
Intelligent Systems Reference Library 110

Seiki Akama Editor

Towards
Paraconsistent
Engineering

Intelligent Systems Reference Library

Volume 110

Series editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

Lakhmi C. Jain, University of Canberra, Canberra, Australia;
Bournemouth University, UK;
KES International, UK
e-mails: jainlc2002@yahoo.co.uk; Lakhmi.Jain@canberra.edu.au
URL: http://www.kesinternational.org/organisation.php

About this Series

The aim of this series is to publish a Reference Library, including novel advances
and developments in all aspects of Intelligent Systems in an easily accessible and
well structured form. The series includes reference works, handbooks, compendia,
textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains
well integrated knowledge and current information in the field of Intelligent
Systems. The series covers the theory, applications, and design methods of
Intelligent Systems. Virtually all disciplines such as engineering, computer science,
avionics, business, e-commerce, environment, healthcare, physics and life science
are included.

More information about this series at http://www.springer.com/series/8578

http://www.springer.com/series/8578

Seiki Akama
Editor

Towards Paraconsistent
Engineering

123

Editor
Seiki Akama
Kawasaki
Japan

ISSN 1868-4394 ISSN 1868-4408 (electronic)
Intelligent Systems Reference Library
ISBN 978-3-319-40417-2 ISBN 978-3-319-40418-9 (eBook)
DOI 10.1007/978-3-319-40418-9

Library of Congress Control Number: 2016943418

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

In classical and in most non-classical logics, if a theory T is inconsistent, i.e.,
contains contradictory theorems, then it is also trivial; T is said to be trivial if any
sentence of its language is provable in T. A theory founded on a paraconsistent
logic may be inconsistent but non-trivial. So, we are able, with the help of such a
logic, to develop inconsistent but non-trivial theories.

Paraconsistent logics can be conceived as logics that are rival of classical logic
or as formal tools that may complement classical logic in certain situations.

One relevant point is that paraconsistent logics did find an extraordinary number
of applications, which constitute the basis of applied paraconsistency. Leaving
aside philosophy, law, and the foundations of science, paraconsistent logic came to
be significant in domains like the following:

• Computer science:

Artificial Intelligence (common sense reasoning, knowledge representation)
Database, knowledge bases
Data mining
Conceptual analysis
Software engineering

• Engineering:

Signal processing (sound processing, image processing)
Neural computing
Intelligent control
Robotics
Traffic control in large cities

v

• Economics:

Decision theory
Game theory
Finances

• Linguistics:

Formal semantics
Computational linguistics

Jair Minoro Abe was one of my best Ph.D. students at the University of São
Paulo in the eighties of the last century. At that time, we did not know a large
number of real and good applications of paraconsistent logic (envisaged as a rival of
or as a complement to classical logic). Since the beginning of his Ph.D. work, Abe
became interested in the possible applications of paraconsistent logic. He was,
above all, one of the pioneers of this domain, little by little opening new ways,
particularly in paraconsistent robotics, decision theory, and neural nets. After his
contact with the Japanese logicians Seiki Akama and Kazumi Nakamatsu, the
progress in the area of applications became wide and profound. In all applications
involving a large part of technology, Abe, Akama, Nakamatsu, and collaborators
employed paraconsistent logic as an instrument to cope with special and significant
problems.

This book, dedicated to Jair Minoro Abe on the occasion of his 60th birthday,
shows, at least in outline, a small part of what has been done in the field of
applications of paraconsistency. On the other hand, it also makes clear how relevant
and productive may be the collaboration between the experts of two distant
countries, in this case Brazil and Japan.

Most papers collected in this book are related to applied paraconsistency.
Moreover, all of them are dedicated to Jair Minoro Abe, the friend, the man, and the
logician.

Curitiba, Brazil Newton C.A. da Costa
January 2016

vi Foreword

Preface

Paraconsistent logics refer to non-classical logical systems, which can properly
handle contradictions. They can overcome defects of classical logic. Initially, they
were motivated by philosophical and mathematical studies, but they recently
received interesting applications to various areas including engineering. To tolerate
contradictions is an important problem in information systems, and paraconsistent
logics can provide suitable answers to it. Paraconsistent engineering, which is
engineering based on paraconsistent logics, should be developed to improve current
approaches. Jair Minoro Abe is one of the experts on Paraconsistent Engineering,
who developed the so-called annotated logics. This book collects papers by leading
researchers, which discuss various aspects of paraconsistent logics and related
logics. It includes important contributions on foundations and applications
of paraconsistent logics in connection with engineering, mathematical logic,
philosophical logic, computer science, physics, economics, and biology. It will be
of interest to students and researchers, who are working on engineering and logic.
The structure of this book is as follows.

Chapter 1 by S. Akama gives an introduction to this book.
Chapter 2 by S. Akama and N.C.A. da Costa discusses the reason why para-

consistent logics are very useful to engineering. In fact, the use of paraconsistent
logics is a starting point of Abe’s work. The ideas and history of paraconsistent
logics are reviewed. The chapter is also useful for readers to read papers in this book.

Chapter 3 by N.C.A. da Costa and D. Krause is concerned with an application of
a paraconsistent logic to quantum physics. The paper reviews the authors’ previous
papers on the concept of complementarity introduced by Bohr. Logical foundations
for quantum mechanics have been worked out so far. The paper reveals that the
authors’ paraconsistent logic can serve as the basis for the important problem in
quantum mechanics.

Chapter 4 by J.-Y. Beziau proposes two three-valued paraconsistent logics,
which are ‘genuine’ in the sense that they obey neither p;:p ‘ q nor ‘:ðp ^ :pÞ.
Beziau investigates their properties and relations to other paraconsistent logics. His
work is seen as a new approach to three-valued paraconsistent logics.

vii

http://dx.doi.org/10.1007/978-3-319-40418-9_1
http://dx.doi.org/10.1007/978-3-319-40418-9_2
http://dx.doi.org/10.1007/978-3-319-40418-9_3
http://dx.doi.org/10.1007/978-3-319-40418-9_4

Chapter 5 by S. Akama surveys annotated logics which have been developed as
paraconsistent and paracomplete logics by Abe and others. The paper presents the
formal and practical aspects of annotated logics and suggests their further appli-
cations for paraconsistent engineering.

Chapter 6 by J.I. da Silva Filho et al. discusses an application of the annotated
logic called PAL2v based on two truth-values for paraconsistent artificial neural
network (PANet), showing an algorithmic structure for handling actual problems.
The paper is one of the interesting engineering applications of paraconsistent logic.

Chapter 7 by K. Nakamatsu and S. Akama is concerned with annotated logic
programming. Indeed, the starting point of annotated logics is paraconsistent logic
programming, but the subject has been later expanded in various ways. Annotated
logic programming can be considered as a tool for many applications. In this paper,
they present several approaches to annotated logic programming.

Chapter 8 by Y. Kudo et al. reviews rough set theory in connection with modal
logic. Rough set theory can serve as a basis for granularity computing and can be
applied to deal with many problems in intelligent systems. It is well known that
there are some connections between rough set theory and modal logic.

Chapter 9 by T. Murai et al. investigates paraconsistency and paracompleteness
in Chellas’s conditional logic using Scott–Montague semantics. It is possible to
express inconsistency and incompleteness in conditional logic, and they provide
several formal results.

Chapter 10 by F.A. Doria and C.A. Cosenza presents a logical approach to the
so-called efficient market which means that stock prices fully reflect all available
information in the market. They introduce the concept of almost efficient market
and study its formal properties.

Chapter 11 by J.-M. Alliot et al. is about a logic called the molecular interaction
logic to represent temporal reasoning in biological systems. The logic can
semantically characterize molecular interaction maps (MIM) and formalize various
reasoning on MIM.

Chapter 12 by S. Akama summarizes Abe’s work on paraconsistent logics
and their applications to engineering and surveys some of his projects shortly.
The paper clarifies his ideas on paraconsistent engineering.

Most papers in this book are related to paraconsistent logics, and they tackle
various problems by using paraconsistent logics. The book is dedicated to Jair
Minoro Abe for his 60th birthday. I am grateful to contributors and referees.

Kawasaki, Japan Seiki Akama
May 2016

viii Preface

http://dx.doi.org/10.1007/978-3-319-40418-9_5
http://dx.doi.org/10.1007/978-3-319-40418-9_6
http://dx.doi.org/10.1007/978-3-319-40418-9_7
http://dx.doi.org/10.1007/978-3-319-40418-9_8
http://dx.doi.org/10.1007/978-3-319-40418-9_9
http://dx.doi.org/10.1007/978-3-319-40418-9_10
http://dx.doi.org/10.1007/978-3-319-40418-9_11
http://dx.doi.org/10.1007/978-3-319-40418-9_12

Contents

1 Introduction . 1
Seiki Akama
1.1 Backgrounds . 1
1.2 About This Book . 3
References . 5

2 Why Paraconsistent Logics? . 7
Seiki Akama and Newton C.A. da Costa
2.1 Introduction . 7
2.2 History . 8
2.3 Approaches to Paraconsistent Logic 9
2.4 Other Paraconsistent Logics . 16
References . 22

3 An Application of Paraconsistent Logic to Physics:
Complementarity . 25
Newton C.A. da Costa and Décio Krause
3.1 Introduction . 25
3.2 C-theories . 26
3.3 The Logic of C-theories. 27
3.4 The Paralogic Associated to a Logic L 30
3.5 More General Complementary Situations. 31
3.6 Final Remarks . 32
References . 33

4 Two Genuine 3-Valued Paraconsistent Logics 35
Jean-Yves Beziau
4.1 Genuine Paraconsistent Negation . 35
4.2 Two Genuine Three-Valued Paraconsistent Logics 36

ix

http://dx.doi.org/10.1007/978-3-319-40418-9_1
http://dx.doi.org/10.1007/978-3-319-40418-9_1
http://dx.doi.org/10.1007/978-3-319-40418-9_1#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_1#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_1#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_1#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_1#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_2
http://dx.doi.org/10.1007/978-3-319-40418-9_2
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_2#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_3
http://dx.doi.org/10.1007/978-3-319-40418-9_3
http://dx.doi.org/10.1007/978-3-319-40418-9_3
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_3#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_4
http://dx.doi.org/10.1007/978-3-319-40418-9_4
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec2

4.3 Basic Properties of SP3A and SP3B 38
4.3.1 Conjunction and Disjunction 38
4.3.2 Laws of Negations that SP3A and SP3B

Do Not Obey . 38
4.3.3 Excluded Middle . 39
4.3.4 Double Negation . 39
4.3.5 De Morgan Laws . 40
4.3.6 Definition of a Classical Negation. 42

4.4 Comparison with da Costa Paraconsistent Logics
C1 and C1+. 42
4.4.1 Replacement Theorem . 45

4.5 Comparison Table Between SP3A and SP3B 46
References . 47

5 A Survey of Annotated Logics . 49
Seiki Akama
5.1 Introduction . 49
5.2 Propositional Annotated Logics Ps . 50
5.3 Predicate Annotated Logics Qs . 63
5.4 Curry Algebras . 68
5.5 Formal Issues . 73
5.6 Conclusions . 74
References . 74

6 Paraconsistent Artificial Neural Network for Structuring
Statistical Process Control in Electrical Engineering 77
João Inácio da Silva Filho, Clovis Misseno da Cruz,
Alexandre Rocco, Dorotéa Vilanova Garcia,
Luís Fernando P. Ferrara, Alexandre Shozo Onuki,
Mauricio Conceição Mario and Jair Minoro Abe
6.1 Introduction . 78

6.1.1 Statistical Process Control SPC 78
6.1.2 SPC Analysis . 81

6.2 Paraconsistent Logic (PL) . 83
6.2.1 Paraconsistent Annotated Logic (PAL) 83

6.3 Paraconsistent Artificial Neural Network (PANNet) 85
6.3.1 Paraconsistent Artificial Neural Cell

of Learning (LPANCell) . 86
6.4 Computational Structure PAL2v for Simulating SPC. 88

6.4.1 Extractor Block of Degrees of Evidence
from z-Score . 88

6.4.2 Extractor Block of Moving Average 89
6.4.3 Block Comparator of Electrical Energy

Quality Score . 89

x Contents

http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_4#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_5
http://dx.doi.org/10.1007/978-3-319-40418-9_5
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_5#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_6
http://dx.doi.org/10.1007/978-3-319-40418-9_6
http://dx.doi.org/10.1007/978-3-319-40418-9_6
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec16
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec16
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec18
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec18
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec19
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec19
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec19

6.4.4 Operation of the Extractor Block of Evidence
Degrees from z-Scores . 89

6.4.5 Operation of the Extractor Block of Moving
Average. 92

6.4.6 Operation of Block Comparator of Electric
Energy Quality Score . 96

6.5 Results . 100
6.6 Conclusions . 101
References . 101

7 Programming with Annotated Logics . 103
Kazumi Nakamatsu and Seiki Akama
7.1 Introduction . 104
7.2 Paraconsistent Annotated Logic Program. 105

7.2.1 Paraconsistent Annotated Logic PT 106
7.2.2 EVALPSN (Extended Vector Annotated

Logic Program with Strong Negation) 108
7.3 Traffic Signal Control in EVALPSN 111

7.3.1 Deontic Defeasible Traffic Signal Control 111
7.3.2 Example and Simulation . 116

7.4 EVALPSN Safety Verification for Pipeline Control 118
7.4.1 Pipeline Network . 119
7.4.2 Pipeline Safety Property . 122
7.4.3 Predicates for Safety Verification 122
7.4.4 Safety Property in EVALPSN 127
7.4.5 Process Release Control in EVALPSN 129
7.4.6 Example . 131

7.5 Before-After EVALPSN . 136
7.5.1 Before-After Relation in EVALPSN 136
7.5.2 Implementation of Bf-EVALPSN Verification

System . 142
7.5.3 Safety Verification in Bf-EVALPSN 145

7.6 Reasoning in Bf-EVALPSN. 151
7.6.1 Basic Reasoning for Bf-Relation. 151
7.6.2 Transitive Reasoning for Bf-Relations 154
7.6.3 Transitive Bf-Inference Rules 158

7.7 Conclusions and Remarks . 161
References . 162

8 A Review on Rough Sets and Possible World Semantics
for Modal Logics . 165
Yasuo Kudo, Tetsuya Murai and Seiki Akama
8.1 Introduction . 165
8.2 Modal Logics . 166

8.2.1 Language. 166
8.2.2 Possible World Semantics for Modal Logics 166

Contents xi

http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec20
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec20
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec20
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec21
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec21
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec21
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec24
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec24
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec24
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec27
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec27
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec28
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Sec28
http://dx.doi.org/10.1007/978-3-319-40418-9_6#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_7
http://dx.doi.org/10.1007/978-3-319-40418-9_7
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec16
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec16
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec18
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec18
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec19
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec19
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec20
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec20
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec21
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec21
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec22
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec22
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec23
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Sec23
http://dx.doi.org/10.1007/978-3-319-40418-9_7#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_8
http://dx.doi.org/10.1007/978-3-319-40418-9_8
http://dx.doi.org/10.1007/978-3-319-40418-9_8
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec4

8.3 Rough Sets . 169
8.3.1 Pawlak’s Rough Set . 169
8.3.2 Variable Precision Rough Set 170
8.3.3 Properties of Lower and Upper Approximations 171

8.4 Connections Between Rough Sets and Modal Logics 172
8.4.1 Pawlak Approximation Spaces

as Kripke Models . 172
8.4.2 Possible World Semantics with Variable

Precision Rough Sets . 173
8.5 Related Works . 175
8.6 Conclusion . 176
References . 176

9 Paraconsistency, Chellas’s Conditional Logics, and Association
Rules. 179
Tetsuya Murai, Yasuo Kudo and Seiki Akama
9.1 Introduction . 180
9.2 Chellas’s Conditional Models and Their Measure-Based

Extensions for Conditional Logics . 180
9.2.1 Standard and Minimal Conditional Models 180
9.2.2 Measure-Based Extensions 182

9.3 Paraconsistency and Paracompleteness in Conditionals 184
9.3.1 Modal Logic Case . 184
9.3.2 Conditional Logic Case . 185

9.4 Paraconsistency and Paracompleteness
in Association Rules . 186
9.4.1 Association Rules . 186
9.4.2 Measure-Based Conditional Models

for Databases . 188
9.4.3 Association Rules and Graded Conditionals 188
9.4.4 Paraconsistency and Paracompleteness

in Association Rules . 189
9.5 Dempster-Shafer-Theory-Based Confidence 190

9.5.1 D-S Theory and Confidence 190
9.5.2 Multi-graded Conditional Models for Databases 191
9.5.3 Two Typical Cases . 191
9.5.4 General Cases . 194

9.6 Concluding Remarks. 195
References . 196

10 A Beautiful Theorem . 197
Francisco Antonio Doria and Carlos A. Cosenza
10.1 Prologue . 197
10.2 Theme . 198
10.3 Theme and Variations . 199

xii Contents

http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_8#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_9
http://dx.doi.org/10.1007/978-3-319-40418-9_9
http://dx.doi.org/10.1007/978-3-319-40418-9_9
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec11
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec16
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec16
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec18
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Sec18
http://dx.doi.org/10.1007/978-3-319-40418-9_9#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_10
http://dx.doi.org/10.1007/978-3-319-40418-9_10
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec3

10.4 The O’Donnell Algorithm . 201
10.5 Almost Maymin–Efficient Markets . 202
References . 203

11 Temporal Logic Modeling of Biological Systems 205
Jean-Marc Alliot, Robert Demolombe, Martín Diéguez,
Luis Fariñas del Cerro, Gilles Favre, Jean-Charles Faye,
Naji Obeid and Olivier Sordet
11.1 Introduction . 205
11.2 A Simple Classical Example . 206
11.3 Fundamental Operations . 209
11.4 Molecular Interaction Logic . 211

11.4.1 MIL Semantics. 212
11.5 Translating Molecular Interaction Logic into Linear

Time Temporal Logic . 213
11.5.1 From MIL to LTL . 214

11.6 Temporal Reasoning . 215
11.6.1 Completion Axioms . 215
11.6.2 Graphs as Splittable Temporal Logic Programs. 216
11.6.3 Grounding Splittable Temporal Logic Programs 218

11.7 Reasoning and Solving . 219
11.7.1 A Simple Example . 219
11.7.2 From Temporal Reasoning to Classical

Propositional Tools . 222
11.7.3 Expressing Complex Queries 223

11.8 Implementation . 224
11.9 Conclusion . 224
References . 225

12 Jair Minoro Abe on Paraconsistent Engineering 227
Seiki Akama
12.1 Introduction . 227
12.2 Biographical Information. 228
12.3 General Description of Published Works 230
References . 232

Contents xiii

http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_10#Bib1
http://dx.doi.org/10.1007/978-3-319-40418-9_11
http://dx.doi.org/10.1007/978-3-319-40418-9_11
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec4
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec5
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec6
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec7
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec8
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec9
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec10
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec12
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec13
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec14
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec15
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec16
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec16
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec17
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec18
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec18
http://dx.doi.org/10.1007/978-3-319-40418-9_11#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_12
http://dx.doi.org/10.1007/978-3-319-40418-9_12
http://dx.doi.org/10.1007/978-3-319-40418-9_12#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_12#Sec1
http://dx.doi.org/10.1007/978-3-319-40418-9_12#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_12#Sec2
http://dx.doi.org/10.1007/978-3-319-40418-9_12#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_12#Sec3
http://dx.doi.org/10.1007/978-3-319-40418-9_12#Bib1

Contributors

Jair Minoro Abe Research Group in Paraconsistent Logic Applications,
UNISANTA, Santa Cecília University, Santos City, SP, Brazil; Graduate Program
in Production Engineering, ICET, Paulista University, São Paulo, Brazil

Seiki Akama C-Republic, Asao-ku, Kawasaki, Japan

Jean-Marc Alliot INSERM/IRIT, University of Toulouse, Toulouse, France

Jean-Yves Beziau UFRJ—Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil; CNPq—Brazilian Research Council, Rio de Janeiro, Brazil

Carlos A. Cosenza Advanced Studies Research Group, HCTE, Fuzzy Sets
Laboratory, Mathematical Economics Group, Production Engineering Program,
COPPE, UFRJ, Rio Rj, Brazil

Newton C.A. da Costa Department of Philosophy, Federal University of Santa
Catarina, Florianópolis, SC, Brazil

Clovis Misseno da Cruz Research Group in Paraconsistent Logic Applications,
UNISANTA, Santa Cecília University, Santos City, SP, Brazil

João Inácio da Silva Filho Research Group in Paraconsistent Logic Applications,
UNISANTA, Santa Cecília University, Santos City, SP, Brazil

Robert Demolombe INSERM/IRIT, University of Toulouse, Toulouse, France

Martín Diéguez INSERM/IRIT, University of Toulouse, Toulouse, France

Francisco Antonio Doria Advanced Studies Research Group, HCTE, Fuzzy Sets
Laboratory, Mathematical Economics Group, Production Engineering Program,
COPPE, UFRJ, Rio Rj, Brazil

Luis Fariñas del Cerro INSERM/IRIT, University of Toulouse, Toulouse, France

Gilles Favre INSERM/IRIT, University of Toulouse, Toulouse, France

Jean-Charles Faye INSERM/IRIT, University of Toulouse, Toulouse, France

xv

Luís Fernando P. Ferrara Research Group in Paraconsistent Logic Applications,
UNISANTA, Santa Cecília University, Santos City, SP, Brazil

Dorotéa Vilanova Garcia Research Group in Paraconsistent Logic Applications,
UNISANTA, Santa Cecília University, Santos City, SP, Brazil

Décio Krause Department of Philosophy, Federal University of Santa Catarina,
Florianópolis, SC, Brazil

Yasuo Kudo Muroran Institute of Technology, Muroran, Japan

Mauricio Conceição Mario Research Group in Paraconsistent Logic Applications,
UNISANTA, Santa Cecília University, Santos City, SP, Brazil

Tetsuya Murai Chitose Institute of Science and Technology, Chitose, Japan

Kazumi Nakamatsu University of Hyogo, Himeji, Japan

Naji Obeid INSERM/IRIT, University of Toulouse, Toulouse, France

Alexandre Shozo Onuki Research Group in Paraconsistent Logic Applications,
UNISANTA, Santa Cecília University, Santos City, SP, Brazil

Alexandre Rocco ResearchGroup inParaconsistent LogicApplications,UNISANTA,
Santa Cecília University, Santos City, SP, Brazil

Olivier Sordet INSERM/IRIT, University of Toulouse, Toulouse, France

xvi Contributors

Chapter 1
Introduction

Seiki Akama

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract Paraconsistent logic is a family of non-classical logics to tolerate inconsis-
tency. Many systems of paraconsistent logics have been developed, and they are now
applied to several areas including engineering. Jair Minoro Abe, who is an expert on
annotated logics, is one of the important figures in paraconsistent logics. This book
collects papers, addressing the importance of paraconsistent logics for several fields.

Keywords Paraconsistent logics · Non-classical logics · Annotated logics ·
J.M. Abe

1.1 Backgrounds

In the 1980s, I was working on logical foundations for intelligent systems. In par-
ticular, I was interested in automated reasoning and knowledge representation in
Artificial Intelligence (AI). Unfortunately, some people in related areas believed
that logic is of no use for the purpose. However, I believed that logic can serve as
mathematical foundations for intelligent systems.

The main tool of logical approaches to AI was undoubtedly classical logic. Many
researchers studied theorem-proving methods for classical logic, e.g. resolution, and
tried to use it as a knowledge representation language. This means that proof theory

S. Akama (B)
C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-ku, Kawasaki 215-0012, Japan
e-mail: akama@jcom.home.ne.jp

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_1

1

2 S. Akama

can be applied to inference engine and model theory can be applied knowledge
representation language. In the 1970s, logic programming languages like Prolog
were developed.

The fact that classical logic was mainly considered in AI is not surprising since
it is well-studied in the area of mathematical logic. But, classical logic has some
limitations in the study of AI; see Minsky [6]. One of the serious difficulties is that
it cannot deal with incomplete and inconsistent information. To overcome it, AI
workers invented non-monotonic logic for common-sense reasoning.

Naturally, we may explore the use of non-classical logic in the study of AI. In the
1980s, this was not a defensible idea for AI. I studied several non-classical logics for
AI. I startedwithmodal logics and constructive logics, because these logics are suited
to formalize incomplete information. But, I felt that the representation of inconsistent
information is also important.

Based on the considerations I learned several paraconsistent logics. Unfortunately,
I could not find intriguing applications to AI based on paraconsistent logics. I also
found that there were some problems of the use of paraconsistent logics. One major
problem is that to develop an automated reasoning method for paraconsistent logic
is difficult. In addition, logical basis of paraconsistent logics is complicated. I will
give a quick review of paraconsistent logics in Chap. 2.

In logic programming community, the representation of incomplete and inconsis-
tent information in connection with common-sense reasoning is also regarded as an
important problem. In 1987, Subramanian proposed an annotated logic for qualita-
tive logic programming (cf. [7]) and paraconsistent logic programming (cf. [3]). I
investigated these papers with great interest.

However, I was dissatisfied with the approach, since it is restrictive from a logical
point of view. I believed that annotated logic can be formalized as a formal logical
system and the work is intriguing. I tried to study the subject. In fact, it is important
to explore foundations and applications of paraconsistent logics, although I was
working on other research projects in the period.

In 1991, two important papers on annotated logic have been published; i.e., da
Costa et al. [4, 5]. These papers in fact dealt with foundations for annotated logic.
For me, the fact was shocking. In 1993, I invited Richard Sylvan in Japan, and he
informed that Jair Minoro Abe wrote a dissertation on annotated logic; see Abe [1].
Unfortunately, Abe’s dissertation was written in Portuguese. But I could suppose the
results from the above two papers. Based on these papers, I stopped foundational
work on annotated logic, but seeked a possibility of its applications to computer
science.

In 1997, I attended the first World Congress on Paraconsistency held Ghent to
present a paper on relevant counterfactuals. From the program, I knew that Abe pre-
sented several papers on annotated logic. I attended the session and questioned to him.
After the session, I talked with him. It is not surprising that he could speak Japanese.
I started the research collaboration with him. In Ghent, I also met Nakamatsu who
studied annotated logic from the perspective on logic programming.

http://dx.doi.org/10.1007/978-3-319-40418-9_2

1 Introduction 3

Since then, I worked with Abe and Nakamatsu on annotated logics and published
many papers. Our goal was to established foundations and applications for annotated
logic. We decided to write a monograph on annotated logic. In 2015, we published
“Introduction to Annotated Logics” in 2015 by Springer; see Abe et al. [2].

To celebrate Abe’s sixty birthday, I decided to edit a book for him. The project
is important because he is one of the important figures in the area of paraconsistent
logic in that he explored many applications of paraconsistent logics for engineering.
I am happy to present this book to honor him and show progresses of paraconsistent
logics.

Jair Minoro Abe was born in São Paulo, Brazil on October 6, 1955. He received
bachelor and master degrees at Institute of Mathematics and Statics of University of
São Paulo in 1978 and 1983, and doctor degree at Faculty of Philosophy, Letters and
Human Sciences from University of São Paulo in 1992. He is now Full Professor
of Paulista University. His research topics include non-classical logics and Artificial
Intelligence. He is working on foundations and applications of paraconsistent logics,
in particular, annotated logic. I will describe Abe’s life and research in Chap.12.

1.2 About This Book

The title of this book “Towards Paraconsistent Engineering” clearly describes Abe’s
research projects. Now, we summarize the contents of this book. Most papers are
concerned with paraconsistent logics, and some papers addressed the usefulness of
non-classical logics (Fig. 1.1).

Chapter 2 by S. Akama and N.C.A da Costa discusses the reason why paracon-
sistent logics are very useful to engineering. In fact, the use of paraconsistent logics

Fig. 1.1 Jair Minoro Abe

http://dx.doi.org/10.1007/978-3-319-40418-9_12
http://dx.doi.org/10.1007/978-3-319-40418-9_2

4 S. Akama

is a starting point of Abe’s work. The ideas and history of paraconsistent logics are
reviewed. The chapter is also useful for readers to read papers in this book.

Chapter 3 by N.C.A da Costa and D. Krause is concerned with an application of
a paraconsistent logic to quantum physics. The paper reviews the authors’ previous
papers on the concept of complementarity introduced by Bohr. Logical foundations
for quantum mechanics have been worked out so far. The paper reveals that the
authors’ paraconsistent logic can serve as the basis for the important problem in
quantum mechanics.

Chapter 4 by J.-Y. Beziau proposes two three-valued paraconsistent logics, which
are ‘genuine’ in the sense that they obey neither p,¬p � q nor� ¬(p ∧ ¬p). Beziau
investigates their properties and relations to other paraconsistent logics. His work is
seen as a new approach to three-valued paraconsistent logics.

Chapter 5 by S. Akama surveys annotated logics which have been developed as
paraconsistent and paracomplete logics by Abe and others. The paper presents the
formal and practical aspects of annotated logics and suggests their further applica-
tions for paraconsistent engineering.

Chapter 6 by J.I. da Silva Filho et al. discusses an application of the annotated
logic called PAL2v based on two truth-values for Paraconsistent Artificial Neural
Network (PANet), showing an algorithmic structure for handling actual problems.
The paper is one of the interesting engineering applications of paraconsistent logic.

Chapter 7 by K. Nakamatsu and S. Akama is concerned with annotated logic
programming. Indeed the starting point of annotated logics is paraconsistent logic
programming, but the subject has been later expanded in various ways. Annotated
logic programming can be considered as a tool for many applications. In this paper,
they present several approaches to annotated logic programming.

Chapter 8 by Y. Kudo et al. reviews rough set theory in connection with modal
logic. Rough set theory can serve as a basis for granularity computing and can be
applied to deal with many problems in intelligent systems. It is well known that there
are some connections between rough set theory and modal logic.

Chapter 9 by T. Murai et al. investigates paraconsistency and paracompleteness in
Chellas’s conditional logic using Scott-Montague semantics. It is possible to express
inconsistency and incompleteness in conditional logic, and they provide several for-
mal results.

Chapter 10 by F.A. Doria and C.A. Cosenza presents a logical approach to the
so-called efficient market which means that stock prices fully reflect all available
information in the market. They introduce the concept of almost efficient market and
study its formal properties.

Chapter 11 by J.-M. Alliot et al. is about a logic called the Molecular Inter-
action Logic to represent temporal reasoning in biological systems. The logic can
semantically characterizeMolecular Interaction Maps (MIM) and formalize various
reasoning on MIM.

Chapter 12 by S. Akama summarizes Abe’s work on paraconsistent logics and
their applications to engineering, and surveys some of his projects shortly. The paper
clarifies his ideas on paraconsistent engineering.

http://dx.doi.org/10.1007/978-3-319-40418-9_3
http://dx.doi.org/10.1007/978-3-319-40418-9_4
http://dx.doi.org/10.1007/978-3-319-40418-9_5
http://dx.doi.org/10.1007/978-3-319-40418-9_6
http://dx.doi.org/10.1007/978-3-319-40418-9_7
http://dx.doi.org/10.1007/978-3-319-40418-9_8
http://dx.doi.org/10.1007/978-3-319-40418-9_9
http://dx.doi.org/10.1007/978-3-319-40418-9_10
http://dx.doi.org/10.1007/978-3-319-40418-9_11
http://dx.doi.org/10.1007/978-3-319-40418-9_12

1 Introduction 5

Acknowledgments I am grateful to Prof. Abe for his comments.

References

1. Abe, J.M.: On the Foundations of Annotated Logics (in Portuguese), Ph.D. Thesis, University
of São Paulo, Brazil (1992)

2. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg
(2016)

3. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68,
135–154 (1989)

4. da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)

5. da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic PT . Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)

6. Minsky, M.: A framework for representing knowledge. In: Haugeland, J. (ed.) Mind-Design, pp.
95–128. MIT Press, Cambridge (1975)

7. Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceedings of the 4th
IEEE Symposium on Logic Programming, pp. 173–182 (1987)

Chapter 2
Why Paraconsistent Logics?

Seiki Akama and Newton C.A. da Costa

Dedicated to Jair Minoro Abe for his 60th birthday.

Abstract In this chapter, we briefly review paraconsistent logics which are closely
related to the topics in this book. We give an exposition of their history and formal
aspects. We also address the importance of applications of paraconsistent logics to
engineering.

Keywords Paraconsistent logics · Contradiction inconsistency · Paraconsistency

2.1 Introduction

Paraconsistent logic is a logical system for inconsistent but non-trivial formal the-
ories. It is classified as non-classical logic in the sense that it can be employed as a
rival to classical logic. Paraconsistent logic has many applications and it can serve as
a foundation for engineering because some engineering problems must solve incon-
sistent information. However standard classical logic cannot tolerate it. In this regard,
paraconsistent is promising.

Here, we give a quick review of paraconsistent logic that is helpful to the reader.
Let T be a theory whose underlying logic is L. T is called inconsistent when it
contains theorems of the form A and ¬A (the negation of A), i.e.,

S. Akama (B)
C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-ku, Kawasaki 215-0012, Japan
e-mail: akama@jcom.home.ne.jp

N.C.A. da Costa
Department of Philosophy, Federal University of Santa Catarina,
Florianópolis, SC, Brazil
e-mail: ncacosta@terra.com.br

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_2

7

8 S. Akama and N.C.A. da Costa

T �L A and T �L ¬A

where �L denotes the provability relation in L. If T is not inconsistent, it is called
consistent.

T is said to be trivial, if all formulas of the language are also theorems of T .
Otherwise, T is called non-trivial. Then, for trivial theory T , T �L B for any formula
B. Note that trivial theory is not interesting since every formula is provable.

If L is classical logic (or one of several others, such as intuitionistic logic), the
notions of inconsistency and triviality agree in the sense that T is inconsistent iff T is
trivial. So, in trivial theories the extensions of the concepts of formula and theorem
coincide.

A paraconsistent logic is a logic that can be used as the basis for inconsistent
but non-trivial theories. In this regard, sentences of paraconsistent theories do not
satisfy, in general, the principle of non-contradiction, i.e., ¬(A ∧ ¬A).1

Similarly, we can define the notions of paracomplete logic and theory. A paracom-
plete logic is a logic, in which the principle of excluded middle, i.e., A ∨ ¬A is not
a theorem of that logic. In this sense, intuitionistic logic is one of the paracomplete
logics. A paracomplete theory is a theory based on paracomplete logic.

Finally, a logic which is simultaneously paraconsistent and paracomplete is called
non-alethic logic.

The structure of this paper is as follows. In Sect. 2.2, we describe the history
of paraconsistent logic. In Sect. 2.3, major approaches to paraconsistent logic are
given with formal descriptions. In Sect. 2.4, other paraconsistent logics are briefly
reviewed.

2.2 History

This section surveys the history of paraconsistent logic. Paraconsistent logics have
recently proved attracted tomany people, but they have a longer history than classical
logic. For example, Aristotle developed a logical theory that can be interpreted to be
paraconsistent. But, paraconsistent logics in the modern sense were formally devised
in the 1950s.

In 1910, the Russian logician Nikolaj A. Vasil’ev (1880–1940) and the Polish
logician Jan Łukasiewicz (1878–1956) independently glimpsed the possibility of
developing paraconsistent logics. Vasil’ev’s imaginary logic can be seen as a para-
consistent reformulation of Aristotle’s syllogistic; see Vasil’ev [54].

It was here pointed out that Łukasiewicz’s three-valued logic is a forerunner of
the many-valued approach to paraconsistency, although he did not explicitly discuss
paraconsistency; see Łukasiewicz [43].

1In fact, in some systems of paraconsistent logic, like daCosta’s systemsCn, the “good” propositions
do satisfy this principle.

2 Why Paraconsistent Logics? 9

However, we believe that the history of paraconsistent logic started in 1948.
Stanislaw Jaśkowski (1896–1965) proposed a paraconsistent propositional logic,
now called discursive logic (or discussive logic) in 1948; see Jaśkowski [37, 38].
Discursive logic is based on modal logic, and it is classified as the modal approach
to paraconsistency.

Independently, some years later, the Brazilian logician Newton C.A. da Costa
(1929-) constructed for the first time hierarchies of paraconsistent propositional cal-
culi Ci(1 ≤ i ≤ ω) and its first-order and higher-order extensions; see da Costa [28].
da Costa’s logics are called the C-system, which is based on the non-standard inter-
pretation of negation which is dual to intuitionistic negation.

A different route to paraconsistent logic may be found in the so-called relevance
logic (or relevant logic), which was originally developed by Anderson and Belnap
in the 1960s; see Anderson and Belnap [11] and Anderson, Belnap and Dunn [12].
Anderson and Belnap’s approach addresses a correct interpretation of implication
A → B, in which A and B should have some connection. Its semantic interpretation
raises the issues of paraconsistency, and some (not all) relevance logics are in fact
paraconsistent.

The above three approaches are considered themajor approaches to paraconsistent
logics, many paraconsistent logics have been proposed in the literature. They have
been developed from some motivation.

2.3 Approaches to Paraconsistent Logic

The section formally reviews several paraconsistent logics, restricting to the principal
paraconsistent logics. But, it is far from complete, and the reader should consult in-
depth exposition in the relevant reference.

We can list the three logics as the major approaches:

• Discursive logic
• C-systems
• Relevant (relevance) logic

Discursive logic, also known as discussive logic, was proposed by Jaśkowski [37,
38], which is regarded as a non-adjunctive approach.Adjunction is a rule of inference
of the form: from � A and � B to � A ∧ B. Discursive logic can avoid explosion by
prohibiting adjunction.

It was a formal system J satisfying the conditions: (a) from two contradictory
propositions, it should not be possible to deduce any proposition; (b) most of the
classical theses compatible with (a) should be valid; (c) J should have an intuitive
interpretation.

Such a calculus has, among others, the following intuitive properties remarked
by Jaśkowski himself: suppose that one desires to systematize in only one deductive
system all theses defended in a discussion. In general, the participants do not confer
the same meaning to some of the symbols.

10 S. Akama and N.C.A. da Costa

One would have then as theses of a deductive system that formalize such a dis-
cussion, an assertion and its negation, so both are “true” since it has a variation in
the sense given to the symbols. It is thus possible to regard discursive logic as one
of the so-called paraconsistent logics.

Jaśkowski’s D2 contains propositional formulas built from logical symbols of
classical logic. In addition, the possibility operator ♦ in S5 is added. Based on the
possibility operator, three discursive logical symbols can be defined as follows:

discursive implication: A →d B =def ♦A → B
discursive conjunction: A ∧d B =def ♦A ∧ B
discursive equivalence: A ↔d B =def (A →d B) ∧d (B →d A)

Additionally, we can define discursive negation ¬dA as A →d false. Jaśkowski’s
original formulation of D2 in [38] used the logical symbols: →d,↔d,∨,∧,¬, and
he later defined ∧d in [38].

The following axiomatization due to Kotas [42] has the following axioms and the
rules of inference.

Axioms
(A1) �(A → (¬A → B))

(A2) �((A → B) → ((B → C) → (A → C))

(A3) �((¬A → A) → A)

(A4) �(�A → A)

(A5) �(�(A → B) → (�A → �B))

(A6) �(¬�A → �¬�A)

Rules of Inference
(R1) substitution rule
(R2) �A,�(A → B)/�B
(R3) �A/��A
(R4) �A/A
(R5) ¬�¬�A/A

There are other axiomatizations of D2, but we omit the details here. Discursive
logics are consideredweak as a paraconsistent logic, but they have some applications,
e.g. logics for vagueness.

C-systems are paraconsistent logics due to da Costa which can be a basis for
inconsistent but non-trivial theories; see da Costa [28]. The important feature of
da Costa systems is to use novel interpretation, which is non-truth-functional, of
negation avoiding triviality.

Here, we review C-system C1 due to da Costa [28]. The language of C1 is based
on the logical symbols:∧,∨,→, and¬.↔ is defined as usual. In addition, a formula
A◦, which is read “A is well-behaved”, is shorthand for ¬(A ∧ ¬A). The basic ideas
ofC1 contain the following: (1) most valid formulas in the classical logic hold, (2) the
law of non-contradiction ¬(A ∧ ¬A) should not be valid, (3) from two contradictory
formulas it should not be possible to deduce any formula.

The Hilbert system of C1 extends the positive intuitionistic logic with the axioms
for negation.

2 Why Paraconsistent Logics? 11

da Costa’s C1

Axioms
(DC1) A → (B → A)

(DC2) (A → B) → ((A → (B → C)) → (A → C))

(DC3) (A ∧ B) → A
(DC4) (A ∧ B) → B
(DC5) A → (B → (A ∧ B))

(DC6) A → (A ∨ B)

(DC7) B → (A ∨ B)

(DC8) (A → C) → ((B → C) → ((A ∨ B) → C))

(DC9) B◦ → ((A → B) → ((A → ¬B) → ¬A))

(DC10) (A◦ ∧ B◦) → (A ∧ B)◦ ∧ (A ∨ B)◦ ∧ (A → B)◦
(DC11) A ∨ ¬A
(DC12) ¬¬A → A

Rules of Inference
(MP) � A, � A → B ⇒ � B

Here, (DC1)–(DC8) are axioms of the positive intuitionistic logic. (DC9) and
(DC10) play a role for the formalization of paraconsistency.

A semantics for C1 can be given by a two-valued valuation; see da Costa and
Alves [29]. We denote by F the set of formulas of C1. A valuation is a mapping v

from F to {0, 1} satisfying the following:
v(A) = 0 ⇒ v(¬A) = 1
v(¬¬A) = 1 ⇒ v(A) = 1
v(B◦) = v(A → B) = v(A → ¬B) = 1 ⇒ v(A) = 0
v(A → B) = 1 ⇔ v(A) = 0 or v(B) = 1
v(A ∧ B) = 1 ⇔ v(A) = v(B) = 1
v(A ∨ B) = 1 ⇔ v(A) = 1 or v(B) = 1
v(A◦) = v(B◦) = 1 ⇒ v((A ∧ B)◦) = v((A ∨ B)◦) = v((A → B)◦) = 1

Note here that the interpretations of negation and double negation are not given
by biconditional. A formula A is valid, written |= A, if v(A) = 1 for every valuation
v. Completeness holds for C1. It can be shown that C1 is complete for the above
semantics.

Da Costa system C1 can be extended to Cn (1 ≤ n ≤ ω). Now, A1 stands for A◦
and An stands for An−1 ∧ (A(n−1))◦, 1 ≤ n ≤ ω.

Then, daCosta systemCn (1 ≤ n ≤ ω) can be obtained by (DC1)–(DC8), (DC12),
(DC13) and the following:

(DC9n) B(n) → ((A → B) → ((A → ¬B) → ¬A))

(DC10n) (A(n) ∧ B(n)) → (A ∧ B)(n) ∧ (A ∨ B)(n) ∧ (A → B)(n)

Note that the da Costa system Cω has the axioms (DC1)–(DC8), (DC12) and
(DC13). Later, da Costa investigated first-order and higher-order extensions of C-
systems.

12 S. Akama and N.C.A. da Costa

Relevance logic, also called relevant logic is a family of logics based on the notion
of relevance in conditionals. Historically, relevance logic was developed to avoid the
paradox of implications; see Anderson and Belnap [11, 12].

Anderson and Belnap formalized a relevant logic R to realize a major motivation,
in which they do not admit A → (B → A). Later, various relevance logics have
been proposed. Note that not all relevance logics are paraconsistent but some are
considered important as paraconsistent logics.

Routley and Meyer proposed a basic relevant logic B, which is a minimal system
having the so-called Routley-Meyer semantics. Thus, B is an important system and
we review it below; see Routley et al. [51].

The language of B contains logical symbols: ∼,&,∨ and → (relevant implica-
tion). A Hilbert system for B is as follows:

Relevant Logic B
Axioms
(BA1) A → A
(BA2) (A&B) → A
(BA3) (A&B) → B
(BA4) ((A → B)&(A → C)) → (A → (B&C))

(BA5) A → (A ∨ B)

(BA6) B → (A ∨ B)

(BA7) (A → C)&(B → C)) → ((A ∨ B) → C)

(BA8) (A&(B ∨ C)) → (A&B) ∨ C)

(BA9) ∼∼ A → A
Rules of Inference
(BR1) � A,� A → B ⇒ � B
(BR2) � A,� B ⇒ � A&B
(BR3) � A → B,� C → D ⇒ � (B → C) → (A → D)

(BR4) � A → ∼ B ⇒ � B → ∼ A

A Hilbert system for Anderson and Belnap’s R is as follows:

Relevance Logic R
Axioms
(RA1) A → A
(RA2) (A → B) → ((C → A) → C → B))

(RA3) (A → (A → B) → (A → B)

(RA4) (A → (B → C)) → (B → (A → C)

(RA5) (A&B) → A
(RA6) (A&B) → B
(RA7) ((A → B)&(A → C)) → (A → (B&C))

(RA8) A → (A ∨ B)

(RA9) B → (A ∨ B)

(RA10) ((A → C)&(B ∨ C)) → ((A ∨ B) → C))

(RA11) (A&(B ∨ C)) → ((A&B) ∨ C)

(RA12) (A →∼ A) →∼ A

2 Why Paraconsistent Logics? 13

(RA13) (A →∼ B)) → (B →∼ A)

(RA14) ∼∼ A → A
Rules of Inference
(RR1) � A,� A → B ⇒ � B
(RR2) � A,� B ⇒ � A&B

Routley et al. considered some axioms of R are too strong and formalized rules
instead of axioms. Notice that B is a paraconsistent but R is not.

Next, we give a Routley-Meyer semantics for B. A model structure is a tuple
M = 〈K,N,R, ∗, v〉, where K is a non-empty set of worlds, N ⊆ K , R ⊆ K3 is a
ternary relation on K , ∗ is a unary operation on K , and v is a valuation function from
a set of worlds and a set of propositional variables P to {0, 1}.

There are some restrictions on. v satisfies the condition that a ≤ b and v(a, p)
imply v(b, p) = 1 for any a, b ∈ K and any p ∈ P . a ≤ b is a pre-order relation
defined by ∃x(x ∈ N and Rxab). The operation ∗ satisfies the condition a∗∗ = a.

For any propositional variable p, the truth condition |= is defined: a |= p iff
v(a, p) = 1. Here, a |= p reads “p is true at a”. |= can be extended for any formulas
in the following way:

a |= ∼ A ⇔ a∗ �|= A
a |= A&B ⇔ a |= A and a |= B
a |= A ∨ B ⇔ a |= A or a |= B
a |= A → B ⇔ ∀bc ∈ K(Rabc and b |= A ⇒ c |= B)

A formula A is true at a in M iff a |= A. A is valid, written |= A, iff A is true on
all members of N in all model structures.

Routley et al. provides the completeness theorem for B with respect to the above
semantics using canonical models; see [51].

A model structure for R needs the following conditions.

R0aa
Rabc ⇒ Rbac
R2(ab)cd ⇒ R2a(bc)d Raaa
a∗∗ = a
Rabc ⇒ Rac∗b∗
Rabc ⇒ a′ ≤ a ⇒ Ra′bc

where R2abcd is shorthand for ∃x(Raxd and Rxcd). The completeness theorem
for the Routley-Meyer semantics can be proved for R; see [11, 12].

The reader is advised to consult Anderson and Belnap [11], Anderson et al. [12],
and Routley et al. [51] for details. A more concise survey on the subject may be
found in Dunn [32].

Belnap proposed a famous four-valued logic in Belnap [21, 22], which is closely
related to relevant logic and paraconsistent logic. Belnap’s four-valued logic aims to
formalize the internal states of a computer.

There are four states, i.e. (T), (F), (None) and (Both), to recognize an input in
a computer. Based on these states, a computer can compute the following suitable
outputs.

14 S. Akama and N.C.A. da Costa

(T) a proposition is true.
(F) a proposition is false.
(N) a proposition is neither true nor false.
(B) a proposition is both true and false.

Here, (N) and (B) abbreviate (None) and (Both), respectively. From the above,
(N) corresponds to incompleteness and (B) inconsistency. Four-valued logic can be
thus seen as a natural extension of three-valued logic. In fact, Belnap’s four-valued
logic can model both incomplete information (N) and inconsistent information (B).

Belnap proposed two four-valued logics A4 and L4. The former can cope only
with atomic formulas, whereas the latter can handle compound formulas.A4 is based
on the approximation lattice, which is shown in Fig. 2.1.

Here, B is the least upper bound and N is the greatest lower bound with respect
to the ordering ≤. Observe that in the lattice FOUR in Fig. 2.1, we used t, f ,⊥,�
instead of T ,F,N,B, respectively.

The logic L4 has logical symbols; ∼,∧,∨. Its truth-values is 4 = {T ,F,N,B}
with a different ordering. The lattice L4 is shown in Fig. 2.2.

One of the features ofL4 is the monotonicity of logical symbols. Let f be a logical
operation. It is said that f is monotonic iff a ⊆ b ⇒ f (a) ⊆ f (b). To guarantee the
monotonicity of conjunction and disjunction, they must satisfy the following:

a ∧ b = a ⇔ a ∨ b = b
a ∧ b = b ⇔ a ∨ b = a

Logical symbols in L4 obey th truth-value tables in Table2.1.

Fig. 2.1 Approximation
lattice L4

Fig. 2.2 Logical lattice L4

2 Why Paraconsistent Logics? 15

Table 2.1 Truth-value tables of L4

Belnap gave a semantics for the language with the above logical symbols. A setup
is a mapping a set of atomic formulas Atom to the set 4. Then, formulas of L4 are
defined as follows:

s(A ∧ B) = s(A) ∧ s(B)

s(A ∨ B) = s(A) ∨ s(B)

s(∼ A) = ∼ s(A)

Further, Belnap defined an entailment relation → as follows:

A → B ⇔ s(A) ≤ s(B)

for all setups s. Note that → is not a logical connective for implication but an
entailment relation. The entailment relation → can be axiomatized as follows:

(A1 ∧ ... ∧ Am) → (B1 ∨ ... ∨ Bn) (Ai shares some Bj)
(A ∨ B) → C ↔ (A → C) and (B → C)

A → B ⇔ ∼ B →∼ A
A ∨ B ↔ B ∨ A, A ∧ B ↔ B ∧ A
A ∨ (B ∨ C) ↔ (A ∨ B) ∨ C
A ∧ (B ∧ C) ↔ (A ∧ B) ∧ C
A ∧ (B ∨ C) ↔ (A ∧ B) ∨ (A ∧ C)

A ∨ (B ∧ C) ↔ (A ∨ B) ∧ (A ∨ C)

(B ∨ C) ∧ A ↔ (B ∧ A) ∨ (C ∧ A)

(B ∧ C) ∨ A ↔ (B ∨ A) ∧ (C ∨ A)

∼∼ A ↔ A
∼ (A ∧ B) ↔ ∼ A∨ ∼ B, ∼ (A ∨ B) ↔ ∼ A∧ ∼ B
A → B,B → C ⇔ A → C
A ↔ B,B ↔ C ⇔ A ↔ C
A → B ⇔ A ↔ (A ∧ B) ⇔ (A ∨ B) ↔ B

Note here that (A∧ ∼ A) → B and A → (B∨ ∼ B) cannot be derived in this
axiomatization. It can be shown that the logic given above is shown to be equiv-
alent to the system of tautological entailment; see [11, 12].

An alternative semantics for tautological entailment based on the notion of fact
was worked out by van Fraassen [53]. Belnap’s A4 is used as one of the lattice of
truth-values as FOUR. In this regard, Belnap’s four-valued logic is considered as the
important background on annotated logics.

16 S. Akama and N.C.A. da Costa

2.4 Other Paraconsistent Logics

Although the above three logics are famous approaches to paraconsistent logics,
there is a rich literature on paraconsistent logics. Arruda [15] reviewed a survey on
paraconsistent logics, and Priest et al. [49] contains interesting papers on paracon-
sistent logics in the 1980s. For a recent survey, we refer Priest [47]. We can also
find a Handbook surveying various subjects related to paraconsistency by Beziau
et al. [23].

In 1997, The First World Congress on Paraconsistency (WCP’1997) was held at
the University of Ghent, Belgium; see Batens et al. [20]. The SecondWorld Congress
on Paraconsistency (WCP’200) was held at Juquehy-Sao Paulo, Brazil; see Carnielli
et al. [26].

In the 1990s paraconsistent logics became one of the major topics in logic in
connection with other areas, in particular, computer science. Below we review some
of those systems of paraconsistent logics.

The modern history of paraconsistent logic started with Vasil’ev’s imaginary
logic. In 1910, Vasil’ev proposed an extension of Aristotle’s syllogistic allowing the
statement of the form S is both P and not-P; see Vasil’ev [54].

Thus, imaginary logic can be viewed as a paraconsistent logic. Unfortunately,
little work has been done on focusing on its formalization from the viewpoint of
modern logic. A survey of imaginary logic can be found in Arruda [15].

In 1954, Asenjo developed a calculus of antinomies in his dissertation; see
Asenjo [16]. Asenjo’s work was published before da Costa’s work, but it seems that
Asenjo’s approach has been neglected. Asenjo’s idea is to interpret the truth-value
of antinomy as both true and false using Kleene’s strong three-valued logic.

His proposed calculus is non-trivially inconsistent propositional logic, whose
axiomatization can be obtained fromKleene’s [39] axiomatization of classical propo-
sitional logic by deleting the axiom (A → B) → ((A → ¬B) → ¬A).

In constructivism, an idea of constructing paraconsistent logics may be found. In
1949, Nelson [44] proposed a constructive logic with strong negation as an alter-
native to intuitionistic logic, in which strong negation (or constructible negation) is
introduced to improve some weaknesses of intuitionistic negation.

Constructive logic N extends positive intuitionistic logic Int+ with the following
axioms for strong negation ∼:

(N1) (A∧ ∼ A) → B
(N2) ∼∼ A ↔ A
(N3) ∼ (A → B) ↔ (A∧ ∼ B)

(N4) ∼ (A ∧ B) ↔ (∼ A∨ ∼ B)

(N5) ∼ (A ∨ B) ↔ (∼ A∧ ∼ B)

In N , intuitionistic negation¬ can be defined as¬A ↔ A → (B∧ ∼ B). If we delete
(N1) from N , we can obtain a paraconsistent constructive logic N− of Almukdad
and Nelson [10]. Akama [3–8] extensively studied Nelson’s constructive logics with
strong negation; also see Wansing [55].

2 Why Paraconsistent Logics? 17

Table 2.2 Truth-value tables of Kleene’s strong three-valued logic

In 1959, Nelson [45] developed a constructive logic S which lacks contraction
(A → (A → B)) → (A → B) and discussed its aspects as a paraconsistent logic.
Akama [7] gave a detailed presentation of Nelson’s paraconsistent constructive log-
ics. Akama et al. [9] proposed a constructive discursive logic based on Nelson’s
constructive logic.

In 1979, Priest [46] proposed a logic of paradox, denoted LP, to deal with the
semantic paradox. The logic is of special importance to the area of paraconsistent
logics. LP can be semantically defined by Kleene’s strong three-valued logic whose
truth-value tables are as Table2.2.

Here, T and F denote truth and falsity, and the third truth-value I reads “unde-
fined”; see Kleene [39].

Łukasiewicz’s three-valued logic is interpreted by the above truth-value tables
of Kleene’s three-valued logic except for implication. Let →L be the implication
in Łukasiewicz’s three-valued logic. Then, the truth-value tables are described as
Table2.3.

Here, the third truth-value reads “possible”; see Łukasiewicz [43]. Kleene’s three-
valued logic was used as a basis for reasoning about incomplete information in
computer science.

Priest re-interpreted the truth-value tables of Kleene’s strong three-valued logic,
namely read the third-truth value as both true and false (B) rather than neither true nor
false (I), and assumed that (T) and (B) are designated values. The idea has already
been considered in Asenjo [16] and Belnap [21, 22].

Consequently, ECQ: A,∼ A |= B is invalid. Thus, LP can be seen as a paraconsis-
tent logic. Unfortunately, (material) implication in LP does not satisfymodus ponens.
It is, however, possible to introduce relevant implications as real implication into LP.

18 S. Akama and N.C.A. da Costa

Table 2.3 Truth-value tables of Łukasiewicz’s three-valued logic

Priest developed a semantics for LP bymeans of a truth-value assignment relation
rather than a truth-value assignment function. Let P be the set of propositional
variables. Then, an evaluation η is a subset of P × {0, 1}. A proposition may only
relate to 1 (true), it may only relate to 0 (false), it may relate to both 1 and 0 or it may
relate to neither 1 nor 0. The evaluation is extended to a relation for all formulas as
follows:

¬Aη1 iff Aη0
¬Aη0 iff Aη1
A ∧ Bη1 iff Aη1 and Bη1
A ∧ Bη0 iff Aη0 or Bη0
A ∨ Bη1 iff Aη1 or Bη1
A ∨ Bη0 iff Aη0 and Bη0

If we define validity in terms of truth preservation under all relational evaluations,
then we obtain first-degree entailment which is a fragment of relevance logics.

Using LP, Priest advanced his research program to tackle various philosophical
and logical issues; see Priest [47, 48] for details. For instance, in LP, the liar sentence
can be interpreted as both true and false. It is also observed that Priest promoted the
philosophical view called dialetheismwhich claims that there are true contradictions.
In fact, dialetheism has been extensively discussed by many people.

Since the beginning of the 1990s, Batens developed the so-called adaptative logics
in Batens [18, 19]. These logics are considered as improvements of dynamic dialecti-
cal logics investigated in Batens [17]. Inconsistency-adaptive logics as developed by
Batens [18] can serve as foundations for paraconsistent and non-monotonic logics.

Adaptive logics formalized classical logic as “dynamic logic”. Here, “dynamic
logic” is not the family of logics with the same name studied in computer science. A

2 Why Paraconsistent Logics? 19

logic is adaptive iff it adapts itself to the specific premises to which it is applied. In
this sense, adaptive logics can model the dynamics of human reasoning. There are
two sorts of dynamics, i.e., external dynamics and internal dynamics.

The external dynamics is stated as follows. If newpremises become available, then
consequences derived from the earlier premise set may bewithdrawn. In other words,
the external dynamics results from the non-monotonic character of the consequence
relations.

Let � be a consequence relation, Γ,Δ be sets of formulas, and A be a formula.
Then, the external dynamics is formally presented as: Γ � A but Γ ∪ Δ � A for
some Γ,Δ and A. In fact, the external dynamics is closely related to the notion of
non-monotonic reasoning in AI.

The internal dynamics is very different from the external one. Even if the premise
set is constant, certain formulas are considered as derived at some stage of the reason-
ing process, but are considered as not derived at a later stage. For any consequence
relation, insight in the premises is gained by deriving consequences from them.

In the absence of a positive test, this results in the internal dynamics. Namely, in
the internal dynamics, reasoning has to adapt itself by withdrawing an application
of the previously used inference rule, if we infer a contradiction at a later stage.
Adaptive logics are logics based on the internal dynamics.

An Adaptive Logic AL can be characterized as a triple:

(i) A lower limit logic (LLL)
(ii) A set of abnormalities
(iii) An adaptive strategy

The lower limit logic LLL is any monotonic logic, e.g., classical logic, which is the
stable part of the adaptive logic. Thus, LLL is not subject to adaptation. The set of
abnormalities Ω comprises the formulas that are presupposed to be false, unless and
until proven otherwise.

Inmany adaptive logics,Ω is the set of formulas of the formA∧ ∼ A. An adaptive
strategy specifies a strategy of the applications of inference rules based on the set of
abnormalities.

If the lower limit logic LLL is extended with the requirement that no abnormality
is logically possible, one obtains a monotonic logic, which is called the upper limit
logic ULL. Semantically, an adequate semantics for the upper limit logic can be
obtained by selecting that lower limit logic models that verify no abnormality.

The name “abnormality” refers to the upper limit logic. ULL requires premise
sets to be normal, and ‘explodes’ abnormal premise sets (assigns them the trivial
consequence set).

If the lower limit logic is classical logicCL and the set of abnormalities comprises
formulas of the form ∃A ∧ ∃ ∼ A, then the upper limit logic obtained by adding to
CL the axioms ∃A → ∀A. If, as is the case for many inconsistency-adaptive logics,
the lower limit logic is a paraconsistent logic PL which contains CL, and the set of
abnormalities comprises the formulas of the form ∃(A∧ ∼ A), then the upper limit
logic is CL. The adaptive logics interpret the set of premises ‘as much as possible’ in

20 S. Akama and N.C.A. da Costa

agreement with the upper limit logic; it avoids abnormalities ‘in as far as the premises
permit’.

Adaptive logics provide a newway of thinking of the formalization of paraconsis-
tent logics in view of the dynamics of reasoning. Although inconsistency-adaptive
logic is paraconsistent logic, applications of adaptive logics are not limited to para-
consistency. From a formal point of view, we can count adaptive logics as promising
paraconsistent logics.

However, for applications, wemay face several obstacles in automating reasoning
in adaptive logics in that proofs in adaptive logics are dynamic with a certain adaptive
strategy. Thus, the implementation is not easy, and we have to choose an appropriate
adaptive strategy depending on applications.

Carnelli proposed the Logics of Formal Inconsistency (LFI), which are logical
systems that treat consistency and inconsistency asmathematical objects; seeCarnelli
et al. [27]. One of the distinguishing features of these logics is that they can internalize
the notions of consistency and inconsistency at the object-level.

Andmany paraconsistent logics including daCosta’sC-systems can be interpreted
as the subclass of LFIs. Therefore, we can regard LFIs as a general framework for
paraconsistent logics.

A Logic of Formal Inconsistency, which extends classical logic C with the con-
sistency operator ◦, is defined as any explosive paraconsistent logic, namely iff the
classical consequence relation � satisfies the following two conditions:

(a) ∃Γ ∃A∃B(Γ,A,¬A � B)

(b) ∀Γ ∀A∀B)(Γ, ◦A,A,¬A � B).

Here, Γ denotes a set of formulas and A,B are formulas. With the help of ◦, we can
express both consistency and inconsistency in the object-language. Therefore, LFIs
are general enough to classify many paraconsistent logics.

For example, da Costa’s C1 is shown to be an LFI. For every formula A, let ◦A
be an abbreviation of the formula ¬(A ∧ ¬A). Then, the logic C1 is an LFI such that
◦(p) = {◦p} = {¬¬(p ∧ ¬p} whose axiomatization as an LFI contains the positive
fragment of classical logic with the axiom ¬¬A → A, and some axioms for ◦.
(bc1) ◦A → (A → (¬A → B))

(ca1) (◦A ∧ ◦B) → ◦(A ∧ B)

(ca2) (◦A ∧ ◦B) → ◦(A ∨ B)

(ca3) (◦A ∧ ◦B) → ◦(A → B)

In addition, we can define classical negation ∼ by∼ A =def ¬A ∧ ◦A. If needed, the
inconsistency operator • is introduced by definition: •A =def ¬ ◦ A.

Carnielli et al. [27] showed classifications of existing logical systems. For exam-
ple, classical logic is not an LFI, and Jáskowski’sD2 is an LFI. They also introduced
a basic system of LFI, called LFI1 with a semantics and axiomatization.

We can thus see that the Logics of Formal Inconsistency are very interesting
from a logical point of view in that they can serve as a theoretical framework for
existing paraconsistent logics. In addition, there are tableau systems for LFIs; see

2 Why Paraconsistent Logics? 21

Fig. 2.3 The bilattice FOUR

Carnielli andMarcos [25], and they can be properly applied to various areas including
computer science and AI.

