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Preface

Mathematical modelers are joining with biological, epidemiological, behavioral,
and social science studies to produce better projections and better understanding
of the transmission dynamics of infectious diseases. They are working with public
health workers to create new tools for devising effective strategies to minimize the
emergence, impact, and spread of epidemics. For these tools to be useful and used,
the decision-makers must fully understand the assumptions, such as any behavior
changes of the population during an epidemic, used in defining the model and how
sensitive the model predictions, such as the number of people infected, depend
upon these assumptions. That is, a clear description of the model formulation and
sensitivity analysis of the predictions are both necessary to quantify the uncertainty
in the model forecasts.

This collection of articles by epidemic modeling experts describe how these
models are created to capture the most important aspects of an emerging epidemic.
It provides examples of how these models can help public health workers better
understand the spread of infections and reduce the uncertainty of the estimates of
disease prevalence. That is, the analysis and model simulations can quantify the
relative importance of the complex mechanisms driving the spread of an infection
and anticipate the future course of an epidemic. In addition to models focusing on
forecasting and controlling infections, the volume contains a discussion on the
modern statistical modeling methods to design, conduct, and analyze clinical trials
measuring the effectiveness of potential vaccines.

The focus of the volume is on models based on the underlying transmission
mechanisms of an infectious agent, rather than statistical forecasting of past trends
to predict future incidence. These mechanistic models can help anticipate the
emergence and evaluate the potential effectiveness of different approaches for
bringing an epidemic under control. Recently, the models have been used to help
understand and predict the spread of emerging and re-emerging infectious diseases
including Zika, Middle East Respiratory Syndrome, chikungunya, and Ebola. They
have been helpful to better understand the impact of increased resistance of
well-established diseases such as gonorrhea, tuberculosis, and bronchitis to the
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antibiotics that once held them in check. The models are being developed to help
guide public health workers in controlling infections that have proven difficult to
immunize against and to treat once they occur, including influenza, HIV/AIDS, and
the common cold. The transmission models are being coupled with cost–benefit
analysis to facilitate estimating the relative impact of possible interventions and
forecast the requirements that an epidemic will place on the health care system.

In the first chapter, Richard Rothenberg discusses the role of epidemic models to
confront public health emergencies including the HIV/AIDS epidemic in the US
and the recent 2014 Ebola epidemic in West Africa. This is followed by chapters on
how modeling the transmission and control of the Ebola virus disease can capture
the behavior changes in the population, the effect of movement restrictions on Ebola
control, the impact of early diagnosis and isolation, the performance of ring
vaccination strategies, and the use of optimal control theory to guide the number of
sickbeds during epidemics.

The volume contains articles on how structured models can be used to address
public health policy questions relevant for infectious diseases ranging from
waterborne diseases, such as cholera to sexually transmitted infections, such as
chlamydia. The articles include an analysis of the role of mass immunization
campaigns in controlling measles in Sao Paulo, Brazil in the 1990s in the presence
of behavior-dependent vaccination. Other contributions include an evaluation of the
impact of including or excluding disease-induced mortality rates on disease
dynamics using detailed agent-based model simulations of pandemic influenza and
a quantitative framework for modeling household transmission using compart-
mental models of infectious disease.

We hope the contributions in this volume will incite further research in the field
of mathematical epidemiology.

Atlanta, GA, USA Gerardo Chowell
New Orleans, LA, USA James M. Hyman
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A Reality of Its Own

Richard Rothenberg

But however small it was, it had, nevertheless, the mysterious
property of its kind—put back into the mind, it became at once
very exciting, and important; and as it darted and sank, and
flashed hither and thither, set up such a wash and tumult of ideas
that it was impossible to sit still.

–Virginia Woolf, A Room of One’s Own, 1929

In September 2014, the CDC published a supplement to the MMWR that announced
a worst-case estimate of 1.4 million cases of Ebola in Liberia and Sierra Leone [1].
The epidemic was then 6 months old and 8,000 cases had been reported. It was
estimated that at least 2.5 times that many had occurred, and the 1.4 million was
based on the then estimated incidence of 21,000 cases in 6 months. The method was
mathematically simple—based primarily on mean incubation period, contact index,
and specific sets of patient circumstances—but the details were complicated. Ex post
facto, the estimate was roundly criticized in the media [2]. It was defended with
the imperative that attention must be paid; that a large number draws that attention;
and that being wrong is a lesser sin than ignoring the problem. They might have
added that the quantitation was, in essence, a qualitative statement: if we don’t do
something NOW, this will get very BIG.

From a public health perspective, the NOW…BIG approach has a lot to recom-
mend it. From a modeling perspective, not so much. In fact, modelers shudder at
the thought of being so wrong, of ignoring the nuances, of using simplistic methods
when subtle ones, taking advantage of the enormous computing power available, are
bypassed. The polarization of these positions is perhaps unavoidable, and despite
attempts at rapprochement (CDC did make it clear that this was a “quick and dirty”
approach that was seeking the worst case scenario), the gulf is difficult to bridge.
That may be because, like so many polarizations in our current life, the two sides

R. Rothenberg (B)
Georgia State University, Atlanta, USA
e-mail: rrothenberg@gsu.edu
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2 R. Rothenberg

represent competing world views. CDC is a practical, pragmatic and action oriented
organization. Some people at CDC were crunching numbers, but a lot more people
were on the ground, exposed, digging in. Modelers rarely use Hazmat suits in their
daily lives, and consciously create a reality within which they can pose and answer
questions. For them, the immediate stakes are low, but the intermediate and longer
term stakes are higher; for CDC, the immediate stakes are paramount (though it
would be unfair to accuse them of ignoring the long term). Of course, both world
views are justifiable: we have to deal with the here and now, and we must also let the
“wash and tumult of ideas” lead us to good answers.

But short or long, the path to good answers is tortuous. Often, the first problem
cited is parsimony versus complexity [3]. It is usually a given that the “best” model is
the most parsimonious: it is the best description of the data with the fewest variables
[4]. To borrow Einstein’s famous phrase, a model should be “…as simple as possible,
but not simpler.” This view is consonant with statistical modeling, wherein the addi-
tion of a variable to, say, a regression equation fails to improve its explanatory value
(for example, provides little or no increase in R2). But in modeling transmission
dynamics, the comparison may be a distraction. A better contrast may be between
simplicity and reality. In this comparison, the tension is between a model that tries to
define a few critical elements (a kind of parsimony) and examine an hypothesis about
their interaction, and a model that tries to mimic the actual state of things (a kind of
reality) and see what happens when something changes. The former has a number
of superb exemplars, perhaps the best known of which is the 1998 Watts–Strogatz
small world model [5]. The models that strive for reality, on the other hand, often
generate more controversy than insight.

Such controversy frequently centers on the role of data, an issue about which
modelers have heightened sensitivity (a recent set of articles collectively identified 23
such challenges) [6–9]. The different roles that data play in models are not mutually
exclusive, but roughly fall into four categories. Some models are data-free. Most
(these days) are data driven (that is, they use parameters derived from empirical
studies). Many are data-generating (they create one or multiple data sets that are then
analyzed).A few, perhaps themost important ones, are data-seeking.Theygenerate or
even test hypotheses based on some combination of actual data, derived parameters,
and estimated or presumed properties, but explicitly seek to inform empirical data
collection that can verify or refute their suppositions. A heightened sensitivity to
the role of data stems, in part, from course corrections for predictions about HIV,
both in the United States [10], and globally [11], and possibly from early work in
modeling HIV in Africa, wherein the parameters for sexual activity had to be grossly
inflated for the model to match actual events [12–15]. But whatever the history, the
admonition to connect modeling to data in a meaningful way [8–16] has gained
considerable currency, to which the contributions in this volume attest.

But why, it may be asked, should models be restricted by false dichotomies like
parsimony versus complexity, or simplicity versus reality, and why be limited to a
tight connection with empirical observations. The answer lies in the fact that models
create a reality of their own. They are a simulacrum of the perceived world, and
occupy a different orbit. They can be argued about, agonized over, vilified or exalted,
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just as if they were a tangible object. The leap from the reality of models to the reality
of reality demands a credible connection. The goldilocks model (not too simple, not
too complex, just right) with a firm connection to empirical observations meets
that requirement (though it may be one of those things that is hard to define but
recognizable when you see it).

An ingenious use of concepts and network connections (Fig. 1) provides a
metaphor for the reality compartment in whichmodelers dwell. The Springer design-
ers have created this network from the concepts in a single article [17], for which
one or more congeners were identified in 197 articles. If the viewer presses on a
concept, the subset of articles that contain that concept appears in an accompanying
text box. The inherent value of a reality compartment, then, is that it provides a space
for conversation; the downside is disconnection from the reality we actually live in.
For those outside the space, for whom entry is technically restricted, disconnection
from the measurable world undermines the usefulness and influence of models.

Fig. 1 A concept map of key modeling ideas for HIV
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Modeling the Impact of Behavior Change
on the Spread of Ebola

Jessica R. Conrad, Ling Xue, Jeremy Dewar and James M. Hyman

Abstract We create a compartmental mathematical model to analyze the role of
behavior change in slowing the spread of the Ebola virus disease (EVD) in the 2014–
2015Western Africa epidemic. Ourmodel incorporates behavior change, modeled as
decreased contact rates between susceptible and infectious individuals, the prevention
of traditional funerals, and/or increased access to medical facilities. We derived the
basic reproductive number for the model, and approximated the parameter values
for the spread of the EVD in Monrovia. We used sensitivity analysis to quantify
the relative importance of the timing, and magnitude, of the population reducing
their contact rates, avoiding the traditional burial practices, and having access to
medical treatment facilities. We found that reducing the number of contacts made
by infectious individuals in the general population is the most effective intervention
method for mitigating an EVD epidemic. While healthcare interventions delayed the
onset of the epidemic, healthcare alone is insufficient to stop the epidemic in the
model.

Keywords Ebola virus disease · EVD · Mathematical model · Reproductive
number · Behavior changes · Epidemic model · Differential equations · Western
Africa
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6 J.R. Conrad et al.

1 Introduction

Ebola virus disease (EVD) is a zoonotic tropical disease [36] with an average fatality
rate of 50% and a range of 25–90% in past outbreaks. It was first identified in 1976 in
Yambuku, Zaire and Nzara, South Sudan [34]. While its circulation among humans
is rare, around 30 outbreaks occurred since EVD was first identified, causing less
than 1,600 deaths before 2014 [36]. However, the current West Africa 2014 outbreak
has led to more than 28,600 probable cases and 11,300 deaths [32].

Typical symptoms of the disease include fever, weakness, and diarrhea. Bleeding
complications occur in less than half of all infectious people, and heavy bleeding
is relatively rare. EVD’s incubation period, i.e. the time from infection of the virus
to onset of symptoms, is typically between five and seven days, but can range from
2 to 21 days. Humans are not infectious until they develop symptoms [34]. Blood
samples usually start to show positive results by PCR one day before the symp-
toms appear [36], which have been used to confirm 15,216 cases since the onset of
the West Africa 2014 EVD epidemic [32]. Early supportive care with rehydration,
symptomatic treatment improves survival rate, but no licensed treatments proven
to neutralize the virus are available yet, though blood, immunological, and drug
therapies are under development [34].

Although the reservoir for EVD is in the animal population, once a human is
infectious it can be sustained through person to person transmission until the con-
ditions change. The infection spreads through direct contact with bodily fluids such
as blood, vomit, urine, or sweat. Transmission can also occur through contact with
objects contaminated by bodily fluids. EVD can persist for several hours after the
death of an infectious person and traditional burial practices, which involve bathing
the bodies contributes to the spread of infection, thus accelerating the early spread of
the infection [36]. The primary transmission routes are through individuals in close
contact with the infectious person, such as health workers and family members.

Prior to the current West African 2014 EVD outbreak, the epidemics were in rural
areas. These outbreaks were quickly controlled with contact tracing and isolation and
quarantine of the patients to break the chain of transmission. The previous epidemics
were mitigated by combining the active isolation of people who came in contact with
infected individuals, an effective community response, and preventative education
programs [36]. The community support is important for identifying and isolating
infectious people and stopping traditional funerals where people can come in contact
with infectious postmortem bodily fluids.

Early EVD models were developed to quantify transmission in different set-
tings (illness in the community, availability of medical care, and traditional burial)
[8, 21]. These models simulated the 1995 EVD outbreak in the Democratic Republic
of the Congo, the 2000 outbreak in Uganda, and the current outbreak in Liberia and
Sierra Leone. Although themodels took into account common placeswhere infection
spreads, they failed to consider different specializedmedical care and funeral settings,
such as EVD Treatment Centers, local EVD Community Centers, and home-based
medical care respectively. These subclasses were considered by Lofgren et al. [22]



Modeling the Impact of Behavior Change on the Spread of Ebola 7

to identify where healthcare-only interventions would be the most effective. They
found that healthcare initiatives can decrease the burden of the disease significantly
on a community, making it a key role in mitigating the EVD epidemic.

Recent models forecasted disease progression in Sierra Leone and Liberia during
the epidemic to compare the potential impact of some other common interventions,
such as contact tracing, medical care access, as well as pharmaceutical intervention
[10]. Rivers et al. adapted Legrand et al.’s EVD epidemic model, and determined
that increased contact tracing in addition to infection control could have a substantial
impact on the number of EVD cases, though they also predicted that this would not
be sufficient to halt the progression of the epidemic [10].

Most models for the recent West Africa EVD are based on ordinary differ-
ential equation (ODE) compartmental models [5, 8–10, 10, 14, 16, 17, 27, 28,
28], network-models [2, 13, 18, 26, 39], or individual based models (IBMs)
[24, 29, 33]. The ODE compartmental models are the easiest to analyze and estimate
threshold conditions for an epidemic. The network models can capture the complex-
ity of human contact interactions, but are usually static and don’t account for the
rapid change in the contact patterns of an infectious person. The large-scale IBMs
usually require synthetic population data that is not yet available for this epidemic.

In past EVD epidemics, behavior change has been the primary method to bring
epidemics under control [15]. These behavior changes, coupled with community
support and prevention education, are key to mitigating ebola outbreaks. Most of
the existing models do not directly account for behavior change, and therefore can-
not accurately reproduce, or forecast, the transmission pathways. In our model, we
account for behavior changes as they affect the contact rates between susceptible and
infectious individuals, the prevention of traditional funerals, and/or increased access
to medical facilities.

We found that the most effective intervention method for mitigating an EVD
epidemic is reducing the number of contacts made by infectious individuals in the
general population. While increasing medical care access delayed the onset of the
epidemic, this form of intervention failed to prevent or stop the epidemic overall. One
way to measure the impact of behavior changes or medical interventions dynamic
effects on the transmission rate is to measure the resulting change in the effective
reproductive number of how many new infections that add a single new infected
person would create.

After describing the mathematical model and the parameters, we derive the basic
and effective reproduction numbers and use sensitivity analysis to quantify the rel-
ative importance of the behavior changes and availability of medical facilities in
stopping the epidemic. We find that the effective reproduction number is most sen-
sitive to the number of contacts that an infected person has with the susceptible
population.
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2 Mathematical Model

This model in Fig. 1 can be expressed as the system of ordinary differential equations
(ODEs):

dS

dt
= −λS (1a)

= −αi I − αmM − α f F (1b)

dE

dt
= λS − γei E (1c)

= αi I + αmM + α f F − γei E (1d)

d I

dt
= γei E − (γi f + γib + γir + γim)I (1e)

dM

dt
= γim I − (γmr + γmb)M (1f)

dF

dt
= γi f I − γ f b F (1g)

dB

dt
= γib I + γmbM + γ f b F (1h)

dR

dt
= γir I + γmr M. (1i)

Fig. 1 When susceptible people (S) are infected, they progress to the exposed, but not infectious,
state (E). From there, they become infectious (I ) to the susceptible population. An infected person
either enters a medical facility (M), or does not. If they do not enter a medical facility, they may
recover (R) or die. When they die, they may have a traditional funeral (F), where others can be
infected, or a ‘safe’ burial (B). People in a medical facility are more likely to recover and if they
die that have a safe burial. The dynamics are described by differential equations (1)
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The susceptible population, S, is infected at a rate λ and progresses to an infected,
but not infectious, exposed (E) state. Then they advance to an infectious state in the
general population, I , (at rate γei ). An infectious person can recover, R, (at rate γir ),
go to a medical treatment facility (at rate γim), or, if they die, the person either as a
traditional funeral, F, (at rate γi f ), or is safely buried, B, (at rate γib). The people in
a medical facility can recover, R, at an adjusted rate γmr , or die and be safely buried
(at rate γmb). In this simplified model, because of the short duration of the epidemic,
we do not include natural birth, death, or migration into, or out of, our population.

We have included two formulations for rates that people are infected, λS =
αi I + αmM + α f F . The more traditional formulation is expressed in terms of the
susceptible viewpoint where the force of infection, λ, represents the rate that the sus-
ceptible population is being infected. The other formulation is expressed in terms of
the infectious viewpoint where the force from infectious, α∗, represents the rate that
an infectious person in compartment ∗ = I, M , or F infects the susceptible popu-
lation. The mathematical models are equivalent when λ = (αi I − αmM − α f F)/S.
We include the force from infectious viewpoint because it clarifies the mathematical
analysis, such as computing the basic reproductive number, and has advantages in
estimating the model parameter values when only a small fraction of the population
is infected.

The model parameters λ and α∗ are nonlinear functions of other variables and
time. To simplify the notation, we will not explicitly list all of the parameters unless
doing so clarifies the analysis. In particular, the time variable, t , will be listed when
we want to emphasize that contact rates or healthcare availability, can change in
time. A description of the parameters used and the baseline values are in Table1.
The rate γi∗ is the progression from state I to another state ∗, where ∗ is M, F, B,
or R. Similarly, the rates γe∗ and γm∗ are the progressions out of states E and M
respectively into other states ∗.

We use themodel to investigate the impact of behavior changes and the availability
ofmedical facilities on the spread of the 2014–2015EVDepidemic inWesternAfrica.
We ignored the natural birth-death cycle in the model because of the short duration of
the epidemic. We did not include the migration of people in, and out, of the modeled
population, as would need to be included if this local population model is used as
the local community in a larger networked model. These effects can be easily added
to the model and would not affect the conclusions of our study.

2.1 Rates of Infection

Although both the susceptible and infectious viewpoint models are identical, the
model parameters that determine the rates of infection are different. When there are
only a few people infectious, as in the EVD epidemic, then there are advantages to
estimating the parameters that define the force from infectious, α∗, rather than the
traditional force of infection, λ.
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2.1.1 Force of Infection

The force of infection, λ, can be decomposed into sum of three terms, λ = λi +
λm + λ f , where each term is factored into

λ∗ = csβ∗P∗ =

⎛
⎜⎜⎝

Number of
contacts a
susceptible
has per day

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Probability of
transmission

per contact with
someone in ∗

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Probability the
contact is with
someone in

state ∗

⎞
⎟⎟⎠

Here the subscript ∗ = i, m, f refers to one of the infectious states, I , M , or
F . A susceptible person has cs contacts per day and the probability of transmission
per contact with an infected person is β∗. There are a total of cs S contacts per
day by people in the susceptible population out of Ctot (t) = cs S + ceE + ci I +
cmM + c f F + cr R + cbB total contacts in the entire population. The probability that
a random contact by a susceptible is with a person in state I is Pi (t) = ci I (t)/Ctot (t)
and changes exponentially early in the epidemic. The formulas for the other states
are similar.

2.1.2 Force from Infectious

To consider how infection spreads from the perspective of the infectious individuals,
we define α as the force of infection from the infectious population. This force (αi ,
αm , and α f ) depends upon what state the infectious population is in. Here we assume
that the exposed population is not infectious, αe = 0. The rate that the susceptible
population is being infected is the sum of the product of each of these forces times
the people who are in that state, (1a).

Each force from the infectious states I, M , and F can be decomposed into three
factors

α∗ = c∗β∗Ps =

⎛
⎜⎜⎝

Number of contacts
an infectious

person in state ∗
has per day

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Probability of
transmission

per contact from
someone in ∗

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Probability
the contact is

with a
susceptible

⎞
⎟⎟⎠

The number of contacts per day, c∗, a person in state ∗ has depends upon the state.
A contact is defined as an interaction between two individuals where the disease
transmission could take place. We assume that the infectious populations, I and
M , have fewer contacts per day than the susceptible and exposed populations. The
contacts for the people in a traditional funeral, F , are averaged over the length of
time for the funeral. In this model, we treat every contact as an independent event and
do not explicitly account for repeated contacts between the two same individuals.

The probability that contact by an infectious person is with a susceptible person,
Ps , depends on how the infectious person mixes with the current population. These
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contacts are not random and, to be accurate, the model should include a mixing
matrix between people in each of the states [11, 19]. For simplicity, we assume that
the mixing is random and will investigate the importance of this assumption in a
later analysis of this model. The probability that a random contact will be with a
susceptible person is Ps(t) = cs S(t)/Ctot (t) and Ps = 1 early in the epidemic.

The probability of transmission per contact, β∗, depends on the state that the
infectious person is in. We assume that contacts with an infectious individual, who
is not under medical care, are more likely to transmit the disease than contact with a
person using protective measures at a medical facility.

In summary, the forces from each of the infectious states are

αi (t) = ciβi
cs S(t)

Ctot (t)
, αm(t) = cmβm

cs S(t)

Ctot (t)
, α f (t) = c f β f

cs S(t)

Ctot (t)
. (2)

Model forecasts are sensitive to accurately modeling the contacts of an infected
person. This is complicated when considering behavior change since an infected per-
son is more likely to change their behavior than the general susceptible population.
An advantage of the infectious viewpoint is that it is formulated in terms of these
infectious contacts, not the susceptible’s contacts. That is, in the susceptible view-
point, the first factor, cs , in the force of infection is the average number of contacts
that a susceptible person has, while in the infectious viewpoint the first factor, ci , is
the number of contacts that an infectious person has. If disease changes behavior,
as it does in EVD, then ci is likely to change more than cs , and changes in ci have
a greater impact on the spread of an infection than do changes in cs . It is especially
important when investigating the impact of behavior changes.

Another advantage is that the infected viewpoint is formulated based on estimating
the probability that a random contact is with a susceptible person, which is in the
early stages of an epidemic Ps(t) ≈ 1, since nearly every contact is with a susceptible
person. In the susceptible viewpoint, the model is based on estimating the probability
that a random contact is with an infectious person, which is changing rapidly. That
is, from the susceptible viewpoint, we must estimate the probability for a susceptible
person that a random contact is with an infectious person, P∗, ∗ = i, m, f . This
can be a difficult parameter to estimate when there are few infectious people and the
behavior is changing quickly early in the epidemic.

2.2 Progression Rates

The rates that people advance between the model compartments depends upon the
disease progression rates and branching probabilities among the next possible com-
partments where a person could go. We find that using a branching diagram (Fig. 2)
greatly simplifies the complexity of having multiple pathways among the model
components. The branching probability, p jk , is defined as the fraction of people
who progress from state j to state k. The nodes in the diagram for staying at home,
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Fig. 2 The probabilities that an individual progresses from one state to the next, denoted as p jk ,
where j is the state they are leaving and k is the state they are entering. In the branching diagram,
the nodes for staying at home, the circled H , and dead, the circled D, are branching points, and are
not compartments of the model

, and dying, , are not compartments in the model. They represent nodes in the
branching process that are useful when defining the probabilities of going from one
state to another.

In our model, we define four progression rates in terms of the probability of
going from one state to another, pim , pmr , phr , and pd f (Table1). The other
branching probabilities are defined in terms of these four probabilities. For exam-
ple, the probability that an infectious person, I , will have a traditional funeral,
F , is pi f = pih phd pd f = (1 − pim)(1 − phr )pd f . Similarly, pib = pim pmd pdb +
pih phd pd f and pir = pih phr + pim pm f . When describing the meaning of terms that
arise in defining the basic reproductive number, we also find it useful to define prob-
abilities that a person will progress through multiple states, such as pi jk = pi j p jk is
the probability of going from state i to state j and then to state k.

In addition to the branching probabilities, the transition rates are defined in terms
of the average time (in days) spent in a state τe, τi , and τ f and the time that entering
the medical facility can reduce the time to recovery, tr days. For example, τe is the
average time it takes an infected person to become infectious, and τi is the time that
would be spent in state I for someone not going to the medical facility.

The branching probabilities and average times for the disease progression are
then used to define the compartment progression rates, γ jk from compartment j to
compartment k. That is, instead of directly defining the progression rates, we define
them in terms of parameters that can be directly measured or are easier to interpret.

From these parameters, we define the progression rates as:

γei = pei/τe = 1/τe γib = pib/τ f

γi f = pi f /τ f γir = pir/τi
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Table 1 Thebaseline values are chosen selected so that themodel is consistentwith theMontserrado
EVD epidemic incidence data [6, 7, 10, 23, 38]

Symbol Parameter description Baseline

c−∗ Number of contacts per day when t < tc
c−
s = 30, c−

e = 30, c−
i = 8.1657, c−

m = 5, c−
f = 20, c−

r = 30

c+∗ Number of contacts per day when t ≥ tc
c+
s = 30, c+

e = 30, c+
i = 3.0311, c+

m = 5, c+
f = 20, c+

r = 30

β∗ Probability of transmission per contact with state ∗
βi = 0.017, βm = 0.0005, β f = 0.05

τe Average days spent in exposed state 7

τi Average days spent in I 20

τ f Average days spent in funeral state 1

phr Probability an infectious person recovers (at home) 0.55

pmr Probability an infectious person recovers (medical care) 0.75

p−
d f Probability a person dying at home has a traditional burial t < t f 0.9

p+
d f Probability a person dying at home has a traditional burial t ≥ t f 0.18

p−
im Probability an infected goes to a medical facility t < tm 0.1

p+
im Probability an infected goes to a medical facility t ≥ tm 0.71

tc Date (days) when people change their contact rates 122

tm Date (days) when medical facilities become more available 140

t f Date (days) when number of traditional funerals drops 84

γ jk Rate of going from state j to state k (derived from p∗ and τ∗)
P∗ Probability of random contact with state ∗. e.g. Ps = cs S/Ctot

The basic reproductive number for the baseline case is R0 = 2.64

γim = pim/τm γimr = pimr/τm = pim pmr/τm

γimb = pimb/τm = pim(1 − pmr )/τm γi = γi f + γib + γir + γim

where γi is the total rate that people exit from the I compartment.

2.3 Behavior Change, Healthcare Availability,
and Traditional Funerals

The number of contacts c∗(t) per day for someone in compartment ∗ can change
as the epidemic progresses to avoid being infected or to avoid infecting others. We
realize that, in general, c∗(t) is a complex function of time. Our goal is to analyze the
relative importance of the behavior changes andwemake the simplifying assumption
that c∗(t) is a piecewise constant function that changes tc days after the first (index)
case when the epidemic starts. That is,
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c∗(t) =
{
c−∗ if t < tc
c+∗ if t ≥ tc.

(3)

This simplified form of the behavior change makes it easy to quantify the importance
of the time the behavior change takes place and the magnitude of the change.

As medical treatment units become available and traditional funerals become less
frequent, we change the probabilities that an infected person will go to the medical
facility pim and the probability that a person dying at home will have a traditional
funeral pd f as step functions:

pim(t) =
{
p−
im if t < tm
p+
im if t ≥ tm

and pd f (t) =
{
p−
d f if t < t f

p+
d f if t ≥ t f .

