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Abstract Computer simulated experiments (CSEs) have been extensively used to
explore the relationship between input variables and output response in science and
engineering applications. Normally, CSE process is time consuming and compu-
tationally expensive to run and the output response from computer simulated
experiments is deterministic. Consequently the space filling designs, which focus
on spreading design points over a design space, are necessary. Latin hypercube
designs (LHD) are widely used in the context of CSE. The optimal LHD for a given
dimension of problem is constructed by using search algorithms under pre-specified
optimality criteria. This paper proposes the methods to enhance the performance of
search algorithms which have been widely used in the context of CSE. The results
indicate that the proposed enhancement method can improve the performance of the
search algorithms for constructing the optimal LHD.

Keywords Optimal designs ⋅ Search algorithm ⋅ Computer simulated experi-
ments ⋅ Latin hypercube design

1 Introduction

In the past three decades, computer simulated experiments (CSE) have replaced
classical experiments to investigate physical complex phenomena, especially when
classical (physical) experiments are not feasible. For example, the use of reservoir
simulator to predict ultimate recovery of oil, the use offinite element codes to predict
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behavior of metal structure under stress, and so on [1]. The nature of computer
simulated experiments is deterministic [2]; hence identical settings of input variables
always produce an identical set of output response. Consequently, space filling
designs that aim to spread the design points over a region of interest are required. The
most popular class of space filling design in the context of computer simulated
experiments is latin hypercube design (LHD). LHDdesignwas originally proposed by
Mckay and co-workers [3] in 1979. The optimal LHD can be constructed through
combinatorialmethods (non-search algorithm) [4] or through search algorithms [5, 6].
The former method generates design with good design properties but it is restricted in
terms of a design size. For example methods proposed by Butler [4] are limited to a
design size of a prime number. The latter method is based largely on improving design
by exchanging between the pairs of design points. Exchange algorithms can be time
consuming to implement, however, the generated design are flexible and straight-
forward. The CSEs are usually complex and consist of many input variables to
investigate [7] and hence a large number of design runs are required to estimate the
parameters corresponding to the factors of interest in the model. For example, if the
problem of interest consists of d input variables and n number of runs, the total number
of all possible LHD is ðn!Þd. Obviously this number explodes exponentially as the
values of n and d increase; hence the full space of LHD cannot be explored. In this case
we need search algorithms to lead us to a good design with respect to an optimality
criterion. The key idea of all existing search algorithms is to use some kinds of
exchange procedures to move towards the better designs.

The search based approach for selecting a design is implemented by combining
search algorithms and the optimality criterion [8]. For example, Morris and Mitchell
[5] adopted a version of Simulated Annealing algorithms (SA) to search for optimal
LHDs with respect to ϕp criterion. Li and Wu [8] proposed a columnwise-pairwise
algorithm (CP)with respect to theD efficiency criterion. It was reported that CP is very
simple and easy to implement. Ye and his co-workers [6] adapted CP algorithm to
search for symmetric LHD under various optimality criteria such as entropy and ϕp

criteria. Park [9] proposed a row-wise element exchange algorithm along with IMSE
and entropy criteria. Leary et al. [10] adapted CP and SA algorithms to construct the
optimal designs within the orthogonal-array based Latin hypercube class by using the
ϕp criteria. Jin et al. [11] developed an enhanced stochastic evolutionary algorithm
(ESE) to search for the best design considering various optimality criteria such as a
maximin distance criterion, ϕp criterion and entropy criterion. ESE has received wide
attention from researchers due to its performance in constructing the optimal LHD.
Liefvendahl and Stocki [12] applied a version of Genetic algorithm (GA) to search for
the optimal LHD consideringϕp and amaximin distance criterion. A similar work can
be found in [13] as the authors applied GA for constructing maximin designs. Grosso
et al. [14] used the iterated local search algorithm and SA in constructing the optimal
LHD under maximin distance and ϕp criterion. Vianna et al. [15] proposed the
algorithm for fast optimal LHD by using the idea of seed design under maximin
distance andϕp criterion. Husslage andRennen [16] proposed themethod to construct
the optimal LHD using different starting points. Due to the popularity of SA and ESE
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along with ϕp criteria, this paper presents the enhancement method to improve the
capability of SA and ESE under ϕp criterion. In the following sections, we describe
designs and optimality criteria, followed by search algorithms and its modification,
results and conclusion, respectively.