The abovementioned logics have been worked as a paraconsistent logic. But there
are other logics which share the features of paraconsistent logics. The two notable
examples are possibilistic logic and logics based on bilattices. In fact, these logics
can properly deal both with incompleteness and inconsistency of information.

A bilattice was originally introduced by Ginsberg [35, 36] for the foundations of
reasoning in AI, which has two kinds of orderings, i.e., truth ordering and knowledge
ordering.

Later, it was extensively studied by Fitting in the context of logic programming
in [33] and of theory of truth in [34]. In fact, bilattice-based logics can handle both
incomplete and inconsistent information.

A pre-bilattice is a structure B = 〈B,≤t,≤k〉, where B denotes a non-empty set
and ≤t and ≤k are partial orderings on B. The ordering ≤k is thought of as ranking
“degree of information (or knowledge)”. The bottom in ≤k is denoted by ⊥ and the
top by �. If x <k y, y gives us at least as much information as x (and possibly more).

The ordering ≤t is an ordering on the “degree of truth”. The bottom in ≤t is
denoted by false and the top by true. A bilattice can be obtained by adding certain
assumptions for connections for two orderings.

One of themostwell-knownbilattices is the bilatticeFOUR as depicted as Fig. 2.3.
The billatice FOUR can be interpreted a combination of Belnap’s latticesA4 and L4
as is clear from Fig. 2.3.

The bilattice FOUR can be seen as Belnap’s lattice FOUR with two kinds of
orderings. Thus, we can think of the left-right direction as characterizing the ordering
≤t: a move to the right is an increase in truth.

The meet operation ∧ for ≤t is then characterized by: x ∧ y is rightmost thing
that is of left both x and y. The join operation ∨ is dual to this. In a similar way, the
up-down direction characterizes ≤k: a move up is an increase in information. x ⊗ y
is the uppermost thing below both x and y, and ⊕ is its dual.

Fitting [33] gave a semantics for logic programming using bilattices. Kifer and
Subrahmanian [41] interpreted Fitting’s semantics within generalized annotated log-
icsGAL. Fitting [34] tried to generalize Kripke’s [40] theory of truth, which is based

22 S. Akama and N.C.A. da Costa

on Kleene’s strong three-valued logic, in a four-valued setting based on the bilattice
FOUR.

A billatice has a negation operation ¬ if there is a mapping ¬ that reverse ≤t ,
leaves unchanged ≤k and ¬¬x = x. Likewise a bilattice has a conflation if there is
a mapping—that reverse ≤k , leaves unchanged ≤t . and − − x = x. If a bilattice has
both operations, they commute if −¬x = ¬ − x for all x.

In the billatice FOUR, there is a negation operator under which ¬t = f ,¬f = t,
and ⊥ and � are left unchanged. There is also a conflation under which −⊥ =
�,−� = ⊥ and t and f are left unchanged. And negation and conflation commute.
In any bilattice, if a negation or conflation exists then the extreme elements ⊥,�, f
and t will behave as in FOUR.

Bilattice logics are theoretically elegant in that we can obtain several algebraic
constructions, and are also suitable for reasoning about incomplete and inconsis-
tent information. Arieli and Avron [13, 14] studied reasoning with bilattices. Thus,
bilattice logics have many applications in AI as well as philosophy.

Annotated logic is a logic for paraconsistent logic programming; see Subrah-
manian [24, 52]. It is also regarded as one of the attractive paraconsistent logics; see
da Costa et al [30, 31]. Note that annotated logic has many applications for several
areas including engineering. And Abe studied annotated logic for many years.

Billatice logics described above are seen as a rival to annotated logics.We can also
unify annotated logics and billatice logics; see Rico [50]. We will review annotated
logic in details in Chap.5; see Abe, Akama and Nakamatsu [1, 2].

Finally, we make an important remark. The propositional calculus is the basis of
the usual classical and non-classical logics; however, a true and strong logical system
has to contain quantification and a theory of identity at least, and should in principle
incorporate a higher-order logic (a form of higher-order logic, some set theory or
some other more or less equivalent logical tool).

The relevance of people like Frege, Russell and Peirce, is that they created quan-
tification theory and other aspects of logic beyond the propositional level. Da Costa
was the first logician to present a system of paraconsistent logic in this extended
sense.

Acknowledgments The authors would like to thank the referee for constructive remarks.

References

1. Abe, J.M.: On the Foundations of Annotated Logics (in Portuguese), Ph.D. Thesis, University
of São Paulo, Brazil (1992)

2. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg
(2016)

3. Akama, S.: Resolution in constructivism. Logique et Analyse 120, 385–399 (1987)
4. Akama, S.: Constructive predicate logic with strong negation and model theory. Notre Dame

J. Formal Logic 29, 18–27 (1988)
5. Akama, S.: On the proof method for constructive falsity. Zeitschrift für mathematische Logik

und Grundlagen der Mathematik 34, 385–392 (1988)

http://dx.doi.org/10.1007/978-3-319-40418-9_5

2 Why Paraconsistent Logics? 23

6. Akama, S.: Subformula semantics for strong negation systems. J. Philos. Logic 19, 217–226
(1990)

7. Akama, S.: Constructive Falsity: Foundations and Their Applications to Computer Science,
Ph.D. Thesis, Keio University, Yokohama, Japan (1990)

8. Akama, S.: Nelson’s paraconsistent logics. Logic Logical Philos. 7, 101–115 (1999)
9. Akama, S., Abe, J.M., Nakamatsu, K.: Constructive discursive logic with strong negation.

Logique et Analyse 215, 395–408 (2011)
10. Almukdad, A., Nelson, D.: Constructible falsity and inexact predicates. J. Symbolic Logic 49,

231–233 (1984)
11. Anderson, A., Belnap, N.: Entailment: The Logic of Relevance and Necessity I. Princeton

University Press, Princeton (1976)
12. Anderson, A., Belnap, N., Dunn, J.: Entailment: The Logic of Relevance and Necessity II.

Princeton University Press, Princeton (1992)
13. Arieli, O., Avron, A.: Reasoning with logical bilattices. J. Logic Lang. Inform. 5, 25–63 (1996)
14. Arieli, O., Avron, A.: The value of fur values. Artif. Intell. 102, 97–141 (1998)
15. Arruda, A.I.: A survey of paraconsistent logic. In: Arruda, A., da Costa, N., Chuaqui, R. (eds.)

Mathematical Logic in Latin America, pp. 1–41. North-Holland, Amsterdam (1980)
16. Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Formal Logic 7, 103–105 (1966)
17. Batens, D.: Dynamic dialectical logics. In: Priest, G., Routley, R. Norman, J. (eds.) Paracon-

sistent Logic: Essay on the Inconsistent, pp. 187–217. Philosophia Verlag, München (1989)
18. Batens, D.: Inconsistency-adaptive logics and the foundation of non-monotonic logics. Logique

et Analyse 145, 57–94 (1994)
19. Batens, D.: A general characterization of adaptive logics. Logique et Analyse 173–175, 45–68

(2001)
20. Batens, D., Mortensen, C., Priest, G., Van Bendegem, J.-P. (eds.): Frontiers of Paraconsistent

Logic. Research Studies Press, Baldock (2000)
21. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of

Multi-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977)
22. Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of

Philosophy, pp. 30–55. Oriel Press (1977)
23. Beziau, J.-Y., Carnielli, W., Gabbay, D. (eds.): Handbook of Paraconsistency. College Publi-

cation, London (2007)
24. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theoret. Comput. Sci. 68,

135–154 (1989)
25. Carnielli, W.A., Marcos, J.: Tableau systems for logics of formal inconsistency. In: Abrabnia,

H.R. (ed.), Proceedings of the 2001 International Conference on Artificial Intelligence, vol. II,
pp. 848–852. CSREA Press (2001)

26. Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M. (eds.): Paraconsistency: The Logical Way
to the Inconsistent. Marcel Dekker, New York (2002)

27. Carnielli, W.A., Coniglio, M.E, Marcos, J.: Logics of formal inconsistency. In: Gabbay, D.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, 2nd edn, pp. 1–93. Springer,
Heidelberg (2007)

28. da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Formal Logic
15, 497–510 (1974)

29. da Costa, N.C.A., Alves, E.H.: A semantical analysis of the calculi Cn. Notre Dame J. Formal
Logic 18, 621–630 (1977)

30. da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)

31. da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic PT . Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)

32. Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Gunthner, F. (eds.) Handbook of
Philosophical Logic, vol. III, pp. 117–224. Reidel, Dordrecht (1986)

33. Fitting, M.: Bilattices and the semantics of logic programming. J. Logic Program. 11, 91–116
(1991)

24 S. Akama and N.C.A. da Costa

34. Fitting, M.: A theory of truth that prefers falsehood. J. Philos. Logic 26, 477–500 (1997)
35. Ginsberg, M.: Multivalued logics. In: Proceedings of AAAI’86, pp. 243–247. Morgan Kauf-

man, Los Altos (1986)
36. Ginsberg, M.: Multivalued logics: a uniform approach to reasoning in AI. Comput. Intell. 4,

256–316 (1988)
37. Jaśkowski, S.: Propositional calculus for contradictory deductive systems (in Polish). Studia

Societatis Scientiarun Torunesis, Sectio A 1, 55–77 (1948)
38. Jaśkowski, S.: On the discursive conjunction in the propositional calculus for inconsistent

deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 8, 171–172
(1949)

39. Kleene, S.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)
40. Kripke, S.: Outline of a theory of truth. J. Philos. 72, 690–716 (1975)
41. Kifer, M., Subrahmanian, V.S.: On the expressive power of annotated logic programs. In:

Proceedings of the 1989 North American Conference on Logic Programming, pp. 1069–1089
(1989)

42. Kotas, J.: The axiomatization of S. Jaskowski’s discursive logic. Studia Logica 33, 195–200
(1974)

43. Łukasiewicz, J.: On 3-valued logic. In: McCall, S. (ed.) Polish Logic, pp. 16–18, Oxford
University Press, Oxford, 1967

44. Nelson, D.: Constructible falsity. J. Symbolic Logic 14, 16–26 (1949)
45. Nelson, D.: Negation and separation of concepts in constructive systems. In: Heyting, A. (ed.)

Constructivity in Mathematics, pp. 208–225. North-Holland, Amsterdam (1959)
46. Priest, G.: Logic of paradox. J. Philos. Logic 8, 219–241 (1979)
47. Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical

Logic, 2nd edn, pp. 287–393. Kluwer, Dordrecht (2002)
48. Priest, G.: In Contradiction: A Study of the Transconsistent, 2nd edn. Oxford University Press,

Oxford (2006)
49. Priest, G., Routley, R., Norman, J. (eds.): Paraconsistent Logic: Essays on the Inconsistent.

Philosophia Verlag, München (1989)
50. Rico, G.O.: The annotated logics OPBL. In: Carnielli, W., Coniglio, M., D’Ottaviano, I. (eds.)

Paraconsistency: The Logical Way to the Inconsistent, pp. 411–433. Marcel Dekker, NewYork
(2002)

51. Routley, R., Plumwood, V., Meyer, R.K., Brady, R: Relevant Logics and Their Rivals, vol. 1.
Ridgeview, Atascadero (1982)

52. Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceeding of the 4th
IEEE Symposium on Logic Programming, pp. 173–182 (1987)

53. van Fraassen, B.C.: Facts and tautological entailment. J. Philos. 66, 477–487 (1069)
54. Vasil’ev, N.A.: Imaginary Logic (in Russian). Nauka, Moscow (1989)
55. Wansing, H.: The Logic of Information Structures. Springer, Berlin (1993)

Chapter 3
An Application of Paraconsistent Logic
to Physics: Complementarity

Newton C.A. da Costa and Décio Krause

The apparently incompatible sorts of information about the
behavior of the object under examination which we get by
different experimental arrangements can clearly not be brought
into connection with each other in the usual way, but may, as
equally essential for an exhaustive account of all experience, be
regarded as ‘complementary’ to each other.

Niels Bohr (1937), p. 291

Abstract In this paper we review some of the main ideas of two previous papers
of ours which deal with an application of a kind of paraconsistent logic to quantum
physics [14, 15]. We think that this revision is justified to present once more the rich-
ness of paraconsistent logics and suggests awayof dealingwith oneofmost intriguing
concepts of quantum theory. We propose and interpretation of complementarity in
terms of what we call C-theories (theories involving the idea of complementarity, in a
sense explained in the text), whose underlying logic is a kind of paraconsistent logic
termed paraclassical logic. Roughly speaking, C-theories which may have ‘physi-
cally’ incompatible theorems (and, in particular, contradictory theorems), but which
are not trivial.

Keywords Complementarity · Paraconsistency · Paraclassical logic
3.1 Introduction

The concept of ‘complementarity’ was introduced in quantum mechanics by Niels
Bohr in his famous ‘Como Lecture’, in 1927 [2]. This concept is one of the
core concepts of the Copenhagen interpretation of quantum mechanics [1, 22].

N.C.A. da Costa (B) · D. Krause
Department of Philosophy, Federal University of Santa Catarina, Florianópolis,
SC, Brazil
e-mail: ncacosta@terra.com.br

D. Krause
e-mail: krause.decio@ufsc.br

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_3

25

26 N.C.A. da Costa and D. Krause

Notwithstanding their importance, Bohr’s ideas on complementarity are controver-
sial, and there is no general agreement on a precise meaning of the Principle of
Complementarity. As Bohr has advanced, “I think that it would be reasonable to say
that no man who is called a philosopher really understands what is meant by com-
plementary descriptions” (quoted from [11, p. 32]). This suggests the difficulties
involved in any attempt elucidate the meaning of this Principle. Anyhow, this remark
invites us to look also at the logico-mathematical grounds, mainly in connection with
the paraconsistent program [17].

In this paper, we continue the investigation of a kind of theory which we termed
C-theories [14, 15]. This is a way to find an application of paraconsistent logics to
physics, although the concept here presented can be applied to other fields as well.
In the mentioned papers, we have enlighten the main motivations taken from Bohr
himself so as from some people close related to him who tried to explain the notion
of complementarity in some way, including logic.

Let us begin with the concept of a C-theory, where the main motivation is revised.

3.2 C-theories

Let us quote Max Jammer in order to achieve a way to understand the notion of
complementarity (in our two papers, we have quotedBohr himself in several passages
we shall not repeat here):

Although it is not easy, as we see, to define Bohr’s notion of complementarity, the notion
of complementarity interpretation seems to raise fewer definitory difficulties. The following
definition of this notion suggests itself. A given theory T admits a complementarity inter-
pretation if the following conditions are satisfied: (1) T contains (at least) two descriptions
D1 and D2 of its substance-matter; (2) D1 and D2 refer to the same universe of discourse
U (in Bohr’s case, microphysics); (3) neither D1 nor D2, if taken alone, accounts exhaus-
tively for all phenomena of U ; (4) D1 and D2 are mutually exclusive in the sense that their
combination into a single description would lead to logical contradictions.

That these conditions characterize a complementarity interpretation as understood by the
Copenhagen school can easily be documented. According to Léon Rosenfeld, (. . .) one
of the principal spokesmen of this school, complementarity is the answer to the following
question:What are we to do when we are confronted with such situation, in which we have to
use two concepts that are mutually exclusive, and yet both of them necessary for a complete
description of the phenomena? “Complementarity denotes the logical relation, of quite a
new type, between concepts which are mutually exclusive, and which therefore cannot be
considered at the same time –that would lead to logical mistakes—but which nevertheless
must both be used in order to give a complete description of the situation.” Or to quote Bohr
himself concerning condition (4): “In quantum physics evidence about atomic objects by
different experimental arrangements (. . .) appears contradictory when combination into a
single picture is attempted.” (. . .) In fact, Bohr’sComo lecturewith its emphasis on themutual
exclusive but simultaneous necessity of the causal (D1) and the space-time description (D2),
that is, Bohr’s first pronouncement of his complementarity interpretation, forms an example
which fully conforms with the preceding definition. Borh’s discovery of complementarity, it
is often said, constitutes his greatest contribution to the philosophy of modern science. [22,
pp. 104–5]

3 An Application of Paraconsistent Logic to Physics: Complementarity 27

We interpret Jammer’s quotation as follows. Firstly, we shall take for granted that
both D1 and D2 are sentences formulated in the language of a theory T and that they
refer to the same universe of discourse, so that D1 and D2 can be formulated in its
language. So, items (1) and (2) will be considered only implicitly. Item (3) will be
understood as entailing that both D1 and D2 are, from the point of view of T , neces-
sary for the full comprehension of the relevant aspects of the objects of the domain;
so, we shall take both D1 and D2 as ‘true’ sentences (in an adequate ‘model’ of T).
Concerning item (4), we recall that Jammer says that ‘mutually exclusive’ means that
the “combination of D1 and D2 into a single description would lead to logical con-
tradictions”, and this is reinforced by Rosenfeld’s words that the concepts “cannot
be considered at the same time”, since this would entail a “logical mistake”. Then,
we will informally say that mutually exclusive, or complementary, are incompatible
sentences or propositions whose conjunction lead to a contradiction (in a theory T
based on classical logic).

So, we say that a theory T is a C-theory, if T encompasses non equivalent theses
α and β (which may stand for Jammer’s D1 and D2 respectively) such that their
conjunction yields to a contradiction in T , according to classical logic. As we shall
see, it is not necessary that α and β be the negation of one another. In fact, the most
interesting cases are precisely not this one, but those where α and β entail each of
them propositions that are contradictory. Below we present a rigorous formulation
of this idea.

The problem with the above characterization of complementary sentences is that
if the underlying logic of T is classical logic or any other ‘standard’ logical system
like intuitionistic logic, then T becomes contradictory, or inconsistent. Apparently,
it is precisely this what Rosenfeld claimed in the above quotation. Obviously, if we
intend tomaintain the idea of complementary propositions in the sense just described,
so we change the underlying logic of T by modifying the notion of deduction. Our
motivation is a previous paper of one of us [16].

3.3 The Logic of C-theories

We will describe here just the propositional logic of C-theories, leaving the problem
of extending it to quantification to be further investigated.

Let C be an axiomatized system of the classical propositional calculus [24]. The
concept of deduction of C is the standard one; we use the symbol � to represent
deductions in C. The formulas of C are denoted by Greek lowercase letters, while
Greek uppercase letters stand for sets of formulas. The symbols ¬, →, ∧, ∨ and
↔ have their usual meanings, and standard conventions in the writing of formulas
will be also assumed without further comments. All the syntactical concepts and
details are the standard ones [24]. In particular, we are interested in the following
definitions:

28 N.C.A. da Costa and D. Krause

Definition 3.1 A theory T (a set of formulas closed under deduction) is inconsistent
if it contains a theorem α whose negation ¬α is also a theorem of T ; otherwise, T
is consistent.

Definition 3.2 If F denotes the set of all formulas of the language of C, then T is
trivial if the set of its theorems coincides with F ; otherwise, T is nontrivial.

All syntactical concepts of P are similar to the corresponding concepts of C. The
notion of paraclassical deduction is introduced as follows:

Definition 3.3 LetΓ be a set of formulas ofP and letα be a formula (of the language
of P). Then we say that α is a (syntactical) P-consequence of Γ , and write

Γ �P α

if and only if

(P1) α ∈ Γ , or
(P2) There exists a consistent (according to classical logic) subsetΔ ⊆ Γ such that

Δ � α (in classical logic).

We call �P the relation of P-consequence. It is immediate that, among others,
the following results can be proved:

Theorem 3.1 1. If α is a theorem of the classical propositional calculus C and if
Γ is a set of formulas, then Γ �P α. In particular, �P α.

2. If Γ is consistent (according to C), then Γ � α (in C) iff Γ �P α (in P).
3. If Γ �P α and if Γ ⊆ Δ, then Δ �P α (The defined notion of P-consequence is

monotonic).
4. The notion of P-consequence (�P) is recursive.
5. Since the theses of P are the theses of C, P is decidable.

Definition 3.4 A set of formulas Γ is P-trivial iff Γ �P α for every formula α.
Otherwise, Γ is P-nontrivial.

Theorem 3.2 Other results are the following ones, which reinforce the nature of our
system:

1. For any formula α and any set of formulas Γ , we have that Γ �P α ∧ ¬α.
2. α �P α iff α has a model.
3. If F denotes the set of all formulas, then F �P α ∧ ¬α for any formula α.
4. Γ �P α and Γ �P ¬α don’t imply Γ �P α ∧ ¬α.
5. Let p be a propositional variable. Then:

(a) p,¬p �P p
(b) p,¬p �P ¬p
(c) p,¬p �P p ∧ ¬p
(d) p ∧ ¬p �P p ∧ ¬p

3 An Application of Paraconsistent Logic to Physics: Complementarity 29

(e) p ∧ ¬p �P p
(f) p ∧ ¬p �P ¬p

Definition 3.5 A set of formulas Γ is P-inconsistent if there exists a formula α

such that Γ �P α and Γ �P ¬α. Otherwise, Γ is P-consistent.

Theorem 3.3 1. If α is an atomic formula, then Γ = {α,¬α} is P-inconsistent,
but P-nontrivial.

2. If the set of formulas Γ is P-trivial, then it is trivial (according to classical logic).
If Γ is nontrivial, then it is P-nontrivial.

3. If Γ is P-inconsistent, then it is inconsistent according to classical logic, but not
conversely.

4. If Γ is consistent according to classical logic, then Γ is P-consistent.
5. The sole P-consequences of p ∧ ¬p are tautologies (of classical logic).
6. The Deduction Theorem holds forP-consequences: Γ, α �P β entails Γ �P α →

β.

We remark that {α ∧ ¬α} is trivial in classical logic, but not P-trivial. Notwith-
standing, we are not suggesting that complementary propositions should be under-
stood as pairs of contradictory sentences.

Definition 3.6 A C-theory is a set of formulas T closed under the relation of P-
consequence �P, that is, α ∈ T for whatever α such that T �P α. In other words, T
is a theory whose underlying logic is P.

Theorem 3.4 There exist C-theories that are inconsistent from the point of view of
classical logic, though P-nontrivial.

Proof Immediate consequence of Theorem 3.3. 	
In the commonapplications, the existenceof consistent sets of formulas are usually

assumed only in an informal way, as an implicit postulate. Intuitively speaking, it
makes reference to the fact that some ‘classical’ (that is, based on usual mathematics)
theories and hypotheses scientists accept are thought of as not contradictory (as
consistent) in principle.

Theorem 3.5 Every consistent classical theory, that is, every consistent theory
founded in classical logic (and set theory) is a particular case of C-theories.

Finally, we state a result (the theorem below), whose proof is an immediate con-
sequence of the above definition of P-consequence, that links our logic with the
characterization of ‘complementary propositions’ presented above. Before this, we
make a definition:

Definition 3.7 Let T be a C-theory and let α and β be formulas of the language of
T . We say that α and β are T -complementary (or simply complementary) if there
exists a formula γ of the language of T such that:

30 N.C.A. da Costa and D. Krause

1. T �P α and T �P β

2. α �P γ and β �P ¬γ

It is immediate that contradictory propositions like α and ¬α are complementary
in the above sense, but oncemorewe remark thatwe are not arguing that this particular
logical situation constitute a condensed account of all Bohr’s ideas. The interesting
case results from the following theorem.

Theorem 3.6 If α and β are complementary theorems of a C-theory T and α �P γ

and β �P ¬γ , then in general γ ∧ ¬γ is not a theorem of T .

Proof Immediate, as a consequence of Theorem 3.3. 	
This result is in fact interesting, since wemay admit propositions (complementary

propositions) so that one of them entails a proposition while the another one entails
the negation of such a proposition, but we cannot deduce that their conjunction entails
a contradiction.

Now we sketch in a not so precise terms an example of a situation involving C-
theories, suppose that our theory T is orthodox non-relativistic quantum mechanics,
and that we have the following sentences, which can be written in the formalism:

1. (p) The system has a particle behavior.
2. (q) The system has a wave behavior.

For instance, p may be taken from a double slit experiment with one of the slits
closed, while q stands for the experiment with the two slits open. It seems clear that
we cannot have both p and q, that is, their conjunction. This is achieved in our system
simply by verifying that, for instance, p � p, that is, a particle behavior entails a par-
ticle behavior, while q �P ¬p, that is, a wave behavior excludes a particle behavior.
The conjunction p ∧ q, then, within classical logic, would entail a contradiction. But
not in our system, for there is not, in classical logic, a set of sentences Γ that entail
propositions which, taken jointly, entail a contradiction. So, no set Δ of formulas
can be found in order to satisfy Definition 3.7.

The basic characteristic of T as aC-theory is that inmaking inferences,we suppose
that some hypotheses we handle are consistent. In other words, C-theories are closer
to those theories scientists actually use in their day-to-day activity than theories
encompassing the classical concept of deduction. We intend to discuss with more
details in another work this and other related problems in the foundations of quantum
mechanics, as for instance the reality of the wave function, to which paraclassical
logic may be of some help.

3.4 The Paralogic Associated to a Logic L

The technique used in this paper to define the paraclassical logic associated with
classical logic can be generalized to any logicL (including logics having no negation
symbol, but we will not deal with this case here). More precisely, starting from a

3 An Application of Paraconsistent Logic to Physics: Complementarity 31

logic L, we can define the PL-logic associated to L (the ‘paralogic’ associated to L)
as follows.

Let L be a logic, which may be classical logic, intuitionistic logic, some para-
consistent logic or, in principle, any other logical system containing negation. The
deduction symbol of L is �L, and it is defined according to the standards of the par-
ticular logic being considered. We still suppose that the language of L has a symbol
for negation, ¬.

Definition 3.8 A theory based on L (an L-theory) is a set of formulas Γ of the
language of L which is closed under �L. In other words, α ∈ Γ for every formula α

such that Γ �L α.

Definition 3.9 An L-theory Γ is L-inconsistent if there exists a formula α of the
language of L such that Γ �L α and Γ �L ¬α, where ¬α is the negation of α.
Otherwise, Γ is L-consistent.

Definition 3.10 A L-theory Γ is L-trivial if Γ �L α for any formula α of the
language of L. Otherwise, Γ is L-nontrivial.

Then, we define the PL-logic associated with L whose language and syntactical
concepts are those ofL but by modifying the concept of deduction as follows: we say
that α is a PL-syntactical consequence of a set Γ of formulas, and write Γ �PL α

iff:

1. α ∈ Γ , or
2. There exists Δ ⊆ Γ such that Δ is L-nontrivial, and Δ �L α.

For instance, we may consider the paraconsistent calculus C1 [17] as our logic L.
Then the paralogic associated with C1 is a kind of ‘para-paraconsistent’ logic.

It seems worthwhile to note the following in connection with the paraclassical
treatment of theories. Sometimes, when one has a paraclassical theory T such that
T �P α and T �P ¬α, there exist appropriate propositions β and γ such that T can
be replaced by a classical consistent theory T ′ in which β → α and γ → ¬α are
theorems. If this happens, the logical difficulty is in principle eliminable and classical
logic maintained.

3.5 More General Complementary Situations

We conclude the same way as we did in one of our papers, for we think that what we
have said there remains still valid in a general sense.

As it is well known, Bohr tried to apply his principle of complementarity to
other fields of knowledge [22]. More recently, Englert et al. [19] have suggested
that complementarity is not simply a consequence of the uncertainty relations, as
advocated by those who believe that “two complementary variables, such as position
and momentum, cannot simultaneously be measured to less than a fundamental limit
of accuracy” (op. cit.), but that

32 N.C.A. da Costa and D. Krause

(. . .) uncertainty is not the only enforce of complementarity. We devised and analysed both
real and thought experiments that bypass the uncertainty relation, in effect to ‘trick’ the
quantum objects under study. Nevertheless, the results always reveal that nature safeguards
itself against such intrusions—complementarity remains intact even when the uncertainty
relation plays no role.We conclude that complementarity is deeper than has been appreciated:
it is more general and more fundamental to quantum mechanics than is the uncertainty rule.
(ibid.)

If Englert et al. are right, then it seems that paraclassical logic can be useful also
to treat those theories which encompass complementarity in their sense.

Anyway, this kind of logic can be alsomodified to copewithmore general kinds of
incompatibility, say ‘physical incompatibility’, incorporating physical incompatible
postulates, so as characteristics of the behavior of human beings, etc., but we shall
leave this topic for another work.

3.6 Final Remarks

The referee of this paper has asked us to answer some interesting questions, namely:

1. Can C-theories be applied to other problems, e.g., Schrödinger’s cat and the EPR
paradox?

2. Is there a proof theory for C-theories ? Is it possible by natural deduction?
3. Can Jaśkowski’s discursive logic also be used for the basis for C-theories?

Of course the answers would demand another paper. But we would like to say
yes to the last two questions, and leaving open the first. Let us give some brief
explanations why.

Concerning the last two questions, it seems clear that a natural deduction system
can also be developed, whose rules would be inspired in our axiomatics, and that
a proof theory should be developed, so as to extend these logics to quantification
and perhaps to higher-order logics. As for Jaśkowski’s logic, since it is also non-
adjunctive, it could of course be another alternative, although a very complicated
one. Paraclassical logics are simple for the purposes of physics, and we guess they
should be preferred.

Concerning the first question, it depends onwhatwe understand by a contradiction
in the quantum domain. The authors of this paper disagree in this respect. For da
Costa and Christian de Ronde [13], Schrödinger’s cat is a typical example of a
contradiction in the quantum domain. For Krause and Arenhart [23], this is not so,
for once we assume that we can speak of the cat before measurement (so leaving
out a purely instrumentalistic interpretation such as Bohr’s), when in the superposed
state the cat is not alive and dead, contrary to the common understanding. To these
authors, the cat is in a third state, precisely that state which is typical of quantum
mechanics, the superposed state. So, there would be three possible states for the cat:
dead cat, alive cat, and a superposed state of these two ones. In short, ‘dead cat’ is
not the contradictory of ‘alive cat’, but it is its contrary, according to the square of

3 An Application of Paraconsistent Logic to Physics: Complementarity 33

oppositions. In the mentioned papers, a full discussion is provided defending each
position. The problem concerning EPR apparently can be treated in a similar way,
but a further analysis is recommended in this case.

Acknowledgments We would like to thank the organizers of this volume for the opportunity of
presenting this paper and dedicate it to Jair Minoro Abe, our friend and colleague of so many years.

References

1. Beller, M.: The birth of Bohr’s complementarity: the context and the dialogues. Stud. Hist.
Phil. Sci. 23(1), 147–180 (1992)

2. Bohr, N.: The quantum postulate and the recent development of atomic theory’ [3], Atti del
Congresso Internazionale dei Fisici, 11–20 Sept. 1927, Como-Pavia-Roma, Vol. II, Zanichelli,
Bologna, 1928, reprinted in [pp.109–136]boh85

3. Bohr, N.: The quantum postulate and the recent developments of atomic theory. Nature
121(Suppl.), 580–590 (1928), reprinted in [pp.147-158]boh85

4. Bohr, N.: ‘Introductory survey’ to Bohr (1929), in [pp. 279–302] boh85
5. Bohr, N.: Atomic theory and the description of nature. Cambridge University Press, Cambridge

(1934). Reprinted in [pp. 279–302]boh85
6. Bohr, N.: Causality and complementarity. Phil. Sci. 4(3), 289–298 (1937)
7. Bohr, N.: Natural philosophy of human cultures (1938). In: Atomic physics and human knowl-

edge, pp. 23–31. Wiley, New York (1958) (also in Nature 143, 268–272)
8. Bohr, N.: Quantum physics and philosophy: causality and complementarity. In: Klibanski, R.

(ed.) Philosophy in the Mid-Century I, pp. 308–314. Firenze, La Nuova Italia (1958)
9. Bohr, N.: Collected works. In: Rüdinger, E. (general ed.), vol. 6: Foundations of Quantum

Physics I. (1985) Kolckar, J. (ed.) Amsterdam, North-Holland
10. Carnap, R.: An Introduction to the Philosophy of Science. Dover Pu, New York (1995)
11. Cushing, J.T.: Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony.

The University of Chicago Press, Chicago and London (1994)
12. da Costa, N.C.A., Bueno, O.: Paraconsistency: towards a tentative interpretation. Theoria-

Segunda Época 16(1), 119–145 (2001)
13. da Costa, N.C.A., de Ronde, C.: The paraconsistent logic of superpositions. Found. Phys. 43,

854–858 (2013)
14. da Costa, N.C.A., Krause, D.: Complementarity and paraconsistency. In: Rahman, S., Symons,

J., Gabbay, D.M., van Bendegem, J.-P. (eds.) Logic, epistemology, and the Unity of Science,
pp. 557–568. Springer (2004)

15. da Costa, N.C.A., Krause, D.: The logic of complementarity. In: van Benthem, J., Heinzmann,
G., Rebushi, M., Visser, H. (eds.) The Age of Alternative Logics: Assessing Philosophy of
Logic and Mathematics Today, pp. 103–120. Springer (2006)

16. da Costa, N.C.A., Vernengo, R.J.: Sobre algunas lógicas paraclássicas y el análisis del razon-
amiento jurídico. Doxa 19, 183–200 (1999)

17. da Costa, N.C.A., Krause, D., Bueno, O.: Paraconsistent logics and paraconsistency. In: D.
Jacquette, editor of the volume on Philosophy of Logic; Gabbay, D.M., Thagard, P., Woods,
J. (eds.) Philosophy of Logic, Elsevier, 2006, in the series Handbook of the Philosophy of
Science, vol. 5, pp. 655–781 (2007)

18. De Février, P.: La structure des théories physiques. Presses Un, de France, Paris (1951)
19. Englert, B.-G., Scully, M.O., Walther, H.: The duality in matter and light. Sci. Am. 271(6),

56–61 (1994)
20. French, A.P., Kennedy, P.J. (eds.): Niels Bohr, a Centenary Volume. Harward University Press,

Cambridge, MA and London (1985)

34 N.C.A. da Costa and D. Krause

21. Hughes, G.E., Creswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996)
22. Jammer, M.: Philosophy of Quantum Mechanics. John Wiley, New York (1974)
23. Krause, D., Arenhart, J.R.B.: A logical account of quantum superpositions’, forthtcoming. In:

Aerts, D., de Ronde, C., Freytes, H., Giuntini, R. (eds.) Probing the Meaning and Structure
of Quantum Mechanics: Superpositions, Semantics, Dynamics and Identity. World Scientific,
Singapore (2016)

24. Mendelson, E.: Introduction to Mathematical Logic, 3rd edn. Wadsworth & Brooks/Cole,
Monterrey (1987)

25. Scheibe, E.: The Logical Analisys of Quantum Mechanics. Pergamon Press, Oxford (1973)

Chapter 4
Two Genuine 3-Valued Paraconsistent Logics

Jean-Yves Beziau

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract In this paper we present two genuine three-valued paraconsistent logics,
i.e. logics obeying neither p,¬p � q nor � ¬(p ∧ ¬p). We study their basic prop-
erties and their relations with other paraconsistent logics, in particular da Costa’s
paraconsistent logics C1 and its extension C1+.

Keywords Paraconsistent logic · Many-valued logic · Negation

4.1 Genuine Paraconsistent Negation

A paraconsistent negation is often defined on the basis of the rejection of the law of
explosion. This means there are propositions p and q such that:

p,¬p � q

As we have emphasized in previous papers (see [7, 8]), on the one hand such a neg-
ative definition of paraconsistent negation, taking alone, is nonsense, because there
are many operators which are non explosive and cannot be reasonably considered

J.-Y. Beziau (B)
UFRJ—Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: jyb@jyb-logic.org

J.-Y. Beziau
CNPq—Brazilian Research Council, Rio de Janeiro, Brazil

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_4

35

36 J.-Y. Beziau

as negations, such as for example the operator of possibility. On the other hand this
negative criterion of rejection of explosion is not enough. For example I. Urbas has
pointed out that it makes sense also to reject a weakest form of explosion, such as:

p,¬p � ¬q

This eliminates minimal negation from the realm of paraconsistent negations. Urbas
gave a general formulation of the rejection of the explosion which leads to its defi-
nition of strict paraconsistent logic, his idea is that it is not possible to deduce any
non tautological scheme of formula from p and ¬p (see [24]).

It also makes sense to have the following rejection for a paraconsistent negation:

� ¬(p ∧ ¬p)

because it is a quite natural formulation of the principle of non contradiction. If one
wants to study a negation rejecting the principle of non contradiction and develop
a system of logic where ¬(p ∧ ¬p) is a theorem, he has to explain what it means.
“Philosophical Logic” is an expression used to qualify the study of systems of logic
having a philosophical inspiration or/and motivation, but very often the connection
between the formalism and its philosophical aspect is quite loose, if not incoherent
(This is in particular the case in paraconsistent logic, see e.g. [10]).

In a recent published paper [11] we have called strong paraconsistent negation,
a negation rejecting this version of the principle of non contradiction as well as
explosion. We have replaced here strong by genuine, because A. Avron pointed to us
that strong has already been used in another sense: as synonymous to strict. We have
started to systematically study which kinds of genuine paraconsistent negations can
be built using three-valued matrices. This is a new line of research because although
some general frameworks have been presented for three-valued paraconsistent logics
(cf. [2, 19]), the particular three-valued paraconsistent logicswhich have been studied
up to now generally have ¬(p ∧ ¬p) as a theorem. In the present paper we are
further on developing this line of research, presenting new results, but the paper is
self-contained.

4.2 Two Genuine Three-Valued Paraconsistent Logics

After a systematic study of all the possibilities (see [11]), we have distinguished
two interesting genuine three-valued paraconsistent logics, which are defined by the
following truth-tables:

4 Two Genuine 3-Valued Paraconsistent Logics 37

SP3A

¬
0 1
1© 1
1 0

∧ 0 1© 1
0 0 0 0
1© 0 1© 1
1 0 1 1

∨ 0 1© 1
0 0 1© 1
1© 1© 1© 1
1 1 1 1

SP3B

¬
0 1
1© 1©
1 0

∧ 0 1© 1
0 0 0 0
1© 0 1 1©
1 0 1© 1

∨ 0 1© 1
0 0 1© 1
1© 1© 1© 1
1 1 1 1

We are using three values 0, 1 and 1©. 1 and 1© are both considered as designated
and 0 as undesignated. Using these tables, we define in the usual way two logical
structures SP3A = 〈L; �SP3A〉 and SP3B = 〈L; �SP3B〉. These two consequence re-
lations are therefore structural consequence relations in the sense of Łoś and Suszko
[17].

The reason we use 1© as designated rather than 1
2 is to let open the possible

interpretation of this third value, which is not necessarily at the middle of the two
other ones. However in the tables we had to choose the position and we have placed
the third value at the middle. The truth-table of disjunction of both SP3A and SP3B
follows the idea that the value of the disjunction of two propositions is the greatest
value of the two propositions if we consider 1© as in-between. But what is happening
with the tables of conjunction of SP3A and SP3B is not the standard idea that the
value of the conjunction of two propositions is the least value, if we consider 1© as in-
between. If we want to follow the idea of the least value, in the table for conjunction
of SP3A 1© should be rather seen as 2, but then this is not compatible with the
interpretation of 1© in the table for disjunction of SP3A. In the case of the table of
conjunction of SP3B, there is no way to interpreted 1© to follow the idea of the least
value, because the value of the conjunction of two propositions having both 1© as
truth-value is 1.

In the history of three-valued logic, the third value has been philosophically inter-
preted in different ways, for example as undetermined or possible (cf. Łukasiewicz—
see [18]) and generally 0 and 1 as respectively falsity and truth. However the dis-
tinction between designated and undesignated values keeps a dichotomy which is
similar to the dichotomy between truth and falsity, this manifests in particular when
this dichotomy is used to define logical truth and a consequence relation. So we can
say that 1© is a kind of truth or part of truth, this is why we have used this notation.1

1In [11] we have used k+ because we were also examining the possibilities where the third value
was undesignated, using the notation k–.

38 J.-Y. Beziau

The truth-tables for negation of SP3A and SP3B are different but in both cases p
and ¬p can both be designated, both be true. This is in fact what always happens in
paraconsistent logic following a standard semantical interpretation of the rejection
of explosion. This is why a paraconsistent negation cannot be considered as forming
contradiction, i.e. it does not make sense to say that p and ¬p is a contradiction in
paraconsistent logic (see [3, 9]).

The three-valued paraconsistent logics developed by Asenjo [1] (renamed LP by
Priest [20]) and da Costa—D’Ottaviano (the logic J3 [14]) have a paraconsistent
negation defined by the the same table as the one of SP3B and also the same table
for disjunction, but they use for conjunction a table based on the least value. For this
reason they are not genuine paraconsistent logics, because ¬(p ∧ ¬p) is a theorem.
These logics are using in fact the same basic truth-tables as “classical” three-valued
logics developed by Łukasiewicz [18] or Kleene [16]. The only difference is that
they consider the third value as designated. Sette’s logic P1 [21] uses for negation
the same truth-table as the one of SP3A, but he uses for conjunction and disjunction
tables where the third value disappears, as a consequence any molecular formula
behaves classically in this logic.

4.3 Basic Properties of SP3A and SP3B

4.3.1 Conjunction and Disjunction

The properties of conjunction and disjunction of SP3A and SP3B are the same as
in classical logic despite the fact that the table of conjunction of SP3B is weird by
itself and that the table of conjunction of SP3A is weird in relation with the table of
disjunction. These tables have three important properties:

• they are conservative, i.e. the part concerning classical values 0 and 1 is the same
as in classical logic;

• they are neo-classical, i.e. the dichotomy designated/undesignated behaves like
the dichotomy 0/1 in classical logic, e.g. ∧(x, y) is designated iff x is designated
and y is designated;

• they are symmetrical, i.e. ∗(x, y) = ∗(y, x).

4.3.2 Laws of Negations that SP3A and SP3B Do Not Obey

Working in the framework of a structural consequence relation, if we reject the law of
explosion, in its various formulations, some properties of negations are immediately
not valid, for example:

4 Two Genuine 3-Valued Paraconsistent Logics 39

Contraposition
If T , p � q then T ,¬q � ¬p

Reduction to the the Absurd
If T ,¬p � q and T ,¬p � ¬q then T � p

For a general study of the laws of negation and their interrelations, see [6]. On the
other hand despite these negative results, many properties of classical negation are
compatible with the rejection of the law of explosion, this is why it makes sense to
still speak of a negation when dealing with paraconsistency. We will see in the next
sections positive properties of the negations of SP3A and SP3B.

4.3.3 Excluded Middle

The law of excludedmiddle holds both for SP3A and SP3B, as shown in the following
tables:

p ¬p p ∨ ¬p
0 1 1
1© 1 1
1 0 1

p ¬p p ∨ ¬p
0 1 1
1© 1© 1©
1 0 1

SP3A SP3B

4.3.4 Double Negation

The double negation law p 	� ¬¬p holds for SP3B but not for SP3A, as shown by
the following tables:

p ¬p ¬¬p
0 1 0
1© 1 0
1 0 0

p ¬p ¬¬p
0 1 0
1© 1© 1©
1 0 1

SP3A SP3B

In SP3A, given an atomic formula a, we have a � ¬¬a.

40 J.-Y. Beziau

4.3.5 De Morgan Laws

We will present De Morgan laws in three steps. Here is a first table:

D1a ¬(p ∧ q) � ¬p ∨ ¬q D1b ¬p ∨ ¬q � ¬(p ∧ q)
D2a ¬(p ∨ q) � ¬p ∧ ¬q D2b ¬p ∧ ¬q � ¬(p ∨ q)

De Morgan Laws—Table I

SP3A and SP3B obey all these laws exceptD1b as shown by the two following tables:

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 1© 1 1 0 1 1 1 1 1©
1© 0 1 1 0 1 1 1 1 1©
1© 1© 1 1 1© 1 1 1 1 1©
1© 1 1 0 1 0 1 0 0 1
1 1© 0 1 1 0 1 0 0 1
De Morgan Laws—Table I—Checking the Validity for SP3A

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 1© 1 1© 0 1 1 1© 1© 1©
1© 0 1© 1 0 1 1 1© 1© 1©
1© 1© 1© 1© 1 0 1© 1 1© 1©
1© 1 1© 0 1© 1© 1© 0 0 1
1 1© 0 1© 1© 1© 1© 0 0 1
De Morgan Laws—Table I—Checking the Validity for SP3B

Here is a second table for De Morgan laws:

D3a ¬(¬p ∧ q) � p ∨ ¬q D3b p ∨ ¬q � ¬(¬p ∧ q)
D4a ¬(p ∧ ¬q) � ¬p ∨ q D4b ¬p ∨ q � ¬(p ∧ ¬q)
D5a ¬(¬p ∨ q) � p ∧ ¬q D5b p ∧ ¬q � ¬(¬p ∨ q)
D6a ¬(p ∨ ¬q) � ¬p ∧ q D6b ¬p ∧ q � ¬(p ∨ ¬q)

De Morgan Laws—Table II

Note that considering commutativity D3 and D4 are equivalent, same remark about
D5 and D6.

p q ¬p ¬q ¬p ∧ q ¬(¬p ∧ q) p ∨ ¬q p ∧ ¬q ¬(¬p ∨ q) ¬p ∨ q
0 1© 1 1 1 0 1 0 0 1
1© 0 1 1 0 1 1 1 0 1
1© 1© 1 1 1 0 1 1 0 1
1© 1 1 0 1 0 1© 0 0 1
1 1© 0 1 0 1 1 1 1 1©

De Morgan Laws—Table II—Checking the Validity for SP3A

4 Two Genuine 3-Valued Paraconsistent Logics 41

According to this table, D3a, D4a, D5a, D6a are valid for for SP3A but not D3b,
D4b, D5b, D6b.

p q ¬p ¬q ¬p ∧ q ¬(¬p ∧ q) p ∨ ¬q p ∧ ¬q ¬(¬p ∨ q) ¬p ∨ q
0 1© 1 1© 1© 1© 1© 0 0 1
1© 0 1© 1 0 1 1 1© 1© 1©
1© 1© 1© 1© 1 0 1© 1 1© 1©
1© 1 1© 0 1© 1© 1© 0 0 1
1 1© 0 1© 0 1 1 1© 1© 1©

De Morgan Laws—Table II—Checking the Validity for SP3B

According to this table, D3a, D4a, D5a, D6a, D5b, D6b are valid for for SP3B but
not D3b, D4b.
And here is a third table for De Morgan laws:

D7a ¬(¬p ∧ ¬q) � p ∨ q D7b p ∨ q � ¬(¬p ∧ ¬q)
D8a ¬(¬p ∨ ¬q) � p ∧ q D8b p ∧ q � ¬(¬p ∨ ¬q)

De Morgan Laws—Table III

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q) p ∨ q p ∧ q ¬(¬p ∨ ¬q) ¬p ∨ ¬q
0 1© 1 1 1 0 1© 0 0 1
1© 0 1 1 1 0 1© 0 0 1
1© 1© 1 1 1 0 1© 1© 0 1
1© 1 1 0 0 1 1 1 0 1
1 1© 0 1 0 1 1 1 0 1

De Morgan Laws—Table III—Checking the Validity for SP3A

According to this table, D7a, D8a for for SP3A but not D7a, D8a.

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q) p ∨ q p ∧ q ¬(¬p ∨ ¬q) ¬p ∨ ¬q
0 1© 1 1© 1© 1© 1© 0 0 1
1© 0 1© 1 1© 1© 1© 0 0 1
1© 1© 1© 1© 1 0 1© 1 1© 1©
1© 1 1© 0 0 1 1 1© 1© 1©
1 1© 0 1© 0 1 1 1© 1© 1©

De Morgan Laws—Table III—Checking the Validity for SP3B

According to this table, D7a, D8a for SP3B but not D7a, D8a. We see that SP3A and
SP3B both verifies all the Da laws. They also both verifies D2b. SP3B additionaly
verifies D5b andD6b and therefore is stronger than SP3A regarding DeMorgan laws.

42 J.-Y. Beziau

4.3.6 Definition of a Classical Negation

We say that a (scheme of) formula behaves classically when p is designated iff ¬p
is undesignated. In both SP3A and SP3B p ∧ ¬p behaves classically. We say that a
unary × connective behaves as a classical negation when p is designated iff ×p is
undesignated. In both SP3A and SP3A¬∗p =¬p ∧ ¬(p ∧ ¬p) behaves as a classical
negation. This is shown by the following tables:

p ¬p p ∧ ¬p ¬(p ∧ ¬p) ¬p ∧ ¬(p ∧ ¬p)
0 1 0 1 1
1© 1 1 0 0
1 0 0 1 0

Classical negation in SP3A

p ¬p p ∧ ¬p ¬(p ∧ ¬p) ¬p ∧ ¬(p ∧ ¬p)
0 1 0 1 1
1© 1© 1 0 0
1 0 0 1 0

Classical negation in SP3B

As a consequence it is possible to translate classical logic into SP3A and SP3B.
These are more examples of the translation paradox [15]. The classical negation
defined here is the same as the one of da Costa’s system C1 (see [13]). In the next
section we will study the relations between SP3A, SP3B and C1.

4.4 Comparison with da Costa Paraconsistent Logics C1
and C1+

The paraconsistent logic C1 introduced by Newton da Costa (see [12]) can be con-
structed on the basis of positive classical logic adding the following laws for negation
(see [5]):

� p ∨ ¬p
p ∧ ¬p,¬(p ∧ ¬p) � q
¬¬p � p
p◦, q◦ � (p©q)◦
where © is any binary connective2 and p◦ is an abbreviation for ¬(p ∧ ¬p).

We have proposed a strengthening C1+ of the logic C1 by considering instead of the
last axioms, the following one (see [4]):

x◦ � (p©q)◦, x being either p or q.

2© can be implication. In the present paper we are studying logics without implication, so we are
comparing these logics with the fragment of C1 without implication.

4 Two Genuine 3-Valued Paraconsistent Logics 43

The idea of the original axiom of C1 is that if two formulas are well-behaved, then
it is also the case of compositions of them using binary connectives. In C1+ the idea
is that only one formula needs to be well-behaved to have the well-behavior of a
complex formula. We use the terminology weak preservation for the axiom of C1
and strong preservation for the axiom of C1+. In C1+ we have consequently more
De Morgan laws which are valid.
Here is a comparative table (all converses are not valid):

C1 C1+
¬(p ∧ q) � ¬p ∨ ¬q ¬(p ∨ q) � ¬p ∧ ¬q
¬(¬p ∧ ¬q) � p ∨ q ¬(¬p ∨ ¬q) � p ∧ q
¬(p ∧ ¬q) � ¬p ∨ q ¬(p ∨ ¬q) � ¬p ∧ q
¬(¬p ∧ q) � p ∨ ¬q ¬(p ∨ q) � p ∧ ¬q

Considering the results of the previous section on De Morgan laws for SP3A and
SP3B, we can draw the following comparative tables:

¬(p ∧ q) � ¬p ∨ ¬q C1+ SP3A SP3B C1
¬(¬p ∧ ¬q) � p ∨ q C1+ SP3A SP3B C1
¬(p ∧ ¬q) � ¬p ∨ q C1+ SP3A SP3B C1
¬(¬p ∧ q) � p ∨ ¬q C1+ SP3A SP3B C1
¬(p ∨ q) � ¬p ∧ ¬q C1+ SP3A SP3B
¬(¬p ∨ ¬q) � p ∧ q C1+ SP3A SP3B
¬(p ∨ ¬q) � ¬p ∧ q C1+ SP3A SP3B
¬(¬p ∨ q) � p ∧ ¬q C1+ SP3A SP3B
Comparative table I of De Morgan Laws

in C1+ SP3A SP3B C1

¬p ∨ ¬q � ¬(p ∧ q) None
p ∨ q � ¬(¬p ∧ ¬q) None
¬p ∨ q � ¬(p ∧ ¬q) None
p ∨ ¬q � ¬(¬p ∧ q) None
¬p ∧ ¬q � ¬(p ∨ q) SP3A SP3B
p ∧ q � ¬(¬p ∨ ¬q) None
¬p ∧ q � ¬(p ∨ ¬q) SP3B
p ∧ ¬q � ¬(¬p ∨ q) SP3B

Comparative table II of De Morgan Laws
in C1+ SP3A SP3B C1

Relatively to De Morgan Laws we have therefore the following relation of order
between these four logics:

C1 < C1+ < SP3A < SP3B
Except the preservation axiom, we have already seen that all the axioms of C1 are
valid in SPA3 and SP3B. Let us examine now both the weak and strong preservation

44 J.-Y. Beziau

axioms for SPA3 and SP3B. To simplify the notation, we introduce p• for the formula
p ∧ ¬p. Therefore we have p◦ = ¬p•
In SP3A, we have the following table:

p q ¬p p• p◦ p ∧ q ¬(p ∧ q) (p ∧ q)• (p ∧ q)◦
0 1© 1 0 1 0 1 0 1
1© 0 1 1 0 0 1 0 1
1© 1© 1 1 0 1© 1 1 0
1© 1 1 1 0 1 0 0 1
1 1© 0 0 1 1 0 0 1

Table for strong preservation of
well-behavior under conjunction in SP3A

This table shows that the strong axiom for preservation under conjunction x◦ �
(p ∧ q)◦ is valid in SP3A, therefore the weak axiom p◦, q◦ � (p ∧ q)◦ is also valid.
In SP3B, we have the following table:

p q ¬p p• p◦ p ∧ q ¬(p ∧ q) (p ∧ q)• (p ∧ q)◦
0 1© 1 0 1 0 1 0 1
1© 0 1© 1 0 0 1 0 1
1© 1© 1© 1 0 1 0 0 1
1© 1 1© 1 0 1© 1© 1 0
1 1© 0 0 1 1© 1© 1 0

Table for strong preservation of
well-behavior under conjunction in SP3B

The fourth line of truth values of this table shows that the strong axiom for preserva-
tion under conjunction x◦ � (p ∧ q)◦ is not valid in SP3B. The following table shows
however that the weak axiom is valid:

p q ¬p ¬q p• p◦ q• q◦ p ∧ q ¬(p ∧ q) (p ∧ q)• (p ∧ q)◦
0 1© 1 1© 0 1 1 0 0 1 0 1
1© 0 1© 1 1 0 0 1 0 1 0 1
1© 1© 1© 1© 1 0 1 0 1 0 0 1
1© 1 1© 0 1 0 0 1 1© 1© 1 0
1 1© 0 1© 0 1 1 0 1© 1© 1 0

Table for weak preservation of well-behavior under conjunction in SP3B

This table shows that in SP3B the formulas p◦ and q◦ cannot be designated together
(considering the non classical lines of the table), this means that the weak axiom for
preservation under disjunction p◦, q◦ � (p ∨ q)◦ is also valid in SP3B. The following
table shows that the weak axiom for preservation under disjunction is also valid in
SP3A for the same reason. It shows also that the strong axiom for preservation under
disjunction x◦ � (p ∨ q)◦ is not valid in SP3A as indicated by the first and the second
lines of truth values.

4 Two Genuine 3-Valued Paraconsistent Logics 45

p q ¬p ¬q p• p◦ q• q◦ p ∨ q ¬(p ∨ q) (p ∨ q)• (p ∨ q)◦
0 1© 1 1 0 1 1 0 1© 1 1 0
1© 0 1 1 1 0 0 1 1© 1 1 0
1© 1© 1 1 1 0 1 0 1© 1 1 0
1© 1 1 0 1 0 0 1 1 0 0 1
1 1© 0 1 0 1 1 0 1 0 0 1

Table for weak preservation of well-behavior under disjunction in SP3A

The following table shows that the strong strong axiom for preservation under dis-
junction x◦ � (p ∨ q)◦ is not valid in SP3B as indicated by the first line of truth
values..

p q ¬p p• p◦ p ∨ q ¬(p ∨ q) (p ∨ q)• (p ∨ q)◦
0 1© 1 0 1 1© 1© 1 0
1© 0 1© 1 0 1© 1© 1 0
1© 1© 1© 1 0 1© 1© 1 0
1© 1 1© 1 0 1 0 0 1
1 1© 0 0 1 1 0 0 1

Table for strong preservation of well-behavior under disjunction in SP3B

We now summarize all the results in the following table:

p◦, q◦ � (p ∧ q)◦ C1+ SP3A SP3B C1
p◦, q◦ � (p ∨ q)◦ C1+ SP3A SP3B C1
x◦ � (p ∧ q)◦ C1+ SP3A
x◦ � (p ∨ q)◦ C1+
Comparative table of preservation of
well-behavior in C1+ SP3A SP3B C1

The conclusion is that SP3A and SP3B are extensions ofC1, but thoughtC1+ appears
as a strict extension of SP3A and SP3B from the point of view of the preservation
axioms, C1+ is weaker from the point of view of De Morgan Laws, so C1+ is
incomparable. SP3B is stronger than SP3A from the point of view of De Morgan
Laws but is weaker from the point of view of the preservation axioms, so SP3A and
SP3B are incomparable.

4.4.1 Replacement Theorem

The replacement theorem says that if two propositions p and q are logically equivalent
(i.e. p 	� q) one can be replaced by the other one. Considering that both SP3A and
SP3B are extensions of C1, we can infer that the replacement theorem does not hold
for them, due to Urbas’s theorem according to which there are no self-extensional
paraconsistent extensions of C1, see [22, 23].

A concrete case of failure of replacement theorem (given to us by A.Avron)
working both for SP3A and SP3B is the following: p is logically equivalent to (p ∨
¬p) ∧ p but ¬p is not logically equivalent to ¬((p ∨ ¬p) ∧ p)).

46 J.-Y. Beziau

This can be seen by the following table, the first line of truth-values corresponding
to the situation in SP3A and the second to the situation in SP3B.

p ¬p p ∨ ¬p (p ∨ ¬p) ∧ p ¬((p ∨ ¬p) ∧ p)
1© 1 1 1 0
1© 1© 1© 1 0

4.5 Comparison Table Between SP3A and SP3B

To finish we present in the following table a comparative study of the properties of
SP3A and SP3B:

SP3A SP3B
p,¬p � q No No
p,¬p � ¬q No No
� ¬(p ∧ ¬p) No No

� p ∨ ¬p Yes Yes
¬¬p � p Yes Yes
p � ¬¬p No Yes

¬p,¬¬p � q Yes No
p ∧ ¬p,¬(p ∧ ¬p) � q Yes Yes

p◦, q◦ � (p ∧ q)◦ Yes Yes
p◦, q◦ � (p ∨ q)◦ Yes Yes
x◦ � (p ∧ q)◦ Yes No
x◦ � (p ∨ q)◦ No No

¬(p ∧ q) � ¬p ∨ ¬q Yes Yes
¬(¬p ∧ ¬q) � p ∨ q Yes Yes
¬(p ∧ ¬q) � ¬p ∨ q Yes Yes
¬(¬p ∧ q) � p ∨ ¬q Yes Yes
¬(p ∨ q) � ¬p ∧ ¬q Yes Yes
¬(¬p ∨ ¬q) � p ∧ q Yes Yes
¬(p ∨ ¬q) � ¬p ∧ q Yes Yes
¬(¬p ∧ q) � p ∨ ¬q Yes Yes
¬p ∨ ¬q � ¬(p ∧ q) No No
p ∨ q � ¬(¬p ∧ ¬q) No No
¬p ∨ q � ¬(p ∧ ¬q) No No
p ∨ ¬q � ¬(¬p ∧ q) No No
¬p ∧ ¬q � ¬(p ∨ q) Yes Yes
p ∧ q � ¬(¬p ∨ ¬q) No No
¬p ∧ q � ¬(p ∨ ¬q) No Yes
p ∨ ¬q � ¬(¬p ∨ q) No Yes

4 Two Genuine 3-Valued Paraconsistent Logics 47

Acknowledgments This paper was written during a stay at University of Tel Aviv within the
GeTFun exchange prorgram—Marie Curie project PIRSES-GA-2012-318986 funded by EU-FP7.
Thanks to Arnon Avron for his useful comments.

References

1. Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Formal Logic 7, 103–105 (1966)
2. Arieli, O., Avron, A.: Three-valued paraconsistent propositional logics. In: Beziau, J.-Y.,

Chakraborty,M., Dutta, S. (eds.) NewDirections in Paraconsistent Logic, pp. 91–129. Springer,
New Delhi (2015)

3. Becker, J.R.: Arenhart Liberating paraconsistency from contradictions. Log. Univers. 9, 523–
545 (2015)

4. Beziau, J.-Y.: Logiques construites suivant les méthodes de da Costa. Logique et Analyse
131–132, 259–272 (1990)

5. Beziau, J.-Y.: Nouveaux résultats et nouveau regard sur la logique paraconsistante C1. Logique
et Analyse 141–142, 45–48 (1993)

6. Beziau, J.-Y.: Théorie législative de la négation pure. Logique et Analyse 147–148, 209–225
(1994)

7. Beziau, J.-Y.: What is paraconsistent logic?. In: Batens, D. et al. (eds.) Frontiers of Paracon-
sistent Logic, pp. 95–111. Research Studies Press, Baldock (2000)

8. Beziau, J.-Y.: Are paraconsistent negations negations?. In: Carnielli, W. et al. (eds.) Paracon-
sistency: The Logical Way to the Inconsistent, pp. 465–486. Marcel Dekker, New-York (2002)

9. Beziau, J.-Y.: Round squares are no contractions. In: Beziau, J.-Y., Chakraborty, M., Dutta, S.
(eds.) New Directions in Paraconsistent Logic, pp. 39–55. Springer, New Delhi (2015)

10. Beziau, J.-Y.: Trivial dialetheism and the logic of paradox. Logic Logical Philos. 25, 51–56
(2016)

11. Beziau, J.-Y., Franschetto, A.: Strong paraconsistent three-valued logic. In: Beziau, J.-Y.,
Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic, pp. 131–147.
Springer, New Delhi (2015)

12. da Costa, N.C.A.: Calculs propositionnels pour les systèmes formels inconsistants. Cr. R. Acad
Sc. Paris 257, 3790–3793 (1963)

13. da Costa, N.C.A., Guillaume, M.: Négations composées et Loi de Peirce dans les systèmes Cn.
Portugalia Mathematica 24, 201–210 (1965)

14. D’Ottaviano, I.M.L., da Costa, N.C.A.: Sur un problème de Jaskowśki. Cr. R. Acad Sc. Paris
270, 1349–1353 (1970)

15. Humberstone, L.: Beziau’s translation paradox. Theoria 71, 138–181 (2005)
16. Kleene, S.: On a notation for ordinal numbers. J. Symbolic. Logic 3, 150–155 (1938)
17. Łoś, J., Suszko, R.: Remarks on sentential logics. Indigationes Mathematicae 10, 177–183

(1958)
18. Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficny 5, 170–171 (1920)
19. Marcos, J.: 8K solutions and semi-solutions to a problem of da Costa. Unpublished manuscript

(2000)
20. Priest, G.: The logic of paradox. J. Philos. Logic 8, 219–241 (1979)
21. Sette, A.M.: On the propositional calculus P1. Notas e comunicacões dematemática, 17, Recife

(1971)
22. Urbas, I.: On Brazilian paraconsistent logics. Ph.D. Australian National University, Canberra

(1987)
23. Urbas, I.: Paraconsistency and the C-systems of da Costa. Notre Dame J. Formal Logic 30,

583–597 (1989)
24. Urbas, I.: Paraconsistency. Studies in Soviet Thought 39, 343–354 (1989)

Chapter 5
A Survey of Annotated Logics

Seiki Akama

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract Annotated logics have been originally developed as foundations for para-
consistent logic programming, and later developed as paracomplete and paraconsis-
tent logics by J.M. Abe and others. In this paper, we present the formalization of
propositional and predicate annotated logics. We also review some formal issues.