(4)

3 Reproduction Numbers

The effective reproductive number, Re(t), is the expected number of new infec-
tions that a newly infected person will create [12]. Thus, Re(t) depends upon
the state of the entire system at the time when a susceptible person is infected,
Re(t) = Re(t, S, E, I, M, F, B, R). The basic reproduction number, R0, measures
the average number of secondary cases produced by introducing one infected indi-
vidual into the disease free equilibrium (DFE).

We will first derive the reproductive numbers from the viewpoint of a stochastic
Markov Chain process. It is natural to define the transition probabilities from per-
spective and to connect relationship between the effective and basic reproductive
numbers. We will then use the next generation approach to derive R0 based on a
mathematical analysis of the differential equations.

3.1 Branching Process Derivation of the Reproductive
Numbers

We can view the model (1) as a stochastic Markov Chain branching process where
the progression rates are defined in terms of a probability per day that a person will
progress to another state. This viewpoint has the advantage that each step in the
process has a natural epidemiological interpretation.

The reproductive number is derived by estimating the probable number of new
infections that would be created by a single individual in each of the infectious states.
Since all the new infections must come from one of the three infectious states, we
can decompose Re into a sum of the compartmental basic reproductive numbers for
each state:

Re = R
i
e + R

m
e + R

f
e ,
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where R∗
e is the average number of new infections caused by an infectious person,

while in state∗, (∗ = i,m and f ). Each of these reproduction numbers can be factored
into three terms:

R
∗
e = P∗τ∗α∗(t) =

⎛
⎝

Probability an
infected person
enters state ∗

⎞
⎠

⎛
⎝

Time a
person is
in state ∗

⎞
⎠

⎛
⎝
Force from infectious

for a person
in state ∗

⎞
⎠ .

We define P∗ as the probability that an infected person ever enters state ∗. In a
large infectious population, P∗ is also the fraction of the infected people that will
eventually enter state ∗. This is determined by the progression rates of all the possible
paths someone can enter state ∗.

Since all infected people enter state I , pei = 1. The probability that an infected
person goes to amedical facility is pem = pim = γim/γi = γimτi . Similarly, the prob-
ability that an infected person will have a traditional funeral can be expressed as
pef = pi f = γi f /γi = γi f τi ,

The third term inR∗
e is the force from infectious for person in state ∗, α∗ as defined

in (2). Combining these terms, we can express the effective reproductive number as

Re(t) = R
i
e(t) + R

m
e (t) + R

f
e (t)

= peiτiαi (t) + pemτmαm(t) + pef τ f α f (t)

= 1

γi
ci
cs S(t)

Ctot (t)
βi + γim

γi

1

γi
cm

cs S(t)

Ctot (t)
βm + γi f

γi

1

γ f b
c f

cs S(t)

Ctot (t)
β f .

If at t = 0, the population is at the DFE where everyone in the population is sus-
ceptible, then the effective reproductive number is also called the basic reproductive
number, R0 = R

∗
e(0, S, 0, 0, 0, 0, 0, 0) = Re(0) and represents the number of new

infections that would be caused by a single infected person being introduced into the
population. R0 = 2.64 in this model for the baseline parameter values.

At the DFE, the probability that a contact will be with susceptible person is
Ps(0) = 1, and the transmission rates simplify toα∗(0) = c∗β∗Ps(0) = c∗β∗. Hence,

R0 = R
i
0 + R

m
0 + R

f
0

= peiτi ciβi + pemτmcmβm + pef τ f c f β f

= 1

γi
ciβi + γim

γi

1

γi
cmβm + γi f

γi

1

γ f b
c f β f (5)

3.2 Next Generation Method Derivation of the Basic
Reproductive Number

The next generation matrix algorithm [12, 37] can be used to explicitly define R0

by computing the number of new infections that are generated from the infected
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states. We define the vector x = [E, I, M, F, ]T and write the equations for these
variables as dx

dt = F − V by defining the vectors F and V so that Fi is the rate
new infections are introduced into state i , and Vi is the rate of transfer out of state i ;

F =

⎡
⎢⎢⎣

αi I + αmM + α f F
0
0
0

⎤
⎥⎥⎦ , V =

⎡
⎢⎢⎣

γei E
−γei E + (γi f + γ ib + γir + γim)I

−γim I + (γmr + γmb)M
−γi f I + γ f b F.

⎤
⎥⎥⎦ (6)

The Jacobian matrices JF and JV for this system of differential equations at the
DFE have the property that the (i, j)th element of the matrix, JF (i, j) = ∂Fi

∂x j
, is

the rate at which infected individuals in state j produce new infections in state i .
Similarly, JV ( j, k) = ∂V j

∂xk
, is the rate at which individuals in compartment k transfer

to compartment j .
At the DFE α∗(0) = c∗β∗ and the Jacobian matrices of F and V are:

JF =

⎡
⎢⎢⎣
0 βi ci βmcm β f c f

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (7)

JV =

⎡
⎢⎢⎣

τ−1
e 0 0 0

−γei τ−1
i 0 0

0 −γim τ−1
m 0

0 −γi f 0 τ−1
f

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

τ−1
e 0 0 0

−τ−1
e τ−1

i 0 0
0 −pim/τm τ−1

m 0
0 −pi f /τ f 0 τ−1

f

⎤
⎥⎥⎦ (8)

We can express the inverse of JV in terms of the transition probabilities as

J−1
V =

⎡
⎢⎢⎣

τe 0 0 0
peiτi τi 0 0
pimτm pimτi τm 0

pei pi f τ f pi f τi 0 τ f

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

τe 0 0 0
peiτi τi 0 0
pemτm pimτi τm 0
pef τ f pi f τi 0 τ f

⎤
⎥⎥⎦

Note that each row of J−1
V is the probability of going from state i to state j scaled

by the time in state j .
The next generation matrix isN = JF J−1

V =
⎡
⎢⎢⎣
pei τi ciβi + pemτmcmβm + pe f τ f c f β f τi ciβi + pi f τi c f β f + pimτi cmβm cmβmτm c f β f τ f

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

The basic reproduction number can be defined as the spectral radius ofN . In this
case, the matrix is upper triangular, so the eigenvalues are on the diagonal, and the
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largest eigenvalue,N (1, 1) = peiτi ciβi + pemτmcmβm + pef τ f c f β f , which agrees
with the previous calculation (5).

4 Parameter Estimation from Montserrado EVD Cases

Most of themodel parameters, such as the number of contacts per day, are approxima-
tions for the expected value of stochastic events with broad probability distribution.
Some model parameters, such as the probability of transmission per contact, inde-
pendent of the regionwhere the epidemic is taking place. Others, such as the behavior
change of the local community in reducing their number of contacts, depend upon
the specific region we are studying. Our goal is to define the baseline parameters for
our best guess at what actually happened during the epidemic in a specific region.
We will then use sensitivity analysis to ask “what if” questions and quantify the
relative importance of the mitigation efforts, such as the how sensitive the course of
the epidemic will be to the time that the Ebola treatment units are established, or to
the time it takes to stop traditional funerals.

To illustrate our approach, we used the EVD incidence fromMontserrado, Liberia
(Fig. 3). This data can be easily fit with a three, or four parameter spline. It is inap-
propriate to fit any model using more than the degrees of freedom evident in the
data, and therefore we limit our fits to 3 or 4 parameters. In fitting the data, we first
defined all the parameters in Table1 based on our best estimate from the published
literature [1, 6, 7, 10, 23, 30, 35, 38]. The dates for the ban of traditional funerals,
and increase in medical availability were obtained by press releases [1, 35]. We then
identified the parameters that are most likely to vary from region to region and used
these to fit the model to the data using the sequential quadratic programming (SQP)
MATLAB program fmincon.
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Fig. 3 The weekly EVD cases [31] for Montserrado (∗) are fit with the model (solid line) by
varying: (1) the behavior change in the infected population, c+

i ; (2) the fraction of infected people
who go to a medical facility, pim ; and (3) the fraction of people who have a traditional funeral pi f
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The first step in initializing a multicompartmental model is to create balanced
initial conditions for the number of people in each compartment that is consistentwith
a real epidemic [20]. We achieved this balanced initial state by starting the epidemic
with a small (0.001%) infected population, and letting the epidemic advance until
there is one person infected. We then reset the integration time to zero as the time of
the first index case.

Starting with the balanced initial conditions, we varied the single parameter ci to
match the early growth of the epidemic based on the difference between the model
predictions and the WHO data for the number of weekly cases [31]. That is, we
started by fitting the model with a single parameter match to the initial growth of
the epidemic in the first four months of the epidemic, before there were significant
behavior changes or new medical facilities available. We then verified that our fitted
parameter, c−

i = 8.2, was relatively insensitive to the four month window. The fit
is shown as the solid red line in Fig. 3 and would continue growing exponentially
unless we account for the decreased contact rates, reduced traditional funerals, and
availability of medical treatment facilities.

Once we have the model agreeing with the initial growth, we then varied the:

• magnitude, c+
i , and time, tc, that the infected population changed behavior,

• increase in the fraction of people receiving medical treatment pim , and
• reduction in the fraction of people having a traditional funeral pi f . The fitted values
are given in Table1.

The resulting baseline solution of the model (Fig. 4) is in good agreement with the
published incidence data.

5 Sensitivity Analysis

In local sensitivity analysis [3, 4], we perturb our reference (baseline) solution to
quantify how quantities of interest (QOIs), such as the reproductive numbers or size
of the infected population, change in response to small changes in the parameters of
interest (POI), such as the time people change their behavior (tc) or the probability
that an infected person will be treated at a medical facilities (pim). The sensitivity
indices tell us the relative importance of each parameter to theQOIs and how sensitive
they are to changes in parameters, such as the magnitude of the behavior change.
The sign of the index indicates the direction of the response, and its magnitude tells
us the relative importance of each parameter in our model predictions. Because the
analysis is based on a linearization of the solution with the baseline parameters,
the local sensitivity analysis indices are only valid in a small neighborhood of the
baseline parameter values.

We define q̂ = q( p̂) as the value of the QOI when the model is solved with the
baseline parameter values p̂. If the POI, p̂, is perturbed by a small amount, p =
p̂(1 + θp), then the QOI will change by q = q( p̂ + θ

q
p p̂) where θq := θp

p̂
q̂

∂q
∂p . The
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Fig. 4 The baseline solution of the model (1) using the fitted parameters (Table1) has a noticeable
jump in the number of people receiving medical treatment at time tm = 22 − Oct − 2014

ratio of the change in q with respect to a change in p is defined as the dimensionless
relative sensitivity index as

Sq
p := p̂

q̂
× ∂q

∂p

∣∣∣∣
p= p̂

= θq

θp
. (9)

That is, this local normalized relative sensitivity index Sq
p is the percent change in

the output given the percent change in an input parameter. If the p̂ changes by x%,
then q̂ will change by Sq

px%. Note that the sign of the sensitivity index indicates
whether the QOI increases (> 0) or decreases (< 0) with the POI.

The sensitivity indices in the Table2 show that, by far, the most efficient way for
slowing the epidemic is to reduce the number of contacts that an infectious person
has in state I . The impact of the general susceptible public S reducing their contacts
cs has a much smaller effect since the vast majority of these contacts are with other
susceptible people that have little impact on the epidemic. This suggests that the
emphasis of mitigation efforts should be focused on urging the infected people to
isolate themselves, rather than have everyone reduce all their contacts.

In extended sensitivity analysis [25], we vary the POIs over awide range of values.
In Fig. 4, the total number of people dying increases with the fraction p+

d f of people
not in medical care who continued to have a traditional funeral after the funeral
restrictions went into effect. Note that the epidemic would have been over three
timesworse if everyone continued to have a traditional funeral (p+

d f = 1) compared to
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Table 2 The sensitivity indices of R0 with respect to the model parameters for the baseline case
(Table1)

Total cs ce ci cm c f cr pd f
c+
i

c−
i

pim

Exposed 0.0015 –
0.00047

9.5 0.048 1 –
0.00086

0.12 1.2 –0.4

Dead 0.0014 –
0.00045

9.3 0.044 1 –
0.00079

0.12 1.1 –0.44

Note that the sensitivity index for the total dead with respect to ci is 9.3 meaning that if the infected
population reduced their contacts by 1%, then the number of people who died would be reduced
by 9.5%

p+df
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p+im
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Medical Availability

Fig. 5 The baseline case in these extended sensitivity analysis plots is indicated by an . The
y-axis for the total number of people dying is plotted as a function of p+

d f , c
+
i /c−

i , and p+
d f over a

wide range of possible values. Notice that in the center figure, reducing the number of contacts an
infectious person has after the behavior change has begun has the greatest impact on slowing the
epidemic

completely stopping the funerals (p+
d f = 0). The center plot illustrates the sensitivity

of the epidemic growth as a function of the relative reduction (c+
i /c−

i ) in the number of
contacts that an infectious person has after the behavior change begins. The baseline
case is that infected people reduce their contacts to 40% of what they were before
time tc. The model predicts that the death toll would have been cut in half if they
they had cut their contacts to 10% of c−

i . The plot on the right shows the dramatic
effect that increasing the fraction pi f of infected peoplewho are admitted to amedical
treatment unit can have on reducing the total number of people dying in the epidemic.
Without the availability of medical treatment (pi f = 0) the model predicts that the
epidemic would have been far worse (Fig. 5).
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6 Summary and Conclusions

Our simulations indicate that reducing the contacts that infectious people have with
the general public is the most important mitigation strategy of those considered in
the model. These contacts include both the contacts with an infected person at home,
under medical care, and in a traditional funeral. Reducing the number of contacts
that the general susceptible population has per day by the same factor is a more
difficult task to have the same impact on the epidemic. The simulations predict that
medical care intervention alone would have been insufficient to stop this epidemic
from spreading through a population.

We acknowledge that ordinary differential equations, such as this model, are best
used to simulate large epidemics and may not be valid in representing how the
infection would spread through small rural communities. Also, our simple model
also fails to account for the important role that family structure had in the EVD
epidemic where infectious individuals are more likely to infect family members than
people in the general community. Even though it would be inappropriate to use a
simple model, such as this one, for forecasting an epidemic where so few people are
infected, these models can provide insights into the relative importance of mitigation
strategies, such as the effectiveness of behavior change and the availability ofmedical
interventions in stopping the epidemic.
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AModel for Coupled Outbreaks Contained
by Behavior Change

John M. Drake and Andrew W. Park

Abstract Large epidemics such as the recent Ebola crisis in West Africa occur
when local efforts to contain outbreaks fail to overcome the probabilistic onward
transmission to new locations. As a result, there may be large differences in total epi-
demic size from similar initial conditions. This work seeks to determine the extent
to which the effects of behavior changes and metapopulation coupling on epidemic
size can be characterized. While mathematical models have been developed to study
local containment by social distancing, intervention and other behavior changes,
their connection to larger-scale transmission is relatively underdeveloped. We make
use of the assumption that behavior changes limit local transmission before suscep-
tible depletion to develop a time-varying birth-death process capturing the dynamic
decrease of the transmission rate associated with behavior changes. We derive an
expression for the mean outbreak size of this model and show that the distribution
of outbreak sizes is approximately geometric. This allows a probabilistic extension
whereby infected individuals may initiate new outbreaks. From this model we char-
acterize the overall epidemic size as a function of the behavior change rate and the
probability that an infected individual starts a new outbreak.We find good agreement
between the analytical results and stochastic simulations leading to novel findings
including critical learning rates that demarcate large and small epidemic sizes.

Keywords Ebola · Epidemic model · Behavior change · Transmission rate ·
Birth-death process · Metapopulation model

1 Introduction

Many questions arise during outbreaks of emerging infectious diseases. How trans-
missible is the new pathogen within the initially exposed population? How fast will it
spread to other populations? What must be done to achieve containment? How large
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will the final epidemic be? These questions and others are amenable to theoretical
analysis using dynamic models [12]. Most models of disease transmission, however,
assume time constant parameters and do not account for changing human behavior
or other interventions. The 2014–2015 West Africa Ebola epidemic illustrates this
point. With an R0 around 1.7–3.0 [4, 6, 17] and a population of around 20 million
persons [16] in the three primarily affected countries, the final size of an outbreak
contained by susceptible depletion [13] would be from 11.7 to 18.8 million persons.
In contrast, the actual epidemic size of ≈30,000 persons is much less than 1% of
this size.

Because standard models admit containment only after the outbreak becomes
self-limiting through depletion of susceptible persons, they are inappropriate for
making predictions about apparent infections, where self-protective behaviors may
be quickly adopted, and in modern societies, where global financial, medical, and
logistic resources are rapidly mobilized to contain emerging pathogens like SARS,
MERS, and Ebola. But, if behaviors change and resources are quickly mobilized,
then why have outbreaks of these emerging pathogens persisted as long as they
have? One possible explanation is that behavior change and intervention are local
events that occur only around transmission clusters and are not completely efficient,
so that while behavior change and intervention act to reduce transmission where
it is high, a small fraction of infections escape isolation to seed new outbreaks in
spatially or socially adjacent populations. According to this idea, the persistence of
the pathogen in the population—and the propensity to transition from outbreak to
epidemic proportions—is based on a balance between the ability of the pathogen to
spark new outbreaks and the capacity of behavior change and intervention to contain
these outbreaks before further spread occurs.

Our motivation for this idea comes from the 2014–2015 West Africa Ebola epi-
demic. For instance, spread among counties in Liberia seems to be consistent with
this picture (Fig. 1). Here we see that the epidemic was maintained by a series of
outbreaks, each of which recapitulates a common pattern of explosive transmission,
followed by a decline in the rate of transmission and eventual containment. Because
the transmission process in each county occurs almost independently of the other
counties (coupling is primarily important for the initial spark and possibly subsequent
reinfections), a single compartmental model cannot accurately represent the asso-
ciated dynamics. Instead, what is required is a model of coupled epidemics. In the
following sections we develop a simple, conceptual model of this process. We imag-
ine an epidemic starting with an outbreak originating at a single location. In contrast
to most models, we assume that this outbreak is quickly contained by reductions
in transmission. The stochastic nature of transmission when only a small number
of persons are infected gives rise to a probability distribution in the outbreak size.
Although the outbreak is quickly contained, there is a small chance that the infection
is spread to an adjacent population before complete containment is achieved. If this
occurs, then the process is repeated until finally no further outbreaks occur. It is this
outbreak-of-outbreaks that we call an epidemic. To model this two-scale process,
we first propose a simple model for the stochastic dynamics of an outbreak subject
to behavior change, for which we obtain the mean outbreak size, denoted M . M is
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Fig. 1 In the 2014–2015 West Africa Ebola epidemic, the virus spread throughout the adminis-
trative units of Liberia during weeks 20 through 40 despite the fact that nation-wide containment
measures, including border closure, were put in place beginning in week 30 and the World Health
Organization declared the Ebola epidemic to be a Public Health Emergency of International Con-
cern one week later. Here, the cumulative number of cases in each administrative unit is plotted
against epidemiological week. These nearly parallel epidemic curves suggest that the same process
of outbreak and control was replicated in one county after the next with local interventions and
behavior change realized some finite time after cases began accumulating. For instance, approxi-
mately the same take-off rate was exhibited by Montserrado as by Grand Cape Mount, despite the
fact that their first cases were separated by twelve weeks. Data from the World Health Organization
situation reports

important for three reasons. First, it enables calculation of the chance that a secondary
outbreak is caused, which may be iterated until no further outbreaks result. Guided
by numerical experiments, we propose to approximate the probability distribution of
the number of outbreaks by a geometric distribution. The second role played by the
mean outbreak size is to parameterize the geometric distribution of outbreak number.
Finally, by summing a random number of outbreaks with the mean size M , we obtain
an approximation for the epidemic size, i.e., the size of all outbreaks added together.
The accuracy of this approximation is studied through comparison with simulations.

Models that explicitly take account of within and between household transmission
have yielded important understanding of the role of host social structure on epidemic
development. Part of their success lies in the relatively simple task of enumerating
all possible infection statuses of individuals in small households and of assuming
a constant hazard of transmission to uninfected cohabitors [2]. In contrast, when
attempting to describe connections between local outbreaks (involving population
sizes much bigger than households) and larger-scale epidemics against the backdrop
of reduced transmission over time, tracking the local outbreak sizes can be chal-
lenging. Previous modeling studies of behavior change to limit transmission have
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generally assumed that transmission dynamics may additionally be slowed by sus-
ceptible depletion, e.g., [3, 5, 15]. By instead assuming that behavior changes act
before susceptible depletion, birth-death branching process techniques can be uti-
lized. As well as lending analytical tractability, these models likely capture the rapid
social distancing and learned risk-averse behavior associated with deadly diseases
such as Ebola. In the recentWest African outbreak, outbreak sizes were considerably
smaller than population sizes (Fig. 1).

2 Final Size of a Single Outbreak with Behavior Change

We assume that local outbreaks are contained by behavior changes over time that
act to reduce transmission (rather than the standard assumption of susceptible deple-
tion). We employ a simple time-varying function for the transmission rate, β0e−φt .
Parameter β0 is the intrinsic transmission rate operating in the absence of behav-
ior change, and φ is the rate of decay in the transmission rate where large values
of φ imply that effective behaviors such as social distancing are adopted rapidly.
Because the removal rate μ is assumed constant then local transmission dynamics
are described by

d I

dt
= β0e

−φt I − μI ; dR

dt
= μI. (1)

This is a generalized continuous-time birth-death process with time-varying birth
rate, as discussed by Kendall [10]. Following Kendall, the mean final size, R(∞), is
given by

M = 1 +
∫ ∞

0
e−ρ(τ)β(τ )dτ (2)

where

ρ(t) =
∫ t

0
(μ − β(τ))dτ (3)

= μt −
∫ t

0
β(τ)dτ (4)

= μt − β0

∫ t

0
e−φt dτ (5)

= μt + β0

φ
[e−φτ ]t0 (6)

= μt + β0

φ
(e−φt − 1). (7)
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So consequently, we are seeking to solve
∫ ∞

0
e−μτ− β0

φ
(e−φτ −1)

β0e
−φτdτ (8)

β0

∫ ∞

0
e−(μ+φ)τ− β0

φ
e−φτ

dτ (9)

β0e
β0
φ

∫ ∞

0
e−(μ+φ)τ e− β0

φ
e−φτ

dτ. (10)

Let z = β0

φ
e−φτ , then dz = −β0e−φτdτ , dτ = −1

β0
eφτdz, φz

β0
= e−φτ , ln( φz

β0
) = −φτ ,

τ = −1
φ
ln( φz

β0
). Now the integral can be written as

−β0

β0
e

β0
φ

∫ 0

β0
φ

e
μ+φ

φ
ln( φz

β0
)e−ze−ln( φz

β0
)dz (11)

− e
β0
φ

∫ 0

β0
φ

φz

β0

μ+φ

φ
−1

e−zdz (12)

− e
β0
φ

φ

β0

μ+φ

φ
−1 ∫ 0

β0
φ

z
μ+φ

φ
−1e−zdz (13)

e
β0
φ

φ

β0

μ+φ

φ
−1

γ

(
μ + φ

φ
,
β0

φ

)
, (14)

and the final size is

M = 1 + e
β0
φ

φ

β0

μ+φ

φ
−1

γ

(
μ + φ

φ
,
β0

φ

)
, (15)

where γ is the lower incomplete gamma function. This expression yields some
insights into how underlying processes govern outbreak size. Particularly, the left
panel of Fig. 2 shows the expected outbreak size to increase greater than exponen-
tially as β0 increases. Similarly, the outbreak size initially drops dramatically with
learning rate (between 0 and ≈0.05 in the right panel of Fig. 2), diminishing as
the realized transmission rate becomes small (φ > 0.05). In this figure, the shoulder
occurs when φ is about one fortieth of β0.

Stochastic simulations of Eq.1, obtained using Gillespie’s direct method, show
that outbreak size is “fat-tailed” with high variance, considerable right skew, and a
spike at zero (Fig. 3). This suggests the outbreak size distribution might be approx-
imated by a geometric distribution with mean M (Eq. 15). Figure3 compares 5,000
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left panel, and β0 fixed at 2 in the right panel). Note the non-linear functions in semi-log space

Outbreak size

D
en

si
ty

0 5 10 15 20 25 30 35

0.0

0.1

0.2

0.3

0.4

Fig. 3 Histogramof the final outbreak size based on5000 replicates of the stochastic version ofEq. 1
with I (0) = 1, β0 = 2.0, φ = 0.5 and μ = 1.0. The vertical dotted line shows the sample mean
oubreak size from these stochastic simulations. The solid vertical line represents the theoretical
mean outbreak size (Eq.15) and the dashed curve is the density of the geometric distribution
parameterized with the sample mean outbreak size

simulated outbreak sizes with the corresponding approximation (dashed line). The
mean of the approximating distribution (solid line) is only slightly larger than the
mean of the simulations.

3 Global Epidemic Model

To scale up from local outbreaks to epidemics we adopt a probabilistic model in
which local outbreaks are connected by movement of infected individuals among
communities. In general, we assume that the number of uninfected communities is
large so that the chance that an infected individual sparks an outbreak in another



A Model for Coupled Outbreaks Contained by Behavior Change 31

community may be represented by a small constant 0 < ε � 1. Let px be the proba-
bility mass function for an outbreak of size x . Since the probability that an individual
doesn’t spark a secondary outbreak is 1 − ε, the probability that an outbreak of size
x fails to spark a secondary outbreak will be (1 − ε)x by an assumption of indepen-
dence. The probability that there is an outbreak of size x and that it fails to spark
any secondary outbreaks is therefore px (1 − ε)x . By enumeration of all possible
outbreak sizes, the probability that an outbreak of unknown size will spark at least
one secondary outbreak is

α = 1 −
∞∑
x=1

px (1 − ε)x . (16)

With ε � 1, we assume that each outbreak sparks, at most, only one secondary
outbreak.

Let j = 1, 2, 3, ..., N index the local outbreaks so that N is the total number of
local outbreaks. The probability that the first outbreak is also the last one is just
p(N = 1) = 1 − α. By contrast, the probability that the first outbreak gives rise to a
secondary outbreak (with probability α) and that the second outbreak fails to give rise
to a third (with probability 1 − α) is p(N = 2) = α(1 − α). Proceeding to j = 3,
the probability that both outbreaks one and two give rise to a secondary outbreak
and that the third outbreak is the last yields p(N = 3) = α2(1 − α). By induction,
we see that the general rule is given by

f (m) = p(N = m) = αm−1(1 − α). (17)

The next challenge is to ascertain the total number of cases in these m outbreaks.
Let X j be the random number of cases in the j th outbreak. The total number of cases
in the epidemic will be the sum of cases in the local outbreaks, i.e.,

Ym =
m∑
j=1

X j . (18)

Since the X j are independently and identically distributed according to distribution
px , it follows that the distribution of Ym is just them-fold convolution of px , denoted
pm∗
x . The probability that there are exactly m outbreaks and that these give rise to Y

cases is

py = pm∗
x f (m). (19)

Using the notation of Johnson et al. [8], we have the following re-parameterization
for the distribution of outbreak sizes.

M = (1 − p)/p → p = 1/(M + 1), (20)
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P = (1 − p)/p = M, (21)

and

Q = 1/p = M + 1. (22)

If k outbreaks are summed, the result is negative binomially distributed with para-
meters k and P . Let k be the number of non-primary outbreaks. Applying the same
rationale used to arrive at Eq.17, we obtain P(k = 0) = 1 − α = a and in general
P(k = n) = (1 − a)na. So, the number of non-primary outbreaks is a geometric
distribution with parameter p = a.

