion axioms [6] for our
temporal theories as follows:

Definition 11.11 (Completion axioms) Let Σ be a finite signature and let F be a
pathway formula built on Σ . For any pure endogenous propositional variable p in
Σ , COMP(F, p) corresponds to as the following formula built on Σ̂ :

216 J.-M. Alliot et al.

If p is a weak endogenous variable, COMP(F, p) has the same form as above but
omitting the conjunct ¬p. �
Broadly speaking, the meaning of the different components of COMP(F, p) can be
explained as follows:

• ¬p: this is a consequence of the type of the substance. If p is pure endogenous
(it must be produced before existing), p must not be present at the initial state to
that ¬pmust be part of COMP(F, p). For the case of weak endogenous variables,
whose truth value at the initial state cannot be deduced, requires that the conjunct
¬p be omitted from corresponding completion formula.

• �
(

Pr (p) → ∨

[α](P∧�p)∈F
P∧ ∧ A(α)

)

: in any state, the production of a protein p

is due to the satisfaction of, at least, one pathway formula.

• : in any state, if p is consumed then it must

be used in a reaction represented by a pathway formula.
• �(©p → (Pr (p) ∨ (p ∧ ¬Cn (p))): if a substance p is present then it has been
produced in the previous state or it was already present and it was not consumed
in a reaction.

If we consider now the whole set of propositional variables occurring in F, the
resulting completion axioms correspond to the following conjunction

∧

p

COMP(F, p),with p being an endogenous variable.

11.6.2 Graphs as Splittable Temporal Logic Programs

Completion axioms are used when we want to translate a non-monotonic theory into
classical logic. To give an example, in the Answer Set Programming [4] paradigm,
the answer sets of a propositional theory can be captured by a classical propositional
expression by adding the so called Loop formulas [12, 18] (in the same spirit as
Clark’s completion). This result was extended to the case of non-monotonic temporal
theories3 in [2] in which it is shown that, regarding a syntactical restricted class of

3For a more detailed survey of temporal extension of Answer Set Programming see [1].

11 Temporal Logic Modeling of Biological Systems 217

programs, called splittable, loop formulas can be effectively computed. We define
such class of programs below:

Definition 11.12 (Splittable temporal logic program) A splittable temporal logic
program Π for signature Σ̂ is said to be splittable ifΠ consists of rules of the form:

B∧ ∧ N∧ → H (11.4)

B∧ ∧ ©B′∧ ∧ N∧ ∧ ©N ′∧ → ©H ′ (11.5)

�(B∧ ∧ ©B′∧ ∧ N∧ ∧ ©N ′∧ → ©H ′) (11.6)

where B and B′ are conjunctions of atoms, N and N ′ are conjunctions of negative
literals like ¬p with p ∈ Σ̂ , and H and H ′ are disjunctions of atoms. �

Roughly speaking, the idea behind a splittable program is that no past reference
depends on the future.

Since the formalismpresented in [2], calledTemporal EquilibriumLogic (TEL) [1,
5], shares the syntax with LTL we can study our theories under such framework. As
a result, we can translate, by using several temporal equivalences, our theories into
splittable temporal logic programs, as stated in the following proposition:

Proposition 11.2 Given a conjunction of pathway formulas F = F1 ∧ · · · ∧ Fn, it
can be proved that

tr (F) ∧
∧

p

inertia(p),

where p corresponds to an endogenous variable in F, is equivalent to a splittable
temporal logic program. �

This equivalence allows us to study the relation between our completion axioms and
loop formulas, which is considered next.

11.6.2.1 Relation with Loop Formulas

We have already shown that our temporal theories can be translated into splittable
temporal logic programs under temporal equilibrium logic semantics. We now show
how our completion axioms can be seen as a special case of loop formulas. Before
presenting the result, we summarize how loop formulas are computed in [2]. Given a
splittable program,Π , loop formulas are generated from the corresponding (positive)
dependency graph of a temporal logic program Π , denoted by G(Π). Nodes of
G(Π) correspond to the propositional variables in Π while edges are defined by the
following expression:

E={(p, p) | p ∈ Π} ∪ {(p, q) | ∃ (
B∧ ∧ N∧ → p

) ∈ Π s.t. q ∈ B}. (11.7)

for any propositional variable p.