Keywords Paraconsistent logics · Annotated logics · Paraconsistency · Paracom-
pleteness · Paraconsistent logic programming

5.1 Introduction

One of J.M. Abe’s contributions to paraconsistent logics is to establish the so-called
annotated logics, which are paraconsistent and in general paracomplete. They have
been developed as theoretical foundations for paraconsistent logic programming for
inconsistent knowledge; see Subrahmanian [45] and Blair and Subrahmanian [22].
Later, they have been studied as the systems of paraconsistent logic by many people;
see [1, 26, 30].

Abe explored many applications of annotated logics to various areas, including
engineering. It is thus interesting to sketch the basics of annotated logics. We show
their formal aspects without proofs. The complete exposion of annotated logics can
be found in Abe et al. [8].

S. Akama (B)
C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-ku, Kawasaki 215-0012, Japan
e-mail: akama@jcom.home.ne.jp

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_5

49

50 S. Akama

The chapter is structured as follows. In Sect. 5.2, we present propositional anno-
tated logics Pτ. In Sect. 5.3, we describe predicate annotated logics Qτ. Section5.4
gives Curry algebras as an algebraic semantics for annotated logics. We give some
conclusions in Sect. 5.5.

5.2 Propositional Annotated Logics Pτ

As reviewed in Chap.2, paraconsistent logics have been developed as the basis to
formalize inconsistent but non-trivial theories, and many systems of paraconsistent
logic have been proposed in the literature. Recently, we can find several interest-
ing applications of paraconsistent logics for various areas including mathematics,
philosophy and computer science.

There are historically three important systems of paraconsistent logic; see Priest
et al. [40]. Jaśkowski proposed a paraconsistent propositional logic called discursive
logic (or discussive logic) in 1948; see Jaśkowski [33, 34]. Discursive logic is a kind
of modal approach to paraconsistency.

Da Costa proposed the so-called C-system, which is based on the non-standard
interpretation of negation which is dual to intuitionistic negation. He developed
propositional and predicate logic for C-system.

Relevance logic (or relevant logic) due to Anderson and Belnap formalizes a
correct interpretation of implication, and some of relevant systems can be viewed as
paraconsistent; see Anderson and Belnap [15] and Anderson et al. [16] and Routley
et al. [44]. For a comprehensive survey, consult Dunn [31].

Since then, a lot of work has been done to develop a paraconsistent logic from
some motivation. For a recent survey of paraconsistent logic, see Priest [42].

In 1979, Priest [41] proposed a logic of paradox, denoted LP , to deal with the
semantic paradox.

Batens developed the so-called adaptative logics in Batens [18, 19] as improve-
ments of dynamic dialectical logics developed inBatens [17]. Inconsistency-adaptive
logics as developed by Batens [18] can be regarded as paraconsistent and non-
monotonic logics.

Carnelli’s Logics of Formal Inconsistency (LFI) are logical systems that deal with
consistency and inconsistency as object-level concept; see Carnelli et al. [23]. And
several paraconsistent systems can be interpreted in LFI.

Now, we turn to a formal presentation of annotated logics. Before doing it, we
introduce some basic concepts. Let T be a theory whose underlying logic is L . T is
called inconsistent when it contains theorems of the form A and ¬A (the negation
of A), i.e.,

T �L A and T �L ¬A

where �L denotes the provability relation in L . If T is not inconsistent, it is called
consistent.

http://dx.doi.org/10.1007/978-3-319-40418-9_2

5 A Survey of Annotated Logics 51

T is said to be trivial, if all formulas of the language are also theorems of T .
Otherwise, T is called non-trivial. Then, for trivial theory T , T �L B for any formula
B. Note that trivial theory is not interesting since every formula is provable.

If L is classical logic (or one of several others, such as intuitionistic logic), the
notions of inconsistency and triviality agree in the sense that T is inconsistent iff T
is trivial. So, in trivial theories the extensions of the concepts of formula and theorem
coincide.

A paraconsistent logic is a logic that can be used as the basis for inconsistent but
non-trivial theories. In this regard, paraconsistent theories do not satisfy, in general,
the principle of non-contradiction, i.e., ¬(A ∧ ¬A).

We can also define a paracomplete logic. A paracomplete logic is a logic, in
which the principle of excluded middle, i.e., A ∨ ¬A is not a theorem. In this sense,
intuitionistic logic is one of the paracomplete logics. A paracomplete theory is a
theory based on paracomplete logic.

Finally, the logic which is simultaneously paraconsistent and paracomplete is
called non-alethic logic.

The important problems handled by paraconsistent logics include the paradoxes
of set theory, the semantic paradoxes, and some issues in dialectics. These problems
are central to philosophy and philosophical logic. However, paraconsistent logics
have later found interesting applications in AI, in particular, expert systems, belief,
and knowledge, among others, since the 1980s; see da Costa and Subrahmanian [29].

Annotated logics were introduced by Subrahmanian to provide a foundation for
paraconsistent logic programming; see Subrahmanian [45] and Blair and Subrah-
manian [22]. Paraconsistent logic programming can be seen as an extension of logic
programming based on classical logic.

In 1989, Kifer and Lozinskii proposed a logic for reasoning with inconsistency,
which is related to annotated logics; see Kifer and Lozinskii [35, 36]. In the same
year, Kifer and Subrahmanian extended annotated logics by introducing generalized
annotated logics in the context of logic programming; see Kifer and Subrahmanian
[37]. In 1990, a resolution-style automatic theorem-proving method for annotated
logics was implemented; see da Costa et al. [28].

Of course, annotated logics were developed as a foundation for paraconsistent
logic programming, but they have interesting features to be examined by logicians.
Formally, annotated logics are ingeneral non-alethic in the sense of the above termi-
nology. From a viewpoint of paraconsistent logicians, annotated logicswere regarded
as new systems.

In 1991, da Costa and others started to study annotated logics from a foundational
point of view; see da Costa et al. [26, 30]. In these works, propositional and predicate
annotated logics were formally investigated by presenting axiomatization, semantics
and completeness results, and some applications of annotated logics were briefly
surveyed.

In 1992, Jair Minoro Abe wrote Ph.D. thesis on the foundations of annotated
logics under Prof. Newton C.A. da Costa at University of São Paulo; see Abe [1].
Abe proposed annotated modal logics which extend annotated logics with modal
operator in Abe [2]; also see Akama and Abe [9].

52 S. Akama

Some formal results including decidability annotated logics were presented in
Abe and Akama [6]. Abe and Akama also investigated predicate annotated logics
by the method of ultraproducts in Abe and Akama [5]. Abe [3] studied an algebraic
semantics of annotated logics.

Now, we formally introduce annotated logics. The language of the propositional
annotated logics Pτ . We denote by L the language of Pτ . Annotated logics are
based on some arbitrary fixed finite lattice called a lattice of truth-values denoted by
τ = 〈|τ |,≤,∼〉, which is the complete lattice with the ordering ≤ and the operator
∼:|τ |→|τ |.

Here,∼ gives the “meaning” of atomic-level negation of Pτ . We also assume that

 is the top element and ⊥ is the bottom element, respectively. In addition, we use
two lattice-theoretic operations: ∨ for the least upper bound and ∧ for the greatest
lower bound.1

Definition 5.1 (Symbols) The symbols of Pτ are defined as follows:

1. Propositional symbols: p, q, . . . (possibly with subscript)
2. Annotated constants: μ, λ, . . . ∈ |τ |
3. Logical connectives: ∧ (conjunction), ∨ (disjunction), → (implication), and

¬ (negation)
4. Parentheses: (and)

Definition 5.2 (Formulas) Formulas are defined as follows:

1. If p is a propositional symbol and μ ∈ |τ | is an annotated constant, then pμ is a
formula called an annotated atom.

2. If F is a formula, then ¬F is a formula.
3. If F and G are formulas, then F ∧ G, F ∨ G, F → G are formulas.
4. If p is a propositional symbol andμ ∈ |τ | is an annotated constant, then a formula

of the form¬k pμ (k ≥ 0) is called a hyper-literal. A formulawhich is not a hyper-
literal is called a complex formula.

Here, some remarks are in order. The annotation is attached only at the atomic level.
An annotated atom of the form pμ can be read “it is believed that p’s truth-value is
at least μ”. In this sense, annotated logics incorporate the feature of many-valued
logics.

A hyper-literal is special kind of formula in annotated logics. In the hyper-literal
of the form ¬k pμ, ¬k denotes the k’s repetition of ¬. More formally, if A is an
annotated atom, then ¬0A is A, ¬1A is ¬A, and ¬k A is ¬(¬k−1A). The convention
is also use for ∼.

Next, we define some abbreviations.

1We employ the same symbols for lattice-theoretical operations as the corresponding logical con-
nectives.

5 A Survey of Annotated Logics 53

Definition 5.3 Let A and B be formulas. Then, we put:

A ↔ B =de f (A → B) ∧ (B → A)

¬∗A =de f A → (A → A) ∧ ¬(A → A)

Here, ↔ is called the equivalence and ¬∗ strong negation, respectively.

Observe that strong negation in annotated logics behaves classically in that it has all
the properties of classical negation.

We turn to a semantics for Pτ . We here describe a model-theoretic semantics
for Pτ . Let P is the set of propositional variables. An interpretation I is a function
I : P → τ . To each interpretation I , we associate a valuation vI : F → 2, where
F is a set of all formulas and 2 = {0, 1} is the set of truth-values. Henceforth, the
subscript is suppressed when the context is clear.

Definition 5.4 (Valuation) A valuation v is defined as follows:
If pλ is an annotated atom, then

v(pλ) = 1 iff I (p) ≥ λ,
v(pλ) = 0 otherwise,
v(¬k pλ) = v(¬k−1 p∼λ), where k ≥ 1.

If A and B are formulas, then

v(A ∧ B) = 1 iff v(A) = v(B) = 1,
v(A ∨ B) = 0 iff v(A) = v(B) = 0,
v(A → B) = 0 iff v(A) = 1 and v(B) = 0.

If A is a complex formula, then

v(¬A) = 1 − v(A).

Say that the valuation v satisfies the formula A if v(A) = 1 and that v falsifies A if
v(A) = 0. For the valuation v, we can obtain the following lemmas.

Lemma 5.1 Let p be a propositional variable and μ ∈ |τ | (k ≥ 0), then we have:

v(¬k pμ) = v(p∼kμ).

Lemma 5.2 Let p be a propositional variable, then we have:

v(p⊥) = 1

Lemma 5.3 For any complex formula A and B and any formula F, the valuation v

satisfies the following:

1. v(A ↔ B) = 1 iff v(A) = v(B)

2. v((A → A) ∧ ¬(A → A)) = 0

3. v(¬∗A) = 1 − v(A)

4. v(¬F ↔ ¬∗F) = 1

54 S. Akama

We here define the notion of semantic consequence relation denoted by |=. Let
Γ be a set of formulas and F be a formula. Then, F is a semantic consequence of
Γ , written Γ |= F , iff for every v such that v(A) = 1 for each A ∈ Γ , it is the case
that v(F) = 1. If v(A) = 1 for each A ∈ Γ , then v is called a model of Γ . If Γ is
empty, then Γ |= F is simply written as |= F to mean that F is valid.

Lemma 5.4 Let p be a propositional variable and μ, λ ∈|τ |. Then, we have:
1. |= p⊥
2. |= pμ → pλ, μ ≥ λ

3. |= ¬k pμ ↔ p∼kμ, k ≥ 0

The consequence relation |= satisfies the next property.

Lemma 5.5 Let A, B be formulas. Then, if |= A and |= A → B then |= B.

Lemma 5.6 Let F be a formula and p a propositional variable. (μi)i∈J be an
annotated constant, where J is an indexed set. Then, if |= F → pμ, then F → pμi ,
where μ = ∨

μi .

As a corollary to Lemma 5.6, we can obtain the following lemma.

Lemma 5.7 |= pλ1 ∧ pλ2 ∧ · · · ∧ pλm → pλ, where λ =
m∨

i=1

λi .

Next, we discuss some results related to paraconsistency and paracompleteness.

Definition 5.5 (Complementary property) A truth-value μ ∈ τ has the complemen-
tary property if there is a λ such that λ ≤ μ and ∼ λ ≤ μ. A set τ ′ ⊆ τ has the
complementary property iff there is some μ ∈ τ ′ such that μ has the complementary
property.

Definition 5.6 (Range) Suppose I is an interpretation of the language L . The range
of I , denoted range(I), is defined to be range(I) = {μ | (∃A ∈ BL)I (A) = μ},
where BL denotes the set of all ground atoms in L .

For Pτ , ground atoms correspond to propositional variables. If the range of the
interpretation I satisfies the complementary property, then the following theorem
can be established.

Theorem 5.1 Let I be an interpretation such that range(I) has the complementary
property. Then, there is a propositional variable p and μ ∈ |τ| such that

v(pμ) = v(¬pμ) = 1.

Theorem 5.1 states that there is a case in which for some propositional variable
it is both true and false, i.e., inconsistent. The fact is closely tied with the notion of
paraconsistency.

5 A Survey of Annotated Logics 55

Definition 5.7 (¬-inconsistency) We say that an interpretation I is ¬-inconsistent
iff there is a propositional variable p and an annotated constant μ ∈ |τ | such that
v(pμ) = v(¬pμ) = 1.

Therefore, ¬-inconsistency means that both A and ¬A are simultaneously true
for some atomic A. Below, we formally define the concepts of non-triviality, para-
consistency and paracompleteness.

Definition 5.8 (Non-triviality) We say that an interpretation I is non-trivial iff there
is a propositional variable p and an annotated constantμ ∈ |τ | such that v(pμ) = 0.

By Definition 5.8, we mean that not every atom is valid if an interpretation is
non-trivial.

Definition 5.9 (Paraconsistency) We say that a interpretation I is paraconsistent iff
it is both ¬-inconsistent and non-trivial. Pτ is called paraconsistent iff there is an
interpretation of I of Pτ such that I is paraconsistent.

Definition 5.9 allows the case in which both A an ¬A are true, but some formula
B is false in some paraconsistent interpretation I .

Definition 5.10 (Paracompleteness)We say that an interpretation I is paracomplete
iff there is a propositional variable p and a annotated constant λ ∈ |τ | such that
v(pλ) = v(¬pλ) = 0. Pτ is called paracomplete iff there is an interpretation I of
Pτ such that I is paracomplete.

From Definition 5.10, we can see that in the paracomplete interpretation I , both
A and ¬A are false. We say that Pτ is non-alethic iff it is both paraconsistent and
paracomplete. Intuitively speaking, paraconsistent logic can deal with inconsistent
information and paracomplete logic can handle incomplete information.

This means that non-alethic logics like annotated logics can serve as logics for
expressing both inconsistent and incomplete information. This is one of the starting
points of our study of annotated logics.

As the following Theorems 5.2 and 5.3 indicate, paraconsistency and paracom-
pleteness in Pτ depend on the cardinality of τ .

Theorem 5.2 Pτ is paraconsistent iff card(τ) ≥ 2, where card(τ) denotes the
cardinality (cardinal number) of the set τ .

Theorem 5.3 If card(τ) ≥ 2, then there are annotated systems Pτ such that they
are paracomplete.

The above two theorems imply that to formalize a non-alethic logic based on
annotated logics we need at least both the top and bottom elements of truth-values.
The simplest lattice of truth-values is FOU R in Belnap [20, 21].

56 S. Akama

Definition 5.11 (Theory) Given an interpretation I , we can define the theory Th(I)
associated with I to be a set:

Th(I) = Cn({pμ | p ∈ P and I (p) ≥ μ}).
Here, Cn is the semantic consequence relation, i.e.,

Cn(Γ) = {F | F ∈ F and Γ |= F}.
Here, Γ is a set of formulas.

Th(I) can be extended for any set of formulas.

Theorem 5.4 An interpretation I is ¬-inconsistent iff T h(Γ) is ¬-inconsistent.

Theorem 5.5 An interpretation I is paraconsistent iff T h(I) is paraconsistent.

The next lemma states that the replacement of equivalent formulas within the
scope of ¬ does not hold in Pτ as in other paraconsistent logics.

Lemma 5.8 Let A be any hyper-literal. Then, we have:

1. |= A ↔ ((A → A) → A)

2. �|= ¬A ↔ ¬(((A → A) → A))

3. |= A ↔ (A ∧ A)

4. �|= ¬A ↔ ¬(A ∧ A)

5. |= A ↔ (A ∨ A)

6. �|= ¬A ↔ ¬(A ∨ A)

As obvious from the above proofs, (1), (3) and (5) hold for any formula A. But,
(2), (4) and (6) cannot be generalized for any A.

By the next theorem, we can find the connection of Pτ and the positive fragment
of classical propositional logic C .

Theorem 5.6 If F1, . . . , Fn are complex formulas and K (A1, . . . , An) is a tautology
ofC,where A1, . . . , An are the sole propositional variable occurring in the tautology,
then K (F1, . . . , Fn) is valid in Pτ . Here, K (F1, . . . , Fn) is obtained by replacing
each occurrence of Ai , 1 ≤ i ≤ n, in K by Fi .

Next, we consider the properties of strong negation ¬∗.

Theorem 5.7 Let A, B be any formulas. Then,

1. |= (A → B) → ((A → ¬∗B) → ¬∗A)

2. |= A → (¬∗A → B)

3. |= A ∨ ¬∗A

5 A Survey of Annotated Logics 57

Theorem 5.7 tells us that strong negation has all the basic properties of classical
negation. Namely, (1) is a principle of reductio ad abusurdum, (2) is the related
principle of the law of non-contradiction, and (3) is the law of excluded middle.
Note that ¬ does not satisfy these properties. It is also noticed that for any complex
formula A |= ¬A ↔ ¬∗A but that for any hyper-literal Q �|= ¬Q ↔ ¬∗Q.

From these observations, Pτ is a paraconsistent and paracomplete logic, but
adding strong negation enables us to perform classical reasoning.

Next, we provide an axiomatization of Pτ in the Hilbert style. There are many
ways to axiomatize a logical system, one of which is the Hilbert system. Hilbert
system can be defined by the set of axioms and rules of inference. Here, an axiom
is a formula to be postulated as valid, and rules of inference specify how to prove a
formula.

We are now ready to give a Hilbert style axiomatization of Pτ , called Aτ . Let
A, B,C be arbitrary formulas, F,G be complex formulas, p be a propositional
variable, and λ,μ, λi be annotated constant. Then, the postulates are as follows (cf.
Abe [1]):

Postulates for Aτ

(→1) (A → (B → A)

(→2) (A → (B → C)) → ((A → B) → (A → C))

(→3) ((A → B) → A) → A
(→4) A, A → B/B
(∧1) (A ∧ B) → A
(∧2) (A ∧ B) → B
(∧3) A → (B → (A ∧ B))

(∨1) A → (A ∨ B)

(∨2) B → (A ∨ B)

(∨3) (A → C) → ((B → C) → ((A ∨ B) → C))

(¬1) (F → G) → ((F → ¬G) → ¬F)

(¬2) F → (¬F → A)

(¬3) F ∨ ¬F
(τ1) p⊥
(τ2) ¬k pλ ↔ ¬k−1 p∼λ

(τ3) pλ → pμ, where λ ≥ μ

(τ4) pλ1 ∧ pλ2 ∧ · · · ∧ pλm → pλ, where λ =
m∨

i=1

λi

Here, except (→4), these postulates are axioms. (→4) is a rule of inferences called
modus ponens (MP).

In da Costa et al. [30], a different axiomatization is given, but it is essentially the
same as ours. There, the postulates for implication are different. Namely, although
(→1) and (→3) are the same (although the naming differs), the remaining axiom is:

(A → B) → ((A → (B → C)) → (A → C))

58 S. Akama

It is well known that there are many ways to axiomatize the implicational fragment
of classical logic C . In the absence of negation, we need the so-called Pierce’s law
(→3) for C .

In (¬1), (¬2), (¬3), F and G are complex formulas. In general, without this
restriction on F and G, these are not sound rules due to the fact that they are not
admitted in annotated logics.

da Costa et al. [30] fuses (τ1) and (τ2) as the single axiom in conjunctive form.
But, we separate it in two axioms for our purposes. Also there is a difference in the
final axiom. They present it for infinite lattices as

A → pλ j for every j ∈ J , then A → pλ, where λ =
∨

j∈J

λ j .

If τ is a finite lattice, this is equivalent to the form of (τ2).
As usual, we can define a syntactic consequence relation in Pτ . Let Γ be a set

of formulas and G be a formula. Then, G is a syntactic consequence of Γ , written
Γ � G, iff there is a finite sequence of formulas F1, F2, . . . , Fn , where Fi belongs to
Γ , or Fi is an axiom (1 ≤ i ≤ n), or Fj is an immediate consequence of the previous
two formulas by (→4). This definition can extend for the transfinite case in which n
is an ordinal number. If Γ = ∅, i.e. � G, G is a theorem of Pτ .

LetΓ,Δ be sets of formulas and A, B be formulas. Then, the consequence relation
� satisfies the following conditions.

1. if Γ � A and Γ ⊂ Δ then Δ � A.

2. if Γ � A and Δ, A � B then Γ,Δ � B.
3. if Γ � A, then there is a finite subset Δ ⊂ Γ such that Δ � A.

In the Hilbert system above, the so-called deduction theorem holds.

Theorem 5.8 (Deduction theorem)LetΓ be a set of formulas and A, B be formulas.
Then, we have:

Γ, A � B ⇒ Γ � A → B.

The following theorem shows some theorems related to strong negation.

Theorem 5.9 Let A and B be any formula. Then,

1. � A ∨ ¬∗A
2. � A → (¬∗A → B)

3. � (A → B) → ((A → ¬∗B) → ¬∗A)

From Theorems 5.9, 5.10 follows.

5 A Survey of Annotated Logics 59

Theorem 5.10 For arbitrary formulas A and B, the following hold:

1. � ¬∗(A ∧ ¬∗A)

2. � A ↔ ¬∗¬∗A
3. � (A ∧ B) ↔ ¬∗(¬∗A ∨ ¬∗B)

4. � (A → B) ↔ (¬∗A ∨ B)

5. � (A ∨ B) ↔ ¬∗(¬∗A ∧ ¬∗B)

Theorem 5.10 implies that by using strong negation and a logical connective
other logical connectives can be defined as in classical logic. If τ = {t, f }, with
its operations appropriately defined, we can obtain classical propositional logic in
which ¬∗ is classical negation.

Now, we provide some formal results of Pτ including completeness and decid-
ability.

Lemma 5.9 Let p be a propositional variable andμ, λ, θ ∈ |τ |. Then, the following
hold:

1. � pλ∨μ → pλ

2. � pλ∨μ → pμ

3. λ ≥ μ and λ ≥ θ ⇒ � pλ → pμ∨θ

4. � pμ → pμ∧θ .

5. � pθ → pμ∧θ .

6. λ ≤ μ and λ ≤ θ ⇒ � pμ∧θ

7. � pμ ↔ pμ∨μ, � pμ ↔ pμ∧μ

8. � pμ∨λ ↔ pλ∨μ, � pμ∧λ ↔ pλ∧μ

9. � p(μ∨λ)∨θ∨ → pμ∨(λ∨θ), � p(μ∧λ)∧θ∨ → pμ∧(λ∧θ)

10. p(μ∨λ)∧μ → pμ, p(μ∧λ)∨μ → pμ

11. λ ≤ μ ⇒ � pλ∨μ → pμ

12. λ ∨ μ = μ ⇒ � pμ → pλ

13. μ ≥ λ ⇒ ∀θ ∈|τ | (� pμ∨θ → pλ∨θ and � pμ∧θ → pλ∧θ)

14. μ ≥ λ and θ ≥ ϕ ⇒ � pμ∨θ → pλ∨ϕ and pμ∧θ → pλ∧ϕ

15. � pμ∧(λ∨θ) → p(μ∧λ)∨(μ∧θ), � pμ∨(λ∧θ) → p(μ∨λ)∧(μ∨θ)

16. � pμ ∧ pλ ↔ pμ∧λ

17. � pμ∨λ → pμ ∨ pλ

Example 5.1 Consider the complete lattice τ = N ∪ {ω}, where N is the set of
natural numbers. The ordering on τ is the usual ordering on ordinals, restricted
to the set τ . Consider the set Γ = {p0, p1, p2, . . .}, where pω /∈ Γ . It is clear that
Γ � pω, but an infinitary deduction is required to establish this.

60 S. Akama

Definition 5.12 Δ = {A ∈ F | Δ � A}
Definition 5.13 Δ is said to be trivial iffΔ = F (i.e., every formula in our language
is a syntactic consequence of Δ); otherwise, Δ is said to be non-trivial. Δ is said to
be inconsistent iff there is some formula A such thatΔ � A andΔ � ¬A; otherwise,
Δ is consistent.

From the definition of triviality, the next theorem follows:

Theorem 5.11 Δ is trivial iff Δ � A ∧ ¬A (or Δ � A and Δ � ¬∗A) for some
formula A.

Theorem 5.12 Let Γ be a set of formulas, A, B be any formulas, and F be any
complex formula. Then, the following hold.

1. Γ � A and Γ � A → B ⇒ Γ � B

2. A ∧ B � A

3. A ∧ B � B

4. A, B � A ∧ B

5. A � A ∨ B

6. B � A ∨ B

7. Γ, A � C and Γ, B � C ⇒ Γ, A ∨ B � C

8. � F ↔ ¬∗F
9. Γ, A � B and Γ, A � ¬∗B ⇒ Γ � ¬∗A

10. Γ, A � B and Γ,¬∗A � B ⇒ Γ � B.

Note here that the counterpart of Theorem 5.12 (10) obtained by replacing the
occurrence of ¬∗ by ¬ is not valid.

Now, we are in a position to prove the soundness and completeness of Pτ . Our
proof method for completeness is based on maximal non-trivial set of formulas; see
Abe [1] and Abe and Akama [6]. da Costa et al. [30] presented another proof using
Zorn’s Lemma.

Theorem 5.13 (Soundness) Let Γ be a set of formulas and A be any formula. Aτ

is a sound axiomatization of Pτ , i.e., if Γ � A then Γ |= A.

For proving the completeness theorem, we need some theorems.

Theorem 5.14 Let Γ be a non-trivial set of formulas. Suppose that τ is finite. Then,
Γ can be extended to a maximal (with respect to inclusion of sets) non-trivial set
with respect to F.

5 A Survey of Annotated Logics 61

Theorem 5.15 Let Γ be a maximal non-trivial set of formulas. Then, we have the
following:

1. if A is an axiom of Pτ , then A ∈ Γ

2. A, B ∈ Γ iff A ∧ B ∈ Γ

3. A ∨ B ∈ Γ iff A ∈ Γ or B ∈ Γ

4. if pλ, pμ ∈ Γ , then pθ ∈ Γ , where θ = max(λ, μ)

5. ¬k pμ ∈ Γ iff ¬k−1 p∼μ ∈ Γ , where k ≥ 1

6. if A, A → B ∈ Γ , then B ∈ Γ

7. A → B ∈ Γ iff A /∈ Γ or B ∈ Γ

Theorem 5.16 Let Γ be a maximal non-trivial set of formulas. Then, the character-
istic function χ of Γ , that is, χΓ → 2 is the valuation function of some interpretation
I : P → |τ |.

Here is the completeness theorem for Pτ .

Theorem 5.17 (Completeness) Let Γ be a set of formulas and A be any formula. If
τ is finite, thenAτ is a complete axiomatization for Pτ , i.e., if Γ |= A then Γ � A.

The decidability theorem also holds for finite lattice.

Theorem 5.18 (Decidability) If τ is finite, then Pτ is decidable.

The completeness does not in general hold for infinite lattice. But, it holds for
special case.

Definition 5.14 (Finite annotation property) Suppose that Γ be a set of formulas
such that the set of annotated constants occurring in Γ is included in a finite sub-
structure of τ (Γ itself may be infinite). In this case, Γ is said to have the finite
annotation property.

Note that if τ ′ is a substructure of τ then τ ′ is closed under the operations ∼,∨
and ∧. One can easily prove the following from Theorem 5.17.

Theorem 5.19 (Finitary Completeness) Suppose that Γ has the finite annotation
property. If A is any formula such that Γ � A, then there is a finite proof of A
from Γ .

Theorem 5.19 tells us that even if the set of the underlying truth-values of Pτ

is infinite (countably or uncountably), as long as theories have the finite annotation
property. The completeness result applied to them, i.e.,Aτ is complete with respect
to such theories.

In general, when we consider theories that do not possess the finite annotation
property, it may be necessary to guarantee completeness by adding a new infinitary
inference rule (ω-rule), similar in spirit to the rule used by da Costa [24] in order to

62 S. Akama

cope with certain models in a particular family of infinitary language. Observe that
for such cases a desired axiomatization of Pτ is not finitary.

From the classical result of compactness,we can state a version of the compactness
theorem.

Theorem 5.20 (Weak Compactness) Suppose that Γ has the finite annotation prop-
erty. If A is any formula such that Γ � A, then there is a finite subset Γ ′ of Γ such
that Γ ′ � A.

Annotated logics Pτ provide a general framework, and can be used to reasoning
about many different logics. Below we present some examples.

The set of truth-values FOU R = {t, f,⊥,
}, with¬ defined as:¬t = f,¬ f =
t,¬⊥ = ⊥,¬
 =
. Four-valued logic based on FOU R was originally due to
Belnap [20, 21] to model internal states in a computer.

Subrahmanian [45] formalized an annotated logic with FOU R as a foundation
for paraconsistent logic programming; also see Blair and Subrahmanian [22].

Their annotated logic may be used for reasoning about inconsistent knowledge
bases. For example, we may allow logic programs to be finite collections of formulas
of the form:

(A : μ0) ↔ (B1 : μ1)& · · ·&(Bn : μn)

where A and Bi (1 ≤ i ≤ n) are atoms and μ j (0 ≤ j ≤ n) are truth-values in
FOU R.

Intuitively, such programs may contain “intuitive” inconsistencies–for example,
the pair

((p : f), (p : t))
is inconsistent. If we append this program to a consistent program P , then the result-
ing union of these two programs may be inconsistent, even though the predicate
symbols p occurs nowhere in program P .

Such inconsistencies can easily occur in knowledge based systems, and should
not be allowed to trivialize the meaning of a program. However, knowledge based
systems based on classical logic cannot handle the situation since the program is
trivial.

In Blair and Subrahmanian [22], it is shown how the four-valued annotated logic
may be used to describe this situation. Later, Blair and Subrahmanian’s annotated
logic was extended as generalized annotated logics by Kifer and Subrahmanian [37].

There are also other examples which can be dealt with by annotated logics. The
set of truth-values FOU R with negation defined as boolean complementation forms
an annotated logic.

The unit interval [0, 1] of truth-values with ¬x = 1 − x is considered as the base
of annotated logic for qualitative or fuzzy reasoning. In this sense, probabilistic and
fuzzy logics could be generalized as annotated logics.

5 A Survey of Annotated Logics 63

The interval [0, 1] × [0, 1] of truth-values can be also used for annotated logics for
evidential reasoning. Here, the assignment of the truth-value (μ1, μ2) to proposition
p may be thought of as saying that the degree of belief in p is μ1, while the degree
of disbelief is μ2. Negation can be defined as ¬(μ1, μ2) = (μ2, μ1).

Note that the assignment of [μ1, μ2] to a proposition p by an interpretation I does
not necessarily satisfy the condition μ1 + μ2 ≤ 1. This contrasts with probabilistic
reasoning. Knowledge about a particular domain may be gathered from different
experts (in that domain), and these experts may different views.

Some of these views may lead to a “strong” belief in a proposition; likewise, other
experts may have a “strong” disbelief in the same proposition. In such a situation,
it seems appropriate to report the existence of conflicting opinions, rather than use
ad-hoc means to resolve this conflict.

5.3 Predicate Annotated Logics Qτ

As mentioned above, da Costa et al. [30] investigated propositional annotated logics
Pτ , and suggested their predicate extension Qτ (also denoted QT). We can look at
the detailed formulation of Qτ in da Costa et al. [26]; also see Abe [1].

Predicate annotated logics Qτ can be formalized as a two-sorted first-order logic.
We repeat some definitions below. τ = 〈|τ|,≤,∼〉 is some arbitrary, but fixed com-
plete lattice, with the ordering ≤ and the operator ∼:|τ|→|τ|. The bottom element
of this lattice is denoted by ⊥, and top element is denoted by
.

The language Lτ of Qτ is a first-order language without equality. Abe [1] intro-
duced equality into Qτ.

Definition 5.15 (Symbols) Primitive symbols are the following:

1. Logical connectives: ∧ (conjunction), ∨ (disjunction), → (implication), and
¬ (negation)

2. Individual variables: a denumerably infinite set of variable symbols

3. Individual constants: an arbitrary family of constant symbols

4. Quantifiers: ∀ (for all) and ∃ (exists)

5. Function symbols: for each natural number n > 0, a collection of function
symbols of arity n

6. Annotated predicate symbols: for any natural number n ≥ 0, and any λ ∈ τ ,
a family of annotated predicate symbols pτ

7. Parentheses: (and)

Here, ∀ is called the universal quantifier and ∃ the existential quantifier. We define
the notion of term as usual. Given an annotated predicate symbol pλ of arity n and
n terms t1, . . . , tn , an annotated atom is an expression of the form pλ(t1, . . . , tn).

64 S. Akama

Definition 5.16 (Formulas) Formulas are defined as follows:

1. An annotated atom is a formula.

2. If F is a formula, then ¬F is a formula.

3. If F and G are formulas, then F ∧ G, F ∨ G, F → G are formulas.

4. If F is a formula and x is an individual variable, then ∀xF and ∃xF are
formulas.

Definition 5.17 (Hyper-literal and complex formulas) Hyper-literal and complex
formulas are defined as follows. A formula of the form ¬k pμ(t1, . . . , tn) (k ≥ 0)
is called a hyper-literal. A formula which is not a hyper-literal is called a complex
formula

As in Pτ , we may also use the formulas of the form A ↔ B and ¬∗A in Qτ .
Here, ↔ denotes the equivalence and ¬∗ strong negation, respectively. We can also
introduce the equality, denoted =, into Qτ . If t and s are terms, then s = t is also a
formula. s = t is read “s and t are equal”.

Now, we describe a semantics for Qτ , which is a variant of the semantics for
standard first-order logic.

Definition 5.18 (Interpretation) An interpretation I for the language Lτ of Qτ

consists of a non-empty set, denoted by dom(I), and called the domain, together
with

1. a function ηI that maps constants of Lτ to dom(I)

2. a function ζI that assigns, to each function symbol f of arity n in Lτ , a function
from (dom(I))n to dom(I)

3. a function χI that assigns, to each predicate symbol of arity n in Lτ , a function
from (dom(I))n to τ .

Definition 5.19 (Variable assignment) Suppose I is an interpretation for Lτ . Then,
a variable assignment v for Lτ with respect to I is a map from the set of variables
symbols of Lτ to dom(I).

Definition 5.20 (Denotation) The denotation dI,v(t) of a term t with reference to
an interpretation I and variable assignment v is defined inductively as follows:

1. If t is a constant symbol, then dI,v(t) = η(t).

2. If t is a variable symbol, then dI,v(t) = v(t).

3. If t is a function symbol, then dI,v(t) = ζ(f)(dI,v(t1), . . . , dI,v(tn)).

Definition 5.21 (Truth relation) Let I and v be an interpretation of Lτ and a variable
assignment with reference to I , respectively. We also suppose that A is an ordinary
atom, and that F,G and H are any formulas whatsoever. Then, the truth relation
I, v |= A, saying that A is true with reference to an interpretation I and variable
assignment v, is defined as follows:

5 A Survey of Annotated Logics 65

1. I, v |= pμ(t1, . . . , tn) iff χI (p)(dI,v(t1), . . . , dI,v(tn)) ≥ μ

2. I, v |= ¬k Aμ iff I, v |= ¬k−1A∼μ

3. I, v |= F ∧ G iff I, v |= F and I, v |= G

4. I, v |= F ∨ G iff I, v |= F or I, v |= G

5. I, v |= F → G iff I, v �|= F or I, v |= G

6. I, v |= ¬F iff I, v �|= F , where F is not a hyper-literal

7. I, v |= ∃xH iff for some variable assignment v′ such that for all variables y
different from x , v(y) = v′(y), we have that I, v′ |= H

8. I, v |= ∀xH iff for all variable assignments v′ such that for all variables y
different from x , v(y) = v′(y), we have that I, v′ |= H

9. I |= H iff for all variable assignments v associated with I , I, v |= H

The equality s = t is interpreted as follows:

I, v |= s = t iff dI,v(s) = dI,v(t)

Here, = at the right hand side of ‘iff’ denotes the equality symbol in the meta-
language, and it reads classically. We could also introduce annotated quality =λ as a
binary annotated atom. However, we do not go into details here.

We can define the notions of validity, model and semantic consequence as in
Sect. 5.2. Let Γ ∪ {H} be a set of formulas. We write |= H , and say that H is valid
(in Qτ) if, for every interpretation I , I |= H . If I |= A for each A ∈ Γ , I is amodel
of Γ . We say that H is a semantic consequence of Γ iff for any interpretation I such
that I |= G for all G ∈ Γ , it is the case that I |= F .

The following lemmas concerns the properties of |=, whose proofs are immediate
from the corresponding proof in the previous chapter.

Lemma 5.10 For any complex formula A and B and any formula F, the valuation
v satisfies the following:

1. |= A ↔ B iff |= A → B and |= B → A

2. �|= (A → A) ∧ ¬(A → A)

3. |= ¬∗A iff �|= A

4. |= ¬F ↔ ¬∗F

Lemma 5.11 Let pμ(t1, . . . , tn) be an annotated atom and μ, λ ∈ |τ |. Then, we
have:

1. |= p⊥(t1, . . . , tn)

2. |= pμ(t1, . . . , tn) → pλ(t1, . . . , tn), μ ≥ λ

3. |= ¬k pμ(t1, . . . , tn) ↔ ¬k−1 p∼μ(t1, . . . , tn), k ≥ 0

Next, we show a Hilbert style axiomatization of Qτ , calledA. In the formulation
of the postulates of A, the symbols A, B,C denote any formula whatsoever, F and
G denote complex formulas, and Pλ is an annotated atom.

66 S. Akama

Postulates forA described in Abe [1] are as follows; also see da Costa et al. [26].

Postulates for A
(→1) (A → (B → A)

(→2) (A → (B → C)) → ((A → B) → (A → C))

(→3) ((A → B) → A) → A
(→4) A, A → B/B
(∧1) (A ∧ B) → A
(∧2) (A ∧ B) → B
(∧3) A → (B → (A ∧ B))

(∨1) A → (A ∨ B)

(∨2) B → (A ∨ B)

(∨3) (A → C) → ((B → C) → ((A ∨ B) → C))

(¬1) (F → G) → ((F → ¬G) → ¬F)

(¬2) F → (¬F → A)

(¬3) F ∨ ¬F
(∃1) A(t) → ∃x A(x)
(∃2) A(x) → B/∃x A(x) → B
(∀1) ∀x A(x) → A(t)
(∀2) A → B(x)/A → ∀x B(x)
(τ1) p⊥(a1, . . . , an)
(τ2) ¬k pλ(a1, . . . , an) ↔ ¬k−1 p∼λ(a1, . . . , an)
(τ3) pλ(a1, . . . , an) → pμ(a1, . . . , an), where λ ≥ μ

(τ4) If A → pλ j (a1, . . . , an), then A → pλ(a1, . . . , an) for every j ∈ J,

whereλ =
m∨

i=1

λi

As τ is a complete lattice, the supremum in (τ4) is well-defined. The postulates for
quantifiers are subject to the usual restrictions. When τ is finite, (τ4) can be replaced
by the schema:

pλ1 (a1, . . . , an) ∧ pλ2 (a1, . . . , an) ∧ · · · ∧ pλm (a1, . . . , an) → pλ(a1, . . . , an),

where λ =
m∨

i=1

λi

Here, (→4), (∃4), (∀4) and (τ4) are regarded as rules of inference
Abe [1] also added the following three axioms for equality:

(=1) x = x
(=2) x1 = y1 → (. . . → (xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn)))
(=3) x1 = y1 → (. . . → (xn = yn → P(x1, . . . , xn) → P(y1, . . . , yn)))

Here, f and P are function symbol and predicate symbol, respectively.
As in Aτ , we easily define the syntactic concepts related to A; in particular the

concepts of syntactic consequence � is defined in the normal way. We only note that
the notion of deduction (proof) is not finitary if τ is infinite.

5 A Survey of Annotated Logics 67

da Costa, Abe and Subrahmanian’s axiomatization of A adopts different naming
for postulates, but it is equivalent to the above axiomatization. The deduction theorem
(Theorem 2.8) also holds for A.

Theorem 5.21 The following dualities of quantifiers hold:

1. � ∀x A ↔ ¬∗∃x¬∗A
2. � ∃x A ↔ ¬∗∀x¬∗A

Here are some formal results of Qτ . The first result is soundness of Qτ .

Theorem 5.22 (Soundness) Let Γ ∪ {A} be a set of formulas of Qτ . Then, Γ � A
(in A) implies that Γ � A, i.e., A is sound with respect to the semantics of Qτ .

The next result is completeness of Qτ in a restricted sense.

Theorem 5.23 (Completeness) Let Γ ∪ {A} be a set of formulas of Qτ . Then, if τ

is finite or if Γ ∪ {A} possesses the finite annotation property, we have that Γ |= A
entails Γ � A, i.e., A is complete with respect to the semantics of Qτ .

When τ is infinite, it seems that completeness can be obtained only by augmenting
A with an extra infinitary rule.

Qτ belong to the class of non-classical logics, and they are paraconsistent and
paracomplete. They have a weak negation ¬, but we can define the strong negation
¬∗, which is classical.

daCosta et al. [26] presented another axiomatization of Qτ with a different nature,
which is obtained by adjoining to the classical first-order logic, a weak negation ¬
plus some extra convenient postulates.

Let C be an axiomatization of classical first-order logic (without equality), in
which negation is denoted by ∼. The remaining primitives defined symbols of C are
the same as the corresponding one of Qτ . We also suppose that the atomic formulas
of the language of C are annotated atoms, as in Lτ . Furthermore, we suppose that we
have added to C a weak negation ¬.

We denote by A′ the axiomatic system obtained from C by adding the axioms
(¬1), (¬2), (¬3), (τ1), (τ2), (τ3), (τ4), and the rule:

If F and G are formulas such that G is obtained from F by the replacement
of a sub-formula of the form ¬∗A by A → (A → A) ∧ ¬(A → A) or by the
replacement of a sub-formula of the latter from by one of the first form, then
infer F ↔ G.

Theorem 5.24 A and A′ are equivalent; both characterize Qτ .

Theorem 5.24 reveals that annotated logic Qτ can be interpreted as an extension
of classical first-order logic C . This fact seems interesting theoretically as well as
practically.

Annotated logics can be used for various mathematical subjects. For example,
it is possible to work out a set theory based on Qτ . We will explore annotated set
theory. For this purpose, we need the notion of normal structure, and need to define
a fragment of Qτ .

http://dx.doi.org/10.1007/978-3-319-40418-9_2

68 S. Akama

Definition 5.22 (Normal structure) Let X be a non-empty set. A normal structure
based on X is a function f : X × X → τ .

We denote by Qτ 2 the logic Qτ obtained by suppressing all function symbols
and all predicate symbols, with the exception of one predicate symbol of arity 2 (a
binary predicate symbol) which we represent by ∈. Aτ 2 is then a dyadic predicate
calculus whose atoms are annotated by τ . An annotated atom of Qτ 2 has the form
∈λ (a, b), where a and b are terms and λ ∈ τ. This atom will be written a ∈λ b.

Intuitively, ∈ is the membership predicate symbol. The subscript λ denotes a
“degree” of membership. A normal structure is basically just a first-order interpre-
tation as defined earlier with the following differences. First, Qτ 2 contains only
one predicate symbol ∈ associated with different members of τ. Second, the normal
structures are the interpretations of ∈.
Theorem 5.25 Qτ 2 is sound with respect to the semantics of normal structures. If
τ is finite or we consider only sets of formulas sharing the finite annotation property,
then Qτ 2 is also complete.

5.4 Curry Algebras

We can develop an algebraic semantics for Pτ. Algebraic semantics is mathemat-
ically more elegant than model-theoretic semantics. However, algebraic semantics
for paraconsistent logics challenges standard formulation, since known techniques
cannot be properly used. Abe [3] proposed Curry algebra Pτ that algebraizes propo-
sitional annotated logics Pτ. Abe proved the completeness theorem for Pτ with
respect to the algebraic semantics.

In order to obtain algebraic versions of the majority of logical systems the pro-
cedure is the following: we define an appropriate equivalence relation in the set
of formulas (e.g. identifying equivalent formulas in classical propositional logic),
in such a way that the primitive connectives are compatible with the equivalence
relation, i.e., a congruence.

The resulting quotient system is the algebraic structure linked with the corre-
sponding logical system. By this process, Boolean algebra constitutes the algebraic
version of classical propositional logic, Heyting algebra constitutes the algebraic
version of intuitionistic propositional logic, and so on. Thus, the procedure is to
formulate an algebraic semantics.

However, in some non-classical logics, it is not always clear what “appropriate”
equivalence relation here can be; the non-existence of any significant equivalence
relation among formulas of the calculus can also take place. This occurs, for instance,
with some paraconsistent systems; see Mortensen [39]. Indeed, as pointed out by
Eytan [32], even for classical logic, it may not always be convenient to apply these
ideas.

5 A Survey of Annotated Logics 69

Now, we give some basic definitions related to Curry algebras. In Pτ , we define
A ≤ B by setting � A → B, and A ≡ B by setting A ≤ B and B ≤ A. Here, ≤ is
a quasi-order and ≡ is an equivalence relation, respectively. Let R be a set whose
elements are denoted by x, y, z, x ′, y′.

Definition 5.23 (Curry pre-ordered system) A system (R,≡,≤) is called a Curry
pre-ordered system, if

1. ≡ is an equivalence relation on R

2. x ≤ x

3. x ≤ y and y ≤ z imply x ≤ z

4. x ≤ y, x ′ ≡ and y′ ≡ y imply x ′ ≤ y′.

Definition 5.24 (Pre-lattice) A system (R,≡,≤) is called a pre-lattice, if (R,≡,≤)

is a Curry pre-ordered system and

1. inf{x, y} �= ∅
2. sup{x, y} �= ∅.
We denote by x ∧ y one element of the set of inf{x, y} and by x ∨ y one element of
the set of sup{x, y}.
Definition 5.25 (Implicative pre-lattice) A system (R,≡,≤) is called a implicative
pre-lattice, if

1. (R,≡,≤) is a pre-lattice

2. x ∧ (x → y) ≤ y

3. x ∧ y ≤ z iff x ≤ y → z.

Definition 5.26 An implicative pre-lattice (R,≡,≤) is called classic if (x → y) →
x ≤ y (Peirce’s law).

As is obvious from the above definitions, a classic implicative pre-lattice is a
pre-algebraic structure which can characterize positive classical propositional logic,
i.e., classical propositional logic without negation. As is well known, Peirce’s law
corresponds to the law of excluded middle.

We are now ready to define a Curry algebra Pτ . Let S be a non-empty set and
τ = (|τ|,≤) be a finite lattice with the operation ∼:|τ|→|τ|. We denote by S∗ the set
of all pairs (p, λ), where p ∈ S and λ ∈|τ|.

We now consider the set S∗ ∪ {¬,∧,∨,→}. Let S∗∗ be the smallest algebraic
structure freely generated by the set S∗ ∪ {¬,∧,∨,→} by the usual algebraic
method. Elements of S∗∗ are classified in two categories: hyper-literal elements are
of the form ¬k(p, λ) and complex elements are the remaining elements of S∗∗.

Now, we introduce the concept of a Curry algebra Pτ.

Definition 5.27 (Curry algebra Pτ) A Curry algebra Pτ (abbreviated by Pτ -
algebra) is a structure Rτ = (R, (|τ|,≤,∼),≡,→,¬) and, for p ∈ R, a ∈ R∗, x, y ∈
R∗∗:

70 S. Akama

1. R∗∗ is a classical implicative lattice with a greatest element 1

2. ¬ is a unary operator ¬ : R∗∗ → R∗∗

3. x → y ≤ (x → ¬y) → ¬x

4. x ≤ ¬x → a

5. p⊥ ≡ 1

6. x ∨ ¬x ≡ 1

7. ¬k(p, λ) ≡ ¬k−1(p,∼ λ), k ≥ 1

8. If μ ≤ λ then (p, μ) ≤ (p, λ)

9. (p, λ1) ∧ (p, λ2) ∧ · · · ∧ (p, λn) ≤ (p, λ), where λ =
n∨

i=1

λi

One can easily see that a Pτ -algebra is distributive and has a greatest element as
well as a first element.

Definition 5.28 Let x be an element of a Pτ -algebra. We put:

¬∗x = x → ((x → x) ∧ ¬(x → x))

In a Pτ -algebra, ¬∗x is a Boolean complement of x , so both x ∨ ¬∗x ≡ 1 and
x ∧ ¬∗x ≡ 0 hold.

Theorem 5.26 In a Pτ -algebra, the structure composed by the underlying set and
by operations ∧,∨ and ¬∗ is a pre-Boolean algebra. If we pass to the quotient
through the basic relation ≡, we obtain a Boolean algebra in the usual sense.

A pre-Boolean algebra is a partial preorder (R,≤) such that the quotient by
the relation ≡. Thus, by definition of Pτ -algebra, the mentioned structure is a pre-
Boolean algebra.

In addition, replacing the class of equivalent formulas by a formula can produce a
usual Boolean algebra in which the meet ∧ is conjunction, the join ∨ is disjunction,
and the complement is negation.

Definition 5.29 Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra, and (R, (|τ|,≤
,∼),≡,≤,→,¬∗) the Boolean algebra that is isomorphic to the quotient algebra
of (R, (|τ|,≤,∼),≡,≤,→,¬∗) by ≡ is called the Boolean algebra associated with
the Pτ -algebra.

Hence, we can establish the following first representation theorem for Pτ -algebra.

Theorem 5.27 Any Pτ -algebra is associated with a field of sets. Moreover, any
Pτ -algebra is associated with the field of sets simultaneously open and closed of a
totally disconnected compact Hausdorff space.

5 A Survey of Annotated Logics 71

This is not the only way of extracting Boolean algebra out of Pτ -algebra. There
is another natural Boolean algebra associated with a Pτ -algebra.

Definition 5.30 Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra. By RC we indi-
cate the set of all complex elements of (R, (|τ|,≤,∼),≡,≤,→,¬).

Then, the structure (RC, (|τ|,≤,∼),≡,≤,→,¬) constitutes a pre-Boolean alge-
bra which we call Boolean algebra c-associated with the Pτ -algebra (R, (|τ|,≤,∼
),≡,≤,→,¬). Thus, we obtain a second representation theorem for Pτ -algebra.

Theorem 5.28 Any Pτ -algebra is c-associated with a field of sets. Moreover, any
Pτ -algebra is c-associated with the field of sets simultaneously open and closed of
a totally disconnected compact Hausdorff space.

Theorems 5.27 and 5.28 show us that Pτ -algebra constitute interesting general-
izations of the concept of Boolean algebra. There are some open questions related
to these results. How many non-isomorphic Boolean algebra associated with a Pτ -
algebra is there? How many non-isomorphic Boolean algebra c-associated with a
Pτ -algebra is there? The answers to these questions can establish connections of
associated and c-associated algebra.

Next, we show soundness and completeness of Pτ -algebras using the notion of
filter and ideal of a Pτ -algebra.

Definition 5.31 (Filter) Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra. A subset
F of R is called a filter if:

1. x, y ∈ F imply x ∧ y ∈ F

2. x ∈ F and y ∈ R imply x ∨ y ∈ F

3. x ∈ F, y ∈ R, and x ≡ y imply y ∈ F .

Definition 5.32 (Ideal) Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra. A subset
I of R is called an ideal if:

1. x, y ∈ I imply x ∨ y ∈ I

2. x ∈ I and y ∈ R imply x ∧ y ∈ F

3. x ∈ I, y ∈ R, and x ≡ y imply y ∈ F .

Then, we have the following lemma whose proof is trivial.

Lemma 5.12 Let (R, (|τ|,≤,∼),≡,≤,→,¬) be a Pτ -algebra. A subset F of R is
a filter iff:

1. x, y ∈ F imply x ∧ y ∈ F

2. x ∈ F, y ∈ R, and x ≤ y imply y ∈ F

3. x ∈ F, y ∈ R, and x ≡ y imply y ∈ F.

72 S. Akama

A subset I of R is an ideal iff:

1. x, y ∈ I imply x ∨ y ∈ I

2. x ∈ I, y ∈ R, and x ≤ y imply y ∈ I

3. x ∈ I, y ∈ R, and x ≡ y imply y ∈ I .

Filters are partially ordered by inclusion. Filters that are maximal with respect
to this ordering are called ultrafilters. By the Ultrafilter Theorem, every filter in
Pτ -algebra can be extended to an ultrafilter.

Theorem 5.29 Let F be an ultrafilter in a Pτ -algebra. Then, we have:

1. x ∧ y ∈ F iff x ∈ F and y ∈ F

2. x ∨ y ∈ F iff x ∈ F or y ∈ F

3. x → y ∈ F iff x /∈ F or y ∈ F

4. If pλ1 , pλ2 ∈ F, then pλ ∈ F, where λ = λ1 ∨ λ2

5. ¬k pλ ∈ F iff ¬k−1 p∼λ ∈ F

6. If x, x → y ∈ F, then y ∈ F

Definition 5.33 If Rτ1 = (R1, (|τ1|,≤1,∼1),≡1,≤1,→1,¬1) and Rτ2 = (R2,

(|τ1|,≤2,∼2),≡2,≤2,→2,¬2) are two Pτ -algebras, then a homomorphism of Rτ1
into Rτ2 is a map f of R1 into R2 which preserves the algebraic operations, i.e., such
that for x, y ∈ R1:

1. x ≤1 y iff f (x) ≤2 f (y)

2. f (x →1 y) ≡2 f (x) →2 f (y)

3. f (¬1x) ≡2 ¬2 f (x)

4. If x ≡1 y, then f (x) ≡2 f (y)

5. f is also extended to a homomorphism of (|τ1|,≤1,∼1) into (|τ2|,≤2,∼2) in
an obvious way (i.e., for instance, f (∼1 λ) = ∼2 f (λ)).

Then, as in the classical case, we can present the following theorem:

Theorem 5.30 Let Rτ1 and Rτ2 be two Pτ -algebras and f a homomorphism from
Rτ1 into Rτ2. Then, the set {x ∈ R1 | f (x) ≡2 12} (the shell of f) is a filter and the
set {x ∈ R2 | f (x) ≡2 02} (the kernel of f) is an ideal.

Theorem 5.31 If the shell of a homomorphism f of Pτ -algebra is an ultrafilter,
then

1. f (x) ≡ 1 and f (y) ≡ 1 iff f (x ∧ y) = 1

2. f (x) ≡ 1 or f (y) ≡ 1 iff f (x ∨ y) = 1

3. f (x) ≡ 0 or f (y) ≡ 1 iff f (x → y) = 1

5 A Survey of Annotated Logics 73

Definition 5.34 Let F be the set of all formulas of the propositional annotated logic
Pτ and f a homomorphism from F (considered as a Pτ -algebra) into an arbitrary
Pτ -algebra.Wewrite f |= Γ , whereΓ is a subset ofF, if for each A ∈ Γ , f (A) ≡ 1.
Γ |= A means that for all homeomorphisms f from F into an arbitrary Pτ -algebra,
if f |= Γ , then f (A) ≡ 1.

Basedon the above results,we can establish algebraic soundness and completeness
of the propositional annotated logic Pτ .

Theorem 5.32 (Soundness) If A is a provable formula of Pτ , i.e.,� A, then f (A) ≡
1 for any homomorphism f from F (considered as a Pτ -algebra) into an arbitrary
Pτ -algebra.

To prove completeness, we need the following theorem:

Theorem 5.33 Let U be an ultrafilter in F. Then, there is a homomorphism f from
F into 2 = {0, 1} such that the shell of f is U.

Theorem 5.34 (Completeness) Let F be the set of all formulas of the propositional
annotated logic Pτ and A ∈ F. Suppose that f (A) ≡ 1 for any homomorphism f
from F (considered as a Pτ -algebra) into an arbitrary Pτ -algebra. Then, A is a
provable formula of Pτ , i.e., � A.

Theorem 5.34 gives an alternative completeness result of propositional annotated
logics Pτ using Curry algebras Pτ . Curry algebras can also be applied to the com-
pleteness proof of other paraconsistent logics.

5.5 Formal Issues

There are several important formal issues about annotated logics. Annotated set
theory can be regarded as a generalization of classical set theory. Themost convenient
way to study normal structures is to start with a classical set theory, for instance,
Zermelo-Fraenkel set theory ZF and to treat them inside ZF . If we proceed this
way, then annotated set theory constitutes a natural and immediate extension of
fuzzy set theory.

A model theory based annotated predicate logics can be formalized as classical
model theory. It is shown that all classical results can be adapted to Qτ . For example,
Abe andAkama studied the ultraproductmethod forQτ in [5]. In fact,Qτ canprovide
a unified framework for paraconsistent model theory.

It is interesting to work out a proof theory for annotated logics. Indeed a Hilbert
system for annotated logics has been developed, but we need other proof methods for
practical applications. For example, a natural deduction formulation was explored in
Akama et al. [14] and a tableau formulation was given in Akama et al. [13]. It is also
possible to describe sequent calculi for annotated logics. A proof-theoretic study of
annotated logics is of help to automated reasoning.

74 S. Akama

Annotated modal logics can be formalized by extending annotated logics with
modal operators. Abe [2] proposed annotated modal logics S5τ whose modality can
be interpreted S5. Akama andAbe [9] investigated annotatedmodal logics K τ which
corresponds to the normal modal logic.

Annotated logics can be also extended to other modal logics, e.g. temporal, epis-
temic and deontic logic. Abe and Akama [7] annotated temporal logics for reasoning
about inconsistencies in temporal systems.

We can employ annotated logics as a basis for uncertain reasoning. In other words,
versions of annotated logics can be formalized as fuzzy, evidential or probabilistic
logics. We mentioned these possibilities above.

Work on fuzzy reasoning in annotated logics may be found in Akama et al.
[10, 12]. We also attempted to unify annotated and possibilistic logics in Akama
and Abe [11].

5.6 Conclusions

We gave a general introduction to annotated logics, which are now considered as
important paraconsistent systems. We surveyed propositional and predicate anno-
tated logics with proof and model theory. As an algebraic semantics based on Curry
algebras was reviewed. We also make some remarks on formal issues of annotated
logics.

We now know many systems of paraconsistent logic, but no systems can provide
a unified framework for real applications. Abe and his co-workers established real
applications using annotated logics for many years. In this sense, annotated logics
can be seen as one of the promising paraconsistent systems. Recent applications of
annotated logics to several areas may be found in Abe [4].

Acknowledgments We are grateful to the referee and J.M. Abe for useful comments.

References

1. Abe, J. M.: On the Foundations of Annotated Logics (in Portuguese). Ph.D. Thesis, University
of São Paulo, Brazil (1992)

2. Abe, J.M.: On annotated modal logics. Mathematica Japonica 40, 553–56 (1994)
3. Abe, J.M.: Curry algebra Pτ . Logique et Analyse 161-162-163, 5–15 (1998)
4. Abe, J.M. (ed.): Paraconsistent Intelligent Based-Systems. Springer, Heidelberg (2015)
5. Abe, J.M.,Akama, S.: Annotated logics Qτ and ultraproduct. Logique etAnalyse 160, 335–343

(1997) (published in 2000)
6. Abe, J.M., Akama, S.: On some aspects of decidability of annotated systems. In: Arabnia,

H.R. (ed.) Proceedings of the International Conference on Artificial Intelligence, vol. II, pp.
789–795. CREA Press (2001)

7. Abe, J.M., Akama, S.: Annotated temporal logics Δτ . In: Advances in Artificial Intelligence:
Proceedings of IBERAIA-SBIA 2000, LNCS 1952, pp. 217–226. Springer, Berlin (2000)

5 A Survey of Annotated Logics 75

8. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg
(2015)

9. Akama, S., Abe, J.M.: Many-valued and annotated modal logics. In: Proceedings of the 28th
International Symposium on Multiple-Valued Logic, pp. 114–119. Fukuoka (1998)

10. Akama, S., Abe, J.M.: Fuzzy annotated logics. In: Proceedings of IPMU’2000, pp. 504–508.
Madrid, Spain (2000)

11. Akama, S., Abe, J.M.: The degree of inconsistency in paraconsistent logics. In: Abe, J.M.,
da Silva Filho, J.I. (eds.) Logic, Artificial Intelligence and Robotics, pp. 13–23. IOS Press,
Amsterdam (2001)

12. Akama, S., Abe, J.M., Murai, T.: On the relation of fuzzy and annotated logics. In: Proceedings
of ASC’2003, pp. 46–51. Banff, Canada (2003)

13. Akama, S., Abe, J.M., Murai, T.: A tableau formulation of annotated logics. In: CialdeaMayer,
M., Pirri, F. (eds.) Proceedings of TABLEAUX’2003, pp. 1–13. Rome, Italy (2003)

14. Akama, S., Nakamatsu, K., Abe, J.M.: A natural deduction system for annotated predicate
logic. In: Knowledge-Based Intelligent Information and Engineering Systems: Proceedings of
KES 2007—WIRN 2007, Part II, pp. 861–868. Lecture Notes on Artificial Intelligence, vol.
4693. Springer, Berlin (2007)

15. Anderson, A., Belnap, N.: Entailment: The Logic of Relevance and Necessity I. Princeton
University Press, Princeton (1976)

16. Anderson, A., Belnap, N., Dunn, J.: Entailment: The Logic of Relevance and Necessity II.
Princeton University Press, Princeton (1992)

17. Batens, D.: Dynamic dialectical logics. In: Priest, G., Routley, R., Norman, J. (eds.) Paracon-
sistent Logic: Essay on the Inconsistent, pp 187–217. Philosophia Verlag, München (1989)

18. Batens, D.: Inconsistency-adaptive logics and the foundation of non-monotonic logics. Logique
et Analyse 145, 57–94 (1994)

19. Batens, D.: A general characterization of adaptive logics. Logique et Analyse 173–175, 45–68
(2001)

20. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of
Multi-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977)

21. Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of
Philosophy, pp. 30–55. Oriel Press (1977)

22. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68,
135–154 (1989)

23. Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn, vol. 14, pp. 1–93 Springer,
Heidelberg (2007)

24. da Costa, N.C.A.: α-models and the system T and T ∗. Notre Dame J. Form. Logic 14, 443–454
(1974)

25. da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Form. Logic
15, 497–510 (1974)

26. da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)

27. da Costa, N.C.A., Alves, E.H.: A semantical analysis of the calculi Cn . Notre Dame J. Form.
Logic 18, 621–630 (1977)

28. da Costa, N.C.A., Henschen, L.J., Lu, J.J., Subrahmanian, V.S.: Automatic theorem proving
in paraconsistent logics: foundations and implementation. In: Proceedings of the 10th Interna-
tional Conference on Automated Deduction, pp. 72–86, Springer, Berlin (1990)

29. da Costa, N.C.A., Subrahmanian: Paraconsistent logic as a formalism for reasoning about
inconsistent knowledge. Artif. Intell. Med. 1, 167–174 (1989)

30. da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic PT . Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)

31. Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Gunthner, F. (eds.) Handbook of
Philosophical Logic, vol. III, pp. 117–224. Reidel, Dordrecht (1986)

76 S. Akama

32. Eytan,M.: Tableaux deSmullyan, ensebles deHintikka et tour ya: un point de vueAlgebriquem.
Math. Sci. Hum. 48, 21–27 (1975)

33. Jaśkowski, S.: Propositional calculus for contradictory deductive systems (in Polish). Studia
Societatis Scientiarun Torunesis, Sectio A 1, 55–77 (1948)

34. Jaśkowski, S.: On the discursive conjunction in the propositional calculus for inconsistent
deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 8, 171–172
(1949)

35. Kifer, M., Lozinskii, E.L.: RI: a logic for reasoning with inconsistency. In: Proceedings of
LICS4, pp. 253–262 (1989)

36. Kifer, M., Lozinskii, E.L.: A logic for reasoning with inconsistency. J. Autom. Reason. 9,
179–215 (1992)

37. Kifer, M., Subrahmanian, V.S.: On the expressive power of annotated logic programs. In:
Proceedings of the 1989 North American Conference on Logic Programming, pp. 1069–1089
(1989)

38. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming. J. Logic
Program. 12, 335–367 (1992)

39. Mortensen, C.: Every quotient algebra for C1 is trivial. Notre Dame J. Formal Logic 21, 694–
700 (1980)

40. Priest, G., Routley, R., Norman, J. (eds.): Paraconsistent Logic: Essays on the Inconsistent.
Philosopia Verlag, München (1989)

41. Priest, G.: Logic of paradox. J. Philos. Logic 8, 219–241 (1979)
42. Priest, G.: Paraconsistent logic. In: Gabbay, D. Guenthner, F. (eds.) Handbook of Philosophical

Logic, 2nd edn., pp. 287–393. Kluwer, Dordrecht (2002)
43. Priest, G.: In Contradiction: A Study of the Transconsistent, 2nd edn. Oxford University Press,

Oxford (2006)
44. Routley, R., Plumwood, V., Meyer, R.K., Brady, R.: Relevant Logics and Their Rivals, vol. 1.

