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Abstract Several new vaccines have the characteristic of being “imperfect” that is
their protection wanes over time and supplies only partial protection from infection.
On the other hand recent research has shown that the agents’ behavioral responses
have the potential to dramatically affect the dynamics and control of infections. In
this paper we investigate, for a simple susceptible-infective-susceptible (SIS) infec-
tion, the dynamic interplay between human behavior, in the form of an increas-
ing prevalence-dependent vaccine uptake function, and vaccine imperfections. The
mathematical analysis of the ensuing SISV model shows a complexly articulated
bifurcation structure. First, the inclusion of the simplest possible hypothesis about
vaccination behavior is capable to trigger, in appropriate windows of the key parame-
ters, phenomena of multistability of endemic states. Second, as far as the stability of
the disease-free equilibrium is concerned, the model preserves the backward bifurca-
tion which is characteristic of SIS-type infections controlled by imperfect vaccines.

Keywords Vaccination · Behavior · Multistability · Epidemic models · Transmis-
sion dynamics · Backward bifurcation

1 Introduction

Multistability, i.e. the presence of multiple co-existing locally stable equilibria, is a
critical concept in nonlinear dynamics, which has numberless and deep implications
in biology andmedicine. Twofields of biomedicinewhere this concept is increasingly
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gaining prominent are immunology andmolecular biology. In the latter, in particular,
the word bistability has became of quite common use also among experimental
scientists.

For several decades the vast majority of mathematical epidemiology research
has focused on monostable systems, and on their well-known paradigm that can be
summarized as follows: there is an appropriate threshold parameter, often termed the
reproduction number (RN) of the model, such that if the RN is smaller than one then
the disease-free equilibrium (DFE) is unique and globally attractive, whereas if the
RN it is larger than one then the DFE is unstable and a unique endemic equilibrium
(EE) appears. Most often the EE is also globally attractive, in other cases, though
far less frequently, it is surrounded by self-sustained oscillations [18].

In last twenty years, however, it has been shown that certain feedback loops,
such as those stemming from vaccine imperfection or waning, may complicate this
scenario since they may induce the onset of bistability through so called “backward
bifurcations” (BB). This type of bifurcation is typically characterized as follows:
there is a value b ∈ (0, 1) such that, although the DFE is locally asymptotically
stable (unstable) for RN < 1 (RN > 1), nevertheless for values of the RN in the
interval (b, 1) there are two endemic equilibria: one unstable and the other one locally
stable. Therefore, for b < B RN < 1 bistability occurs, with the birth at RN = b of
an endemic equilibrium that co-exists with the stable DFE. Note that for RN > 1 the
DFE still exists but becomes unstable. This makes the BB deeply different from the
more known hysteresis bifurcation, where there never is the coexistence of an even
number of equilibria. Backward bifurcations have been found initially in a number
of simple epidemic models [8, 16, 22, 23], in particular in models for infections
without immunity, as the susceptible-infective-susceptible (SIS) model, when the
vaccine is imperfect [23]. There is evidence that the phenomenon is also frequent in
more realistic models, so that BB are also becoming important, due to their negative
implications for infection elimination, from the public health viewpoint [20].