2 Latin Hypercube Design and Optimality Criteria

2.1 Latin Hypercube Design

LHD is a matrix (X), which obtains n rows and d columns where n is the number of
runs and d is the number of input variables. LHD can be constructed based on the
idea of stratified sampling, which can ensure all subregions in the space are sampled
with equally probability. A Latin hypercube sampling has

Xij =
πij −Uij

n
, ð1Þ

where πi1, πi2, . . . , πid are independent random permutation of (1, 2, …, n) and Uij

are n x d values of i.i.d. uniform U[0,1] random variables independent of the πij. In
practice, LHD can be easily generated by a random permutation of each column
which contains the levels (1, 2 ,…, n). Then the d columns are combined together to
form the design matrix X. LHD can ensure uniform coverage of each input variable
from a different single dimension. This shows a benefit of LHD on deterministic
computer experiments.

2.2 The ϕP Optimality Criterion

Morris and Mitchell [5] proposed a modification of maximin distance criterion to
search for the optimal design. For a given design X, the Euclidean intersite distance
between any two design points can be calculated from

dðxi, xjÞ= ∑
d

k=1
ðxik − xjkÞ2

� �1 t̸

ð2Þ

By using (2), all intersite distances for every pairs of design points are calculated
and can be expressed in a symmetric matrix. Let Euclidean distance list
d1, d2, . . . , dm be the distinct elements list from the smallest to largest, and also
define index list ðJ1, J2, . . . , JmÞ which Jj is the number of pairs of sites in the design
separated by distance dj. Thus X is a maximin design if among available designs, it
maximizes dj while Jj is minimized. The scalar criterion can be expressed as
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ϕp = ½∑
m

j=1
Jjd

− p
j �, ð3Þ

where p is a positive integer, Jj and dj specified from X. In this study, the adaptive
form of ϕp [11] which is simpler than (3) to implement is considered

ϕp = ∑
n− 1

i=1
∑
n

j= i+1

1
dpij

" #1
p

ð4Þ

After ϕp value has been calculated, a design that minimizes ϕp is considered as
an optimal design.

3 Search Algorithms

There are many search algorithms for constructing optimal LHD. This section will
firstly discuss two search algorithms Stimulated Annealing (SA) and Enhanced
Stochastic Evolutionary (ESE), and then explain how to modify and improve each
algorithm for better efficiency.

3.1 Simulated Annealing (SA) Algorithm

SA is based on the analogy between the simulation of annealing solids and the
problem solving of large combinatorial optimization problems [9]. Morris and
Mitchell [5] adapted SA to construct optimal LHD using ϕp optimality criterion.
LHD minimizing ϕp value is reserved as the best optimal LHD in the search space.
The entire process can be described in Algorithm 1.
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SA performs searching by obtaining a new LHD (Xtry) via randomly
element-exchange and update X with a better LHD or a worse LHD with satisfying
probability, then update Xbest with a better LHD. The probability of accepting a
worse design is controlled by a value of temperature t, a chance of worse LHD
acceptance decreases by a cooling system (t = t * Ct). SA has several parameters
such as t0, Imax and Ct. The discussion of setting SA parameters for LHD con-
struction and how well SA can perform in terms of moving away from a local
optimum value of ϕp can be seen in [5]. In this study, we use a heuristic method to
find the best set of parameters to use in SA as presented in [17].

This paper focuses on improving the efficiency of SA to construct optimal LHD.
From Eq. (4), it can be obviously seen that time for ϕp calculation mainly depends
on the number of run (n), hence it is approximate to the Euclidean distance matrix
calculation (n2). The search process takes a long time mainly because of ϕp cal-
culation. Jin et al. [11] has proposed an optimized way to calculate ϕp when
element-exchange is assigned to LHD. The element-exchange is a swap operation
between two selected points. Hence, when exchanging points between rows i1 and
i2 within column k ðxi1k ↔ xi2kÞ, only elements in rows i1 and i2, and columns i1 and
i2 in the distance matrix are changed. The ϕp of LHD after element-exchange can be
calculated with a linear time as follows.

For any 1 ≤ j ≤ n and j ≠ i1, i2 let

sði1, i2, k, jÞ= xi2k − xjk
�� ��t − xi1k − xjk

�� ��t ð5Þ

then

d′i1j = d′ji1 = dti1j + sði1, i2, k, jÞ
h i1 t̸

ð6Þ

and

d′i2j = d′ji2 = dti2j + sði1, i2, k, jÞ
h i1 t̸

ð7Þ

Thus new ϕp is computed by

ϕ′

p =

ϕp
p + ∑

1≤ j≤ n, j≠ i1, i2
ðd′i1jÞ− p − ðdi1jÞ− p
h i

+

∑
1≤ j≤ n, j≠ i1, i2

ðd′i2jÞ− p − ðdi2jÞ− p
h i

2
664

3
775
1 p̸

ð8Þ

As shown in (5)–(8), when performing element exchange, only some rows and
columns will be updated, hence there is no need to reconstruct the entire distance
matrix to calculate ϕp, hence the complexity of ϕp calculation reduces to a linear
time. Therefore, after this modification, the modified SA (MSA) performs effec-
tively by reducing time complexity especially in ϕp calculation.
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3.2 Enhanced Stochastic Evolutionary (ESE) Algorithm