Ridgeview, Atascadero (1982)
45. Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceedings of the 4th

IEEE Symposium on Logic Programming, pp. 173–182 (1987)

Chapter 6
Paraconsistent Artificial Neural Network
for Structuring Statistical Process Control
in Electrical Engineering

João Inácio da Silva Filho, Clovis Misseno da Cruz, Alexandre Rocco,
Dorotéa Vilanova Garcia, Luís Fernando P. Ferrara, Alexandre Shozo Onuki,
Mauricio Conceição Mario and Jair Minoro Abe

Real applications of paraconsistent logic in technology sectors
such as electrical engineering materialized from the initiative
and selfless efforts of several scientists. Among these, we
highlight Prof. Dr. Jair Minoro Abe, honorary member of the
Research Group in Paraconsistent Logic Applications. This
Chapter seeks to pay tribute and offer thanks to our colleague,
the eminent researcher, Jair Minoro Abe, on his 60th birthday.

Abstract In this study, we present an algorithmic structure based on paraconsistent
annotated logic (PAL) that can simulate the calculi of average values present in a
dataset and detect the variations of the average using only PAL concepts. We call the

J.I. da Silva Filho (B) · C.M. da Cruz · A. Rocco · D.V. Garcia · L.F.P. Ferrara ·
A.S. Onuki · M.C. Mario · J.M. Abe
Research Group in Paraconsistent Logic Applications, UNISANTA, Santa Cecília
University, Oswaldo Cruz Street, 288, Santos City, SP CEP 11045-000, Brazil
e-mail: inacio@unisanta.br

C.M. da Cruz
e-mail: clovismisseno@gmail.com

A. Rocco
e-mail: a.rocco@terra.com.br

D.V. Garcia
e-mail: dora@unisanta.br

L.F.P. Ferrara
e-mail: lfpferrara@uol.com.br

A.S. Onuki
e-mail: shozost@yahoo.com.br

M.C. Mario
e-mail: cmario@unisanta.br

J.M. Abe
e-mail: jairabe@uol.com.br

J.M. Abe
Graduate Program in Production Engineering, ICET, Paulista University, São Paulo, Brazil

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_6

77

78 J.I. da Silva Filho et al.

structure as paraconsistent artificial neural network for extraction of moving average
(PANnetMovAVG). As an example of its application, we use PANnetMovAVG to assist
in the analysis of a final product quality index related to electrical engineering. To
obtain the final result, we applied PANnetMovAVG to simulate the statistical behavior
of the Statistical Process Control (SPC) by comparing values obtained with a rank-
ing that establishes quality index standards based on electrical power distribution.
First, tests were conducted using data with random values to verify the behavior of
PANnetMovAVG and to set the optimum number of algorithms to form an optimized
computational structure. Then, we used a database with actual electric voltage val-
ues generated by an electrical power system of an electrical power utility grid in
Brazil. In the various tests, PANnetMovAVG appropriately detected changes and iden-
tified variations of electric voltage in 220-V transmission lines. The results show
that PANnetMovAVG can be used to construct an efficient architecture for determin-
ing and monitoring quality scores with applications in various areas of engineering,
especially for detecting quality index in an electricity distribution network.

Keywords Paraconsistent annotated logic · Statistical process control · Electrical
power system · Energy quality

6.1 Introduction

Today’s markets are increasingly demanding, and a continuous monitoring of the
production process to achieve high product quality is essential for the survival of
businesses [13]. In addition to offering a high-quality product to satisfy consumers,
some industrial sectors, especially those dealing with electrical power systems, must
satisfy government regulatory agencies that periodically check product quality and
can apply penalties to companies that do not satisfy quality targets imposed by law.
To address these problems, research conducted in production engineering seeks rela-
tively higher quality levels with the implementation of new techniques and innovative
activities surrounding its products. The principal objective is to investigate newmeth-
ods to monitor processes for maintaining the required product quality at relatively
lower operating costs [12, 13, 17].

Statistics plays an important role in the area of quality control because its tech-
niques andmethodologies have been increasingly used and accepted in organizations
for this task. Among statistical methods, statistical process control (SPC) is widely
used for controlling and monitoring the quality of final products [12].

6.1.1 Statistical Process Control SPC

SPC can be defined as a set of procedural tools that is intended to indicate whether
a process is optimally working when only common causes of variation are present.

6 Paraconsistent Artificial Neural Network for Structuring … 79

SPC is used when a process is disordered and requires some type of corrective action,
i.e., when there are special causes of variation [12, 13, 17].

The primary objective of SPC is the systematic reduction of variability in product
characteristics that affect quality, and SPC causes this reduction through statistical
analysis and identification of deviations that affect the quality of the final product
delivered to the consumer. For correct operation, SPC has tools to maintain adequate
performance and predictability, as well as to detect changes in the behavior of the
process. Changes must be detected as soon as possible to enable SPC to ensure that
appropriate corrective actions are taken and that the process can be corrected without
excessive damage to production [15, 16].

6.1.1.1 Moving Average

In statistics, a moving average is a set of numbers, each of which is the average of the
corresponding subset of a larger set of data [11, 13]. Therefore, a moving average
(moving mean or running average) involves a calculation to analyze data by creating
a sequence of averages of different subsets of a full dataset [11, 13, 15].

6.1.1.2 Extracting the Moving Average

The extraction process of a moving average can be performed as follows [11].
Given a sequence of numbers and a fixed subset size, the first element of the

moving average is obtained by taking the average of the initial fixed subset of the
number sequence. In the next step the subset is modified by “shifting forward”, that
is, by excluding the first number of the sequence and including the next number
following the original subset in the sequence. This creates a new subset of numbers,
which is then averaged. This process is repeated over the entire data sequence. The
sequence of plot points connecting all of the averages (fixed) is what we call the
moving average. Therefore, a moving average is a set of numbers, each of which is
the average of the corresponding subset of a larger set of data [11, 13, 15].

6.1.1.3 Control Charts

A control chart is a set of points (samples), ordered in time, that are interpreted in
terms of horizontal lines, the upper control limit (UCL), central line (CL), and lower
control limit (LCL) [15, 16].

Control charts were developed by Shewhart [17] and are now the most important
tools in the analysis of process variability in industrial environments [12]. Based on
statistical techniques for the analysis of the dispersion of a random variable, it is
possible to determine, with some degree of confidence, the upper and lower limits
for which the random variable can have values. Within these limits the process is
considered to be under statistical control [11, 12, 15, 17].

80 J.I. da Silva Filho et al.

Fig. 6.1 Typical control chart

As can be seen in Fig. 6.1, the upper and lower lines represent the UCL and the
LCL, respectively.

The CL relates to the mean of the values of the property studied. When all of
the points shown are between the UCL and the LCL, the process is considered to be
under statistical control [11, 12, 15, 17].

6.1.1.4 Application of Control Charts in SPC

SPC is a technique that makes it possible to monitor, analyze, predict, control, and
improve the variability of a determined quality characteristic through the use of
control charts. In practice, determining the limits of control is necessary for acquiring
knowledge of the mean (μ) and the standard deviation (σ) of the process, when
it is under statistical control. However, these values are not known with absolute
precision; for this, we use an estimate created with samples of the process itself, to
minimize the likelihood that there are extraneous causes [5, 11, 16].

The control chart limits x̄ are calculated on the basis of the standard deviation of
the sample average, as follows:

σx̄ = σ√
n

where

σx̄ is the standard deviation of the mean of the process;
σ is the standard deviation of the process;
n is the number of samples.

6 Paraconsistent Artificial Neural Network for Structuring … 81

The UCL is obtained by adding to the mean value μ the value of three standard
deviations of the sample average:

UCL = μ + 3σx̄

The LCL is obtained by subtracting from the mean value μ the value of three
standard deviations of the sample average:

LCL = μ − 3σx̄

The CL is the mean:
Center Line = μ

The value of ±3σ has a direct relation to the hypothesis testing of whether the
sample average value is to be accepted as equal to the average of the process. In this
respect, we have the following choices:

H0 : μ = x̄ , null hypothesis
H1 : μ = x̄ , alternate hypothesis

Using±3σwe have established confidence that 99.73% of the average of the process
is within the bounds of the control.

Although this technique is heavily applied, in some situations these graphs might
not be sufficiently sensitive to detect small variations on the order of 1.5σ or less,
because they do not take into consideration the values obtained historically, without
considering the information provided by the sequence of points [16].

6.1.2 SPC Analysis

In performing its analysis, SPC uses the moving average and considers that the
occurrence of special causes or those attributable to production changes the normal
distribution in the average and/or standard deviation. These changes, which can
exceed the lower and upper bounds and determine when the process was under
statistical control, are detected and visualized in the control chart. Through the control
charts, the system can find the trends through visualization of the resulting points
that appear in the curve of the calculated average [11, 12, 15, 17].

Trend graphs are of paramount importance in the production process for decision-
making regarding production quality. Thus, by checking the moving average, the
trend of the curve, we can monitor the results over a period of time using control
charts [5, 11, 15].

This procedure allows us to check continuously whether the process is performing
as it is supposed to, or if it alternates, out of control, so that the necessary adjustments
can be made in a timely manner.

82 J.I. da Silva Filho et al.

SPC is a very powerful tool for decision-making, but there is an urgent need to
make this method of monitoring and control more efficient both in analysis and in
the extraction of knowledge. This increased efficiency can be achieved only through
innovation in techniques applied in the analysis of tracked data and the systematiza-
tion of these data to facilitate examination [11, 12, 14, 17].

6.1.2.1 SPC and Electrical Engineering

These features, using statistical calculations for the monitoring and control of vari-
ability, indicate that SPC can be used in applications in electrical engineering. In
some studies, such as [5, 19], the authors used SPC techniques effectively for the
analysis of monitoring and control of voltage levels in electrical power systems.
However, owing to some factors, many of them inherent in statistical theories, other
modes of SPC can be developed to improve their analysis and data interpretation
methods. Following these considerations, we will present a simulation of statistical
control through a configuration structured in paraconsistent artificial neural networks
applied in electrical engineering [7, 8].

6.1.2.2 Electric Energy Quality Control

One of the most important applications of SPC in electrical engineering can be at
electrical power distribution systems to evaluate the quality of electricity that is being
made available to consumers. However, owing to the huge amount of data generated
in an electrical power system, with incomplete and conflicting values forming uncer-
tain databases, the statistical controls might not be efficient. To achieve the best level
of quality with a method that is based on statistical analysis and with information
from uncertain databases, work is needed with new algorithms based in non-classical
logics. Only in this manner can the system of analysis offer responses to information
represented by data that might be incomplete, ambiguous, or contradictory. There-
fore, in this study we present an application of paraconsistent logic (PL), which,
owing to its ability to provide effective treatment of contradictions, introduces new
shapes to the analysis and interpretation of data used as indicators of levels of quality.
Therefore, in this work, to work under the conditions of uncertainty that are gener-
ated by using incomplete data and that bring contradictory information to statistical
calculations, we use algorithms based on a foundation of PL [1, 2, 7, 8].

To obtain values related to the average of the measurements of electrical mag-
nitude data, we use a computational structure of algorithms called paraconsistent
artificial neural cells (PANCells) [1, 2, 7, 8]. The configuration composed of PAN-
Cell algorithms is called paraconsistent artificial neural network for extraction of
moving average (PANnetMovAVG) and is specially configured to calculate the moving
average of the values of electrical magnitudes through iteration.

The principal concepts of PL, the algorithms of PANCell, and PANnetMovAVG

itself will be examined in more detail in the following.

6 Paraconsistent Artificial Neural Network for Structuring … 83

6.2 Paraconsistent Logic (PL)

PL is a non-classical logic whose primary feature is the rejection of the law of non-
contradiction [7, 8]. The pioneers of PL are the Polish logician, J. Łukasiewicz,
and the Russian philosopher, Vasilév [10], who simultaneously but independently
in approximately 1910 suggested the possibility of the existence of a logic that did
not use that principle of non-contradiction. The Brazilian logician N.C.A. da Costa
was the first to publish work containing the initial systems of PL, including all of
the logical levels, such as propositional and predicate calculi, as well as higher-order
logics [7, 8, 10, 18].

6.2.1 Paraconsistent Annotated Logic (PAL)

PAL can be represented through a lattice of four vertices (Hasse lattice) in which a
propositional sentence is accompanied by an evidence degree [1, 2, 7–9, 18].

The atomic formulae of PAL are of the form p(μ1;μ2), where (μ1;μ2) ε[0, 1]2,
[0, 1] is the real unitary interval with the usual order relation, and p denotes a
propositional variable. There is also an order relation defined on [0, 1]2 : (μ1;μ2) ≤
(λ1;λ2) ↔ μ1 ≤ λ1 and μ2 ≤ λ2. Such an ordered system constitutes a lattice that
will be symbolized by τ .

6.2.1.1 PAL with Annotation of Two Values (PAL2v)

The atomic formulae of PAL, the first element (μ) of the pair (μ,λ), indicates
the favorable evidence expressed by the proposition p, and the second element (λ)

represents the unfavorable evidence expressed by p. Thus, the intuitive idea of the
association of an annotation (μ,λ) to a proposition p is that the degree of favorable
evidence in p is μ, and the degree of unfavorable (or contrary) evidence is λ. The
pair (μ,λ) is called an annotation constant. In such a lattice, each of the annotation
constants is related to a single extreme logical state of the proposition p, where �=
Inconsistent, t = True, F= False, and ⊥= Paracomplete or Indeterminate [1, 2, 7–9,
18]. The PAL2v lattice τ of four vertices (Hasse lattice) is shown in Fig. 6.2.

In the annotation constant we can consider that
(1, 0) → indicates total favorable evidence and no unfavorable evidence, an intu-

itive interpretation of true for proposition p;
(0, 1) → indicates zero favorable evidence and total unfavorable evidence, an

intuitive interpretation of logical falsity for proposition p;
(1, 1) → indicates total favorable evidence and total unfavorable evidence, an

intuitive interpretation of inconsistency for proposition p.
(0, 0) → indicates zero favorable evidence and no unfavorable evidence, an intu-

itive interpretation of paracompleteness or indetermination for proposition p.

84 J.I. da Silva Filho et al.

Fig. 6.2 PAL2 lattice τ of
four vertices (Hasse Lattice)

In this manner, a four-vertex lattice associated with a PAL with annotation of two
values (PAL2v) [7] can be represented as in Fig. 6.2.

Through linear transformations on the unit square in the Cartesian plane (USCP)
and the lattice associatedwith PAL2v,we can arrive at the equation of transformation:

T (X,Y) = (x − y, x + y − 1) (6.1)

Referring to the relationship of the components of the transformation equation with
the usual nomenclature of PAL2v, we have:

x = μ → favorable evidence degree

y = λ → unfavorable evidence degree

From the first term obtained in Eq. (6.1), this becomes x − y = μ − λ, which we call
the degree of certainty (DC). Therefore, the certainty degree [5] is calculated as

DC = μ − λ (6.2)

The values, which belong to the set � of real numbers, are in the closed interval
[−1,+1], and they are on the horizontal axis of the lattice τ [5, 6, 16], which is called
the axis of degrees of certainty. When DC results in +1, the logical state resulting
from a paraconsistent analysis is true (t), and when DC results in−1, the logical state
resulting from the paraconsistent analysis is false (F).

From the second term Eq. (6.1), this becomes x + y − 1 = μ + λ −1, which is
called the degree of contradiction (Dct) [7]. Therefore, the degree of contradiction
is obtained as

Dct = μ + λ −1 (6.3)

6 Paraconsistent Artificial Neural Network for Structuring … 85

Fig. 6.3 Representation of the degrees of certainty and of contradiction in the PAL2v Lattice

Their values, which belong to the set� of real numbers, vary in the closed interval
[−1,+1], and are on the vertical axis of the lattice τ [7], which is called the axis of
degrees of contradiction. When Dct results in +1, the logical state resulting from a
paraconsistent analysis is Inconsistent (T), and when Dct results in −1, the logical
state resulting from theparaconsistent analysis is Indeterminate (⊥). Figure6.3 shows
the degrees of certainty and of contradiction in the PAL2v lattice.

6.3 Paraconsistent Artificial Neural Network (PANNet)

A PANNet consists of a computational structure formed of interconnections of algo-
rithms based on PAL2v. The principle algorithms of a PANNet are called paracon-
sistent artificial neural cells (PANCells). The PANCells were projected to present
characteristics able to model particular functions of an artificial neural network for
decision-making [7].

[7, 8] presented a family of PANCells with components featuring several fea-
tures. Each cell obtains a distinct functional response, which, when conveniently
interconnected, comprises a PANNet with more specified functions in the control
process.

86 J.I. da Silva Filho et al.

The interconnection of PANCells with different functions in data processing
allows one to have some facility to modify the configuration of a network. In this
work, we use PANnetMovAVG as the primary algorithm [15]. This type of cell is
described in more detail below.

6.3.1 Paraconsistent Artificial Neural Cell of Learning
(LPANCell)

We now present LPANCell, the most important algorithm in the PANnetMovAVG

structure [7]. Figure6.4 shows a representation of LPANCell.
The learning of an LPANCell is accomplished through training by iteration, which

consists in successively applying a pattern at the input of the favorable evidence
degree signal (μ) until the contradictions diminish, and a resultant evidence degree
equal to one is obtained as the output [7, 8].

The learning cells can be trained to learn any real value in the closed interval
[0, 1].

Initially, the LPANCell learning process is shown with the extreme values zero
or one, thus consisting of what we call primary sensorial cells. For the LPANCell
learning process, a learning factor, FL, is introduced, whose value can be adjusted
externally. Depending on the value of FL, faster or slower learning is provided to the
LPANCell.

In the learning process, an equation for the values of the successive resultant
evidence degree, μE(k), is considered until it acquires a value of one. Therefore, for
an initial value of μE(k), the values μE(k+1) are obtained up to μE(k+1) = 1.

Fig. 6.4 Representation of
LPANCell

6 Paraconsistent Artificial Neural Network for Structuring … 87

Considering the learning process of the truth pattern,the learning equation is
obtained through the calculus of the resultant evidence degree equation:

μE(K+1) =
{
μ1 − (

μE(K)C
)
FL

} + 1

2
(6.4)

where
μE(k)C = 1 − μE(k) and 0 ≤ FL ≤ 1

The learning cell is considered completely trained when μE(k+1) = 1.
For a learning process of the falsehood pattern, complementation on the favorable

evidence degree is performed, and the equation becomes

μE(K+1) =
{
μ1C − (

μE(K)C
)
FL

} + 1

2
(6.5)

where
μ1C = 1 − μ1 and 0 ≤ FL ≤ 1

The learning cell is considered completely trained when μE(k+1) = 1.
As seen from the calculus of the resultant degree of evidence equation μE(k+1),

the higher the value, the faster the learning of the cell.
The learning factor FL is a real value, in the closed interval [0, 1], and is attributed

randomly by external adjustments. The flowchart and the learning algorithm are
shown in Fig. 6.5 [7].

A simplified algorithm for learning any value between zero and one is shown
below.

6.3.1.1 Algorithm of LPANCell

(For the Truth Pattern)

1- Initial Condition
μ1 = 1/2 and μE = μ2 = 1/2

2- Enter the value of the learning factor
FL = C1 */ Learning factor 0 ≤ FL ≤ 1 */

3- Transform the evidence degree into an unfavorable evidence degree
λ2 = 1 − μ2 */ unfavorable evidence degree 0 ≤ λ2 ≤ 1 */

4- Enter the value of the evidence degree of input 1
μ1 = 1 */ evidence degree 1

5- Compute the resultant evidence degree
μE(K+1) = {μ1−(λ2)C1}+1

2

88 J.I. da Silva Filho et al.

Fig. 6.5 Flowchart for the learning of the truth pattern by an LPANCell

6- Consider the conditional
If μE 	= 1 Do μE = μ2 and return to step 3

7- Stop

6.4 Computational Structure PAL2v for Simulating SPC

In this work, we use PAL algorithms with PAL2v to form a computational structure
able to determine SPC for obtaining a quality index of electrical energy [14]. The
computational structure PAL2v has been developed with three main blocks.

6.4.1 Extractor Block of Degrees of Evidence from z-Score

This block is an algorithm that uses statistical concepts and PAL2v to extract degrees
of evidence of data organized in a normal distribution represented by z-scores. The
data are acquired fromahistorical database and also through real-timemeasurements.

6 Paraconsistent Artificial Neural Network for Structuring … 89

Fig. 6.6 Computational framework for analysis of electric energy quality factor (for steady state
voltage item)

6.4.2 Extractor Block of Moving Average

This block is a configuration PANNet composed of six cells (PANCells) serially
connected. This configuration of PANNet is used in the process of obtaining a value
similar to the moving average of an electrical distribution system [14].

6.4.3 Block Comparator of Electrical Energy Quality Score

The moving average values obtained are continuously compared in a control chart
that uses the upper and lower limits based on factors set out in the quality of electricity
for the voltage. Figure6.6 shows the computational structure used,with the highlights
for the three blocks.

The next few items highlight each block comprising the computational structure
PAL2v used in this work.

6.4.4 Operation of the Extractor Block of Evidence
Degrees from z-Scores

The extraction of the evidence degrees is the first part of any computational arrange-
ment for the application of PAL. This action consists in modeling that takes the

90 J.I. da Silva Filho et al.

transformation of information derived from real sources in standardized output val-
ues called degrees of evidence. By the concepts of PAL2v, the evidence degrees
take values in the closed interval [0, 1] and reflect as closely as possible the original
information [14].

In this analysis we seek the quality score of electricity, and the extractor block
of degrees of evidence from z-scores has the function of extracting the degree of
evidence of the random variable to be controlled. In this work, the random variable
refers to voltage measured in a power distribution system for which we will use
data from measurements on values stored in a history database and from real-time
measurements. Thus, the evidence degrees extractor block operates from a mass of
data represented by a normal distribution, which can be converted into z-scores.

The z-score is a measure of position that indicates the number of standard devia-
tions a value is from the average, and whose value is obtained by the expression

z = x − x̄

σ
(6.6)

where

x is the value of the variable
x̄ is the arithmetic mean
σ is the standard deviation

Being dependent on the average and standard deviation of the variable x, the z
values are within a range of ±3z when the process is under statistical control.

As an example, if x = −3 in a system with and σ = 1, then z = −3 and μ = 0.25.
We note that the same holds if x = 3, z = 3, and μ = 0.75.
Based on the previous example, however, changing the standard deviation to

σ = 0.5, we have z = −6 and μ = 0 for x = −3 and z = 6 and μ = 1 for x = 3.
Thus, we can choose the upper and lower limits of the z-score, respectively, as 6

and −6.
In that manner, we can obtain the average shift represented by a normal curve of

standard deviation ±2 σ, as seen in Fig. 6.7.
As seen in Fig. 6.8, we can consider the normal curve to have zero average and

double the standard deviation, i.e.,σ = 2,without the values exceeding themaximum
degree of evidence equal to unity.

To build the algorithm of the extractor of evidence degrees, we considered that
the database of electrical tension constitutes a source of information that has the
characteristics of a random x-variable with a normal distribution [14]. Thus, for
the extraction of evidence (μ) of the random variable represented in measures of
electrical voltage, a linear transformation function is used as in the expressions

μ =
⎧
⎨

⎩

0 if z < −0.6
z
12 + 0.5 if z ∈ [−0.6,+0.6]
1 if z > +0.6

(6.7)

6 Paraconsistent Artificial Neural Network for Structuring … 91

Fig. 6.7 Normal curve—average shifting

Fig. 6.8 Normal curve—increase in standard deviation

where

μ is the evidence degree.
z is the z-score.

We can see that in Eq. (6.6), if the random variable x is equal to the average, the
z-score becomes equal to zero, and using Eq. (6.7) verifies that the degree of evidence
μ assumes the value of 0.5. Similarly, when the variable x is equal to the average of
the system, its value will always be represented by the degree of evidence equal to

92 J.I. da Silva Filho et al.

Fig. 6.9 Variable x transformed by the z-score to have the average zero and standard deviation
equal to one

0.5, and there will be a direct relationship between the random variable represented
in the measurements of voltage and the degree of evidence μ [14].

As an example, we show in Fig. 6.9 the transformation of an x-variable into z-
scores with an average equal to zero and standard deviation equal to one.

The function that performs the extraction of evidence degree (μ) from the z-score
is displayed graphically in Fig. 6.10.

6.4.5 Operation of the Extractor Block of Moving Average

The block that extracts the moving average is a PANnetMovAVG built with LPANCells
[7–9, 15].

After a few iterations, the degree of evidence resulting as output will be in the
form of amplitudes that express the mean of the data applied in the input. Therefore,
the extractor block of moving averages receives the signal of evidence (evidence
degrees) from the extractor block of degrees of evidence of the z-score and provides
in its output a value of the resulting evidence that represents a value similar to the
moving average of the process.

The structure of PANnetMovAVG can consist of nLPANCells [15], but depending
on the number of components the process can be slow or fast. The assay procedure
for the computational structure of optimized PANnetMovAVG is described below.

6 Paraconsistent Artificial Neural Network for Structuring … 93

Fig. 6.10 Graph of degree of evidence extractor from z-score

6.4.5.1 PANnetMovAVG Optimization Procedures

The optimization process [15] initially involved a test in a single LPANCell, which
was presented for its input a sequence of ones and zeroes, values that represent,
respectively, the maximum degree of evidence and the minimal degree of evidence.

For these two symmetric values applied alternately, the value of the resulting
evidence expected for a PANnetMovAVG with a single LPANCell is one half (μE =
0.5), a value equivalent to the average expected statistically.

In this PANnetMovAVG configuration consisting of a single LPANCell, the out-
put value was stabilized after about 20 samples (20 iterations), showing a cyclic
variation between a minimum value of μE = 0.333333 and a maximum value of
μE = 0.666667.

To verify the behavior of the resulting evidence degree in the output, other pro-
cedures were used with PANnetMovAVG composed of more cells connected serially.
In the final process of optimization of PANnetMovAVG, a configuration composed of
12 LPANCells was considered to simulate their serial arrangement.

Forty sequential samples (iterations) with alternating values of zero and one were
introduced as the input of the first LPANCell for this final configuration [7, 14].

The results obtained with the PANnetMovAVG in the final arrangement of 12
LPANCells are shown in the graphs in Fig. 6.11 [14].

The results obtained in the simulation, as shown in Fig. 6.11, indicate that when
the output range of the LPANCell is closer to the expected average, an increase

94 J.I. da Silva Filho et al.

Fig. 6.11 Learning curves of the resulting evidence degrees in the output with the average of the
LPANCells with serial interconnections (PANnetMovAVG)

occurs in the number of LPANCells; however, for a greater number of LPANCells,
the number of samples (iterations) must also be greater for the output value to remain
around the mean.

6.4.5.2 The Final Configuration of PANnetMovAVG

In the procedures of the tests that were completed with 12 LPANCells, it was found
that some arrangements of LPANCells connected serially presented the best relation-
ships between accuracy and response time, with the output showing a value close to
the value of the expected average.

In this work the choice of optimized configuration was based in the error between
the value of the evidence obtained and the expected average. Thus, we can establish
a relationship between the error and the number of LPANCells used in the configu-
ration of PANnetMovAVG. Figure6.12 shows a graph of the relationship between the
percentage error and the number of cells used in PANnetMovAVG [14].

With these results the error can be determined by relating the number of cells
used in the PANnetMovAVG configuration and the desired precision. The Eq. (6.8)
[14] shows the relationship between the error and the number of cells used.

6 Paraconsistent Artificial Neural Network for Structuring … 95

Fig. 6.12 Percentage of residual error as a function of the number of LPANCells used

Error = ±3−nlP ANcell

2
(6.8)

where nlP ANcell is the number of LPANCells used in the PANnetMovAVG configura-
tion.

In the testing framework built with 12 LPANCells, we see that

(a) the arrangement of cells began to provide values around the mean from the
twenty-first sample (iteration);

(b) for six LPANCells, the answer had its value stabilized only in the thirty-fourth
sample (iteration);

(c) for six LPANCells, resulting values near μ = 0.49 appeared from the sixteenth
interaction;

By Eq.6.8, for six cells, the error is Error = ±0.000686
Based on the study, and considering these results in conjunction with the response

time of the setting of the serial cells, an arrangement with six LPANCells showed a
performance with a low level of residual error, with an acceptable number of samples
(iterations).

These considerations verify that a serial optimized arrangement of six LPANCells
can be used for the determination of moving average and with conditions to acquire
the arithmetic mean achieving convergence. A structure consisting of six LPANCells
connected serially was built with PANnetMovAVG in this manner [14].

The complete PANnetMovAVG with six LPANCells used in its construction is shown
in Fig. 6.13.

96 J.I. da Silva Filho et al.

Fig. 6.13 PANnetMovAVG with six LPANCells in serial mode

After its structure was optimized, the PANnetMovAVG with six LPANCells was
tested using simulators for normally distributed data, and the evidence degree of
output obtained (μE) showed behavior compatible with the value of the moving
average of the data applied in the input [7, 9, 14].

6.4.6 Operation of Block Comparator of Electric Energy
Quality Score

In Brazil, the National Electric Energy Agency (ANEEL) [3] is a governmental
regulatory agency that proposes resolutions or technical standards (NT-ANEEL) [4,
16] to which the electric energy distribution companies report good indices of quality
to their consumers.

In general the NT-ANEEL rules [4] state that the quality of electric power in
Brazil is based on

6 Paraconsistent Artificial Neural Network for Structuring … 97

(a) quality of service and
(b) quality of the product.

The quality of the services provided is to be calculated by the determination of
indicators of continuity and attendance times in emergency cases. In this study, we
focus only on product quality, which is based on sampling criteria and on reference
values that can be measured.

The reference values in product quality are considered to include the aspects
dealing with a permanent or transitional regime, linked to the following factors:

(a) steady state voltage;
(b) power factor;
(c) harmonics;
(d) voltage imbalance;
(e) voltage fluctuation;
(f) voltage variations of short duration;
(g) frequency variation.

In this work, for verification of the quality of the electrical energy distributed by
applying the concepts of PAL2v, we use only the criteria for “steady state voltage.” In
this manner, in the control chart we will use as UCL and LCL the sampling criteria
of electrical energy quality defined by ANEEL’s technical standard (NT-ANEEL)
[4], as seen below.

6.4.6.1 Steady State Voltage

In this work, the analysis with the algorithms of PAL2v will indicate the quality
of the product in relation to the reference values regarding the conformity of steady
state voltage. For this we will use some terms of the technical standard (NT-ANEEL)
that deal with quality levels of electrical energy regarding the behavior of permanent
voltage, as in the conditions reported below.

• According to technical standard NT-ANEEL [4], the voltage in steady state opera-
tion must be accompanied throughout the distribution system, and the distribution
company must establish resources and modern techniques for such monitoring.
The company must act preventively, so that the values of electrical voltage in
steady state remain within the appropriate standards.

• The steady state voltage must be evaluated through a set of readings obtained for
proper measurement, in accordance with the methodology described for collective
and individual indicators.

With respect to the reference values the technical standard NT-ANEEL [4] pro-
vides that

98 J.I. da Silva Filho et al.

(a) the voltage values obtained by measurements must be compared to the reference
voltage, which must be the nominal voltage, according to the voltage level of
the connection point;

(b) the nominal values must be fixed on the basis of the levels of distribution system
planning, so that there is compatibility with project levels of end-use electrical
equipment;

(c) for each reference voltage, the associated readings are classified into three cat-
egories: appropriate, precarious, or critical, based on the remoteness of the read
voltage value in relation to the reference voltage.

In the technical standard NT-ANEEL [4], the appropriate limits are established,
critical to the voltage levels in voltage in steady state operation, the individual and col-
lective compliance indicators of electrical voltage, measurement criteria, and dead-
lines for consumer compensation, if the voltage measurements exceed the limits of
the indicators.

The service associated with the voltage readings must be classified according to
the boundaries around the reference voltage (TR), such that

1. Reference voltage (TR);
2. Appropriate voltage range (TR − �ADINF,TR + �ADSUP);
3. Precarious voltage range (TR + �ADSUP,TR + �ADSUP + �PRSUPorTR −

�ADINF − �PRINF,TR − �ADINF);
4. Critical voltage range (>TR + �ADSUP + �PRSUP or <TR − �ADINF −

�PRINF).

Figure6.14 shows the voltage levels with the band limits that determine quality
in reference to values in steady state operation, according to ANEEL standards [4].

Fig. 6.14 Range of variation in a quality score that deals with voltage steady state operation

6 Paraconsistent Artificial Neural Network for Structuring … 99

For the period of scouting the technical standard NT-ANEEL [4] specifies seven
days with 10min intervals between each reading with a total of 1,008 reads.

The individual indicators indices to be determined relate to the duration on the
transgression of precarious voltage (DPV).

The DPV index is the ratio between the measurements in the precarious range
and the total quantity of measurements; therefore, it is calculated as

DPV = nlp

1008
× 100%

with a limit of 3 %
where nlp is the number of reads in the precarious range.

Duration of the transgression of Critical Voltage (DCV).
The DCV index is the ratio of the measurements in the critical range and the total

number of measurements; therefore, it is calculated as

DCV = nlc

1008
× 100%

with a limit of 0.5 %
where nlc is the number of reads on critical range.

The set of readings to generate individual indicators must be considered as the
registry of 1,008 valid readings obtained in consecutive intervals of 10min each.
Each set of 1,008 valid readings composes a DPV indicator and a DCV indicator.

In this work, the assays were made using the reference voltage of 220V. Table6.1
shows the tension of meeting the specifications of the technical standard NT-ANEEL
[4] for a study in low voltage of 220V.

Based on Table6.1, we show in Fig. 6.15 a score with the acceptable levels for the
electrical voltage of 220 V used in some regions of Brazil. Therefore, in this study,
this is the score used to compare the values of the moving average in the electric
power system through the control chart.

6.4.6.2 Dataset

The data used in this work are offline and were obtained through the output bus
voltage of a 220 V transformer in a substation installed in an electrical system in

Table 6.1 Connection points in nominal voltage equal to or less than 1kV (220V)

Electrical voltage of service to consumers
(TR) (V)

Range of variation electric voltage reading
(TL) (V)

Appropriate (202 ≤ TL ≤ 231)

Precarious (191 ≤ TL ≤ 202)

Critical (TL <191 or TL > 233)

100 J.I. da Silva Filho et al.

Fig. 6.15 Electrical voltage
levels with their range of
variation limits TR = 220V
values in voltage steady state
operation

Brazil in which the measurements were taken during the period from 9/1/2007 to
4/30/2008. The database contains samples every 10min and the use of such samples
was spaced to assure the non-existence of autocorrelation of data and thus facilitated
the exposure of results.

6.5 Results

The graph in Fig. 6.16 represents the results of the extraction of moving average
with the data extracted from the database used in this work. The upper and lower
limits of the average of the measured values of electrical voltage were established in
accordance with the rules of ANEEL [4].

Fig. 6.16 Control chart showing the results of the extraction of the electrical energy quality index
from the comparison of NT-ANEEL standards [4] and values of the mobile average extracted with
the concepts of PAL2v

6 Paraconsistent Artificial Neural Network for Structuring … 101

6.6 Conclusions

In this work, we presented an important application of PANnet in electrical engi-
neering. We presented PANnetMovAVG, an algorithmic structure based on PAL2v
comprising an innovative method for obtaining a hybrid model combining a PAN-
Net with the well-known statistical technique SPC. As we saw in this work, SPC
provides the necessary tools for assessment and improvement of processes, products,
and services in a robust and comprehensive manner, but such tools also depend on
the quality of information and the manner in which the data are collected, processed,
and interpreted. In practice, primarily in electrical engineering, data are collected
using equipment subject to factors that generate uncertainty. Thus PANnetMovAVG,
containing PAL-based algorithms, can be a good alternative to provide highest effi-
ciency in the control of the quality of electrical power distributed to consumers. Based
on these results, new tests with different databases are currently being conducted to
provide improvements in PANnetMovAVG performance for detecting moving averages
and providing support to decision-making regarding the quality of electrical energy.

References

1. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics—Foundations
for Paracomplete and Paraconsistent Reasoning, Series Title Intelligent Systems Reference
Library, Vol. 88. Publisher Springer International Publishing, Copyright Holder Springer Inter-
national Publishing Switzerland, eBook ISBN 978-3-319-17912-4, doi:10.1007/978-3-319-
17912-4, Hardcover ISBN 978-3-319-17911-7, Series ISSN 1868-4394, Edition Number 1,
190 pages (2015)

2. Abe, J.M.: Paraconsistent intelligent based-systems: new trends in the applications of para-
consistency, editor. Book Series: Intelligent Systems Reference Library, Vol. 94, 306 pages.
Springer-Verlag, Germany (2015). ISBN 978-3-319-19721-0

3. BRAZIL-National Electric Energy Agency (Agência Nacional de Energia Elétrica)—ANEEL.
In Portuguese: Atlas of Brazil’s Electrical Energy. (Atlas de Energia Elétrica do Brasil). (2008).
http://www.aneel.gov.br/arquivos/PDF/atlas_par1_cap2.pdf. Accessed 30 July 2015

4. BRAZIL-National Electric Energy Agency (Agência Nacional de Energia Elétrica)—ANEEL.
In Portuguese: Procedures for the distribution of electricity in the National Electrical System
(Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional—PRODIST)
(2009). http://www.aneel.gov.br/arquivos/pdf/modulo8_24032006_srd.pdf. Accessed 20May
2015

5. Corduas,M.: Bootstrappingmoving averagemodels. J. Italian Stat. Soc. 1, (2), 227–234 (1992).
doi:10.1007/BF02589032 (Springer-Verlag)

6. Da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift f.
math. Logik und Grundlagen d. Math. 37, 561–570 (1991)

7. Da Silva Filho, J.I., Lambert-Torres, G., Abe, J.M.: Uncertainty Treatment Using Paraconsis-
tent Logic: Introducing Paraconsistent Artificial Neural Networks, pp. 211, 328. Frontiers in
Artificial Intelligence and Applications. IOS Press, Amsterdam, Netherlands (2010)

8. Da Silva Filho, J.I. et al.: Paraconsistent Logic Algorithms Applied to Seasonal Comparative
AnalysiswithBiomassDataExtracted by theFoulingProcess. Paraconsistent Intelligent-Based
Systems: New Trends in the Applications of Paraconsistency: Intelligent Systems Reference
Library, pp 131–152. Springer International Publishing AG, Switzerland (2015). doi:10.1007/
978-3-319-19722-7

http://dx.doi.org/10.1007/978-3-319-17912-4
http://dx.doi.org/10.1007/978-3-319-17912-4
http://www.aneel.gov.br/arquivos/PDF/atlas_par1_cap2.pdf
http://www.aneel.gov.br/arquivos/pdf/modulo8_24032006_srd.pdf
http://dx.doi.org/10.1007/BF02589032
http://dx.doi.org/10.1007/978-3-319-19722-7
http://dx.doi.org/10.1007/978-3-319-19722-7

102 J.I. da Silva Filho et al.

9. Da Silva Filho, J.I., Rocco, A., Mario, M.C., Ferrara, L.F.P.: Annotated Paraconsistent logic
applied to an expert System Dedicated for supporting in an Electric Power Transmission
Systems Re- Establishment. IEEE Power Engineering Society—PSC 2006, pp. 2212–2220.
Atlanta, USA (2006). ISBN-1- 4244-0178-X

10. Dugan, R.C, McGranaghan, M.F., Santos, S., Beaty, H.W.: Electrical Power System Quality,
2nd edn., p. 528. McGraw Hill (2003)

11. Jacob, A.L., Pillai, S.K.: Statistical process control to improve coding and code review. IEEE
Softw. 20(3), 50–55 (2003)

12. Jelali,M.: Statistical Process Control. Control PerformanceManagement in Industrial Automa-
tion Part of the series Advances in Industrial Control, pp. 209–217. Springer, London (2013).
doi:10.1007/978-1-4471-4546-2_8

13. Montgomery, D.C.: Introduction to Statistical Quality Control, 4th edn. Wiley (2001). Young,
M.: The Technical Writer’s Handbook. University Science, Mill Valley, CA (1989)

14. Misseno da Cruz, C. et al.: Application of Paraconsistent Artificial Neural network in Statistical
Process Control acting on voltage level monitoring in Electrical Power Systems. Intelligent
System Application to Power Systems (ISAP), pp. 1–6. Porto–PT (2015). doi:10.1109/ISAP.
2015.7325579

15. Naikan, V.N.A.: Statistical Process. Control Handbook of Performability Engineering, pp.
187–201. Springer, London (2008). doi:10.1007/978-1-84800-131-2

16. Sancho, J., Pastor, J.J., Martínez, J., García M.A.: Evaluation of Harmonic Variability in Elec-
trical Power Systems through Statistical Control of Quality and Functional Data Analysis. The
Manufacturing Engineering Society International Conference, MESIC (2013)

17. Shewhart, W.A.: Economic Control of Quality ofManufactured Product, p. 501. Van Nostrand,
New York (1931)

18. Subrahmanian, V.S.: On the semantics of quantitative logic programs. In: Proceedingsof 4th
IEEE Symposium on Logic Programming. Computer Society Press, Washington DC (1987)

19. WESTERN ELECTRIC: Statistical Quality Control Handbook, 2nd edn. Western Electric
Company, Indianapolis (1958)

http://dx.doi.org/10.1007/978-1-4471-4546-2_8
http://dx.doi.org/10.1109/ISAP.2015.7325579
http://dx.doi.org/10.1109/ISAP.2015.7325579
http://dx.doi.org/10.1007/978-1-84800-131-2

Chapter 7
Programming with Annotated Logics

Kazumi Nakamatsu and Seiki Akama

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract In this chapter, we survey paraconsistent annotated logic programs
EVALPSN/bf-EVALPSN and their application to intelligent control, especially
logical safety verification based control. We have already proposed a paracon-
sistent annotated logic program called EVALPSN. In EVALPSN, an annotation
called an extended vector annotation is attached to each literal. For dealing with
before-after relation between two time intervals, we also have introduced a new
interpretation for extended vector annotations in EVALPSN, which is named before-
after(bf)-EVALPSN. First, we review EVALPSN, and paraconsistent annotated log-
ics PT and the basic annotated logic program are given as the formal background of
EVALPSN/bf-EVALPSN with some simple examples. Then, EVALPSN is formally
defined and its application to traffic signal control is described. We also introduce
EVALPSN application to pipeline valve control with examples. Bf-EVALPSN is
formally defined and its unique and useful reasoning rules are introduced with some
examples. Last, we give some concluding remarks.

Keywords Annotated logic · Paraconsistent annotated logic programming ·
Intelligent control · EVALPSN · Bf-EVALPSN

K. Nakamatsu (B)
University of Hyogo, 1-1-12 Shinzaike, Himeji 670-0092, Japan
e-mail: nakamatu@shse.u-hyogo.ac.jp

S. Akama
C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-ku, Kawasaki 215-0012, Japan
e-mail: akama@jcom.home.ne.jp

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_7

103

104 K. Nakamatsu and S. Akama

7.1 Introduction

Paraconsistent logic is a logic capable of formalizing inconsistent but non-trivial
theories. In standard logical systems like classical logic, inconsistency gives rise to
triviality. In trivial theories, every formula is provable. However, for many appli-
cations we have to tolerate inconsistency. For this purpose, paraconsistent logic is
suitable because it can deal with inconsistency in a framework of consistent logical
systems.

It has been almost seven decades since the first paraconsistent logical system was
proposed by Jaśkowsk [13]. It was three decades later that a family of paraconsistent
logic called “annotated logic” was proposed by da Costa et al. [9, 50], which can
deal with inconsistency by introducing many truth values called “annotations” into
their syntax as attached information to atomic formulas. The paraconsistent anno-
tated logic by da Costa et al. was originally developed from the viewpoint of logic
programming by Subrahmanian et al. [8, 14, 49]. For details on annotated logic, the
reader is advised to consult Abe et al. [1].

Furthermore, in order to deal with inconsistency and non-monotonic reasoning in
a framework of annotated logic programming, ALPSN (Annotated Logic Program
with Strong Negation) and its stable model semantics was developed by Nakamatsu
and Suzuki [17]. It has been shown that ALPSN can deal with some non-monotonic
reasonings such as default logic [47], autoepistemic logic [16] and a non-monotonic
Assumption Based TruthMaintenance System (ATMS) [10] in a framework of anno-
tated logic programming [18, 36, 37].

Even though ALPSN can deal with non-monotonic reasoning such as default
reasoning and conflicts can be represented as paraconsistent knowledge in it, it is
difficult and complicated to deal with reasoning to resolve conflicts in ALPSN. On
the other hands, it is known that defeasible logic can deal with conflict resolving in
a logical way [6, 42, 43], although defeasible logic cannot deal with inconsistency
in its syntax and its inference rules are too complicated to be implemented easily.

In order to deal with conflict resolution and inconsistency in a framework of
annotated logic programming, a newversion ofALPSN,VALPSN (VectorAnnotated
Logic Program with Strong Negation) that can deal with defeasible reasoning and
inconsistency was also developed by Nakamatsu [22]. Moreover, it has been shown
that VALPSN can be applied to conflict resolution in various systems [19–21]. It
also has been shown that VALPSN provides a computational model of defeasible
logic [6, 7].

Later, VALPSN was extended to EVALPSN (Extended VALPSN) by Nakamatsu
et al. [23, 24] to deal with deontic notions (obligation, permission, forbiddance, etc.)
and defeasible deontic reasoning [44, 45]. Recently, EVALPSN has been applied
to various kinds of safety verification and intelligent control, for example, railway
interlocking safety verification [27], robot action control [25, 28, 29, 38], safety
verification for air traffic control [26], traffic signal control [30], discrete event con-
trol [31–33] and pipeline valve control [34, 35].

7 Programming with Annotated Logics 105

Considering the intelligent safety verification for process control, there is an occa-
sion inwhich the safety verification for process order control is significant. For exam-
ple, suppose a pipeline network in which two kinds of liquids, nitric acid and caustic
soda are used for cleaning the pipelines. If those liquids are processed continuously
and mixed in the same pipeline by accident, explosion by neutralization would be
caused. In order to avoid such a dangerous accident, the safety for process order
control should be strictly verified in a formal way such as EVALPSN.

However, it seems to be a little difficult to utilize EVALPSN for verifying process
order control as well as the safety verification for each process in process control. We
have alreadyproposed a newversion ofEVALPSNcalled bf(before-after)-EVALPSN
that can deal with before-after relations between two time intervals (processes) by
using two sorts of reasoning rules. One is named Basic Before-after reasoning rule
and another is Transitive Before-after reasoning rule [39–41].

This chapter mainly reviews EVALPSN, bf-EVALPSN and their applications to
intelligent control based on their logical reasoning. As far as we know there seems
to be no other efficient computational tool that can deal with the real-time intelligent
safety verification for process order control than bf-EVALPSN.

This chapter is organized as follows: firstly, in Sect. 7.1, the background and
development of the paraconsistent annotated logic programs are overviewed.

In Sect. 7.2, paraconsistent annotated logics and their logic programs are intro-
duced as the background knowledge of EVALPSN/bf-EVALPSN, moreover
EVALPSN are formally recapitulated.

In Sect. 7.3, the traffic signal control system based on EVALPSN deontic defea-
sible reasoning and its simple simulation results by the cellular automaton method
are given as an application of EVALPSN to intelligent control.

In Sect. 7.4, a simple brewery pipeline network is introduced and its pipeline
process control system based on EVALPSN valve safety verification is shown to be
as an application of EVALPSN to intelligent control systems.

In Sect. 7.5, the basic concepts of bf-EVALPSN are introduced and bf-EVALPSN
itself is formally defined, furthermore, an application of bf-EVALPSN to real-time
intelligent safety verification for process order control is presented with the pipeline
examples in Sect. 7.4.

In Sect. 7.6, we review reasoning of before-after relations in bf-EVALPSN and
a unique and useful inference method of before-after relations in bf-EVALPSN,
which can be implemented as a bf-EVALPSN called ”transitive bf-inference rules”,
is introduced with a simple example.

Lastly, in Sect. 7.7, we give some concluding remarks.

7.2 Paraconsistent Annotated Logic Program

This section is concernedwith the formal background of the paraconsistent annotated
logic program EVALPSN. For more details of EVALPSN; see [39]. We assume
that the reader is familiar with the basic knowledge of classical logic and logic
programming [15].

106 K. Nakamatsu and S. Akama

7.2.1 Paraconsistent Annotated Logic PT

In order to understand EVLPSN and its reasoningwe introduce Paraconsistent Anno-
tated Logics PT [9]. Here, we briefly give the syntax and semantics for propositional
paraconsistent annotated logics PT proposed by da Costa et al. [9].

Generally, a truth value called an annotation is attached to each atomic formula
explicitly in paraconsistent annotated logic, and the set of annotations constitutes a
complete lattice. We introduce a paraconsistent annotated logic PT with the four
valued complete lattice T .

Definition 2.1 The primitive symbols of PT are:

1. propositional symbols: p, q, . . . , pi, qi, . . .;
2. eachmember ofT is an annotation constant (wemay call it simply an annotation);
3. the connectives and parentheses: ∧, ∨, →, ¬, (,).

Formulas are defined recursively as follows:

1. if p is a propositional symbol and μ ∈ T is an annotation constant, then p :μ is
an annotated atomic formula (atom);

2. if F,F1,F2 are formulas, then ¬F,F1 ∧ F2,F1 ∨ F2,F1 → F2 are formulas.

We suppose that the four-valued lattice in Fig. 7.1 is the complete lattice T , where
annotationst andfmay be intuitively regarded as truth values true and false, respec-
tively. It may be comprehensible that annotations ⊥,t,f and � correspond to the
truth values ∗,T ,F and TF in Visser [51] and None, T, F, and Both in Belnap [5],
respectively. Moreover, the complete lattice T can be viewed as a bi-lattice in which
the vertical direction

−→⊥� indicates knowledge amount ordering and the horizontal
direction

−→
ft does truth ordering [11]. We use the symbol ≤ to denote the ordering

in terms of knowledge amount (the vertical direction
−→⊥�) over the complete lattice

T , and the symbols⊥ and� are used to denote the bottom and top elements, respec-
tively. In the paraconsistent annotated logic PT , each annotated atomic formula can
be interpreted epistemically, for example, p :t may be interpreted epistemically as
“the proposition p is known to be true”.

There are two kinds of negation in the paraconsistent annotated logic PT , one of
them is called epistemic negation and represented by the symbol ¬ (see Definition
2.1). The epistemic negation in PT followed by an annotated atomic formula is
defined as a mapping between elements of the complete lattice T as follows:

Fig. 7.1 The 4-valued complete lattice T

7 Programming with Annotated Logics 107

¬(⊥) = ⊥, ¬(t) = f, ¬(f) = t, ¬(�) = �.

As shown in the above mapping the epistemic negation maps annotations to them-
selves without changing the knowledge amounts of annotations. Furthermore, the
epistemic negation followed by an annotated atomic formula can be eliminated by
the mapping. For instance, the knowledge amount of annotation t is the same as
that of annotation f as shown in the complete lattice T , and we have the epistemic
negation,1

¬(p :t) = p :¬(t) = p :f,

which shows that the knowledge amount in terms of the proposition p cannot be
changed by the epistemic negation mapping. There is another negation called onto-
logical(strong) negation that is defined by using the epistemic negation.

Definition 2.2 (Strong Negation)

Let F be any formula,

∼F =def F → ((F → F) ∧ ¬(F → F)).

The epistemic negation in Definition 2.2 is not interpreted as a mapping between
annotations since it is not followed by an annotated atomic formula. Therefore, the
strongly negated formula ∼F can be interpreted so that if the formula F exists, the
contradiction ((F → F) ∧ ¬(F → F)) is implied. Usually, the strong negation is
used for denying the existence of a formula following it.

The semantics for the paraconsistent annotated logics PT is defined.

Definition 2.3 Let ν be the set of all propositional symbols and F be the set of all
formulas. An interpretation I is a function,

I : ν −→ T .

To each interpretation I , we can associate the valuation function such that

vI : F −→ {0, 1},

which is defined as:

1. let p be a propositional symbol and μ an annotation,

vI(p :μ) = 1 iff μ ≤ I(p),

vI(p :μ) = 0 iff μ �≤ I(p);

1An expression ¬p :μ is conveniently used for expressing a negative annotated literal instead of
¬(p :μ) or p :¬(μ).

108 K. Nakamatsu and S. Akama

2. let A and B be any formulas, and A not an annotated atom,

vI(¬A) = 1 iff vI(A) = 0,

vI(∼B) = 1 iff vI(B) = 0;

other formulas A → B,A ∧ B,A ∨ B are valuated as usual.

We provide an intuitive interpretation for strongly negated annotated atoms with
the complete lattice T . For example, the strongly negated literal ∼(p :t) implies
the knowledge “p is false (f) or unknown (⊥)” since it denies the existence of the
knowledge that “p is true (t)”. This intuitive interpretation is provided by Definition
2.3 as follows: if vI(∼(p :t)) = 1, we have vI(p :t) = 0 and for any annotation
μ ∈ {⊥,f,t,�} ≤ t, we have vI(p :μ) = 1, therefore, we obtain that μ = f or
μ = ⊥.

7.2.2 EVALPSN (Extended Vector Annotated Logic Program
with Strong Negation)

Generally, an annotation is explicitly attached to each literal in paraconsistent anno-
tated logic programs as well as the paraconsistent annotated logic PT . For example,
let p be a literal, μ an annotation, then p :μ is called an annotated literal. The set of
annotations constitutes a complete lattice.

An annotation in EVALPSN has a form of [(i, j), μ] called an extended vector
annotation. The first component (i, j) is called a vector annotation and the set of
vector annotations, which constitutes a complete lattice,

Tv(n) = {(x, y)|0 ≤ x ≤ n, 0 ≤ y ≤ n, x, y and n are integers}

shown by the Hasse’s diagram as n = 2 in Fig. 7.2.
The ordering(�v) of the complete lattice Tv(n) is defined as follows: let (x1, y1),

(x2, y2) ∈ Tv(n),

Fig. 7.2 Lattice Tv(2) and
lattice Td

7 Programming with Annotated Logics 109

(x1, y1) �v (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

For each extended vector annotated literal p : [(i, j), μ], the integer i denotes the
amount of positive information to support the literal p and the integer j denotes that
of negative one. The second component μ is an index of fact and deontic notions
such as obligation, and the set of the second components constitutes the following
complete lattice,

Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�}.

The ordering(�d) of the complete lattice Td is described by the Hasse’s diagram in
Fig. 7.2. The intuitive meaning of each member in Td is

⊥(unknown),

α(fact), β(obligation), γ (non-obligation),

∗1(fact and obligation),

∗2(obligation and non-obligation),

∗3(fact and non-obligation), and

�(inconsistency).

The complete lattice Td is a quatro-lattice in which the direction
−→⊥� measures

knowledge amount, the direction
−→
γβ does deontic truth, the direction

−−→⊥∗2 does
deontic knowledge amount and the direction

−→⊥α does factuality.
For example, annotation β(obligation) can be intuitively interpreted to be more

obligatory than annotation γ (non-obligation), and annotations⊥(no knowledge) and
∗2(obligation and non-obligation) are deontically neutral, that is to say, it cannot be
said whether they represent obligation or non-obligation.

The complete latticeTe(n)of extended vector annotations is defined as the product,

Tv(n) × Td .

The ordering(�e) of the complete lattice Te(n) is also defined as follows: let
[(i1, j1), μ1], [(i2, j2), μ2] ∈ Te,

[(i1, j1), μ1] �e [(i2, j2), μ2] iff (i1, j1) �v (i2, j2) and μ1 �d μ2.

There are two kinds of epistemic negation (¬1 and ¬2) in EVALPSN, which are
defined as mappings over the complete lattices Tv(n) and Td , respectively.
Definition 2.4 (epistemic negations ¬1 and ¬2 in EVALPSN)

¬1([(i, j), μ]) = [(j, i), μ], ∀μ ∈ Td
¬2([(i, j),⊥]) = [(i, j),⊥], ¬2([(i, j), α]) = [(i, j), α],
¬2([(i, j), β]) = [(i, j), γ], ¬2([(i, j), γ]) = [(i, j), β],

110 K. Nakamatsu and S. Akama

¬2([(i, j), ∗1]) = [(i, j), ∗3], ¬2([(i, j), ∗2]) = [(i, j), ∗2],
¬2([(i, j), ∗3]) = [(i, j), ∗1], ¬2([(i, j),�]) = [(i, j),�].

If we regard the epistemic negations in Definition 2.4 as syntactical operations,
an epistemic negation followed by a literal can be eliminated by the syntactical
operation. For example, ¬1p : [(2, 0), α] ↔ p : [(0, 2), α] and ¬2q : [(1, 0), β] ↔ p :
[(1, 0), γ]. The strong negation (∼) in EVALPSN is defined as well as the paracon-
sistent annotated logic PT .

Definition 2.5 (well extended vector annotated literal) Letpbe a literal.p : [(i, 0), μ]
and p : [(0, j), μ] are called weva(well extended vector annotated)-literals, where
i, j ∈ {1, 2, . . . , n}, and μ ∈ { α, β, γ }.
Definition 2.6 (EVALPSN) If L0, . . . ,Ln are weva-literals,

L1 ∧ · · · ∧ Li ∧ ∼Li+1 ∧ · · · ∧ ∼Ln → L0

is called an EVALPSN clause. An EVALPSN is a finite set of EVALPSN clauses.

Fact and deontic notions, “obligation”, “forbiddance” and “permission” are rep-
resented by extended vector annotations,

[(m, 0), α], [(m, 0), β], [(0,m), β], and [(0,m), γ],

respectively, where m is a positive integer. For example,

p : [(2, 0), α] is intuitively interpreted as “it is known to be true of strength 2 that
p is a fact”;

p : [(1, 0), β] is as “it is known to be true of strength 1 that p is obligatory”;
p : [(0, 2), β] is as “it is known to be false of strength 2 that p is obligatory”, that

is to say, “it is known to be true of strength 2 that p is forbidden”;
p : [(0, 1), γ] is as “it is known to be false of strength 1 that p is not obligatory”,

that is to say, “it is known to be true of strength 1 that p is permitted”.

Generally, if an EVALPSN contains the strong negation ∼, it has stable model
semantics [39] as well as other ordinary logic programs with strong negation. How-
ever, the stable model semantics may have a problem that some programs may have
more than two stable models and others have no stable model. In addition, computa-
tion of stable models takes a long time compared to usual logic programming such
as PROLOG programming.

Therefore, it does not seem to be so appropriate for practical application such as
real time processing in general. However, we fortunately have cases to implement
EVALPSN practically, if an EVALPSN is a stratified program, it has a tractable
model called a perfect model [46] and the strong negation in the EVALPSN can be
treated as the Negation as Failure in logic programming with no strong negation.

The details of stratified program and some tractable models for normal logic
programs can be found in [4, 12, 46, 48], furthermore the details of the stratified

7 Programming with Annotated Logics 111

EVALPSN are described in [39]. Therefore, inefficient EVALPSN stablemodel com-
putation does not have to be taken into account in this chapter since all EVALPSNs
that will appear in the subsequent sections are stratified.

7.3 Traffic Signal Control in EVALPSN

7.3.1 Deontic Defeasible Traffic Signal Control

It is clear that we should resolve traffic jam caused by inappropriate traffic signal con-
trol. In this section, we introduce an intelligent traffic signal control system based on
EVALPSN defeasible deontic reasoning, which may provide one solution for traffic
jam reduction. We show how the traffic signal control is implemented in EVALPSN
with taking a simple intersection example in Japan. We suppose an intersection in
which two roads are crossing described in Fig. 7.3 as an example for implementing
the traffic signal control method based on EVALPSN.2

The intersection has four traffic lights T1,2,3,4, which indicate four kinds of signals,
green, yellow, red and right-turn arrow. Each lane connected to the intersection has a
sensor to detect traffic amount. Each sensor is described by symbols Si? (1 ≤ i ≤ 8)
in Fig. 7.3.

For example, the sensor S6 detects the right-turn traffic amount confronting traffic
light T1. Basically, the traffic signal control is performed based on the traffic amount
detected by the sensors. The chain of signaling is supposed as follows:

→ red → green → yellow → right arrow → red → .

For simplicity, we assume that the durations of yellow and right arrow signals are
constant, and if traffic lights T1,2(T3,4) are green or right arrow, traffic lights T3,4(T1,2)
are red as follows:

Signal cycle of traffic lights T1,2
→ red → red → green → right arrow → red →,

Signal cycle of traffic lights T3,4
→ green → right arrow → red → red → green → .

Only the turns green to right arrow and right arrow to red are controlled. The turn
red to green of the front traffic signal follows the turn right arrow to red of the neighbor
one. Moreover, the signaling is controlled at each unit time t ∈ {0, 1, 2, . . . , n}. The
traffic amount of each lane can be regarded as permission or forbiddance from turning
such as green to right arrow.

2The intersection is supposed to be in Japan where we need to keep left if driving a car.

112 K. Nakamatsu and S. Akama

Fig. 7.3 Intersection

For example, if there are many cars waiting for traffic lights T1,2 turning red
to green, it can be regarded as permission for turning the crossing traffic lights T3,4
green to right arrow, yellow and red. On the other hand, if there are many cars passing
through the intersection with traffic lights T3,4 signaling green, it can be regarded
as forbiddance from turning traffic lights T3,4 green to right arrow. Then, there is
a conflict between those permission and forbiddance in terms of the same traffic
lights T3,4.