Classical epidemiologicalmodels are built upon some foundingprinciples, namely
the law of mass action of statistical mechanics, which is used to model at once social
contacts between individuals and infection transmission. Though critical in promot-
ing the take off of mathematical epidemiology as a discipline, the law of mass action
is a gross simplification or reality whereby individuals entering into social contacts
are represented as “collisions” between the particles of a perfect gas. This in turn
implies that social contacts and transmission parameters are dealt with as “universal
constants” which are therefore unaffected by e.g. the states of the infection and the
disease. Said otherwise, individuals would continue to come into contact at the same
rate, irrespective of how low or high is the risk of acquiring the infection, or of dying
from it, that they might perceive from the available information on current and past
infection prevalence and seriousness. The idea that human behavior is static is far
distant from the reality and constitutes one of the strongest limitation of traditional
epidemiological models. By their intimate nature, human beings are neither static nor
passive. Changes in humans’ behavior in response to infection threats are indeedwell
documented already in outbreaks in historical epochs (where however they mostly
occurred in the form of community-enforced measures), but seem to be a rule ([15]
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and references therein) in current societies, possibly stemming from the continued
progress of scientific knowledge on diseases and communications technologies [6].
Modern individuals can therefore spontaneously change in a complicatemanner their
social behavior in response to a pandemic threat, as well documented for the 2009
H1N1 pandemics [15], or can shift their sexual activity towards partners that are
perceived as being as less-at-risk in response to news about a threatening STI [21].
But they might also decide not to vaccinate their children after having compared
perceived costs and benefits of a vaccination program, or to stop vaccinating after
a rumour, thereby threatening the success of the program, as it has been the case
for the pertussis whole-cell vaccine scare, and the persistent decline in MMR vac-
cine coverage in the UK due to the alert for the suspected relation between MMR
and autism ([6] and references therein). From the latter standpoint human behavior
is representing an increasing challenge not only for modelers but also for public
health policies. Indeed, depending on not-easy-to-predict circumstances, the effects
of human behavior on infection dynamics can range—and switch—from policy-
enforcing to policy-threatening [7].
The importance of human behavior for the understanding of infection dynamics
and for the development of resilient policy interventions has led in the last fifteen
years to the take-off of the new branch that we termed the behavioral epidemiology
(BE) of infectious diseases [6]. A major area of current behavioral epidemiology
of infections deals with immunization choices, particularly in relation to childhood
vaccine preventable infections. This interest in motivated not only by the aforemen-
tioned vaccine crises related to the big “vaccine scares” but also by the dramatically
changed context of mass immunization in modern societies. This epochal change is
the consequence of decades of successful mass immunization against traditionally
threatening infections, within the overall changed landscape of infectious diseases in
industrialized countries, due to the continued success of man in controlling diseases
threats thanks to medical progress [6]. A major implication of these successes is
for example the full overturning of perceived risks [28], with the perceived risk of
vaccine adverse events becoming the major determinant of vaccination [12].

After a few forerunners [6, 17, 19], the last epoch has seen an explosion of studies
of the interplay between the diffusion of information about perceived risks due to the
infection on the one hand, and risks of vaccine adverse events on the other hand, and
the infection dynamics and control. These investigations have resorted to a variety
of different approaches, either “behavior implicit” or “behavior explicit” based e.g.
on game-theoretic or other representations of behavior, to unfold the complicate
relationship between human choices and infection control (e.g. [3–5, 10–14, 24–27,
29, 30] and references therein).

However, in this fast growing literature on the behavioral epidemiology of vac-
cination no studies have investigated, to the best of our knowledge, the dynamic
implications of vaccinating behavior within the framework of models for imperfect
vaccines showing backward bifurcations. Given the peculiar role played by vaccine
characteristics in promoting or not BBs, it is of interest to investigate whether the
interplay between vaccinating behavior and imperfect vaccines might trigger further
interesting dynamic phenomena.
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In this paper we study a model including a simple behavioral assumption about
vaccination within one of the simplest framework capable to yield a backward bifur-
cation, namely the SISmodel with imperfect vaccination (SISV) byKribs-Zaleta and
Velasco-Hernandez [23]. In particular vaccinating behavior is incorporated follow-
ing the “behavior implicit” [6], phenomenologically-based, formulation proposed in
[10] where the vaccine uptake at birth is specified as an increasing function of current
infection prevalence.