Jin et al. [11] proposed an algorithm called enhanced stochastic evolutionary
(ESE) to construct an optimal design for CSE. The algorithm performs searching in
2 steps, a local search called inner loop and updating a global best and fine tuning
probability of accepting a worse design called outer loop. The inner loop performs a
local search by constructing a set of LHD and selecting the optimal LHD from the
set. The set contains J LHDs formed by element-exchanging at column i mod d of
X. If the selected design is better or not better but has good enough probability then
the local optimal design (X) will be updated.
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From Algorithm 2, the inner loop performs in 4–7, and repeats with the maxi-
mum loop (M). The Xbest and X are updated with the acceptance criteria. The outer
loop controls the process by updating the value of temperature Th. Unlike SA, the
process of updating the temperature (Th) is not fixed, but is controlled by the
performance of searching in terms of the inner loop improvement by the number of
improvement (nimp) and number of acceptance (nacpt). There are two processes of
updating Th called improving process and exploration process. The process is
described in 9, when Xbest get improved in the inner loop and better than the
previous best design (Xold_best), the improving process is active otherwise explo-
ration process is active.

In improving process (flagimp = 1), Th is adjusted based on the performance in a
local best LHD search by considering an acceptance ratio (nacpt/M) and the
improvement ratio in (nimp/M), β1 and β2 are cutting point values for updating Th,
where 0 < β1 < 1. Jin et al. [4] recommended β1 to be 0.1. If the improvement ratio
is greater than β1, Th is increased by α1 (Th = Th/α1), else if the improvement ratio
is lower than the acceptance ratio Th is decreased by α1 (Th = Th * α1), otherwise
unchanged, where 0 < α1 < 1 and α1 = 0.8 as suggested by Jin et al. [4].

In exploration process (flagimp = 0), when a local best LHD performs worse, Th
is adjusted to help a search process moving away from a local optimal design by
considering only the accept ratio. If the acceptance ratio is between β1 and β2 where
0 < β1 < β2 < 1, Th is increased by α2. If the acceptance ratio is greater than β2, Th
is decreased by α3, where 0 < α2 < α3 < 1, α2 = 0.9 and α3 = 0.7, Th is rapidly
increased, this means more worse designs could be accepted, then Th is decreased
slowly for searching better design after moving away from a local optimal design.
Jin et al. [11] recommended 0.1 for β1 and 0.8 for β2.

3.3 Modified Enhancement of Stochastic Evolutionary
(MESE)

This section we present the enhancement method on ESE. The modified version is
called MESE. We combine the advantage of SA (i.e. local search process) and the
advantage of ESE (i.e. global search process) to improve the search process. MESE
still contains 2 nested loops. The outer loop is similar to ESE except a stopping rule
and a new variable Xgbest to record the best so far LHD, while the inner loop is
modified as describe in Algorithm 3. The maximum number of cycles used is
replaced by the following condition. If Xbest is not improved from the global best
design (Xgbest) for δ consecutive times, the search process is terminated. In this
study, we set δ = 40 [6].

We have modified ESE by combining a part of SA into the modified ESE
(MESE). Algorithm 3 explains this modification.
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In Algorithm 3, the major enhancement was made in the inner loop; the mod-
ification is on 4–6 and 7. Instead of generating J distinct LHDs at one time and
select the best one, we modify it by constructing one LHD (Xtmp) at a time and keep
the best one (Xtry) for J iterations. This change can decrease the computational time
complexity since we keep the optimal LHD while generating it, instead of obtaining
the entire distinct J LHDs and deciding the most optimal one. In this study the
parameters J is set to be nC2/5 but not larger than 50, and the parameter M is in a
range of 2 * nC2 * d/J ≤ M ≤ 100. The tolerance level (tl) is set to 0.0001, from
the empirical study, the smaller value does not improve the search process.
Cmax = d * 10 + 10 and Max = 40. All simulation studies presented in this paper
were performed using R program.