We formalize such a conflict resolving inEVALPSN.Weassume that theminimum
and maximum durations of green signal are previously given for all traffic lights, and
the duration of green signal must be controlled between the minimum and maximum
durations. We consider the following four states of traffic lights T1,2,3,4,

state 1 traffic lights T1,2 are red and traffic lights T3,4 are green,
state 2 traffic lights T1,2 are red and traffic lights T3,4 are right arrow,
state 3 traffic lights T1,2 are green and traffic lights T3,4 are red,
state 4 traffic lights T1,2 are right arrow and traffic lights T3,4 are red.

Here we take the transit from the state 1 to the state 2 into account to introduce the
traffic signal control properties in the state 1 and its translation into EVALPSN. The
traffic signal control consists of the traffic signal control properties for the state transit
the state 1 to the state 2, green light length rules, and deontic defeasible reasoning
rules for traffic signal control.

We use the following EVALP literals:

• Si(t) : [(2, 0), α] can be informally interpreted as the traffic sensor Si(i = 1, 2,
. . . , 8) has detected traffic at time t.

• Tm,n(c, t) : [(2, 0), α] can be informally interpreted as the traffic light Tm,n indicates
a signal color C at time t, where m, n = 1, 2, 3, 4 and c is one of signal colors
green(g), red(r), or right arrow(a).

7 Programming with Annotated Logics 113

• MINm,n(g, t) : [(2, 0), α] can be informally interpreted as the green duration of
traffic lights Tm,n(m, n = 1, 2, 3, 4) is shorter than its minimum green duration at
time t.

• MAXm,n(g, t) : [(2, 0), α] can be informally interpreted as the green duration of
traffic lights Tm,n is longer than its maximum green duration at time t.

• Tm,n(c, t) : [(0, k), γ] which can be informally interpreted as it is permitted for
traffic lights Tm,n to indicate signal color C at time t, where m, n = 1, 2, 3, 4
and c is one of the signal colors green(g), red(r), or right arrow(a); if k = 1, the
permission is weak, and if k = 2, the permission is strong.

• Tm,n(c, t) : [(0, k), β] can be informally interpreted as it is forbidden for traffic
lights Tm,n from indicating the signal color C at time t, where m, n = 1, 2, 3, 4
and c is one of the signal colors green(g), red(r), or right arrow(a); if k = 1, the
forbiddance is weak, and if k = 2, the forbiddance is strong.

[Traffic Signal Control Properties in State 1]

1 If traffic sensor S1 detects traffic amount, it has already passed the minimum
green duration of traffic lights T3,4, and neither traffic sensors S5 nor S7 detect
traffic amount at time t, then it is weakly permitted for traffic lights T3,4 to turn
green to right arrow at time t; which is translated into the EVALPSN,

S1(t) : [(2, 0), α] ∧
T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α] ∧
∼MIN3,4(g, t) : [(2, 0), α] ∧
∼S5(t) : [(2, 0), α] ∧ ∼S7(t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 1), γ]. (7.1)

2 If traffic sensor S3 detects traffic amount, it has already passed the minimum
green duration of traffic lights T3,4, and neither traffic sensors S5 nor S7 detect
traffic amount at time t, then it is weakly permitted for traffic lights T3,4 to turn
green to right arrow at time t; which is translated into the EVALPSN,

S3(t) : [(2, 0), α] ∧
T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α] ∧
∼MIN3,4(g, t) : [(2, 0), α] ∧
∼S5(t) : [(2, 0), α] ∧ ∼S7(t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 1), γ]. (7.2)

3 If traffic sensor S2 detects traffic amount, it has already passed the minimum
green duration of traffic lights T3,4, and neither traffic sensors S5 nor S7 detect
traffic amount at time t, then it is weakly permitted for traffic lights T3,4 to turn
green to right arrow at time t, which is translated into the EVALPSN,

114 K. Nakamatsu and S. Akama

S2(t) : [(2, 0), α] ∧
T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α] ∧
∼MIN3,4(g, t) : [(2, 0), α] ∧
∼S5(t) : [(2, 0), α] ∧ ∼S7(t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 1), γ], (7.3)

4 If traffic sensor S4 detects traffic amount, it has already passed the minimum
green duration of traffic lights T3,4, and neither traffic sensors S5 nor S7 detect
traffic amount at time t, then it is weakly permitted for traffic lights T3,4 to turn
green to right arrow at time t; which is translated into the EVALPSN,

S4(t) : [(2, 0), α] ∧
T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α] ∧
∼MIN3,4(g, t) : [(2, 0), α] ∧
∼S5(t) : [(2, 0), α] ∧ ∼S7(t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 1), γ], (7.4)

5 If traffic sensor S6 detects traffic amount, it has already passed the minimum
green duration of traffic lights T3,4, and neither traffic sensors S5 nor S7 detect
traffic amount at time t, then it is weakly permitted for traffic lights T3,4 to turn
green to right arrow at time t; which is translated into the EVALPSN,

S6(t) : [(2, 0), α] ∧
T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α] ∧
∼MIN3,4(g, t) : [(2, 0), α] ∧
∼S5(t) : [(2, 0), α] ∧ ∼S7(t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 1), γ], (7.5)

6 If traffic sensor S8 detects traffic amount, it has already passed the minimum
green duration of traffic lights T3,4, and neither traffic sensors S5 nor S7 detect
traffic amount at time t, then it is weakly permitted for traffic lights T3,4 to turn
green to right arrow at time t; which is translated into the EVALPSN,

S6(t) : [(2, 0), α] ∧
T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α] ∧
∼MIN3,4(g, t) : [(2, 0), α] ∧
∼S5(t) : [(2, 0), α] ∧ ∼S7(t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 1), γ], (7.6)

7 If traffic sensor S5 detects traffic amount and it has not passed the maximum
green duration of traffic lights T3,4 yet, then it is weakly forbidden for traffic

7 Programming with Annotated Logics 115

lights T3,4 to turn green to right arrow at time t; which is translated into the
EVALPSN,

S5(t) : [(2, 0), α] ∧
T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α] ∧
∼MAX3,4(g, t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 1), β], (7.7)

8 If traffic sensor S7 detects traffic amount and it has not passed the maximum
green duration of traffic lights T3,4, then it is weakly forbidden for traffic lights
T3,4 to turn green to right arrow at time t; which is translated into the EVALPSN,

S7(t) : [(2, 0), α] ∧
T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α] ∧
∼MAX3,4(g, t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 1), β], (7.8)

[Green light length rules for the traffic lights T3,4]

9 If traffic lights T3,4 are green and it has not passed the minimum duration of
them yet, then it is strongly forbidden for traffic lights T3,4 to turn green to right
arrow at time t; which is translated into the EVALPSN,

T3,4(g, t) : [(2, 0), α] ∧ MIN3,4(g, t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 2), β], (7.9)

10 If traffic lights T3,4 are green and it has already passed the maximum duration
of them, then it is strongly permitted for traffic lights T3,4 to turn green to right
arrow at time t; which is translated into the EVALPSN,

T3,4(g, t) : [(2, 0), α] ∧ MAX3,4(g, t) : [(2, 0), α]
→ T3,4(a, t) : [(0, 2), γ], (7.10)

[Deontic deasible reasoning rules]

11 If traffic lights T3,4 are green, it is weakly permitted at least for traffic lights T3,4
to turn green to right arrow at time t, then it is strongly obligatory for traffic
lights T3,4 to turn green to right arrow at time t + 1 (at the next step); which is
translated into the EVALPSN,

T3,4(g, t) : [(2, 0), α] ∧ T3,4(a, t) : [(0, 1), γ]
→ T3,4(a, t + 1) : [(2, 0), β], (7.11)

116 K. Nakamatsu and S. Akama

12 If traffic lights T3,4 are green, it is weakly forbidden at least for traffic lights T3,4
to turn green to right arrow at time t, then it is strongly obligatory for traffic
lights T3,4 not to turn green to right arrow at time t + 1 (at the next step); which
is translated into the EVALPSN,

T3,4(g, t) : [(2, 0), α] ∧ T3,4(a, t) : [(0, 1), β]
→ T3,4(g, t + 1) : [(2, 0), β]. (7.12)

7.3.2 Example and Simulation

Let us introduce a simple example of the EVALPSN based traffic signal control. We
assume the same intersection in the previous section.

Example 3.1 Suppose that traffic lights T1,2 are red and traffic lights T3,4 are green.
We also suppose that the minimum duration of green signal has already passed but
the maximum one has not passed yet. Then, we obtain the EVALPSN,

T1,2(r, t) : [(2, 0), α] ∧ T3,4(g, t) : [(2, 0), α], (7.13)

∼MIN3,4(g, t) : [(2, 0), α], (7.14)

∼MAX3,4(g, t) : [(2, 0), α], (7.15)

If traffic sensors S1,3,5 detect traffic amount and traffic sensors S2,4,6,7,8 do not detect
traffic amount at time t, we obtain the EVALPSN,

S1(t) : [(2, 0), α], (7.16)

S3(t) : [(2, 0), α], (7.17)

S5(t) : [(2, 0), α], (7.18)

∼S2(t) : [(2, 0), α], (7.19)

∼S4(t) : [(2, 0), α], (7.20)

∼S6(t) : [(2, 0), α], (7.21)

∼S7(t) : [(2, 0), α], (7.22)

∼S8(t) : [(2, 0), α]. (7.23)

Then, by EVALPSN clauses (7.7), (7.13), (7.15) and (7.18) the forbiddance from
traffic lights T3,4 turning to right arrow,

T3,4(a, t) : [(0, 1), β] (7.24)

7 Programming with Annotated Logics 117

is derived, furthermore, by EVALPSN clauses (7.12), (7.13) and (7.24) the obligation
for traffic lights T3,4 keeping green at time t + 1,

T3,4(g, t + 1) : [(2, 0), β]

is obtained.
On the other hand, if traffic sensors S1,3 detect traffic amount and traffic sensors

S2,4,5,6,7,8 do not detect traffic amount at time t, we obtain the EVALPSN,

S1(t) : [(2, 0), α], (7.25)

S3(t) : [(2, 0), α], (7.26)

∼S2(t) : [(2, 0), α], (7.27)

∼S4(t) : [(2, 0), α], (7.28)

∼S5(t) : [(2, 0), α], (7.29)

∼S6(t) : [(2, 0), α], (7.30)

∼S7(t) : [(2, 0), α], (7.31)

∼S8(t) : [(2, 0), α]. (7.32)

Then, by EVALPSN clauses (7.1), (7.13), (7.14), (7.25), (7.29) and (7.31), the per-
mission for traffic lights T3,4 turning to right arrow,

T3,4(a, t) : [(0, 1), γ] (7.33)

is derived, furthermore, by EVALPSN clauses (7.11), (7.13) and (7.33) the obligation
for traffic lights T3,4 turning to right arrow at time t + 1,

T3,4(a, t + 1) : [(2, 0), β]

is finally obtained.

Here we introduce an EVALPSN traffic control simulation system based on the
cellular automaton method and its simulation results comparing to ordinary fixed-
time traffic signal control. In order to evaluate the simulation results we define the
concepts ”step”, ”move times”, and ”stop times” as follows:

step a time unit in the simulation system, which is a transit time that one car moves
from its current cell to the next cell.

move times shows the times that one car moves from its current cell to the next cell
without stop.

stop times shows the times that one car stops during transition from one cell to
another cell.

118 K. Nakamatsu and S. Akama

Table 7.1 Simulation results

Fixed-time control EVALPSN control

Stop times Move times Stop times Move times

Condition 1 17690 19641 16285 23151

Condition 2 16764 18664 12738 20121

We introduce the simulation results under the following two trafficflowconditions.

[Condition 1]

Cars are supposed to flow into the intersection from each road with the same prob-
abilities, right-turn 5%, left-turn 5% and straight 20%. It is supposed that green
signal duration is 30 steps, yellow one is 3 steps, right-arrow one is 4 steps and red
one is 40 steps in the fixed-time traffic signal control. It is also supposed that green
signal duration is between 14 and 30 steps in the EVALPSN traffic signal control.

[Condition 2]

Cars are supposed to flow into the intersection with the following probabilities,

from South right-turn 5%, left-turn 15% and straight 10%;
from North right-turn 15%, left-turn 5% and straight 10%;
from West right-turn, left-turn and straight 5% each;
from East right-turn and left-turn 5% each, and straight 15%.

Other conditions are the same as the Condition 1.
We measured the numbers of car stop and move times during 1000 steps, and

repeated it 10 times under the same conditions. The average numbers of car stop and
move times are listed in Table7.1. The simulation results show that the number of
car move times in the EVALPSN traffic signal control is larger than that in the fixed-
time traffic signal control, and the number of car stop times in the EVALPSN traffic
signal control is smaller than that in the fixed time one. Taking the simulation results
into account, it could be concluded that the EVALPSN traffic signal control is more
efficient for relieving traffic congestion than the fixed-time traffic signal control.

7.4 EVALPSN Safety Verification for Pipeline Control

This section introduces EVALPSNbased safety verification for pipeline valve control
with a simple brewery pipeline example.

7 Programming with Annotated Logics 119

7.4.1 Pipeline Network

The pipeline network described in Fig. 7.4 is taken as an example for the brewery
pipeline valve control based on EVALPSN safety verification. In Fig. 7.4, the arrows
represent the directions of liquid flows, home-plate pentagons show brewery tanks,
and cross figures do valves.

In the pipeline network, we suppose physical entities:

• four tanks, T0,T1,T2, and T3;
• five pipes, Pi0,Pi1,Pi2,Pi3, and Pi4;
(a pipe includes neither valves nor tanks)

• two valves, V0, and V1;

and logical entities that we suppose:

• four processes, Pr0,Pr1,Pr2, and Pr3;
(a process is defined as a set of sub-processes and valves)

• five sub-processes, SPr0, SPr1, SPr2, SPr3, and SPr4.

For example, process Pr0 consists of sub-processes SPr0, SPr1 and valve V0. Each
entity is supposed to have logical or physical states. Sub-processes have two states
locked(l) and free(f), then “the sub-process is locked” means that the sub-process
is supposed to be locked(logically reserved) by one sort of liquid, and “free” means
unlocked. Processes have two states set(s) and unset(xs), then “the process is set”
means that all the sub-processes in the process are locked, and “unset” means not
set.

Here we also assume that valves in the network can control two liquid flows in
the normal and cross directions as shown in Fig. 7.5.

Valves have two controlled states, controlled mix(cm) representing that the valve
is controlled tomix the liquid flows in the normal and cross directions, and controlled

Fig. 7.4 Pipeline example

120 K. Nakamatsu and S. Akama

Fig. 7.5 Normal and cross
directions

Fig. 7.6 Controlled mix and
separate

separate(cs) representing that the valve is controlled to separate the liquid flow in
the normal and cross directions as shown in Fig. 7.6.

We suppose that there are five sorts of cleaning liquid:

cold water(cw),warm water(ww), hot water(hw),

nitric acid(na) and caustic soda(cs).

We also consider the following four brewery and cleaning processes in the pipeline
network:

• Process Pr0 a beer process,

T0 −→ V0(cs) −→ T1

• Process Pr1 a cleaning process with nitric acid,

T2

↑

V0(cs)

↑

T3 −→ V1(cm)

7 Programming with Annotated Logics 121

• Process Pr2 a cleaning process with cold water,

T2

↑

V0(cs)

↑

T3 −→ V1(cm)

• Process Pr3 a brewery mixing process,

T2

↑

T0 −→ V0(cm) −→ T1

↑

T3 −→ V1(cm)

In order to verify the safety for the above processes, the pipeline controller issues
a process request consisting of if-part and then-part before starting the process. The
if-part describes the current state of the pipelines that should be used in the process,
and the then-part describes the permission for setting the process. For example, the
process request for process Pr1 is described as:

if sub-process SPr0 is free,

sub-process SPr1 is free,

valve V0 is physically controlled separate and free,

then process Pr0 can be set ?

We also suppose the following process schedule for processes Pr0,1,2,3:

• S-0 process Pr0 starts before any other processes;
• S-1 process Pr1 starts immediately after process Pr0;
• S-2 process Pr2 starts immediately after process Pr1;
• PRS-3 process Pr3 starts immediately after processes Pr0 and Pr2,

which are charted in Fig. 7.7.

122 K. Nakamatsu and S. Akama

Fig. 7.7 Process Schedule
Chart

7.4.2 Pipeline Safety Property

We introduce the safety properties, SPr for sub-processes,Val for valves, and Pr for
processes, for assuring the pipeline valve control safety, which can avoid unexpected
mix of different sorts of liquid in the valve.

• SPr: it is a forbidden case that the sub-process over a given pipe is simultaneously
locked by different sorts of liquid.

• Val: it is a forbidden case that valves are controlled for unexpected mix of liquid.
• Pr: whenever a process is set, all its component sub-processes are locked and all
its component valves are controlled consistently.

7.4.3 Predicates for Safety Verification

The EVALPSN based safety verification is carried out by verifying whether process
start requests bypipeline operators contradict the safety properties or not inEVALPSN
programming. Then the following three steps 1, 2 and 3 have to be executed:

1. the safety properties for the pipeline network, which should be insured when
the pipeline network is locked, and some control methods for the network are
translated into EVALPSN clauses, and they have to be stored as EVALPSN Psc;

2. the if-part of the process request that is the current state of the pipeline and the
then-part of the process request that is supposed to be verified are translated into
EVALP clauses as EVALPs Pi and Pt , respectively;

3. EVALP Pt is inquired from EVALPSN {Psc ∪ Pi}, then if yes is returned, the
safety for the request is assured and the defeasible deontic reasoning is performed,
otherwise, it is not assured; which is described in Fig. 7.8.

In order to verify the safety for the pipeline network, the following predicates are
used in EVALPSN.

• Pr(i, l) represents that the process i for the liquid l is set(s) or unset(xs), where

i ∈ {p0, p1, p2, p3}

is a process id corresponding to processes Pr0,1,2,3, respectively,

l ∈ {b, cw,ww, hw, na, cs}

is a liquid sort, and we have the EVALP clause,

7 Programming with Annotated Logics 123

Fig. 7.8 EVALPSN based
safety verification

Fig. 7.9 The complete lattice Tv(1)

Pr(i, l) : [μ1, μ2],

where

μ1 ∈ Tv1 = {⊥1,s,xs,�1},
μ2 ∈ Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�}.

The complete lattice Tv1 is a variant of the complete lattice Tv(1) in Fig. 7.9.
Therefore annotations ⊥1,s,xs and �1 are for vector annotations (0, 0), (1, 0),
(0, 1) and (1, 1), respectively.
The epistemic negation ¬1 over Tv1 is defined as the following mapping:

¬1([⊥1, μ2]) = [⊥1, μ2], ¬1([s, μ2]) = [xs, μ2],
¬1([�1, μ2]) = [�1, μ2], ¬1([xs, μ2]) = [s, μ2].

For example, EVALP clause Pr(p2, b) : [s, α] can be intuitively interpreted as “it
is a fact that the beer process Pr2 is set”.

124 K. Nakamatsu and S. Akama

• SPr(i, j, l) represents that the sub-process from valve(or tank) i to valve(or tank)
j occupied by liquid l is locked(l) or free(f). Moreover, if a sub-process is free,
the liquid sort in the pipe is not cared, and the liquid is represented by the symbol
“0”(zero). Therefore we suppose that

l ∈ {b, cw,ww, hw, na, cs, 0}

and
i, j ∈ {v0, v1, t0, t1, t2, t3}

are valve and tank ids corresponding to valves V0,1, and tanks T0,1,2,3. Then we
have the following EVALP clause for representing sub-process states:

SPr(i, j, l) : [μ1, μ2],

where

μ1 ∈ Tv2 = {⊥2,l,f,�2},
μ2 ∈ Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�}.

The complete lattice Tv2 is a variant of the complete lattice Tv(1) in Fig. 7.9.
Therefore annotations ⊥2,l,f and �2 are for vector annotations (0, 0), (1, 0),
(0, 1) and (1, 1), respectively. The epistemic negation ¬1 over Tv2 is defined as
the following mapping:

¬1([⊥2, μ2]) = [⊥2, μ2], ¬1([l, μ2]) = [f, μ2],
¬1([�2, μ2]) = [�2, μ2], ¬1([f, μ2]) = [l, μ2].

For example, EVALP clause SPr(v0, t1, b) : [f, γ] can be intuitively interpreted
as “the sub-process from valve V0 to tank T1 is permitted to be locked by the beer
process”.

• Val(i, ln, lc) represents that valve i occupied by the two sorts of liquid ln, lc ∈
{b, cw,ww, hw, na, cs, 0} is controlled separate(cs) or mix(cm), where i ∈
{v0, v1} is a valve id. We suppose that there are two directed liquid flows in
the normal and cross directions in valves as shown in Fig. 7.5. Therefore, the sec-
ond argument ln represents the liquid flowing in the normal direction and the third
argument lc represents the liquid flowing in the cross direction. Generally, if a
valve is released from the locked(controlled) state, the liquid flow in the valve
is represented by the symbol 0 that means “free”. Then we have the following
EVALP clause for representing valve states,

Val(i, ln, lc) : [μ1, μ2],

7 Programming with Annotated Logics 125

where

μ1 ∈ Tv3 = {⊥3,cm,cs,�3},
μ2 ∈ Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�},

The complete lattice Tv3 is a variant of the complete lattice Tv(1) in Fig. 7.9. There-
fore annotations⊥3,cm,cs and�3 are for vector annotations (0, 0), (1, 0), (0, 1)
and (1, 1), respectively. The epistemic negation ¬1 over Tv3 is defined as the fol-
lowing mapping:

¬1([⊥3, μ2]) = [⊥3, μ2], ¬1([cs, μ2]) = [cm, μ2],
¬1([�3, μ2]) = [�3, μ2], ¬1([cm, μ2]) = [cs, μ2].

We suppose that if a process finishes, all valves included in the process are con-
trolled separate(closed). For example, EVALP clause Val(v0, 0, 0) : [cs, α] can
be intuitively interpreted as “valve V0 has been released from controlled sepa-
rate state”; EVALP clause Val(v0, b, cw) : [cs, β] can be intuitively interpreted
as both “it is forbidden for valve V0 is controlled mix with beer b in the normal
direction and cold water cw in the cross direction”, and “it is obligatory for valve
V0 to be controlled separate with beer b in the normal direction and cold water cw
in the cross direction”; and EVALP clause Val(v0, 0, b) : [cs, α] can be intuitively
interpreted as “it is a fact that valve V0 is controlled separate with the free flow 0
in the normal direction and beer b in the cross direction”.

• Eql(l1, l2) represents that liquids l1 and l2 are the same(sa) or different(di), where

l1, l2 ∈ {b, cw,ww, hw, na, cs, 0}.

We have the following EVALP clause for distinguishing liquid:

Eql(l1, l2) : [μ1, μ2],

where

μ1 ∈ Tv4 = {⊥4,sa,di,�4},
μ2 ∈ Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�}.

The complete lattice Tv4 is a variant of the complete lattice Tv(1) in Fig. 7.9. There-
fore annotations⊥4,sa,di and�4 are for vector annotations (0, 0), (1, 0), (0, 1)
and (1, 1), respectively. The epistemic negation ¬1 is defined as the following
mapping:

¬1([⊥4, μ2]) = [⊥4, μ2], ¬1([di, μ2]) = [sa, μ2],
¬1([�4, μ2]) = [�4, μ2], ¬1([sa, μ2]) = [di, μ2].

126 K. Nakamatsu and S. Akama

Now we consider process release conditions when processes have finished and
define some more predicates to represent the conditions. We suppose that if the
terminal tank Ti of process Prj is filled with one sort of liquid, the finish signal
Fin(pj) of process Prj is issued.

• Tan(ti, l) represents that tankTi has beenfilled fully(fu)with liquid l or empty(em).
Then we have the following EVALP clause for representing tank states:

Tan(ti, l) : [μ1, μ2],

where i ∈ {0, 1, 2, 3} l ∈ {b, cw,ww, hw, na, cs, 0},

μ1 ∈ Tv5 = {⊥5,fu,em,�5},
μ2 ∈ Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�}.

The complete lattice Tv5 is a variant of the complete lattice Tv(1) in Fig. 7.9. There-
fore annotations⊥5,fu,em and�5 are for vector annotations (0, 0), (1, 0), (0, 1)
and (1, 1), respectively. The epistemic negation ¬1 over Tv5 is defined as the fol-
lowing mapping:

¬1([⊥5, μ2]) = [⊥5, μ2], ¬1([fu, μ2]) = [em, μ2],
¬1([�5, μ2]) = [�5, μ2], ¬1([em, μ2]) = [fu, μ2].

Note that annotation ⊥5 can be intuitively interpreted to represent “filled with
some amount of liquid but not fully”, that is to say, “no information in terms of
fullness”. For example, EVALP clause Tan(t2, 0) : [em, α] can be interpreted as
“it is a fact that tank T2 is empty”.

• Str(pi) represents that the start signal for process Pri is issued (is) or not (ni).
• Fin(pj) represents that the finish signal for process Prj has been issued (is) or
not (ni). Then we have the following EVALP clauses for representing start/finish
information:

Str(pi) : [μ1, μ2], Fin(pi) : [μ1, μ2],

where i, j ∈ {0, 1, 2, 3},

μ1 ∈ Tv6 = {⊥6,ni,is,�6},
μ2 ∈ Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�}.

The complete lattice Tv6 is a variant of the complete lattice Tv(1) in Fig. 7.9. There-
fore annotations⊥6,is,ni and�6 are for vector annotations (0, 0), (1, 0), (0, 1)
and (1, 1), respectively. The epistemic negation ¬1 over Tv6 is defined as the fol-
lowing mapping:

¬1([⊥6, μ2]) = [⊥6, μ2], ¬1([is, μ2]) = [ni, μ2],
¬1([�6, μ2]) = [�6, μ2], ¬1([ni, μ2]) = [is, μ2].

7 Programming with Annotated Logics 127

For example, EVALP clause Fin(p3) : [ni, α] can be interpreted as “it is a fact that
the finish signal for process Pr3 has not been issued yet”.

7.4.4 Safety Property in EVALPSN

Here, we provide the formalization of all safety properties SPr, Val and Pr in
EVALPSN.

SPr can be intuitively interpreted as derivation rules of forbiddance. If a sub-
process from valve(or tank) i to valve(or tank) j is locked by one sort of liquid, it is
forbidden for the sub-process to be locked by different sorts of liquid simultaneously.
Thus, we have the following EVALPSN clause for representing such forbiddance for
sub-processes:

SPr(i, j, l1) : [l, α] ∧ ∼Eql(l1, l2) : [sa, α]
→ SPr(i, j, l2) : [f, β], (7.34)

where l1, l2 ∈ {b, cw,ww, hw, na, cs}. Moreover, in order to derive permission for
locking sub-processes we need the following EVALPSN clause:

∼SPr(i, j, l) : [f, β] → SPr(i, j, l) : [f, γ], (7.35)

where l ∈ {b, cw,ww, hw, na, cs}.
Val also can be intuitively interpreted as derivation rules of forbiddance. We have

to consider two cases: one is for deriving the forbiddance from changing the control
state of the valve, and another one is for deriving the forbiddance from mixing
different sorts of liquid without changing the control state of the valve.

Case 1

If a valve is controlled separate, it is forbidden for the valve to be controlled mix,
conversely, if a valve is controlledmixture, it is forbidden for the valve to be controlled
separate. Thus, generally we have the following EVALPSN clauses:

Val(i, ln, lc) : [cs, α] ∧ ∼Eql(ln, 0) : [sa, α] ∧
∼Eql(lc, 0) : [sa, α] → Val(i, ln, lc) : [cs, β], (7.36)

Val(i, ln, lc) : [cm, α] ∧ ∼Eql(ln, 0) : [sa, α] ∧
∼Eql(lc, 0) : [sa, α] → Val(i, ln, lc) : [cm, β], (7.37)

where ln, lc ∈ {b, cw,ww, hw, na, cs, 0}.

128 K. Nakamatsu and S. Akama

Case 2

In this case, we consider another forbiddance derivation case in which different
sorts of liquid are mixed even if the valve control state is not changed. We have the
following EVALPSN clauses:

Val(i, ln1 , lc1) : [cs, α] ∧ ∼Eql(ln1 , ln2) : [sa, α] ∧
∼Eql(ln1 , 0) : [sa, α] → Val(i, ln2 , lc2) : [cm, β], (7.38)

Val(i, ln1 , lc1) : [cs, α] ∧ ∼Eql(lc1 , lc2) : [sa, α] ∧
∼Eql(lc1 , 0) : [sa, α] → Val(i, ln2 , lc2) : [cm, β], (7.39)

Val(i, ln1 , lc1) : [cm, α] ∧ ∼Eql(ln1 , ln2) : [sa, α]
→ Val(i, ln2 , lc2) : [cs, β], (7.40)

Val(i, ln1 , lc1) : [cm, α] ∧ ∼Eql(lc1 , lc2) : [sa, α]
→ Val(i, ln2 , lc2) : [cs, β], (7.41)

where ln1 , lc1 ∈ {b, cw,ww, hw, na, cs, 0} and ln2 , lc2 ∈ {b, cw,ww, hw, na, cs}.
Here note that EVALPSN clause ∼Eql(ln, 0) : [sa, α] shows that there does not

exist information such that the normal direction with liquid ln in the valve is free (not
controlled). As well as the case of sub-processes, in order to derive permission for
controlling valves, we need the following EVALPSN clauses:

∼Val(i, ln, lc) : [cm, β] → Val(i, ln, lc) : [cm, γ], (7.42)

∼Val(i, ln, lc) : [cs, β] → Val(i, ln, lc) : [cs, γ], (7.43)

where ln, lc ∈ {b, cw,ww, hw, na, cs, 0}.
Pr can be intuitively interpreted as derivation rules of permission and directly

translated intoEVALPSNclauses as if-then rules “if all the components of the process
can be locked or controlled consistently, then the process can be set”. For example,
if the beer process Pr0 consists of the sub-process from tank T0 to valve V0, valve
V0 with controlled separate by beer in the normal direction, and the sub-process
from valve V0 to tank T1, then we have the following EVALP clause to derive the
permission for setting process Pr0.

7 Programming with Annotated Logics 129

Process Pr0
SPr(t0, v0, b) : [f, γ] ∧ SPr(v0, t1, b) : [f, γ] ∧
Val(v0, b, l) : [cm, γ] ∧ Tan(t0, b) : [fu, α] ∧
Tan(t1, 0) : [em, α] → Pr(p0, b) : [xs, γ]. (7.44)

We also have the following EVALP clauses for setting the other processes.

Process Pr1
SPr(t3, v1, na) : [f, γ] ∧ SPr(v1, v0, na) : [f, γ] ∧
SPr(v0, t2, na) : [f, γ] ∧ Val(v0, l, na) : [cm, γ] ∧
Val(v1, na, 0) : [cs, γ] ∧ Tan(t3, na) : [fu, α] ∧
Tan(t2, 0) : [em, α] → Pr(p1, na) : [xs, γ]. (7.45)

Process Pr2
SPr(t3, v1, cw) : [f, γ] ∧ SPr(v1, v0, cw) : [f, γ] ∧
SPr(v0, t2, cw) : [f, γ] ∧ Val(v0, l, cw) : [cm, γ] ∧
Val(v1, cw, 0) : [cs, γ] ∧ Tan(t3, cw) : [fu, α] ∧
Tan(t2, 0) : [em, α] → Pr(p2, cw) : [xs, γ]. (7.46)

Process Pr3
SPr(t0, v0, b) : [f, γ] ∧ SPr(t3, v1, b) : [f, γ] ∧
SPr(v0, t1, b) : [f, γ] ∧ SPr(v0, t2, b) : [f, γ] ∧
SPr(v1, v0, b) : [f, γ] ∧ Val(v0, b, b) : [cs, γ] ∧
Val(v1, b, 0) : [cs, γ] ∧ Tan(t0, b) : [fu, α] ∧
Tan(t1, 0) : [em, α] ∧ Tan(t3, b) : [fu, α] ∧
Tan(t2, 0) : [em, α] → Pr(p3, b) : [xs, γ]. (7.47)

We suppose that l ∈ {b, cw,ww, hw, na, cs, 0} in the above safety verification
EVALPSN clauses for processes Pr0,1,2,3.

7.4.5 Process Release Control in EVALPSN

In this subsection, we consider conditions for releasing process lock after the process
has finished. For example, a process release condition can be expressed by “liquid l
in tank Tj has been transferred into tank Tk in processPri after processPri has started,
and the finish signal Fin(pi) for process Pri is obtained”. If the above condition is
satisfied, the locked process Pri is allowed to be unset, and each component of the

130 K. Nakamatsu and S. Akama

process is also allowed to be free. The release conditions for processes Pr0,1,2,3 are
formalized in the following EVALPSN clauses.
Process Pr0

Str(p0) : [is, α] ∧ Tan(t0, b) : [em, α] ∧
Tan(t1, b) : [fu, α] ∧ Fin(p0) : [is, α] →
Pr(p0, b) : [s, γ], (7.48)

Pr(p0, b) : [s, γ] → SPr(t0, v0, 0) : [l, γ], (7.49)

Pr(p0, b) : [s, γ] → SPr(v0, t1, 0) : [l, γ], (7.50)

Pr(p0, b) : [s, γ] → Val(v0, 0, l) : [cm, γ]. (7.51)

Process Pr1

Str(p1) : [is, α] ∧ Tan(t3, na) : [em, α] ∧
Tan(t2, na) : [fu, α] ∧ Fin(p1) : [is, α] →
Pr(p1, na) : [s, γ], (7.52)

Pr(p1, na) : [s, γ] → SPr(v0, t2, 0) : [l, γ], (7.53)

Pr(p1, na) : [s, γ] → SPr(v1, v0, 0) : [l, γ], (7.54)

Pr(p1, na) : [s, γ] → SPr(t3, v1, 0) : [l, γ], (7.55)

Pr(p1, na) : [s, γ] → Val(v0, l, 0) : [cm, γ], (7.56)

Pr(p1, na) : [s, γ] → Val(v1, 0, 0) : [cmγ]. (7.57)

Process Pr2

Str(p2) : [is, α] ∧ Tan(t3, cw) : [em, α] ∧
Tan(t2, cw) : [fu, α] ∧ Fin(p2) : [is, α] →
Pr(p2, cw) : [s, γ], (7.58)

Pr(p2, cw) : [s, γ] → SPr(v0, t2, 0) : [l, γ], (7.59)

Pr(p2, cw) : [s, γ] → SPr(v1, v0, 0) : [l, γ], (7.60)

Pr(p2, cw) : [s, γ] → SPr(t3, v1, 0) : [l, γ], (7.61)

Pr(p2, cw) : [s, γ] → Val(v0, l, 0) : [cm, γ], (7.62)

Pr(p2, cw) : [s, γ] → Val(v1, 0, 0) : [cm, γ]. (7.63)

Process Pr3

Str(p3) : [is, α] ∧ Tan(t0, b) : [em, α] ∧
Tan(t3, b) : [em, α] ∧ Tan(t1, b) : [fu, α] ∧
Tan(t2, b) : [fu, α] ∧ Fin(p3) : [is, α] →
Pr(p3, b) : [s, γ], (7.64)

7 Programming with Annotated Logics 131

Pr(p3, b) : [s, γ] → SPr(t0, v0, 0) : [l, γ], (7.65)

Pr(p3, b) : [s, γ] → SPr(v0, t1, 0) : [l, γ], (7.66)

Pr(p3, b) : [s, γ] → SPr(v0, t2, 0) : [l, γ], (7.67)

Pr(p3, b) : [s, γ] → SPr(v1, v0, 0) : [l, γ], (7.68)

Pr(p3, b) : [s, γ] → SPr(t3, v1, 0) : [l, γ], (7.69)

Pr(p3, b) : [s, γ] → Val(v0, l, 0) : [cm, γ], (7.70)

Pr(p3, b) : [s, γ] → Val(v1, 0, 0) : [cm, γ]. (7.71)

We suppose that l ∈ {b, cw,ww, hw, na, cs, 0} in the above process release
EVALPSN clauses for processes Pr0,1,2,3.

7.4.6 Example

In this subsection we introduce an example of EVALPSN safety verification based
pipeline control for processes Pr0,1,2,3 in the pipeline network in Fig. 7.4. According
to the process schedule in Fig. 7.7, we describe the details of EVALPSN safety
verification.

Initial Stage We suppose that all the sub-processes and valves in the pipeline
network are free (unlocked) and no process has already started at the initial stage. In
order to verify the safety for all processes Pr0,1,2,3, the following fact EVALP clauses
(detected information) are input to the pipeline safety control EVALPSN:

SPr(t0, v0, 0) : [f, α], Val(v0, 0, 0) : [cs, α],
SPr(v0, t1, 0) : [f, α], Val(v1, 0, 0) : [cs, α],
SPr(v0, t2, 0) : [f, α],
SPr(v1, v0, 0) : [f, α],
SPr(t3, v1, 0) : [f, α],

Tan(t0, b) : [fu, α], Tan(t1, 0) : [em, α], (7.72)

Tan(t2, 0) : [em, α], Tan(t3, na) : [fu, α]. (7.73)

Then all the sub-processes and valves are permitted to be locked or controlled. How-
ever the tank conditions (7.72) and (7.73) do not permit for setting processes Pr2,3.
The beer process Pr0 can be verified to be set as follows:

• we have neither the forbiddance from locking sub-processes SPr0,1, nor the for-
biddance from controlling valve V0 separate with beer in the normal direction, by
EVALPSN clauses (7.34) and (7.37)–(7.39) and the input fact EVALP clauses;

• then we have the permission for locking sub-processes SPr0,1, and controlling
valve V0 separate with beer in the normal direction and any liquid in the cross
direction,

132 K. Nakamatsu and S. Akama

SPr(t0, v0, b) : [f, γ], Val(v0, b, l) : [cm, γ],
SPr(v0, t1, b) : [f, γ],

where l ∈ {b, cw,ww, hw, na, cs, 0}, by EVALPSN clauses (7.35) and (7.42);
• moreover, we obtain the following EVALP clauses to represent tank conditions,

Tan(t0, b) : [fu, α], Tan(t1, 0) : [em, α];

• thus we have the permission for setting the beer process Pr0,

Pr(p0, b) : [xs, γ],

by EVALPSN clause (7.44).

According to the process schedule, the beer process Pr0 has to start first, then the
nitric acid process Pr1 has to be verified its safety and processed parallel to process
Pr0 as soon as possible. We show the safety verification for process Pr1 at the next
stage.

2nd Stage The beer process Pr0 has already started but not finished yet, then in
order to verify the safety for processes Pr1,2,3, the following fact EVALP clauses are
input to the pipeline safety control EVALPSN:

SPr(t0, v0, b) : [l, α], Val(v0, b, 0) : [cs, α],
SPr(v0, t1, b) : [l, α], Val(v1, 0, 0) : [cs, α],
SPr(v0, t2, 0) : [f, α],
SPr(v1, v0, 0) : [f, α],
SPr(t3, v1, 0) : [f, α],
Tan(t2, 0) : [em, α], Tan(t3, na) : [fu, α].

The above tank conditions permit neither the cold water process Pr2 nor the beer
process Pr3 to be set. We show that only the nitric acid process Pr1 can be verified
to be set as follows:

• we have neither the forbiddance from locking three sub-processes SPr2,3,4, the
forbiddance from controlling valves V0 separate with any liquid in the normal
direction and nitric acid in the cross direction, nor the forbiddance from controlling
valve V1 mix(open) with nitric acid in the normal direction and no liquid in the
cross direction, by EVALPSN clauses (7.34) and (7.36)–(7.41) and the above fact
EVALP clauses;

• therefore we have the permission for locking sub-processes SPr2,3,4, and control-
ling valves V0 and V1 as described before,

7 Programming with Annotated Logics 133

SPr(v0, t2, na) : [f, γ], Val(v0, b, na) : [cm, γ],
SPr(v1, v0, na) : [f, γ], Val(v1, na, 0) : [cs, γ],
SPr(t3, v1, na) : [f, γ],

by EVALPSN clauses (7.35), (7.42) and (7.43);
• moreover we have the tank conditions,

Tan(t3, na) : [fu, α], Tan(t2, 0) : [em, α];

• thus we have the permission for setting the nitric acid process Pr1,

Pr(p1, na) : [xs, γ],

by EVALPSN clause (7.45).

Both the beer process Pr0 and the nitric acid process Pr1 have already started, then
processes Pr2,3 have to be verified their safety. We will show it at the next stage.

3rd Stage In order to verify the safety for the cold water process Pr2 and the
beer process Pr3, the following fact EVALP clauses are input to the pipeline safety
control EVALPSN:

SPr(t0, v0, b) : [l, α], Val(v0, b, na) : [cs, α],
SPr(v0, t1, b) : [l, α], Val(v1, na, 0) : [cm, α],
SPr(v0, t2, na) : [l, α],
SPr(v1, v0, na) : [l, α],
SPr(t3, v1, na) : [l, α].

Apparently, neither the cold water process Pr2 nor the beer process Pr3 is permitted
to be set, since there is no tank condition in the input fact EVALP clauses. We show
the safety verification for process Pr2 as an example:

• wehave the forbiddance from locking sub-processes SPr2,3,4, the forbiddance from
controlling valve V0 separate with beer in the normal direction and cold water in
the cross direction, and the forbiddance from controlling valve V1 mix with cold
water in the normal direction and no liquid in the cross direction,

SPr(v0, t2, cw) : [f, β], Val(v0, b, cw) : [cm, β],
SPr(v1, v0, cw) : [f, β], Val(v1, cw, 0) : [cs, β],
SPr(t3, v1, cw) : [f, β],

by EVALPSN clauses (7.34), (7.39) and (7.40) and the input fact EVALP clauses.

The finish condition for the nitric acid process Pr1 is that tank T2 is fully filled with
nitric acid and tank T3 is empty. If the nitric acid process Pr1 has finished and its

134 K. Nakamatsu and S. Akama

finish conditions are satisfied, process Pr1 is permitted to be released (unset) and
has been released in fact. It is also supposed that tank T3 is filled with cold water
and tank T2 is empty as preparation for the cold water process Pr2 immediately after
process Pr1 has finished. Then the cold water process Pr2 has to be verified and start
according to the process schedule. We show the safety verification for the cold water
process Pr2 at the next stage.

4th Stage If the nitric acid process Pr1 has finished and its finishing condition
is satisfied, sub-processes SPr2,3,4, valve V1, and the cross direction of valve V0 are
permitted to be released by EVALP clauses (7.52)–(7.57). They have been released in
fact. Then, since only the beer process Pr0 is being processed, other three processes
Pr1,2,3 have to be verified. In order to do that, the following fact EVALP clauses are
input to the pipeline safety control EVALPSN:

SPr(t0, v0, b) : [l, α], Val(v0, b, 0) : [cs, α],
SPr(v0, t1, b) : [l, α], Val(v1, 0, 0) : [cs, α],
SPr(v0, t2, 0) : [f, α],
SPr(v1, v0, 0) : [f, α],
SPr(t3, v1, 0) : [f, α],
Tan(t2, 0) : [em, α], Tan(t3, cw) : [fu, α].

Since the beer process Pr0 is still being processed, neither the nitric acid process Pr1
nor the beer process Pr3 is permitted to be set, and only the cold water process Pr2
is permitted to be set as well as process Pr1 at the 2nd stage. Therefore we have the
permission for setting the cold water process Pr2,

Pr(p2, cw) : [xs, γ]

by EVALPSN clause (7.46).
Now, both the beer processPr0 and the coldwater processPr2 are being processed.

Then apparently any other processes are not permitted to be set. Moreover even if
one of processes Pr0,2 has finished, the beer process Pr3 is not permitted to be set
until both processes Pr0,2 have finished. We show the safety verification for the beer
process Pr3 at the following stages.

5th Stage If neither the beer process Pr0 nor the cold water process Pr2 has
finished, we have to verify the safety for the nitric acid process Pr1 and the beer
process Pr3. The following fact EVALP clauses are input to the pipeline safety
control EVALPSN:

SPr(t0, v0, b) : [l, α], Val(v0, b, cw) : [cs, α],
SPr(v0, t1, b) : [l, α], Val(v1, cw, 0) : [cm, α],
SPr(v0, t2, cw) : [l, α],
SPr(v1, v0, cw) : [l, α],
SPr(t3, v1, cw) : [l, α].

7 Programming with Annotated Logics 135

Then, since all the sub-processes and valves are locked and controlled, neither
processes Pr1 nor Pr3 is permitted to be set. It is shown that the beer process Pr3 is
not permitted to be set as follows:

• we have the forbiddance from locking sub-processes SPr2,3,4 in process Pr3 and
controlling valves V0,1,

SPr(v0, t2, b) : [f, β], Val(v0, b, b) : [cs, β],
SPr(t3, v1, b) : [f, β], Val(v1, b, 0) : [cs, β],
SPr(v1, v0, b) : [f, β],

by EVALPSN clauses (7.34), (7.36) and (7.40) and the input fact EVALP clauses;
• therefore we cannot derive the permission for setting process Pr3.

The finish condition for the cold water process Pr2 is that tank T2 is fully filled
with cold water and tank T3 is empty. If the cold water process Pr2 has finished and
its finish condition is satisfied, process Pr2 is permitted to be released(unset). It is
also supposed that tank T3 is filled with beer and tank T2 is empty as preparation
for the beer process Pr3 immediately after process Pr2 has finished. Then the beer
process Pr3 has to be verified and start according to the process schedule, but the
beer process Pr3 cannot be permitted to be set. We show the safety verification for
process Pr3 at the next stage.

6th Stage If the cold water process Pr2 has finished and its finish condition is
satisfied, the three sub-processes SPr2,3,4, the valve V1, and the cross direction of
the valve V0 are permitted to be released by EVALP clauses (7.52)–(7.57). They
have been released in fact. Then, since only the beer process Pr0 is being processed,
processes Pr1,2,3 have to be verified their safety. In order to do that, the following
fact EVALP clauses are input to the pipeline safety control EVALPSN:

SPr(t0, v0, b) : [l, α], Val(v0, b, 0) : [cs, α],
SPr(v0, t1, b) : [l, α], Val(v1, 0, 0) : [cs, α],
SPr(v0, t2, 0) : [f, α],
SPr(v1, v0, 0) : [f, α],
SPr(t3, v1, 0) : [f, α],
Tan(t2, 0) : [em, α], Tan(t3, b) : [fu, α].

Since the beer process Pr0 is still being processed, the beer process Pr3 is not verified
its safety due to the tank conditions and safety property Val for valve V0. The safety
verification is carried out as follows:

• we have the forbiddance from controlling valve V0 mix,

Val(v0, b, b) : [cs, β],

by EVALPSN clause (7.36);

136 K. Nakamatsu and S. Akama

• therefore we cannot have the permission for setting the beer process Pr3 then.
On the other hand, even if the beer process Pr0 has finished with the cold water
process Pr2 still being processed, the beer process Pr3 is not permitted to be set.
If both processes Pr0,2 have finished, the beer process Pr3 is assured its safety and
set. Then process Pr3 starts according to the process schedule. We omit the rest of
the safety verification stages.

7.5 Before-After EVALPSN

In this section, we review an extended version of EVALPSN named bf(before-
after)-EVALPSN formally, which can deal with before-after relations between two
processes(time intervals) and introduce how to implement bf-EVALPSN aiming at
the real-time safety verification for process order control [40, 41].

7.5.1 Before-After Relation in EVALPSN

First of all, we introduce a special literal R(pi, pj, t) whose vector annotation repre-
sents the before-after relation between processes Pri(pi) and Prj(pj) at time t, where
processes can be regarded as time intervals in general, and literal R(pi, pj, t) is called
a bf-literal.3

Definition 5.1 (bf-EVALPSN) An extended vector annotated literal R(pi, pj, t) :
[μ1, μ2] is called a bf-EVALP literal, where μ1 is a vector annotation and μ2 ∈
{α, β, γ }. If an EVALPSN clause contains bf-EVALP literals, it is called a bf-
EVALPSN clause or just a bf-EVALP clause if it contains no strong negation. A
bf-EVALPSN is a finite set of EVALPSN clauses and bf-EVALPSN clauses.

We provide some paraconsistent interpretations of vector annotations for repre-
senting bf-relations, which are called bf-annotations. Strictly speaking, bf-relations
between time intervals are classified into 15 sorts according to bf-relations between
start/finish times of two time intervals. We define the 15 sorts of bf-relations in
bf-EVALPSN with regarding processes as time intervals.

Suppose that there are two processes, Pri with its start/finish times xs and xf , and
Prj with its start/finish times ys and yf .

Before (be)/After (af)

Firstly, we define the most basic bf-relations before/after according to the bf-relation
between each start time of two processes, which are represented by bf-annotations
be/af, respectively. If one process has started before/after another one starts, then the
bf-relations between those processes are defined as “before(be)/after(af)”, respec-
tively. The bf-relations also are described in Fig. 7.10 with the condition that process

3Hereafter, expression “before-after” is abbreviated as just “bf” in this chapter.

7 Programming with Annotated Logics 137

Fig. 7.10 Bf-relations,
before/after

Fig. 7.11 Bf-relations,
disjoint before/after

Fig. 7.12 Bf-relations,
immediate before/after

Pri has started before process Prj starts. The bf-relation between their start/finish
times is denoted by the inequality {xs < ys}.4 For example, a fact at time t “process
Pri has started before process Prj starts” can be represented by bf-EVALP clause

R(pi, pj, t) : [be, α].

Disjoint Before (db)/After (da)

Bf-relations disjoint before/after between processes Pri and Prj are represented by
bf-annotations db/da, respectively. The expression “disjoint before/after” implies
that there is a timelag between the earlier process finish time and the later one start
time. They are also described in Fig. 7.11 with the condition that process Pri has
finished before process Prj starts. The bf-relation between their start/finish times is
denoted by the inequality {xf < ys}. For example, an obligation at time t “process
Pri must start after process Prj has finished” can be represented by bf-EVALP clause

R(pi, pj, t) : [da, β].

Immediate Before (mb)/After (ma)

Bf-relations immediate before/after between processesPri andPrj are represented by
bf-annotationsmb/ma, respectively. The expression “immediate before/after” implies
that there is no timelag between the earlier process finish time and the later one start
time. The bf-relations are also described in Fig. 7.12 with the condition that process
Pri has finished immediately before process Prj starts. The bf-relation between their
start/finish times is denoted by the equality {xf = ys}. For example, a fact at time t
“process Pri has finished immediately before process Prj starts” can be represented
by bf-EVALP clause

R(pi, pj, t) : [mb, α].

Joint Before (jb)/After (ja)

4If time t1 is earlier than time t2, we conveniently denote the before-after relation by the inequality
t1 < t2.

138 K. Nakamatsu and S. Akama

Fig. 7.13 Bf-relations, joint
before/after

Bf-relations joint before/after between processes Pri and Prj are represented by bf-
annotations jb/ja, respectively. The expression “joint before/after” imply that the
twoprocesses overlap and the earlier process has finished before the later onefinishes.
The bf-relations are also described in Fig. 7.13 with the condition that process Pri
has started before process Prj starts and process Pri has finished before process Prj
finishes. The bf-relation between their start/finish times is denoted by the inequalities
{xs < ys < xf < yf }. For example, a fact at time t “process Pri has started before
process Prj starts and finished before process Prj finishes” can be represented by
bf-EVALP clause

R(pi, pj, t) : [jb, α].

S-included Before(sb)/After(sa)

Bf-relations s-included before/after between processesPri andPrj are represented by
bf-annotationssb/sa, respectively. The expression “s-included before/after” implies
that one process has started before another one starts and they finish at the same
time. The bf-relations are also described in Fig. 7.14 with the condition that process
Pri has started before process Prj starts and they finish at the same time. The bf-
relation between their start/finish times is denoted by the equality and inequalities
{xs < ys < xf = yf }. For example, a fact at time t “process Pri has started before
process Prj starts and they finish at the same time” can be represented by bf-EVALP
clause

R(pi, pj, t) : [sb, α].

Included Before (ib)/After (ia)

Bf-relations included before/after between processes Pri and Prj are represented by
bf-annotations ib/ia, respectively. The expression “included before/after” implies
that one process has started before another one starts and the earlier one finishes
after another one has finished. The bf-relations are also described in Fig. 7.15 with
the condition that process Pri has started before process Prj starts and finishes after
process Prj has finished. The bf-relation between their start/finish times is denoted
by the inequalities {xs < ys, yf < xf }.

Fig. 7.14 Bf-relations,
S-included before/after

7 Programming with Annotated Logics 139

Fig. 7.15 Bf-relations,
included before/after

For example, an obligation at the time t “process Pri must start before process Prj
starts and process Pri must finish after process Prj has finished” can be represented
by bf-EVALP clause

R(pi, pj, t) : [ib, β].

F-included Before (fb)/After (fa)

The bf-relations f-include before/after between processes Pri and Prj are repre-
sented by bf-annotations fb/fa, respectively. The expression “f-included before/
after” implies that two processes have started at the same time and one process has
finished before another one finishes. The bf-relations are also described in Fig. 7.16
with the condition that processesPri andPrj have started at the same time and process
Pri finishes after process Prj has finished. The bf-relation between their start/finish
times is denoted by the equality and inequality {xs = ys, yf < xf }. For example, a
fact at time t “processes Pri and Prj have started at the same time and process Pri
has finished after process Prj finished” can be represented by bf-EVALP clause

R(pi, pj, t) : [fa, α].

Paraconsistent Before-after (pba)

Bf-relation paraconsistent before-after between processes Pri and Prj is represented
by bf-annotation pba. The expression “paraconsistent before-after” implies that the
two processes have started at the same time and also finished at the same time. The
bf-relation is also described in Fig. 7.17 with the condition that processes Pri and
Prj have not only started but also finished at the same time. The bf-relation between
their start/finish times is denoted by the equalities {xs = ys, yf = xf }.

For example, an obligation at time t “processes Pri and Prj must not only start
but also finish at the same time” can be represented by bf-EVALP clause

R(pi, pj, t) : [pba, β].

Here we define the epistemic negation ¬1 that maps bf-annotations to themselves in
bf-EVALPSN.

Fig. 7.16 Bf-relations,
F-included before/after

140 K. Nakamatsu and S. Akama

Fig. 7.17 Bf-relation,
paraconsistent before-after

Definition 5.2 (Epistemic Negation ¬1 for Bf-annotations)
The epistemic negation ¬1 over the set of bf-annotations,

{be,af,da,db,ma,mb,ja,jb,sa,sb,ia,ib,fa,fb,pba}

is obviously defined as the following mapping:

¬1(af) = be, ¬1(be) = af,

¬1(da) = db, ¬1(db) = da,

¬1(ma) = mb, ¬1(mb) = ma,

¬1(ja) = jb, ¬1(jb) = ja,

¬1(sa) = sb, ¬1(sb) = sa,

¬1(ia) = ib, ¬1(ib) = ia,

¬1(fa) = fb, ¬1(fb) = fa,

¬1(pba) = pba.

Ifwe consider before-aftermeasure over themeaningful 15 bf-annotations, obviously
there exists a partial order(<h) based on the before-after measure, where μ1 <h μ2

is intuitively interpreted that bf-annotation μ1 denotes a more “before” degree than
bf-annotation μ2, and μ1, μ2 ∈ {be,af,db,da,mb,ma,jb, ja,ib,ia,sb,sa,

fb,fa,pba}. If μ1 <h μ2 and μ2 <h μ1, we denote it μ1 ≡h μ2. Then we obtain
the following ordering:

db <h mb <h jb <h sb <h ib <h fb <h pba <h ia <h ja <h ma <h da
and

sb ≡h be <h af ≡h sa.

On the other hand, if we take before-after knowledge (information) amount of each
bf-relation into account as anothermeasure, obviously there also exists another partial
order(<v) in terms of before-after knowledge amount, where μ1 <v μ2 is intuitively
interpreted that bf-annotation μ1 has less knowledge amount in terms of bf-relation
than bf-annotation μ2. If μ1 <v μ2 and μ2 <v μ1, we denote it μ1 ≡v μ2. Then we
obtain the following ordering:

7 Programming with Annotated Logics 141

be <v μ1, μ1 ∈ { db,mb,jb,sb,ib },
af <v μ2, μ1 ∈ { da,ma,ja,sa,ia },

db ≡v mb ≡v jb ≡v sb ≡v ib ≡v fb ≡v pba ≡v

fa ≡v ia ≡v sa ≡v ja ≡v ma ≡v da
and

be ≡v af.

If we take the before-after degree as the horizontal measure and the before-after
knowledge amount as the vertical one, we obtain the complete bi-lattice Tv(12)bf of
vector annotations that includes the 15 bf-annotations.

Tv(12)bf = {⊥12(0, 0), . . . ,be(0, 8), . . . ,db(0, 12), . . . ,mb(1, 11), . . . ,

jb(2, 10), . . . ,sb(3, 9), . . . ,ib(4, 8), . . . ,fb(5, 7), . . . ,

pba(6, 6), . . . ,fa(7, 5), . . . ,af(8, 0), . . . ,ia(8, 4), . . . ,

sa(9, 3), . . . ,ja(10, 2), . . . ,ma(11, 1), . . . ,da(12, 0), . . . ,

�12(12, 12)},

which is described as the Hasse’s diagram in Fig. 7.18.

Fig. 7.18 The complete bi-lattice Tv(12)bf of bf-annotations

142 K. Nakamatsu and S. Akama

We note that bf-EVALP literal

R(pi, pj, t) : [μ1(m, n), μ2],
where μ2 ∈ {α, β, γ } and

μ1 ∈ {be,db,mb,jb,sb,ib,fb,pba,fa,ia,sa,jb,ma,da,af},

is not well annotated ifm �= 0 and n �= 0, however, the bf-EVALP literal is equivalent
to the following two well annotated bf-EVALP literals:

R(pi, pj) : [(m, 0), μ] and R(pi, pj) : [(0, n), μ].

Therefore such a non-well annotated bf-EVALP literal can be regarded as the con-
junction of two well annotated EVALP literals.

For example, suppose that there is a non-well annotated bf-EVALP clause,

R(pi, pj, t1) : [(k, l), μ1] → R(pi, pj, t2) : [(m, n), μ2],
where k �= 0, l �= 0, m �= 0 and n �= 0. It can be equivalently transformed into the
following two well annotated bf-EVALP clauses,

R(pi, pj, t1) : [(k, 0), μ1] ∧ R(pi, pj, t1) : [(0, l), μ1] → R(pi, pj, t2) : [(m, 0), μ2],
R(pi, pj, t1) : [(k, 0), μ1] ∧ R(pi, pj, t2) : [(0, l), μ1] → R(pi, pj, t2) : [(0, n), μ2].

7.5.2 Implementation of Bf-EVALPSN Verification System

In this subsection we introduce how to implement bf-EVALPSN based process order
safety verification with a simple example. For simplicity, we do not consider cases
in which one process starts/finishes with another one starts/finishes at the same time,
then the process order control system can deal with before-after relations more sim-
ply,whichmeans that bf-annotations(relations)sb/sa,fb/fa andpba are excluded.

We take the following ten bf-annotations with vector annotations into account:

before(be)/after(af), (0, 4)/(4, 0),

discrete before(db)/after(da), (0, 7)/(7, 0),

immediate before(mb)/after(ma), (1, 6)/(6, 1),

joint before(jb)/after(ja), (2, 5)/(5, 2),

included before(ib)/after(ia). (3, 4)/(4, 3).

The complete bi-lattice Tv(7)bf including the ten bf-annotations is described as the
Hasse’s diagram in Fig. 7.19.

7 Programming with Annotated Logics 143

Fig. 7.19 The complete bi-lattice Tv(7)bf of bf-annotations

Now we show an example of implementing the real-time process order safety
verification system in bf-EVALPSN.

Example 5.1 We suppose that there are four processes Pr0(id p0), Pr1(id p1) Pr2(id
p2) and the next process Pr3(id p3) not appearing in Fig. 7.20. Those processes are
supposed to be processed according to the processing schedule in Fig. 7.20.

Then we consider three bf-relations represented by the following bf-EVALP
clauses (7.74)–(7.76):

R(p0, p1, ti) : [(i1, j1), α], (7.74)

R(p1, p2, ti) : [(i2, j2), α], (7.75)

R(p2, p3, ti) : [(i3, j3), α], (7.76)

Fig. 7.20 Process timing chart

144 K. Nakamatsu and S. Akama

which will be inferred based on each process start/finish information at time ti (i =
0, 1, 2, . . . , 7).

At time t0, no process has started yet. Thus we have no knowledge in terms of any
bf-relations. Therefore we have the bf-EVALP clauses,

R(p0, p1, t0) : [(0, 0), α],
R(p1, p2, t0) : [(0, 0), α],
R(p2, p3, t0) : [(0, 0), α].

At time t1, onlyprocessPr0 has startedbefore processPr1 starts, Thenbf-annotations
db(0, 7), mb(1, 6), jb(2, 5) or ib(3, 4) could be the final bf-annotation to repre-
sent the bf-relation between processes Pr0 and Pr1, thus the greatest lower bound
be(0, 4) of the set of vector annotations {(0, 7), (1, 6), (2, 5), (3, 4)} becomes
the vector annotation of bf-literal R(p0, p1, t1). Other bf-literals have the bottom
vector annotation (0, 0). Therefore we have the bf-EVALP clauses,

R(p0, p1, t1) : [(0, 4), α],
R(p1, p2, t1) : [(0, 0), α],
R(p2, p3, t1) : [(0, 0), α].

At time t2, the second process Pr1 also has started before process Pr0 finishes. Then
bf-annotations jb (2, 5) or ib (3, 4) could be the final bf-relation to represent the
bf-relation between processes Pr0 and Pr1. Thus the greatest lower bound (2, 4)
of the set of vector annotations {(2, 5), (3, 4)} has to be the vector annotation
of bf-literal R(p0, p1, t2). In addition, bf-literal R(p1, p2, t2) has bf-annotation
be(0, 4) as well as bf-literalR(p0, p1, t1) since processPr1 has also started before
processPr2 starts. On the other hand, bf-literalR(p2, p3, t2) has the bottom vector
annotation (0, 0) since process Pr3 has not started yet. Therefore we have the bf-
EVALP clauses,

R(p0, p1, t2) : [(2, 4), α],
R(p1, p2, t2) : [(0, 4), α],
R(p2, p3, t2) : [(0, 0), α].

At time t3, process Pr2 has started before both processes Pr0 and Pr1 finish. Then
both bf-literals R(p0, p1, t3) and R(p1, p2, t3) have the same vector annotation
(2, 4) as well as bf-literal R(p0, p1, t2). Moreover bf-literal R(p2, p3, t3) has bf-
annotation be(0, 4) as well as bf-literal R(p0, p1, t1). Therefore we have the
bf-EVALP clauses,

7 Programming with Annotated Logics 145

R(p0, p1, t3) : [(2, 4), α],
R(p1, p2, t3) : [(2, 4), α],
R(p2, p3, t3) : [(0, 4), α].

At time t4, process Pr2 has finished before both processes Pr0 and Pr1 finish. Then
bf-literal R(p0, p1, t4) still has the same vector annotation (2, 4) as well as the
previous time t3. In addition bf-literal R(p1, p2, t4) has its final bf-annotation
ib(3, 4). For the final bf-relation between processesPr2 andPr3 there are still two
alternatives: (1) if process Pr3 starts immediately after process Pr2 has finished,
bf-literal R(p2, p3, t4) has its final bf-annotation mb(1, 6); (2) if process Pr3 does
not start immediately after process Pr2 has finished, bf-literal R(p2, p3, t4) has its
final bf-annotation db(0, 7). Either way, we have the knowledge that process Pr2
has just finished at time t4, which can be represented by vector annotation (0, 6)
that is the greatest lower bound of the set of vector annotations {(1, 6), (0, 7)}.
Therefore we have the bf-EVALP clauses,

R(p1, p2, t4) : [(2, 4), α],
R(p2, p3, t4) : [(3, 4), α],
R(p3, p4, t4) : [(0, 6), α].