2 The SISV Model with Prevalence-Dependent Vaccine
Uptake and Its Disease-Free Equilibrium

The modelling framework considered is that of a stationary and homogeneously
mixing population where an infection without immunity can be controlled by immu-
nization at birth (instead than [23] who considered vaccination at constant rate).
The vaccine is assumed to be “imperfect” i.e. protection wanes over time and more-
over vaccinated subjects can acquire infection, though at a reduced rate compared
to fully susceptible individuals. Vaccination is assumed to be voluntary according to
a prevalence-dependent schedule p(I ) ∈ [0, 1], where I denotes the relative infec-
tion prevalence and p an increasing function with p(0) ≥ 0. This formulation [10]
amounts to assume that parents decide to vaccinate or not their children depending
on the perceived risk of infection, possibly measured by the publicly available cur-
rent information on infection prevalence. Though oversimplified, because behavior-
implicit, this model can be shown to be consistent with more refined behavioral
schemes, for example with a prevalence-dependent behavior-explicit vaccination
schedule based on an imitation process [4], provided the social spread of behavior is
fast compared to other processes [13]. These hypotheses yield the following SISV
model:

S′ = μ(1 − p(I )) − μS − β I S + γ I + θV,

I ′ = I (β(S + σ V ) − (μ + γ )) , (1)

V ′ = μp(I ) − σβ I V − (μ + θ)V

where: S, I, V , S + I + V = 1, respectively denote the fractions of susceptible,
infective, and vaccinated individuals, μ denotes both the death and birth rates (taken
equal to ensure that the population remains stationary over time), β the transmission
rate for naive susceptibles, σβ (0 < σ < 1) the reduced transmission rate for vacci-
nated subjects, γ the rate of recovery from infection, θ the vaccine waning rate. By
the equality S + I + V = 1 one of the model equations can be eliminated yielding
a 2-dimensional system. Using S = 1 − (I + V ) we get:

I ′ = β I (pcr − I − (1 − σ)V ) , (2)

V ′ = μp(I ) − (μ + θ + σβ I )V (3)
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In (2) the constant pcr is the critical immunization threshold [1] for infection
elimination by a (hypothetical) perfect vaccine, in absence of behavioral effects:

pcr = 1 − 1

R0

where R0 = β/(μ + γ ) denotes the basic reproduction number of the infection,
representing the number of secondary infections caused by a single infective case in
a wholly susceptible population (therefore in the absence of any immunization).

As a preliminary step, note that from the differential inequality

I ′ ≤ β I (pcr − I )

it is trivial to show that it asymptotically holds:

0 < I (t) < pcr .

Thus in the following we shall study system (2) and (3) in the set

A = {(I, V )|I ∈ [0, pcr ] AN D(V, I ) ≥ (0, 0) AN D I + V ≤ 1}

System (2) and (3) always admits the following disease free equilibrium (DFE):

DF E =
(
0,

μ

μ + θ
p(0)

)
.

Alinearization of system (2) and (3) straightforwardly yields that the local asymptotic
stability (LAS) of the DFE is governed by the equation:

i ′ = βi

(
pcr − (1 − σ)

μ

μ + θ
p(0)

)
.

This means that the DFE will be LAS if the following condition holds:

p(0) > pcr
1

1 − σ

(
1 + θ

μ

)
, (4)

which can also be reformulated as RV < 1 where RV is the vaccine reproduction
number:

RV = R0
θ + μ(1 − p(0)) + σμp(0)

θ + μ
, (5)

Condition (4) states that the local stability of the DFE requires that the “zero-
prevalence” vaccine uptake, i.e. the vaccine uptake that spontaneously arises under
conditions of minimal perceived risk of infection, must exceed the critical
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elimination threshold pcr by a factor (1 − σ)−1(1 + θ/μ). Note that this factor is
increasing in both parameters (σ and θ ) tuning the degree of “imperfection” of the
vaccine. Suppose now that the average length of vaccine-induced immunity (θ−1)
is significantly smaller than the average lifespan μ−1. In such a case, condition (4)
might be fulfilled only for diseases that in the same time: (i) are characterized by
a low critical threshold; (ii) can induce, also when their prevalence is low, a large
perceived risk. This condition extends to the present SISV model the result that in
our past work on behavior-implicit SIRV models we termed “elimination: mission
impossible” [13].