4 Result and Discussion

The values of ϕp at the termination step of MSA, ESE and MESE for each
dimension of problems are presented in Table 1. Each case was repeated for 10
times to consider the effect of different starting points. The descriptive statistics
(max, min, mean and sd.) on the ϕp values obtained from each search technique are
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presented. The results indicate that MSA, ESE and MESE perform similarly for
small dimension of problem (i.e. d = 2 and 3) in terms of minimization of ϕp.
Further, the standard deviation values displayed a slightly larger amount of varia-
tion over 10 replications in ESE and MESE than that of MSA. This indicates the
consistency in the search process for MSA when different starting points are con-
sidered. When considering medium dimension of problems (i.e. d = 7, 8 and 10),
ϕp values from ESE and MESE are slightly lower than MSA. In addition, the
standard deviation values obtained from ESE and MESE are smaller than MSA.
This indicates that the search process of ESE and MESE is more consistent when
the search space is larger. For large dimensions of problem (i.e. d = 10 and 15),
both of ESE and MESE perform better than MSA while MESE is slightly better
than ESE in terms of minimization of ϕp values. Hence if the goal is concerned with
a good space filling design property, either ESE or MESE can be used for con-
structing the optimal LHD.

The results of the performance (efficiency) for MSA, ESE and MESE algorithms
are presented in terms of time and number of exchanges for each algorithm to reach
the optimal ϕp values, as shown in Table 1. As mentioned before, for each
dimension of problems the search algorithms are repeated for 10 times, hence all

Table 1 Performance of MSA, ESE and MESE

ϕp Time (s.) No. exchange

n × d method max min mean sd. average average

9 × 2 MSA 4.273538 4.273538 4.273538 1.48E-12 16.140 47044.7

ESE 4.344617 4.273538 4.301970 0.034821 2.854 5760.0

MESE 4.344617 4.273538 4.294007 0.031286 1.972 5644.8

19 × 3 MSA 4.936365 4.898022 4.916390 0.013472 103.194 140022.5

ESE 4.935001 4.901203 4.922769 0.010908 53.183 41040.0

MESE 4.958163 4.914072 4.926576 0.011805 30.942 42160.0

99 × 7 MSA 5.756299 5.750880 5.753385 0.001473 769.902 193111.8

ESE 5.745721 5.740989 5.742462 0.001387 954.711 200000.0

MESE 5.745267 5.740459 5.742109 0.001577 800.993 199865.0

129 × 8 MSA 5.904712 5.901620 5.902779 0.000759 1070.692 201891.2

ESE 5.891672 5.887732 5.889600 0.001383 1217.445 200000.0

MESE 5.891365 5.888284 5.890195 0.001029 1063.358 200000.0

201 × 10 MSA 6.182737 6.179070 6.181468 0.001015 1905.174 218859.0

ESE 6.164494 6.162494 6.163368 0.000648 1885.965 200000.0

MESE 6.164341 6.161576 6.163364 0.000721 1717.370 200000.0

451 × 15 MSA 6.777918 6.775912 6.777281 0.000589 5338.902 231194.8

ESE 6.754473 6.753710 6.754034 0.000220 4646.026 200000.0

MESE 6.754603 6.753482 6.753898 0.000321 4404.563 200000.0

801 × 20 MSA 7.274153 7.272498 7.273293 0.000546 11892.890 251293.7

ESE 7.248591 7.247829 7.248093 0.000262 9035.538 200000.0

MESE 7.248234 7.247825 7.248006 0.000136 8880.095 200000.0
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values are presented as the average values. It can be clearly seen that MESE con-
verges much faster than ESE and MSA as the time elapsed is less than that of ESE
and MSA. When considering the number of exchange required in the search process,
it is observed that number of exchange in MESE is less than the other two algo-
rithms. The similar results are also observed in the case of medium and large
dimension of problems as MESE converges much faster than MSA while it performs
slightly better than ESE. This indicates that if time constraint is taken into account,
MESE could be the better choice for constructing the optimal LHD designs.

5 Conclusion

This paper presents the method to enhance the SA and ESE algorithms in the
construction of the optimal LHD. The major enhancement method appears in
the calculation of ϕp criterion and the tolerance level setting in SA. For MESE, the
enhancement is applied by using the combination of SA and ESE especially in the
inner loop as shown in Algorithm 3. As presented in the result section, MESE
performs better than ESE and MSA in terms of the design property achievement
and the efficiency. Hence MESE would be recommended for the construction of
optimal LHD for CSE. In order to extend the conclusion, other classes of design can
be developed and collaborated with MESE to search for the best design in the class.
Further, other types of search algorithm like Particle swarm optimization (PSO) or
any type of clever algorithms can be further developed in constructing an optimal
LHD. The validation of the approximation model accuracy developed from the
obtained optimal LHD could also be further investigated in order to explore the
relation of space filling property and prediction accuracy of the model.
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