At time t5, process Pr0 has finished before processes Pr1 finishes. Then bf-literal
R(p0, p1, t5) has its final bf-annotation jb(2, 5), and bf-literal R(p2, p3, t5) also
has its final bf-annotation jb(0, 7) because process Pr3 has not started yet. There-
fore we have the bf-EVALP clauses,

R(p1, p2, t5) : [jb(2, 5), α],
R(p2, p3, t5) : [ib(3, 4), α],
R(p3, p4, t5) : [db(0, 7), α],

and all the bf-relations have been determined at time t5 before process Pr1 finishes
and process Pr3 starts.

In Example 5.1, we have shown how the vector annotations of bf-literals are
updated according to the start/finish information of processes in real-time. We will
introduce the real-time safety verification for process order control based on bf-
EVALPSN with small examples in the subsequent subsection.

7.5.3 Safety Verification in Bf-EVALPSN

We present the basic idea of bf-EVALPSN safety verification for process order with
a simple example.

146 K. Nakamatsu and S. Akama

Fig. 7.21 Process schedule example

Suppose that two processes Pr0 and Pr1 are being processed repeatedly, and
process Pr1 must be processed immediately before process Pr0 starts as shown in
Fig. 7.21.

In bf-EVALPSN process order safety verification, the safety for process order is
verified based on the safety properties to be assured in the process schedule. In order
to verify the safety for the process order in Fig. 7.21, we assume two safety properties
SP-0 and SP-1 for processes Pr0 and Pr1, respectively:

SP-0 process Pr0 must start immediately after process Pr1 has finished,
SP-1 process Pr1 must start in a while after (disjoint after) process Pr0 has finished.

Then safety properties SP-0 and SP-1 should be verified immediately before
processes Pr0 and Pr1 start, respectively.

In order to verify the bf-relation “immediate after” with safety property SP-0,
it should be verified whether process Pr1 has finished immediately before process
Pr0 starts or not, and the safety verification should be carried out immediately after
process Pr1 has finished. Then bf-literal R(p0, p1, t) must have vector annotation
(6, 0), which means that process Pr1 has finished but process Pr0 has not started yet.
Therefore safety property SP-0 is translated to the bf-EVALPSN-clauses,

SP-0

R(p0, p1, t) : [(6, 0), α] ∧ ∼R(p0, p1, t) : [(7, 0), α]
→ st(p0, t) : [f(0, 1), γ], (7.77)

∼st(p0, t) : [f(0, 1), γ] → st(p0, t) : [f(0, 1), β], (7.78)

where literal st(pi, t) represents “process Pri starts at time t” and the set of its vector
annotations constitutes the complete lattice

Tv(1) = {⊥(0, 0),t(1, 0),f(1, 0),�(1, 1)}.

For example, EVALP-clause st(p0, t) : [f(0, 1), γ] can be informally interpreted as
“it is permitted for process Pr0 to start at time t”.

On the other hand in order to verify bf-relation “disjoint after”with safety property
SP-1, it should be verified whether there is a timelag between process Pr0 finish
time and process Pr1 start time or not. Then bf-literal R(p1, p0, t) must have bf-
annotation da(7, 0). Therefore safety property SP-1 is translated into the following
bf-EVALPSN clauses:

7 Programming with Annotated Logics 147

SP-1

R(p1, p0, t) : [(7, 0), α] → Start(p1, t) : [(0, 1), γ], (7.79)

∼Start(p1, t) : [(0, 1), γ] → Start(p1, t) : [(0, 1), β]. (7.80)

We show how to verify the process order safety based on safety properties SP-0
and SP-1 in bf-EVALPSN. In order to verify the process order safety, the following
safety verification cycle consisting of two steps is applied repeatedly.

Safety Verification Cycle

1st Step (safety verification for starting process Pr1)
Suppose that process Pr1 has not started yet at time t1. If process Pr0 has already
finished at time t1, we have the bf-EVALP clause,

R(p1, p0, t1) : [(7, 0), α]. (7.81)

On the other hand, if processPr0 has just finished at time t1, we have the bf-EVALP
clause,

R(p1, p0, t1) : [(6, 0), α]. (7.82)

If bf-EVALP clause (7.81) is input to safety property SP-1 consisting of Bf-
EVALPSN clauses (7.79) and (7.80), we obtain the EVALP clause,

st(p1, t1) : [(0, 1), γ]

and the safety for starting process Pr1 is assured. On the other hand, if bf-EVALP
clause (7.82) is input to the same safety property SP-1, we obtain the EVALP
clause

st(p1, t1) : [(0, 1), β],

then the safety for starting process Pr1 is not assured.
2nd Step (safety verification for starting process Pr0)

Suppose that process Pr0 has not started yet at time t2. If process Pr1 has just
finished at time t2, we have the bf-EVALP clause,

R(p0, p1, t2) : [(6, 0), α]. (7.83)

On the other hand, if process Pr1 has not finished yet at time t2, we have the
bf-EVALP clause,

R(p0, p1, t2) : [(4, 0), α]. (7.84)

148 K. Nakamatsu and S. Akama

If bf-EVALP clause (7.83) is input to safety property SP-0 {(7.77) and (7.78)},
we obtain the EVALP clause,

st(p0, t2) : [(0, 1), γ],

and the safety for starting process Pr0 is assured. On the other hand, if bf-EVALP
clause (7.84) is input to the same safety property SP-0, we obtain the EVALP
clause,

st(p1, t) : [(0, 1), β],

then the safety for starting process Pr0 is not assured.

Example 5.2 In this example we suppose the same pipeline network as shown in
Fig. 7.4 and the same process schedule as shown in Fig. 7.7.

process Pr0, a brewery process using
line-1, tank T0 −→ valve V0 −→ tank T1;

process Pr1, a cleaning process by nitric acid using
line-2, tank T3 −→ valve V1 −→ Valve V0 −→ tank T2;

process Pr2, a cleaning process by water in line-1;
process Pr3, a brewery process using both line-1 and line-2 with mixing at valve V0

The above four processes are supposed to be processed according to the following
processing schedule. We assume the following four process order safety properties
for each process:

SP-2 process Pr0 must start before any other processes start;
SP-3 process Pr1 must start immediately after process Pr0 has started;
SP-4 process Pr2 must start immediately after process Pr1 has finished;
SP-5 process Pr3 must start immediately after both processes Pr0 and Pr2 have

finished.

Safety property SP-2 is translated into the bf-EVALPSN clauses,

SP-2

∼R(p0, p1, t) : [(4, 0), α] ∧ ∼R(p0, p2, t) : [(4, 0), α] ∧
∼R(p0, p3, t) : [(4, 0), α] → Start(p0, t) : [(0, 1), γ],
∼Start(p0, t) : [(0, 1), γ] → Start(p0, t) : [(0, 1), β]. (7.85)

As well as safety property SP-2, other safety properties SP-3, SP-4 and SP-5 are
also translated into the bf-EVALPSN clauses,

SP-3

R(p1, p0, t) : [(4, 0), α] → Start(p1, t) : [(0, 1), γ],
∼Start(p1, t) : [(0, 1), γ] → Start(p1, t) : [(0, 1), β], (7.86)

7 Programming with Annotated Logics 149

SP-4

R(p2, p1, t) : [(6, 0), α] ∧ ∼R(p2, p1, t) : [(7, 0), α]
→ Start(p2, t) : [(0, 1), γ],
∼Start(p2, t) : [(0, 1), γ] → Start(p2, t) : [(0, 1), β], (7.87)

SP-5

R(p3, p0, t) : [(6, 0), α] ∧ R(p3, p2, t) : [(6, 0), α] ∧
∼R(p3, p2, t) : [(7, 0), α] → Start(p3, t) : [(0, 1), γ],
R(p3, p0, t) : [(6, 0), α] ∧ R(p3, p2, t) : [(6, 0), α] ∧
∼R(p3, p0, t) : [(7, 0), α] → Start(p3, t) : [(0, 1), γ],
∼Start(p3, t) : [(0, 1), γ] → Start(p3, t) : [(0, 1), β]. (7.88)

We introduce the safety verification stages for the process order in Fig. 7.7 as
follows.

Initial Stage (t0) No process has started at time t0, we have no information in terms
of all bf-relations between all processes Pr0, Pr1, Pr2 and Pr3, thus we have the
bf-EVALP clauses,

R(p0, p1, t0) : [(0, 0), α], (7.89)

R(p0, p2, t0) : [(0, 0), α], (7.90)

R(p0, p3, t0) : [(0, 0), α]. (7.91)

In order to verify the safety for starting the first processPr0, the bf-EVALP clauses
(7.89)–(7.91) are input to safety property SP-2 (7.85). Then we obtain the EVALP
clause,

Start(p0, t0) : [(0, 1), γ],

which expresses permission for starting process Pr0, and its safety is assured at
time t0. Otherwise, it is not assured.

2nd Stage (t1) Suppose that only process Pr0 has already started at time t1. Then
we have the bf-EVALP clauses,

R(p1, p0, t1) : [(4, 0), α]. (7.92)

In order to verify the safety for starting the second process Pr1, the bf-EVALP
clause (7.92) is input to safety property SP-3 (7.86). Then we obtain the EVALP
clause,

Start(p1, t1) : [(0, 1), γ],

and the safety for starting process Pr1 is assured at time t1. Otherwise, it is not
assured.

150 K. Nakamatsu and S. Akama

3rd Stage (t2) Suppose that processes Pr0 and Pr1 have already started, and neither
of them has finished yet at time t2. Then we have the bf-EVALP clauses,

R(p2, p0, t2) : [(4, 0), α], (7.93)

R(p2, p1, t2) : [(4, 0), α]. (7.94)

In order to verify the safety for starting the third process Pr2, if EVALP clause
(7.94) is input to safety property SP-4 (7.87), then we obtain the EVALP clause,

Start(p2, t2) : [(0, 1), β],

and the safety for starting process Pr2 is not assured at time t2. On the other hand,
if process Pr1 has just finished at time t2, then, we have the bf-EVALP clause,

R(p2, p1, t2) : [(6, 0), α]. (7.95)

If bf-EVALP clause (7.95) is input to safety property SP-4 (7.87), then we obtain
the EVALP clause,

Start(p2, t2) : [(0, 1), γ],

and the safety for starting process Pr2 is assured.
4th Stage (t3) Suppose that processes Pr0, Pr1 and Pr2 have already started,

processes Pr0 and Pr1 have already finished, and only process Pr3 has not started
yet at time t3. Then we have the bf-EVALP clauses,

R(p3, p0, t3) : [(7, 0), α], (7.96)

R(p3, p1, t3) : [(7, 0), α], (7.97)

R(p3, p2, t3) : [(4, 0), α]. (7.98)

In order to verify the safety for starting the last process Pr3, if bf-EVALP clauses
(7.96) and (7.98) are input to safety property SP-5 (7.88), then we obtain the
EVALP clause,

Start(p3, t3) : [(0, 1), β],

and the safety for starting process Pr3 is not assured at time t3. On the other hand,
if process Pr2 has just finished at time t3, then we have the bf-EVALP clause,

R(p3, p2, t3) : [(6, 0), α]. (7.99)

If bf-EVALP clause (7.99) is input to safety property SP-5 (7.88), then we obtain
the EVALP clause,

Start(p3, t3) : [(0, 1), γ],

and the safety for starting process Pr3 is assured.

7 Programming with Annotated Logics 151

7.6 Reasoning in Bf-EVALPSN

In this section, we introduce the process before-after relation reasoning system in
bf-EVALPSN, which consists of two inference rules in bf-EVALP. The first basic
inference rules for bf-relations according to the before-after relations of process
start/finish times, and the second one is the transitive inference rules for bf-relations,
which can infer the transitive bf-relation from two continuous bf-relations.

7.6.1 Basic Reasoning for Bf-Relation

We introduce the basic inference rules of bf-relationswith referring to Example 5.1 in
Sect. 7.5.2, which are called basic bf-inference rules. Hereafter we call the inference
rules as ba-inf rules shortly. First of all, in order to represent the basic bf-inference
rules in bf-EVALPSN, we introduce the following literals for expressing process
start/finish information again:

fi(pi, t), which is intuitively interpreted that process Pri finishes at time t.

Those literals are used for expressing process finish information and may have
one of vector annotations ⊥(0, 0),t(1, 0),f(0, 1) and �(1, 1), where annotations
t(1, 0) and f(0, 1) can be intuitively interpreted as “true” and “false”, respectively.
We show a group of ba-inf rules to be applied at the initial stage (time t0) for bf-
relation reasoning, which are named (0, 0)-rules.
(0, 0)-rules
Suppose that no process has started yet and the vector annotation of bf-literal
R(pi, pj, t) is (0, 0), which shows that there is no knowledge in terms of the bf-
relation between processes Pri and Prj, then the following two ba-inf rules can be
applied at the initial stage.

(0, 0)-rule-1 If process Pri has started before process Prj tarts, then the vector
annotation (0, 0) of bf-literal R(pi, pj, t) should turn to bf-annotation be(0, 8),
which is the greatest lower bound of the set of bf-annotations

{db(0, 12), mb(1, 11), jb(2, 10), sb(3, 9), ib(4, 8)}.

(0, 0)-rule-2 If both processes Pri and Prj have started at the same time, then it is
reasonably anticipated that the bf-relation between processes Pri and Prj will be
in the set of bf-annotations,

{fb(5, 7), pba(6, 6), fa(7, 5)}

whose greatest lower bound is (5, 5) (refer to Fig. 7.18). Therefore the vector
annotation (0, 0) of bf-literal R(pi, pj, t) should turn to vector annotation (5, 5).

152 K. Nakamatsu and S. Akama

Ba-inf rules (0, 0)-rule-1 and (0, 0)-rule-2 may be translated into the bf-EVALPSN
clauses,

R(pi, pj, t) : [(0, 0), α] ∧ st(pi, t) : [t, α] ∧ ∼st(pj, t) : [t, α]
→ R(pi, pj, t) : [(0, 8), α], (7.100)

R(pi, pj, t) : [(0, 0), α] ∧ st(pi, t) : [t, α] ∧ st(pj, t) : [t, α]
→ R(pi, pj, t) : [(5, 5), α]. (7.101)

Suppose that one of ba-inf rules (0, 0)-rule-1 and 2 has been applied, then the
vector annotation of bf-literal R(pi, pj, t) should be one of (0, 8) or (5, 5). Therefore
we need to consider two groups of ba-inf rules to be applied after ba-inf rules (0, 0)-
rule-1 and (0, 0)-rule-2, which are named (0, 8)-rules and (5, 5)-rules, respectively.
(0, 8)-rules
Suppose that process Pri has started before process Prj starts, then the vector anno-
tation of bf-literal R(pi, pj, t) should be (0, 8). We have the following inference rules
to be applied after ba-inf rule (0, 0)-rule-1.

(0, 8)-rule-1 If process Pri has finished before process Prj starts, and process Prj
has started immediately after processPri finishes, then the vector annotation (0, 8)
of bf-literal R(pi, pj, t) should turn to bf-annotation mb(1, 11).

(0, 8)-rule-2 If process Pri has finished before process Prj starts, and process
Prj has not started immediately after process Pri has finished, then the vector
annotation (0, 8) of bf-literal R(pi, pj, t) should turn to bf-annotation db(0, 12).

(0, 8)-rule-3 If process Prj starts before process Pri finishes, then the vector anno-
tation (0, 8) of bf-literal R(pi, pj, t) should turn to vector annotation (2, 8) that is
the greatest lower bound of the set of bf-annotations,

{jb(2, 10), sb(3, 9), ib(4, 8)}.

Ba-inf rules (0, 8)-rule-1, (0, 8)-rule-2 and (0, 8)-rule-3 may be translated into the
bf-EVALPSN clauses,

R(pi, pj, t) : [(0, 8), α] ∧ fi(pi, t) : [t, α] ∧ st(pj, t) : [t, α]
→ R(pi, pj, t) : [(1, 11), α], (7.102)

R(pi, pj, t) : [(0, 8), α] ∧ fi(pi, t) : [t, α] ∧ ∼st(pj, t) : [t, α]
→ R(pi, pj, t) : [(0, 12), α], (7.103)

R(pi, pj, t) : [(0, 8), α] ∧ ∼fi(pi, t) : [t, α] ∧ st(pj, t) : [t, α]
→ R(pi, pj, t) : [(2, 8), α]. (7.104)

7 Programming with Annotated Logics 153

(5, 5)-rules
Suppose that both processes Pri and Prj have already started at the same time, then
the vector annotation of bf-literal R(pi, pj, t) should be (5, 5). We have the following
inference rules to be applied after ba-inf rule (0, 0)-rule-2.

(5, 5)-rule-1 If process Pri has finished before process Prj finishes, then the vector
annotation (5, 5) of bf-literal R(pi, pj, t) should turn to bf-annotation sb(5, 7).

(5, 5)-rule-2 If both processes Pri and Prj have finished at the same time, then
the vector annotation (5, 5) of bf-literal R(pi, pj, t) should turn to bf-annotation
pba(6, 6).

(5, 5)-rule-3 If process Prj has finished before process Pri finishes, then the vector
annotation (5, 5) of bf-literal R(pi, pj, t) should turn to bf-annotation sa(7, 5).

Ba-inf rules (5, 5)-rule-1, (5, 5)-rule-2 and (5, 5)-rule-3 may be translated into the
bf-EVALPSN clauses,

R(pi, pj, t) : [(5, 5), α] ∧ fi(pi, t) : [t, α] ∧ ∼fi(pj, t) : [t, α]
→ R(pi, pj, t) : [(5, 7), α], (7.105)

R(pi, pj, t) : [(5, 5), α] ∧ fi(pi, t) : [t, α] ∧ fi(pj, t) : [t, α]
→ R(pi, pj, t) : [(6, 6), α], (7.106)

R(pi, pj, t) : [(5, 5), α] ∧ ∼fi(pi, t) : [t, α] ∧ fi(pj, t) : [t, α]
→ R(pi, pj, t) : [(7, 5), α]. (7.107)

If ba-inf rules, (0, 8)-rule-1, (0, 8)-rule-2, (5, 5)-rule-1, (5, 5)-rule-2 and (5, 5)-
rule-3, and have been applied, bf-relations represented by bf-annotations such as
jb(2, 10)/ja(10, 2) between two processes should be derived. On the other hand,
even if ba-inf rule (0, 8)-rule-3 has been applied, no bf-annotation could be derived.
Therefore a group of ba-inf rules called (2, 8)-rules should be considered after ba-inf
rule (0, 8)-rule-3.
(2, 8)-rules
Suppose that process Pri has started before process Prj starts and process Prj has
started before process Pri finishes, then the vector annotation of bf-literal R(pi, pj, t)
should be (2, 8) and the following three rules should be considered.

(2, 8)-rule-1 If process Pri finished before process Prj finishes, then the vector
annotation (2, 8) of bf-literal R(pi, pj, t) should turn to bf-annotation jb(2, 10).

(2, 8)-rule-2 If both processes Pri and Prj have finished at the same time, then
the vector annotation (2, 8) of bf-literal R(pi, pj, t) should turn to bf-annotation
fb(3, 9).

(2, 8)-rule-3 If process Prj has finished before Pri finishes, then the vector anno-
tation (2, 8) of bf-literal R(pi, pj, t) should turn to bf-annotation ib(4, 8).

154 K. Nakamatsu and S. Akama

Table 7.2 Application orders of basic bf-inference rules

Vector
annotations

Rule Vector
annotation

Rule Vector
annotation

Rule Vector
annotation

(0, 0) Rule-1 (0, 8) Rule-1 (0, 12)

Rule-2 (1, 11)

Rule-3 (2, 8) Rule-1 (2, 10)

Rule-2 (3, 9)

Rule-3 (4, 8)

Rule-2 (5, 5) Rule-1 (5, 7)

Rule-2 (6, 6)

Rule-3 (7, 5)

Ba-inf rules (2, 8)-rule-1, (2, 8)-rule-2 and (2, 8)-rule-3 may be translated into the
bf-EVALPSN clauses,

R(pi, pj, t) : [(2, 8), α] ∧ fi(pi, t) : [t, α] ∧ ∼fi(pj, t) : [t, α]
→ R(pi, pj, t) : [(2, 10), α], (7.108)

R(pi, pj, t) : [(2, 8), α] ∧ fi(pi, t) : [t, α] ∧ fi(pj, t) : [t, α]
→ R(pi, pj, t) : [(3, 9), α], (7.109)

R(pi, pj, t) : [(2, 8), α] ∧ ∼fi(pi, t) : [t, α] ∧ fi(pj, t) : [t, α]
→ R(pi, pj, t) : [(4, 8), α]. (7.110)

The application orders (from the left to the right) of all ba-inf rules are summarized
in Table7.2.

7.6.2 Transitive Reasoning for Bf-Relations

Suppose that a bf-EVALPSN process order control system has to deal with ten
processes. Then if it dealswith all the bf-relations between ten processes, forty five bf-
relations have to be considered. It may take much computing cost. In order to reduce
such cost, we consider inference rules to derive the bf-relation between processes Pri
and Prk from two bf-relations between processes Pri and Prj and between processes
Prj and Prk in bf-EVALPSN, which are named transitive bf-inference rules. Here-
after we call transitive bf-inference rules as tr-inf rules for short.We introduce how to
derive some of tr-inf rules and how to apply them to real-time process order control.

7 Programming with Annotated Logics 155

Fig. 7.22 Process time chart 1 (top left), 2 (top right), 3 (bottom left)

Suppose that three processes Pr0, Pr1 and Pr2 are being processed according to
the process schedule in Fig. 7.22 in which only the start time of process Pr2 varies
time t3 to time t5 and there is no variation of bf-relations between all the processes.
The vector annotations of bf-literals R(p0, p1, t), R(p1, p2, t) and R(p0, p2, t) at
each time ti (i = 1, . . . , 7) are shown by the three tables in Table7.3.

For each table, if we focus on the vector annotations at time t1 and time t2, the
following tr-inf rule in bf-EVALP clause can be derived:

Table 7.3 Vector annotations of process time chart 1, 2, 3

t0 t1 t2 t3 t4 t5 t6 t7

Process time chart 1

R(p0, p1, t) (0, 0) (0, 8) (2, 8) (2, 8) (2, 10) (2, 10) (2, 10) (2, 10)

R(p1, p2, t) (0, 0) (0, 0) (0, 8) (2, 8) (2, 8) (2, 8) (4, 8) (4, 8)

R(p0, p2, t) (0, 0) (0, 8) (0, 8) (2, 8) (2, 10) (2, 10) (2, 10) (2, 10)

Process time chart 2

R(p0, p1, t) (0, 0) (0, 8) (2, 8) (2, 8) (2, 10) (2, 10) (2, 10) (2, 10)

R(p1, p2, t) (0, 0) (0, 0) (0, 8) (0, 8) (2, 8) (2, 8) (4, 8) (4, 8)

R(p0, p2, t) (0, 0) (0, 8) (0, 8) (0, 8) (1, 11) (1, 11) (1, 11) (1, 11)

Process time chart 3

R(p0, p1, t) (0, 0) (0, 8) (2, 8) (2, 8) (2, 10) (2, 10) (2, 10) (2, 10)

R(p1, p2, t) (0, 0) (0, 0) (0, 8) (0, 8) (0, 8) (2, 8) (4, 8) (4, 8)

R(p0, p2, t) (0, 0) (0, 8) (0, 8) (0, 8) (0, 12) (0, 12) (0, 12) (0, 12)

156 K. Nakamatsu and S. Akama

rule-1

R(p0, p1, t) : [(0, 8), α] ∧ R(p1, p2, t) : [(0, 0), α]
→ R(p0, p2, t) : [(0, 8), α]

which may be reduced to the bf-EVALP clause,

R(p0, p1, t) : [(0, 8), α] → R(p0, p2, t) : [(0, 8), α]. (7.111)

Furthermore, if we also focus on the vector annotations at time t3 and time t4 in
Table7.3, the following two tr-inf rules also can be derived:

rule-2

R(p0, p1, t) : [(2, 8), α] ∧ R(p1, p2, t) : [(2, 8), α]
→ R(p0, p2, t) : [(2, 8), α], (7.112)

rule-3

R(p0, p1, t) : [(2, 10), α] ∧ R(p1, p2, t) : [(2, 8), α]
→ R(p0, p2, t) : [(2, 10), α]. (7.113)

As well as tr-inf rules rule-2 and rule-3, the following two tr-inf rules also can be
derived with focusing on the variation of the vector annotations at time t4.

rule-4

R(p0, p1, t) : [(2, 10), α] ∧ R(p1, p2, t) : [(2, 8), α]
→ R(p0, p2, t) : [(1, 11), α], (7.114)

rule-5

R(p0, p1, t) : [(2, 10), α] ∧ R(p1, p2, t) : [(0, 8), α]
→ R(p0, p2, t) : [(0, 12), α]. (7.115)

Among all the tr-inf rules only tr-inf rules rule-3 and rule 4 have the same prece-
dent(body),

R(p0, p1, t) : [(2, 10), α] ∧ R(p1, p2, t) : [(2, 8), α],

and different consequents(heads),

R(p0, p2, t) : [(2, 10), α] and R(p0, p2, t) : [(1, 11), α].

Having the same precedent may cause duplicate application of those tr-inf rules. If
we take tr-inf rules rule-3 and rule-4 into account, obviously they cannot be uniquely
applied. In order to avoid duplicate application of tr-inf rules rule-3 and rule-4, we

7 Programming with Annotated Logics 157

consider all correct applicable orders order-1, order-2 and order-3 for all tr-inf rules
rule-1, . . ., rule-5.

order-1: rule-1 −→ rule-2 −→ rule-3 (7.116)

order-2: rule-1 −→ rule-4 (7.117)

order-3: rule-1 −→ rule-5 (7.118)

As indicated in the above orders, tr-inf rule rule 3 should be applied immediately after
tr-inf rule rule 2, on the other hand, tr-inf rule rule 4 should be done immediately after
tr-inf rule rule 1. Thus if we take the applicable orders (7.116)–(7.118) into account,
such confusion may be avoidable. Actually, tr-inf rules are not complete, that is to
say there exist some cases in which bf-relations cannot be uniquely determined by
only tr-inf rules.

We show an application of tr-inf rules by taking process time chart 3 in Fig. 7.22
as an example.

At time t1, tr-inf rule rule-1 is applied and we have the bf-EVALPSN clause,

R(p0, p2, t1) : [(0, 8), α].

At time t2 and time t3, no tr-inf rule can be applied and we still have the same vector
annotation (0, 8) of bf-literal R(p0, p2, t3).

At time t4, only tr-inf rule rule-5 can be applied and we obtain the bf-EVALP clause,

R(p0, p2, t4) : [(0, 12), α]

and the bf-relation between processes Pr0 and Pr2 has been inferred according to
process order order-3 (7.118).

We could not introduce all tr-inf rules in this subsection though, it is sure that
we have many cases that can reduce bf-relation computing cost in bf-EVALPSN
process order control by using tr-inf rules. In real-time process control systems, such
reduction of computing cost is required and significant in practice.

As another topic,webriefly introduce anticipation of bf-relations in bf-EVALPSN.
For example, suppose that three processes Pr0, Pr1 and Pr2 have started sequentially,
and only process Pr1 has finished at time t as shown in Fig. 7.23.

Fig. 7.23 Anticipation of bf-relation

158 K. Nakamatsu and S. Akama

Then, two bf-relations between processes Pr0 and Pr1 and between processes Pr1
and Pr2 have been already determined, and we have the following two bf-EVALP
clauses with the final bf-annotations of the bf-literals,

R(p0, p1, t) : [ib(4, 8), α] and R(p1, p2, t) : [mb(1, 11), α]. (7.119)

On the other hand, the bf-relation between processes Pr0 and Pr2 cannot be deter-
mined yet. However, if we use the tr-inf rule,

rule-6

R(p0, p1, t) : [(4, 8), α] ∧ R(p1, p2, t) : [(2, 10), α]
→ R(p0, p2, t) : [(2, 8), α], (7.120)

we obtain vector annotation (2, 8) as the bf-annotation of bf-literal R(p0, p2, t).
Moreover, it is logically anticipated that the bf-relation between processes Pr0 and
Pr2 will be finally represented by one of three bf-annotations (vector annotations),
jb(2, 10), sb(3, 9) and ib(4, 8), since the vector annotation (2, 8) is the greatest
lower bound of the set of vector annotations, {(2, 10), (3, 9), (4, 8)}. As mentioned
above, we can systematically anticipate the final bf-annotations from incomplete bf-
annotations in bf-EVALPSN. This remarkable anticipatory feature of bf-EVALPSN
reasoning could be applied to safety verification and intelligent control that may
require such logical anticipation of bf-relations.

7.6.3 Transitive Bf-Inference Rules

In this subsection we list up all transitive bf-inference rules (tr-inf rules) with taking
their application orders into account. For simplicity, we represent the tr-inf rule,

R(pi, pj, t) : [(n1, n2), α] ∧ R(pj, pk, t) : [(n3, n4), α] → R(pi, pk, t) : [(n5, n6), α]

by only vector annotations and logical connectives ∧ and →, as follows:

(n1, n2) ∧ (n3, n4) → (n5, n6)

in the list of tr-inf rules.

Transitive Bf-inference Rules

TR0 (0, 0) ∧ (0, 0) → (0, 0)

TR1 (0, 8) ∧ (0, 0) → (0, 8)

TR1 − 1 (0, 12) ∧ (0, 0) → (0, 12)

TR1 − 2 (1, 11) ∧ (0, 8) → (0, 12)

7 Programming with Annotated Logics 159

TR1 − 3 (1, 11) ∧ (5, 5) → (1, 11)

TR1 − 4 (2, 8) ∧ (0, 8) → (0, 8)

TR1 − 4 − 1 (2, 10) ∧ (0, 8) → (0, 12)

TR1 − 4 − 2 (4, 8) ∧ (0, 12) → (0, 8) (7.121)

TR1 − 4 − 3 (2, 8) ∧ (2, 8) → (2, 8)

TR1 − 4 − 3 − 1 (2, 10) ∧ (2, 8) → (2, 10)

TR1 − 4 − 3 − 2 (4, 8) ∧ (2, 10) → (2, 8) (7.122)

TR1 − 4 − 3 − 3 (2, 8) ∧ (4, 8) → (4, 8)

TR1 − 4 − 3 − 4 (3, 9) ∧ (2, 10) → (2, 10)

TR1 − 4 − 3 − 5 (2, 10) ∧ (4, 8) → (3, 9)

TR1 − 4 − 3 − 6 (4, 8) ∧ (3, 9) → (4, 8)

TR1 − 4 − 3 − 7 (3, 9) ∧ (3, 9) → (3, 9)

TR1 − 4 − 4 (3, 9) ∧ (0, 12) → (0, 12)

TR1 − 4 − 5 (2, 10) ∧ (2, 8) → (1, 11)

TR1 − 4 − 6 (4, 8) ∧ (1, 11) → (2, 8) (7.123)

TR1 − 4 − 7 (3, 9) ∧ (1, 11) → (1, 11)

TR1 − 5 (2, 8) ∧ (5, 5) → (2, 8)

TR1 − 5 − 1 (4, 8) ∧ (5, 7) → (2, 8) (7.124)

TR1 − 5 − 2 (2, 8) ∧ (7, 5) → (4, 8)

TR1 − 5 − 3 (3, 9) ∧ (5, 7) → (2, 10)

TR1 − 5 − 4 (2, 10) ∧ (7, 5) → (3, 9)

TR2 (5, 5) ∧ (0, 8) → (0, 8)

TR2 − 1 (5, 7) ∧ (0, 8) → (0, 12)

TR2 − 2 (7, 5) ∧ (0, 12) → (0, 8) (7.125)

TR2 − 3 (5, 5) ∧ (2, 8) → (2, 8)

TR2 − 3 − 1 (5, 7) ∧ (2, 8) → (2, 10)

TR2 − 3 − 2 (7, 5) ∧ (2, 10) → (2, 8) (7.126)

TR2 − 3 − 3 (5, 5) ∧ (4, 8) → (4, 8)

TR2 − 3 − 4 (7, 5) ∧ (3, 9) → (4, 8)

TR2 − 4 (5, 7) ∧ (2, 8) → (1, 11)

TR2 − 5 (7, 5) ∧ (1, 11) → (2, 8) (7.127)

TR3 (5, 5) ∧ (5, 5) → (5, 5)

TR3 − 1 (7, 5) ∧ (5, 7) → (5, 5) (7.128)

TR3 − 2 (5, 7) ∧ (7, 5) → (6, 6)

160 K. Nakamatsu and S. Akama

Note that the bottom vector annotation (0, 0) in tr-inf rules implies that for any
non-negative integers m and n bf-EVALP clause R(pj, pk, t) : [(n,m), α] satisfies
R(pj, pk, t) : [(0, 0), α] it.

Here we emphasize two important points (I) and (II) in terms of application of
tr-inf rules.

(I) Names of tr-inf rules such asTR1-4-3 show their application orders. For example,
if tr-inf rule TR1 has been applied, one of tr-inf rules TR1-1,TR1-2,. . . or TR1-5
should be applied at the following stage; if tr-inf rule TR1-4 has been applied
after tr-inf rule TR1, one of tr-inf rules TR1-4-1,TR1-4-2, . . . or TR1-4-7 should
be applied at the following stage; on the other hand, if one of tr-inf rules TR1-1,
TR1-2 or TR1-3 has been applied after tr-inf rule TR1, there is no tr-inf rule to
be applied at the following stage because bf-annotations db(0, 12) or mb(1, 11)
between processes Pri and Prk have been already derived.

(II) the following eight tr-inf rules,

TR1-4-2 (121), TR2-2 (125),

TR1-4-3-2 (122), TR2-3-2 (126),

TR1-4-6 (123), TR2-5 (127),

TR1-5-1 (124), TR3-1 (128)

have no following rule to be applied at the following stage, even though they can-
not derive the final bf-relations between processes represented by bf-annotations
such as jb(2, 10)/ja(10, 2). For example, suppose that tr-inf rule TR1-4-3-2
has been applied, then the vector annotation (2, 8) of the bf-literal (pi, pk, t) just
implies that the final bf-relation between processes Pri and Prk is one of three
bf-annotations, jb(2, 10), sb(3, 9) and ib(4, 8). Therefore, if one of the above
eight tr-inf rules has been applied, one of ba-inf rules (0, 8)-rule, (2, 8)-rule or
(5, 5)-rule should be applied for deriving the final bf-annotation at the follow-
ing stage. For instance, if tr-inf rule TR1-4-3-2 has been applied, ba-inf rule
(2, 8)-rule should be applied at the following stage.

Now we show a simple example of bf-relation reasoning by tr-inf rules taking the
process time chart 3(bottom left) in Fig. 7.22.

Example 6.1 At time t1, tr-inf rule TR1 is applied and we have the bf-EVALP
clause,

R(pi, pk, t1) : [(0, 8), α].

At time t2, tr-inf rule TR1-2 is applied, however bf-literal R(pi, pk, t2) has the same
vector annotation (0, 8) as the previous time t1. Therefore we have the
bf-EVALP clause,

R(pi, pk, t2) : [(0, 8), α].

7 Programming with Annotated Logics 161

At time t3, no transitive bf-inference rule can be applied, since the vector annotations
of bf-literals R(pi, pj, t3) and R(pj, pk, t3) are the same as the previous
time t2. Therefore we still have the bf-EVALP clause having the same
vector annotation,

R(pi, pk, t3) : [(0, 8), α].

At time t4, tr-inf rule TR1-2-1 is applied and we obtain the bf-EVALP clause having
bf-annotation db(0, 12),

R(pi, pk, t4) : [(0, 12), α].

7.7 Conclusions and Remarks

In this chapter,we have surveyed paraconsistent annotated logic programsEVALPSN
and bf-EVALPSN to deal with process before-after relations and have introduced the
safety verification method and intelligent process control based on EVALPSN/bf-
EVALPSN as applications. The bf-EVALPSN safety verification based process order
control method can be applied to various process order control systems requiring
real-time processing.

Allen et al. proposed an interval temporal logic for for knowledge representation
of properties, actions and events [2, 3]. In the interval temporal logic, predicates such
asMeets(m,n) are used for representing primitive before-after relations between time
intervals m and n, and other before-after relations are represented by six predicates
such as Before, Overlaps, etc. It is well known that the interval temporal logic is a
logically sophisticated tool to develop practical planning or natural language under-
standing systems [2, 3]. However, it does not seem to be so suitable for practical
real-time processing because before-after relations between two processes cannot be
determined until both of them finish.

On the other hand, in bf-EVALPSN bf-relations are represented more minutely
in paraconsistent vector annotations and can be determined according to start/finish
information of two processes in real time. Moreover EVALPSN can be implemented
onmicrochips as electronic circuits, although it has not introduced in this chapter.We
have already shown that some EVALPSN based control systems can be implemented
on a microchips in [29, 38]. Therefore bf-EVALPSN is a more practical tool for
dealing with real-time process order control and its safety verification.

In addition to the suitable characteristics for real-time processing, bf-EVALPSN
can deal with incomplete and paracomplete knowledge in terms of before-after rela-
tion in vector annotations, although the treatment of paracomplete knowledge has
not been discussed in this chapter. Furthermore bf-EVALPSN has inference rules for
transitive reasoning of before-after relations as shortly described.

162 K. Nakamatsu and S. Akama

Therefore, we can intellectualize various systems by applying EVALPSN and
bf-EVALPSN appropriately. We conclude that annotated logic programming is a
practical tool for developing an intelligent system.

Acknowledgments We are grateful to the referee and J.M. Abe for useful comments.

References

1. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg
(2015)

2. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23, 123–154 (1984)
3. Allen, J.F., Ferguson, G.: Actions and events in interval temporal logic. J. Logic Comput. 4,

531–579 (1994)
4. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J.

(ed.) Foundation of Deductive Database and Logic Programs, pp. 89–148. Morgan Kaufmann,
CA (1989)

5. Belnap, N.D.: A useful four valued logic. In: Dunn, M., Epstein, G. (eds.) Modern Uses of
Multiple-Valued Logic, pp. 8–37. D.Reidel Publishing, Netherlands (1977)

6. Billington, D.: Defeasible logic is stable. J. Logic Comput. 3, 379–400 (1993)
7. Billington, D.: Conflicting literals and defeasible logic. In: Nayak, A., Pagnucco,M. (eds.) Pro-

ceedings of 2ndAustralianWorkshop Commonsense Reasoning, 1 December, Perth, Australia,
Australian Artificial Intelligence Institute, Australia, pp. 1–15 (1997)

8. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68,
135–154 (1989)

9. da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logics PT . Zeitschrift für
Mathematische Logic und Grundlangen der Mathematik 37, 139–148 (1989)

10. Dressler, O.: An extended basic ATMS, In: Reinfrank,M., et al. (eds.) Proceedings of 2nd Inter-
national Workshop on Non-monotonic Reasoning, 13–15 June, Grassau, Germany, (Lecture
Notes in Computer Science LNCS 346), pp. 143–163. Springer, Heidelberg (1988)

11. Fitting, M.: Bilattice and the semantics of logic programming. J. Logic Program. 11, 91–116
(1991)

12. Gelder, A.V., Ross, K.A, Schlipf, J.S.: The well-founded semantics for general logic programs.
J. ACM 38, 620–650 (1991)

13. Jaskowski, S.: Propositional calculus for contradictory deductive system (English translation
of the original Polish paper). Studia Logica 24, 143–157 (1948)

14. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its
applications. J. Logic Program. 12, 335–368 (1992)

15. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
16. Moore, R.: Semantical considerations on non-monotonic logic. Artif. Intell. 25, 75–94 (1985)
17. Nakamatsu, K., Suzuki, A.: Annotated semantics for default reasoning. In: Dai, R. (ed.) Pro-

ceedings of 3rd Pacific Rim International Conference on Artificial Intelligence (PRICAI94),
15–18 August, Beijin, China, pp. 180–186. International Academic Publishers, China (1994)

18. Nakamatsu, K., Suzuki, A.: A nonmonotonic ATMS based on annotated logic programs. In:
Wobcke, W., et al. (eds.) Agents and Multi-Agents Systems (Lecture Notes in Artificial Intel-
ligence LNAI 1441), pp. 79–93. Springer, Berlin (1998)

19. Nakamatsu, K., Abe, J.M.: Reasonings based on vector annotated logic programs. In:
Mohammadian, M. (ed.) Computational Intelligence for Modelling, Control and Automation
(CIMCA99), (Concurrent Systems Engineering Series 55), pp. 396–403. IOS Press, Nether-
lands (1999)

7 Programming with Annotated Logics 163

20. Nakamatsu, K., Abe, J.M., Suzuki A.: Defeasible reasoning between conflicting agents based
on VALPSN. In: Tessier, C., Chaudron, L. (eds.) Proceedings of AAAI Workshop Agents’
Conflicts, 18 July, Orland, FL, pp. 20–27. AAAI Press, Menlo Park, CA (1999)

21. Nakamatsu, K., Abe, J.M., Suzuki, A.: Defeasible reasoning based on VALPSN and its appli-
cation. In: Nayak, A., Pagnucco, M. (eds.) Proceedings of The Third Australian Commonsense
Reasoning Workshop, 7 December, Sydney, Australia, University of Newcastle, Sydney, Aus-
tralia, pp. 114–130 (1999)

22. Nakamatsu, K.: On the relation between vector annotated logic programs and defeasible theo-
ries. Logic Log. Philos. 8, 181–205 (2000)

23. Nakamatsu, K., Abe, J.M., Suzuki, A.: A defeasible deontic reasoning system based on anno-
tated logic programming. In: Dubois, D.M. (ed.) Proceedings of 4th International Conference
on ComputingAnticipatory Systems (CASYS2000), 7–12August, 2000, Liege, Belgium, (AIP
Conference Proceedings 573), pp. 609–620. American Institute of Physics, NY (2001)

24. Nakamatsu, K., Abe, J.M., Suzuki, A.: Annotated semantics for defeasible deontic reasoning.
In: Ziarko, W., Yao, Y. (eds.) Proceedings of 2nd International Conference on Rough Sets and
Current Trends in Computing (RSCTC2000), 16–19 October, 2000, Banff, Canada, (Lecture
Notes in Artificial Intelligence LNAI 2005), pp. 432–440. Springer, Berlin (2001)

25. Nakamatsu, K., Abe, J.M., Suzuki, A.: Extended vector annotated logic program and its appli-
cation to robot action control and safety verification. In: Abraham, A., et al. (eds.) Hybrid
Information Systems (Advances in Soft Computing Series), pp. 665–680. Physica-Verlag, Hei-
delberg (2002)

26. Nakamatsu, K., Suito, H., Abe, J.M., Suzuki, A.: Paraconsistent logic program based safety ver-
ification for air traffic control, In: El Kamel, A., et al. (eds.) Proceedings of IEEE International
Conference on System, Man and Cybernetics 02 (SMC02)

27. Nakamatsu, K., Abe, J.M., Suzuki, A.: A railway interlocking safety verification system based
on abductive paraconsistent logic programming. In: Abraham, A., et al. (eds.) Soft Computing
Systems (HIS02) (Frontiers in Artificial Intelligence and Applications 87), pp. 775–784. IOS
Press, Netherlands (2002)

28. Nakamatsu, K., Abe, J.M., Suzuki, A.: Defeasible deontic robot control based on extended
vector annotated logic programming. In: Dubois, D.M. (ed.) Proceedings of 5th International
Conference on Computing Anticipatory Systems (CASYS2001) 13–18 August, 2001, Liege,
Belgium, (AIP Conference Proceedings 627), American Institute of Physics, New York, NY,
pp. 490–500 (2002)

29. Nakamatsu, K., Mita, Y., Shibata, T.: Defeasible deontic action control based on paraconsis-
tent logic program and its hardware application. In: Mohammadian, M. (ed.) Proceedings of
International Conference on Computational Intelligence for Modelling Control and Automa-
tion 2003(CIMCA2003), 12–14 February, Vienna, Austria, IOS Press, Netherlands (CD-ROM)
(2003)

30. Nakamatsu, K., Seno, T., Abe, J.M., Suzuki, A.: Intelligent real-time traffic signal control based
on a paraconsistent logic program EVALPSN. In: Wang, G., et al. (eds.) Rough Sets, Fuzzy
Sets, Data Mining and Granular Computing (RSFDGrC2003), 26–29 May, Chongqing, China,
(Lecture Notes in Artificial Intelligence LNAI 2639), pp. 719–723. Springer, Berlin (2003)

31. Nakamatsu, K., Komaba, H., Suzuki, A.: Defeasible deontic control for discrete events based
on EVALPSN. In: Tsumoto, S., et al. (eds.) Proceedings of 4th International Conference on
Rough Sets and Current Trends in Computing (RSCTC2004), 1–5 June, Uppsala, Sweeden,
(Lecture Notes in Artificial Intelligence LNAI 3066), pp. 310–315. Springer, Berlin (2004)

32. Nakamatsu, K., Ishikawa, R., Suzuki, A.: A paraconsistent based control for a discrete event
cat and mouse. In: Negoita, M.G.H., et al. (eds.) Proceedings of 8th International Conference
Knowledge-Based Intelligent Information and Engineering Systems (KES2004), 20–25 Sep-
tember, Wellington, NewZealand, (Lecture Notes in Artificial Intelligence LNAI 3214), pp.
954–960. Springer, Berlin (2004)

33. Nakamatsu, K., Chung, S.-L., Komaba, H., Suzuki, A.: A discrete event control based on
EVALPSN stable model. In: Slezak, D., et al. (eds.) Rough Sets, Fuzzy Sets, Data Mining and

164 K. Nakamatsu and S. Akama

Granular Computing (RSFDGrC2005), 31 August - 3 September, Regina, Canada, (Lecture
Notes in Artificial Intelligence LNAI 3641), pp. 671–681. Springer, Berlin (2005)

34. Nakamatsu, K., Abe, J.M., Akama, S.: An intelligent safety verification based on a paracon-
sistent logic program. In: Khosla, R., et al. (eds.) Proceedings of 9th International Conference
on Knowledge-Based Intelligent Information and Engineering Systems (KES2005), 14–16
September, Melbourne, australia, (Lecture Notes in Artificial Intelligence LNAI 3682), pp.
708–715. Springer, Berlin (2005)

35. Nakamatsu, K., Kawasumi, K., Suzuki, A.: Intelligent verification for pipeline based on
EVALPSN. In: Nakamatsu, K., Abe, J.M. (eds.) Advances in Logic Based Intelligent Systems
(Frontiers in Artificial Intelligence and Applications 132), pp. 63–70. IOS Press, Netherlands
(2005)

36. Nakamatsu, K., Suzuki, A.: Autoepistemic theory and paraconsistent logic program. In: Naka-
matsu, K., Abe, J.M. (eds.) Advances in Logic Based Intelligent Systems (Frontiers in Artificial
Intelligence and Applications 132), pp. 177–184. IOS Press, Netherlands (2005)

37. Nakamatsu, K., Suzuki, A.: Annotated semantics for non-monotonic reasonings in artificial
intelligence—I, II, III, IV. In: Nakamatsu, K., Abe, J.M. (eds.) Advances in Logic Based Intel-
ligent Systems (Frontiers in Artificial Intelligence and Applications 132), pp. 185–215. IOS
Press, Netherlands (2005)

38. Nakamatsu, K., Mita, Y., Shibata, T.: An intelligent action control system based on extended
vector annotated logic programand its hardware implementation. J. Intell.Autom.SoftComput.
13, 289–304 (2007)

39. Nakamatsu, K.: Paraconsistent annotated logic program EVALPSN and its application. In:
Fulcher, J., Jain, C.L. (eds.) Computational Intelligence: A Compendium (Studies in Compu-
tational Intelligence 115), pp. 233–306. Springer, Germany (2008)

40. Nakamatsu, K., Abe, J.M.: The development of paraconsistent annotated logic program. Int. J.
Reasoning-Based Intell. Syst. 1, 92–112 (2009)

41. Nakamatsu, K., Abe, J.M., Akama, S.: A logical reasoning system of process before-after
relation based on a paraconsistent annotated logic program bf-EVALPSN. KES J. 15(3), 146–
163 (2011)

42. Nute, D.: Defeasible reasoning. In: Stohr, E.A., et al. (eds.) Proceedings of 20th Hawaii Inter-
national Conference on System Science (HICSS87) 1, 6–9 January, Kailua-Kona, Hawaii,
University of Hawaii, Hawaii, pp. 470–477 (1987)

43. Nute, D.: Basic defeasible logics. In: Farinas del Cerro, L., Penttonen, M. (eds.) Intensional
Logics for Programming, pp. 125–154. Oxford University Press, UK (1992)

44. Nute, D.: Defeasible logic. In: Gabbay, D.M., et al. (eds.) Handbook of Logic in Artificial
Intelligence and Logic Programming 3, pp. 353–396. Oxford University Press, UK (1994)

45. Nute, D.: Apparent obligatory. In: Nute, D. (ed.) Defeasible Deontic Logic, (Synthese Library
263), pp. 287–316. Kluwer Academic Publisher, Netherlands (1997)

46. Przymusinski, T.C.: On the declarative semantics of deductive databases and logic programs.
In: Minker, J. (ed.) Foundation of Deductive Database and Logic Programs, pp. 193–216.
Morgan Kaufmann, New York (1988)

47. Reiter, R.: A logic for default reasoning. Artif. Intell. 13, 81–123 (1980)
48. Shepherdson, J.C.: Negation as failure, completion and stratification. In: Gabbay, D.M., et al.

(eds.) Handbook of Logic in Artificial Intelligence and Logic Programming 5, pp. 356–419.
Oxford University Press, UK (1998)

49. Subrahmanian,V.S.:Amalgamating knowledge bases.ACMTrans.Database Syst. 19, 291–331
(1994)

50. Subrahmanian, V.S.: On the semantics of qualitative logic programs. In: Proceedings of the
1987 Symposium Logic Programming (SLP87), August 31–September 4, pp. 173–182. IEEE
Computer Society Press, CA (1987)

51. Visser, A.: Four valued semantics and the liar. J. Philos. Logic 13, 99–112 (1987)

Chapter 8
A Review on Rough Sets and Possible
World Semantics for Modal Logics

Yasuo Kudo, Tetsuya Murai and Seiki Akama

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract It is well known that rough set-based approximations of concepts and
possible world semantics of modal logics are closely related. In this chapter, we
review the relationships between two types of possible world semantic models,
i.e., Kripke model and measure-based model, and two variation of rough sets, i.e.,
Pawlak’s rough set and variable precision rough set.

Keywords Modal logic ·Possibleworld semantics ·Kripkemodel ·Measure-based
model · Rough set · Variable precision rough set

8.1 Introduction

Rough set theory, proposed by Pawlak [14, 15], provides a theoretical basis of set-
based approximations of concepts. Lower and upper approximations by rough set
theory are closely related with possible world semantics, i.e., lower approximation
and necessity, and upper approximation and possibility. In this chapter, we review
the relationships between two types of possible world semantic models, i.e., Kripke

Y. Kudo (B)
Muroran Institute of Technology, Muroran, Japan
e-mail: kudo@csse.muroran-it.ac.jp

T. Murai
Chitose Institute of Science and Technology, Chitose, Japan
e-mail: t-murai@photon.chitose.ac.jp

S. Akama
C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-ku, Kawasaki 215-0012, Japan
e-mail: akama@jcom.home.ne.jp

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_8

165

166 Y. Kudo et al.

model [6] and measure-based model [11, 12], and two variations of rough sets, i.e.,
Pawlak’s rough set [14, 15] and variable precision rough set [26].

The reminder of this chapter is structured as follows. In Sect. 8.2, language and
possibleworld semantics formodal logics are briefly reviewed. In Sect. 8.3, lower and
upper approximations in rough sets and variable precision rough sets are discussed. In
Sect. 8.4, connections betweenpossibleworld semantics and rough sets are discussed.
Related works about rough set-based semantics for modal logics are mentioned in
Sect. 8.5, and finally, we give some conclusion in Sect. 8.6.

8.2 Modal Logics

In this section, we review possible world semantics of modal logics. The contents of
this section is mainly based on [2].

8.2.1 Language

Propositional modal logic (for short, modal logic) is an extension of classical propo-
sitional logic by adding two unary operators � and ♦, called modal operators, that
express the statements �p (p is necessary) and ♦p (p is possible) for any proposi-
tion p.

Suppose P = {p1, . . . ,pn(, . . .)} is a set of finite or countably infinite atomic
sentences, � (truth) and ⊥ (falsity) are constant sentences, ∧ (conjunction), ∨ (dis-
junction), → (conditionality), ↔ (biconditionality), and ¬ (negation) are logical
connectives, and � (necessity) and ♦ (possibility) are modal operators. Let LML(P)

be the set of sentences of modal logic constructed from the above symbols by the
following construction rules:

p ∈ P ⇒ p ∈ LML(P),�,⊥ ∈ LML(P),

p ∈ LML(P) ⇒ ¬p,�p,♦p ∈ LML(P),

p, q ∈ LML(P) ⇒ p ∧ q, p ∨ q, p → q, p ↔ q ∈ LML(P).

We say that a sentence is a modal sentence if the sentence contains at least one
modal operator, and otherwise, we say the sentence is a non-modal sentence.

8.2.2 Possible World Semantics for Modal Logics

8.2.2.1 Kripke Model

In this section, we consider possible world semantics to interpret sentences used in
modal logic. A Kripke model, one of the most popular frameworks of possible world
semantics, is the following triple:

8 A Review on Rough Sets and Possible World Semantics for Modal Logics 167

M = (U, R, v), (8.1)

where U (
= ∅) is the set of possible worlds, R is a binary relation on U called an
accessibility relation, and v : P ×U → {0, 1} is a valuation function that assigns a
truth value to each atomic sentence p ∈ P at each world w ∈ U . We define that an
atomic sentence p is true at a possible world x by the given Kripke modelM if and
only if we have v(p, x) = 1. We say that a Kripke model is finite if its set of possible
worlds is a finite set.

We denote M, x |= p to mean that the sentence p is true at the possible world
x ∈ U by the Kripke model M. Otherwise, we denote M, x
|= x to mean that p
is false at x ∈ U . Similar to classical propositional logic, for any non-modal sentences
p, q ∈ LML(P) and anypossibleworld x ∈ U , interpretationof non-modal sentences
by the Kripke model M is defined as follows:

M, x |= ¬p ⇐⇒ M, x
|= p,

M, x |= p ∧ q ⇐⇒ M, x |= p and M, x |= q,

M, x |= p ∨ q ⇐⇒ M, x |= p or M, x |= q,

M, x |= p → q ⇐⇒ M, x
|= p or M, x |= q,

M, x |= p ↔ q ⇐⇒ M, x |= p → q and M, x |= q → p.

An accessibility relation is used to interpret modal sentences by a Kripke model;
a modal sentence �p is true at a possible world x ∈ U by a Kripke modelM if and
only if p is true at every possible world y that is accessible from x in M. On the
other hand, ♦p is true at x if and only if there is at least one possible world y that is
accessible from x and p is true at y. Formally, interpretation of modal sentences are
defined as follows:

M, x |= �p
def⇐⇒ ∀y ∈ U (x Ry ⇒ M, y |= p), (8.2)

M, x |= ♦p
def⇐⇒ ∃y ∈ U (x Ry and M, y |= p). (8.3)

For any sentence p ∈ LML(P), the truth set is the set of possible worlds at which
p are true by the Kripke model M, and the truth set is defined as follows:

‖p‖M def= {x ∈ U | M, x |= p}. (8.4)

We say that a sentence p is true in a Kripke modelM if and only if p is true at every
possible world inM. We denote M |= p if p is true inM.

It is well known that various properties of accessible relations correspond to
axiom schemas of modal systems (for details, see [2]). Table8.1 describes the corre-
spondence between axiom schemas in modal systems and properties of accessibility
relations in Kripke models. For example, the modal system S5 is sound and com-
plete with respect to the class of all Kripke models that the accessibility relations are
equivalence relations. The modal system S5 consists of all inference rules and axiom

168 Y. Kudo et al.

Table 8.1 Correspondence relationship among axiom schima and accessibility relation

Axiom schima Accessibility relation

Df♦. ♦p ↔ ¬�¬p (No condition)

M. �(p ∧ q) → (�p ∧ �q) (No condition)

C. (�p ∧ �q) → �(p ∧ q) (No condition)

N. �� (No condition)

K. �(p → q) → (�p → �q) (No condition)

D. �p → ♦p Serial

P. ¬�⊥ Serial

T. �p → p Reflexive

B. p → �♦p Symmetric

4. �p → ��p Transitive

5. ♦p → �♦p Euclidian

schemas of propositional logic, the axiom schemasDf♦,K,T and 5 in Table8.1, and
the following inference rule:

RN. from p infer �p.

8.2.2.2 Measure-Based Semantics

Murai et al. [11, 12] introduced measure-based semantics of modal logics. In the
measure-based semantics, fuzzy measures assigned to each possible worlds are used
to interpret modal sentences.

Let U is a non-empty set. A function μ : 2U → [0, 1] is called a fuzzy measure
on U if the function μ satisfies the following conditions:

1. μ(U) = 1,
2. μ(∅) = 0, and
3. ∀X,Y ⊆ U, X ⊆ Y ⇒ μ(X) ≤ μ(Y).

Formally, a fuzzy measure model Mμ is the following triple:

Mμ = (U, {μx }x∈U , v), (8.5)

where U is a set of possible worlds, and v is a valuation. {μx }x∈U is a class of fuzzy
measures μx assigned to all possible worlds x ∈ U .

In measure-based semantics of modal logic, each degree α ∈ (0, 1] of fuzzy mea-
sures corresponds to a modal operator �α [11, 12]. In this paper, however, we fix a
degree α and consider α-level fuzzy measure model.

8 A Review on Rough Sets and Possible World Semantics for Modal Logics 169

Similar to the case of Kripke models, Mμ, x |= p indicates that the sentence
p is true at the possible world x ∈ U by the α-level fuzzy measure model Mμ.
Interpretation of non-modal sentences is identical to that in Kripke models. On the
other hand, to define the truth value of modal sentences at each world x ∈ U in the
α-level fuzzymeasure modelMμ, we use the fuzzymeasureμx assigned to the world
x instead of accessibility relations. Interpretation of modal sentences �p at a world
x is defined as follows:

Mμ, x |= �p
def⇐⇒ μx

(‖p‖Mμ
) ≥ α, (8.6)

where μx is the fuzzy measure assigned to x . By this definition, interpretation of
modal sentences ♦p is obtained by dual fuzzy measures as follows:

Mμ, x |= ♦p ⇐⇒ μ∗
x

(‖p‖Mμ
)

> 1 − α, (8.7)

where the dual fuzzy measure μ∗
x of the assigned fuzzy measure μx is defined as

μ∗
x (X)

def= 1 − μx (Xc) for any X ⊆ U .
Note that the modal system EMNP is sound and complete with respect to the class

of all α-level fuzzy measure models [11, 12], where the system EMNP consists of
all inference rules and axiom schemas of propositional logic and the axiom schemas
Df♦,M, N, and P in Table8.1 and the following inference rule:

RE. from p ↔ q infer �p ↔ �q.

8.3 Rough Sets

8.3.1 Pawlak’s Rough Set

In this section, we review theoretical basis of Pawlak’s rough set theory, in particular,
lower and upper approximation of concepts. The contents of this section is based
on [15, 17].

LetU be a non-empty and finite set of objects called the universe of discourse, and
E be an equivalence relation on U called an indiscernibility relation. The ordered
pair (U, E) is called aPawlak approximation space that is the basis of approximation
in rough set theory.

For any element x ∈ U , the equivalence class of x with respect to E is defined as
follows:

[x]E def= {y ∈ U | xEy}. (8.8)

The equivalence class [x]E is the set of objects that are not discernible from x

with respect to E . The quotient set U/E
def= {[x]E |x ∈ U } provides a partition ofU .

According to Pawlak [15], any set X ⊆ U represents a concept, and a set of concepts

170 Y. Kudo et al.

is called knowledge aboutU . Thus, the quotient setU/E is called E-basic knowledge
about U [15].

For any set of objects X ⊆ U , the lower approximation E(X) of X and the upper
approximation E(X) of X by the equivalence relation E are defined as follows,
respectively:

E(X)
def= {x ∈ U | [x]E ⊆ X}, (8.9)

E(X)
def= {x ∈ U | [x]E ∩ X
= ∅}. (8.10)

The lower approximation E(X) of X is the set of objects that are certainly included
in X . On the other hand, the upper approximation E(X) of X is the set of objects
that may be included in X .

If we have E(X) = X = E(X), we say that X is E-definable, and otherwise, if we
have E(X) ⊂ X ⊂ E(X), we say that X is E-rough. The concept X is E-definable
means that we can denote X correctly by using background knowledge by E . On the
other hand, X is E-rough means that we can not denote the concept correctly based
on the background knowledge.

8.3.2 Variable Precision Rough Set

Variable precision rough set models (for short, VPRS) proposed by Ziarko [26] is
one extension of Pawlak’s rough set theory that provides a theoretical basis to treat
probabilistic or inconsistent information in the framework of rough sets.

VPRS is based on the majority inclusion relation. Let X,Y ⊆ U be any subsets
of U . The majority inclusion relation is defined by the following measure c(X,Y)

of the relative degree of misclassification of X with respect to Y :

c(X,Y)
def=

⎧
⎨

⎩

1 − |X ∩ Y |
|X | , if X
= ∅,

0, otherwise,
(8.11)

where |X | represents the cardinality of the set X . It is easily confirmed that X ⊆ Y
holds if and only if c(X,Y) = 0 holds.

Formally, the majority inclusion relation
β⊆ with a fixed precision β ∈ [0, 0.5) is

defined using the relative degree of misclassification as follows:

X
β⊆ Y

def⇐⇒ c(X,Y) ≤ β, (8.12)

where the precision β provides the limit of permissible misclassification [26].

8 A Review on Rough Sets and Possible World Semantics for Modal Logics 171

Let (U, E) be a Pawlak approximation space, X ⊆ U be any set of objects, and
the degree β ∈ [0, 0.5) be a precision. The β-lower approximation Eβ(X) and the

β-upper approximation Eβ(X) of X are defined as follows:

Eβ(X)
def=

{

x ∈ U [x]E
β⊆ X

}
(8.13)

= {
x ∈ U c ([x]E , X) ≤ β

}
, (8.14)

Eβ(X)
def= {

x ∈ U c ([x]E , X) < 1 − β
}
. (8.15)

As mentioned previously, the precision β represents the threshold degree of mis-
classification of elements in the equivalence class [x]E to the set X . Thus, in VPRS,
misclassification of elements is allowed if the ratio of misclassification is less than
β. Note that the β-lower and β-upper approximations with β = 0 correspond to
Pawlak’s lower and upper approximations [26].