Following Johnson et al. [8], the distribution formed by taking a negative binomial
with k drawn from a geometric distribution with parameters Q′ and P ′ is also a geo-
metric distribution with parameter QQ′ − P ′. Identifying parameters in Eq.17, we
have Q′ = 1/(1 − α) and P ′ = αQ′ yielding Q = (M + 1)( 1

1−α
) − α

(1−α)
. Expand-

ing to obtain the unconditional total epidemic size distribution, we have

P(Y = y) = π(1 − π)y−1, (23)

where

π =
(

(M + 1)(
1

1 − α
) − α

(1 − α)

)−1

. (24)

This simplifies to

P(Y = y) = (1 − α)(M/(M + 1 − α))y−1

M + 1 − α
(25)

with expected value

1/π = (M + 1)

(
1

1 − α

)
− α

(1 − α)
. (26)

4 Comparison with Numerical Results

This derivation of Eq.25 relies on approximations for the probability of a secondary
outbreak given an outbreak of unknown size (Eq.16) and the distribution of out-
break sizes (assumed to be approximated by a geometric distribution), as well as the
assumption that outbreak number and outbreak sizes are independent. We evaluated
these assumptions by comparing Eq.25 with numerical simulations in which chains
of outbreaks were probabilistically generated by linking individual outbreaks simu-
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Fig. 4 Example output from
model simulating coupled
outbreak dynamics initiated
by a single individual. The
local outbreak dynamic
parameters are β0 = 3.0,
μ = 1.0 and φ = 0.1. The
per capita rate of sparking a
new outbreak is ε = 0.25. In
this example, there are 16
local outbreaks before the
process stops
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lated as in Sect. 2. Figure4 shows an example solution that is visually similar to the
data on Ebola shown in Fig. 1. Figure5 compares the mean and 99th percentile of
epidemic size for the approximation and simulated results over a range of ε and φ.
The two solutions are similar to order of magnitude for most combinations of these
parameters, failing primarily when φ becomes very small.

5 Discussion

The goal of this work has been to develop a relatively simple model that neverthe-
less provides valid insight into the effects of behavior change and coupling among
local populations on the final size of potentially extensive outbreaks. Such processes
are invariably at work in outbreaks of novel pathogens that ultimately affect large,
distributed populations, notably outbreaks of Ebola [17], SARS [11], and MERS
[14]. The model we developed considers epidemics to consist of multiple coupled
outbreakswhere outbreak trajectories are contained by local behavior response. Con-
tainment is counteracted with the potential of each local outbreak to spark secondary
outbreaks through the movement of infected persons so that the final epidemic size
reflects the tension between these two processes.

Focusing first on the distribution of outbreak sizes, this work shows that initially
supercritical outbreaks that are intrinsically contained through a decline in the trans-
mission rate (assumed to be exponential with time since the outbreak began), give
rise to a fat-tailed distribuion of local outbreak sizes.Moreover, the outbreak size dis-
tribution changes in a strongly nonlinear fashion with respect to both the initial rate
of transmission and the learning rate. Approximating this distribution by a geometric
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Fig. 5 Left-hand panels (top to bottom) show the predicted mean epidemic size, Eq. 26, the sim-
ulated mean epidemic size and the difference between the two as a function of model parameters
ε and φ. Right-hand panels show analogous information for the 99th percentile of epidemic sizes.
Constant model parameters are β0 = 2.0 and μ = 1.0. Epidemic sizes are simulated from 5000
replications. Contours are indicated by white lines
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distribution withmean given by Eq.15 enables one to investigate the tension between
containment and expansive spread, i.e., epidemics. Figure5 shows there to be a large
region of the upper left of the ε − φ parameter space in which epidemics (i.e., exten-
sive outbreaks with multiple communities affected) are exceedingly unlikely. To the
right hand of each panel in Fig. 5, i.e., as ε → 1, the outbreak size contours turn
up rapidly, beyond which movement of infected individuals is so common that the
epidemic is effectively well mixed. Outside this range, the outbreak size contours
are practically horizontal, illustrating very little dependence on the rate of individ-
ual movement so that learning—and the propensity to self-containment—becomes
the much more important process. We are unaware of prior results suggesting this
transition between epidemics dominated by movement and epidemics dominated by
learning.

The super-exponetial scaling of the outbreak size shown in Fig. 2 is recapitulated
in the distribution of outbreak sizes. Thus, for instance, as one moves from the top
of each panel in Fig. 5 the contours become closer together. Similarly, the fat-tail in
the outbreak size distribution (Fig. 3) propagates to the epidemic size distribution.
This is perhaps most easily seen by noting that there is an approximately one loga-
rithm displacement between the contours for the average epidemic size and the 99th
percentile in Fig. 5. Thus, for an average epidemic size of 1,000, it is not improbable
for an epidemic of 10,000 to be realized. Comparison of the approximate analytic
results in the first row of Fig. 5 with the exact results from stochastic simulation in
the second row shows that although the approximation comes at a small cost in terms
of bias, these qualitative conclusions are robust to the range of assumptions required
for their solution, particularly the assumption that the zero-inflated distribution of
outbreak sizes can be reasonably approximated by a geometric distribution.

Other assumptions we have made include that the probability any local outbreak
sparks more than one secondary outbreak is negligible and that there is no effect of
susceptible depletion. The first of these assumptions biases downward our expression
for the total number of outbreaks (Eq. 17). This bias becomes more severe as ε → 1,
i.e., to the right in each panel of Fig. 5, which would further differentiate our two
modes for epidemic expansion. The second issue is of negligible consequence unless
the total epidemic size tends to be large relative to the population size (precisely what
containment prevents) or where the contacts among susceptible persons are highly
structured. While there has been a great deal of theory about this latter condition
[9], whether it obtains in generalized epidemics like Ebola remains poorly under-
stood. Additionally, the modeling approach adopted here may admit other assump-
tions (particularly concerning the underlying distribution of local outbreak sizes) and
extensions, including the seeding of multipe new outbreaks from a single outbreak
and a time-varying “death” rate in the birth-death process, representing more rapid
treatment/isolation with increasing experience.

Multiscale modeling of infectious diseases remains a significant mathematical
and computational challenge [7]. The simplifying, plausible assumptions made here
have allowed us to relate ultimate epidemic size to the rate at which transmission at
a local scale is reduced by behavior change and the probability that a new outbreak
is seeded elsewhere before local containment. These analytical results are achieved
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even though the model does not describe a stationary process and illustrates the value
of combining modeling approaches, here the outcome of a potentially large number
of branching processes accumulated via convolution. One of the key results is that
epidemic size grows faster than exponential with decreasing behavioral learning
rate, suggesting that there are critical rates above which behaviors acting to reduce
transmission will dramatically reduce the overall number of persons infected during
a series of outbreaks. Qualitatively, this phenomenon points to a potential connection
between the approach undertaken here and random network modeling [1] where the
addition of a few links can lead to explosive percolation suddenly connecting a large
proportion of nodes. Practically, it underscores the importance of early response to
epidemic containment.
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Abstract The 2014 West African Ebola Outbreak is the largest Ebola virus disease
(EVD) epidemic ever recorded, not only in number of cases but also in geographi-
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exportation of the infection in countries around the world. Starting in July 2014,
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we used the Global Epidemic and Mobility model to provide a real-time assessment
of the potential international spread of the EVD epidemic. We modeled the unfold-
ing of the outbreak in the most affected countries, considered different scenarios
reflecting changes in the disease dynamic, and provided estimates for the probability
of observing imported cases around the world for 220 countries. The model went
through successive calibrations as more surveillance data were available, providing
projections extending from a few weeks to several months. The results show that
along the entire course of the epidemic the probability of observing cases outside
of Africa was small, but not negligible, from September to November 2014. The
inflection point of the epidemic occurred in late September and early October 2014
with a consistent longitudinal decrease in new cases, thus averting the status quo
epidemic growth that could have seen hundreds of exported cases at the global scale
in the following months.

Keywords Ebola · Epidemic · West Africa · Large scale model · International
spread · Agent-based model · Computational model

1 Introduction

The Ebola Virus Disease (EVD) is caused by infection with a virus of the family
Filoviridae, genus Ebolavirus [1]. The EVD causes an acute, serious illness, which is
often fatal if is not treated. It is thought that fruit bats are the natural Ebola virus hosts,
and that the virus is introduced into the human population through close contact with
bodily fluids of infected animals such as fruit bats and monkeys. The EVD then
spreads through human to human via direct contact with blood, secretions, and/or
other bodily fluids of dead or living infectious people [2]. Gene sequencing of the
virus causing the 2014 West African (2014 WA) outbreak showed 98% homology
with the Zaire Ebola virus, with a 55% case fatality ratio (CFR) across the recently
affected countries [3].Unfortunately at the start of the outbreak therewere no licensed
treatments available for EVD, and severely ill patients could only be cared for with
intensive supportive care. In August 2015, the preliminary assessment of the ring
vaccination trial of the EVD vaccine candidate rVSV-ZEBOV provided a 100%
(95% CI 74.7–100) efficacy [4, 5].

As in previous outbreaks, the current one started in a remote area of Guinea,
during December of 2013, although the exact place is uncertain. Soon afterwards, in
early 2014, there were cases of Ebola in the neighboring countries of Liberia (March
2014) and Sierra Leone (May 2014), affecting their capital cities. The West African
region was affected by an Ebola epidemic that for the first time extended across three
countries simultaneously: Guinea, Liberia and Sierra Leone. On July 20, 2014, a
passenger infected with the Ebola virus, traveling from Liberia to Nigeria, started an
outbreak in Lagos. In total 20 people were infected in Nigeria, where the outbreak
was successfully contained [6].
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Fig. 1 Air traffic connections fromWest African countries to the rest of the world. Guinea, Liberia
and Sierra Leone are not well connected outside the region. Nigeria, in contrast, being the most
populous country inWest Africa, with more than 166 million people, is well connected to the rest of
the world. For historical reasons, all these countries have the strongest ties with European countries.

Unfortunately, it was not until July/August 2014 that the international community
started to realize the catastrophic dimension of the epidemic [7]. In August 2014,
more and more cases were observed in large cities such as Conakry, Freetown,
Monrovia and Lagos, raising the concern about the possible internationalization
of the outbreak, as these urban areas have major international airports (see Fig. 1).
While importation of cases should not generate large outbreaks in countries where
prompt isolation of cases in appropriate health care facilities occurs, it was clear that a
quantitative analysis of the risk of internalization of the epidemic outsideWest Africa
was needed to inform public health policies and country preparedness worldwide.

To better understand the potential international dissemination of the EVD out-
break, we proposed a computational framework to model the short-term disease
dynamic behavior and provided a real-time quantitative assessments of the risk of
EVD case importation across the world. The quantitative analysis is based on large-
scale computer simulations of the 2014 WA EVD outbreak that generate stochastic
outputs of the epidemic spread worldwide, yielding, among other measures, the case
importation events at a daily resolution for 3,362 subpopulations in 220 countries.
Specifically, we used the Global Epidemic and Mobility model (GLEAM) that inte-
grates high-resolution data on human demography andmobility on aworldwide scale
in a metapopulation stochastic epidemic model [8–10]. The disease dynamics within
each population considers explicitly that EVD transmissions occur in the general
community, in hospital settings, and during funeral rites [11]. We considered dif-
ferent scenarios that simulated the mitigation efforts on the ground. For parameter
inference, we used aMonte Carlo likelihood analysis to select an ensemble of disease
dynamic models executed with 3,000,000 simulations sampling the disease model
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space and the surveillance data on the 2014 WA EVD outbreak at various points in
time. The selected models allowed us to generate numerical stochastic simulations
of the EVD epidemic at the local (withinWest African countries) and global level. In
September 2014, analyses on the risk of international spread of the outbreak focused
on the analysis of the sheer volume of international passenger traffic across countries
[12, 13]. We used an approach that fully couples the specific etiology of the dis-
ease, the local dynamics of the outbreak in the affected countries, and the individuals
mobility worldwide.

Within this framework, we evaluated the progression of the epidemic in West
Africa and its international spread under three different scenarios, namely status
quo, marginal containment and containment, accounting for the different temporal
dynamics that the EVD outbreak could follow depending on success of the contain-
ment interventions. The status quo scenario simply assumes that the epidemic grows
at the same exponential rate observed in August 2014. while the other two scenarios
consider partial and full control of the epidemics respectively. In the two interven-
tion containment scenarios, as the outbreak evolved, we considered that the control
policies were successfully reducing the transmissibility to a nearly sub-critical and
sub-critical values, just as it actually happened after September 2014.

As the outbreak progressed, wewere able to assess the risk of the internationaliza-
tion of the epidemic in real-time, which allowed us to perform a longitudinal analysis
throughout the months between September 2014 to February 2015 at a worldwide
level. This analysis provided possibles outcomes, from the possibility of observing
hundreds of exported cases by January 2015 in the status quo scenario, to just a few
cases in the case of containment. In terms of international spreading risk, we found
that the probability of case exportation was extremely low (upper bound less than
5% by the end of September 2014) for non-African countries, including the most
connected countries to Africa, such as the United Kingdom (UK), Belgium, France
and the United States (US), which receive 40% of the total traffic of passengers from
West Africa to the rest of the world. We also found that this probability would have
increased month by month if the outbreak were not contained. In our study we con-
sidered the effects of travel restrictions, considering an 80% airline traffic reduction
from and to the West African countries affected by the outbreak [14]

2 Methods

In this section we provide a description of the data and the data-driven computational
framework that we used to provide a quantitative analysis of the development of the
EVD outbreak in West Africa.
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2.1 Global Epidemic and Mobility Model

The Global Epidemic and Mobility (GLEAM) model is a stochastic and individual
based epidemic model that combines real-world data and computational techniques
allowing us to perform in-silico simulation of the spatial spreading of a disease at
a global level. GLEAM is based on a meta-population network approach where the
world is divided into geographical regions connected by a network of interactions
given by population traffic flows from transportation and mobility infrastructures.
The model’s technical details and the algorithms underpinning the computational
implementation are extensively reported in the literature [8–10, 15].Using real demo-
graphics, the model divides the world population into geographic census areas that
are defined around transportation hubs and connected bymobility fluxes; this process
effectively defines an infectious disease meta-population network model [16–18].

The subpopulations of the model correspond to geographical census areas defined
around transportation hubs obtained using a Voronoi-like tessellation of the Earth’s
surface by assigning each cell of the grid to the closest transportation hub (generally
airports or major urban areas) taking into account distance constraints. The popu-
lation of each census area is obtained by integrating data from the high-resolution
population database of the Gridded Population of the World project of the Socioe-
conomic Data and Application Center at Columbia University (SEDAC) [19]. The
model counts more than 3,300 census areas in about 220 different countries (num-
bers may vary by the year considered according to changes in the databases, often
because of countries’ conflicts).

The mobility among sub-populations integrates the mobility by global air travel
(obtained from the International Air Transport Association [20] and the Official
Airline Guide [21] database) with the short-scale mobility between adjacent sub-
populations, which represents the daily commuting patterns of individuals. Com-
muting and short-range mobility considers data from 80,000 administrative regions
from countries in 5 different continents. The model also considers the modeling of
mobility through different validated approaches [9, 22]. GLEAM simulates the num-
ber of daily passengers traveling worldwide by using the real data obtained from the
airline transportation databases, which contain the number of available seats on each
airline connection in the world among the indexed airports. The short range commut-
ing flows are accounted for by defining effective mechanistic sub-population mixing
[10]. The time step of the model is set to one day.

The disease model within each subpopulation assumes a compartmental classi-
fication of the disease under study. The epidemic evolution is modeled using an
individual dynamics where transitions are mathematically defined by chain bino-
mial and multinomial processes [23] to preserve the discrete and stochastic nature
of the processes. Each sub-population’s disease dynamic is coupled with the other
sub-population’s through the simulated travel and commuting patterns of disease
carriers. The disease model used for this study is specific to the EVD and follows
the compartmentalization used by Legrand et al. [11]. The model works in discrete
time steps, representing a full day, to computationally implement the air travel, the
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compartmental transitions (where the force of infection takes into account both the
infection dynamics and the short-range movement of individuals), and the partial
aggregation of the results at the desired level of geographic resolution. The model
is fully stochastic and from any nominally identical initialization (initial conditions
and disease model) generates an ensemble of possible epidemic evolutions for epi-
demic observables, such as newly generated cases, time of arrival of the infection,
and number of traveling carriers.

2.2 Disease Dynamic Model

In order to study the dynamics of the disease, we used a compartmental classifica-
tion of the stages of the disease. We considered two different models of increasing
detail. One parsimonious model assumes an SEIR compartmental structure where
individuals are classified as it follows: susceptible individuals S who can acquire
the infection; exposed individuals E that will become infectious at a rate ε = 1/7
days−1; infectious individuals I that can transmit the disease; removed individuals R
where the infectious individuals move at a rate γ = 1/10 days−1. The R compart-
ment includes the individuals that can no longer transmit the disease because either
they have recovered or died. The transition probabilities were chosen for consistency
with the more refined model adopted in our analysis. The second model, based on
Legrand et al. [11], contains features specific to EVD transmission. Individuals are
classified in the following way: susceptible individuals S, who can acquire the dis-
ease after contact with infectious individuals, exposed individuals Ewho are infected
but do not transmit the disease and are asymptomatic, infectious individuals I who
can transmit the disease and are symptomatic, hospitalized infectious individuals H,
dead individuals F that can infect through the burial ceremonies, and recovered or
removed individuals R. In both models, individuals in the exposed state are allowed
to follow usual mobility patterns and travel internationally. At the same time we also
considered two variations of these models: (i) the EVD cases are identified after the
first connecting flight; (ii) the EVD cases are able to travel to their final destination.
These models provide a minimum and maximum for the probability of case importa-
tion in each country, whose spread depends on whether the transportation system of
a country act as a traffic gateway or a destination hub. These models presented sim-
ilar outcomes and we only report the results for (ii). In Fig. 2, we show a schematic
representation of the model and the transitions between compartments. In Table1 we
report in detail the transition probabilities used in this study.

From the proportion of hospitalized cases θ , one can obtain the hospitalization rate
θ1 for the infectious compartment I. This can be done by assuming that θ corresponds
to the fraction of instantaneous transitions from compartment I to the hospitalized
compartment H, over all transitions originating from I. A similar construction is
done to obtain the compartment specific death rates δ1 and δ2. For the calculation
of δ1, the fatality rate for non-hospitalized infected individuals, we consider that the
CFR δ equals the fraction of transitions from compartment I to F with respect to all
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Fig. 2 Schematic representation of the compartmental model with susceptible individuals, S;
exposed individuals, E; infectious cases in the community, I; hospitalized cases, H; dead but not
yet buried, F; and individuals no longer transmitting the disease, R. Model parameters are: βI ,
transmission coefficient in the community; βH , transmission coefficient at the hospital; βF , trans-
mission coefficient during funerals. θ1 is computed so that θ% of infectious cases are hospitalized.
Compartment specific δ1 and δ2 are computed so that the overall case-fatality ratio is δ. The mean
incubation period is given by α−1; γ −1

h is the mean duration from symptom onset to hospitalization;
γ −1
dh is the mean duration from hospitalization to death; γ −1

i is the mean duration of the infectious
period for survivors; γ −1

ih is the mean duration from hospitalization to end of infectiousness for
survivors; and finally, γ −1

f is the mean duration from death to burial

Table 1 The time spent in each compartment corresponds to the mean time reported in the different
references and used by the Legrand et al. study [11]

Transition parameters Value (Ref.)

Mean duration of incubation period (1/α) 7 days [26–28]

Mean time from onset to hospitalization (1/γh) 5 days [29]

Mean time from onset to death (1/γd ) 9.6 days [29]

Mean time from onset to end of infectiousness for survivors (1/γi ) 10 days [28, 30]

Mean time from death to traditional burial (1/γ f ) 2 days [11]

Proportion of cases hospitalized, θ 80% [29]

Rate of transition from infectious to hospitalized (θ1) 0.67

Case fatality ratio, δ 55%

δ1 0.54

δ2 0.53

Mean time from hospitalization to end of infectiousness for survivors (1/γih) 5 days

Mean time from hospitalization to death (1/γdh) 4.6 days

θ1 is computed in order to obtain the given proportion, θ%, of infectious individuals hospitalized.
δ1 and δ2 are computed in order to have an overall case fatality ratio δ. δ1 and δ2 are fatality ratio
parameters associated with the different compartments. For details on how to compute each one of
them see Ref. [11]
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transitions that do not correspond to hospitalization. The same is done for δ2, the
fatality rate for hospitalized individuals, where we take δ equal to the fraction of
transitions H to F, with respect to all transitions from compartment H.

The expression for the basic reproductive number R0 is obtained following the
method of Dieckmann & Heesterbeek [24, 25]. Legrand et al. [11] showed that this
parameter can bewritten as the sum of three terms for thismodel: a term that accounts
for the transmissions in the community, RI , a second term that accounts for trans-
missions within hospitals, RH , and a third that takes into account the infections from
dead individuals, RF . As the outbreak has been developing for several months, we
consider that any containment measure is already in place. Therefore any reduction
in the transmissibility in each setting is already incorporated in the corresponding
effective transmission rate in each compartment, βI , βH and βF . As shown in Ref.
[11], the relationship between each compartment’s specific reproduction rate and
transmissibility is given by

R0 = RI + RH + RF ,

RI = βI

Δ
,

RH = θβH

γdhδ2 + γih(1 − δ2)
,

RF = δβF

γF
, (1)

where the parameter Δ = γhθ1 + γdδ1(1 − θ1) + γi (1 − θ1)(1 − δ1).
Themodelingof the 2014WAEbola outbreakwas a challenging taskbecauseof the

lack of information about the epidemic itself (i.e. number of cases or their location).
We also faced the lack of updated information about health structure (number of
hospitals and care givers) and demographics, just to mention a few.

Back in August 2014, the only regularly updated dataset was provided by the
World Health Organization. From the Disease Outbreaks News (DONs) [31] at the
beginning of the outbreak, and later through the Situation Reports, it was possible to
construct a time series for the number of cases and deaths from EVD inWest Africa.
Despite the fact that the disease was already evolving for several months, for our
assessment we only considered data after July 7, 2014. We chose this particular date
because it waswhen theDONs and Situation Reports became periodic (twice aweek)
and consistent on the cases and dates of reports for the different countries. Using the
compartmental model described above that includes the hospital and funeral settings,
we first modeled the short term behavior of the disease dynamics.
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2.3 Real-Time Model Calibration

We considered Guinea, Liberia and Sierra Leone as the countries officially affected
by the EVD outbreak. In order to calibrate the model we used the WHO Disease
outbreak News [31] at the very beginning of the outbreak and later the Situation
Reports [6] provided by the WHO. From the available datasets we built a time-line
tracking the number of cases occurring in each of these countries. It is worth noting
that the data provided in these reports was constantly updated and revised, meaning
that the number of cases reported were retrospectively changed according to new
data and reports.

We assumed as the free parameters of themodel those defining the transmissibility
ofEVD in each considered setting. For the remaining parameterswe assumed initially
the values reported in Table1, together with results found across the literature for past
outbreaks [11, 32, 33]. After the publication of the data from theWHO collaboration
team [34, 35]we used these results to calibrate ourmodel to the ongoingWestAfrican
outbreak. In order to estimate the transmissibility components, we explored R0 in
the interval [0.2, 4.2], generating for each sampled point a statistical ensemble of
1,000 identically initialized Monte Carlo simulations of the epidemic spread at the
local and global level. We performed a Latin hypercube sampling of the model space
defined by the vector P(RI , RH , RF ). The simulations were initialized with data on
the number cases provided by the WHO reports in the three most affected countries
during the week of July 6, 2014. For each ensemble, it is possible to estimate the
likelihood functionL (P|x), where x = (xt0 , . . . , xtN ) indicates the number of cases,
according to the WHO reports, during the time interval spanning from t0 to tN . As
long as the new stable surveillance data are added to theWHO reports, the calibration
time interval could also be extended. It should be noted that the vector P defines for
each set of values a different global epidemic model through the non-parametric
definition of the infection spread across different sub-populations. In other words,
while the local transmission model has the same structure, the coupling among sub-
populations is defined by a different non-parametric mechanistic approach. Consider
the model with the maximum likelihoodL (P̂|x), we have considered the likelihood
region defined by the 1/10 relative likelihood function in defining the parameters
range and selected models that satisfy

L (P|x)
L (P̂|x) >

1

10
(2)

This approach has the advantage of not assuming a best model but rather selecting the
likelihood of each proposed model. The reference parameters are given by the model
with highest likelihood. We were aware that a more rigorous statistical analysis such
as Markov Chain Monte Carlo approaches would provide a more rigorous analysis
of the prior in the parameter space. However given the computational cost of the
modeling approach we decided to implement a more parsimonious analysis able to
provide results in real time.
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We first selected an ensemble of status quo models E c (no change of
transmissibility in time) in the parameter space RI × RH × RF for each country
c, based on the reported data for the country c with t0 = August 9, 2014 and tN =
August 20, 2014, where c ∈ C = {Guinea,Liberia,SierraLeone}. The ensemble of
status quo models for theWest Africa is the union of ensembles for these three coun-
tries, i.e., EWA = ⋃

c∈C E c. It must be noted that the transmissibility in the various
settings is difficult to determine as different partitions of the transmissibility can
provide similar growth rates for the epidemic, thus providing similar likelihood. The
identifiability issue is taken into account by the likelihood approach that considers
in the portfolio of viable models all the parameter combinations likely to reproduce
the empirical data [36].

2.4 Containment Scenarios

In August 2014, we observed a sustained local transmission of EVD in Guinea,
Liberia and Sierra Leone. The estimates of the transmissibility indicated a West
African reproductive number R0 ranging from 1.5 to 2.0. This transmissibility was
in the range of estimates in previous outbreaks [11]. Considering the data available at
early stages of the outbreak, we projected the status quo dynamics of the disease and
provided a first assessment on the risk of internationalization of the 2014 WA EVD
outbreak [37]. In September 2014, however the situation began to change rapidly. The
growth rate of the disease decreased, and in each country the dynamics reached an
inflection point after which the number of new cases started to consistently decrease.
However, the inflection point and slow down of the epidemic in the different countries
occurred at different times. The change in the behavior of the disease and the rapidly
evolving situation thus prompted the need for constant updates of the models and
their projections.

To better reflect the effects of the interventions, we considered two alternative
scenarios in addition to the original Status quo scenario. The first alternative scenario,
Marginal containment, considers an effective reduction in the transmission such that
R′
0 � 1.The second scenario,Containment, considers that full control of the epidemic

is achieved, with an effective reproductive number definitely subcritical R′
0 < 1.

These alternative scenarios are introduced after a period of exponential growth,
that we kept to describe the initial phase of the outbreak. To simulate the decrease in
the basic reproductive number due to the control interventions, we considered that
the transmissibility decreases in each infectious compartment linearly over a period
of two weeks. In order to limit the number of free parameters we consider that the
transmissibility β changes linearly according to

β ′(t) =
(
1 − ξ

(t − t0)

Δt

)
β, (3)
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where ξ accounts for the reduction of R0, ξ = 1 − R′
0

R0
, Δt is the period of time

needed to achieve a basic reproductive number R′
0, and t0 is the starting date of

the interventions. We also provided a sensitivity analysis using alternative decaying
functions.