In order to proceed further, let us rewrite system (2) and (3) in the following
equivalent form that we will adopt in the next sections:

I ′ = β(1 − σ)I (L(I ) − V ) , (6)

V ′ = (μ + θ + σβ I ) (�(I ) − V ) (7)

where:

L(I ) = pcr − I

(1 − σ)

is the nullcline I ′ = 0; and:

�(I ) = μp(I )

(μ + θ + σβ I )

is the nullcline V ′ = 0.
Endemic equilibria of (6) and (7) are the non-trivial intersections of the twonullclines.

3 Instability of the Disease-Free State: Mono Versus
Multistability

In this sectionwe shall assume that the baseline vaccination rateμp(0) is not sufficient
to guarantee the elimination of the infection, i.e. we shall assume that

0 < p(0) < pcr
1

1 − σ

(
1 + θ

μ

)
. (8)

Note preliminarily that in the case of prevalence-independent vaccine uptake the
following result holds:

Lemma If p(I ) is constant and (8) holds then (6) and (7) admit a unique endemic
equilibrium point.

We now show that if � is non-monotonic then there may be either a single or
multiple equilibrium points.
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As a first step, note that the local stability properties of all endemic equilibria of
(6) and (7) depend on the following characteristic polynomial

λ2 + (μ + θ + (1 + σ)β Ie)λ + β Ie(μ + θ + σβ Ie)
(
1 + (1 − σ)� ′(Ie)

)
, (9)

The condition for the local stability of endemic states therefore reads as follows:

� ′(Ie) > − 1

1 − σ
. (10)

i.e.
� ′(Ie) > L ′(Ie). (11)

The interpretationof condition (10) is immediate: if the linearizednullclineV ′ = 0
at a generic endemic equilibrium (E E) of (6) and (7) is steeper than the linearized
nullcline I ′ = 0 at E E , then that particular endemic state E E is LAS, otherwise it
is unstable.

As far as the V-nullcline �(I ) is concerned, it is worth to note that:

Lemma Under condition (8), if �(I ) is monotone, i.e. if

μp′(I ) > σβ�(I ) O R μp′(I ) < σβ�(I ),

or constant then system (6) and (7) has a unique equilibrium point.

Note, however, that uniqueness of the endemic state can also occur for some
non-monotone �(I ).

If there is a unique endemic equilibrium point, the following proposition holds:

Proposition If system (6) and (7) has a unique equilibrium point E Eu then it is
globally stable in A.

Proof First, it is straightforward to verify that E Eu cannot be unstable, otherwise it
could not be the unique endemic equilibrium. Then, denoting as F the bi-dimensional
vector field associated to system (6) and (7) and applying the Dulac–Bendixon the-
orem with weigth function 1/I one gets:

div

(
1

I
F

)
= −β − σβ − μ + θ

I
< 0.

�

A necessary condition for the presence of multiple co-existing endemic equi-
librium points, i.e. for endemic multistability, is that the V-nullcline �(I ) is non-
monotone. Depending on the parameters of the system, for example σ or c, which are
embedded in the functions L(I ) and�(I ) these equilibria can vary, thus determining
hysteresis or pitchfork bifurcations (see next subsection for a noteworthy example).
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Note that the type of bifurcation described here differs from the backward
bifurcation phenomenonwell known inmathematical epidemiology. Indeed the back-
ward bifurcation describes the onset of bistability where one of the two co-existing
locally stable equilibria is the disease-free equilibrium. Here, instead all the coex-
isting LAS equilibria are endemic equilibria. In the next subsection we will develop
the relevant bifurcation analysis based on a particular form of the vaccine uptake
function p(I ).