8.3.3 Properties of Lower and Upper Approximations

Lower and upper approximations of Pawlak’s rough set and VPRS satisfy various
properties. Table8.2 represents some properties of β-lower and upper approxima-
tions. The symbol “�” appeared in Table8.2 means, for each property in Table8.2,
whether the property is satisfied in the case of β = 0 and 0 < β < 0.5, respectively.
For example, it is easily observed that the propertyC. Eβ(X) ∩ Eβ(Y) ⊆ Eβ(X ∩ Y)

does not hold in VPRS with the precision 0 < β < 0.5. Note that symbols assigned
to properties likeC. correspond to axiom schemas in modal logic (for detail, see [2]).

Table 8.2 Some properties of β-lower and upper approximations [7]

Property β = 0 0 < β < 0.5

Df♦. Eβ(X) = Eβ(Xc)c � �
M. Eβ(X ∩ Y) ⊆ Eβ(X) ∩ Eβ(Y) � �
C. Eβ(X) ∩ Eβ(Y) ⊆ Eβ(X ∩ Y) �
N. Eβ(U) = U � �
K. Eβ(Xc ∪ Y) ⊆

(
Eβ(X)c ∪ Eβ(Y)

)
�

D. Eβ(X) ⊆ Eβ(X) � �
P. Eβ(∅) = ∅ � �
T. Eβ(X) ⊆ X �
B. X ⊆ Eβ(Eβ(X)) �
4. Eβ(X) ⊆ Eβ(Eβ(X)) � �
5. Eβ(X) ⊆ Eβ(Eβ(X)) � �

172 Y. Kudo et al.

8.4 Connections Between Rough Sets and Modal Logics

8.4.1 Pawlak Approximation Spaces as Kripke Models

As we reviewed in Sect. 8.3.1, every Pawlak approximation space (U, E) consists of
a finite setU of objects and an equivalence relation E onU . Hence, by regarding each
object x ∈ U as a possible world and the equivalenced relation E as an accessibility
relation, and by adding a valuation function v : P ×U → {0, 1}, the structureM =
(U, E, v) induced from the Pawlak approximation space (U, E) is regarded as a
special case of Kripke model.

For every Kripke model (U, E, v) induced from a Pawlak approximation space
(U, E), it is easily confirmed that the truth conditions of modal sentence�p by (8.2)
is reformulated as follows:

M, x |= �p ⇐⇒ ∀y ∈ U (xEy ⇒ M, y |= p)

⇐⇒ [x]E ⊆ ‖p‖M (8.16)

⇐⇒ x ∈ E(‖p‖M). (8.17)

Similarly, the truth condition of modal sentence ♦p by (8.3) is also reformulated
as follows:

M, x |= ♦p ⇐⇒ ∃y ∈ U (xEy and M, y |= p)

⇐⇒ [x]E ∩ ‖p‖M
= ∅ (8.18)

⇐⇒ x ∈ E(‖p‖M). (8.19)

All axiom schemas in Table8.1 and the inference rule RN are satisfied by every
Kripkemodelwith equivalence relation [2], and therefore, the knowledge represented
by the Palwak approximation space (U, E) are able to describe by the modal system
S5.

As a generalization of approximation using rough sets, Yao and Li [21], Yao and
Lin [22], and Yao et al. [23] have discussed generalized lower approximation and
generalized upper approximation by using arbitrary binary relation R on U instead
of the equivalence relation. A pair (U, R) of a finite set U of objects and a binary
relation R onU is called an approximation space. For every binary relation R onU ,
a set UR(x) of objects induced from an object x ∈ U and R is defined by

UR(x)
def= {y ∈ U | x Ry}. (8.20)

Obviously, the equivalence class [x]E by an equivalence relation E is a special case
of the set UR(x). If we regard the set U as the set of possible worlds, the set UR(x)
is the set of accessible possible worlds from the possible world x ∈ U .

8 A Review on Rough Sets and Possible World Semantics for Modal Logics 173

For any binary relation R on U and any set X ⊆ U , generalized lower approxi-
mation R(X) and generalized upper approximation R(X) are defined by

R(X)
def= {x ∈ U | UR(x) ⊆ X}, (8.21)

R(X)
def= {x ∈ U | UR(x) ∩ X
= ∅}. (8.22)

Similar reformulation of the truth condition of modal operators by (8.17) and
(8.19) are also available for the setUR(x), and therefore, generalized lower and upper
approximations of a truth set ‖p‖M correspond to interpretation of modal sentences
�p and ♦p in a Kripke model M = (U, R, v) induced by an approximation space
(U, R) with arbitrary binary relation R:

M, x |= �p ⇐⇒ UR(x) ⊆ ‖p‖M (8.23)

⇐⇒ x ∈ R(‖p‖M), (8.24)

M, x |= ♦p ⇐⇒ UR(x) ∩ ‖p‖M
= ∅ (8.25)

⇐⇒ x ∈ R(‖p‖M). (8.26)

This fact illustrates close connection between various modal systems and gen-
eralized lower and upper approximations, and properties of the binary relation R
used for generalized lower and upper approximations correspond to axiom schemas
of modal systems as shown in Tables8.1 and 8.2. Note that Yao [20] also studied
theoretical aspects of generalized rough sets induced by arbitrary binary relations.

8.4.2 Possible World Semantics with Variable Precision
Rough Sets

Kudo et al. [8] discussed a possible world semantics of modal logics using VPRS
by introducing α-level fuzzy measure models based on background knowledge. The
original purpose of this model is to provide a unified framework of deduction, induc-
tion, and abduction using granularity of possibleworlds based onVPRSandmeasure-
based semantics for modal logic.

As we reviewed in previous sections, each equivalence class [x]E represents a
concept and the set of concepts, i.e., the quotient set U/E , describe knowledge
by the given Pawak approximation space (U, E). Suppose a Pawlak approximation
space (U, E) is given and a Kripke modelM = (U, E, v) induced from (U, E) and
a valuation v is considered. In the Kripke modelM, any non-modal sentence p that
represents a fact is characterized by its truth set ‖p‖M. By using the background
knowledge, when we consider the fact represented by the non-modal sentence p, we
may not need to consider all possible worlds in the truth set ‖p‖M and we often
consider only typical situations about the fact p.

174 Y. Kudo et al.

To describe such typical situations of the fact p, the β-lower approximation of the
truth set ‖p‖M by the equivalence relation E is examined and regard each possible
world in the β-lower approximation of the truth set ‖p‖M as a typical situation about
p based on background knowledge U/E . It enables us to regard situations that are
not in the β-lower approximation as exceptions of the fact p. Thus, using background
knowledge by the quotient setU/E , the following two sets of possible worlds about
a fact p are considerable [8]:

• ‖p‖M: correct representation of the fact p
• Eβ(‖p‖M): the set of typical situations about p (situations that are not typical
may also be included)

Using the given Kripke model as background knowledge, an α-level fuzzy mea-
sure model to treat typical situations about facts as β-lower approximations in
the framework of modal logic are introduced [8]. Let M = (U, E, v) be a Kripke
model induced from a Pawlak approximation space (U, E) and a valuation function
v : P ×U → {0, 1}, and α ∈ (0.5, 1] be a fixed degree. An α-level fuzzy measure
model ME

α based on background knowledge is the following triple:

ME
α

def= (U, {μE
x }x∈U , v), (8.27)

whereU and v are the same as inM. The fuzzy measure μE
x : 2U → [0, 1] assigned

to each x ∈ U is a rough membership fucntion [16], i.e., a probability measure based
on the equivalence class [x]E with respect to E , defined by

μE
x (X)

def= |[x]E ∩ X |
|[x]E | , ∀X ⊆ U. (8.28)

Similar to the case of Kripke-style models, we denote that a sentence p is true at a
world x ∈ U by an α-level fuzzy measure modelME

α byME
α , x |= p. According to

the truth valuation of modal sentences in the measure-based semantics by (8.6) and
(8.7), truth valuation of modal sentences, �p and ♦p, by the α-level fuzzy measure
model ME

α is defined by

ME
α , x |= �p

def⇐⇒ μE
x

(
‖p‖ME

α

)
≥ α, (8.29)

ME
α , x |= ♦p

def⇐⇒ μE
x

(
‖p‖ME

α

)
> 1 − α. (8.30)

The truth set of a sentence p in the α-level fuzzy measure model ME
α is defined

by

‖p‖ME
α

def= {x ∈ U | ME
α , x |= p}. (8.31)

The constructed α-level fuzzy measure modelME
α from the given Kripke model

M has the following properties.

8 A Review on Rough Sets and Possible World Semantics for Modal Logics 175

Theorem 8.1 [8] LetM be a finite Kripke model such that its accessibility relation
E is an equivalence relation and ME

α be the α-level fuzzy measure model based
on the background knowledge M defined by (8.27). For any non-modal sentence
p ∈ LML(P) and any sentence q ∈ LML(P), the following equations hold:

‖p‖ME
α = ‖p‖M, (8.32)

‖�q‖ME
α = E1−α

(
‖q‖ME

α

)
, (8.33)

‖♦q‖ME
α = E1−α

(
‖q‖ME

α

)
. (8.34)

Theorem 8.2 (Soundness [8]) For any α-level fuzzy measure model ME
α defined

by (8.27) based on any finite Kripke modelM such that its accessibility relation E is
an equivalence relation, the following soundness properties are satisfied in the case
of α = 1 and α ∈ (0.5, 1), respectively:

• If α = 1, then all theorems of the system S5 are true inME
α .

• If α ∈ (0.5, 1), then all theorems of the system EMND45 are true inME
α ,

where the system EMND45 consists of the inference rules and axiom schemas of the
system EMNP and the axiom schemas D, 4, and 5.

This result enables us to represent facts and rules in reasoning processes as non-
modal sentences and typical situations of facts and rules as lower approximations
of truth sets of non-modal sentences [8]. From (8.32) and (8.33) in Theorem 8.1,
the α-level fuzzy measure modelME

α based on background knowledgeM exhibits
the characteristics of correct representations of facts by the truth sets of non-modal
sentences and typical situations of the facts by the (1 − α)-lower approximations of
truth sets of sentences. Thus, a modal sentence �p is interpreted as typically p, and
typical situations are used to characterize semantical aspects of deduction, induction,
and abduction in a granularity-based framework [8].

8.5 Related Works

Connections between generalized rough sets and modal logics have been widely
discussed with various approaches; Thiele [19] discussed an approach to generalize
rough set theory based on arbitrary binary relations and modal logics. Kondo [5] and
Zhu [25] discussed some fundamental properties of generalized rough set induced
by binary relations. Järvinen et al. [4] discussed connections among modal logic,
rough set, and Galois connection. Liau [9, 10] discussed modal logics semantics
with probabilistic approximation spaces.

Various kinds of rough-set-based modal logics have also been introduced
(e.g. [13]). As one example, Balbiani et al. [1] introduced a modal logic for Pawlak’s
approximation space with rough cardinality n.

176 Y. Kudo et al.

8.6 Conclusion

In this chapter, we reviewed close relationships between rough set-based lower and
upper approximations of concepts and possible world semantics of modal logics.
We concentrated the relationships between two types of possible world semantic
models, i.e., Kripke model and measure-based model, and two types of rough sets,
i.e., Pawlak’s rough set and VPRS. Relationships between possible world semantics
and other various types of rough sets, i.e., covering-based rough set [24], dominance-
based rough set [3], and Bayesian rough set [18], will be explored in future issues.

References

1. Balbiani, P., Iliev, P., Vakarelov, D.: A modal logic for pawlaks approximation spaces with
rough cardinality n. Fundamenta Informaticae, 83, 451E464 (2008)

2. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)
3. Greco, S., Matarazzo, B., Słowiński, R.: Rough set theory for multicriteria decision analysis.

Eur. J. Oper. Res. 129, 1–47 (2002)
4. Järvinen, J., Kondo, M., Kortelainen, J.: Logics from Galois connections. Int. J. Approximate

Reasoning 49, 595 E606 (2008)
5. Kondo, M.: On the structure of generalized rough sets. Inf. Sci. 176, 589–E00 (2006)
6. Kripke, S.A.: Semantical analysis of modal logic I. Normal modal propositional calculi.

Zeitschr. 1. math. Logik und Otundlagen d. Math. 9, 67–96 (1963)
7. Kudo, Y., Murai, T.: Approximation of concepts and reasoning based on rough sets. J. Japn.

Soc. Artif. Intell. 22(5), 597–604 (2007) (in Japanese)
8. Kudo, Y., Murai, T., Akama, S.: A granularity-based framework of deduction, induction, and

abduction. Int. J. Approximate Reasoning 50, 1215–1226 (2009)
9. Liau, C.J.: An overview of rough set semantics for modal and quantifier logics. Int. J. Uncer-

tainty Fuzziness Knowl. Based Syst. 8(1), 93–118 (2000)
10. Liau, C.J.: Modal reasoning and rough set theory. In: Artificial Intelligence: Methodology,

Systems, and Applications, LNCS, vol. 1480, pp. 317–30. Springer (2006)
11. Murai, T., Miyakoshi, M., Shimbo, M.: Measure-Based Semantics for Modal Logic. In: Fuzzy

Logic : State of the Art, pp. 395–405. Kluwer (1993)
12. Murai, T., Miyakoshi, M., Shimbo,M.: A logical foundation of gradedmodal operators defined

by fuzzy measures. In: Proceedings of 4th FUZZ-IEEE, pp. 151–156 (1995)
13. Orłowska, E. (ed.): Incomplete Information: Rough Set Analysis. Physica-Verlag, Springer

(1998)
14. Pawlak, Z.: Rough Sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
15. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer (1991)
16. Pawlak, Z., Skowron, A.: Rough membership functions: a tool for reasoning with uncertainty.

In: AlgebraicMethods in Logic and In Computer Science, vol. 28. Banach Center Publications,
Institute of Mathematics, Polish Academy of Sciences, Warszawa (1993)

17. Polkowski, L.: Rough sets: Mathematical Foundations. Advances in Soft Computing. Physica-
Verlag (2002)

18. Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approximate
Reasoning 40, 81–91 (2005)

19. Thiele, H.: Generalizing the explicit concept of rough set on the basis of modal logic. In:
Reusch, B., et al. (eds.) Computational Intelligence in Theory and Practice. Springer, Berlin
(2001)

8 A Review on Rough Sets and Possible World Semantics for Modal Logics 177

20. Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in
Knowledge Discovery, pp. 286–318. Physica-Verlag, Heidelberg (1998)

21. Yao, Y.Y., Li, X.: Comparison of rough-set and interval-set models for uncertain reasoning.
Fundamenta Informaticae 27(2–3), 289–298 (1996)

22. Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intell. Autom. Soft
Comput. 2(2), 103–120 (1996)

23. Yao, Y.Y., Wang, S.K.M., Lin, T.Y.: A review of rough set models. In: Rough Sets and Data
Mining, pp. 47–75. Kluwer (1997)

24. Zakowski, W.: Approximations in the space (u, π). Demonstratio Mathematica 16, 761–769
(1983)

25. Zhu, W.: Generalized rough sets based on relations. Inf. Sci. 177, 4997E5011 (2007)
26. Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)

Chapter 9
Paraconsistency, Chellas’s Conditional
Logics, and Association Rules

Tetsuya Murai, Yasuo Kudo and Seiki Akama

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract Paraconsistency and its dual paracompleteness are now counted as key
concepts in intelligent decision systems because somuch inconsistent and incomplete
information can be found around us. In this paper, a framework of conditional models
for conditional logic and their measure-based extensions are introduced in order to
represent association rules in a logical way. Then paracomplete and paraconsistent
aspects of conditionals are examined in the framework. Finally we apply conditionals
into the definition of association rules in data mining with confidence and consider
their extension to the case of Dempster-Shaer theory of evidence serving double-
indexed confidence.

Keywords Paraconsistency · Paracompleteness · Conditional logics · Measure-
based semantics · Association rules

T. Murai (B)
Chitose Institute of Science and Technology, Chitose 066-8655, Japan
e-mail: t-murai@photon.chitose.ac.jp

Y. Kudo
Muroran Institute of Technology, Muroran, Japan
e-mail: kudo@csse.muroran-it.ac.jp

S. Akama
C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-ku, Kawasaki 215-0012, Japan
e-mail: akama@jcom.home.ne.jp

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_9

179

180 T. Murai et al.

9.1 Introduction

The authors have tried to give a kind of logical foundation to data mining.Murai et al.
[15–17] tried to present a logical formulation of association rules [1–3] using Chel-
las’s conditionalmodels for conditional logics [7] and theirmeasure-based extensions
(cf. [12–14]). Akama and Abe [6] proposed a comprehensive idea of paraconsistent
logic databases as data warehouse based on paraconsistent and annotated logics [4,
5, 8].

In our opinion, paraconsistency and its dual paracompleteness become key con-
cepts in future development of intelligent decision systems because nowadays there
are so much inconsistent and incomplete information around us. In classical logic,
inconsistency means triviality in the sense that all sentences become theorems. Para-
consistency means inconsistency but non-triviality. Thus we need new kinds of logic
like paraconsistent and annotated logics [4, 5, 8]. Paracompleteness is the dual con-
cept of paraconsistency where the excluded middle is not true.

In this paper, we put association rules in a framework of conditional models [7]
and their measure-based extensions (cf. [12–14]) and examine their paracomplete
and paraconsistent aspects in the framework.

Then we notice that the standard confidence [1] is nothing but a conditional
probability where even weights are a priori assigned to each transaction that contains
the items in question at the same time. All of such transactions, however, do not
necessarily give us such evidence because some co-occurrences might be contingent.
For describing such cases we further introduce double-indexed confidence based on
Dempster-Shafer theory [19].

9.2 Chellas’s Conditional Models and Their
Measure-Based Extensions for Conditional Logics

9.2.1 Standard and Minimal Conditional Models

Given a finite setP of items as atomic sentences, a language LCL(P) for conditional
logic is formed from P as the set of sentences closed under the usual propositional
operators such as �, ⊥, ¬, ∧, ∨, →, and ↔ as well as �→ and ♦→1 (two kinds of
conditionals) in the following usual way.

1. If x ∈ P then x ∈ LCL(P).
2. �,⊥ ∈ LCL(P).
3. If p ∈ LCL(P) then ¬p ∈ LCL(P).
4. If p, q ∈ LCL(P) then p ∧ q, p ∨ q, p → q, p ↔ q, p�→q, p♦→q ∈ LCL(P).

1In [7], Chellas used only �→. The latter connective ♦→ follows Lewis [11].

9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 181

Chellas [7] introduces two kind of models called standard and minimal. There rela-
tionship is similar to Kripke and Scott-Montague models for modal logics.

Definition 9.1 (Chellas [7], p. 268) A standard conditional modelMCL for condi-
tional logic is a structure

〈W, f, v〉,

where W is a non-empty set of possible worlds, v is a truth-assignment function

v : P × W → {0, 1},

and f is a function
f : W × 2W → 2W . �

The truth conditions for �→ and ♦→ in standard conditional models are given by

1. MCL, w |= p�→q
def⇐⇒ f (w, ‖p‖MCL) ⊆ ‖q‖MCL ,

2. MCL, w |= p♦→q
def⇐⇒ f (w, ‖p‖MCL) ∩ ‖q‖MCL �= ∅,

where ‖p‖MCL = {w ∈ W | MCL, w |= p}. Thuswe have the following relationship
between the two kind conditionals:

p�→q ↔ ¬(p♦→¬q).

The function f can be regarded as a kind of selection function. That is, p�→q is
true at a world w when q is true at any world selected by f with respect p and w.
Similarly, p♦→q is true at a world w when q is true at least at one of the worlds
selected by f with respect p and w.

A minimal conditional models is a Scott-Montague-like extension of standard
conditional model [7].

Definition 9.2 (Chellas [7], p. 270) A minimal conditional modelMCL for condi-
tional logic is a structure

〈W, g, v〉,

whereW andv are the sameones as in the standard conditionalmodels. Thedifference
is the second term

g : W × 2W → 22
W
. �

The truth conditions for �→ and ♦→ in a minimal conditional model are given by

1. MCL, w |= p�→q
def⇐⇒ ‖q‖MCL ∈ g(w, ‖p‖MCL),

2. MCL, w |= p♦→q
def⇐⇒ (‖q‖MCL)

C
/∈ g(w, ‖p‖MCL),

Thus we have also the following relationship:

p�→q ↔ ¬(p♦→¬q).

182 T. Murai et al.

Note that, if the function g satisfies the following condition

X ∈ g(w, ‖p‖MCL) ⇔ ∩g(w, ‖p‖MCL) ⊆ X

for every world w and every sentence p, then, by defining

fg(w, ‖p‖MCL)
def= ∩g(w, ‖p‖MCL),

we have the standard conditional model 〈W, fg, v〉 that is equivalent to the original
minimal model.

9.2.2 Measure-Based Extensions

Next we introduce measure-based extensions of the previous minimal conditional
models. Such extensions are models for graded conditional logics.

Given a finite set P of items as atomic sentences, a language LgCL(P) for graded
conditional logic is formed from P as the set of sentences closed under the usual
propositional operators such as �, ⊥, ¬, ∧, ∨, →, and ↔ as well as �→k and ♦→k
(graded conditionals) for 0 < k ≤ 1 in the usual way.

1. If x ∈ P then x ∈ LgCL(P).
2. �,⊥ ∈ LgCL(P).
3. If p ∈ LgCL(P) then ¬p ∈ LgCL(P).
4. If p, q ∈ LgCL(P) then p ∧ q, p ∨ q, p → q, p ↔ q ∈ LgCL(P),
5. If [p, q ∈ LgCL(P) and 0 < k ≤ 1] then p�→kq, p♦→kq ∈ LgCL(P).

A graded conditional model is defined as a family of minimal conditional model (cf.
Chellas [7]):

Definition 9.3 Given a fuzzy measure

m : 2W × 2W → [0, 1],

ameasure-based conditional modelMm
gCL for graded conditional logic is a structure

〈W, {gk}0<k≤1, v〉,

whereW and V are the same ones as in the standard conditional models. gk is defined
by a fuzzy measure m as

gk(t, X)
def= {Y ⊆ 2W | m(Y, X) ≥ k}. �

9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 183

The model Mm
gCL is called finite because so is W . Further, in this paper, we call

the model Mm
gCL uniform since functions {gk} in the model does not depend on any

world inMm
gCL.

The truth conditions for�→k and♦→k in a measure-based conditional model are
given by

Mm
gCL, t |= p�→kq iff ‖q‖Mm

gCL ∈ gk(t, ‖p‖Mm
gCL),

Mm
gCL, t |= p♦→kq iff (‖q‖Mm

gCL)
C

/∈ gk(t, ‖p‖Mm
gCL).

The basic idea of these definitions is the same as in fuzzy-measure-based semantics
for graded modal logic defined in [12–14].

When we take m as a conditional probability, the truth conditions of graded
conditional becomes

MPr
gCL, t |= p�→kq iff Pr(‖q‖MPr

gCL | ‖p‖MPr
gCL) ≥ k.

We have several soundness results based on probability-measure-based semantics
(cf. [12–14]) shown in Table9.1.

Table 9.1 Soundness results of graded conditionals by probability measures

0 < k ≤ 1
2

1
2 < k < 1 k = 1 Rules and axiom schemata

© © © RCEA. p↔q
(p�→kq)↔(q�→kq)

© © © RCEC. q↔q ′
(p�→kq)↔(p�→kq ′)

© © © RCM. q→q ′
(p�→kq)→(p�→kq ′)

© RCR. (q∧q ′)→r
((p�→kq)∧(p�→kq ′))→(p�→kr)

© © © RCN. q
p�→kq

© RCK. (q1∧···∧qn)→q
((p�→kq1)∧···∧(p�→kqn))→(p�→kq)

© © © CM. (p�→k(q ∧ r)) → (p�→kq) ∧ (p�→kr)

© CC. (p�→kq) ∧ (p�→kr) → (p�→k(q ∧ r))

© CR. (p�→k(q ∧ r)) ↔ (p�→kq) ∧ (p�→kr)

© © © CN. p�→k�
© © © CP. ¬(p�→k⊥)

© CK. (p�→k(q → r)) → (p�→kq) → (p�→kr)

© © CD. ¬((p�→kq) ∧ (p�→k¬q))

© CDC. (p�→kq) ∨ (p�→k¬q)

184 T. Murai et al.

9.3 Paraconsistency and Paracompleteness in Conditionals

AsChellas pointed out in his book [7] (p. 269), conditionals p�→q (and also p♦→q)
is regarded as relative modal sentences like [p]q (and also 〈p〉q). So we first see
paraconsistency and paracompleteness in the usual modal setting for convenience.

9.3.1 Modal Logic Case

Let us define some standard language L for modal logic with two modal operators
� and ♦. In [18], we examined some relationship between modal logics and para-
consistency and paracompleteness. Let us assume a language L of modal logic as
usual. In terms of modal logic, paracompleteness and paraconsistency have a close
relation to the following axiom schemata:

D. �p → ¬�¬p,
DC. ¬�¬p → �p,

because they have their equivalent expressions

¬(�p ∧ �¬p),
�p ∨ �¬p,

respectively. That is, given a system of modal logic Σ , define the following set of
sentences

T
def= {p ∈ L | �Σ �p},

where �Σ �p means �p is a theorem of Σ . Then the above two schemata mean
that, for any sentence p

not(p ∈ T and ¬p ∈ T)

p ∈ T or ¬p ∈ T

respectively, and obviously the former describes the consistency of T and the latter
the completeness of T . Thus

• T is inconsistent when Σ does not contain D.
• T is incomplete when Σ does not contain DC.

A system Σ is regular when it contains the following rule and axiom schemata

p ↔ q ⇒ �p ↔ �q
(�p ∧ �q) ↔ �(p ∧ q)

Note that any normal system is regular.

9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 185

In [18] we pointed out the followings. If Σ is regular, then we have

(�p ∧ �¬p) ↔ �¬� (9.1)

where ⊥ ↔ ¬� and ⊥ is falsity constant, which means inconsistency itself. Thus
we have triviality:

T = L.

But if Σ is not regular, then we have no longer (9.1), thus, in general

T �= L,

which means T is paraconsistent. That is, local inconsistency does not generate
triviality as global inconsistency.

9.3.2 Conditional Logic Case

Next we apply the previous idea into conditional logics. In conditional logics, the
corresponding axiom schemata

CD. ¬((p�→q) ∧ (p�→¬q))

CDC. (p�→q) ∨ (p�→¬q)

Given a system CL of conditional logic, define the following set of conditionals
(rules):

R
def= {p�→q ∈ LCD | �CL p�→q}.

where LCD is a language for conditional logic and �CL p�→q means p�→q is a
theorem of CL . Then the above two schemata mean that, for any sentence p

not(p�→q ∈ R and p�→¬q ∈ R)

p�→q ∈ R or p�→¬q ∈ R

respectively, and obviously the former describes the consistency of R and the latter
the completeness of R. Thus, for the set R of conditionals (rules)

• R is inconsistent when CL does not contain CD.
• R is incomplete when CL does not contain CDC.

186 T. Murai et al.

9.4 Paraconsistency and Paracompleteness
in Association Rules

9.4.1 Association Rules

Let I be a finite set of items. Any subset X in I is called an itemset in I. A data-
base is comprised of transactions, which are actually obtained or observed itemsets.
Formally, we give the following definition:

Definition 9.4 A database D on I is defined as

〈T, V 〉,

where

1. T = {1, 2, . . . , n} (n is the size of the database),
2. V : T → 2I . �

Thus, for each transaction i ∈ T , V gives its corresponding set of items V (i) ⊆ I.
For an itemset X , its degree of support s(X) is defined by

s(X)
def= |{t ∈ T | X ⊆ V (t)}|

|T | ,

where | · | is a size of a finite set.
Definition 9.5 (Agrawal et al. [1]) Given a set of items I and a database D on I,
an association rule is an implication of the form

X =⇒ Y,

where X and Y are itemsets in I with X ∩ Y = ∅. �

The following two indices were introduced in [1].

Definition 9.6 (Agrawal et al. [1])

1. An association rule r = (X =⇒ Y) holds with confidence c(r) (0 ≤ c(r) ≤ 1)
in D if and only if

c(r) = s(X ∪ Y)

s(X)
.

2. An association rule r = (X =⇒ Y) has a degree of support s(r) (0 ≤ s(r) ≤ 1)
in D if and only if

s(r) = s(X ∪ Y). �

In this paper, we will deal with the former index.

9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 187

Mining of association rules is actually performed by generating all rules that
have certain minimum support (denoted minsup) and minimum confidence (denoted
minconf) that a user specifies. See, e.g., [1–3] for details of such algorithms for
finding association rules.

For example, consider the movie database in Table9.2, where AH and HMmeans
Ms. Audrey Hepburn and Mr. Henry Mancini, respectively. If you have watched
several (famous) Ms. Hepburn’s movies, you might hear some wonderful music
composed by Mr. Mancini. This can be represented by the association rule

r = {AH} =⇒ {HM}

with its confidence

c(r) = s({AH} ∪ {HM})
s({AH}) = 0.5

and its degree of support

s(r) = |{T | T ⊆ {AH} ∪ {HM}}|
|D| = 4

100
= 0.04.

Table 9.2 Movie database No. Transaction (movie) AH HM

1 Secret people 1

2 Monte Carlo baby 1

3 Roman holiday 1

4 My fair lady 1

5 Breakfast at Tiffany’s 1 1

6 Charade 1 1

7 Two for the road 1 1

8 Wait until dark 1 1

9 Days of wine and rose 1

10 The great race 1

11 The pink panther 1

12 Sunflower 1

13 Some like it hot

14 12 Angry men

15 The apartment

· · · · · ·
100 Les aventuriers

188 T. Murai et al.

9.4.2 Measure-Based Conditional Models for Databases

Let us regards a finite set I of items as atomic sentences. Then, a language LgCL(I)

for graded conditional logic is formed from I as the set of sentences closed under
the usual propositional operators such as �, ⊥, ¬, ∧, ∨, →, and ↔ as well as �→k

and ♦→k (graded conditionals) for 0 < k ≤ 1 in the usual way.

1. If x ∈ I then x ∈ LgCL(I).
2. �,⊥ ∈ LgCL(I).
3. If p ∈ LgCL(I) then ¬p ∈ LgCL(I).
4. If p, q ∈ LgCL(I) then p ∧ q, p ∨ q, p → q, p ↔ q ∈ LgCL(I),
5. If [p, q ∈ LgCL(I) and 0 < k ≤ 1] then p�→kq, p♦→kq ∈ LgCL(I).

A measure-based conditional model is defined as a family of minimal conditional
model (cf. Chellas [7]):

Definition 9.7 Given a database D = 〈T, V 〉 on I and a fuzzy measure m, a
measure-based conditional model Mm

gD for D is a structure

〈W, {gk}0<k≤1, v〉,

where (1) W = T , (2) for any world (transaction) t in W and any set of itemsets X
in 2I , gk is defined by a fuzzy measure m as

gk(t, X)
def= {Y ⊆ 2W | m(Y, X) ≥ k},

and (3) for any item x in I, v(x, t) = 1 iff x ∈ V (t). �
The model Mm

gD is called finite because so is W . Further, in this paper, we call the
modelMm

gD uniform since functions {gk} in the model does not depend on any world
inMm

gD.
The truth condition for �→k in a grade conditional model is given by

Mm
gD, t |= p�→kq iff ‖q‖Mm

gD ∈ gk(t, ‖p‖Mm
gD),

where
‖p‖Mm

gD def= {t ∈ W (= T) | Mm
gD, t |= p}.

The basic idea of this definition is the same as in fuzzy-measure-based semantics for
graded modal logic defined in [12–14].

9.4.3 Association Rules and Graded Conditionals

For example, the usual degree of confidence [1] is nothing but the well-known con-
ditional probability, so we define function gk by conditional probability.

9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 189

Definition 9.8 For a given databaseD = 〈T, V 〉 on I and a conditional probability

Pr(B|A) = |A ∩ B|
|A| ,

its corresponding probability-based graded conditional model MPr
gD is defined as a

structure
〈W, {gk}0<k≤1, v〉,

where
gk(w, X)

def= {Y ⊆ 2W | Pr(t (Y) | t (X)) ≥ k},

where
t (X)

def= {w ∈ W | X ⊆ w}. �

The truth condition of graded conditional is given by

MPr
gD, t |= p�→kq iff Pr(‖q‖MPr

gD | ‖p‖MPr
gD) ≥ k.

Then we can have the following theorem:

Theorem 9.1 Given a database D on I and its corresponding probability-based
graded conditional model MgD, for an association rule X =⇒ Y , we have

c(X =⇒ Y) ≥ k iff MPr
gD |= pX�→k pY . �

9.4.4 Paraconsistency and Paracompleteness in Association
Rules

We formulated association rules as graded conditionals based on probability. Define
the following set of rules with confidence k:

Rk
def= {p�→kq ∈ LgCD | �gCL p�→kq}.

Agraded conditional p�→kq is also regarded as a relative necessary sentences [p]kq
and the properties of relative modal operator [·]k are examined in Murai et al. [12,
13], [14] in the following correspondence:

Confidence k Systems
0 < k ≤ 1

2 EMDCN P
1
2 < k < 1 EMDN P
k = 1 K D

190 T. Murai et al.

The former two systems are not regular, so Rk may be paraconsistent. The last one
is normal so regular.

For 0 < k ≤ 1
2 , Rk is complete but for some p and q, the both rules p�→kq and

p�→k¬q may be generated. This should be avoided.
For 1

2 < k < 1, Rk is consistent but may be paracomplete.

9.5 Dempster-Shafer-Theory-Based Confidence

9.5.1 D-S Theory and Confidence

The standard confidence [1] described in the previous section is based on the idea
that co-occurrences of items in one transaction are evidence for association between
the items. Since the definition of confidence is nothing but a conditional probability,
even weights are a priori assigned to each transaction that contains the items in
question at the same time. All of such transactions, however, do not necessarily
give us such evidence because some co-occurrences might be contingent. Thus we
need a framework that can differentiate proper evidence from contingent one and
we introduce Dempster-Shafer theory of evidence [9, 19] to describe such a more
flexible framework to compute confidence. There are a variety of ways of formalizing
D-S theory and, in this paper, we adopt multivalued-mapping-based approach, which
was originally used by Dempster [9]. In the approach, we need two frames, one of
which has a probability defined, and a multivalued mapping between the two frames.
Given a databaseD = 〈T, V 〉 on I and an association rule r = (X =⇒ Y) inD, one
of frames is the set T of transactions. Another one is defined by

R = {r, r},

where r denotes the negation of r . The remaining tasks are (1) to define a probability
distribution Pr on T : Pr : T → [0, 1], and (2) to define a multivalued mapping Γ :
T → 2R . Given Pr and Γ , we can define the well-known two kinds of functions in
Dempster-Shafer theory: for X ⊆ 2R ,

Bel(X)
def= Pr({t ∈ T | Γ (t) ⊆ X}),

Pl(X)
def= Pr({t ∈ T | Γ (t) ∩ X �= ∅})

which are called belief and plausibility functions, respectively. Now we have the
following double-indexed confidence:

c(r) = 〈Bel(r),Pl(r)〉.

9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 191

9.5.2 Multi-graded Conditional Models for Databases

Given a finite set I of items as atomic sentences, a language LmgCL(I) for graded
conditional logic is formed from I as the set of sentences closed under the usual
propositional operators as well as�→k and ♦→k (graded conditionals) for 0 < k ≤
1 in the usual way. Note that, in particular,

(p, q ∈ LmgCL(I) and 0 < k ≤ 1) ⇒ p�→kq, p♦→kq ∈ LmgCL(I).

Definition 9.9 Given a database D on I, a multi-graded conditional model MmgD
for D is a structure

〈W, {{g
k
, gk}}0<k≤1, v〉,

where (1) W=T , (2) for any world (transaction) t in W and any set of itemsets X in
2I , gk is defined by belief and plausibility functions:

g
k
(t,X)

def= {Y ⊆ 2W | Bel(Y,X) ≥ k},
gk(t,X)

def= {Y ⊆ 2W | Pl(Y,X) ≥ k},

and (3) for any item x in I, v(x, t) = 1 iff x ∈ V (t) �

The truth conditions for �→k and ♦→k are given by

MmgD, w |= p�→kq iff ‖q‖MmgD ∈ g
k
(t, ‖p‖MmgD)

MmgD, w |= p♦→kq iff ‖q‖MmgD ∈ gk(t, ‖p‖MmgD),

respectively. Its basic idea is also the same as in fuzzy-measure-based semantics for
graded modal logic defined in [12–14]. Several soundness results based on belief-
and plausibility-function-based semantics (cf. [12–14]) are shown in Table 9.3.

9.5.3 Two Typical Cases

First we define a probability distribution on T by

Pr(t)
def=

{
1
a , if t ∈ ‖pX‖MmgD ,
0, otherwise,

where a = |‖pX‖MmgD |. This means that each world (transaction) t in ‖pX‖MmgD

is given an even mass (weight) 1a . To generalize the distribution is of course another
interesting task.

192 T. Murai et al.

Table 9.3 Soundness results of graded conditionals by belief and plausibility functions

Belied function Rules and axiom schemata Plausibility function

0 < k ≤ 1
2

1
2 < k < 1 k = 1 0 < k ≤ 1

2
1
2 < k < 1 k = 1

© © © RCEA © © ©
© © © RCEC © © ©
© © © RCM © © ©
© © © RCR ©
© © © RCN © © ©

© RCK

© © © CM © © ©
© © © CC ©
© © © CR ©
© © © CN © © ©
© © © CP © © ©

© CK

© © CD

CDC ©

Next we shall see two typical cases of definition of Γ . First we describe strongest
cases. When we define a mapping Γ by

Γ (t)
def=

{ {r}, if t ∈ ‖pX‖MmgD ,
{r}, otherwise.

This means that the transactions in ‖pX ∧ pY‖MmgD contribute as evidence to r ,
while the transactions in ‖pX ∧ ¬pY‖MmgD contribute as evidence to r . This is the
strongest interpretation of co-occurrences. Then, we can compute Bel(r) = 1

a ×
b and Pl(r) = 1

a × b, where b = |‖pX ∧ pY‖MmgD |. Thus the induced belief and
plausibility functions collapse to the same probability measure Pr: Bel(r) = Pl(r) =
Pr(r) = b

a , and thus

c(r) = 〈b
a

,
b

a
〉.

Hence this case represents the usual confidence. According to this idea, in our movie
database, we can define Pr and Γ in the way in Fig. 9.1. That is, any movie in
‖AH ∧ HM‖MmgD contributes as evidence to that the rule holds (r), while all movie
in ‖AH ∧ ¬HM‖MmgD contributes as evidence to that the rule does not hold (r).
Thus we have

c({AH} =⇒ {HM}) = 〈0.5, 0.5〉.

9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 193

No. Transaction (movie) AH HM Pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angry men 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r, r} 0

{r} 1
2

{r} 1
2∅ 0

Fig. 9.1 An example of the strongest cases

Next we describe weakest cases. In general, co-occurrences do not necessarily
mean actual association. The weakest interpretation of co-occurrences is to consider
transactions totally unknown as described as follows: When we define a mapping Γ

by

Γ (t)
def=

{ {r, r}, if t ∈ ‖pX‖MmgD ,
{r}, otherwise.

This means that the transactions in ‖pX ∧ pY‖MgD contribute as evidence to R =
{r, r}, while the transactions in ‖pX ∧ ¬pY‖MgD contribute as evidence to r . Then,
we can compute Bel(r) = 0 and Pl(r) = 1

a × b, and thus

c(r) = 〈0, b
a

〉.

According to this idea, in our movie database, we can define Pr and Γ in the
way in Fig. 9.2. That is, all movie in ‖AH ∧ ¬HM‖MmgD contributes as evidence
to that the rule does not hold (r), while we cannot expect whether each movie in
‖AH ∧ HM‖MmgD contributes or not as evidence to that the rule holds (r). Thus we
have

c({AH} =⇒ {HM}) = 〈0, 0.5〉.

In the case, the induced belief and plausibility functions, denoted respectively Belbpa′

and Plbpa′ , become necessity and possibility measures in the sense of Dubois and
Prade [10]. We have several soundness results based on necessity- and possibility-
measure-based semantics (cf. [12–14]) shown in Table 9.4.

194 T. Murai et al.

No. Transaction (movie) AH HM Pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angrymen 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r, r} 1
2

{r} 0
{r} 1

2∅ 0

Fig. 9.2 An example of the weakest cases

Table 9.4 Soundness results
of graded conditionals by
necessity and possibility
measures

Necessity measure
0 < k ≤ 1

Rules and axiom
schemata

Possibility measure
0 < k ≤ 1

© RCEA ©
© RCEC ©
© RCM ©
© RCR

© RCN ©
© RCK

© CM ©
© CC

CF ©
© CR ©
© CN ©
© CP ©
© CK

© CD

CDC ©

9.5.4 General Cases

In the previous two typical cases, one of which coincides to the usual confidence,
any transaction in ‖AH ∧ HM‖MmgD (or in ‖AH ∧ ¬HM‖MmgD) has the same
weight as evidence. It would be, however, possible that some of ‖AH ∧ HM‖MmgD

9 Paraconsistency, Chellas’s Conditional Logics, and Association Rules 195

No. Transaction (movie) AH HM Pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angry men 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r, r} 3
8

{r} 3
8

{r} 1
4∅ 0

Fig. 9.3 An example of general cases

(or ‖AH ∧ ¬HM‖MmgD) does work as positive evidence to r (or r) but other part
does not.

Thus we have a tool that allows us to introduce various kinds of ‘a posteriori’
pragmatic knowledge into the logical setting of association rules. As an example,
we assume that (1) the music of the first and second movies was not composed by
Mancini, but the fact does not affect the validity of r because they are not very
important ones, and (2) the music of the seventh movie was composed by Mancini,
but the fact does not affect the validity of r . Then we can define Γ in the way in
Fig. 9.3. Thus we have

c({AH} =⇒ {HM}) = 〈0.375, 0.75〉.

In general, users have such kind of knowledge ‘a posteriori.’ Thus the D-S based
approach allows us to introduce various kinds of ‘a posteriori’ pragmatic knowledge
into association rules.

9.6 Concluding Remarks

In this paper, we examined paraconsistency and paracompleteness that appear in
association rules in a framework of probability-based models for conditional logics.
For lower values of confidence (less than or equal to 1

2), both p�→kq and p�→k¬q
may be generated so we must be careful to use such lower confidence.

Further we extended the above discussion into the case of Dempster-Shafer the-
ory of evidence to double-indexed confidences. Users have, in general, such kind

196 T. Murai et al.

of knowledge ‘a posteriori’ describe in the previous section. Thus the D-S based
approach allows a sophisticated way of calculating confidence by introducing vari-
ous kinds of ‘a posteriori’ pragmatic knowledge into association rules.

Acknowledgments We are grateful to a referee for useful comments.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large
databases. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp.
207–216 (1993)

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of associa-
tion rules. In: Fayyad, U.M., Platetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances
in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press/The MIT Press (1996)

3. Aggarwal, C.C., Philip, S.Y.: Online generation of association rules. In: Proceedings of the
International Conference on Data Engineering, pp. 402–411 (1998)

4. Akama, S., Abe, J.M.: Many-valued and annotated modal logics. In: Proceedings of 28th
ISMVL, pp. 114–119 (1998)

5. Akama, S., Abe, J.M.: Fuzzy annotated logics. In: Proceedings of IPMU 2000, pp. 504–509
(2000)

6. Akama, S., Abe, J.M.: Paraconsistent logics viewed as a foundation of data warehouses.
Advances in Logic, Artificial Intelligence and Robotics, pp. 96–103. IOS Press (2002)

7. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)
8. da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschr. f.

Math. Logik und Grundlagen d. Math. 37, 561–570 (1991)
9. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math.

Stat. 38, 325–339 (1967)
10. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncer-

tainty. Springer (1988)
11. Lewis, D.: Counterfactuals. Blackwell, Oxford (1973)
12. Murai, T., Miyakoshi, M., Shimbo, M.: Measure-based semantics for modal logic. In: Lowen,

R., Roubens, M. (eds.) Fuzzy Logic: State of the Art, pp. 395–405. Kluwer, Dordrecht (1993)
13. Murai, T., Miyakoshi, M., Shimbo, M.: Soundness and completeness theorems between the

Dempster-Shafer theory and logic of belief. In: Proceedings of the 3rd FUZZ-IEEE (WCCI),
pp. 855–858 (1994)

14. Murai, T., Miyakoshi, M., Shimbo,M.: A logical foundation of gradedmodal operators defined
by fuzzy measures. In: Proceedings of the 4th FUZZ-IEEE/2nd IFES, pp. 151–156 (1995)

15. Murai, T., Sato, Y.: Association rules from a point of view of modal logic and rough sets. In:
Proceedings of the 4th AFSS, pp. 427–432 (2000)

16. Murai, T., Nakata, M., Sato, Y.: A note on conditional logic and association rules. In: Terano,
T., et al. (eds.) New Frontiers in Artificial Intelligence, LNAI, vol. 2253, pp. 390–394. Springer
(2001)

17. Murai, T., Nakata, M., Sato, Y.: Association rules as relative modal sentences based on condi-
tional probability. Commun. Inst. Inf. Comput. Mach. 5(2), 73–76 (2002)

18. Murai, T., Sato, Y., Kudo, Y.: Paraconsistency and neighborhood models in modal logic. In:
Proceedings of the 7thWorldMulticonference on Systemics, Cybernetics and Informatics, vol.
XII, pp. 220–223 (2003)

19. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

Chapter 10
A Beautiful Theorem

Francisco Antonio Doria and Carlos A. Cosenza

Dedicated to Jair Minoro Abe for his 60th birthday

A thing of beauty is a joy for ever:
Its loveliness increases; it will never
Pass into nothingness

John Keats, Endymion

Abstract We first present Maymin’s Theorem on the existence of efficient markets;
it is a result that connects mathematical economics and computer science. We then
introduce O’Donnell’s algorithm for the solution of NP-complete problems and the
concept of almost efficient markets; we state the main result, which is: given a
metamathematical condition, there will be almost efficient markets. We then briefly
discuss whether changing the underlying logical framework we would be able to
change the preceding results.

Keywords Maymin’s theorem ·Efficientmarkets ·O’Donnell’s algorithm ·Almost
efficient markets

10.1 Prologue

Beauty inmathematics hasmany sources.Oneof them, the discovery of links between
areas that seemed at first so far away. That’s the case ofMaymin’s theoremon efficient
markets: it is linked as in the gesture of a magician to complexity theory in computer

Partially supported by CNPq, Philosophy Section; the first author is a member of the Brazilian
Academy of Philosophy.

F.A. Doria (B) · C.A. Cosenza
Advanced Studies Research Group, HCTE, Fuzzy Sets Laboratory,
Mathematical Economics Group, Production Engineering Program,
COPPE, UFRJ, P.O. Box 68507, Rio Rj 21945–972, Brazil
e-mail: fadoria63@gmail.com

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_10

197

198 F.A. Doria and C.A. Cosenza

science. An apt paraphrasis forMaymin’s result would be—there areweakly efficient
markets if and only if a given major question in computer science is trivialized.

The major question is, of course, the P versus NP question.
The proof is simple, once we see that markets (in Maymin’s sense) are naturally

coded as Boolean formulae.
The present paper first sketches that construction. We then fill in the required

details and prove Maymin’s theorem. After that we construct O’Donnell’s algo-
rithm, show that it is near–polynomial given reasonable conditions, and then with
the help of that algorithm we define “almost Maymin” efficient markets. We then
prove the existence of almost Maymin efficient markets, again given a reasonable
metamathematical hypothesis.

Main sources for these results are [3, 4]. And let’s repeat here our motto: A thing
of beauty is a joy forever. So is Maymin’s theorem.

10.2 Theme

Think of this paper as a set of variations over a theme found elsewhere. We will pick
up our main theme from two sources, Maymin’s original paper [4] and a summary
of it made in a recent paper by the author (with NCA da Costa) [2, 3, 5].

A Brief Scenario

We start here from this recent intriguing result by Maymin [4]. We use a modified,
restricted version of Maymin’s construction (but there is no loss of generality in
our construction.) The concepts we require are that of aMaymin market, soon to be
clarified.

Roughly, a Maymin market is a market coded by a Boolean expression, as we
will see. Despite this very precise identification, the object we consider is quite
general. Basically we are going to make some move in the market. Our move now is
determined by a series of k previous moves. More precisely:

Definition 10.2.1 • A k-run policy σk , k a positive integer, is a series of plays (b
for buy and s for sell) of length k. There are clearly 2k possible k-run policies.

• Amap v from all possible k-run policies into {0, 1} is a valuation; we have a “gain”
iff v(σk) = 1; a “loss” otherwise.

• A policy is successful if it provides some gain (adequately defined); in that case
we put v(σk) = 1. Otherwise v(σk) = 0. �

There is a natural map between these objects and k-variable Boolean expressions
(see below), if we take that v(σk) = 1 means that σk is satisfiable, and 0 otherwise.
We say that amarket configuration (k-stepsmarket configuration, or simply k-market
configuration) is coded by a Boolean expression in disjunctive normal form (dnf).

That map between k-market configurations and k-variable Boolean expressions
in dnf can be made 1–1.

10 A Beautiful Theorem 199

The financial game for our simplified market is simple: we wish to discover the
fastest way to algorithmically obtain a successful k-market configuration, given a
particular market (i.e., a given k-variable Boolean expression).

Finally the k-market configurations are Maymin–efficient (see below) if v can be
implemented by a poly algorithm.

Clearly there is a general polynomial procedure to do it if and only if P = NP.
From what we know about the P versus NP question,1 in particular cases we can
of course find polynomial procedures, but it is unknown whether there are general
procedures that are polynomial.

Stretto

Maymin restricts his analysis to the so-called “weakly efficient” markets. Since he
adds the condition that there is a time-polynomial algorithmic procedure to spread the
data about the market, we nameMaymin–efficient markets those markets, where (we
stress) v(σk) is computed by a time-polynomial Turing machine (or poly-machine).

So the existence of general poly procedures characterizes the market as Maymin
efficient. We can therefore state Maymin’s theorem:

Proposition 10.2.1 Markets are (Maymin) efficient if and only if P = NP. �
Now we put: markets are almost Maymin efficient if and only if there is an

O’Donnell algorithm to determine its successful policies [3]. Then:

Proposition 10.2.2 If P < NP isn’t proved by primitive recursive arithmetic then
there are almost Maymin efficient markets. �

We are now going to expand these brief remarks into a detailed proof ofMaymin’s
theorem, and then add to it some spice of our own.

10.3 Theme and Variations

The main motive is very simple: we are going to code Maymin–efficient markets as
Boolean expressions. This is the main trick. But how do we proceed?

We first require a classical result by Emil Post [6]. The 2k binary sequences
naturally code integers from 0 to 2k − 1; more precisely, from:

000 . . . 00, k digits,

to:
111 . . . 11, k digits.

Fix one such coding; a k-digit binary sequence is seen as a sequence of truth
values for a Boolean expression �k . After we test the Boolean expression with one

1Actually we know very little.

200 F.A. Doria and C.A. Cosenza

specific line of truth values, we see whether that particular line satisfies or doesn’t
satisfy �k .

Proposition 10.3.1 Let ξk be a binary sequence of length 2k. Then there is a Boolean
expression �k on k Boolean variables so that ξk is its truth table.

(We take 1 as “true” and 0 as “false.”). The idea of the proof goes as follows. Notice
that the Boolean expression:

¬p1 ∧ p2 ∧ p3 ∧ ¬p4 ∧ ¬p5

is satisfied by the binary 5-digit line:

01100

(When there is a ¬ in the conjunction put 0 in the line of truth-values; if not put 1.)
The line 01100 satisfies the Boolean conjunction above, and no other 5-digit line

will satisfy it, that is, it has a truth table where a single line of truth values satisfies
it—the truth table has a single 1 and is zero for all remaining truth value lines.

In order to obtain a truth table with just two 1’s, we construct the conjuncts as
above that have the desired lines and then get the expression which is the disjunction
of those conjuncts. That is the idea in the proof of Post’s theorem.

Trivially every k-variable Boolean expression gives rise to a 2k-length truth table
which we can code as a binary sequence of, again, size 2k bits. The converse result
is given by Post’s theorem.

Proof of Post’s theorem, a sketch: Consider the k-variable Boolean expression:

ζ = α1p1 ∧ α2p2 ∧ · · · ∧ αkpk,

where theαi are either nothing or¬. Pick up the line of truth values ζ ′ = α1α2 . . . αk ,
where “nothing” stands for 1 and ¬ for 0. ζ ′ satisfies ζ, while no other line of truth
values does. Our Boolean expression ζ is satisfied by ζ ′ and by no other k-digit line
of truth values.

The disjunction ζ ∨ ξ where ξ is a k-variable Boolean expression as ζ, is satisfied
by (correspondingly) two lines of truth values, and no more. And so on.

The rigorous proof of Post’s theorem is by finite induction. �
Now:

Definition 10.3.1 The Boolean expression in dnf ζ is identified to a Maymin k-
market configuration. �

Then:

Proposition 10.3.2 There are Maymin–efficient markets if and only if P = NP.

Proof Such is the condition for the existence of a poly algorithmic map v. �

10 A Beautiful Theorem 201

10.4 The O’Donnell Algorithm

We are now going to describe O’Donnell’s algorithm [2, 3, 5]; the O’Donnell algo-
rithm is a quasi-polynomial algorithm for sat.2 We require the so-called BGS set
of poly machines and fc, which is the (now recursive) counterexample function to
[P = NP] (See [1, 3] for details.)
Remark 10.4.1 A BGS machine is a Turing machine Mn(x) coupled to a clock that
stops the machine when it has operated for |x|p + p steps, where x is the binary input
to the machine and |x| is its length in bits; p is an integer ≥ 1. Of course the coupled
system is a Turing machine. All machines in the BGS set are poly machines, and
given any poly machine, there will be a corresponding machine in BGS with the
same output as the original poly machine. �

Remark 10.4.2 fc is the recursive counterexample function to P = NP. To get it:

• Enumerate all BGS machines in the natural order (one can do it, as the BGS set is
recursive).

• For BGS machine Pn, fc(n) equals the first instance of sat which is input to Pn

and fails to output a satisfying line for that instance of sat. �

O’Donnell’s algorithm is very simple: we list in the natural ordering all BGS
machines. Given a particular instance x ∈ sat, we input it to P1,P2, . . . up to the
moment when the output is a satisfying line of truth values. When we compute the
time bound to that procedure, we see that it is near polynomial, that is, the whole
operation is bounded by a very slow-growing exponential.

Now some requirements:

• We use the (fixed) enumeration of finite binary sequences

0, 1, 00, 01, 10, 11, 000, 001, 010, 011,

If FB denotes the set of all such finite binary sequences, form the standard coding
FB �→ ω which is monotonic on the length of the binary sequences.

• We use a binary coding for the Turing machines which is also monotonic on the
length of their tables, linearly arranged, that is, a 3-line table s1, s2, s3, becomes
the line s1 − s2 − s3.
We call such monotonic codings standard codings.

• We consider the set of all Boolean expressions in cnf,3 including those that are
unsatisfiable, or totally false. We give it the usual coding which is 1–1 and onto ω.

• Consider the poly Turing machine V(x, s), where V(x, s) = 1 if and only if the
binary line of truth values s satisfies the Boolean cnf expression x, andV(x, s) = 0
if and only if s doesn’t satisfy x.

2Actually we deal with a slightly larger class of Boolean expressions.
3Conjunctive normal form.

202 F.A. Doria and C.A. Cosenza

• Consider the enumeration of the BGS [1] machines, P0,P1,P2,4

We start from x, a Boolean expression in cnf binarily coded:

• Consider x, the binary code for a Boolean expression in cnf form.
• Input x to P0,P1,P2, . . . up to the first Pj so that Pj(x) = sj and sj satisfies x (that
is, for the verifying machine V(x, sj) = 1).

• Notice that there is a bound ≤ j = f−1
c (x).

This requires some elaboration. Eventually a poly machine (in the BGS sequence)
will produce a satisfying line for x as its output given x as input. The upper bound
for the machine with that ability is given by the first BGS index so that the code
for x is smaller than the value at that index of the counterexample function.
That means: we arrive at a machine Mm which outputs a correct satisfying line
up to x as an input, and then begins to output wrong solutions.

• Alternatively check for V(x, 0), V(x, 1), …up to—if it ever happens—some s so
that V(x, s) = 1; or,

• Now, if fc is fast-growing, then as the operation time of Pj is bounded by |x|k + k,
we have that k ≤ j, and therefore it grows as O(f−1

c (x)). This will turn out to be a
very slowly growing function.
Again this requires some elaboration. The BGS machines are coded by a pair
〈m, k〉, where m is a Turing machine Gödel index, and k is as above. So we
will have that the index j by which we code the BGS machine among all Turing
machines is greater than k, provided we use a monotonic coding.
More precisely, it will have to be tested up to j, that is the operation time will be
bounded by f−1

c (x)(|x|f−1
c (x) + f−1

c (x)).
Again notice that the BGS index j ≥ k, where k is the degree of the polynomial
clock that bounds the poly machine.

10.5 Almost Maymin–Efficient Markets

We will now discuss the following:

Proposition 10.5.1 If P < NP isn’t proved by primitive recursive arithmetic then
there are almost Maymin efficient markets. �

For a theory Swith enough arithmetic—we leave it vague;we’ll specify howmuch
arithmetic in the example we’ll soon discuss—and with a recursively enumerable set
of theorems, for any provably total recursive function h there is a recursive, total,
function g so that g dominates h.

Suppose now that we conjecture: the formal sentence P < NP isn’t proved by
Primitive Recursive Arithmetic. Then the counterexample function fc will be at least
of the order of growth of Ackermann’s function [3]. By the previous discussion about

4The BGS machine set is a set of time-polynomial Turing machines which includes algorithms that
mimic all time-polynomial Turing machines. See above and check [1].

10 A Beautiful Theorem 203

O’Donnell’s algorithm, we see that the slow–growing exponential that bounds the
operation time of the algorithm will be at least of the order of growth of the inverse
function of Ackermann’s function.

Given that condition, we can state:

Proposition 10.5.2 If P < NP isn’t proved by Primitive Recursive Arithmetic then
there are almost Maymin–efficient markets. �

Comments

For details, [3]. We’ve briefly remarked that our proof, while restricted to a very
particular situation, is in fact adequately general. That is the case: for a more general
set of objects (policies etc.) has to imply ours, as our domain of objects would be a
subset of the enlarged domain.

Also we require very little in our discussion—main tool is Post’s theorem. As long
as it holds, so does our proof. Does it hold for paraconsistent logics? That’s an open
question, which classes of paraconsistent logics would allow a proof of Maymin’s
beautiful theorem.

Acknowledgments This paper was supported in part by CNPq, Philosophy Section Grant no.
4339819902073398. It is part of the research efforts of the Advanced Studies Group, Production
Engineering Program, at Coppe–UFRJ and of the Logic Group, HCTE–UFRJ. We thank Profs. R.
Bartholo, S. Fuks (in memoriam), S. Jurkiewicz, R. Kubrusly, and F. Zamberlan for support.

References

1. Baker, T., Gill, J., Solovay, R.: Relativizations of the P =?NP question. SIAM J. Comput. 4,
431–442 (1975)

2. Ben–David, S., Halevi, S.: On the independence of P vs. NP. Technical Report # 699, Technion
(1991)

3. da Costa, N.C.A., Doria, F.A.: On the O’Donnell algorithm for NP–complete problems. Rev.
Behav. Econ. (2016)

4. Maymin, P.Z.: Markets are efficient if and only If P = NP. Algorithmic Finance, 1(1), 1 (2011)
5. O’Donnell, M.: A programming language theorem which is independent of Peano arithmetic.

In: Proceedings of 11th Annual ACM Symposium on the Theory of Computation, pp. 176–188
(1979)

6. Post, E.L.: Introduction to a general theory of elementary propositions. Am. J. Math. 43, 163
(1921)

Chapter 11
Temporal Logic Modeling
of Biological Systems

Jean-Marc Alliot, Robert Demolombe, Martín Diéguez,
Luis Fariñas del Cerro, Gilles Favre, Jean-Charles Faye,
Naji Obeid and Olivier Sordet

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract Metabolic networks, formed by a series of metabolic pathways, are made
of intracellular and extracellular reactions that determine the biochemical properties
of a cell, and by a set of interactions that guide and regulate the activity of these
reactions. Cancer, for example, can sometimes appear in a cell as a result of some
pathology in a metabolic pathway. Most of these pathways are formed by an intricate
and complex network of chain reactions, and can be represented in a human readable
formusing graphswhich describe the cell signaling pathways. In this paper, we define
a logic, called Molecular Interaction Logic (MIL), able to represent these graphs and
we present a method to automatically translate graphs into MIL formulas. Then we
show how MIL formulas can be translated into linear time temporal logic, and then
grounded into propositional classical logic. This enables us to solve complex queries
on graphs using only propositional classical reasoning tools such as SAT solvers.

Keywords Metabolic networks · Molecular interaction logic (MIL) · Temporal
reasoning

11.1 Introduction

Metabolic networks, formed by a series of metabolic pathways, are made of intra-
cellular and extracellular reactions that determine the biochemical properties of a
cell by consuming and producing proteins, and by a set of interactions that guide

J.-M. Alliot · R. Demolombe · M. Diéguez · L. Fariñas del Cerro (B) ·
G. Favre · J.-C. Faye · N. Obeid · O. Sordet
INSERM/IRIT, University of Toulouse, Toulouse, France
e-mail: luis.farinas@irit.fr

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_11

205

206 J.-M. Alliot et al.

and regulate the activity of these reactions. These reactions are at the center of a
cell’s existence, and are regulated by other proteins, which can either activate these
reactions or inhibit them.

These pathways form an intricate and complex network of chain reactions, and
can be represented in a human readable form using graphs which describe the cell
signaling pathways.

These graphs can become extremely large, and although essential for knowledge
capitalization and formalization, they are difficult to use:

• Reading is complex due to the very large number of elements, and reasoning is
even more difficult.

• Using a graph to communicate goals is only partially suitable because the repre-
sentation formalism requires expertise.

• Graphs often contain implicit knowledge, that is taken for granted by one expert,
but is missed by another one.

Here, we show how classical propositional reasoning tools can be used to detect
problems on these graphs, such as missing knowledge, and to answer complex
queries.

The rest of this paper is organized as follows. Section11.2 presents the impor-
tant concepts and the problems to solve in layman’s words with a simple example,
Sect. 11.3 describes the concepts of production and regulation which are the basic
operations present in a graph, Sect. 11.4 presents the Molecular Interaction Logic
(MIL) capable of describing and reasoning about general pathways, Sect. 11.5 stud-
ies the relation between MIL and Linear Time Temporal Logic, Sect. 11.6 presents
temporal reasoning and a method for grounding temporal theories into classical
propositional formulas, when assuming bounded time, Sect. 11.7 explains what kind
of queries on graphs can be answered using classical propositional reasoning tools
such as SAT solvers, Sect. 11.8 describes the current state of the operational imple-
mentation of this tool, and at last Sect. 11.9 gives a summary and discusses future
works.

11.2 A Simple Classical Example

We are first going to describe a simple graph, which represents the regulation of the
lac operon.1 A detailed presentation is available at [21].

The lac operon (lactose operon) is an operon required for the transport and
metabolism of lactose in many bacteria. Although glucose is the preferred carbon
source for most bacteria, the lac operon allows for the effective digestion of lactose
when glucose is not available. The lac operon is a sequence of three genes (lacZ,

1The Nobel prize was awarded to Monod, Jacob and Lwoff in 1965 partly for the discovery of
the lac operon by Monod and Jacob [16], which was the first genetic regulatory mechanism to be
understood clearly, and is now a “standard” introductory example in molecular biology classes.