To analyze the effects of interventions, for each country c we define the one-
dimension parameter space of intervention time Tc

0 and re-run simulations based
on the selected parameters in RI × RH × RF but with sampling Tc

0. The different
starting date for the interventions used in this secondary calibration of the model
ranged between September 15th and December 29th 2014, in steps of one week. For
each model with different intervention times, we apply the same rule of calibration to
select an ensemble of best intervention dates. In this way, we could receive ensembles
of disease containment models for the marginal containment scenario E c

marg and the
containment scenario E c

cont. With such selected ensembles of models, we were able
to project disease dynamics behavior in long-term under three scenarios.

This modeling approach to the containment and epidemic inflection point assume
the effective reduction of transmissibility but does not provide any information on
the role and effectiveness of specific interventions. Furthermore it cannot be easily
linked to specific data on ebola treatment units admission, safe burial implementation
and their geographical heterogeneity. In order to overcome this limits more detailed
microsimulations approaches shall be used [38].

3 Results

By using the modeling approach as described in Sect. 2, we modeled the short term
behavior of the outbreak in Guinea, Liberia and Sierra Leone, and quantified the
probability of observing cases of Ebola around the world. In this section, we report
our projections of both local EVD epidemic in West African countries and the risk
of case importation in the rest of world.

3.1 Local Transmission of EVD

In Fig. 3 we show the time series for the three countries individually and for the
aggregated region of West Africa, under the different scenarios considered through
themonths of July 2014 to February 2015. The red dots represent the data (cumulative
number of cases) from the WHO reports, while the gray dots represent data made
available after the calibration was done. The shaded areas show the 95% reference
range (RR) of the stochastic fluctuations for the selected models. In the figure one
can readily observe how the actual course of the epidemic separates from the status
quo behavior bymid-September 2014 for Guinea and Liberia, and in December 2014
for Sierra Leone.
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Fig. 3 Cumulative number of cases of EVD for the three most affected countries and for the
aggregation of them. The plots show the results for the different scenarios considered: Status Quo,
Marginal containment and Containment. The dots correspond to the data from the official WHO
reports. The red dotswere used for themodel calibration. The gray dots are experimental data points
received after the calibration of the model, while the shaded areas represent the 95% reference
range due to the fluctuations of the stochastic microsimulations of the selected models

FromAugust 2014 toMarch 2015,we performed several calibrations of themodel.
For each one of them we used the data available at that time and implemented the
methodology described in Sect. 2.3. The first calibrationwas done using data from the
beginning of July until mid August 2014. At that time the outbreak was considered
to be growing at an exponential rate in West Africa. After our second calibration the
epidemic started to consistently deviate from the exponential growth behavior’s. In
Fig. 4 we show the number of EVD cases as a function of time for West Africa for
the different re-calibrations of the model. The dots represent the data points obtained
from the WHO reports. The red dots were used in the original calibration of the
model. The gray dots correspond to data received after the first calibration was done.
Each shaded area corresponds to the projections of the model for the different re-
calibrations of it. Although we only show the results for the aggregation of the three
countries, we performed the same analysis for each country individually and used
the corresponding selected models for the projections.



Real-Time Assessment of the International Spreading Risk Associated … 51

Fig. 4 Time series for the cumulative number of EVD cases inWest Africa. The dots correspond to
the data from the official WHO reports. The red dots were used for the original model calibration.
The gray dots are experimental data points received after the calibration of the model, and are
reported for the purpose of comparing with the model projections. The shaded areas correspond to
the 95% reference range due to the fluctuations of the stochastic microsimulations of the selected
models

3.2 Assessing the International Spread of EVD

Once we performed the calibration of the model and the local projections, we use the
selected models to simulate the international spread of EVD. This set of simulations
allowed us to track the importation of Ebola cases to other countries around the world
from West Africa. Through the simulations we could specifically track the number
of passengers traveling daily worldwide on each airline connection in the world. The
airline network used in the modeling of the international spread of EVD is based
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on the tickets booked by the passengers. This means that the network accounts for
the origin of the individuals and their final destination. In order to provide a list
of countries that could be experiencing the importation of cases of EVD we keep
track of every single exposed individual traveling to the different countries at a daily
scale. We quantified the risk of international spread as the probability of observing
an exposed individual arriving in a given country, in a given month.

InFig. 5weprovide a list of 10 countrieswith the largest risk of observing imported
cases of EVD and their corresponding probabilities during the months of September,
October and November 2014. Outside Africa, the countries with the largest risk of
EVD case importation were the ones having strong historical tights with the affected
region like United Kingdom, Belgium, France and USA. The results showed that,
in general, the probability of observing cases in these countries decreases month to
month, with the exception of United Kingdom. This result is due to the fact that this
country receives most of its passenger from Sierra Leone. From Fig. 3 we can see
that the outbreak was following the status quo scenario until the end of November
and therefore potentially exporting more cases than the other countries where the
epidemic was being mitigated. At the present time, we know that Nigeria, Senegal,
Spain, United States, Mali, United Kingdom and Italy have observed EVD cases.
Some of these cases were due to health care workers that were evacuated for medical
aid or were returning from West Africa. In Fig. 5 we have included some of these
countries to show that they rank among the ones with the larger probability of case
importation. The results shown consider that some airlines decided, at that time, to
interrupt flights to the most affected countries. We simulate this considering an 80%
air traffic reduction (ATR) from and towards West Africa [14]. In Table2 we provide
the mean number of imported cases, along with the minimum and maximum number

Fig. 5 Top10 countries at risk of EVD case importation during the months of September, October
and November of 2014. The risk is assessed as the probability that a country will experience at
least one case importation by that date, conditional of no presenting cases before that. The countries
marked with an asterisk (*) presented imported cases of EVD during the outbreak
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Table 2 Mean number of expected EVD imported cases (as well as minimum and maximum
number of cases) for the top 10 countries with higher importation probabilities, during the months
of September, October and November 2014

Country at risk September October November

Ghana 0.11 [0–3] 0.08 [0–3] 0.05 [0–3]

United States 0.04 [0–3] 0.03 [0–3] 0.02 [0–2]

United Kingdom 0.03 [0–2] 0.03 [0–3] 0.04 [0–3]

Nigeria 0.02 [0–2] 0.02 [0–2] 0.02 [0–2]

Senegal 0.02 [0–2] 0.02 [0–2] 0.01 [0–2]

France 0.02 [0–2] 0.01 [0–2] 0.01 [0–2]

Ivory Coast 0.02 [0–2] 0.01 [0–2] 0.01 [0–2]

Gambia 0.01 [0–2] 0.01 [0–2] 0.01 [0–2]

Belgium 0.01 [0–2] 0.01 [0–2] 0.01 [0–2]

South Africa 0.01 [0–2] 0.01 [0–2] 0.01 [0–2]

We include in the list countries that observed imported cases in those months to support the results
of our model, as those countries were ranking among the top of the possible ones importing cases

possible of cases, that the top 10 countries could have observed during the period
September-November 2014. As the probability of importing cases is very low in
general, we highlight that the 95% confidence interval is generally bounded by 3
cases for the countries with higher risk of importation.

We can also look at the outbreak in a retrospective way and perform a longitudinal
analysis,month tomonth, of the evolutionof the outbreak.Wequantify the probability
of observing n imported cases of EVD at a worldwide level between the months
of September 2014 and February 2015 for the three different scenarios described
in Sect. 3.1. In Fig. 6 we show the monthly number of cases that could have been
observed for the different scenarios, including n = 0, that is no import cases at all.
We observe that in the status quo scenario not only does the probability of observing
imported cases increases with time, but also the probability of observing more than
one case increases, reaching hundreds of cases permonth by January 2015.As soon as
the containment measures are considered, the probability of observing cases around
the world decreases and the number of possible exported cases decreases as well.
We can perform an analogous analysis at the country level. In Fig. 6 we include the
results month to month for United States, shows a similar behavior.

4 Discussion

During the months fromAugust through November 2014 theWAEVD outbreak was
posing a threat for the entire world. By defining a multimodel inference analysis, we
modeled the short term behavior of the outbreakwithinWest Africa and continuously
updated and re-calibrated it as more data became available.
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Fig. 6 Monthly number of imported cases projected at worldwide level and for United States.
For each month we report the projections in the three different scenarios for the local spreading
dynamics in West Africa. From top to bottom: status quo, marginal containment and containment

It is important to stress that the presentedmodeling analysis has beenmotivated by
the need for a rapid assessment of the EVD outbreak trends and contains assumptions
and approximations unavoidable in the real time analysis of a major public health
crisis. A first confounding factor in obtaining the provided estimates for the transmis-
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sibility is the likely underreporting of cases and deaths in the affected countries. We
have provided a sensitivity analysis that assumes a 50% underreporting in the data
about hospitalizations and deaths. In this case, the transmissibility estimate extends
the range of allowed values up to R0 = 2.5. Although this analysis does not drasti-
cally alter the picture offered by the baseline analysis, it is clear that a more precise
understanding of the underreporting of cases is needed to increase the accuracy of the
results. Another approximation contained in the model concerns the demographic
analysis of traveling individuals. Although we use very detailed data about traffic
flows and airline scheduling, there is very scant information about the sociodemo-
graphic features of traveling individuals. The introduction of heterogeneity due to
income and household type in the traveling patterns would therefore increase the
accuracy of the projections. Furthermore, the modeling approach does not include
the specific implementation of the identification and isolation of cases and the quaran-
tine of contacts, that would be relevant in discussing optimal containment strategies
and that could provide a more detailed picture of the local transmission and EVD
case generation [38].

Notwithstanding the previous limitations, the retrospective analysis of the out-
break is indicating that the picture emerging from the presented modeling approach
is in a good agreement with the real-world epidemic evolution. In this perspec-
tive the real-time modeling effort could represent valuable additional information
and situational awareness by comparing empirical data with the different scenario
assumptions. In conclusion, the results provided here are encouraging in advocating
for the use of data-driven computational frameworks with consideration of human
mobility in providing real-time forecast and assessment of epidemic outbreaks.
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Modeling the Case of Early Detection
of Ebola Virus Disease

Diego Chowell, Muntaser Safan and Carlos Castillo-Chavez

Abstract The most recent Ebola outbreak in West Africa highlighted critical weak-
nesses in the medical infrastructure of the affected countries, including effective
diagnostics tools, sufficient isolation wards, and enough medical personnel. Here,
we develop and analyze a mathematical model to assess the impact of early diagnosis
of pre-symptomatic individuals on the transmission dynamics of Ebola virus disease
in West Africa. Our findings highlight the importance of implementing integrated
control measures of early diagnosis and isolation. The mathematical analysis shows
a threshold where early diagnosis of pre-symptomatic individuals, combined with a
sufficient level of effective isolation, can lead to an epidemic control of Ebola virus
disease.
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1 Introduction

The Ebola viral strains are re-emerging zoonotic pathogens and members of the
Filoviridae family consisting of five distinct species: Bundibugyo, Cotes d’Ivoire,
Reston, Sudan, and Zaire with a high case-fatality rate in humans [1]. Filoviruses
are long filamentous enveloped, non-segmented, single-stranded viruses, consisting
of a negative-sense RNA genome [2]. Each Ebola species genome encodes seven
linearly arranged genes: nucleoprotein (NP), polymerase cofactor (VP35), matrix
protein (VP40), glycoprotein (GP), replication-transcription protein (VP30), matrix
protein (VP24), and RNA-dependent RNA prolymerase (L) [2]. While there are
no proven effective vaccines or effective antiviral drugs for Ebola, containing an
outbreak relies on contact tracing and on early detection of infected individuals
for isolation and care in treatment centers [2]. The most recent Ebola outbreak in
West Africa, which began in December 2013, due to the Zaire strain, demonstrated
several weaknesses in the medical infrastructure of the affected countries, including
the urgent need of effective diagnostics, which have a fundamental role in both
disease control and case management.

The Ebola virus is transmitted as a result of direct contact with bodily fluids
containing the virus [3]. The virus enters via small skin lesions andmucusmembranes
where it is able to infect macrophages and other phagocytic innate immune cells
leading to the production of a large number of viral particles [2]. The macrophages,
monocytes, and dendritic cells infected in the early stage of the disease serve to spread
the virus throughout the organs, particularly in the spleen, liver, and lymph nodes
[2]. Consequently, critically ill patients display intensive viremia [4]. Recognizing
signs of Ebola viral disease is challenging because it causes common non-specific
symptoms such as fever, weakness, diarrhea, and vomiting, and the incubation period
typically lasts 5–7 days [3]. Therefore, functioning laboratories and effective point-
of-care diagnostic tests are critically needed in order to minimize transmission, allow
better allocation of scarce healthcare resources, and increase the likelihood of success
of antiviral treatments as they are developed [5].

There is an ongoing effort in place to improve Ebola diagnostics, primarily to
detect the disease early. Currently, the cost and difficulty of testing limit diagnostic
facilities to small mobile laboratories or centralized facilities with turnaround times
measured in days rather than in a few hours, meaning that diagnosis is largely used to
confirm disease. Ebola diagnosis can be achieved in two different ways: measuring
the host-specific immune response to infection (e.g. IgM and IgG antibodies) and
detection of viral particles (e.g. ReEBOV Antigen Rapid Test Kit for VP40), or
particle components in infected individuals (e.g. RT-PCR or PCR). The most general
assay used for IgM and IgG antibody detection are direct ELISA assays. Considering
the physiological kinetics of the humoral immune system aswell as impaired antigen-
presenting cell function as a result of viral hemorrhagic fever, antibody titers are low
in the early stages and often undetectable in severe patients prior to death [6]. This
leaves polymerase chain reaction (PCR) for antigen detection as a viable option for
early diagnostic assays. PCR is a chemical reaction that amplifies pieces of a virus’s
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genes floating in the blood by more than a millionfold, which makes detection of
pre-symptomatic individuals likely identifiable. Indeed, a research article published
in 2000, illustrates the power of this technology to detect Ebola virus in humans in
the pre-symptomatic stage [7]. In this study, 24 asymptomatic individuals who had
been exposed to symptomatic Ebola patients were tested using PCR. Eleven of the
exposed patients eventually developed the infection. Seven of the 11 tested positive
for the PCR assay. And none of the other 13 did.

In this chapter, we extend the work presented in [8]. Here, we have developed
and analyzed a mathematical model to evaluate the impact of early diagnosis of
pre-symptomatic individuals on the transmission dynamics of Ebola virus disease in
West Africa, under the assumption that the disease is maintained possibly at very low
levels due to the deficiencies in health systems and our incomplete understanding of
Ebola infection as illustrated by the case of Pauline Cafferkey. Therefore, eliminating
Ebola may require a more sustained and long-term control effort.

Table 1 Definition of model
states

Variable Description

S(t) Number of susceptible individuals at time t

E1(t) Number of latent undetectable individuals at
time t

E2(t) Number of latent detectable individuals at time t

I(t) Number of infectious individuals at time t

J(t) Number of isolated individuals at time t

R(t) Number of recovered individuals at time t

Fig. 1 Compartmental model showing the transition between model states
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Table 2 Definition of model parameters

Parameter Value Unit Description

Λ 17182 population
day Recruitment rate

β 0.3335 day−1 Mean transmission rate

μ 4.98 ×
10−5

day−1 Natural death rate

κ1 1/4 day−1 Transition rate from undetectable to detectable latent
state

κ2 1/3 day−1 Exit rate of latent detectable individuals by either
becoming infectious or moving to isolation state

γ 1/6 day−1 Removal rate of infectious individuals by either
recovery or Ebola-induced death

γr 1/7 day−1 Removal rate of isolated individuals by either recovery
or Ebola-induced death

α 1/5 day−1 Rate at which infectious individuals get isolated

fT 0.25 ∈
[0, 1]

– Fraction of latent detectable individuals who are
diagnosed and get isolated

q1 0.7 – Probability that an infectious individual dies due to
Ebola

q2 0.63 – Probability that an isolated individual dies due to Ebola

r 0.35 ∈
[0, 1]

– Effectiveness of isolation

� 0.5 ∈
[0, 1]

– Relative transmissibility of isolated individuals with
respect to infectious individuals

2 Model Formulation

The total population is assumed to be classified into six mutually independent sub-
groups: susceptible S(t), non-detectable latent E1(t), detectable latent E2(t), infec-
tious I(t), isolated J(t), and recovered R(t) individuals. Table1 shows the state vari-
ables and their physical meaning. The transition between all these states is shown in
Fig. 1. And model parameters and their description are presented in Table2. Parame-
ter values have been obtained from previous studies [9, 10].

It is assumed that individuals are recruited (either through birth or migration) into
the susceptible class at a rate Λ and die naturally with rate μ. Susceptible individ-
uals get infected due to successful contacts with infectious or not perfectly isolated
infected individuals at rate λ. As a consequence, they become latent undetectable,
who develop their state of infection to become latent detectable at rate κ1.We assume
that the latent detectable class represent individuals whose viral load is above the
detection limit of the PCR-based diagnostic test [7, 11]. Latent detectable individ-
uals either are diagnosed and get isolated with probability fT or develop symptoms
to become infectious, who sequentially either get isolated at rate α, or are removed
from the system by recovery or Ebola-induced death at rate γ . It is assumed here
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that Ebola-induced deaths occur for the infectious individuals with probability q1.
Similarly, isolated individuals leave their class at rate γr , by either dying due to Ebola
with probability q2, or they get recovered and become immune. It is assumed that
isolation is partially effective so that successful contacts with susceptible individuals
may lead to infection with probability r; this parameter is a measure of isolation
effectiveness of infectious individuals. Thus, the force of infection is given by

λ(t) = β[I(t) + (1 − r)�J(t)]
N(t) − rJ(t)

. (1)

The assumptions mentioned above lead to the following model of equations

dS

dt
= Λ − λS − μS,

dE1

dt
= λS − (κ1 + μ)E1,

dE2

dt
= κ1E1 − (κ2 + μ)E2,

dI

dt
= (1 − fT )κ2E2 − (α + γ + μ)I, (2)

dJ

dt
= fTκ2E2 + αI − (γr + μ)J,

dR

dt
= (1 − q1)γ I + (1 − q2)γrJ − μR

where
N(t) = S(t) + E1(t) + E2(t) + I(t) + J(t) + R(t)

is the total population size at time t. On adding all equations of system (2) together,
we get

dN

dt
= Λ − μN − q1γ I − q2γrJ. (3)

3 Model Analysis

3.1 Basic Properties

Since model (2) imitates the dynamics of human populations, all variables and para-
meters should be non-negative. Thus, following the approach shown in appendix A
of [12], we show the following result.

Theorem 1 The variables of model (2) are non-negative for all time.

Lemma 1 The closed set
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Ω = {
(S,E1,E2, I, J,R) ∈ R

6+ : Λ

μ + q1γ + q2γr
≤ S + E1 + E2 + I + J + R ≤ Λ

μ

}

is positively invariant for model (2) and is absorbing.

Proof: Equation (3) implies that

dN

dt
≤ Λ − μN, (4)

dN

dt
≥ Λ − (μ + q1γ + q2γr)N . (5)

It follows from (4) that

N(t) ≤ Λ

μ
+

(
N(0) − Λ

μ

)
e−μt (6)

and from (5) that

N(t) ≥ Λ

μ + q1γ + q2γr
+

(
N(0) − Λ

μ + q1γ + q2γr

)
e−(μ+q1γ+q2γr)t . (7)

If we assume N(0) > Λ/μ, then dN/dt < 0 and therefore (based on inequality (6)),
N(t)decreases steadily until reachingΛ/μwhen t tends to∞. Similarly, ifwe assume
N(0) < Λ/(μ + q1γ + q2γr), then dN/dt > 0 and therefore (based on inequality
(7)),N(t) increases steadily until reaching amaximum atΛ/(μ + q1γ + q2γr)when
t tends to ∞. It remains to check the case if N(0) lies in the phase between Λ/(μ +
q1γ + q2γr) andΛ/μ. To this end, both inequalities (6) and (7) are combined together
to get

Λ

μ + q1γ + q2γr
+

(
N(0) − Λ

μ + q1γ + q2γr

)
e−(μ+q1γ+q2γr)t

≤ N(t) ≤ Λ

μ
+

(
N(0) − Λ

μ

)
e−μt .

On taking the limit when t tends to ∞, we find that N(t) remains within the same
phase. Thus, the set Ω is positively invariant and absorbing.

3.2 Equilibrium Analysis

3.2.1 Ebola-Free Equilibrium and the Control Reproduction
Number Rc

It is easy to check that model (2) has the Ebola-free equilibrium
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E0 =
(

Λ

μ
, 0, 0, 0, 0, 0

)′
(8)

where the prime “ ′ ” means vector transpose.
The basic reproduction number, R0, is a measure of the average number of sec-

ondary cases produced by a typical infectious individual during the entire course of
infection in a completely susceptible population and in the absence of control inter-
ventions [13, 14]. On the other hand, the control reproduction number,Rc, quantifies
the potential for infectious disease transmission in the context of a partially suscepti-
ble population due to the implementation of control interventions.WhenRc > 1, the
infection may spread in the population, and the rate of spread is higher with increas-
ingly high values of Rc. If Rc < 1, infection cannot be sustained and is unable to
generate an epidemic. For our model, Rc is computed using the next generation
matrix approach shown in [15]. Accordingly, we compute the matrices F (for the
new infection terms) and V (for the transition terms) as

F =

⎛
⎜⎜⎝
0 0 β (1 − r)�β
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , V =

⎛
⎜⎜⎝

κ1 + μ 0 0 0
−κ1 κ2 + μ 0 0
0 −(1 − fT )κ2 α + γ + μ 0
0 −fTκ2 −α γr + μ

⎞
⎟⎟⎠ .

Thus, the control reproduction number is given by

Rc = ρ(FV−1) = κ1κ2β[(1 − fT )(μ + γr) + (1 − r)�(α + fT (γ + μ))]
(κ1 + μ)(κ2 + μ)(α + γ + μ)(γr + μ)

= κ1κ2β

(κ1 + μ)(κ2 + μ)(α + γ + μ)

[
1 − fT + (1 − r)�

(
α

γr + μ
+ fT

γ + μ

γr + μ

)]

= R0

[
1 − α

(α + γ + μ)

] [
1 − fT + (1 − r)�

(
α

γr + μ
+ fT

γ + μ

γr + μ

)]
(9)

where ρ is the spectral radius (dominant eigenvalue in magnitude) of the matrix
FV−1 and

R0 = κ1κ2β

(κ1 + μ)(κ2 + μ)(γ + μ)
(10)

is the basic reproduction number for the model.
The local stability of the Ebola-free equilibrium, E0, for values of Rc < 1 is

established based on a direct use of Theorem 2 in [15]. We summarize our result in
the following lemma.

Lemma 2 The Ebola-free equilibrium E0 of model (2) is locally asymptotically
stable if and only if Rc < 1.
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3.2.2 Ebola-Endemic Equilibrium

On putting the derivatives in the left hand side of (2) equal zero and solving the
resulting algebraic system with respect to the variables S̄, Ē1, Ē2, Ī, J̄ , and R̄, we
obtain

S̄ = Λ

λ̄ + μ
,

Ē1 = Λ

λ̄ + μ
· λ̄

κ1 + μ
,

Ē2 = κ1

κ2 + μ
· Λ

λ̄ + μ
· λ̄

κ1 + μ
,

Ī = (1 − fT )κ2

α + γ + μ
· κ1

κ2 + μ
· Λ

λ̄ + μ
· λ̄

κ1 + μ
, (11)

J̄ = κ1

κ2 + μ
· Λ

λ̄ + μ
· λ̄

κ1 + μ
· κ2

γr + μ

[
fT + (1 − fT )

α

α + γ + μ

]
,

R̄ = 1

μ
[(1 − q1)γ I + (1 − q2)γrJ]

where

λ̄ = β(I + (1 − r)�J̄)

N̄ − rJ̄
(12)

is the equilibrium force of infection. On substituting from (11) into (12) and simpli-
fying (with the assumption that λ �= 0), we get

λ̄ = μ(Rc − 1)

1 − Term
(13)

where

Term = κ1κ2[q1(1 − fT )γ (γr + μ) + (rμ + q2γr)(fT (γ + μ) + α)]
(κ1 + μ)(κ2 + μ)(α + γ + μ)(γr + μ)

.

Hence, the Ebola-endemic equilibrium is unique and we show the following lemma.

Lemma 3 Model (2) has a unique endemic equilibrium that exists if and only if
Rc > 1.



Modeling the Case of Early Detection of Ebola Virus Disease 65

3.3 Normalized Sensitivity Analysis onRc

In considering the dynamics of the Ebola system (2), we conduct normalized sensi-
tivity analysis onRc to determine the impact of parameter perturbations on the trans-
mission dynamics of the system. By computing the normalized sensitivity indices,
we consider the percent change in the output with respect to a percent change in
the parameter input. Those parameters with the largest magnitude of change impact
the compartment model the most; the sign indicates whether the change produces an
increase or a decrease onRc.

The normalized sensitivity indices for Rc are calculated by taking the partial
derivative ofRc with respect to each parameter and multiply the derivative with the
ratio of the parameter to Rc. This value represents the percent change in Rc with
respect to a 1% change in the parameter value [16].

We use the parameters values from Table2 to study the sensitivity of Rc to each
parameter. We compute normalized sensitivity analysis on all parameters, but we
just consider the impact of parameters that are the most sensitive: β, r, �, γr, γ, α,
and fT . The other parameters (μ, κ1, and κ2) have a very low impact, namely less
than 0.001%. The numerical simulations to the sensitivity of Rc with respect to
each of the most sensitive parameters are given in Table3, for two different levels
of isolation effectiveness (r = 0.35 and r = 0.95) and two values of fT (fT = 0.25
and fT = 0.75), which is the fraction of pre-symptomatic individuals diagnosed and
isolated. The other parameter values are kept as shown in Table2.

In the case of high isolation effectiveness (r = 0.95), simulations show that both
the removal rate, γr , of isolated individuals and the relative transmissibility para-
meter � of isolated individuals with respect to infectious individuals are the least
sensitive parameters (with 0.053% change of Rc), while the parameter of isolation
effectiveness, r, is the most sensitive one, where a 1% increase in r causes a 1.014%

Table 3 Percent change inRc with respect to a 1% change in the parameter value, for a low and a
high isolation effectiveness r, and a low and a high value of fT , while keeping the other parameter
values as presented in Table2

Parameter β r � γr γ α fT

fT =
0.25

% change
for
r = 0.35

1% −0.23% 0.423% −0.423% −0.382% −0.195% −0.119%

% change 1% for
r = 0.95

−1.014% 0.053% −0.053% −0.445% −0.501% −0.306%

fT =
0.75

% change
for
r = 0.35

1% −0.402% 0.747% −0.747% −0.167% −0.086% −0.471%

% change
for
r = 0.95

1% −3.521% 0.185% −0.185% −0.383% −0.431% −2.373%
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reduction in the value ofRc. Also, the rate atwhich infectious individuals get isolated,
α, and the fraction of pre-symptomatic individuals detected and isolated, fT , impact
negatively on the level ofRc, where a 1% percent increase in the value of fT causes
approximately a 0.31% decline in the value of the reproduction number Rc. Thus,
as pre-symptomatic individuals are diagnosed and as isolation is highly effective,
the number of available infectious individuals who are capable of transmitting Ebola
decreases and therefore, the reproduction number decreases. Also, the removal (by
recovery or Ebola-induced death) rate γ of infectious individuals affects negatively
on Rc. Hence, for the case of highly effective isolation, the parameters concerning
early diagnosis and isolation have a significant impact on the reproduction number.