218 J.-M. Alliot et al.

Definition 11.13 (Loop from [12]) A set of atoms L is called a loop of a logic
program Π iff the sub-graph of G(Π) induced by L is strongly connected. Notice
that reflexivity of G(Π) implies that for any atom p, the singleton {p} is also a
loop �

When applying this technique to our translation (considering TEL semantics) we
must consider the following points:

1. Given a conjunction of pathway formulas F, tr (F) has no positive cycles in the
sense of [2]. This means that only unitary cycles must be considered.

2. The hypothesis of closed world assumption should not be applied to the exoge-
nous variables, whose presence cannot be justified and whose absence cannot be
determined “by default”. They must remain free, specially when querying our
representation.

Item 1 means that the computation of the loop formulas, as presented in [2], is
equivalent to our completions axioms (see Definition 11.11), while 2 means that
completion rules should not be computed in the case of exogenous variables. This
result is stated in the following proposition:

Proposition 11.3 Completion axioms of Definition 11.11 are equivalent to loop
formulas (under TEL semantics) when they are restricted to endogenous variables
(a concept explained in Sect.11.2). �

This result justifies that our approach can be also considered as non-monotonic
temporal logic programs.

11.6.3 Grounding Splittable Temporal Logic Programs

The use of an LTL formalization allows us to consider solutions with infinite length
when performing reasoning tasks such as abduction or satisfiability.However, regard-
ing complexity results, it is worth to mention that LTL satisfiability is, in the general
case PSpace-complete while, regarding the propositional case, it is NP-complete. In
an attempt to reduce the complexity of the problem as well as taking advantage of the
tools available for reasoning on propositional logic such as SAT-solvers, abduction
algorithms, etc., we consider bounded time, that is, we fix the positive constant max
as the maximum time length. This assumption allows us to translate the temporal
formulas into a propositional theory, as explained below.

Definition 11.14 Let ϕ a temporal formula built on the language presented in (11.2),
max ≥ 0 and 0 ≤ i < max. We define translation of ϕ, at instant i, into propositional
logic, denoted by 〈ϕ〉i, as follows:
• 〈p〉i def= pi, with p an atom and pi a new propositional variable;

• 〈¬ϕ〉i def= ¬〈ϕ〉i;

11 Temporal Logic Modeling of Biological Systems 219

• 〈ϕ � ψ〉i def= 〈ϕ〉i � 〈ψ〉i, with � ∈ {∧,∨,→};
• 〈©ϕ〉i def= 〈ϕ〉i+1;

• 〈�ϕ〉i def= ∧
i≤j<max 〈ϕ〉j;

• 〈♦ϕ〉i def= ∨
i≤j<max 〈ϕ〉j;

• 〈ϕUψ〉i def= ∨

i≤j<max

(

〈ψ〉j ∧
∧

i≤k<j
〈ϕ〉k

)

.

�

Broadly speaking, this translation simulates the truth value of anLTLpropositional
variable p along time by a set of n fresh atoms in classical logic, one per time instant.
Moreover, the behaviour of modal operators are simulated by (finite) conjunctions
and disjunctions, since we are considering bounded time. The following observation
shows that, under the assumption of bounded time, we can establish a one-to-one
correspondence between temporal and grounded theories.

Observation 11.1 (Model correspondence) LetV = V0, V1, . . . be an LTL interpre-
tation. Given max ≥ 0, we define the classical interpretation Imax as:

Imax = {pi|p ∈ Vi}.

It can be proved that V and Imax satisfy the following property:

∀ϕ, V, i |= ϕ iff Imax |= 〈ϕ〉i.

�

11.7 Reasoning and Solving

In the previous section we described the theoretical aspects of the representation of
graphs and of the logic used for reasoning on them.

In this section, we are going to show that, after translation, any question can be
expressed in classical propositional logic and solved using classical propositional
logic tools and that even complex questions, such as the search for a stable state, can
be solved by our system.

11.7.1 A Simple Example

We are first going to explain on a simple example how the transformation of a graph
into a set ofCNF formulas is performed.We are going towork on the graph describing

220 J.-M. Alliot et al.

Fig. 11.5 Simplified functional representation of the lac operon

the behaviour of the Lac operon represented on Fig. 11.2 in Sect. 11.2. However we
simplify a little this graph into the one represented in Fig. 11.5.