11 Temporal Logic Modeling of Biological Systems 207

lacY and lacA) which encode 3 enzymes. Then, these enzyms carry the transfor-
mation of lactose into glucose. We will concentrate here on lacZ. LacZ encodes the
β-galactosidase which cleaves lactose into glucose and galactose.

The lac operon uses a two-part control mechanism to ensure that the cell expends
energy producing the enzymes encoded by the lac operon only when necessary. First,
in the absence of lactose, the lac repressor halts production of the enzymes encoded
by the lac operon. Second, in the presence of glucose, the catabolite activator protein
(CAP), required for production of the enzymes, remains inactive.

Figure11.1 describes this regulatory mechanism. The expression of lacZ gene is
only possible when RNA polymerase (pink) can bind to a promotor site (marked P,
black) upstream the gene. This binding is aided by the cyclic adenosine monophos-
phate (cAMP in blue) which binds before the promotor on the CAP site (dark blue).

The lacl gene (yellow) encodes the repressor protein Lacl (yellow) which binds to
the promotor site of the RNA polymerase when lactose is not available, preventing
the RNA polymerase to bind to the promoter and thus blocking the expression of the
following genes (lacZ, lacY and lacA): this is a negative regulation, or inhibition,
as it blocks the production of the proteins. When lactose is present, the repressor
protein Lacl binds with lactose and is converted to allolactose, which is not able to

Fig. 11.1 Lac operon

208 J.-M. Alliot et al.

bind to the promotor site, thus enabling RNA polymerase to bind to the promotor
site and to start expressing the lacZ gene if cAMP is bound to CAP.

cAMP is on the opposite a positive regulation, or an activation, as its presence
is necessary to express the lacZ gene. However, cAMP is itself regulated negatively
by glucose: when glucose is present, the concentration of cAMP becomes low, and
thus cAMP does not bind to the CAP site, blocking the expression of lacZ.

In this graph, we have three kinds of entities which have different initial settings
and temporal dynamics:

• lacl, lacZ and cAMP are initial external conditions of the model and they do not
evolve in time.

• galactosidase and the repressor protein can only be produced inside the graph, and
are always absent at the start (time 0) of the modeling. Their value will then evolve
in time according to the processes described by the graph.

• glucose and lactose also evolve in time (like galactosidase and the repressor pro-
tein) according to the processes described by the graph, but they are also initial
conditions of the system, and can either be present or absent at time 0, like lacl,
lacZ and cAMP.

So, an entity must be classified according to two main characteristics:

C1: It can evolve in time according to the cell reactions (appear and disappear), or it
can be fixed, such as a condition which is independent of the cell reactions (tem-
perature, protein always provided in large quantities by the external environment,
etc…).

C2: It can be an initial condition of the cell model (present or absent at the beginning
of the modeling), or can only be produced by the cell.

There are thus three kind of entities, which have three kind of behaviour:

Exogenous entities: an exogenous entity satisfies C1 and ¬C2; their status never
change through time: they are set once and for all by the environment or by the
experimenter at the start of the simulation; the graph never modifies their value,
and if they are used in a reaction, the environment will always provide “enough”
of them.

Pure endogenous entities: on the opposite, a pure endogenous entity satisfies ¬C1
and C2; their status evolves in time and is set only by the dynamic of the graph.
They are absent at the beginning of the reaction, and can only appear if they are
produced inside the graph.

Weak endogenous entities: weak endogenous entities satisfy C2 and C1; they can
be present or absent at the beginning of the process (they are initial conditions of
the model), however their value after the start of the process is entirely set by the
dynamic of the graph. So they roughly behave like pure endogenous entities, but
the initial condition can be set by the experimenter.

11 Temporal Logic Modeling of Biological Systems 209

The status of a protein/condition is somethingwhich is set by the biologist, regard-
ing his professional understanding of the biological process described by the graph.2

However a rule of thumb is that exogenous entities are almost never produced inside
the graph (they never appear at the right side of a production arrow), while endoge-
nous entities always appear on the right side of a production arrow (but they can also
appear on the left side of a production rule, especially weak endogenous entities).

These distinctions are fundamental, because the dynamics of these entities are
different and they will have to be formalized differently.

11.3 Fundamental Operations

The mechanism described in the previous section is summarized in the simplified
graph in Fig. 11.2. This example contains all the relationship operators that will be
used in the rest of this document. We are going to present them one by one.

We separate these operations in two main sets: productions and regulations.
Productions can take two different forms, depending on whether the reactants

are consumed by the reactions or not:

• In Fig. 11.2, lactose and galactosidase produce glucose, and are consumed while
doing so, which is thus noted (galactosidase, lactose glucose).

• On the opposite, the expression of the lacZ gene to produce galactosidase (or of
the lacl gene to produce the Lacl repressor protein) does not consume the gene,
and we have thus (lacZ galactosidase).

Generally speaking:

• If the reaction consumes completely the reactant(s) we write: a1, a2, . . . , an b.
Here the production of b completely consumes a1, . . . , an

• If the reactants are not completely consumed by the reaction, we write a1, a2, . . . ,
an b. Here b is produced but a1, a2, . . . , an are still present after the production
of b.

Regulations can also take two forms: every reaction can be either inhibited or
activated by other proteins or conditions.

• In the example above, the production of galactosidase from the expression of the
lacZ gene is activated by cAMP (we use cAMP to express activation)

• At the same time the same production of galactosidase is blocked (or inhibited)
by the Lacl repressor protein (noted Repressor �).
Generally speaking:

2It is important here to notice that lactose can be either considered as a weak endogenous variable,
or as an exogenous variable if we consider that the environment is always providing “enough”
lactose. It is a simple example which shows that variables in a graph can be interpreted differently
according to what is going to be observed.

210 J.-M. Alliot et al.

Fig. 11.2 Functional representation of the lac operon

• we write a1, a2, ...an if the simultaneous presence of a1, a2, ...an activates a
production or another regulation.

• we write a1, a2, ...an � if the simultaneous presence of a1, a2, ...an inhibits a pro-
duction or another regulation.

On Fig. 11.3, we have a summary of basic inhibitions/activations on a reaction:
the production of b from a1, . . . , an is activated by the simultaneous presence of

Fig. 11.3 Activations/Inhibitions

11 Temporal Logic Modeling of Biological Systems 211

Fig. 11.4 Stacking

c1, . . . , cn or by the simultaneous presence of d1, . . . , dn, and inhibited by the simul-
taneous presence of e1, . . . , en or by the simultaneous presence of f1, . . . , fn.

These regulations are often “stacked”, onmany levels (see Fig. 11.4). For example
in Fig. 11.2, the inhibition by the Lacl repressor protein of the production of galac-
tosidase can itself be inhibited by the presence of lactose, while the activation of the
same production by cAMP is inhibited by the presence of glucose.

A final word of warning is necessary. Graphs pragmatically describe sequences
of operations that biologists find important. They are only a model of some of the
biological, molecular and chemical reactions that take place inside the cell; they
can also be written in many different ways, depending on the functional block or
operations that biologists want to describe, and some relationships are sometimes
simply left out because they are considered not important for the function which is
described in a particular graph.

11.4 Molecular Interaction Logic

In this section we extend a previous approach to logical modelling of graphs made in
terms of first-order logic with equality [8–10]. Our approach, Molecular Interaction
Logic (MIL), is based on modal temporal logic, which will help us later to define
connections with other logical approaches to temporal reasoning as well as study-
ing graphs behaviour in the context of a modal approach. We start this section by
introducing the concepts of pathway context and pathway formula. The former corre-
sponds to the formalization of regulationwhile the latter is the formal representation
of the production rules, both concepts were presented in Sect. 11.3.

Definition 11.1 (Pathway context) Given a set of entities, a pathway context is
formed by expressions defined by the following grammar:

212 J.-M. Alliot et al.

where P and Q are sets (possibly empty) of propositional variables representing
the conditions of activation () and inhibition (�) of the reaction. Every context
can be associated with a (possibly empty) set of activation (αi, with 1 ≤ i ≤ n) and
inhibition (αj, with n < j ≤ m) contexts. One, or both sets can be empty. �

Definition 11.2 (Pathway formula)
A Pathway formula is generated by the following grammar:

F ::= [α] (P∧ � q
) | F ∧ F

where α represents a context, �∈ , P∧ stands for a conjunction of all atoms
in the set P and q corresponds to a propositional variable. �

11.4.1 MIL Semantics

Before introducing the semantics we need to give a formal definition of the activation
and inhibition expressions, since both concepts play an important role in the definition
of the semantics.

Definition 11.3 (Activation and inhibition expressions)
Given a context of the form

we define the corresponding expressions A(α) and I(α) recursively as follows:

A(α) =
∧

p∈P
p ∧

n∧

i=1

A(αi) ∧ (
∨

q∈Q
¬q ∨

m∧

j=n+1

I(βj))

I(α) =
∨

p∈P
¬p ∨

n∨

i=1

I(αi) ∨ (
∧

q∈Q
q ∧

m∧

j=n+1

A(βj)).

�

Informally speaking,A(α) characterizes when the context α is active while I(α)

defines when it is inhibited. If one part of the context α is empty, then the corre-
sponding part is of course absent in A(α) and I(α).

Definition 11.4 (Extended signature) Given a set of atoms Σ , its corresponding
extended signature, Σ̂ , is defined by the following expression:

11 Temporal Logic Modeling of Biological Systems 213

Σ̂ = Σ ∪ {Pr (p) | p ∈ Σ} ∪ {Cn (p) | p ∈ Σ},

where p is an endogenous variable. �

Informally speaking, every atom of the form Pr (p) means that p is produced as
a result of a chemical reaction. On the other hand, Cn (p) means that the reactive p
has been consumed in a reaction. From now on, we will use the symbols Σ and Σ̂

referring to, respectively, the signature and its corresponding extension.

Definition 11.5 (MIL interpretation)
LetΣ be a set of propositional variables and Σ̂ its corresponding extended signa-

ture. We define aMIL interpretation, V = V0, V1, . . ., as an infinite sequence of sets
of atoms on Σ̂ such that every endogenous variable p ∈ Σ satisfies the following
constraint:

∀i ≥ 0 if Pr (p) ∈ Vi or (Cn (p) /∈ Vi and p ∈ Vi)

then p ∈ Vi+1. (11.1)

�

Definition 11.6 (Satisfaction relation) Given a MIL interpretation V = V0, V1, . . .,
i ≥ 0 and a pathway formula F on Σ , we will define recursively the satisfaction
relation (V, i |= F) as follows:

• V, i |= p iff p ∈ Vi, for any p ∈ Σ

• negation, disjunction and conjunction are satisfied as usual
• iff for all j ≥ i, if V, j |= A(α) and P ⊆ Vj, then Pr (q) ∈ Vj

and for all p ∈ P, Cn (p) ∈ Vj

• iff for all j ≥ i if V, j |= A(α) and P ⊆ Vj then Pr (q) ∈ Vj. �

11.5 Translating Molecular Interaction Logic into Linear
Time Temporal Logic

In this section, we consider the connection betweenMolecular Interaction Logic and
Linear TimeTemporal Logic (LTL) [19] by showing a translation fromour formalism
into a restricted subset of LTL in which only operators © and � are used. We start
this section by providing some background on LTL.

Definition 11.7 (Temporal language) Temporal formulas are generated by the fol-
lowing grammar:

ϕ :: = ⊥ | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ©ϕ1 | �ϕ1 |
♦ϕ1 | ϕ1Uϕ2 (11.2)

214 J.-M. Alliot et al.

where ϕ1 and ϕ2 are temporal formulas in their turn and p is any atom. Modal
operators ©, �, ♦ and U are respectively read as “next”, “forever”, “possible” and
“until”. �

Definition 11.8 (LTL semantics) Let Σ̂ be a set of propositional variables. An LTL
model is an infinite sequence, V = V1, V2, . . ., of sets of atoms on Σ̂ . Given an LTL
interpretation and i ≥ 0, the LTL satisfaction relation is defined as follows:

1. V, i |= p iff p ∈ Vi, for p ∈ Σ .
2. Negation, conjunction and disjunction are satisfied in the usual way.
3. V, i |= ϕ → ψ iff V, i �|= ϕ or V, i |= ψ .
4. V, i |= ©ϕ iff V, i + 1 |= ϕ.
5. V, i |= �ϕ iff for all j ≥ i, V, j |= ϕ.
6. V, i |= ♦ϕ iff there exists j ≥ i, V, j |= ϕ.
7. V, i |= ϕUψ iff ∃j ≥ i, V, j |= ψ and ∀k s.t. i ≤ k < j, M, k |= ϕ.

�

11.5.1 From MIL to LTL

Definition 11.9 (Inertia rule) Let p be an endogenous variable in a signatureΣ . We
define inertia(p) as the following formula built on Σ̂ :

inertia(p)
def= � ((Pr (p) ∨ (p ∧ ¬Cn (p))) → ©p) (11.3)

�

Thanks to these rules, we can specify how the truth values of biological substances
evolve along time. More specifically, this rule means that a protein p might become
true if it is the result of a production rule (concept represented by Pr (p)) or if
it is already present and it has not been used to produce other proteins (concept
represented by Cn (p)). By using structural induction we can prove the following
proposition:

Proposition 11.1 Let Σ be a finite signature. Given a LTL interpretation, V, on Σ̂ .
V, 0 |= ∧

p
inertia(p), with p and endogenous variable in Σ , iff V satisfies condi-

tion (11.1) of Definition 11.5. �

Definition 11.10 (Translation fromMIL into LTL) Let F be a pathway formula built
on a signature Σ . We define the formula tr (F), built on the signature Σ̂ , as follows:

11 Temporal Logic Modeling of Biological Systems 215

where both F1 and F2 stand for two arbitrary pathway formulas. �

In order to guarantee that our translation is correct with respect to theMIL seman-
tics presented in Sect. 11.4, we establish the following correspondence between both
formalisms:

Lemma 11.1 (Correspondence) Let F be a pathway formula built on a signatureΣ ,
and V a LTL interpretation on the extended signature Σ̂ . Then we have the following
equivalence:

V, 0 |= F iff V, 0 |= tr (F) ∧
∧

p

inertia(p),

where p is an endogenous variable in F. �

11.6 Temporal Reasoning

As shown in the previous section, we can establish a correspondence between a
graph and a temporal formula which describes its behaviour. However, in order to
perform temporal reasoning we need to add the supplementary hypothesis of closed
world assumption. This concept corresponds to the presumption that a statement
that is true is also known to be true. Conversely, what is not currently known to be
true, is false. This hypothesis fits perfectly in the biological process, as endogenous
proteins appear if and only if a production rule is triggered (except at time 0 for weak
endogenous variables) and, moreover, they are consumed only if they are used in a
reaction.

11.6.1 Completion Axioms

In order to incorporate this hypothesis we define the Completion axioms [6] for our
temporal theories as follows:

Definition 11.11 (Completion axioms) Let Σ be a finite signature and let F be a
pathway formula built on Σ . For any pure endogenous propositional variable p in
Σ , COMP(F, p) corresponds to as the following formula built on Σ̂ :

216 J.-M. Alliot et al.

If p is a weak endogenous variable, COMP(F, p) has the same form as above but
omitting the conjunct ¬p. �
Broadly speaking, the meaning of the different components of COMP(F, p) can be
explained as follows:

• ¬p: this is a consequence of the type of the substance. If p is pure endogenous
(it must be produced before existing), p must not be present at the initial state to
that ¬pmust be part of COMP(F, p). For the case of weak endogenous variables,
whose truth value at the initial state cannot be deduced, requires that the conjunct
¬p be omitted from corresponding completion formula.

• �
(

Pr (p) → ∨

[α](P∧�p)∈F
P∧ ∧ A(α)

)

: in any state, the production of a protein p

is due to the satisfaction of, at least, one pathway formula.

• : in any state, if p is consumed then it must

be used in a reaction represented by a pathway formula.
• �(©p → (Pr (p) ∨ (p ∧ ¬Cn (p))): if a substance p is present then it has been
produced in the previous state or it was already present and it was not consumed
in a reaction.

If we consider now the whole set of propositional variables occurring in F, the
resulting completion axioms correspond to the following conjunction

∧

p

COMP(F, p),with p being an endogenous variable.

11.6.2 Graphs as Splittable Temporal Logic Programs

Completion axioms are used when we want to translate a non-monotonic theory into
classical logic. To give an example, in the Answer Set Programming [4] paradigm,
the answer sets of a propositional theory can be captured by a classical propositional
expression by adding the so called Loop formulas [12, 18] (in the same spirit as
Clark’s completion). This result was extended to the case of non-monotonic temporal
theories3 in [2] in which it is shown that, regarding a syntactical restricted class of

3For a more detailed survey of temporal extension of Answer Set Programming see [1].

11 Temporal Logic Modeling of Biological Systems 217

programs, called splittable, loop formulas can be effectively computed. We define
such class of programs below:

Definition 11.12 (Splittable temporal logic program) A splittable temporal logic
program Π for signature Σ̂ is said to be splittable ifΠ consists of rules of the form:

B∧ ∧ N∧ → H (11.4)

B∧ ∧ ©B′∧ ∧ N∧ ∧ ©N ′∧ → ©H ′ (11.5)

�(B∧ ∧ ©B′∧ ∧ N∧ ∧ ©N ′∧ → ©H ′) (11.6)

where B and B′ are conjunctions of atoms, N and N ′ are conjunctions of negative
literals like ¬p with p ∈ Σ̂ , and H and H ′ are disjunctions of atoms. �

Roughly speaking, the idea behind a splittable program is that no past reference
depends on the future.

Since the formalismpresented in [2], calledTemporal EquilibriumLogic (TEL) [1,
5], shares the syntax with LTL we can study our theories under such framework. As
a result, we can translate, by using several temporal equivalences, our theories into
splittable temporal logic programs, as stated in the following proposition:

Proposition 11.2 Given a conjunction of pathway formulas F = F1 ∧ · · · ∧ Fn, it
can be proved that

tr (F) ∧
∧

p

inertia(p),

where p corresponds to an endogenous variable in F, is equivalent to a splittable
temporal logic program. �

This equivalence allows us to study the relation between our completion axioms and
loop formulas, which is considered next.

11.6.2.1 Relation with Loop Formulas

We have already shown that our temporal theories can be translated into splittable
temporal logic programs under temporal equilibrium logic semantics. We now show
how our completion axioms can be seen as a special case of loop formulas. Before
presenting the result, we summarize how loop formulas are computed in [2]. Given a
splittable program,Π , loop formulas are generated from the corresponding (positive)
dependency graph of a temporal logic program Π , denoted by G(Π). Nodes of
G(Π) correspond to the propositional variables in Π while edges are defined by the
following expression:

E={(p, p) | p ∈ Π} ∪ {(p, q) | ∃ (
B∧ ∧ N∧ → p

) ∈ Π s.t. q ∈ B}. (11.7)

for any propositional variable p.

218 J.-M. Alliot et al.

Definition 11.13 (Loop from [12]) A set of atoms L is called a loop of a logic
program Π iff the sub-graph of G(Π) induced by L is strongly connected. Notice
that reflexivity of G(Π) implies that for any atom p, the singleton {p} is also a
loop �

When applying this technique to our translation (considering TEL semantics) we
must consider the following points:

1. Given a conjunction of pathway formulas F, tr (F) has no positive cycles in the
sense of [2]. This means that only unitary cycles must be considered.

2. The hypothesis of closed world assumption should not be applied to the exoge-
nous variables, whose presence cannot be justified and whose absence cannot be
determined “by default”. They must remain free, specially when querying our
representation.

Item 1 means that the computation of the loop formulas, as presented in [2], is
equivalent to our completions axioms (see Definition 11.11), while 2 means that
completion rules should not be computed in the case of exogenous variables. This
result is stated in the following proposition:

Proposition 11.3 Completion axioms of Definition 11.11 are equivalent to loop
formulas (under TEL semantics) when they are restricted to endogenous variables
(a concept explained in Sect.11.2). �

This result justifies that our approach can be also considered as non-monotonic
temporal logic programs.

11.6.3 Grounding Splittable Temporal Logic Programs

The use of an LTL formalization allows us to consider solutions with infinite length
when performing reasoning tasks such as abduction or satisfiability.However, regard-
ing complexity results, it is worth to mention that LTL satisfiability is, in the general
case PSpace-complete while, regarding the propositional case, it is NP-complete. In
an attempt to reduce the complexity of the problem as well as taking advantage of the
tools available for reasoning on propositional logic such as SAT-solvers, abduction
algorithms, etc., we consider bounded time, that is, we fix the positive constant max
as the maximum time length. This assumption allows us to translate the temporal
formulas into a propositional theory, as explained below.

Definition 11.14 Let ϕ a temporal formula built on the language presented in (11.2),
max ≥ 0 and 0 ≤ i < max. We define translation of ϕ, at instant i, into propositional
logic, denoted by 〈ϕ〉i, as follows:
• 〈p〉i def= pi, with p an atom and pi a new propositional variable;

• 〈¬ϕ〉i def= ¬〈ϕ〉i;

11 Temporal Logic Modeling of Biological Systems 219

• 〈ϕ � ψ〉i def= 〈ϕ〉i � 〈ψ〉i, with � ∈ {∧,∨,→};
• 〈©ϕ〉i def= 〈ϕ〉i+1;

• 〈�ϕ〉i def= ∧
i≤j<max 〈ϕ〉j;

• 〈♦ϕ〉i def= ∨
i≤j<max 〈ϕ〉j;

• 〈ϕUψ〉i def= ∨

i≤j<max

(

〈ψ〉j ∧
∧

i≤k<j
〈ϕ〉k

)

.

�

Broadly speaking, this translation simulates the truth value of anLTLpropositional
variable p along time by a set of n fresh atoms in classical logic, one per time instant.
Moreover, the behaviour of modal operators are simulated by (finite) conjunctions
and disjunctions, since we are considering bounded time. The following observation
shows that, under the assumption of bounded time, we can establish a one-to-one
correspondence between temporal and grounded theories.

Observation 11.1 (Model correspondence) LetV = V0, V1, . . . be an LTL interpre-
tation. Given max ≥ 0, we define the classical interpretation Imax as:

Imax = {pi|p ∈ Vi}.

It can be proved that V and Imax satisfy the following property:

∀ϕ, V, i |= ϕ iff Imax |= 〈ϕ〉i.

�

11.7 Reasoning and Solving

In the previous section we described the theoretical aspects of the representation of
graphs and of the logic used for reasoning on them.

In this section, we are going to show that, after translation, any question can be
expressed in classical propositional logic and solved using classical propositional
logic tools and that even complex questions, such as the search for a stable state, can
be solved by our system.

11.7.1 A Simple Example

We are first going to explain on a simple example how the transformation of a graph
into a set ofCNF formulas is performed.We are going towork on the graph describing

220 J.-M. Alliot et al.

Fig. 11.5 Simplified functional representation of the lac operon

the behaviour of the Lac operon represented on Fig. 11.2 in Sect. 11.2. However we
simplify a little this graph into the one represented in Fig. 11.5.

In this example, lacZ and cAMP are exogenous variables. As their value is set
once and for all, they don’t have to be grounded in the translation. On the opposite,
Galactosidase is a pure endogenous variable, and thus will be grounded. Glucose is
aweak endogenous entity: it has to be grounded as its value can change through time,
however no completion formula will be computed for the variable describing them at
time 0, as they can be present at the start of the process as an initial condition. Here,
we will consider Lactose as an exogenous variable (see footnote 2 in Sect. 11.2).

This graph is interesting, because it has a temporal dynamic. For example, if the
initial conditions are that lacZ , cAMP and Lactose are present and Glucose is absent
then we can simulate informally the evolution of the proteins/conditions as:

Time 0: lacZ , cAMP, Lactose
Time 1: lacZ , cAMP, Lactose, Galactosidase
Time 2: lacZ , cAMP, Lactose, Galactosidase, Glucose
Time 3: lacZ , cAMP, Lactose, Glucose

Time 3 is a stable state.
Now we are going to see how this informal process can be formalized, and how

logical tools can be used to reason about this graph; in a first step, this graph can be
represented by:

11 Temporal Logic Modeling of Biological Systems 221

Lactose ∧ Galact → pr(Glucose)t (11.8)

lacZ ∧ Lactose ∧ cAMP ∧ ¬Glucoset → pr(Galac)t (11.9)

Lactose ∧ Galact → cn(Galac)t (11.10)

pr(Glucose)t → Glucoset+1 (11.11)

pr(Galac)t → Galact+1 (11.12)

Glucoset ∧ ¬cn(Glucose)t → Glucoset+1 (11.13)

Galact ∧ ¬cn(Galac)t → Galact+1 (11.14)

Equations11.8 and 11.9 describe how proteins can be produced: Glucose is pro-
duced (at time t) when we have Lactose andGalac at time t (lactose is always present
as we suppose that there is always enough lactose in our environment, while galac-
tosidase evolve in time), andGalac is produced at t when we haveGlucose at t along
with cAMP, Lactose and the lacZ gene.

Equation11.10 expresses that when we have Lactose and Galac at t then Galac
is consumed at t as it is used to produce Glucose according to Eq.11.8. We have no
similar equation for Lactose, as Lactose is exogenous and there will always remain
“enough” lactose.

Equations11.11 and 11.12 express that, when a molecule is produced at time t,
then it is present at time t + 1. This applies here to Glucose and Galac.

Equations11.13 and 11.14 are inertia rules. If a protein is present at time t and is
not consumed at t then it will be present at time t + 1.

After completing this first representation, the system has to be grounded by time.
The number of time steps is chosen by the user. Grounding is trivial and, for one
time step, the above set of rules just becomes:

Lactose ∧ Galac0 → pr(Glucose)0
lacZ ∧ Lactose ∧ cAMP ∧ ¬Glucose0 → pr(Galac)0

Lactose ∧ Galac0 → cn(Galac)0
pr(Glucose)0 → Glucose1

pr(Galac)0 → Galac1
Glucose0 ∧ ¬cn(Glucose)0 → Glucose1

Galac0 ∧ ¬cn(Galac)0 → Galac1

Then, we build completion formulas. It is important to notice that completion
formulas are always built for pure endogenous variables at all time steps, are never
built for exogenous variables, and are built for weak endogenous variables at all time
steps except at time 0. This is a consequence of the “closed world” assumption:
pure endogenous entities can only be created, produced or consumed internally,
and are never present at the start of the process. So, to take a simple example,
each time we have multiple paths to produce a pure endogenous variable p, such as
C1 → Pr(p) up to Cn → Pr(p), then we must add a “completion” formula Pr(p) →
C1 ∨ · · · ∨ Cn.

222 J.-M. Alliot et al.

The following completion formulas are respectively associated with the variables:
(1) Galac0, (2) Galac1, (3) Glucose1, (4) cn(Galac)0, (5) pr(Galac)0,
(6) pr(Glucose)0.

¬Galac0 (11.15)

Galac1 → (Galac0 ∧ ¬cn(Galac)0) ∨ pr(Galac)0 (11.16)

Glucose1 → (Glucose0 ∧ ¬cn(Glucose)0) ∨ pr(Glucose)0 (11.17)

cn(Galac)0 → (Galac0 ∧ Lactose) (11.18)

pr(Galac)0 → (lacZ ∧ Lactose ∧ cAMP ∧ ¬Glucose0) (11.19)

pr(Glucose)0 → (Galac0 ∧ Lactose) (11.20)

Then, all formulas are automatically translated into CNF. With one temporal
grounding step, the simple graph considered here is represented by a database of 21
CNF formulas.

11.7.2 From Temporal Reasoning to Classical Propositional
Tools

As a graph is now transformed into a databaseD of propositional CNF formulas, any
propositional tool can be used to solve queries.

Some questions Q such as “is molecule p present at time 3” can be expressed by
the logical temporal formula © © ©p, and then easily translated after grounding
into the classical p3. Then it can be solved with a SAT solver: ¬Q = ¬p3 is added
to D and the satisfiability of D ∪ ¬Q is checked. If it is not satisfiable, then Q is of
course true.

However, most often, the main problem for biologists is to find the set(s) of
conditions/preconditions that will lead to the creation of a protein, or the triggering
of a specific condition. For example, many graphs describe how some cellular paths
lead to cell death (apoptosis). Then the question is usually “what are the set(s) of
condition(s) that lead to cell apoptosis after some time”. Here depending on the
complexity of the problem, different tools can be used:

• Abduction is of course the more natural and elegant solution. If we callD the set of
CNF formulas after grounding into propositional logic, and Q the question, then
we first use a SAT solver to check thatD ∪ {¬Q} is consistent (if it is not consistent
then Q is already an implicate of D). Now we search for the minimal set H such
as Q is an implicate of T ∪ H. The classical algorithm consists in computing the
set P(D ∪ {¬Q}), which is the set of the prime implicates (the strongest clausal
consequences) of D ∪ {¬Q}, and then checking for each x ∈ P(D ∪ {¬Q}) that
D ∪ {¬x} is consistent. Then each such x is a solution.

11 Temporal Logic Modeling of Biological Systems 223

While solutions sets containing only exogenous variables and weak endogenous
variables (at step 0) describe the initial conditions leading to Q, abduction is able
to find all sets answering a given question, even sets containing pure endogenous
variables. This can give valuable information regarding the cell internal dynamic.

• While abduction is the more elegant way to find the set of preconditions answering
a given question, the number of prime implicates of a theory can be exponential in
the size of the theory and finding only one implicate is an NP-hard problem [13].
Thus the underlying complexity when using large graphs may turn abduction into
an impracticable method and an alternative approach has to be used.
Biologists are mainly interested in solutions that contain only exogenous variables
and also initial conditions which are the values of weak endogenous variables at
time step 0. As explained before, exogenous proteins are interesting candidates
as they usually describe the external conditions that can be set to activate some
specific paths inside the graph, and weak endogenous variables at step 0 describe
initial conditions. Pure endogenous proteins only depend on the internal dynamic
of the cell.
If we call Ex0 the set of exogenous variables and weak endogenous variables at
step 0, an extensive search can be performed with a Sat Solver to check if there is
a valuation satisfying D ∪ {¬Q} for a fixed boolean affectation of the set Ex0. If
so, then each such affectation is a solution.
Thismethod is faster than abduction as long as the set of exogenous variables/weak
endogenous variables at step 0 remains small. The complexity however grows
exponentially with the number of variables in the set, and it can’t provide the solu-
tion sets containing pure endogenous variables, nor weak endogenous variables at
a time greater than 0.

11.7.3 Expressing Complex Queries

In the previous section we presented the reasoning tools that can be used to answer
simple questions. In this section we show how much more complex questions can
be expressed and solved.

Any question that can be expressed using the temporal logic described in Sect. 11.5
can be solved using classical propositional reasoning tools, as it can be translated
into propositional logic (considering of course bounded time). For example, if we
want to know if the introduction of protein pwill produce protein q at time 3, we just
have to solve the questionQ = p → q3, i.e. check ifD ∪ {p} ∪ {¬q3} is inconsistent.

More complicated, questions can be asked. For example, if we want to know if a
stable state exists, we just write:

Q = ♦�
∧

p∈En
(p ↔ ©p)

224 J.-M. Alliot et al.

whereEn is the set of endogenous variables (pure andweak). The value of exogenous
variables never change, so they are always “stable”. This is grounded and translated
into propositional logic as

Q =
∨

0≤i≤n

∧

i≤j≤n

∧

p∈En
(pj ↔ pj+1)

where n is the last grounding step. We then add ¬Q to D and check if D ∪ {¬Q} is
inconsistent.

Having the full expressivity of temporal logic to write queries is an important
feature of our system. Users are able to build complex queries, and they can be
automatically translated and solved by the system. Solving the question can be a
“yes/no” answer using a simple consistency check, or a more elaborate answer which
will provide the set(s) of conditions which lead to a “yes” answer, using abduction
or using the exhaustive search method described in the previous section.

11.8 Implementation

We have already implemented most of the tools necessary for using the system:

• Graphs are built using Pathvisio [20], a public-domain editing software and a well
known tool in the biologists community.

• We have developed a parser/translator which reads the XML files generated by
Pathvisio, takes as an argument the number of grounding steps, and translates the
graphs into a set of classical grounded propositional CNF formulas.

• For consistency check and exhaustive search, we use the Glucose SAT solver [3]
which is based on Minisat [11]. To compute prime implicates, we implemented
our own version of the Tsiknis, Dean and Johnson algorithm [14, 15, 17]. While
our implementation, which is based on machine language operations, seems to be
extremely fast, amore exhaustive comparisonwith other approaches for computing
prime implicants,4 such as the ones advocated in [7, 13], should be tested.

11.9 Conclusion

We have presented in this paper a method to translate graphs representing biological
systems into temporal logic formulas and to solve complex temporal queries regard-
ing these graphs. This method has been almost fully implemented, and the associated
tool has now reached a state where it can be tested on large, realistic graphs.

4The dual problem, which could be easily adapted to suit our needs.

11 Temporal Logic Modeling of Biological Systems 225

There remains however different points to address:

• Currently the graphs we are using are limited: they can only use elementary rela-
tions; while all existing relations can be expressed with this elementary subset, it
would be easier (and would keep graphs smaller) if our graph editor and out parser
could deal with a larger subset of f these relations.

• graphs are built by hand by biologists, and they very often rely on “common
knowledge” among them, so they sometimes “forget” to write some relations
or sometimes express some relations between proteins in a non “standard” way.
This tool will detect such missing knowledge and will thus help in writing more
complete and consistent graphs, but correcting these problems is a mandatory step.

• While translating temporal logic queries into grounded propositional CNF is a
technicality, building and understanding the exact meaning of a temporal query is
complicated for people who don’t have a training in logic. The goal of our users
is to solve problems related to these graphs and we have to be able to describe the
reasoning tasks available in a simpleway, and give simple tools towrite queries that
can be solved by our system. A possible solution would be to provide a graphical
interface that would help building queries by assembling intuitively variables and
connectors as an intermediate between logic and natural language.

• Our system relies on a strong assumption: proteins can either be present or absent,
but we are not able to consider partial concentrations. This decision was discussed
with the biologists, and they supported it for a simple reason: currently, they are
most of the time, if not all of the time, enable to determine the concentration
of proteins in a cell. Their understanding of the cell chemical reactions is not
precise enough, and they really consider the concepts of “absence”, “presence”,
“Production” or “Consumption” when building graphs. However, this does not
mean that we will not have to deal with this problem in the future.

The fact that there is now a demand from the biologists we are working with to
get the tool and use it by themselves seems to prove that it has reached a certain state
of maturity and stability, even if there probably remains work to do before turning it
into a fully operational tool.

Acknowledgments This work is partially supported by ANR-11-LABX-0040-CIMI within the
program ANR-11-IDEX-0002-02, by IREP Associated European Laboratory and by project CLE
from Région Midi-Pyrénées.

References

1. Aguado, F., Cabalar, P., Diéguez,M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey.
J. Appl. Non-Class. Logics 23(1–2), 2–24 (2013)

2. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal logic pro-
grams. In: Proceedings of the 11th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’11), pp. 80–92. Vancouver, Canada (2011)

226 J.-M. Alliot et al.

3. Audemard,G., Simon, L.: Predicting learnt clauses quality inmodern sat solver. In: Proceedings
of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI’09), pp.
399–404 (2009)

4. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM
54(12), 92–103 (2011)

5. Cabalar, P., Pérez, G.: Temporal equilibrium logic: a first approach. In: Proceedings of the 11th
International Conference on Computer Aided Systems Theory (EUROCAST’07), pp. 241–248
(2007)

6. Clark, K.L.: Negation as failure. In: Logic and Databases, pp. 293–322. Plenum Press (1978)
7. Déharbe, D., Fontaine, P., LeBerre, D., Mazure, B.: Computing prime implicants. In: Formal

Methods in Computer-Aided Design (FMCAD), pp. 46–52. Portland, USA (2013)
8. Demolombe, R., Fariñas del Cerro, L., Obeid, N.: Automated reasoning in metabolic networks

with inhibition. In: 13th International Conference of the Italian Association for Artificial Intel-
ligence, AI*IA’13, pp. 37–47. Turin, Italy (2013)

9. Demolombe, R., Fariñas del Cerro, L., Obeid, N.: Logical model for molecular interactions
maps. In: Fariñas del Cerro, L., Inoue, K. (eds.) Logical Modeling of Biological Systems, pp.
93–123. Wiley (2014)

10. Demolombe, R., Fariñas del Cerro, L., Obeid, N.: Translation of first order formulas into ground
formulas via a completion theory. J. Appl. Logic 15, 130–149 (2016)

11. Een, N., Sorensson, N.: An extensible sat-solver. In: Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT2003), pp. 502–518.
Santa Margherita Ligure, Italy (2003)

12. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the lin-zhao theorem. Ann. Math. Artif.
Intell. 47(1–2), 79–101 (2006)

13. Jabbour, S., Marques-Silva, J., Sais, L., Salhi, Y.: Enumerating prime implicants of proposi-
tional formulae in conjunctive normal form. In: Proceedings of the 14th European Conference,
JELIA 2014, pp. 152–165. Funchal, Madeira, Portugal (2014)

14. Jackson, P.: Computing prime implicates. In: Proceedings of the 20th ACM Conference on
Annual Computer Science (CSC’92), pp. 65–72. Kansas City, USA (1992)

15. Jackson, P.: Computing prime implicates incrementally. In: Proceedings of the 11th Interna-
tional Conference on Automated Deduction (CADE’11), pp. 253–267. Saratoga Springs, NY,
USA (1992)

16. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol.
3, 318–356 (1961)

17. Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. J.
Symbolic Comput. 9, 185–206 (1990)

18. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by sat solvers. In: Artificial
Intelligence, pp. 112–117 (2002)

19. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, pp. 46–57. Providence, Rhode Island, USA (1977)

20. van Iersel, M.P., Kelder, T., Pico, A.R., Hanspers, K., Coort, S., Conklin, B.R., Evelo, C.:
Presenting and exploring biological pathways with PathVisio. BMC Bioinform. 9, 399 (2008)

21. Wikipedia: The lac operon. https://en.wikipedia.org/wiki/Lac_operon (2015)

https://en.wikipedia.org/wiki/Lac_operon

Chapter 12
Jair Minoro Abe on Paraconsistent
Engineering

Seiki Akama

Dedicated to Jair Minoro Abe for his 60th birthday

Abstract An overview of Professor Abe’s scientific work is presented, emphasizing
the main results obtained by him in his research activity. He has done a lot of work
on paraconsistent logics and their applications. We survey his academic career and
published works.

Keywords Jair Minoro Abe · Paraconsistent logics · Annotated logics

12.1 Introduction

Jair Minoro Abe has established itself as one of leading figure in the consolidation
regarding to applications of paraconsistent systems, which had one of the introducers
the renowned Prof. Newton C.A. da Costa. Abe has dedicated to an important class
of paraconsistent logic, namely the paraconsistent annotated logics.

This paper intends to give a short view of activities of Abe. In section, we give
his biographical information. In Sect. 12.3, we present a general description of his
published works.

S. Akama (B)
C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-ku, Kawasaki 215-0012, Japan
e-mail: akama@jcom.home.ne.jp

© Springer International Publishing Switzerland 2016
S. Akama (ed.), Towards Paraconsistent Engineering, Intelligent Systems
Reference Library 110, DOI 10.1007/978-3-319-40418-9_12

227

228 S. Akama

12.2 Biographical Information

JairMinoro Abewas born onOctober 6, 1955 in São Paulo City, São Paulo, Brazil, as
an eldest son of Tadashi Abe (1923–1984) and Kinuko Abe (1931-), typical Japanese
immigrants from the 30s of last century, has two sisters, Marina and Nilza. Abe is
married with Tiyo and has two daughters, Clarissa and Letićia.

By the age of four lived with uncles in Mogi das Cruzes city, nearby from São
Paulo, where he studied Japanese language, not continuously until late 1962 due
health conditions. He went back to São Paulo to start primary school (Grupo Escolar
de Vila Ré) until mid 1965 when he moved to a newer building that replaced the
old wooden shed and was named “Grupo Escolar Prof. Jose Bartocci”. Abe studied
there until 1966, the year that also attended “Externato Cristo Rei” to take the exam
to enter to the “Colégio Estadual Prof. Gabriel Ortiz” (junior high school and high
school) during the period 1967–1970 and 1971–1973.

Abe mentions that in primarily and high school times experienced one of the most
amazing periods of his life either learning, but also meeting teachers and wonderful
friends who greatly influenced the subsequent journey. Also in 1973 he attended the
“CECA Vestibulares” by action of Prof. Julio Takara electing him as one of the best
students, gracing him with a scholarship for preparatory course, which was of great
importance for Abe at the time.

In 1974, he began the course of Bachelor of Mathematics at Institute of Mathe-
matics and Statistics, University of São Paulo (USP). He had contact with valuable
mathematicians such as M. Peixoto, E. Farah, N. da Costa, L. Berthet, J. Zimbarg,
C. Hönig, O. Alas, A. Gillioli, among others. Shortly after completion, began the
Graduate course in Pure Mathematics at same Institute having the supervision of
Dr. Newton Costa and wrote his dissertation on foundations of ordered geometry [1].

After completing the master course, he attended a doctorate course at the Fac-
ulty of Philosophy, Letters and Human Sciences of University of São Paulo, where
he obtained his Doctor degree in Philosophy under the supervision of Dr. Newton
Costa [3]. Abe investigated the foundations of annotated logics, an issue that came
to the hands of his mentor through an application in logic programming made by
Blair and Subrahmanian [19, 32].

The appearance of a paraconsistent system in logic programming would provide
the opening for applications, awaited the paraconsistent systems. Abe then had long
conversations with Newton Costa on applications of paraconsistent systems and
then designed a program to do it. At the time, invited to give a graduate course at
Polytechnic School, University of São Paulo with Newton Costa, brought together
some disciples to accomplish his project.

By 1996 Abe together with Prado and Avila implemented a logic programming
languageParalog based on annotated logics [18, 22] independently of Subrahmanian
and thus originated the first incursions in Artificial Intelligence (AI): an architecture
based entirely on annotated logics and knowledge representation theory via the con-
cept of frames [2].

12 Jair Minoro Abe on Paraconsistent Engineering 229

A few years later, Da Silva Filho built electronic circuits accommodating incon-
sistencies. Among contributions in his doctoral thesis was included logic controller
based on annotated logics called Para-analyzer. It was soon materialized into a logic
controller called paracontrol. To accomplish its functionality it was built the first
robot made entirely with hardware based on such logic: Emmy. There have been
made many improvements.

Da Silva Filho noted that a convenient combination of algorithm Para-analyzer
resulted in a ‘network’ which was named paraconsistent artificial neural network.
Effectively it was verified that it had characteristics of an artificial neural network;
furthermore such network present useful properties that differ much from existing
ones.

Meanwhile, Abe felt the need to broaden the horizons of their research as well as
for his collaborators: a feat that direction was the development of an entirely geared
congress devoted to applications of logic to AI and technology. Thus the Congress
of Logic Applied to technology (LAPTEC) was born. LAPTEC was welcomed with
great enthusiasm and had some famous lecturers: P. Suppes, N. da Costa, E.G.K.
Lopez-Escobar, M.C. Monard, N. Ebecken, K. Nakamatsu, S. Akama, T. Date,
D. Dubois, E. Massad, M. Droste, and others.

At the 1st Congress of Paraconsistency held in Ghent, Belgium, 1997, Abe met
K. Nakamatsu and S. Akama for the first time. They were studying annotated logics
among their themes and expected to meet with Abe and was, indeed, an important
milestone. They then proceeded to have a strong cooperation that last until nowadays.

Abe’s carrier was made mainly hard work, but he thinks that only this it is not
enough; it is necessary something more, that he call ‘fortunate’. Abe also mention
that he always had the support of his parents and after the death of his father, Abe
continued to live whenever possible with his mother who gave him all the necessary
support for the day-by-day of his career.

Abe’s academic positions are as follows:

• Assistant Professor, Paulista State University, 1984–1995
• Coordinator of Logic and Science Theory, Institute For Advanced Studies,
University of São Paulo, 1987–2016

• Research Associate, University of São Paulo, 1989–2016
• Full Professor, Paulista University, 1996-

All academic activities were done as Full Professor at Paulista University, which
has received great deal to accomplish his investigations. Abe supervised many Ph.D.
and M.Sc. students; see Ávila [17], Prado [31], Da Silva Filho [24]. Ph.D. students
are as follows:

Ph.D. students

• Bráulio Coelho Avila (Computational Intelligence)
• José Pacheco de Almeida Prado (Computational Intelligence)
• João Inácio da Silva Filho (Automation and Robotics)
• João Carlos Almeida Prado (Computational Intelligence)

230 S. Akama

• Mauricio Conceicão Mário (Computational Intelligence)
• Cláudio Rodrigo Torres (Automation and Robotics)
• Marcelo Nogueira (Computational Intelligence)
• Fábio Vieira do Amaral (Computational Intelligence)
• Nélio Fernando dos Reis (Decision-Making)
• Cristina Corrêa de Oliveira (Computational Intelligence)
• Avelino Palma Pimenta Jr (Computational Intelligence)

Abe’s undergraduate courses were or are all introductory, having no prerequisites
and presupposing no previous knowledge. In each course he takes care making the
subject as attractive as possible with applications and/or possible applications.

Many of classes he used to teach playfully, explaining as detailed as possible.
Stressing the priority of education, Abe strives to assist his students to think by
themselves, that logic is awonderful tool to do that, to gain independenceof judgment.
Besides their classes were really good: once da Costa wrote in one of his letters of
recommendation that Abewas an excellent expositor. Alsomany of his students refer
to him as master who transform difficult topics to understandable ones.

Among courses that Abe has lectured trough years are: differential calculus, basic
algebra, linear algebra, numerical analysis, basic logic, basic non-classical logic,
introduction to set theory, matrix theory, basic mathematics, basic statistics, vec-
tors and geometry, computability theory, discrete mathematics, artificial intelligence,
intelligent information systems, among others.

Among graduate courses, Abe has lectured: expert systems in production engi-
neering, quantitative method in engineering, introduction to set theory, AI in bioin-
formatics, introduction to classical logic, introduction to non-classical logic, among
others.

Abeorganized (or co-organized) several international conferences includingLogic
Applied to Technology (LAPTEC) in 2000, 2001, 2002, 2003, 2005, 2007 (with J.I.
da Silva Filho in 2005, K. Nakamatsu in 2007) andWorkshop Intelligent Computing
Systems (WICS) in 2013, 2014, 2015.

He also served as a reviewer for scientific journals includingMathematica Japon-
ica (Editorial Board), Scientiae Mathematicae Japonicae (Editorial Board), Inter-
national Journal of Reasoning-based Intelligent Systems (Advisory Editor), Neuro-
computing, Mathematical Reviews.

12.3 General Description of Published Works

In this section, we briefly describe Abe’s work. He has engaged in the following
principal areas of research, namely:

1. Annotated logics
2. Artificial neural networks
3. Expert systems in decision-making

12 Jair Minoro Abe on Paraconsistent Engineering 231

4. Automation and robotics
5. Curry algebras
6. Annotated systems and fuzzy set theory
7. Nelson logics
8. Annotated modal systems
9. Annotated logic programming
10. Logic and biology
11. Logic and psychoanalysis

As above, Abe studiedmany applications of paraconsistent logics to several areas.
For a survey on applications to AI, see Abe [5].

Abe undoubtedly made important contributions to annotated logics [3, 21, 23],
which belong to paraconsistent logics. He was to carry out a systematic study of such
logics and was the first to write a dissertation on annotated logics. He established
foundations for annotated logics like basic theory of models, including the Łoś the-
orem [3, 9, 10]. Algebraic versions were also investigated providing, in particular,
completeness and decidability theorems.

For artificial neural networks [7] and their applications, he started with da Silva
Filho, and students, applying in aiding of Alzheimer’s disease diagnosis [26], the
craniometric variables analysis [27], in speech disorder, typed characters recognition,
and other issues [8].

For expert systems in decision-making,Abedevoted considerably in implementing
the annotated evidential Eτ paraconsistent logic in the matter of decision-making
applied by innumerous MSc students and Ph.D. dissertations [20].

Abe also worked on automation and robotics based on paraconsistent logics.
Namely, he developed with his students multiple robots resulted from the application
of logical controller Paracontrol: Emmy, Sofya, Amanda, Hephaestus, all of them
by using sensors of different types in order to and an electronic device for visual
and/or hearing impaired who named Keller [25].

Abe has applied the concept of Curry algebras [6] in order to obtain algebraic
versions not only for annotated logics, but also other class of paraconsistent and para-
complete systems. Abe has extended to first order monadic calculi of such systems
via ideas of Halmos concerning monadic algebras [12].

There are manyways to obtain annotated set theories. One way to do is “inside” of
some usual set theory (for instance, ZF-set theory) exactly as classical Fuzzy set the-
ory as did by Zadeh. Abe has studied in this direction and one its versions (annotated
set theory) encompasses Fuzzy Set theory [3, 21]. In collaboration to S. Akama, it
was possible to adapt annotated axiomatic to obtain some axiomatizations of versions
of fuzzy systems, showing the power of these systems [15].

Abe coauthored some papers with Akama in elucidating the operator “negation”
in several non-classical logics like Nelson logics which have been developed as
constructable systems by Nelson [30]. Akama, Abe and Nakamatsu proposed con-
structive discursive logics in [16].

232 S. Akama

Annotated modal systems can provide the basis for the paraconsistent, paracom-
plete and non-alethic reasoning, non-monotonic reasoning, defeasible reasoning,
deontic reasoning, other doxastic logics, temporal logics, muti-modal logics, among
others [4, 11, 14].

Nakamatsu and Abe have organized several invited sessions of several confer-
ences. Abe has also participated actively with Nakamatsu in his research themes
that lean on annotated logic programming, including defesiable deontic control sys-
tems [28, 29].

With the renowned entomologist N. Papavero, who became interested in the
axiomatization of biology, Abe worked in collaboration on the theme in various
aspects: firstly they considered Mereology as the basis of the issue, having as prim-
itive concept “is part of” (e.g., ‘the arm is part of the body’). Papavero and Abe also
considered set theoretical predicates for axiomatization (in the sense of Suppes [33])
and they have succeed in Cladistics, in the conception of W. Hennig.

Abe has given assistance for the study of Lacan’s proposal, aiding in the logical
concepts used on his books of the Seminar.

For books, Abe, Akama and Nakamatsu published a book “Introduction to Anno-
tated Logics” in 2015, which describes the theoretical basis of annotated log-
ics [13]. In the same year, Abe also edited a book “Paraconsitent Intelligent Based-
Systems” [8] entirely devoted to the applications of annotated systems. Abe, Akama
and Nakamatsu plan to write more books on application of paraconsistent systems.

Outside the academic sphere, Abe want mention his taste for classical music and
popular music. Like so many of his generation was influenced by various types of
music of his time, but it highlights his taste for American singer Johnny Mathis,
bossa nova rhythm, and pop music is 60s and oldies.

Abe also always liked pets (he’d had many of them through his life) that helped to
distract in his spare time and also cultivated photographs, interest in past times events.
Also he likes play regularly tennis and he regularly monitors major tournaments.

Acknowledgments I am grateful to Prof. Jair Minoro Abe for his valuable comments.

References

1. Abe, J.M.: Fundamentos da Geometria Ordenada (in Portuguese). MSc Thesis, University of
São Paulo, São Paulo (1983)

2. Abe, J.M.: Lógica e Paraconsistencia, em: Novo pacto da Ciência, pp. 185–191. A Crise das
Paradigmas, Anais, Escola de Comunicacão e Artes - USP (1991)

3. Abe, J.M.: On the Foundations of Annotated Logics (in Portuguese). Ph.D. Thesis, University
of São Paulo (1992)

4. Abe, J.M.: On annotated modal logic. Mathematica Japonica 40, 553–560 (1994)
5. Abe, J.M.: Some recent applications of paraconsistent systems to AI. Logique et Analyse 157,

83–96 (1997)
6. Abe, J.M.: Curry algebra Pτ . Logique et Analyse 161-162-163, 5–15 (1998)

12 Jair Minoro Abe on Paraconsistent Engineering 233

7. Abe, J.M.: Paraconsistent Artificial Neural Networks; An introduction. In: Carbonell, J.G.,
Siekmann, J. (eds.) Lecture Notes in Artificial Intelligence, vol. 3214, pp. 942–948. Springer,
Heidelberg (2004)

8. Abe, J.M. (ed.): Paraconsitent Inteligent Based-Systems. Springer, Heidelberg (2015)
9. Abe, J.M.,Akama, S.: Annotated logics Qτ and ultraproduct. Logique etAnalyse 160, 335–343

(1997) (published in 2000)
10. Abe, J.M., Akama, S.: On some aspects of decidability of annotated systems. In: Arabnia,

H.R. (ed.) Proceedings of the International Conference on Artificial Intelligence, vol. II, pp.
789–795. CREA Press (2001)

11. Abe, J.M., Akama, S.: Annotated temporal logics Δτ . In: Advances in Artificial Intelligence:
Proceedings of IBERAIA-SBIA, LNCS, vol. 1952, pp. 217–226. Springer, Berlin (2000)

12. Abe, J.M., Akama, S., Nakamatsu, K.: Monadic curry algebras Qτ . In: Knowledge-Based
Intelligent Information and Engineering Systems: Proceedings of KES 2007—WIRN 2007,
Part II, pp. 893–900, Lecture Notes on Artificial Intelligence, vol. 4693 (2007)

13. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg
(2016)

14. Akama, S., Abe, J.M.: Many-valued and annotated modal logics. In: Proceedings of the 28th
International Symposium on Multiple-Valued Logic, pp. 114–119, Fukuoka (1998)

15. Akama, S., Abe, J.M.: Fuzzy annotated logics. In: Proceedings of IPMU’2000, pp. 504–508,
Madrid, Spain (2000)

16. Akama, S., Abe, J.M., Nakamatsu, K.: Constructive discursive logic with strong negation.
Logique et Analyse 215, 395–408 (2011)

17. Ávila, B.C.: UmaAbordagem Paraconsitente Basea da emLogica Evidencial para Tratar Exce-
coes em Sistemas de Frames com Multipla Heranca (in Portuguese). Ph.D. Thesis, University
of São Paulo (1996)

18. Avila, B.C., Abe, J.M., Prado, J.P.A: ParaLog-e: A paraconsistent evidential logic program-
ming language. In: Proceedings of the 17th International Conference on the Chilean Computer
Society, pp. 2–8. IEEE Computer Society Press, Valparaiso (1997)

19. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68,
135–154 (1989)

20. Carvalho, F.R., Abe, J.M.: Tomadas de Decisão com Ferramentas da Lógica Paraconsistente
Anotada (in Portuguese), Editora Edgard Blucher Ltda (2011)

21. da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)

22. da Costa, N., Prado, J., Abe, J.M., Ávila, B., Rillo, M.: Paralog: Um Prolog paraconsistente
baseado emLogicaAnotada, ColecaoDocumentos, Serie Logica eTeoria daCiencia, IEA-USP,
n◦ 18 (1995)

23. da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic PT . Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)

24. Da Silva Filho, J.I.: Métodos de interpretação da Lógica Paraconsistente Anotada com ano-
tação com dois valores LPA2v com construção de Algoritmo e implementação de Circuitos
Eletrônicos (in Portuguese), Ph.D. Thesis, University of São Paulo (1999)

25. Da Silva Filho, J.I., Abe, J.M.: Emmy: a paraconsistent autonomous mobile robot. In: Abe,
J.M., Da Silva Filho, J.I. (eds.) Frontiers in Artificial Intelligence and its Applications, pp.
53–61. IOS Press, Amsterdam (2001)

26. Lopes, H.F.S., Abe, J.M., Anghinah, R.: Application of paraconsistent artificail networs as a
method of aid in the diagnosis of Alzheimer disease. J. Med. Syst. 1–9 (2009)

27. Mario, M.C., Abe, J.M., Ortega, N., Jr, Del Santo, M.,: Paraconsistent neural network as
auxiliary in cephalometic diagnosis. Artif. Org. 34, 215–221 (2010)

28. Nakamatsu, K., Abe, J.M., Suzuki, A.: Annotated semantics for deefeasible deontic reason-
ing, pp. 470–478. Rough Sets and Current Trends in Computing, Lecture Notes in Artificial
Intelligence series (2000)

29. Nakamatsu, K., Abe, J.M., Akama, S.: Intelligent safety verification for pipeline process order
control based on bf-EVALPSN. In: ICONS 2012: The Seventh International Conference on
Systems, pp. 175–182 (2012)

234 S. Akama

30. Nelson, D.: Constructible falsity. J. Symb. Logic 14, 16–26 (1949)
31. Prado, J.P.A.: Uma Arquitetura em IA Basea da em Logica Paraconsistente. Ph.D. Thesis,

University of São Paulo (2006)
32. Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceedings of the 4th

IEEE Symposium on Logic Programming, pp. 173–182 (1987)
33. Suppes, P.: The axiomatic method in empirical science. In: Henkin, L. (ed.) Proceedings of the

Tarskian Symposium, pp. 465–479. American Mathematical Society (1974)

	Foreword
	Preface
	Contents
	Contributors
	1 Introduction
	1.1 Backgrounds
	1.2 About This Book
	References

	2 Why Paraconsistent Logics?
	2.1 Introduction
	2.2 History
	2.3 Approaches to Paraconsistent Logic
	2.4 Other Paraconsistent Logics
	References

	3 An Application of Paraconsistent Logic to Physics: Complementarity
	3.1 Introduction
	3.2 mathcalC-theories
	3.3 The Logic of mathcalC-theories
	3.4 The Paralogic Associated to a Logic mathcalL
	3.5 More General Complementary Situations
	3.6 Final Remarks
	References

	4 Two Genuine 3-Valued Paraconsistent Logics
	4.1 Genuine Paraconsistent Negation
	4.2 Two Genuine Three-Valued Paraconsistent Logics
	4.3 Basic Properties of SP3A and SP3B
	4.3.1 Conjunction and Disjunction
	4.3.2 Laws of Negations that SP3A and SP3B Do Not Obey
	4.3.3 Excluded Middle
	4.3.4 Double Negation
	4.3.5 De Morgan Laws
	4.3.6 Definition of a Classical Negation

	4.4 Comparison with da Costa Paraconsistent Logics C1 and C1+
	4.4.1 Replacement Theorem

	4.5 Comparison Table Between SP3A and SP3B
	References

	5 A Survey of Annotated Logics
	5.1 Introduction
	5.2 Propositional Annotated Logics Pτ
	5.3 Predicate Annotated Logics Qτ
	5.4 Curry Algebras
	5.5 Formal Issues
	5.6 Conclusions
	References

	6 Paraconsistent Artificial Neural Network for Structuring Statistical Process Control in Electrical Engineering
	6.1 Introduction
	6.1.1 Statistical Process Control SPC
	6.1.2 SPC Analysis

	6.2 Paraconsistent Logic (PL)
	6.2.1 Paraconsistent Annotated Logic (PAL)

	6.3 Paraconsistent Artificial Neural Network (PANNet)
	6.3.1 Paraconsistent Artificial Neural Cell of Learning (LPANCell)

	6.4 Computational Structure PAL2v for Simulating SPC
	6.4.1 Extractor Block of Degrees of Evidence from z-Score
	6.4.2 Extractor Block of Moving Average
	6.4.3 Block Comparator of Electrical Energy Quality Score
	6.4.4 Operation of the Extractor Block of Evidence Degrees from z-Scores
	6.4.5 Operation of the Extractor Block of Moving Average
	6.4.6 Operation of Block Comparator of Electric Energy Quality Score

	6.5 Results
	6.6 Conclusions
	References

	7 Programming with Annotated Logics
	7.1 Introduction
	7.2 Paraconsistent Annotated Logic Program
	7.2.1 Paraconsistent Annotated Logic PcalT
	7.2.2 EVALPSN (Extended Vector Annotated Logic Program with Strong Negation)

	7.3 Traffic Signal Control in EVALPSN
	7.3.1 Deontic Defeasible Traffic Signal Control
	7.3.2 Example and Simulation

	7.4 EVALPSN Safety Verification for Pipeline Control
	7.4.1 Pipeline Network
	7.4.2 Pipeline Safety Property
	7.4.3 Predicates for Safety Verification
	7.4.4 Safety Property in EVALPSN
	7.4.5 Process Release Control in EVALPSN
	7.4.6 Example

	7.5 Before-After EVALPSN
	7.5.1 Before-After Relation in EVALPSN
	7.5.2 Implementation of Bf-EVALPSN Verification System
	7.5.3 Safety Verification in Bf-EVALPSN

	7.6 Reasoning in Bf-EVALPSN
	7.6.1 Basic Reasoning for Bf-Relation
	7.6.2 Transitive Reasoning for Bf-Relations
	7.6.3 Transitive Bf-Inference Rules

	7.7 Conclusions and Remarks
	References

	8 A Review on Rough Sets and Possible World Semantics for Modal Logics
	8.1 Introduction
	8.2 Modal Logics
	8.2.1 Language
	8.2.2 Possible World Semantics for Modal Logics

	8.3 Rough Sets
	8.3.1 Pawlak's Rough Set
	8.3.2 Variable Precision Rough Set
	8.3.3 Properties of Lower and Upper Approximations

	8.4 Connections Between Rough Sets and Modal Logics
	8.4.1 Pawlak Approximation Spaces as Kripke Models
	8.4.2 Possible World Semantics with Variable Precision Rough Sets

	8.5 Related Works
	8.6 Conclusion
	References

	9 Paraconsistency, Chellas's Conditional Logics, and Association Rules
	9.1 Introduction
	9.2 Chellas's Conditional Models and Their Measure-Based Extensions for Conditional Logics
	9.2.1 Standard and Minimal Conditional Models
	9.2.2 Measure-Based Extensions

	9.3 Paraconsistency and Paracompleteness in Conditionals
	9.3.1 Modal Logic Case
	9.3.2 Conditional Logic Case

	9.4 Paraconsistency and Paracompleteness in Association Rules
	9.4.1 Association Rules
	9.4.2 Measure-Based Conditional Models for Databases
	9.4.3 Association Rules and Graded Conditionals
	9.4.4 Paraconsistency and Paracompleteness in Association Rules

	9.5 Dempster-Shafer-Theory-Based Confidence
	9.5.1 D-S Theory and Confidence
	9.5.2 Multi-graded Conditional Models for Databases
	9.5.3 Two Typical Cases
	9.5.4 General Cases

	9.6 Concluding Remarks
	References

	10 A Beautiful Theorem
	10.1 Prologue
	10.2 Theme
	10.3 Theme and Variations
	10.4 The O'Donnell Algorithm
	10.5 Almost Maymin--Efficient Markets
	References

	11 Temporal Logic Modeling of Biological Systems
	11.1 Introduction
	11.2 A Simple Classical Example
	11.3 Fundamental Operations
	11.4 Molecular Interaction Logic
	11.4.1 MIL Semantics

	11.5 Translating Molecular Interaction Logic into Linear Time Temporal Logic
	11.5.1 From MIL to LTL

	11.6 Temporal Reasoning
	11.6.1 Completion Axioms
	11.6.2 Graphs as Splittable Temporal Logic Programs
	11.6.3 Grounding Splittable Temporal Logic Programs

	11.7 Reasoning and Solving
	11.7.1 A Simple Example
	11.7.2 From Temporal Reasoning to Classical Propositional Tools
	11.7.3 Expressing Complex Queries

	11.8 Implementation
	11.9 Conclusion
	References

	12 Jair Minoro Abe on Paraconsistent Engineering
	12.1 Introduction
	12.2 Biographical Information
	12.3 General Description of Published Works
	References