This percent impact of the parameters on Rc remains so as long as isolation
is highly effective. However, if the effectiveness of isolation is low, in the sense
that all parameter values are kept the same except the value of the parameter r,
which is reduced to 0.35, then we get the results presented in Table3. In this case,
both the relative transmissibility � and the removal rate of isolated individuals, γr ,
are the second most sensitive parameters, after β which is the most impactful one.
Also, � became more sensitive than r. The implication is that, when isolation is less
effective, there exists the possibility for isolated people to make successful contacts
with susceptible individuals and therefore the possibility of causing new infections
increases. This causes an increase in the reproduction number. Also, it is noted that
the effect of fT and α is reduced, which means that diagnosing and isolating infected
individuals becomes a weak strategy if the effectiveness of isolation is low.

On repeating the previous analyses, but this time for a higher value of fT (fT =
0.75), we obtain the results shown in Table 3. In comparison to the scenario when
fT = 0.25, the simulations show that increasing the fraction of pre-symptomatic
individuals who are diagnosed and isolated, fT , increases the percent impact of the
parameters r, �, γr, and fT , and decreases the percent impact of the parameters γ and
α, on the value of the control reproduction number Rc.

3.4 Impact of Early Detection and Isolation on the Value
ofRc

To study the impact of early detection of pre-symptomatic individuals and isolation
on the reproduction number, we first depictRc as a function of fT , for different levels
of isolation effectiveness r. Figure2 shows that the control reproduction number
declines as the proportion, fT , of pre-symptomatic individuals, who get diagnosed
and isolated, increases. Simulations are done using parameter values from Table2,
but for three different values of r. It further shows that the curve corresponding to a
low and an intermidate value of isolation effectivenes r (e.g. r = 0.35 for the solid
curve and r = 0.65 for the dashed curve) hits Rc = 1 at some critical value of fT
(say f �

T ), while for the high value of r (r = 0.95), it never hits the critical threshold
Rc = 1, as the curve is totally below the critical threshold. This indicates that for a
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Fig. 2 Impact of early detection of pre-symptomatic individuals on the value of Rc

high effectiveness of isolation, the control reproduction number is less than one and
therefore the infection dies out. Analytically, the exact form of f �

T is

f �
T =

[
1 + (1 − r)�

α

γr + μ
− 1

R0

(
1 + α

γ + μ

)]
/

[
1 − (1 − r)�(γ + μ)

γr + μ

]
.

(14)

The critical proportion f �
T represents the minimum proportion of pre-symptomatic

individuals who are detected and get isolated to ensure an effective control of Ebola.
This critical value remains feasible as long as the following inequality holds

(1 − r)� <
γr + μ

(γ + μ)R0
. (15)

If we keep all parameters fixed except r, then condition (15) could be rewritten in a
more convenient form

r > 1 − γr + μ

�(γ + μ)R0
. (16)

This gives the minimum level of effectiveness of isolation required to obtain an
isolation and early diagnosis-based control strategy for Ebola tranmission.

Now, we could also ask a similar question on the role of isolating infectious
individuals to contain Ebola transmission. Figure3 shows the impact of changing
the rate at which infectious individuals get isolated, α, on Rc, for the same three
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Fig. 3 Impact of isolating infectious individuals on the value of Rc

different levels of isolation effectivenes, as used above. The analysis shows that it is
possible to control the epidemic if and only if α > α�, where

α� = [(1 − fT )(γr + μ)(γ + μ) + (1 − r)�fT (γ + μ)2]R0 − (γr + μ)(γ + μ)

(γr + μ) − �(1 − r)R0(γ + μ)

(17)

and with the implementation of condition (15).

4 Discussion and Conclusion

The Ebola epidemic has shown us major weaknesses not only in health systems in
West Africa, but also in our global capacity to respond early to an outbreak with
effective diagnostic capacities. After multiple outbreaks of infectious diseases, from
severe acute respiratory syndrome (SARS) to Middle East respiratory syndrome
coronavirus (MERS-CoV), we still do not have effective diagnostic tools to rapidly
respond to a number of potential epidemics. The main reason why we lack of such
diagnostic preparedness against infectious diseases is becauseof the lackof afinanced
global strategy that can be implemented ahead, rather than during an epidemic. This
strategy must primarily focus on two critical aspects: First, a continuous interaction
between the field to detect small outbreaks and collect samples, and reference labo-
ratories with advanced sequencing tools to identify the pathogen. Second, the need
of assay development for early diagnosis, their regulatory approval, and a plan of
implementation in anticipation of an outbreak.
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Here, motivated by some studies showing that PCR assay can detect Ebola virus
in both humans and non-human primates during the pre-symptomatic stage [7, 11],
we have developed and analyzed a mathematical model calibrated to the transmis-
sion dynamics of Ebola virus disease in West Africa to evaluate the impact of early
diagnosis of pre-symptomatic infections. In the absence of effective treatments and
vaccines, our results show the importance of implementing integrated control mea-
sures of early diagnosis and isolation. Importantly, our analysis identifies a threshold
where early diagnosis of pre-symptomatic individuals, combined with a sufficient
level of effective isolation, can lead to an epidemic control of Ebola virus disease.
Furthermore, the need to incorporate vital dynamics is justified by our still limited
understanding of Ebola infection including whether or not Ebola virus may persist
among recovered individuals. The use of Rc in this context reflect our view that
control measures should be sustainable and not just in response to an outbreak.
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Modeling Ring-Vaccination Strategies
to Control Ebola Virus Disease Epidemics

Gerardo Chowell and Maria Kiskowski

Abstract The 2013-15 Ebola epidemic that primarily affected Guinea, Sierra Leone
and Liberia has become the most devastating Ebola epidemic in history [1]. This
unprecedented epidemic appears to have stemmed from a single spillover event in
South Guinea in December 2013 and rapidly spread to neighboring Sierra Leone and
Guinea in a matter of weeks. Here we employ a network-based transmission model
to evaluate the potential impact of reactive ring-vaccination strategies in the context
of the Ebola epidemic in West Africa. We model ring-based vaccination strategies
that incorporate the radius of contacts that are vaccinated for each infectious individ-
ual, the time elapsed from individual infectiousness to vaccinating susceptible and
exposed contacts, and the number of available vaccine doses. Our baseline spatial
transmission model in which the ring vaccination strategy is investigated has been
previously shown to capture Ebola-like epidemics characterized by an initial phase of
sub-exponential epidemic growth.Herewe also extend this baselinemodel to account
for heterogeneous community transmission rates that may be defined as a scalable
function of the distance between an infectious individual and each member of that
individual’s community. Overall, our findings indicate that reactive ring-vaccination
strategies can effectivelymitigate established Ebola epidemics. Importantly, we stud-
ied scenarios with varying number of weeks elapsed between the onset of symptoms
and the day contacts are vaccinated and found that it is still beneficial to vaccinate
contacts after the infectious period has elapsed. Our results indicate that while it is
beneficial to vaccinate members of the community, the probability of extinction is
not very sensitive to which contacts in the community are vaccinated unless trans-
mission varies very steeply on the network distance between individuals. Both of
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these observations underscore the fact that vaccination can be effective by reducing
transmission at the community level.

Keywords Mathematical epidemiology · Dynamical models · Agent-based
models · Ebola virus (EBOV) · Ring vaccination · Reactive vaccination · Social
networks · Infectious disease dynamics · Household transmission · Community
transmission · Emergent dynamics · Reaction diffusion · Waves

Abbreviations

EVD Ebola virus disease

1 Introduction

The 2013-15 Ebola epidemic in Guinea, Sierra Leone and Liberia has become the
most devastating Ebola epidemic in history [1]. While past Ebola outbreaks have
never exceeded a few hundred cases [2], this epidemic has generated a total of 28295
reported cases including 11295 deaths as of September 23, 2015 [3]. Fortunately,
only a few cases per week have been reported in limited areas of Guinea and Sierra
Leone as of August 2015 [3]. The index case appears to have occurred in December
2013 in the forested area of Guéckédou in South Guinea and probably originated
from human contact with an infected bat [4]. The Ebola virus reached neighboring
Liberia and Sierra Leone in a matter of weeks and incidence rates rapidly increased
over subsequent weeks, peaked in August 2014, and rapidly declined likely as a
result of improved rates of case identification (e.g., contact tracing, diagnostic rates),
treatment and isolation capacity aswell as changes in population behavior that reduce
contact rates [5].

During the course of the Ebola epidemic, mathematical modeling tools have been
useful to: (1) evaluate the epidemic transmission potential [6–12], (2) project or
forecast the trajectory of the epidemic under various hypothetical scenarios and
forecasting time frames [13–21], (3) evaluate the impact of contact tracing [22, 23],
assess the risk of international case importations [24, 25], and (4) assess the feasibility
of Ebola vaccine trials [26, 27]. However, these modeling efforts were hampered by
the limited availability of epidemiological data and the unprecedented scope of the
epidemic.

Motivated by the recent ring vaccination trial of the r-VSV vectored Ebola vac-
cine conducted in Guinea [28], here we employed a network-based transmission
model to evaluate the impact of reactive ring-vaccination strategies against Ebola
epidemics. Reactive vaccination aims to vaccinate a community in response to an
infection unfolding in the community. The entire community may be vaccinated
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(mass vaccination) or vaccination may target the most susceptible individuals (e.g.
ring vaccination [23, 29–32]). Modeling targeted vaccination requires individual
based models that can capture the contact structure of the community network
[29, 30, 32, 33]. We recently developed a network model incorporating the effect
of community mixing [34, 35]. This model was used to systematically analyze the
effects of different levels of population mixing on Ebola transmission dynamics and
was able to fit different observed regional growth dynamics by changing only the
community mixing parameter [34]. In particular, this transmission model is able to
generate Ebola-like epidemics that are characterized by sub-exponential growth that
with control interventions levels off in just a few generations of the disease [36], and
provides important insights on the level of control that would be required to contain
Ebola epidemics [35]. The model predicted that in the absence of epidemic control,
persistent outbreaks would propagate through a community as spatial waves of fixed
size [35]. Given the importance of community mixing in this model, we sought to
investigate the effect of targeted vaccination on the persistence of the epidemic.

We aimed to model vaccination strategies that start 6 months after the onset of the
epidemic and incorporate variations in (1) the radius of contacts that are vaccinated
for each infectious individual, (2) the time elapsed from individual infectiousness to
vaccination and immunization of susceptible and exposed contacts, and (3) the size
of the vaccine stockpile. While the original version of the model assumed homoge-
nous infectious contact probabilities (e.g., household-community structure), here we
extend the model to incorporate heterogeneous community transmission rates that
may be defined as a scalable function of the distance between an infectious individual
and each member of that individual’s community.

2 Methods

We extended a network-based SEIR transmission model with household-community
structure [34, 35] tomodel reactive ring-basedvaccination strategies.Wealso adapted
the underlying baseline transmissionmodel to incorporate heterogeneouslyweighted
contact infection probabilities throughout the network.

3 Household-Community Structure

As in a former implementation of the model, individuals are organized within house-
holds of sizeH (eachhousehold containsH individuals) andhouseholds are organized
within communities of size C households (each community contains C × H indi-
viduals). Households are indexed {hi, hi+1, . . .} and a network distance η between
two households hi and hj is defined as η = |i − j|. The ith community is the com-
munity centered at the ith household and contains all households within distance
Rc = (C − 1)/2. Communities overlap; the extent of overlap between the ith and
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Fig. 1 A schematic of the cith and c(i+2)nd communities. Each household is indicated
as a disk (H = 5 individuals are shown as smaller filled disks). The community size is
C = 2R + 1 households. The community ci centered at the ith household contains the C
households {hi−RC , hi−RC+1, . . . , hi, hi+1, . . . , hi+RC } and is shown within the darker gray
ellipse. The community ci+2 centered at the (i + 2)nd household contains the C households
{hi−RC+2, hi−RC+3, . . . , hi+2, hi+3, . . . , hi+RC+2} and is shown within the outlined ellipse. The
network distance η of the ith and the (i + 2)nd households is 2 and their communities each contain
two households that the other community does not

jth communities households decreases with the network distance of the ith and jth
households (see Fig. 1). Network connectivity is identical for every individual.

4 SEIR-SV Transmission

Each household may be viewed as a complete graph of H nodes where each edge
represents the rate of contact between any two household individuals. Likewise, each
community may be viewed as complete graph ofC nodes where each edge represents
the rate of contact between community individuals.

Individuals in the network are assigned one of five states: S (susceptible), E
(exposed), I (infectious), R (refractory) and V (vaccinated). Transition probabilities
from susceptible (state S) to exposed (state E) depend on network structure and
contact interactions between susceptible and exposed individuals:

p(S → E) = probability that a susceptible will become exposed

= (1 − probability of no exposures from any infected contacts)

= (1 − (1 − tH)iH · (1 − tc)
ic).

where tH and tC are the rate of transmission of infection from a single infected indi-
vidual to a single susceptible individual within a household or within the community,
and iH and iC are the number of infectious household and community individuals in
the network.

State transitions from exposed (state E) to infectious (state I) and from infectious
(state I) to refractory (state R) occur independently of any network details:
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p(E → I) = probability that an exposed individual becomes infectious

= 1/γ,

where γ is the average incubation period.

p(I → R) = probability that an infectious individual will becomes refractory

= 1/λ,

where λ is the average infectious period.
Compared to previous implementations of the model, the model is extended with

a fifth state for vaccinated individuals (state V). Only susceptible individuals may
transit to the vaccinated state (S → V ), and the sole effect of the transition is to
remove those individuals from the pool of susceptibles. The transition rules depend
on the details of a given vaccination program.

5 Homogeneous and Heterogeneous Transmission Rates
on the Network

For any network configuration, transmission rates on the network are scaled to yield a
given set of reproductive numbers R0H and R0C . The household reproductive number
R0H is the expected number of household contacts infected by a single infectious
individual—if all other nodes of the network are susceptible, and likewise the com-
munity reproductive number R0C is the expected number of infected community
contacts.

In previous implementations of this model, we assumed homogenous infectious
contact probabilities. For this case, an infected individual has an equal rate of trans-
mission tH with each household contact (H−1 household contacts in a fully sus-
ceptible network) which is equal to the average rate of transmission t̂H per contact.
Likewise, an infected individual has an equal rate of transmission tc with each com-
munity contact (C · H−1 community contacts in a fully susceptible network), which
is equal to the average rate of transmission t̂c per contact. Given that the expected
lifetime of an infectious state is λ, and that the size of the household and community
neighborhoods areH × 1 andH × C, respectively, the expected number of exposures
resulting from an initial infected individual are:

R0H ≈ λ tH · (H − 1),

R0C ≈ λ tC · (C · H − 1).

Even though saturation effects build over a single serial interval (this is why
the equalities in the equation above are only approximate), solving for tH and tC
above results in the rates of transmission (instantaneously/in the absence of saturation
effects) corresponding to the reproductive numbers R0H and R0C :
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tH := RoH

λ(H − 1)
, tC := RoC

λ(C · H − 1)
.

For heterogeneous transmission rates, the household and community networks
may be considered a weighted complete graph where the weight of each edge wβ θ

connecting nodes β and θ correspond to the contact rate of the nodes of β and θ. The
expected number of household and community infections from a single infectious
individual at node β are proportional to the product of the infectious interval λ and
the sum of the transmission weights tβ i = wβ i of all edges of the node β

Given household and community reproductive numbers (though certainly altering
the longer term dynamics) may be fit by requiring that average transmission rates t̂H
and t̂C satisfy the same equalities:

t̂H := RoH

λ(H − 1)
, t̂C := RoC

λ(C · H − 1)
.

For example, heterogeneous community transmission rates may be defined as a
scalable function of the distance η(gt(η) = αf (η)) between an infectious individual
and each other member of that individual’s community. By applying symmetry and
given the community radius Rc = c−1

2 , a scalable average transmission rate t̂C may
be computed as:

t̂C = sum of all edge weights

number of edges

= sum of edge weights for nodes with positive distance + sum of edge weights for nodes with zero distance

(C.H − 1)

= 2(H
∑RC

η=1 αf (η)) + (H − 1)αf (0)

(C.H − 1)

= α

(
2(H

∑RC
η=1 f (η)) + (H − 1)f (0)

(C.H − 1)

)

By appropriate choice of α, the value of t̂C can be scaled so that t̂C = RoC
λ(C.H−1) .

For a transmission-distance function that decreases linearly with distance, we use
gt(η) = α(Rc − η). The transmission rate decreases linearly from amaximal value to
zero as the distance increases from 0 to Rc. For a flat transmission-distance function,
we use gt(η) = α. For a transmission-distance function that decays exponentially,
we use gt(n) = αe(RC−η). The specific functions used in simulations are described in
Fig. 2.
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Fig. 2 Community
transmission rate (per
household, per infectious
period) for different
transmission-distance
functions. The total
cumulative transmission rate
(area under the curves) is
R0C = 0.7 for each
transmission distribution
used for simulations: flat
(dotted plot), linear (black
solid plot) and exponential
with base 1.5 (gray solid
plot). For this figure, as in
simulations, RC = 13
(C = 27)

6 Parameter Values, Initial Conditions for Simulations
and Details of a Simulated Vaccination Program

Simulations are initialized on day s = 1 with a single infectious individual within
the network. As the infection spreads, the network grows dynamically so that the
population is effectively infinite in size. We choose SEIR transmission parameter
values corresponding to those matching early (putatively rural) epidemic dynamics
in Guinea: R0H = 2.0,R0C = 0.7,C = 27 [32].

We model a vaccination program by vaccinating the susceptible and exposed
contacts of infectious individuals located within a specified radius of the infected
individual (ring vaccination). A given vaccination program is specified by 4 new
parameters:

• tv0: the day s of the outbreak that the vaccination program begins,
• Rv: the radius of contacts that are vaccinated for each infectious individual,
• wv: the week that susceptible and exposed contacts become immune after an indi-
vidual becomes infectious; equal to the sums of the delays of identifying an infec-
tious individual, vaccinating contacts, and vaccinated contacts acquiring immunity

• vtot : the total vaccine supply.

We approximate that the symptomatic period is equal to the infectious period.
This means an exposed individual cannot be identified until that individual becomes
infectious, so contacts are not vaccinated until wv ≥0 weeks after that individual
is infectious. Likewise, all non-symptomatic (susceptible and exposed) contacts are
vaccinated even though only susceptible individuals (state S) transition to the vacci-
nated state (state V). Exposed vaccinated individuals contribute to the total number
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of vaccines supplied. Once the total number of vaccinated individuals reaches vtot ,
no further contacts are vaccinated.

In simulations, we model a vaccination program that is implemented after the
epidemic establishes, at 180 days, andwemeasure the effect of a vaccination program
over the next 180 days. An epidemic is defined as having ended when all exposed
and infectious states have transitioned to refractory. Since the vaccination program
begins on the 180th day of the simulation, we only simulate vaccination programs for
epidemics that persist beyond the 180th day. Over the following six-month simulated
time period, we measure the probability that the epidemic ends and the average
cumulative number of infected individuals. Averages are calculated for N sets of
1000s simulations and standard error is calculated as σ√

N
where σ is the standard

deviation of N means of sets of 1000 simulations.

7 Results

7.1 Even Without Vaccination, Outbreaks Have a High
Probability of Spontaneously Extinguishing Early
on, a Lower Probability Thereafter

We first focus on transmission parameters and a transmission network that were
selected in [35] to represent “rural Guinean dynamics”. The household reproduc-
tive number is 2.0, the community reproductive number is 0.7, and the community
transmission distribution is flat (homogeneous).

Even without vaccination, there is a high probability that an outbreak will extin-
guish spontaneously. Since this is due to stochastic fluctuations in the number of
individuals infected by each infectious individual, this probability is especially high
early during an outbreak when there are only a small number of infectious individ-
uals. Figure3a shows that for the parameters selected to represent “rural Guinean
dynamics”, the probability that the outbreakwill extinguish the first month is approx-
imately 40% and decreases sharply thereafter. Once outbreaks have established for
several months, they are fairly stable and spontaneously extinguish at an approximate
rate of only ∼0.02 outbreaks per month. Indeed, the data in Fig. 3a shows that if an
outbreak persists beyond the first month, it has a probability of approximately 48/60
= 80% to persist beyond six months.

As described in [35] after the initialization of an outbreak by a single infected
individual, the number of infected individuals steadily increases within a community
if the outbreak persists, creating awave of fixed size thatmoves through communities.

Figure3b shows the averagenumber of infectious individuals per day for outbreaks
aggregated by their duration where each curve corresponds to each of the bins in the
histogram in Fig. 3a. InKiskowski andChowell (2015) [35]we focused on describing
the dynamics of outbreaks that persist: after the initialization of an outbreak by
a single infected individual, the number of infected individuals steadily increases
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Fig. 3 Outbreak persistence without Vaccination. a The percent frequency that an outbreak spon-
taneously extinguishes versus simulation month for the (a) first or b second 6-month period. c The
average number of infected individuals versus simulation day for simulations that spontaneously
extinguished in each month of the (c) first or d second 6-month period. Simulations for the first
6-month period were initialized with a single infected individual on day 1 and were run for 180
days (6 months). Simulations for the second 6-month period were restricted to those with a single
infected individual on day 1 that persisted for 180 days (6 months), and then were run for another
180 days. Frequencies and averages were calculated for N = 10 sets of 1000 simulations. Error
bars show the standard error of N = 10 sets

within a community creating a wave of fixed size that moves through communities.
Figure3b shows that the dynamics of outbreaks that extinguish have the same initial
dynamics as those that persist, but stochastically “peel off” from the dynamic of
those that persist as the number of infectious individuals decrease stochastically to
zero.

To study the effect of ring vaccination on outbreaks, we focused on the vaccina-
tion of outbreaks that have persisted for six months and thus have a lower probability
of spontaneously extinguishing. Figure3c shows the probability that an outbreak
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will extinguish in any of the months of a second 6-month period, given that it has
already persisted for the first 6-month period. Overall, an outbreak that has persisted
for six months has a 65% chance of persisting another six months in the absence
of vaccination and other control interventions. Figure3d shows the average num-
ber of infectious individuals per day for each of the simulations binned by month
extinguishing in Fig. 3c.

7.2 Earlier Vaccination of Infected Individuals Increases
the Probability that Outbreaks Will Extinguish Within
Six Months

Figure4a shows the effect of a vaccination program on the number of infectious
individuals. In this vaccination program, the program began after six months (on day
180) and 45 closest contacts of infectious individuals were vaccinated 1, 2, 4, or 8
weeks after an infectious individual became symptomatic. The panels in Fig. 5a–d
show the effect that the vaccination program had on the duration of the outbreaks.

If the closest contacts of infected individuals are vaccinated within the first or
second week (Fig. 5a, b), it is unlikely that the outbreak will persist longer than
six months (<1%). Even if the closest contacts are vaccinated at 4 or 8 weeks, the
probability the outbreak persists for longer than six months is small (<10%) or

Fig. 4 Effect of vaccination week on outbreak dynamics. a Average number of infectious individ-
uals and b average cumulative vaccines used versus day with vaccination after 1, 2, 4 or 8 weeks.
Simulations were restricted to those with a single infected individual on day 1 that persisted for 180
days (6 months), and then were run for another 180 days. A vaccination program began in day 180.
The 45 closest contacts of every infected individual were vaccinated (immunization rate =100%)
1, 2, 4 or 8 weeks after the first day of infectiousness. Averages were calculated for N = 10 sets of
1000 simulations. Error bars show the standard error of N = 10 sets
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Fig. 5 Outbreak persistence with vaccination after 1, 2, 4 or 8 weeks. The percent frequency that an
outbreak spontaneously extinguishes versus simulation month of the second 6-month period. The
45 closest contacts of every infected individual were vaccinated (immunization rate =100%) a 1,
b 2, c 4 or d 8 weeks after day infectious for the vaccination program described in Fig. 4. Averages
were calculated for N = 10 sets of 1000 simulations. Error bars show the standard error of N = 10
sets

measurably reduced compared to the non-vaccination rate of 65% (to 38%).
Although the average infectious period of an infectious individual is relatively shorter
(5.6 days), the infection still circulates among contacts. Asmeasured by the probabil-
ity of the outbreak being extinguished, the vaccination program is more effective the
fewer number ofweeks elapse between the day that an individual becomes infectious.
Figure4b shows the average cumulative number of vaccines that are used in each
vaccination program. Not only does the probability of ending the outbreak increase
with earlier week vaccination as shown in Fig. 4a, but the average total number of
vaccines needed to end the outbreak also decreases.
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In simulations described so far (Figs. 4 and 5) we simulated a vaccination program
in which the 45 closest contacts of each infectious individual have been vaccinated,
representing a vaccination radius of 4 families (45 = 4 × 10 + 5). We next consider
whether simulations would predict an optimal radius for ring vaccination, especially
in the context of limited vaccines. Figure6a shows the probability of an outbreak
persisting as a function of the number of vaccinated contacts (=10×vr + 5) and

Fig. 6 Outbreak persistence versus vaccination radius and transmission structure, for a limited
vaccine supply. The probability that an outbreak persists for the entire 6-month vaccination period
versus the number of contacts vaccination for a transmission distribution that is a flat, or b varies
linearly or c varies exponentially with radial distance from the infected contacts. For all simulations,
simulations are restricted to outbreaks that persist through the first 6-month period and the vacci-
nation program begins at 180 days. The number of contacts in the vaccinated pool of each infected
individual is 5(1 + 2f ), where 2f is the number of households vaccinated in the community. The
infected contact’s household is always in the vaccinated pool. For the black plots, the households
in the vaccinated pool are chosen within a radius of 2f , so that the vaccinated pool always includes
the closest contacts. For the gray plots, the households are chosen randomly within the community
(f households in the negative radial direction and f households in the positive radial direction).
Averages were calculated for N = 10 sets of 1000 simulations. Error bars show the standard error
of N = 10 sets
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the vaccine supply vtot for a transmission rate that is homogeneous throughout the
community. In the context of unlimited vaccine supply, the probability of an outbreak
persisting decreases monotonically with the radius of vaccination. In the context
of limited vaccine supply, we find that there is always benefit in vaccinating the
household (the number of vaccinated contacts is 5when vr = 0) and vaccinating some
members of the community (i.e., with vr >0). This is particularly true as the vaccine
supply increases; as the vaccine supply increases past 100 vaccines the marginal
benefit of vaccinating community members is quite substantial. However, beyond
choosing a positive vaccination radius, the persistence of the outbreak is not very
sensitive to the chosen radius of vaccination. This lack of sensitivity to the vaccination
radius in the context of a limited vaccine supply can be understood considering that,
first, all members of the community have an equi-probable chance of being infected
by an infectious contact (the transmission distribution is flat) so that the probability
of transmission does not depend upon the radius within the community. Second,
while vaccinating with a positive radius ensures that some vaccinated community
members accumulate, ring vaccination with a small radius ensures a focused effort
on communities in which infections are still actively circulating.