In this example, lacZ and cAMP are exogenous variables. As their value is set
once and for all, they don’t have to be grounded in the translation. On the opposite,
Galactosidase is a pure endogenous variable, and thus will be grounded. Glucose is
aweak endogenous entity: it has to be grounded as its value can change through time,
however no completion formula will be computed for the variable describing them at
time 0, as they can be present at the start of the process as an initial condition. Here,
we will consider Lactose as an exogenous variable (see footnote 2 in Sect. 11.2).

This graph is interesting, because it has a temporal dynamic. For example, if the
initial conditions are that lacZ , cAMP and Lactose are present and Glucose is absent
then we can simulate informally the evolution of the proteins/conditions as:

Time 0: lacZ , cAMP, Lactose
Time 1: lacZ , cAMP, Lactose, Galactosidase
Time 2: lacZ , cAMP, Lactose, Galactosidase, Glucose
Time 3: lacZ , cAMP, Lactose, Glucose

Time 3 is a stable state.
Now we are going to see how this informal process can be formalized, and how

logical tools can be used to reason about this graph; in a first step, this graph can be
represented by:

11 Temporal Logic Modeling of Biological Systems 221

Lactose ∧ Galact → pr(Glucose)t (11.8)

lacZ ∧ Lactose ∧ cAMP ∧ ¬Glucoset → pr(Galac)t (11.9)

Lactose ∧ Galact → cn(Galac)t (11.10)

pr(Glucose)t → Glucoset+1 (11.11)

pr(Galac)t → Galact+1 (11.12)

Glucoset ∧ ¬cn(Glucose)t → Glucoset+1 (11.13)

Galact ∧ ¬cn(Galac)t → Galact+1 (11.14)

Equations11.8 and 11.9 describe how proteins can be produced: Glucose is pro-
duced (at time t) when we have Lactose andGalac at time t (lactose is always present
as we suppose that there is always enough lactose in our environment, while galac-
tosidase evolve in time), andGalac is produced at t when we haveGlucose at t along
with cAMP, Lactose and the lacZ gene.

Equation11.10 expresses that when we have Lactose and Galac at t then Galac
is consumed at t as it is used to produce Glucose according to Eq.11.8. We have no
similar equation for Lactose, as Lactose is exogenous and there will always remain
“enough” lactose.

Equations11.11 and 11.12 express that, when a molecule is produced at time t,
then it is present at time t + 1. This applies here to Glucose and Galac.

Equations11.13 and 11.14 are inertia rules. If a protein is present at time t and is
not consumed at t then it will be present at time t + 1.

After completing this first representation, the system has to be grounded by time.
The number of time steps is chosen by the user. Grounding is trivial and, for one
time step, the above set of rules just becomes:

Lactose ∧ Galac0 → pr(Glucose)0
lacZ ∧ Lactose ∧ cAMP ∧ ¬Glucose0 → pr(Galac)0

Lactose ∧ Galac0 → cn(Galac)0
pr(Glucose)0 → Glucose1

pr(Galac)0 → Galac1
Glucose0 ∧ ¬cn(Glucose)0 → Glucose1

Galac0 ∧ ¬cn(Galac)0 → Galac1

Then, we build completion formulas. It is important to notice that completion
formulas are always built for pure endogenous variables at all time steps, are never
built for exogenous variables, and are built for weak endogenous variables at all time
steps except at time 0. This is a consequence of the “closed world” assumption:
pure endogenous entities can only be created, produced or consumed internally,
and are never present at the start of the process. So, to take a simple example,
each time we have multiple paths to produce a pure endogenous variable p, such as
C1 → Pr(p) up to Cn → Pr(p), then we must add a “completion” formula Pr(p) →
C1 ∨ · · · ∨ Cn.

222 J.-M. Alliot et al.

The following completion formulas are respectively associated with the variables:
(1) Galac0, (2) Galac1, (3) Glucose1, (4) cn(Galac)0, (5) pr(Galac)0,
(6) pr(Glucose)0.

