Chapter 10
A Beautiful Theorem

Francisco Antonio Doria and Carlos A. Cosenza

Dedicated to Jair Minoro Abe for his 60th birthday

A thing of beauty is a joy for ever:
Its loveliness increases, it will never
Pass into nothingness
John Keats, Endymion

Abstract We first present Maymin’s Theorem on the existence of efficient markets;
it is a result that connects mathematical economics and computer science. We then
introduce O’Donnell’s algorithm for the solution of NP-complete problems and the
concept of almost efficient markets; we state the main result, which is: given a
metamathematical condition, there will be almost efficient markets. We then briefly
discuss whether changing the underlying logical framework we would be able to
change the preceding results.

Keywords Maymin’s theorem - Efficient markets - O’Donnell’s algorithm - Almost
efficient markets

10.1 Prologue

Beauty in mathematics has many sources. One of them, the discovery of links between
areas that seemed at first so far away. That’s the case of Maymin’s theorem on efficient
markets: it is linked as in the gesture of a magician to complexity theory in computer

Partially supported by CNPq, Philosophy Section; the first author is a member of the Brazilian
Academy of Philosophy.

F.A. Doria (X) - C.A. Cosenza

Advanced Studies Research Group, HCTE, Fuzzy Sets Laboratory,
Mathematical Economics Group, Production Engineering Program,
COPPE, UFRJ, P.O. Box 68507, Rio Rj 21945-972, Brazil

e-mail: fadoria63 @gmail.com

© Springer International Publishing Switzerland 2016 197
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_10

198 F.A. Doria and C.A. Cosenza

science. An apt paraphrasis for Maymin’s result would be—there are weakly efficient
markets if and only if a given major question in computer science is trivialized.

The major question is, of course, the P versus NP question.

The proof is simple, once we see that markets (in Maymin’s sense) are naturally
coded as Boolean formulae.

The present paper first sketches that construction. We then fill in the required
details and prove Maymin’s theorem. After that we construct O’Donnell’s algo-
rithm, show that it is near—polynomial given reasonable conditions, and then with
the help of that algorithm we define “almost Maymin” efficient markets. We then
prove the existence of almost Maymin efficient markets, again given a reasonable
metamathematical hypothesis.

Main sources for these results are [3, 4]. And let’s repeat here our motto: A thing
of beauty is a joy forever. So is Maymin’s theorem.

10.2 Theme

Think of this paper as a set of variations over a theme found elsewhere. We will pick
up our main theme from two sources, Maymin’s original paper [4] and a summary
of it made in a recent paper by the author (with NCA da Costa) [2, 3, 5].

A Brief Scenario

We start here from this recent intriguing result by Maymin [4]. We use a modified,
restricted version of Maymin’s construction (but there is no loss of generality in
our construction.) The concepts we require are that of a Maymin market, soon to be
clarified.

Roughly, a Maymin market is a market coded by a Boolean expression, as we
will see. Despite this very precise identification, the object we consider is quite
general. Basically we are going to make some move in the market. Our move now is
determined by a series of k previous moves. More precisely:

Definition 10.2.1 e A k-run policy oy, k a positive integer, is a series of plays (b
for buy and s for sell) of length k. There are clearly 2% possible k-run policies.

e A map v from all possible k-run policies into {0, 1} is a valuation; we have a “gain”
iff v(ox) = 1; a “loss” otherwise.

e A policy is successful if it provides some gain (adequately defined); in that case
we put v(oy) = 1. Otherwise v(oy) = 0. O

There is a natural map between these objects and k-variable Boolean expressions
(see below), if we take that v(o;) = 1 means that oy is satisfiable, and 0 otherwise.
We say that a market configuration (k-steps market configuration, or simply k-market
configuration) is coded by a Boolean expression in disjunctive normal form (dnf).

That map between k-market configurations and k-variable Boolean expressions
in dnf can be made 1-1.

10 A Beautiful Theorem 199

The financial game for our simplified market is simple: we wish to discover the
fastest way to algorithmically obtain a successful k-market configuration, given a
particular market (i.e., a given k-variable Boolean expression).

Finally the k-market configurations are Maymin—efficient (see below) if v can be
implemented by a poly algorithm.

Clearly there is a general polynomial procedure to do it if and only if P = NP.
From what we know about the P versus NP question,1 in particular cases we can
of course find polynomial procedures, but it is unknown whether there are general
procedures that are polynomial.

Stretto

Maymin restricts his analysis to the so-called “weakly efficient” markets. Since he
adds the condition that there is a time-polynomial algorithmic procedure to spread the
data about the market, we name Maymin—efficient markets those markets, where (we
stress) v(oy) is computed by a time-polynomial Turing machine (or poly-machine).

So the existence of general poly procedures characterizes the market as Maymin
efficient. We can therefore state Maymin’s theorem:

Proposition 10.2.1 Markets are (Maymin) efficient if and only if P = NP. [

Now we put: markets are almost Maymin efficient if and only if there is an
O’Donnell algorithm to determine its successful policies [3]. Then:

Proposition 10.2.2 [f P < NP isn’t proved by primitive recursive arithmetic then
there are almost Maymin efficient markets. (I

We are now going to expand these brief remarks into a detailed proof of Maymin’s
theorem, and then add to it some spice of our own.