In a next set of simulations, we compare these results for networks with different
community transmission structures. For all of these structures, the initial net com-
munity transmission probability is described by the same community reproductive
number R0C = 0.7. This represents the average number of community individuals
that would be infected by a single infected individual in a naïve community. Even
though they share this community reproductive number, outbreaks on the networks
with a transmission rate that linearly decays with radius (Fig. 6b) or exponentially
decays (Fig. 6c) have a much lower probability of persisting without any vaccination
program (plots labeled vtot = 0) and for any fixed vaccine supply (other values of
vtot). This is due to the increased transmission rates (and thus increased saturation
effects) at smaller distances: infected individuals are more likely to infect individ-
uals very close to them while these individuals find that the individuals closest to
them are most likely to already be infected. While the vaccination program is more
successful as the vaccine supply increases, we still do not find a strong sensitivity to
the radius of vaccination. On the contrary, randomly vaccinating households appears
to be slightly more effective than vaccinating the closest households. Since contacts
are vaccinated two weeks after an individual becomes infectious, we speculate that
by this time the infection has already spread to some extent through the community.
Vaccinating only closest contacts may be less effective since some individuals are
already exposed or infected, thus reducing the impact of vaccinating this pool.

8 Discussion

Motivated by the promising findings of the ring vaccination trial of the r-VSV
vectored Ebola vaccine conducted in Guinea [28], we sought to evaluate the
effectiveness of ring-vaccination strategies in controlling established Ebola-like
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epidemics by using a network-based transmissionmodel previously employed to gain
insights on the transmission dynamics of the 2013-15 Ebola epidemic inWest Africa
[34, 35]. We model a ring vaccination program that is characterized by the radius
of the ring of vaccinated contacts, the time elapsed from individual infectiousness
to start of vaccinating contacts and the development of their immunity, and the size
of the vaccine stockpile. Overall, our findings indicate that reactive ring-vaccination
strategies are effective at mitigating established Ebola epidemics. Importantly, while
varying the number of weeks between the first day an individual becomes infectious
and the day their contacts are vaccinated, we find that it is still beneficial to vacci-
nate contacts after the infectious period has elapsed. Likewise, while it is beneficial
to vaccinate members of the community, the probability of extinction is not very
sensitive to which contacts are vaccinated unless transmission depends very steeply
on the network distance between individuals. Both of these observations underscore
the fact that vaccination can be effective by reducing transmission at the community
level and is in agreement with another ring-vaccination modeling study that captures
varying levels of population clustering through a pair approximation model of Ebola
transmission [37].

The baseline spatial transmission model employed here structures the popula-
tion into communities of households to mimic the driving mechanisms of trans-
mission of Ebola in West Africa [35], but we also adapted the spatial model to
describe heterogeneous community transmission rates. In contrast to classic compart-
mental transmission models based on underlying homogenous mixing assumptions
[38, 39], this spatially structuredmodel has been able to successfully capture the qual-
itative patterns of epidemic growth observed in Guinea, Liberia and Sierra Leone
[35]. Specifically, the simple household-community transmission model yields brief
exponential growth during the first 2–3 generations of infections followed by sub-
exponential epidemic growth during several disease generations. This is consistent
with the local epidemic growth patterns observed for each of the EVD epidemics in
the most affected countries in West Africa [36]. It is crucial to capture the appro-
priate spatial structure in models of disease transmission for epidemic forecasting
because epidemic trajectories are highly sensitive to assumptions of contact structure
[17, 34, 40–42].

Regardless of the outbreak duration, the initial dynamics of all outbreaks derived
from the spatial model [34, 35] appear to be similar, with the number of infectious
individuals initially increasing at comparable rates. Moreover, simulations indicate
that extinguishing versus persistent outbreaks are initially identical. This may be
more thoroughly tested with simulations continued from intermediate time points,
to determine at what point in an outbreak the fate of an outbreak may be determined
to be persistent or extinguishing. One prediction is that the probability of an out-
break spontaneously extinguishing is independent of the history of the epidemic,
but depends only on the number of currently infectious individuals (a memoryless
process). This is unlikely since the location of infected individuals, whether within
saturated communities or surrounded by many available contacts, should affect the
probability of persistence.



Modeling Ring-Vaccination Strategies to Control Ebola Virus Disease Epidemics 85

While the original version of the underlying spatial model employed in our study
considered transmission probability at two scales: household and community level,
in this paper we also analyzed a model incorporating heterogeneously distributed
transmission rates across members of the community by using a scalable function
of the distance between an infectious individual and members of that individual’s
community.We found that the outbreaks on the networkswith a transmission rate that
linearly or exponential decayswith radius have amuch lower probability of persisting
without any vaccination program for any fixed vaccine supply. We have explained
this as a result of the increased transmission rates (and thus increased saturation
effects) at smaller distances. While the vaccination program is more successful as
the vaccine supply increases, our results were not highly sensitive to the radius of
vaccination. Vaccinating only closest contacts may be less effective than expected
since some individuals may already be exposed or infected, thus reducing the impact
of vaccinating this pool.

The relevance of these results to real world networks is limited by the relative sim-
plicity of the network structure captured in ourmodel. Yet, ourmodel captures house-
hold and community structure that is important for describing Ebola transmission
dynamics. Analysis of targeted vaccination in the context of more complex networks
with long-range interactions and heterogeneity in the node degree are described in,
for example, Refs. [43, 44]. Nevertheless, our model is useful to generate insights
on transmission and control strategies for small communities or within subsets of
larger networks in which the network may be characterized by relatively simplified
interactions.
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Evaluating the Number of Sickbeds During
Ebola Epidemics Using Optimal Control
Theory

Eunok Jung, Jonggul Lee and Gerardo Chowell

Abstract Optimal control (OC) theory is a powerful tool to guide the design and
implementation of control intervention strategies against epidemics. This technique
defined controlmeasures under a predetermined objectivewhileminimizing the costs
associated with the implementation of the control strategy. Here we use optimal
control and epidemic modeling to explore the uncertainty in hospital bed capacity
that would be needed to control an Ebola epidemic under different initial conditions,
variation in the basic reproduction number, and associated costs to implement control
measures. In particular, we focus on assessing the impact of effective isolation of
infectious individuals in the health care setting because one key factor that facilitated
the development of the Ebola epidemic in West Africa was the lack of public health
surveillance systems to detect new outbreaks and the healthcare capacity that is
needed to enforce infection control practices.

Keywords Epidemic model · Ebola · Optimal control · Hospital bed capacity ·
Infection control · Control measures

1 Introduction

Theworst epidemic of Ebola virus disease (EVD) inWest Africa appears to be finally
ending after more than 20months of Ebola transmission in the affected region [29]. A
number of key factors allowed the Ebola virus to effectively spread and take hold in
the populations of Guinea, Liberia, and Sierra Leona [6]. In particular, cases of EVD
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were not reported until March 2014, several weeks after the first cases reportedly
occurred in the forested area of Gueckedou in Guinea in December 2013. TheWorld
Health Organization declared the Ebola epidemic in West Africa a Public Health
Emergency of International Concern on August 8th, 2014 [28] as the number of
cases climbed across areas of West Africa [1, 11, 20, 21, 27]. The current size of
the ongoing EVD epidemic has generated more than 22,495 cases of which 8981
have succumbed to the disease according to the World Health Organization as of
September 30, 2015 [29].

A substantial amount of data has accumulated on the clinical and epidemiological
characteristics of Ebola virus disease (EVD) transmission in humans during past
outbreaks and the 2013–2015 Ebola epidemic in West Africa. These data are criti-
cal to parameterize models of Ebola transmission dynamics. For instance, the basic
reproduction number, R0, has been estimated for prior EVD outbreaks in Central
Africa at approximately 2 using mathematical modeling and early phase outbreak
trajectory data for the 1995 outbreak in Democratic Republic of Congo and the
2000 Uganda outbreak, respectively [5, 17]. Estimates of R0 for the ongoing epi-
demic in West Africa are broadly consistent with those derived from prior outbreaks
[1, 11, 21]. Also, the serial interval defined as the time from illness onset in primary
case to illness onset in the secondary case has been estimated at about 15days [10]
while the case fatality ratio (CFR), calculated as the ratio of total EVD deaths to
cases, has been estimated at about 70.8% from the early phase of the epidemic in
West Africa. Table1 summarizes some key epidemiological parameters for EVD.

Optimal control (OC) theory is a powerful tool to guide the design and imple-
mentation of control intervention strategies against epidemics [18]. This technique
defined control measures under a predetermined objective while minimizing the
costs associated with the implementation of the control strategy. OC theory has been
applied to various infectious diseases including tuberculosis (TB) [3, 4, 13, 25, 26],
malaria [2, 19, 23], pandemic influenza [14–16] and avian influenza [12]. In this
article, we use OC to explore the uncertainty in hospital bed capacity that would
be needed to control an Ebola epidemic under different initial conditions, range of
R0 estimates, and associated costs to implement control measures. In particular, we
focus on assessing the impact of effective isolation of infectious individuals in the
health care setting because one key factor that facilitated the development of the
Ebola epidemic in West Africa was the lack of public health surveillance systems to
detect new outbreaks and the healthcare capacity that is needed to enforce infection
control practices [8, 22].

2 Materials and Method

Our baseline model follows the SEIR-type transmission model structure that mod-
els the transmission dynamics of Ebola in the absence of control interventions or
behavior changes. Our model incorporates hospital-based transmission that results
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from weak public health infrastructure in order to investigate the effect of isolation
strategies using optimal control theory.

2.1 Mathematical Model of EVD Transmission

To consider the specific situation of the EVDoutbreak inWest Africa, we use a SEIR-
type compartmental transmission model. In our model the host population is divided
into six epidemiological classes as follows: susceptible individuals (S) who can get
infected with Ebola by close contact with the virus; exposed latent individuals (E);
infectious and symptomatic individuals (I ) who can infect susceptible individuals;
hospitalized individuals (J ); recovered individuals (R); and Ebola deaths (D). Flow-
chart of EVD transmission between six epidemiological classes is shown in Fig. 1.
Susceptible individuals are infected by contact with both infectious and symptomatic
individuals and hospitalized individuals at a rate β. A factor l represents the relative
infectivity of the hospitalized individuals (J). In other words, hospitalized infected
individuals are assumed to be isolated at a rate (1 − l). The mean incubation period
is given by 1/k and α is the hospitalization rate. The mean infectious period in the
absence of hospitalization and the mean period of hospital stay are 1/γ1 and 1/γ2,
respectively. The case fatality proportion of EVD is denoted by f . Epidemic parame-
ters and baseline values are given in Table1. The governing model system of EVD
transmission dynamics is described by the following set of nonlinear differential
equations:

dS

dt
= −βS(I + l J )/N ,

dE

dt
= βS(I + l J )/N − kE,

d I

dt
= kE − (α + γ1)I,

d J

dt
= α I − γ2 J,

dR

dt
= γ1(1 − f )I + γ2(1 − f )J,

dD

dt
= γ1 f I + γ2 f J,

(1)

where N = S + E + I + J + R.
The basic reproductive number, R0, quantifies the average number of secondary

cases generated by a primary case over its infectious period in a completely suscep-
tible population during the early epidemic phase. In general, if R0 > 1, an epidemic
in a susceptible population is expected to occur. When R0 < 1, the infection cannot
sustain itself. R0 depends on the infectious period, the probability of transmission
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Fig. 1 Flowchart of EVD transmission between six epidemiological classes. S individuals get
infected with Ebola by contact with I and J individuals at the rate β. l represents the relative
infectiousness of J individuals in the healthcare setting. People in the E class move into the I
class after the mean incubation period 1/k. I individuals are hospitalized at the rate α. I and J
individuals either die and recover at the rates γ1 and γ2, respectively, with the Ebola case fatality
proportion denoted by f of EVD. Baseline values for the parameters are given in Table1

Table 1 Parameters and baseline values

Symbol Description Value/Range References

l 1 − isolation effectiveness 0.8 Assumed

1/k Mean incubation period 11days [27]

α Hospitalized rate 1/5 [27]

1/γ1 Mean infectious period 5.6days [27]

1/γ2 Mean period of hospitalization 7days [27]

f Fatality rate 0.7 [27]

R0 Basic reproductive number 1.6 [6]

β Transmission rate 0.2857 Calculated from R0

B Weight constant 1000 Assumed

T Simulated time 365days Assumed

per one contact, and the number of susceptible individuals contacted per unit time.
For the Ebola model without controls, R0 is calculated by the next generationmethod
[9] as follows:

R0 = β

(
1

γ1 + α
+ α

γ1 + α

l

γ2

)
. (2)

We set the basic reproduction number of EVD at R0 = 1.6 [6]. Hence, the trans-
mission rate, β, can be calculated from Eq. (2).

2.2 Optimal Control Strategy for Prevention of EVD

In this section, we consider the EVD transmission model that incorporates a time-
dependent control function. In this study, we focus on the effects of isolating hos-
pitalized individuals. The Ebola model that incorporates isolation of hospitalized
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individuals is given by the following set of equations:

dS

dt
= −βS (I + l(1 − u(t))J ) /N ,

dE

dt
= βS (I + l(1 − u(t))J ) /N − kE,

d I

dt
= kE − (α + γ1)I,

d J

dt
= α I − γ2 J,

dR

dt
= γ1(1 − f )I + γ2(1 − f )J,

dD

dt
= γ1 f I + γ2 f J,

(3)

where the time-dependent isolation control function u(t) represents the effort of
increasing the isolation effectiveness, (1 − l), for hospitalized individuals, J (t).
Hence, u(t)J (t) turns up the number of sickbeds at time t .

Our goal is to minimize the number of infectious individuals, I , while keeping
the cost associated with implementing the control low. Then the objective functional
to be minimized is given as follows:

J =
∫ T

0

(
I + 1

2
Bu2

)
dt, (4)

where the parameter B is a weight constant and T is the simulated final time. We
assume that the cost of implementing the control is in the quadratic form. The role
of the weight constant, B, keeps a balance due to the size and importance between
two parts of the objective functional. The optimal solution, u∗(t), can be found by

J (u∗) = min
Ω

J (u), (5)

where Ω = {u ∈ L2 | 0 ≤ u ≤ 1}.
Here we use a ‘relative cost’ for the cost implementing the control. The relative

total cost, TC, during the simulated time is then calculated as follows:

TC =
N∑
j=1

B

2
u2jΔt,

where the discrete value of u j is defined by u(( j − 1)Δt) for j = 1, . . . , N . Parame-
tersΔt and N represent the time step and the total number of time steps, respectively.
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2.3 Characteristics of Optimal Control

Pontryagin’s Maximum Principle [24] provides the necessary conditions to set up
our OC problem by constraining the dynamic optimal problem into an unconstrained
problem by minimizing pointwise a Hamiltonian, H, with respect to u as follows:

H = I + B

2
u2 +

6∑
i=1

λi gi ,

where gi is the right hand side of the differential equation of the i th state variable.
By applying Pontryagin’s Maximum Principle and the existence result for OC pairs
from Fleming and Rishel (1975), we obtain the following theorem.

Theorem 1 Given optimal controls u∗ and solutions S∗, E∗, I ∗, J ∗, R∗, D∗ of the
corresponding state system, there exists adjoint variables λ1, . . . , λ6 satisfying

λ1

dt
= (λ1 − λ2)(β (I + l(1 − u)J ) /N ),

λ2

dt
= (λ2 − λ3)k,

λ3

dt
= −1 + (λ1 − λ2)βS/N + λ3(α + γ1) − λ4α − λ5γ1(1 − f ) − λ6γ1 f,

λ4

dt
= (λ1 − λ2)βSl(1 − u)/N + λ4γ2 − λ5γ2 − λ6γ2 f,

λ5

dt
= 0,

λ6

dt
= 0,

(6)

and λ1(T ) = ... = λ6(T ) = 0, the transversality conditions. Furthermore

u∗ = min

{
max

{
0, βl S∗ J ∗

N ∗
λ2 − λ1

B

}
, 1

}
. (7)

Proof Corollary 4.1 of [24] gives the existence of an OC pair due to the convexity
of integrand of J with respect to u, a priori boundedness of the state solutions, and
the Lipschitz property of the state system with respect to the state variables. The
form of the adjoint equations and transversality conditions are standard results from
the Pontryagin’s Maximum Principle [24]. We differentiate the Hamiltonian with
respect to states, S, E , I , J , R, and D respectively:

dλ1

dt
= −∂H

∂S
, . . . ,

dλ6

dt
= −∂H

∂D
,
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and then the adjoint system can be written as Eq. (6). By considering the optimality
condition,

∂H

∂u
= 0 at u∗, (8)

which can then be solved for the optimal solution, u∗, giving us:

∂H

∂u
= Bu + βl S

J

N
(λ1 − λ2) = 0

at u∗ on the set {t | 0 ≤ u∗(t) ≤ 1}. On this set,

u∗ = βl S∗ J ∗

N ∗
λ2 − λ1

B
.

Taking into account the bounds on controls, we obtain the characterization of u in
(7). �

3 Results and Discussion

In this section, we present results for OC strategies for various weight constants, B,
and investigate the impacts of cost, and initial size of infectious individuals, I (0),
hospitalization rate, α, and the basic reproductive number, R0, on the maximum
number of sickbeds.

3.1 Optimal Control Strategies for Various Weight Constants

We consider a broad range of weight constant, B, to investigate their sensitivity on
OC results. The weight constant, B, varies from 1 to 12,000 and other parameters
are given in Table1. We chose the initial values of state variables for applying OC
strategies as (S, E, I, H, R, D) = (982114, 4496, 1000, 1155, 3371, 7865). These
values are obtained by solving the model system without control (1) with the ini-
tial values, (S, E, I, H, R, D) = (1000000, 0, 1, 0, 0, 0) for the simulated time, 279
(days). The following four ranges for B are analyzed:

• Range I: 1 ≤ B < 1000
• Range II: 1000 ≤ B < 9000
• Range III: 9000 ≤ B < 10000
• Range IV: 10000 ≤ B < 12000

Figure2 displays optimal controls and the corresponding state variables as a function
of time in the left and right six frames, respectively.



96 E. Jung et al.

Time (month)

W
ei

gh
t c

on
st

an
t

0 2 4 6 8 10 12

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12
0

2

4

6

8

10
x 10

5

S
us

ce
pt

ib
le

0 4 8 12
0

2

4

6

8

10
x 10

4

E
xp

os
ed

0 4 8 12
0

0.5

1

1.5

2
x 10

4

In
fe

ct
io

us

0 4 8 12
0

1

2

3
x 10

4

H
os

pi
ta

liz
ed

0 4 8 12
0

1

2

3
x 10

5

R
ec

ov
er

ed

Time (month)
0 4 8 12

0

2

4

6

8
x 10

5

D
ec

ea
se

d

w/o OC

w/ OC

B=1000

B=9000

B=10000

Fig. 2 Optimal controls and the corresponding state variables are displayed as a function of time
in the left and right six frames, respectively. The weight constant B varies from 1 to 12000. The
dashed white lines divides the weight constants into four ranges in the left frame (denoted by roman
characters I–IV). As the level of OC increases, the gray shades vary smoothly from black to white.
In the right frame the state variables without OC (w/o OC) are plotted by thick black lines. The
state variables with OC (w/ OC), which are basically plotted by the thin gray lines, determined by
three threshold values B = 1000, 9000, and 10000 are displayed by the dot-dashed, dotted, and
dashed line, respectively

In general, as theweight constant B is smaller, that is, the relative unit cost of using
control is cheaper, the longer the period of full OC from the beginning is employed.
In the range I (blue region), optimal controls work fairly; keeping the epidemic free
state during the entire simulated duration. OC strategies in the range II (green region)
show no peak but the number of infectious individuals are slightly increased at the
end of simulated time. The patterns of optimal controls in the range I and II show that
the full effort from the beginning to the certain period is needed to protect the spread
of EVD and then optimal controls are decreasing smoothly to zero (no effort). If the
cost is too expensive, it is hard to implement the early intervention, which is the most
important feature for the epidemic free state. Hence, OC strategies in the range III
and IV are unable to control the EVD epidemic. In the range III the magnitude of
epidemic peak for each curve is reduced to a certain degree. However, in the range
IV, OC strategies do not work for extremely high cost levels. Overall, Fig. 2 shows
that the pattern of OC strategy is sensitive to the weight constant, B, which is related
to the cost of implementing the control.

Figure3 illustrates the epidemic size, the maximum number of u(t)J (t), and the
relative TC as a function of the weight constant, B, in the top, middle, and bottom
frames, respectively. Note that there are jumps in all three frames when B ≥ 9000
(Range III & IV) because OC strategies do not work well. Let us ignore the cases in
Range IV. In the top frame, the epidemic size is slowly increased as B is increased
from 1 to 9000. On the other hand, TC is significantly increasing as almost a linear
function. In contrast with epidemic size and TC, the number of max(u J ) does not
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Fig. 3 The epidemic size, max(u J ), and TC as a function of the weight constant are displayed in the
top, middle, and bottom frames, respectively. Baseline values of the parameters in this simulation
are given in Table1
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Fig. 4 The reproductive number, R0(t), and the number of perfectly isolated individuals in a hospital
(sickbeds), u(t)J (t), as a function time are displayed in the left and right frames, respectively.
Baseline values of the parameters in this simulation are given in Table1

vary when B < 9000. Surprisingly, the maximum number of sickbeds, max(u J ), is
not very sensitive to the relative TC if OC strategy is applied.

Figure4 depicts the reproductive number, R0(t), and the number of perfectly
isolated individuals in a hospital (sickbeds), u(t)J (t), as a function of time in the left
and right frames, respectively. We define the time-dependent reproductive number
using the quarantine control, u(t), as follows:

R0(t) = β

(
1

γ1 + α
+ α

γ1 + α

l(1 − u(t))

γ2

)
. (9)

The time-dependent reproductive numbers, R0(t), in the cases of B = 1000 (blue),
9000 (green), and 10000 (yellow) in the left frame of Fig. 4 have similar patterns
that track the reversed curves of optimal controls in the left frame of Fig. 2. The
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value of R0(t) in B = 1000 is less than one until around seven month into the
epidemic and then increases to1.6 as optimal controls approach zero at the end of
the simulation. Note that the baseline R0(t) is 1.6 when OC is not applied (i.e.,
u(t) = 0). In the case with B = 10000, R0(t) is almost greater than or equal to 1
during the entire epidemic period. It confirms again that OC does not work for high
cost levels associated with control efforts. Furthermore, the curves of u(t)J (t) as
a function of time in the right frame of Fig. 4 show that the number of sickbeds
has a peak (max(u J )) during the early period and then smoothly decreased to zero
in the ranges of I and II (1 ≤ B < 9000). On the other hand, if the relative cost is
getting expensive, especially in the ranges of III and IV (9000 ≤ B ≤ 12000), then
the number of sickbeds has a huge peak around 5months into the epidemic.

3.2 Estimation of the Maximum Number of Sickbeds

One of main questions in this work is the following:

Can we estimate the maximum number of sickbeds for different epidemiological scenarios?

In the previous section, we already estimated the maximum number of sickbeds as a
function of theweight constant, B. Nowwe investigate the impacts of the initial value
of infectious individuals, I (0), the hospitalized rate, α, and the basic reproductive
number, R0, on the maximum number of sickbeds, max(u J ).

Figure5 displays the max(u J ) as a function of I (0), α and R0 in the left, middle
and right frame, respectively. Parameters are chosen as the baseline values in Table1.
Note that the initial values are fixed as (S, E, I, J, R, D)=(999000, 0, 1000, 0, 0, 0)
for the comparisons between the simulation results. In the left frame, the max(u J )

is an almost linear function of the initial number of infectious individuals, I (0),
except the extremely small initial values. When the I (0) is varied from 1 to 1000, the
values of max(u J ) are in the range of [10, 300]. In the middle frame, the max(u J )

is sensitively changed by the hospitalized rate, α, in the range of [200, 700]. On
the other hand, interestingly, the max(u J ) is not sensitive to the basic reproductive
number, R0: the max(u J ) is an almost constant function of R0.

In order to investigate the impacts of α and R0 on the max(u J ), the numbers of
maximum sickbeds, max(u J ), are depicted as the contours of α and R0 in Fig. 6.
The ranges for α and R0 are chosen as [0.2, 0.9] and [1.6, 2], respectively. Figure6
clearly illustrates that the max(u J ) is sensitive to the hospitalized rate, α, while
the max(u J ) is not sensitive to the basic reproductive number, R0. Overall, we can
estimate the number of maximum sickbeds in the various scenarios if OC strategies
are conducted.

In this article we have employed OC and a relatively simple compartmental model
of Ebola transmission that incorporates varying levels of isolation of infectious indi-
viduals in the hospital J (t), which is connected to the control parameter u(t). This
allowed us to illustrate the theoretical number of “sick beds” with affected Ebola
patients at time t , which is given by u(t)J (t). Our ultimate goal was to assess the
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theoretical trade-off between minimizing the number of Ebola virus infectious indi-
viduals and the cost of implementing the control strategy.

Our simulation results derived from implementing OC strategies in Fig. 3 showed
that the full control during the early period is key to ensure elimination of Ebola
epidemics. However, this result should be interpreted with caution as it is sensitive to
the inherent structural assumptions in our model (e.g., homogeneous mixing) which
may not reflect Ebola transmission dynamics at the local scale [7].

We have also highlighted the sensitivity of the weight constant, B, which is related
to the cost of implementing control. It was not surprising to observe that the epi-
demic size and the relative TC are sensitive to the weight constant, B. By contrast,
the number of maximum sickbeds (max(u J )) were not sensitive to the the weight
constant, B that represents the relative cost implementing the control strategy. This
result suggests that the maximum number of sickbeds can be estimated in the broad
range of costs, when optimal quarantine strategy is conducted. Finally, we have also
explored the sensitivities of the initial size of infectious individuals, I (0), the hospi-
talized rate, α, and the basic reproductive number, R0 on the values of max(u J ) in
Figs. 5 and 6. We observed that the numbers of max(u J ) are increasing functions of
I (0) and α, while it is an almost constant function of R0.