¬Galac0 (11.15)

Galac1 → (Galac0 ∧ ¬cn(Galac)0) ∨ pr(Galac)0 (11.16)

Glucose1 → (Glucose0 ∧ ¬cn(Glucose)0) ∨ pr(Glucose)0 (11.17)

cn(Galac)0 → (Galac0 ∧ Lactose) (11.18)

pr(Galac)0 → (lacZ ∧ Lactose ∧ cAMP ∧ ¬Glucose0) (11.19)

pr(Glucose)0 → (Galac0 ∧ Lactose) (11.20)

Then, all formulas are automatically translated into CNF. With one temporal
grounding step, the simple graph considered here is represented by a database of 21
CNF formulas.

11.7.2 From Temporal Reasoning to Classical Propositional
Tools

As a graph is now transformed into a databaseD of propositional CNF formulas, any
propositional tool can be used to solve queries.

Some questions Q such as “is molecule p present at time 3” can be expressed by
the logical temporal formula © © ©p, and then easily translated after grounding
into the classical p3. Then it can be solved with a SAT solver: ¬Q = ¬p3 is added
to D and the satisfiability of D ∪ ¬Q is checked. If it is not satisfiable, then Q is of
course true.

However, most often, the main problem for biologists is to find the set(s) of
conditions/preconditions that will lead to the creation of a protein, or the triggering
of a specific condition. For example, many graphs describe how some cellular paths
lead to cell death (apoptosis). Then the question is usually “what are the set(s) of
condition(s) that lead to cell apoptosis after some time”. Here depending on the
complexity of the problem, different tools can be used:

• Abduction is of course the more natural and elegant solution. If we callD the set of
CNF formulas after grounding into propositional logic, and Q the question, then
we first use a SAT solver to check thatD ∪ {¬Q} is consistent (if it is not consistent
then Q is already an implicate of D). Now we search for the minimal set H such
as Q is an implicate of T ∪ H. The classical algorithm consists in computing the
set P(D ∪ {¬Q}), which is the set of the prime implicates (the strongest clausal
consequences) of D ∪ {¬Q}, and then checking for each x ∈ P(D ∪ {¬Q}) that
D ∪ {¬x} is consistent. Then each such x is a solution.

11 Temporal Logic Modeling of Biological Systems 223

While solutions sets containing only exogenous variables and weak endogenous
variables (at step 0) describe the initial conditions leading to Q, abduction is able
to find all sets answering a given question, even sets containing pure endogenous
variables. This can give valuable information regarding the cell internal dynamic.

• While abduction is the more elegant way to find the set of preconditions answering
a given question, the number of prime implicates of a theory can be exponential in
the size of the theory and finding only one implicate is an NP-hard problem [13].
Thus the underlying complexity when using large graphs may turn abduction into
an impracticable method and an alternative approach has to be used.
Biologists are mainly interested in solutions that contain only exogenous variables
and also initial conditions which are the values of weak endogenous variables at
time step 0. As explained before, exogenous proteins are interesting candidates
as they usually describe the external conditions that can be set to activate some
specific paths inside the graph, and weak endogenous variables at step 0 describe
initial conditions. Pure endogenous proteins only depend on the internal dynamic
of the cell.
If we call Ex0 the set of exogenous variables and weak endogenous variables at
step 0, an extensive search can be performed with a Sat Solver to check if there is
a valuation satisfying D ∪ {¬Q} for a fixed boolean affectation of the set Ex0. If
so, then each such affectation is a solution.
Thismethod is faster than abduction as long as the set of exogenous variables/weak
endogenous variables at step 0 remains small. The complexity however grows
exponentially with the number of variables in the set, and it can’t provide the solu-
tion sets containing pure endogenous variables, nor weak endogenous variables at
a time greater than 0.

11.7.3 Expressing Complex Queries

In the previous section we presented the reasoning tools that can be used to answer
simple questions. In this section we show how much more complex questions can
be expressed and solved.

Any question that can be expressed using the temporal logic described in Sect. 11.5
can be solved using classical propositional reasoning tools, as it can be translated
into propositional logic (considering of course bounded time). For example, if we
want to know if the introduction of protein pwill produce protein q at time 3, we just
have to solve the questionQ = p → q3, i.e. check ifD ∪ {p} ∪ {¬q3} is inconsistent.