3.1 Bistable Endemicity Induced by a Linear-Saturated
Vaccine Uptake p(I)

Let us consider the following linear-saturating vaccination rate:

p(I ) = min(p(0) + cI, 1) (12)

which increases for

0 < I < I∗(c) = 1 − p(0)

c

and is constant thereafter.
It follows that for I > I∗(c) the function�(I ) is a decreasing hyperbolic function:

�(I ) = μ

μ + θ + σβ I
(13)

which does not depend on c. The latter fact is of relevance when considering c as
the bifurcation parameter. Instead, for 0 < I < I∗(c) the function �(I ) depends on
c as follows:

�(I ) = μ(p(0) + cI )

μ + θ + σβ I
(14)

This implies that the condition for � to be increasing in 0 < I < I∗(c) is

c > σβ
p(0)

μ + θ
.

Finally, if �(I ) is increasing in 0 < I < I∗(c) then the condition for bistability
is that the two solutions of the following equation

μ

μ + θ + σβ I
= pcr − I

1 − σ
(15)

are both larger than I∗(c).
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Taking c as the bifurcation parameter, makes it the analysis of the system quite
simple. Note preliminarly that if the Eq. (15) has no real positive solutions (i.e. if
the hyperbolic function (13) does not intersect the nullcline L(I )) then there is only
a unique endemic equilibrium. The other case is that the hyperbolic function (13)
intersect the linear nullcline L(I ) in two points of positive abscissae Il and Ih > Il .
If

I ∗(c) ∈ (Il , Ih)

then there is again a unique endemic equilibrium with

Ie = Ih,

i.e. independent of c. On the contrary if

I ∗(c) < Il

i.e. if

c > cl = 1 − p0

Il
(16)

then there is multistability with three co-existing endemic equilibria: (i) Ih which
is LAS and constant, thus independent of c; (ii) Il which is unstable and again
constant, thus independent of c; (iii) a third equilibrium point Ismall(c) that is LAS
and decreasing function of c, with

Ismall(cl) = Il .

Finally, note that condition (16) for multistability is equivalent to state that

�(I ∗(c)) > L(I ∗(c)). (17)

In order to consider the role of σ as bifurcation parameter, it is useful to define the
following functions

(�1(I ; σ), L1(I )) = (1 − σ)(�(I ), L(I ))

which have the following properties: L1(I ) does not depend any more on σ , whereas
�1(I ; σ) is a strictly decreasing function of σ .

As a consequence, let us consider a pair (c0, σ0) where c0 < cl(σ0). In such a
case we have the above mentioned three equilibria, which also depend on σ . If one
increases σ then the function �1(I ; σ) is pushed downward, the equilibrium Ih(σ )

increases whereas the other two initially get closer and then both disappear. In other
wordswe are describing a scenario of a classical hysteresis bifurcation (Figs. 1 and 2).
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 I/pcr I/pcr c

Fig. 1 Impact of the behavior-related parameter c on the number and location of endemic equilibria.
In all panels σ = 0.333. Left panel for c = 200 the system exhibits three co-existing equilibria, as
resulting from the intersection for the curves�I (I ) and L I (I ); Central panel for c = 10 the central
and the left endemic equilibria disappeared, whereas the right equilibrium was not affected at all by
the change in the value of c; Right panel the full bifurcation diagram. Note that not only the largest
equilibrium is constant, but also the central one (when it exists, i.e. for c > cl )

Fig. 2 Impact of the
parameter σ on the number
and location of endemic
states: bifurcation diagram in
the form Ie vs σ , under
c = 200

 I/pcr

4 Local Stability of the Disease-Free: Global Stability
Versus Backward Bifurcations

In this section, for the sake of mathematical completeness, we shortly consider the
issue of backward bifurcations, which is expected to occur in our model due to its
SISV structure. We therefore focus on the case where the disease-free state is locally
stable, i.e. the case where:

p(0) > pcr
1

1 − σ

(
1 + θ

μ

)
,

or equivalently
�(0) > L(0). (18)

First let us consider the case where the DFE is the unique equilibrium. Not surpris-
ingly, the following proposition holds:
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Proposition If �(I ) ≥ L(I ), i.e. if DFE is the unique equilibrium, then DFE is also
Globally Asymptotically Stable (GAS) in A.