100 E. Jung et al.

References

1. Althaus, C.L.: Estimating the reproduction number of Ebola virus (EBOV) during the 2014
outbreak in West Africa. PLOS Current, Outbreaks (2014)

2. Blayneh, K., Cao, Y., Kwon, H.D.: Optimal control of vector-borne diseases: treatment and
prevention. Discret. Contin. Dyn. B 11(3), 587–611 (2009)

3. Choi, S., Jung, E.: Optimal tuberculosis prevention and control strategy from a mathematical
model based on real data. Bull. Math. Biol. 1–24 (2014)

4. Choi, S., Jung, E.: Optimal tuberculosis prevention and control strategy from a mathematical
model based on real data. Bull. Math. Biol 76(7), 1566–1589 (2014). doi:10.1007/s11538-
014-9962-6, http://dx.doi.org/10.1007/s11538-014-9962-6

5. Chowell, G., Hengartner, N.W., Castillo-Chavez, C., Fenimore, P.W., Hyman, J.: The basic
reproductive number of ebola and the effects of public health measures: the cases of congo and
uganda. J. Theor. Biol. 229(1), 119–126 (2004)

6. Chowell, G., Nishiura, H.: Transmission dynamics and control of ebola virus disease (evd): a
review. BMC Med. 12(1), 196 (2014)

7. Chowell, G., Viboud, C., Hyman, J.M., Simonsen, L.: The western africa ebola virus disease
epidemic exhibits both global exponential and local polynomial growth rates. PLoS Currents
7 (2014)

8. del Rio, C., Mehta, A.K., Lyon, G.M., Guarner, J.: Ebola hemorrhagic fever in 2014: the tale
of an evolving epidemic. Ann. Intern. Med. 161(10), 746–748 (2014)

9. Diekmann, O., Heesterbeek, J.: Mathematical Epidemiology of Infectious Diseases, vol. 146.
Wiley, Chichester (2000)

10. Fine, P.E.: The interval between successive cases of an infectious disease. Am. J. Epidemiol.
158(11), 1039–1047 (2003)

11. Fisman, D., Khoo, E., Tuite, A.: Early epidemic dynamics of the west african 2014 ebola
outbreak: estimates derived with a simple two-parameter model. PLOS Currents Outbreaks 6
(2014)

12. Jung, E., Iwami, S., Takeuchi, Y., Jo, T.C.: Optimal control strategy for prevention of avian
influenza pandemic. J. Theor. Biol. 260(2), 220–229 (2009)

13. Jung, E., Lenhart, S., Feng, Z.: Optimal control of treatments in a two-strain tuberculosismodel.
Discret. Contin. Dyn. Syst. Ser. B 2(4), 473–482 (2002)

14. Lee, J., Kim, J., Kwon, H.D.: Optimal control of an influenza model with seasonal forcing and
age-dependent transmission rates. J. Theor. Biol. 317, 310–320 (2013)

15. Lee, S., Chowell, G., Castillo-Chávez, C.: Optimal control for pandemic influenza: the role of
limited antiviral treatment and isolation. J. Theor. Biol. 265(2), 136–150 (2010)

16. Lee, S.,Golinski,M., Chowell,G.:Modeling optimal age-specific vaccination strategies against
pandemic influenza. Bull. Math. Biol. 74(4), 958–980 (2012)

17. Legrand, J., Grais, R., Boelle, P., Valleron, A., Flahault, A.: Understanding the dynamics of
ebola epidemics. Epidemiol. Infect. 135(04), 610–621 (2007)

18. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models (2007). http://
books.google.com/books?hl=ko&lr=&id=NBcTXZK61doC&pgis=1

19. Makinde, O.D., Okosun, K.O.: Impact of chemo-therapy on optimal control of malaria disease
with infected immigrants. Biosystems 104(1), 32–41 (2011)

20. Meltzer, M.I., Atkins, C.Y., Santibanez, S., Knust, B., Petersen, B.W., Ervin, E.D., Nichol,
S.T., Damon, I.K., Washington, M.L.: Estimating the future number of cases in the ebola
epidemic–liberia and sierra leone, 2014–2015. MMWR Surveill. Summ. 63(suppl 3), 1–14
(2014)

21. Nishiura, H., Chowell, G.: Early transmission dynamics of ebola virus disease (evd), west
africa, march to august 2014. Eur. Surveill. 19(36), 20,894 (2014)

22. Okeke, I.N.: Divining without seeds: the case for strengthening laboratory medicine in Africa.
Cornell University Press, New York (2011)

http://dx.doi.org/10.1007/s11538-014-9962-6
http://dx.doi.org/10.1007/s11538-014-9962-6
http://dx.doi.org/10.1007/s11538-014-9962-6
http://books.google.com/books?hl=ko&lr=&id=NBcTXZK61doC&pgis=1
http://books.google.com/books?hl=ko&lr=&id=NBcTXZK61doC&pgis=1


Evaluating the Number of Sickbeds During Ebola Epidemics … 101

23. Okosun, K.O., Ouifki, R., Marcus, N.: Optimal control analysis of a malaria disease transmis-
sion model that includes treatment and vaccination with waning immunity. Biosystems 106(2),
136–145 (2011)

24. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton(1987)
25. Silva, C.J., Torres, D.F.: Optimal control for a tuberculosis model with reinfection and post-

exposure interventions. Math. Biosci. 244(2), 154–164 (2013)
26. Whang, S., Choi, S., Jung, E.: A dynamic model for tuberculosis transmission and optimal

treatment strategies in south korea. J. Theor. Biol. 279(1), 120–131 (2011)
27. WHO Ebola Response Team: Ebola virus disease in west africa – the first 9 months of the

epidemic and forward projections. New Engl. J. Med. 371(16), 1481–1495 (2014). doi:10.
1056/NEJMoa1411100;21

28. World Health Organization: Ebola virus disease update - west africa (2014). http://www.who.
int/csr/don/2014_08_08_ebola/en/

29. World Health Organization: Ebola situation reports (2015). http://apps.who.int/ebola/ebola-
situation-reports

http://dx.doi.org/10.1056/NEJMoa1411100;21
http://dx.doi.org/10.1056/NEJMoa1411100;21
http://www.who.int/csr/don/2014_08_08_ebola/en/
http://www.who.int/csr/don/2014_08_08_ebola/en/
http://apps.who.int/ebola/ebola-situation-reports
http://apps.who.int/ebola/ebola-situation-reports


Inverse Problems and Ebola Virus Disease
Using an Age of Infection Model
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Abstract Parameter estimation problems in ordinary and partial differential equa-
tions constitute a large class of models described by ill-posed operator equations.
A considerable number of such problems come from epidemiology and infectious
disease modeling, with Ebola Virus Disease (EVD) being a very important example.
While it is not difficult to find a solution of an SEIJCRODE constrained least squares
problem, this problem is extremely unstable and a number of different parameter
combinations produce essentially the same case curve. This is a serious obstacle in
the study of the Ebola virus epidemics, since reliable approximations of system para-
meters are important for the proper assessment of existing control measures as well
as for the forward projections aimed at testing a variety of contact tracing policies.
In this paper, we attempt a stable estimation of system parameters with the use of
iterative regularization along with a special algorithm for computing initial values.
The numerical study is illustrated by data fitting and forward projections for the most
recent EVD outbreak in Sierra Leone and Liberia.
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1 Introduction

The Ebola Virus Disease (EVD) outbreak inWest Africa that began in early 2014 has
received wide attention due to its scale, scope, location and alarming potential. The
largest previous Ebola outbreak was in Uganda in 2000, with a total of 425 cases. The
West African outbreak surpassed the size of that outbreak by the first week of June,
2014. The World Health Organization (WHO) declared the Ebola outbreak in West
Africa a public health emergency on August 8th [1]. By the 21st of that month the
case count exceeded the total of all other previous outbreaks combined—2,387 cases
(Fig. 1). As of July 5, 2015 there have been 27,609 Ebola cases with 11,261 fatalities,
and these numbers are widely believed to be underreported [2]. The areas hardest
hit by the 2014 outbreak encompass about 428,945km2, more than 50 times the
8,000km2 comprising the three districts affected during the 2000 Uganda outbreak
[3]. In addition, the three primarily affected countries suffer from a recent history of
civil unrest, poverty and lack of health infrastructure [4, 5].

The Ebola Virus Disease initially came to notice of theworld in 1976. Twomonths
apart in time and 500miles apart in distance, two outbreaks of this then unrecognized
virus occurred in Sudan and Zaire (nowDemocratic Republic of Congo) [6, 7]. Ebola
is known to affect humans and nonhuman primates (gorillas, chimpanzees, etc.) [8].
Human-to-human transmission results from direct contact through broken skin or
mucous membranes with the blood, other bodily fluids or secretions of infected peo-
ple. The incubation period, or the time interval from infection to onset of symptoms,
is from 2 to 21days. The patients become contagious once they begin to show symp-
toms [9]. They are not contagious during the incubation period. Individuals remain
infectious as long as their blood and secretions contain the virus [10, 11].

The 2014–15 Ebola outbreak was first reported on March 23, 2014, by the WHO
Regional Office for Africa. The report indicated a rapidly evolving outbreak of EVD
with 29 fatalities from49 cases as ofMarch 22 [12]. Investigative journalismproposes
that the first case was a young boy who died in December 2013 [13]. These first cases
occurred in a region at the conflux of the borders of Guinea, Liberia and Sierra Leone
(in a region that had not seen an Ebola outbreak before). There were no proven drugs

Fig. 1 Pre and post outbreak case and death counts [2]
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or vaccines against EVD at the start of the outbreak. Given that the symptoms of the
disease are similar to malaria, typhoid fever, hepatitis and other viral hemorrhagic
fevers, identification of the true nature of the disease may have been delayed [1, 14].
EVD infections can only be confirmed through laboratory testing.

Researchers have investigated prior EVD outbreaks using compartmental models,
stochastic processes and statistical methods. Parameters for transmission and periods
of incubation, infectiousness and recovery were determined by fitting incidence data
or using statistical tools [11, 15, 16]. Statistical models were also used to determine
incubation periods or reproductive numbers [17–19]. In order to study the 2014–15
outbreak, both the Centers for Disease Control (CDC) and WHO developed models
to forecast the progress of the EVD. The CDC utilized an SEIR model wherein the
Infectious class is sub-categorized into three groups of isolation: Hospitalization,
Effective Home Care (isolation characteristics), and Home With No Effective Iso-
lation with each subcategory having a differing rate of transmission determined by
goodness of fit to cumulative data as of August 28, 2014. The periods for incubation
and time to recovery or death were determined from previous outbreaks by proba-
bility distribution of the data [20]. The WHO used data gathered from the current
outbreak to identify parameter values by employing gamma distributions to fit the
data. The WHO’s estimates for the incubation period, time to recovery, and repro-
ductive numbers are similar to values found for other outbreaks. To determine future
case numbers the WHO utilized two methods: (a) data through September 14, 2014
was log transformed and fitted with resultant parameters used for projections and (b)
a stochastic branching process model was used to estimate the incidence rate and
projections were based upon it [21]. In [22], a family of logistic patch models for
use in EVD analysis and future projections has been validated. The ability of each
model to predict epidemic data was compared based on forecasting errors, parameter
distributions and parameter confidence intervals.

There is uncertainty as to whether thosewho recover fromEbola can subsequently
be reinfected [23]. Apart from susceptible and infected humans, most models include
the exposed class, E(t), since the virus is only transmitted through contacts with
actively symptomatic infected individuals [24, 25]. Where no vaccine is available,
the isolation of infected and the quarantine of exposed individuals are the only con-
trolmeasures enforced. Various SEQIJ (Susceptible-Exposed-Quarantined-Infected-
Isolated) models incorporate these dynamics. Some quarantine models also include
hospitalized, recovered, and contaminated deceased classes [24, 26].

Compared to previously known viral diseases, the Ebola outbreak in West Africa
has some unique characteristics that affect its modeling and parameter identification
(Table1):

1. The disease is transmitted to susceptible humans from both infectious humans
and improper handling of the deceased.

2. An adequate model needs to incorporate the principal features of contact tracing
activities (identification, isolation, efficiency).



106 A. Smirnova et al.

Table 1 Parameters for Model with Contact Tracing [10, 20, 26–28]

Parameter Definition Baseline
value

Source

N Total population, Liberia (now 4.397 × 106) 4 × 106 [26, 29]

Total population, Sierra Leone (now
6.205 × 106)

6 × 106 [26, 29]

κ Average number of contacts traced per infected
individual before and after 10/01/2014

0, before [26]

10, after [26]

π Probability a contact traced infected human is
isolated without infecting others

0.4–0.6 [26]

ω Probability a contact traced individual is infected 0.1 [26]

1/γ Average time from symptoms onset to recovery 30days [10, 28]

1/ν Average time from symptoms onset to death 8days [26, 27]

1/σ Average incubation period 9days [10, 27, 28]

β Transmission rate from infectious humans TBD [20, 26]

ε Transmission rate from contaminated deceased TBD [20, 26]

1/α Average time from symptoms onset to isolation TBD [20, 26]

1/ψ Average time until deceased is properly handled TBD [20, 26]

3. The current outbreak is an evolving event; the data will, of necessity, be quickly
outdated and subject to correction (very noisy) caused by such issues as differing
reporting periods, retroactive re-classifications, and non-reporting.

To account for contact tracing activities, a new SEICJR (Susceptible-Exposed-
Infected-Contaminated Deceased-Isolated Infectious-Removed) model has been
developed by G. Webb and his group [26]. The last two classes, J (t) and R(t),
decouple from I (t) and C(t) and their values, though they are not explicitly present
in the system, can also be evaluated from it:

dS

dt
= −βS(t)

I (t)

N
− εS(t)

C(t)

N
, (1)

dE

dt
= βS(t)

I (t)

N
+ εS(t)

C(t)

N
− σ E(t), (2)

d I

dt
= σ E(t) − (α + γ + ν)I (t) − κ(α I (t) + ψC(t))πω, (3)

dC

dt
= ν I (t) − ψC(t). (4)

This compartmentalmodel classifies thepopulation anddescribesmovement between
the compartments. (1) The Susceptible class (S) can be infected by Ebola virus fol-
lowing a contact with infectious or contaminated deceased classes; (2) members of
the Exposed class (E) have been infected by the Ebola virus but are not yet infectious;
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(3) the Infectious class (I) can infect others, and human population in this class will
either recover ormove to the Contaminated deceased; (4) the Contaminated deceased
class (C) may transmit the disease during funerals or from improper handling. In the
above model, parameters β, ε, α, and ψ need to be estimated from case data given
by the cumulative clinical reported cases (K) [26]

K (t) =
∫ t

0

(
α I (s) + ψC(s)

)
ds + K (0). (5)

While it is not difficult to find a solution of the constrained least squares problem,
this problem is extremely unstable and “lots of different values of β, ε, α, and ψ fit”.
This is a serious obstacle in the study of Ebola virus, since reliable approximations
of system parameters are important for the proper assessment of existing control
measures as well as for the forward projections aimed at testing a variety of contact
tracing policies. In this paper, we evaluate a stable estimation of system parameters
with the use of iterative regularization along with a special algorithm for computing
initial values, β0, ε0, α0, and ψ0. The paper is organized as follows. In Sect. 2, the
severe ill-posedness of the underlying inverse problem is demonstrated. In Sect. 3,
an algorithm for localizing the unknown parameters is introduced. The procedure of
iterative regularization and experimental results for simulated data are presented in
Sect. 4, followed by the results for real data [30] in Sect. 5. In Sect. 6, some future
plans are outlined.

2 Ill-Posedness of the Least Squares Problem

In our first numerical experiment, we have attempted to study uniqueness and stabil-
ity of parameters β, ε, α, andψ for Sierra Leone and Liberia using the information on
cumulative cases up until September 23, 2014 [26]. Given the system of differential
equations and real data, we minimized the cost functional with Matlab built-in func-
tions lsqcurvefit (trust-region-reflective algorithm) and ode23s (stiff system solver).

The data sets for the two countries are given in Table2. Case counts have been
adjusted throughout this outbreak due to ongoing reclassification, follow up inves-
tigations and laboratory results. Under-reporting remains an acknowledged issue in
World Health Organization’s periodic situational reports. The data given here reflects
the historical record of cumulative number of Ebola cases in Sierra Leone and Liberia
as reported by WHO.

The total populations of 6 and 4 million were assumed for Sierra Leone and
Liberia, respectively. As in [26], K0 = 16, S0 = 6 × 106, E0 = 47, I0 = 26, C0 =
12 for Sierra Leone, and K0 = 33, S0 = 4 × 106, E0 = 40, I0 = 22, C0 = 12 for
Liberia. Common to both, γ = 1/30, ν = 1/8, σ = 1/9, κ = 0 have been taken
[26]. The last assumption, κ = 0, is due to the fact that before September 23, 2014,
contact tracing (if occurred) was insufficient.
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Table 2 Ebola Virus Disease Cumulative Case Data Used for Parameter Fitting [30]

Sierra Leone

Date 5/27 5/30 6/5 6/7 6/17 6/23 6/30 7/2 7/6 7/8 7/12 7/14

Cases 16 50 81 89 97 158 239 252 305 337 386 397

Date 7/17 7/20 7/23 7/27 7/30 8/1 8/4 8/6 8/9 8/11 8/13 8/16

Cases 442 454 525 533 574 646 691 717 730 783 810 848

Date 8/18 8/20 8/26 8/31 9/6 9/13 9/14 9/19 9/21 9/23

Cases 907 910 1026 1216 1361 1620 2673 1813 1940 2021

Liberia

Date 6/17 6/23 6/30 7/2 7/6 7/8 7/12 7/14 7/17 7/20 7/23 7/27

Cases 33 51 107 115 131 142 172 174 196 224 249 329

Date 7/30 8/1 8/4 8/6 8/9 8/11 8/13 8/16 8/18 8/20 8/26 8/31

Cases 391 468 516 554 599 670 786 846 972 1082 1378 1698

Date 9/5 9/8 9/14 9/17 9/21 9/23

Cases 2046 2407 2710 3022 3280 3458
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Fig. 2 Sierra Leone cases and reconstructions, May 27 to September 23, 2014

In the course of our simulations, we’ve used different initial values for the
unknown parameters in the attempt to find global minimum setting the tolerance
level of 10−15 for the solution and residual.

Demonstrated in the graphs and tables that follow, we obtained vastly varying
values for each of the parameters yet all these six combinations produced virtually
the same curve. In Fig. 2, all 6 experiments for Sierra Leone are plotted for the entire
time period of 119days and for a shorter 20day period; the experimental curves
are virtually indistinguishable and provide a very good fit for the real data listed in
Table2 [30]. The parameter values obtained and the initial values used are given in
Table3. The relative discrepancies between the data points and the curves generated
are around 8% and are also shown in Table3.
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Table 3 Sierra Leone: reconstructed parameter values with their associated initial values

Parameters obtained by a prepackaged optimization routine

Experiment β ε α ψ Relative
discrepancy

R0

1 3.7574E–01 1.5392E–01 4.8055E–01 2.9522E–02 7.7909E–02 1.608

2 4.2127E–03 5.4522E–01 1.0030E–01 1.9548E–01 8.8867E–02 1.364

3 1.1778E–03 5.8250E–01 8.9686E–02 2.1700E–01 8.9681E–02 1.358

4 6.7365E–02 3.3599E–01 4.4134E–01 4.5305E–02 8.8811E–02 1.658

5 4.0865E–01 1.3677E–01 4.8223E–01 2.7710E–02 8.6094E–02 1.601

6 2.6428E–01 5.8175E–02 5.7956E–02 6.5124E–01 8.5770E–02 1.274

Initial values used by optimization

Experiment β ε α ψ Relative
discrepancy

R0

1 1.6000E–01 1.0000E–01 1.0000E–01 1.0000E–01 5.9059E–01 1.103

2 5.0000E–03 6.0000E–01 8.0000E–02 8.0000E–02 4.5471E+01 3.955

3 1.2500E–03 6.0000E–01 1.8000E–01 1.2000E–01 2.0298E+00 1.851

4 2.5000E–02 3.0000E–01 1.0000E–01 1.5000E–01 6.1796E–01 1.065

5 2.8000E–01 2.0000E–01 1.0000E–01 1.0000E–01 7.9440E+00 2.052

6 1.0000E–01 8.0000E–05 8.0000E–02 1.6000E–01 8.9195E–01 0.420
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Fig. 3 Liberia cases and reconstructions, May 27 to September 23, 2014

Very similar results have been obtained when performing the experiments on data
from Liberia. The associated reconstructed curve graphs for the six experiments are
given in Fig. 3 for both the entire time frame, 98days, and for a 20day segment. Once
again, different parameter values give virtually the same curve. The parameter values
obtained and the initial values used are given in Table4. The relative discrepancies,
just under 11% are also shown in Table4.

The same non-uniqueness was observed when numerical experiments were con-
ducted with our own code that implemented iteratively regularized Gauss-Newton
algorithm [31, 32] for solving the least squares problem. Depending on a reference
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Table 4 Liberia: reconstructed parameter values with their associated initial values

Parameters obtained by a prepackaged optimization routine

Experiment β ε α ψ Relative
discrepancy

R0

1 1.7052E–01 5.3268E–01 1.8202E–01 1.7401E–01 1.1241E–01 1.625

2 1.7426E–02 5.6448E–01 3.6038E–01 6.5235E–02 1.1314E–01 2.119

3 3.0433E–01 6.6652E–01 1.2112E–01 7.3769E–01 1.1449E–01 1.493

4 4.7794E–01 1.1099E–01 1.9028E–01 5.6650E–01 1.1219E–01 1.441

5 2.8304E–01 3.0027E–01 2.0009E–01 1.2401E–01 1.1743E–01 1.634

6 6.8792E–01 1.1050E–06 3.3242E–01 3.8950E–02 1.1351E–01 1.402

Initial Values used by optimization

Experiment β ε α ψ Relative
discrepancy

R0

1 3.0000E–01 3.1600E–01 1.8000E–01 1.8000E–01 1.3869E–01 1.535

2 2.0000E–07 4.0000E–01 3.0000E–02 3.0000E–02 4.2391E+00 8.850

3 2.0000E–06 2.0000E–02 6.0000E–02 1.5000E–02 9.5355E–01 0.763

4 1.0000E–02 1.0000E–02 4.0000E–01 3.0000E–01 9.5136E–01 0.025

5 5.0000E–10 2.0000E–02 2.0000E–09 6.6000E–01 9.5585E–01 0.024

6 3.0000E–02 6.0000E–06 6.0000E–01 4.0000E–01 9.5067E–01 0.040

element used in the penalty functional, the process converged to one local minimum
or another.

While some of the parameter values displayed in Tables3 and 4 can be ruled out
based on the reproduction numbers they generate and/or other biological consider-
ations, it is evident that the problem is extremely ill-posed and a sufficiently close
initial approximation is required for “correct” parameters to be reconstructed. In the
next section, we propose a strategy for computing β0, ε0, α0, and ψ0.

3 Computation of Initial Values

For the evaluation of initial values of system parameters, we propose the following
method. From (5) one has

dK

dt
= α I (t) + ψC(t) (6)

with noisy values of K (t) being available at finitely many non-uniformly distributed
grid points (see Table2). Hence it is reasonable to assume that

ψ0 = K10 − α0 I0
C0

, (7)
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where K10 is an approximation to the first derivative of K (t) at t = 0 calculated by
either finite differences or spline interpolation. Differentiating (6) and using ODE
system (1)–(4), one concludes

d2K

dt2
= α

d I

dt
+ ψ

dC

dt
= ασ E + (ψν − α(α + γ + ν))I − ψ2C.

Taking into account (7), one arrives at the following quadratic equation for α0

I0(I0 + C0)α
2
0 + [−σ E0C0 + I 20 ν + (γ + ν)C0 I0 − 2I0K10

]
α0

+ K20C0 − K10ν I0 + K120 = 0.

In the above, K20 is an approximate value of the second derivative of K (t) at t = 0.
If one differentiates (6) once again, then from (1)–(4) one obtains

d3K

dt3
= α

d2 I

dt2
+ ψ

d2C

dt2

= ασ
dE

dt
+ [

ψν − α(α + γ + ν)
] d I
dt

− ψ2 dC

dt
= ασ S[β I + εC]/N + σ [ψν − α(α + γ + ν) − ασ ]E

− {[ψν − α(α + γ + ν)](α + γ + ν) + ψ2ν
}
I + ψ3C.

Introduce the notation

A : = {
K30 − σ [ψ0ν − α0(α0 + γ + ν) − α0σ ]E0 + {[ψ0ν − α0(α0 + γ + ν)

]

× (α0 + γ + ν) + ψ2
0 ν

}
I0 − ψ3

0C0
}
N/(α0σ S0),

then one can set

β0 = A − ε0C0

I0
. (8)

In the expression for A, constant K30 estimates the third derivative of K (t) at t = 0.
To approximate ε0, it remains to differentiate (6) one more time. By (1)–(4),

d4K

dt4
= α

d3 I

dt3
+ ψ

d3C

dt3

= ασ [β I + εC]
N

dS

dt
+

{
ασβS

N
− [ψν − α(α + γ + ν)](α + γ + ν) − ψ2ν

}

× d I

dt
+

{
ασεS

N
+ ψ3

}
dC

dt
+ σ [ψν − α(α + γ + ν) − ασ ]dE

dt
.
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Applying all four equations of (1)–(4) and simplifying the identity, one derives

d4K

dt4
= −ασ S

N 2
{β2 I 2 + 2βε IC + ε2C2} + βS

N
{ασ 2(E − I ) − 2ασ(α + γ + ν)I

+ σψν I } + εS

N
{ψσC(ν − α) + ασν I − ασC(σ + α + γ + ν)}

− {[
ψν − α(α + γ + ν)

]
(α + γ + ν) + ψ2ν

}[σ E − (α + γ + ν)I ]
+ ψ3[ν I − ψC] − σ 2E

[
ψν − α(σ + α + γ + ν)

]
.

Illuminating β according to (8) and canceling quadratic terms, one gets the linear
equation for ε0 as follows

K40 = ε0S0
N

{
α0σ [ν I0 − ψ0C0] + α0σC0(α0 + γ + ν) − α0σ

2C0E0

I0

}

− α0σ S0A2

N 2
+ AS0

I0N
[α0σ

2(E0 − I0) − 2α0σ(α0 + γ + ν)I0 + σψ0ν I0]
− {[ψ0ν − α0(α0 + γ + ν)](α0 + γ + ν) + ψ2

0 ν
}{σ E0 − (α0 + γ + ν)I0}

+ ψ3
0 [ν I0 − ψ0C0] − σ 2E0

[
ψ0ν − α0(σ + α0 + γ + ν)

]
.

Here K40 denotes a numerical value of d4K
dt4 (0). While the proposed algorithm can

offer some insight into how to approximate initial values, themethod is far from ideal.
Numerical differentiation of noisy data is a separate unstable problem. Computation
of ε0 and β0 is even more difficult than solving for α0 and ψ0, since equations for ε0
and β0 contain higher order derivatives. The quadratic equation for α0 may not have
real solutions. At the same time, it can have two nonnegative real roots, generating
two sets of initial vectors [β0, ε0, α0, ψ0] and resulting into two different solutions
of the least squares problem.

The good news, however, is that in many cases this approach does work and does
help to localize the unknown parameters β, ε, α, and ψ . Combined with an iterative
regularization method, nonnegativity constraints, and a posteriori stopping rule, the
above algorithm can become a valuable tool in the nonlinear optimization process.
In the next section, we apply the proposed technique to stable parameter estimation
from data sets for cumulative number of human cases in Sierra Leone and Liberia
given in Table2.
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4 Regularization Algorithm and Experimental Results
for Simulated Data

In this section we present a regularized algorithm for solving the parameter identifi-
cation inverse problem. Its goal is to obtain the values of β, ε, α, and ψ given real
data, d, on EVD cumulative clinical cases. This can be cast as a constrained least
squares minimization

min
q,u

1

2
||K [q]u − d||2 provided F(q, u) = 0, (9)

where K is defined in (5), q := [β, ε, α,ψ], u := [I,C], and the operator equation
F(q, u) = 0 is given by (1)–(4). Suppose u = u[q] is a (numerical) solution to (1)–
(4). Introduce the notation

Φi (q) := Ki [q]u[q] =
∫ ti

0

(
α I [q](s) + ψC[q](s)

)
ds + K (0), i = 1, 2, . . . ,m,

(10)
a parameter-to-observation map. Then we get unconstrained least squares problem:

min
q

J (q) := min
q

1

2
||Φ(q) − d||2 = min

q

1

2
(Φi (q) − di )

2, Φ : R4 → R
m, (11)

withm being the number of data points. The Jacobian matrix forΦ can be computed
explicitly. Indeed,

∂Φi

∂β
=

∫ ti

0

{
α

∂ I [q](s)
∂β

+ ψ
∂C[q](s)

∂β

}
ds,

∂Φi

∂ε
=

∫ ti

0

{
α

∂ I [q](s)
∂ε

+ ψ
∂C[q](s)

∂ε

}
ds,

∂Φi

∂α
=

∫ ti

0

{
I [q] + α

∂ I [q](s)
∂α

+ ψ
∂C[q](s)

∂α

}
ds,

∂Φi

∂ψ
=

∫ ti

0

{
C[q] + α

∂ I [q](s)
∂ψ

+ ψ
∂C[q](s)

∂ψ

}
ds.