More complicated, questions can be asked. For example, if we want to know if a
stable state exists, we just write:

Q = ♦�
∧

p∈En
(p ↔ ©p)

224 J.-M. Alliot et al.

whereEn is the set of endogenous variables (pure andweak). The value of exogenous
variables never change, so they are always “stable”. This is grounded and translated
into propositional logic as

Q =
∨

0≤i≤n

∧

i≤j≤n

∧

p∈En
(pj ↔ pj+1)

where n is the last grounding step. We then add ¬Q to D and check if D ∪ {¬Q} is
inconsistent.

Having the full expressivity of temporal logic to write queries is an important
feature of our system. Users are able to build complex queries, and they can be
automatically translated and solved by the system. Solving the question can be a
“yes/no” answer using a simple consistency check, or a more elaborate answer which
will provide the set(s) of conditions which lead to a “yes” answer, using abduction
or using the exhaustive search method described in the previous section.

11.8 Implementation

We have already implemented most of the tools necessary for using the system:

• Graphs are built using Pathvisio [20], a public-domain editing software and a well
known tool in the biologists community.

• We have developed a parser/translator which reads the XML files generated by
Pathvisio, takes as an argument the number of grounding steps, and translates the
graphs into a set of classical grounded propositional CNF formulas.

• For consistency check and exhaustive search, we use the Glucose SAT solver [3]
which is based on Minisat [11]. To compute prime implicates, we implemented
our own version of the Tsiknis, Dean and Johnson algorithm [14, 15, 17]. While
our implementation, which is based on machine language operations, seems to be
extremely fast, amore exhaustive comparisonwith other approaches for computing
prime implicants,4 such as the ones advocated in [7, 13], should be tested.

11.9 Conclusion

We have presented in this paper a method to translate graphs representing biological
systems into temporal logic formulas and to solve complex temporal queries regard-
ing these graphs. This method has been almost fully implemented, and the associated
tool has now reached a state where it can be tested on large, realistic graphs.

4The dual problem, which could be easily adapted to suit our needs.

11 Temporal Logic Modeling of Biological Systems 225

There remains however different points to address:

• Currently the graphs we are using are limited: they can only use elementary rela-
tions; while all existing relations can be expressed with this elementary subset, it
would be easier (and would keep graphs smaller) if our graph editor and out parser
could deal with a larger subset of f these relations.

• graphs are built by hand by biologists, and they very often rely on “common
knowledge” among them, so they sometimes “forget” to write some relations
or sometimes express some relations between proteins in a non “standard” way.
This tool will detect such missing knowledge and will thus help in writing more
complete and consistent graphs, but correcting these problems is a mandatory step.

• While translating temporal logic queries into grounded propositional CNF is a
technicality, building and understanding the exact meaning of a temporal query is
complicated for people who don’t have a training in logic. The goal of our users
is to solve problems related to these graphs and we have to be able to describe the
reasoning tasks available in a simpleway, and give simple tools towrite queries that
can be solved by our system. A possible solution would be to provide a graphical
interface that would help building queries by assembling intuitively variables and
connectors as an intermediate between logic and natural language.

• Our system relies on a strong assumption: proteins can either be present or absent,
but we are not able to consider partial concentrations. This decision was discussed
with the biologists, and they supported it for a simple reason: currently, they are
most of the time, if not all of the time, enable to determine the concentration
of proteins in a cell. Their understanding of the cell chemical reactions is not
precise enough, and they really consider the concepts of “absence”, “presence”,
“Production” or “Consumption” when building graphs. However, this does not
mean that we will not have to deal with this problem in the future.

The fact that there is now a demand from the biologists we are working with to
get the tool and use it by themselves seems to prove that it has reached a certain state
of maturity and stability, even if there probably remains work to do before turning it
into a fully operational tool.

Acknowledgments This work is partially supported by ANR-11-LABX-0040-CIMI within the
program ANR-11-IDEX-0002-02, by IREP Associated European Laboratory and by project CLE
from Région Midi-Pyrénées.