Proof Let us define the following set:

B = {(I, V ) ∈ A|V ≥ L(I )} .

It is straightforward to show that if

�(I ) ≥ L(I ),

then B is a positively invariant set. The GAS of DF E in B then immediately follows
by the following LaSalle–Liapunov function:

L(I ) = I.

�

Remark The above GAS condition yields:

p(I ) >
(pcr − I )(μ + θ + σβ I )

μ(1 − σ)
,

i.e. if the vaccination behavioral response function is greater than the LHS function,
then the global eradication is reachable.

Note however that, still under (18), if the two nullclines intersect then (excluding
the trivial case of tangency) there must be an even number of intersections, as it
follows by applying elementary analysis to the function

D(I ) = �(I ) − L(I ).

Thus we are dealing again with a multistable case where however one of the LAS
equilibrium states involved is represented by the disease-free equilibrium. Therefore,
the related bifurcation which appears when, due to appropriately varying the model
parameters, the system makes a transition from the situation where the DFE is the
unique and globally asymptotically stable equilibrium to such type of multistability
is exactly a “backward bifurcation” of the type described for SISV systems in [23].

5 Concluding Remarks

In relation to the current epoch of development of behavioral epidemiology [25],
a large part of the modeling investigations of the potential effects of immuniza-
tions choices on the dynamics and control of infectious diseases have focused on
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the case of vaccine preventable infections, such as measles, which confers perma-
nent immunity. Consequently most efforts in the literature have concentrated on
susceptible-infective-removed (SIR) frameworks [3–5, 9–14, 24–26, 29, 30], see
also the review in [6] about the historical development of the subject, and references
therein. In relation to this, much of the emphasis has concentrated, though not exclu-
sively, on the issue of the difficulty to eliminate the infection, and possible ways to
prevent this drawback, and on the complicate dynamic patterns (e.g. oscillations) that
can be triggered by more appropriate, both behavior-implicit and explicit, modeling
of individual behavioral responses. This emphasis on traditional vaccine preventable
SIR-type infections by no means exhausts the range of infections for which com-
plicate behavioral responses by agents might be triggered by the introduction of a
vaccine. Many other important infections conform instead to the SISV-type frame-
work that has been considered in this paper. Among the many instances in relation
to this there are for example bacterial infections, such as Meningococcal Meningitis.
Though characterised by a complex epidemiology, Meningococcal Meningitis does
not impart immunity and both vaccines that have been introduced to protect against
the two Meningococci types widely circulating in Europe, namely groups C and
B, are “imperfect”. Another critical example, though based on a more complicate
model structure, is tuberculosis [20]. As demonstrated in this paper the introduc-
tion of even the simplest possible hypothesis about human behavior, namely that
of a behavior-implicit, prevalence-dependent vaccine uptake function, is capable to
enrich the spectrum of possible dynamical behaviors of SISV-typemodels, by adding
to the possibility of multi-stability on the sub-threshold side, the further possibility
of multistability on the above-threshold side. The practical meaning of this finding
is that the presence of agents’ behavioral responses to the introduction of the vaccine
might cause the appearance and coexistence of a number of stable (over appropriate
basins) endemic states. This was to our knowledge the first theoretical investigation
in this direction, based on a very simple, almost trivial, hypothesis on the agents’
behavioral response. The follow-up of this first effort should therefore acknowledge
a number of realistic features that just for the sake of simplicity had been neglected
here. First of all one should, still within the boundary of behavior implicit models,
consider the effects of time-delays, both in information supply and agents response,
as opposed to the instantaneous adaptation of behavior postulated in this paper. These
time-delays can generate complicate dynamical patterns even under simpler mod-
eling frameworks, as the SIR model with information-dependent delay [10]. Even
more interestingwould be the inclusion ofmore structured, namely behavior explicit,
behavioral responses, through e.g. imitation processes or their extensions [4, 5, 13,
14], or game-theoretic frameworks [2, 3, 27, 29, 30].
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