10.3 Theme and Variations

The main motive is very simple: we are going to code Maymin—efficient markets as
Boolean expressions. This is the main trick. But how do we proceed?

We first require a classical result by Emil Post [6]. The 2% binary sequences
naturally code integers from 0 to 2% — 1; more precisely, from:

000...00, k digits,

to:
111...11, k digits.

Fix one such coding; a k-digit binary sequence is seen as a sequence of truth
values for a Boolean expression E;. After we test the Boolean expression with one

! Actually we know very little.

200 F.A. Doria and C.A. Cosenza

specific line of truth values, we see whether that particular line satisfies or doesn’t
satisfy Ey.

Proposition 10.3.1 Let & be a binary sequence of length 2%. Then there is a Boolean
expression Ey on k Boolean variables so that & is its truth table.

(We take 1 as “true” and 0 as “false.”). The idea of the proof goes as follows. Notice
that the Boolean expression:

—Pp1 Ap2 Ap3 AN P4 NP5
is satisfied by the binary 5-digit line:
01100

(When there is a — in the conjunction put 0 in the line of truth-values; if not put 1.)
The line 01100 satisfies the Boolean conjunction above, and no other 5-digit line

will satisfy it, that is, it has a truth table where a single line of truth values satisfies

it—the truth table has a single 1 and is zero for all remaining truth value lines.

In order to obtain a truth table with just two 1’s, we construct the conjuncts as
above that have the desired lines and then get the expression which is the disjunction
of those conjuncts. That is the idea in the proof of Post’s theorem.

Trivially every k-variable Boolean expression gives rise to a 2f-length truth table
which we can code as a binary sequence of, again, size 2* bits. The converse result
is given by Post’s theorem.

Proof of Post’s theorem, a sketch: Consider the k-variable Boolean expression:

¢ =apr ANagpy A A Qupi,

where the «; are either nothing or —. Pick up the line of truth values (' = ajay .. . oy,
where “nothing” stands for 1 and — for 0. (' satisfies ¢, while no other line of truth
values does. Our Boolean expression (is satisfied by ¢’ and by no other k-digit line
of truth values.

The disjunction { Vv £ where £ is a k-variable Boolean expression as ¢, is satisfied
by (correspondingly) two lines of truth values, and no more. And so on.

The rigorous proof of Post’s theorem is by finite induction. (]

Now:

Definition 10.3.1 The Boolean expression in dnf (is identified to a Maymin k-
market configuration. (]

Then:
Proposition 10.3.2 There are Maymin—efficient markets if and only if P = NP.

Proof Such is the condition for the existence of a poly algorithmic map v. O

10 A Beautiful Theorem 201

10.4 The O’Donnell Algorithm

We are now going to describe O’Donnell’s algorithm [2, 3, 5]; the O’Donnell algo-
rithm is a quasi-polynomial algorithm for SAT.> We require the so-called BGS set
of poly machines and f., which is the (now recursive) counterexample function to
[P = NP] (See [1, 3] for details.)

Remark 10.4.1 A BGS machine is a Turing machine M, (x) coupled to a clock that
stops the machine when it has operated for |x|’ + p steps, where x is the binary input
to the machine and |x| is its length in bits; p is an integer > 1. Of course the coupled
system is a Turing machine. All machines in the BGS set are poly machines, and
given any poly machine, there will be a corresponding machine in BGS with the
same output as the original poly machine. O

Remark 10.4.2 f. is the recursive counterexample function to P = NP. To get it:

e Enumerate all BGS machines in the natural order (one can do it, as the BGS set is
recursive).

e For BGS machine P,, f.(n) equals the first instance of SAT which is input to P,
and fails to output a satisfying line for that instance of SAT. (]

O’Donnell’s algorithm is very simple: we list in the natural ordering all BGS
machines. Given a particular instance x € SAT, we input it to Py, P5, ... up to the
moment when the output is a satisfying line of truth values. When we compute the
time bound to that procedure, we see that it is near polynomial, that is, the whole
operation is bounded by a very slow-growing exponential.

Now some requirements:

e We use the (fixed) enumeration of finite binary sequences
0, 1,00, 01, 10, 11, 000, 001, 010, O11,

If FB denotes the set of all such finite binary sequences, form the standard coding
FB +— w which is monotonic on the length of the binary sequences.

e We use a binary coding for the Turing machines which is also monotonic on the
length of their tables, linearly arranged, that is, a 3-line table sy, 55, 53, becomes
the line s; — 55 — s3.

We call such monotonic codings standard codings.

e We consider the set of all Boolean expressions in cnf,? including those that are
unsatisfiable, or totally false. We give it the usual coding which is 1-1 and onto w.

e Consider the poly Turing machine V(x, s), where V(x, s) = 1 if and only if the
binary line of truth values s satisfies the Boolean cnf expression x, and V(x, s) = 0
if and only if s doesn’t satisfy x.