References

1. Aguado, F., Cabalar, P., Diéguez,M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey.
J. Appl. Non-Class. Logics 23(1–2), 2–24 (2013)

2. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal logic pro-
grams. In: Proceedings of the 11th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’11), pp. 80–92. Vancouver, Canada (2011)

226 J.-M. Alliot et al.

3. Audemard,G., Simon, L.: Predicting learnt clauses quality inmodern sat solver. In: Proceedings
of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI’09), pp.
399–404 (2009)

4. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM
54(12), 92–103 (2011)

5. Cabalar, P., Pérez, G.: Temporal equilibrium logic: a first approach. In: Proceedings of the 11th
International Conference on Computer Aided Systems Theory (EUROCAST’07), pp. 241–248
(2007)

6. Clark, K.L.: Negation as failure. In: Logic and Databases, pp. 293–322. Plenum Press (1978)
7. Déharbe, D., Fontaine, P., LeBerre, D., Mazure, B.: Computing prime implicants. In: Formal

Methods in Computer-Aided Design (FMCAD), pp. 46–52. Portland, USA (2013)
8. Demolombe, R., Fariñas del Cerro, L., Obeid, N.: Automated reasoning in metabolic networks

with inhibition. In: 13th International Conference of the Italian Association for Artificial Intel-
ligence, AI*IA’13, pp. 37–47. Turin, Italy (2013)

9. Demolombe, R., Fariñas del Cerro, L., Obeid, N.: Logical model for molecular interactions
maps. In: Fariñas del Cerro, L., Inoue, K. (eds.) Logical Modeling of Biological Systems, pp.
93–123. Wiley (2014)

10. Demolombe, R., Fariñas del Cerro, L., Obeid, N.: Translation of first order formulas into ground
formulas via a completion theory. J. Appl. Logic 15, 130–149 (2016)

11. Een, N., Sorensson, N.: An extensible sat-solver. In: Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT2003), pp. 502–518.
Santa Margherita Ligure, Italy (2003)

12. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the lin-zhao theorem. Ann. Math. Artif.
Intell. 47(1–2), 79–101 (2006)

13. Jabbour, S., Marques-Silva, J., Sais, L., Salhi, Y.: Enumerating prime implicants of proposi-
tional formulae in conjunctive normal form. In: Proceedings of the 14th European Conference,
JELIA 2014, pp. 152–165. Funchal, Madeira, Portugal (2014)

14. Jackson, P.: Computing prime implicates. In: Proceedings of the 20th ACM Conference on
Annual Computer Science (CSC’92), pp. 65–72. Kansas City, USA (1992)

15. Jackson, P.: Computing prime implicates incrementally. In: Proceedings of the 11th Interna-
tional Conference on Automated Deduction (CADE’11), pp. 253–267. Saratoga Springs, NY,
USA (1992)

16. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol.
3, 318–356 (1961)

17. Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. J.
Symbolic Comput. 9, 185–206 (1990)

18. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by sat solvers. In: Artificial
Intelligence, pp. 112–117 (2002)

19. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, pp. 46–57. Providence, Rhode Island, USA (1977)

20. van Iersel, M.P., Kelder, T., Pico, A.R., Hanspers, K., Coort, S., Conklin, B.R., Evelo, C.:
Presenting and exploring biological pathways with PathVisio. BMC Bioinform. 9, 399 (2008)

21. Wikipedia: The lac operon. https://en.wikipedia.org/wiki/Lac_operon (2015)

https://en.wikipedia.org/wiki/Lac_operon

	11 Temporal Logic Modeling of Biological Systems
	11.1 Introduction
	11.2 A Simple Classical Example
	11.3 Fundamental Operations
	11.4 Molecular Interaction Logic
	11.4.1 MIL Semantics

	11.5 Translating Molecular Interaction Logic into Linear Time Temporal Logic
	11.5.1 From MIL to LTL

	11.6 Temporal Reasoning
	11.6.1 Completion Axioms
	11.6.2 Graphs as Splittable Temporal Logic Programs
	11.6.3 Grounding Splittable Temporal Logic Programs

	11.7 Reasoning and Solving
	11.7.1 A Simple Example
	11.7.2 From Temporal Reasoning to Classical Propositional Tools
	11.7.3 Expressing Complex Queries

	11.8 Implementation
	11.9 Conclusion
	References