2 Actually we deal with a slightly larger class of Boolean expressions.
3Conjunctive normal form.

202 F.A. Doria and C.A. Cosenza

e Consider the enumeration of the BGS [1] machines, Py, Py, P,, .. .4
We start from x, a Boolean expression in cnf binarily coded:

e Consider x, the binary code for a Boolean expression in cnf form.

e Inputx to Py, Py, P2, ... up to the first P; so that P;(x) = s; and s; satisfies x (that
is, for the verifying machine V(x, s;) = 1).

e Notice that there is a bound < j = f-!(x).

This requires some elaboration. Eventually a poly machine (in the BGS sequence)
will produce a satisfying line for x as its output given x as input. The upper bound
for the machine with that ability is given by the first BGS index so that the code
for x is smaller than the value at that index of the counterexample function.

That means: we arrive at a machine M,, which outputs a correct satisfying line
up to x as an input, and then begins to output wrong solutions.

e Alternatively check for V(x, 0), V(x, 1), ...up to—if it ever happens—some s so
that V(x, s) = 1; or,

e Now, if f, is fast-growing, then as the operation time of P; is bounded by |x[* + &,
we have that k < j, and therefore it grows as O(f;1 (x)). This will turn out to be a
very slowly growing function.

Again this requires some elaboration. The BGS machines are coded by a pair
(m, k), where m is a Turing machine Goédel index, and k is as above. So we
will have that the index j by which we code the BGS machine among all Turing
machines is greater than &, provided we use a monotonic coding.

More precisely, it will have to be tested up to j, that is the operation time will be
bounded by 1 (x) (x| + -1 (x)).

Again notice that the BGS index j > k, where k is the degree of the polynomial
clock that bounds the poly machine.

10.5 Almost Maymin-Efficient Markets

We will now discuss the following:

Proposition 10.5.1 If P < NP isn’t proved by primitive recursive arithmetic then
there are almost Maymin efficient markets. O

For a theory S with enough arithmetic—we leave it vague; we’ll specify how much
arithmetic in the example we’ll soon discuss—and with a recursively enumerable set
of theorems, for any provably total recursive function h there is a recursive, total,
function g so that g dominates h.

Suppose now that we conjecture: the formal sentence P < NP isn’t proved by
Primitive Recursive Arithmetic. Then the counterexample function f. will be at least
of the order of growth of Ackermann’s function [3]. By the previous discussion about

4The BGS machine set is a set of time-polynomial Turing machines which includes algorithms that
mimic all time-polynomial Turing machines. See above and check [1].

10 A Beautiful Theorem 203

O’Donnell’s algorithm, we see that the slow—growing exponential that bounds the
operation time of the algorithm will be at least of the order of growth of the inverse
function of Ackermann’s function.

Given that condition, we can state:

Proposition 10.5.2 [f P < NP isn’t proved by Primitive Recursive Arithmetic then
there are almost Maymin—efficient markets. (I

Comments

For details, [3]. We’ve briefly remarked that our proof, while restricted to a very
particular situation, is in fact adequately general. That is the case: for a more general
set of objects (policies etc.) has to imply ours, as our domain of objects would be a
subset of the enlarged domain.

Also we require very little in our discussion—main tool is Post’s theorem. As long
as it holds, so does our proof. Does it hold for paraconsistent logics? That’s an open
question, which classes of paraconsistent logics would allow a proof of Maymin’s
beautiful theorem.

Acknowledgments This paper was supported in part by CNPq, Philosophy Section Grant no.
4339819902073398. It is part of the research efforts of the Advanced Studies Group, Production
Engineering Program, at COPPE-UFRIJ and of the Logic Group, HCTE-UFRIJ. We thank Profs. R.
Bartholo, S. Fuks (in memoriam), S. Jurkiewicz, R. Kubrusly, and F. Zamberlan for support.

References

1. Baker, T., Gill, J., Solovay, R.: Relativizations of the P =?NP question. SIAM J. Comput. 4,
431-442 (1975)

2. Ben-David, S., Halevi, S.: On the independence of P vs. NP. Technical Report # 699, Technion
(1991)

3. da Costa, N.C.A., Doria, FA.: On the O’Donnell algorithm for NP—complete problems. Rev.
Behav. Econ. (2016)

4. Maymin, P.Z.: Markets are efficient if and only If P = NP. Algorithmic Finance, 1(1), 1 (2011)

5. O’Donnell, M.: A programming language theorem which is independent of Peano arithmetic.
In: Proceedings of 11th Annual ACM Symposium on the Theory of Computation, pp. 176-188
(1979)

6. Post, E.L.: Introduction to a general theory of elementary propositions. Am. J. Math. 43, 163
(1921)

	10 A Beautiful Theorem
	10.1 Prologue
	10.2 Theme
	10.3 Theme and Variations
	10.4 The O'Donnell Algorithm
	10.5 Almost Maymin--Efficient Markets
	References