Thepartial derivatives of I [q] andC[q]with respect toβ, ε,α, andψ canbe computed
from the corresponding ODE systems. For example, ∂ I [q]

∂β
and ∂C[q]

∂β
satisfy
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d

dt

(
∂S

∂β

)
= − SI

N
− β I

N

∂S

∂β
− βS

N

∂ I

∂β
− εC

N

∂S

∂β
− εS

N

∂C

∂β
,

d

dt

(
∂E

∂β

)
= SI

N
+ β I

N

∂S

∂β
+ βS

N

∂ I

∂β
+ εC

N

∂S

∂β
+ εS

N

∂C

∂β
− σ

∂E

∂β
,

d

dt

(
∂ I

∂β

)
= σ

∂E

∂β
− (α + γ + ν)

∂ I

∂β
,

d

dt

(
∂C

∂β

)
= ν

∂ I

∂β
− ψ

∂C

∂β
,

with homogeneous boundary conditions (since initial values in (1)–(4) do not depend
on the system parameters). All other initial values and pre-estimated parameters are
given in Sect. 2. The expression for Φ ′ yields ∇ J = Φ ′∗(q)Φ(q) and the approxi-
mation of the first term of the Hessian as ∇2 J (q) ≈ Φ ′∗(q)Φ ′(q). Then, iteratively
regularized Gauss Newton (IRGN) method for the solution of (11) [31, 32] is given
by

qk+1 = qk + λk pk, λk > 0, (12)

where search direction pk solves

(Φ ′∗(qk)Φ ′(qk) + τk I )pk = −(Φ ′∗(qk)(Φ(qk) − d) + τk(qk − q0)). (13)

In (13), τk is a regularizing sequence that converges to zero as k approaches infinity,
and q0 is a reference value for q computed by the algorithm suggested in Sect. 3.
This particular version of IRGN algorithm is motivated by Tikhonov’s variational
regularization with stabilizer τ ||q − q0||2:

min
q

Jτ (q) := min
q

||Φ(q) − d||2 + τ ||q − q0||2, τ > 0. (14)

If the above is understood in terms of Bayesian statistics, the penalty term in
Tikhonov’s regularization corresponds to the negative-log of the prior probability
density, the fidelity term corresponds to the negative-log of the likelihood, and the
regularized solution corresponds to the maximizer of the posterior probability den-
sity function, known as the maximum a posteriori (MAP) estimator of the solution
[33–35].

To evaluate the performance of the proposed stabilizing algorithm we begin our
numerical experiments with simulated data. To that end, we solve the corresponding
forward problem using the system parameters reconstructed in [26] for Sierra Leone:

β = 0.3200, ε = 0.0078, α = 0.1000, and ψ = 0.2000.

These parameters give a very good fit to the actual data prior to September 23, 2014.
To be consistent with the real data environment, we assume that simulated data on
cumulative EVD cases is discrete, and the values are available the same days when
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the real data is reported. To approximate K10, K20, K30, and K40, we spline the
discrete values and get

K10 = 5.3113, K20 = 0.0912, K30 = −0.0769, K40 = 0.

Based on the above estimates for the derivatives, we obtain complex valued β0, ε0,
α0, and ψ0. Setting the imaginary parts to zero, we arrive at

β0 = 0.1671, ε0 = 0.0927, α0 = 0.1037, and ψ0 = 0.2179.

As one can see, these values are rather close to the actual parameters. To strike
a balance between fitting and penalizing, we use τk = τ0

(1+k)p with τ0 = 10−2 and
p = 4, which is the largest value of p generating a convergent regularization process.
Initially, the relative discrepancy (RD) is 7.70 × 10−1 and the relative error (RE) is
4.50 × 10−1.After 75 steps, RD= 1.19 × 10−4 andRE= 2.44 × 10−2. The iterative
solution

β75 = 0.3193, ε75 = 0.0058, α75 = 0.0983, and ψ75 = 0.2077,

turns out to be a reasonable approximation to the exact parameters above. The basic
reproduction numbers [26, 36] for the exact and computed solutions are virtually
identical, R0 = 1.257581 and R0 = 1.257956, respectively. The condition number
of the 4 × 4 matrix Φ ′∗(qk)Φ ′(qk) is of order 1010 with stabilizing term reducing it
to 106 early in the process. The stopping rule is not strictly enforced in the noise-free
case. The goal is not to move beyond RD = 10−4 to ensure that convergence is not
destroyed by rounding errors.

At the next step of the experiment we add 3% relative random noise to the sim-
ulated data. Due to instability of numerical differentiation, the estimated values of
K10, K20, K30, and K40 change substantially:

K10 = 1.4161, K20 = 1.9434, K30 = −0.4264, K40 = 0.

The last value is approximated by zero, since the data curve is restored through cubic
spline interpolation. This accuracy appears to be sufficient in case of simulated data.
For real data, we combine spline interpolation and finite differences, which result in
nonzero values of K40. Less accurate derivatives give rise to less accurate complex
valued β0, ε0, α0, andψ0 with the real part of ε0 being negative. Thus we approximate
the initial values of system parameters by the following nonnegative real numbers:

β0 = 0.2859, ε0 = 0, α0 = 0.0012, and ψ0 = 0.1154.

While τ0 remains equal to 10−2 in case of noisy data, we have to switch to p = 3
to ensure convergence. We also try not to “do better than the data” (to prevent con-
vergence to the “noisy” solution) and stop the iterative process when RD transitions
through the 3% level. As the result, we obtain
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β8 = 0.3196, ε8 = 0.0110, α8 = 0.1016, and ψ8 = 0.1508,

which gives RE= 1.25 × 10−1, RD= 2.89 × 10−2, and the basic reproduction num-
ber of R0 = 1.264207. It is not surprising that the impact of noise is substantial, since

Φ ′∗(q8)Φ ′(q8) =

⎛
⎜⎜⎝

0.8555 0.6153 −0.8886 −0.0127
0.6153 0.4426 −0.6392 −0.0091

−0.8886 −0.6392 0.9240 0.0135
−0.0127 −0.0091 0.0135 0.0003

⎞
⎟⎟⎠

with the first and the third lines dangerously close to being proportional. For this part
of the experiment, the condition number ofΦ ′∗(qk)Φ ′(qk) is also of order 1010 and it
is reduced to 103 − 105 with regularization. To summarize, a numerical analysis of
the model with simulated data, while showing some potential, clearly demonstrates
all the challenges that follow from instability of the Gauss-Newton process and of
the numerical differentiation task.

5 Numerical Analysis for Real Data

In this section we present experimental results for real data [30] displayed in Table2
for Sierra Leone andLiberia covering theEVDoutbreak up until September 23, 2014.
To ensure stability of the iterative process, we take τk = τ0

(1+k)p with τ0 = 10−2,
p = 1 for Sierra Leone, and p = 2 for Liberia (the largest value of p for which
convergence is observed). A rather aggressive stopping rule is used to avoid over-
fitting that would be unacceptable, since cumulative EVD cases are considerably
underreported and the problem is very ill-posed. Specifically, we stop iterations
(12)–(13) after the first transition of the relative discrepancy (RD) through the 10%
level, RD := ||Φ(qk )−dδ ||

||dδ || = 0.1, where dδ is noisy data.
Until the stopping moment is reached, the condition number of Φ ′∗(qk)Φ ′(qk) in

(13) would normally change from 1011 to 109 with regularization bringing it down
to 103 or 102 for p = 1. For p = 2, the condition number of Φ ′∗(qk)Φ ′(qk) + τk I
ranges from 104 to 103. In case of Sierra Leone data, the matrix Φ ′∗(qk)Φ ′(qk) at
the computed solution is

Φ ′∗(q5)Φ ′(q5) =

⎛
⎜⎜⎝

0.2438 0.1036 −0.2380 −0.3571
0.1036 0.0440 −0.1011 −0.1518

−0.2380 −0.1011 0.2326 0.3487
−0.3571 −0.1518 0.3487 0.5231

⎞
⎟⎟⎠

which illustrates even better than condition numbers how unstable the model is.
For the Sierra Leone data, experiments have been conducted with m = 119 (see

Table2). To avoid numerical differentiation at the end point, we approximate deriv-
atives at t = 1 (after one day) by the following values
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K10 = 12.84, K20 = −2.853, K30 = 0.6373, K40 = −0.02529.

These values give rise to two sets of initial approximations:

β0 = −18.23, ε0 = 39.10, α0 = 0.2684, ψ0 = 0.4887, and

β0 = −0.7193, ε0 = 1.1001, α0 = 0.3354, ψ0 = 0.3434.

If one replaces β0 with zero and uses the first set, the process turns out to be divergent.
If β0 is replaced with zero in the second set, then after 5 iterations (as dictated by the
stopping rule) we get

β5 = 0.0255, ε5 = 1.1071, α5 = 0.2666, and ψ5 = 0.2914,

which yield the basic reproduction number [26, 36] of R0 = 1.178. The first graph
in Fig. 4 illustrates the data fit for the cumulative human cases that have been used to
reconstruct parameters. The secondgraph inFig. 4 shows future projections generated
by these parameters and their comparison to the actual data for the period from
5/27/14 to 6/17/15 (with the forecasting time being from 9/23/14 to 6/15/15)
as well as to the projections obtained with parameter values from [26]. The values
estimated in [26] are β = 0.3200, ε = 0.0078, α = 0.1000, and ψ = 0.2000 (R0 =
1.258).Note that themain goal of looking at future projections obtainedwith different
sets of parameters is to provide some (very limited) evidence on the reliability of
computed values of β, ε, α, and ψ , rather than to actually predict future cases.
Therefore we do not adjust control parameters κ , π , and ω to fit the data. Instead we
continue using κ = 0 and make the comparison based on the reconstructions of β,
ε, α, and ψ only.

In case of Liberia, m = 98 and the approximate values of the derivatives are

K10 = 1.859, K20 = 3.652, K30 = −1.301, K40 = 0.02729.
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Fig. 4 Data fitting and future projections for Sierra Leone
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Fig. 5 Data fitting and future projections for Liberia

The quadratic equation for α0 ends up having two complex conjugate roots so that

β0 = 0.3836 ± 0.0624i, ε0 = −2.5364 ∓ 1.5768i,

α0 = 0.0220 ∓ 0.2364i, and ψ0 = 0.1147 ± 0.4334i.

Using initial values β0 = 0.3836, ε0 = 0, α0 = 0.0220, and ψ0 = 0.1147, after 15
iterations we arrive at

β15 = 0.4416, ε15 = 0.0700, α15 = 0.1774, and ψ15 = 0.1528,

with R0 = 1.486. The first graph in Fig. 5 shows the data fit for the cumulative
human cases in Liberia that have been used to reconstruct the above parameters.
The second graph in Fig. 5 gives future data projections with these parameters and
compares them to the actual data for the period from 6/17/14 to 6/17/15 (with the
forecasting time being from 9/23/14 to 6/15/15) as well as to projections obtained
with parameter values from [26]. The values estimated [26] are β = 0.3000, ε =
0.3160, α = 0.1800, and ψ = 0.1800 (R0 = 1.535).

6 Discussion and Future Plans

As one can see in the second graph of Fig. 4, for Sierra Leone the green line (future
projections based on computed parameters) stays relatively close to the red line (the
actual data) until approximately the beginning of March, 2015. Then the simulated
curve deviates from the actual one, and on 6/17/15 it predicts a bit over 50,000
cumulative cases instead of 12,965, which CDC gives based on WHO Situational
Reports [CDC2]. This projection can be viewed as quite good considering that in
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reality the fit can even be better, since WHO data is known to be underreported (and
our stopping rule does take this into account).

On the other hand, for Liberia the green line in the second graph of Fig. 5 gets
very far away from the red curve, estimating the number of cases on 6/17/15 to
be at 2 millions (half of the country population), while CDC [30] shows 10,666. Of
course, this can simply be the matter of less accurate initial approximations in case of
Liberia that caused convergence to the “wrong” solution.Or it can be the result of poor
balance between accuracy and stability in the regularization algorithm. However, we
must also keep in mind that by the first week of November 2014, “Liberia has seen a
major falloff in newEbola cases, with only about 50 emerging per day, versus 500 per
day at its peak” due to “the amount of money and professionals that have poured into
the country and the efforts of the nation’s government and populace to slow its spread”
[37]. At that same time, Sierra Leone was not showing “similar signs of progress”.
“TheWorld Health Organization declared the end of the Ebola outbreak in Liberia on
May 9, 2015 after 42days (two incubation periods) had passed since the last Ebola
patient was buried. On May 13, 2015, CDC changed the country classification for
Liberia to a country with former widespread transmission and current, established
control measures” [38].

While the claim about 500 cases per day at the peak of the outbreak may or may
not be accurate (that depends on how many cases we assume to be under-reported),
the falloff in newEbola cases in Liberiawas, indeed, considerable inNovember 2014,
and that is when the forecasting curves begin to deviate substantially in the second
graph of Fig. 5. As of September 23, 2014, Sierra Leone officially had 2,021 cases
(see Table2). By June 17, 2015, the number has grown to 12,965. For Liberia, these
numbers are 3,458 and 10,666, respectively. All this indicates that control measures
have gradually become very effective in Liberia, and the model which does not take
them into consideration (we set κ = 0 in our experiments as mentioned in Sect. 2)
cannot be used for long term forward projections. At the same time, in Sierra Leone
it has taken longer for the control measures to take their effect, and that can be the
reason for a better forecast that our parameters give in its case.

We will test this conjecture in our future work by assuming exponential rate of
decay for the two transmission rates β and ε [10], β(t) = β0 exp(−ζ(t − η)) and
ε(t) = ε0 exp(−ρ(t − μ)) and fitting against larger data sets, and by reconstructing
the required coefficients to account for the impact of control measures. We will also
explore other models that incorporate a combination of control measures to see how
they can help with estimating future cases.
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Assessing the Efficiency of Movement
Restriction as a Control Strategy of Ebola

Baltazar Espinoza, Victor Moreno, Derdei Bichara
and Carlos Castillo-Chavez

Abstract We formulate a two-patch mathematical model for Ebola Virus Dis-
ease dynamics in order to evaluate the effectiveness of travel restriction (cordons
sanitaires), mandatory movement restrictions between communities while explor-
ing their role on disease dynamics and final epidemic size. Simulations show that
strict restrictions in movement between high and low risk areas of closely linked
communities may have a deleterious impact on the overall levels of infection in the
total population.

Keywords Ebola · Epidemic model · Patch model · Spatial model · Transmission
dynamics

1 Introduction

Ebola virus disease (EVD) is caused by a genus of the family Filoviridae called
Ebolavirus. The first recorded outbreak took place in Sudan in 1976 with the longest
most severe outbreak taking place in West Africa during 2014–2015 [35]. Studies
have estimated disease growth rates and explored the impact of interventions aimed
at reducing the final epidemic size [12, 24, 25, 32]. Despite these efforts, research
that improves and increases our understanding of EVD and the environments where
it thrives is still needed [29].
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This chapter is organized as follows: Sect. 2 reviews past modeling work; Sect. 3
introduces a single Patch model, its associated basic reproduction number R0, and
the final size relationship; Sect. 4 introduces a two-Patch model that accounts for the
time spent by residents of Patch i on Patch j ; Sect. 5 includes selected simulations
that highlight the possible implications of policies that forcefully restrict movement
(cordons sanitaires); and, Sect. 6 collects our thoughts on the relationship between
movement, health disparities, and risk.

2 Prior Modeling Work

Chowell et al. [12] estimated the basic reproduction numbers for the 1995 outbreak in
the Democratic Republic of Congo and the 2000 outbreak in Uganda.Model analysis
showed that controlmeasures (education, contact tracing, quarantine) if implemented
within a reasonable window in time could be effective. Legrand et al. [24] built on
the work in [12] through the addition of hospitalized and dead (in funeral homes)
classes within a study that focused on the relative importance of control measures
and the timing of their implementation. Lekone and Finkenstädt [25] made use of
an stochastic framework in estimating the mean incubation period, mean infectious
period, transmission rate and the basic reproduction number, using data from the
1995 outbreak. Their results turned out to be in close agreement with those in [12]
but the estimates had wider confidence intervals.

The 2014 outbreak is the deadliest in the history of the virus and naturally, ques-
tions remain [11, 15, 23, 27, 28, 32, 33]. Chowell et al. [11] recently introduced a
mathematical model aimed at addressing the impact of early detection (via sophis-
ticated technologies) of pre-symptomatic individuals on the transmission dynamics
of the Ebola virus in West Africa. Patterson-Lomba et al. [33] explored the potential
negative effects that restrictive interventionmeasures may have had in Guinea, Sierra
Leone, and Liberia. Their analysis made use of the available data on Ebola Virus
Disease cases up to September 8, 2014. The focus on [33] was on the dynamics of
the “effective reproduction number” Reff, a measure of the changing rate of epidemic
growth, as the population of susceptible individuals gets depleted. Reff appeared to
be increasing for Liberia and Guinea, in the initial stages of the outbreak in densely
populated cities, that is, during the period of time when strict quarantine measures
were imposed in several areas in West Africa. Their report concluded, in part, that
the imposition of enforced quarantine measures in densely populated communities
in West Africa, may have accelerated the spread of the disease. In [15], the authors
showed that the estimated growth rates of EVD cases were growing exponentially
at the national level. They also observed that the growth rates exhibited polynomial
growth at the district level over three or more generations of the disease. It has been
suggested that behavioral changes or the successful implementation of control mea-
sures, or high levels of clustering, or all of them may nave been responsible for
polynomial growth. A recent review of mathematical models of past and current
EVD outbreaks can be found in [14] and references therein. Authors in [5, 19, 30]
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attempted to quantify the spread of EDV out of the three Ebola-stricken countries
via international flights. For instance, in [19] it was shown hypothetically that, for
a short-time period, a reduction of 80% of international flights from and to these
three countries delays the international spread for three week. Similarly, in [30], it is
showed that a reduction of 60% of international flights from and to of the affected
area would delay but not prevent the spread of the disease beyond the area. Bogoch
et al. [5] estimated about the travelers infected per month for a certain window of
reduction of international flights from and to Guinea, Liberia and Sierra Leone, and
assessed that exit screening for the departing travelers from the three countries is
more efficient in mitigating the risk of Ebola exportation. However, the effects of
movement of individuals between two or more neighborhoods or highly connected
cities to the best of our knowledge has not been explored. In this paper, we proceed
to analyze the effectiveness of forcefully local restrictions in movement on the dy-
namics of EVD.We study the dynamics of EVDwithin scenarios that resemble EVD
transmission dynamics within locally interconnected communities in West Africa.

3 The Model Derivation

Cordons Sanitaire or “sanitary barriers” are designed to prevent the movement, in
and out, of people and goods from particular areas. The effectiveness of the use of
cordons sanitaire have been controversial. This policy was last implemented nearly
one hundred years ago [9]. In desperate attempts to control disease, Ebola-stricken
countries enforced public health officials decided to use this medieval control strat-
egy, in the EVD hot-zone, that is, the region of confluence of Guinea, Liberia and
Sierra Leone [17]. In this chapter, a framework that allows, in the simplest possi-
ble setting, the possibility of assessing the potential impact of the use of a Cordon
Sanitaire during an EVD outbreak, is introduced and “tested”. The population of
interest is subdivided into susceptible (S), latent (E), infectious (I ), dead (D)
and recovered (R). The total population (including the dead) is therefore N =
S + E + I + D + R. The susceptible population is reduced by the process of in-
fection, which occurs via effective “contacts” between an infectious (I ) or a dead
body (D) at the rate of β( I

N + ε D
N ) and susceptible. EVD-induced dead bodies have

the highest viral load, that is, more infectious than individuals in the infectious stage
(I ); and, so, it is assumed that ε > 1. The latent population increases at the rate
βS( I

N + ε D
N ). However since some latent individuals may recover without develop-

ing an infection [1, 2, 12, 20, 21, 26], it is assumed that exposed individuals develop
symptoms at the rate κ or recover at the rate α. The population of infectious individ-
uals increases at the rate κE and decreases at the rate γ I . Further, individuals leaving
the infectious stage at rate γ, die at the rate γ fdead or recover at the rate (1 − fdead)γ.
The R class includes recovered or the removed individuals from the system (dead
and buried). By definition the R-class increases, the arrival of previously infected,
grows at the rate (1 − fdead)γ I .
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Fig. 1 An SEIDR model for Ebola virus disease

Table 1 Variables and parameters of the contagion model

Parameter Description Base model values

α Rate at which of latent recover without
developing symptoms

0 − 0.458 [26]

β Per susceptible infection rate 0.3056 [11, 14, 33]

γ Rate at which an infected recovers or
dies

1
6.5 [14]

κ Per-capita progression rate to
infectious stage

1
7 [11, 33]

ν Per-capita body disposal rate 1
2 [24]

fdead Proportion of infected who die due to
infection

0.708 [14]

ε Scale: Ebola infectiousness of dead
bodies

1.2

Aflowdiagramof themodel is in Fig. 1, The definitions of parameters are collected
in Table1, including the parameter values used in simulations where the mathemat-
ical model built from Fig. 1, that models EVD dynamics is given by the following
nonlinear systems of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N = S + E + I + D + R

Ṡ = −βS I
N − εβS D

N

Ė = βS I
N + εβS D

N − (κ + α)E

İ = κE − γ I

Ḋ = fdeadγ I − νD

Ṙ = (1 − fdead)γ I + νD + αE

(1)

The total population is constant and the set Ω = {(S, E, I, R) ∈ R
4+/S + E + I +

R ≤ N } is a compact positively invariant, that is, solutions behave as expected bi-
ologically. Hence Model (1) is well-posed. Following the next generation operator
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approach [16, 34] (on E , I and D), we find that the basic reproductive number is
given by

R0 =
(

β

γ
+ ε fdeadβ

ν

)
κ

κ + α

That is, R0 is given by the sum of the secondary cases of infection produced by
infected and dead individuals during their infection period. The final epidemic size
relation that includes dead (to simplify the maths) being given by

log
N

S∞ = R0

(
1 − S∞

N

)
.

4 EDV Dynamics in Heterogeneous Risk Environments

Thework of Eubank et al. [18], Sara de Valle et al. [31], Chowell et al. [4, 13] analyze
heterogeneous environments. Castillo-Chavez and Song [10], for example, highlight
the importance of epidemiological frameworks that follow a Lagrangian perspective,
that is, models that keep track of each individual (or at least its place of residence or
group membership) at all times. The Fig. 2 represents a schematic representation of
the Lagrangian dispersal between two patches.

Bichara et al. [4] uses a general Susceptible-Infectious-Susceptible (SIS) model
involving n-patches given by the following system of nonlinear equations:

⎧⎨
⎩
Ṡi = bi − di Si + γi Ii −∑n

j=1(Si infected in Patch j)
İi = ∑n

j=1(Si infected in Patch j) − γi Ii − di Ii
Ṅi = bi − di Ni .

Fig. 2 Dispersal of individuals via a Lagrangian approach where pi j is the proportion of time
individual of Patch i spend in Patch j , for (i, j) ∈ {1, 2}
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where bi , di and γi denote the per-capita birth, natural death and recovery rates
respectively. Infection is modeled as follows:

[Si infected in Patch j] = β j︸︷︷︸
the riskof infection inPatch j

× pi j Si︸ ︷︷ ︸
Susceptible fromPatch i whoare currently inPatch j

×
∑n

k=1 pkj Ik∑n
k=1 pkj Nk︸ ︷︷ ︸

Proportionof infected inPatch j

.

where the last term accounts for the effective infection proportion in Patch j at time.
The model reduces to the single n-dimensional system

İi =
n∑
j=1

(
β j pi j

(
bi
di

− Ii

) ∑n
k=1 pkj Ik∑n
k=1 pkj

bk
dk

)
− (γi + di )Ii i = 1, 2, . . . , n.

with a basic reproduction number R0 that it is a function of the risk vector B =
(β1,β2, . . . ,βn)

t and the residence times matrix P = (pi j ), i, j = 1, . . . , n, where
pi, j denotes the proportion of the time that an i-resident spends visiting patch j .
In [4], it is shown that when P is irreducible (patches are strongly connected), the
disease free state is globally asymptotically stable ifR0 ≤ 1 (g.a.s.) while, whenever
R0 > 1 there exists a unique interior equilibrium which is g.a.s.

The Patch-specific basic reproduction number is given by

Ri
0(P) = Ri

0 ×
n∑
j=1

(
β j

βi

)
pi j

⎛
⎝

(
pi j

bi
di

)
∑n

k=1 pkj
bk
dk

⎞
⎠ .

where Ri
0 are the local basic reproduction number when the patches are isolated.

This Patch-specific basic reproduction number gives the dynamics of the disease at
Patch level [4], that is, if Ri

0(P) > 1 the disease persists in Patch i . Moreover, if
pkj = 0 for all k = 1, 2, . . . , n and k �= i whenever pi j>1, it has been shown [4] that
the disease dies out form Patch i if Ri

0(P) < 1. The authors in [4] also considered
a multi-patch SIR single outbreak model and deduced the final epidemic size. The
SIR single outbreak model considered in [4] is the following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ṡi = −
(

βi p2i i
pii Ni+p ji N j

+ β j p21i j
pi j Ni+p j j N j

)
Si Ii −

(
βi pii p ji

pii Ni+p ji N j
+ β j pi j p j j

pi j Ni+p j j N j

)
Si I j ,

İi =
(

βi p2i i
pii Ni+p ji N j

+ β j p21i j
pi j Ni+p j j N j

)
Si Ii +

(
βi pii p ji

pii Ni+p ji N j
+ β j pi j p j j

pi j Ni+p j j N j

)
Si I j − αi Ii ,

Ṙi = αi Ii ,
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where i, j = 1, 2, i �= j , and Si , Ii and Ri denotes the population of susceptible,
infected and recovered immune individuals in Patch i , respectively. The parameter
αi is the recovery rate in Patch i and Ni ≡ Si + Ii + Ri , for i = 1, 2.

In this chapter we will be making use of this modeling framework, but with a
slightly different formulation, to test under what conditions themovement of individ-
uals from high risk areas to nearby low risk areas due to the use of cordon sanitaire, is
effective in reducing overall transmission by considering two-Patch single outbreak
that captures the dynamics of Ebola in a two-patch setting.This Lagrangian approach
where dispersal is defined via residence times is useful in describing the movement
of commuters between two or more highly connected cities or neighborhoods. The
Eulerian approach of metapopulation is useful in describing long distance migration
of individuals between cities or countries.

4.1 Formulation of the Model

It is assumed that the community of interest is composed of two adjacent geographic
regions facing highly distinct levels of EVD infection. The levels of risk account
for differences in population density, availability of medical services and isolation
facilities, and the need to travel to a lower risk area towork. So,we let N1 denote be the
population in patch-one (high risk) and N2 be the population in patch-two (low risk).
The classes Si , Ei , Ii , Ri represent respectively, the susceptible, exposed, infectious
and recovered sub-populations in Patch i (i = 1, 2). The class Di represents the
number of disease induced deaths in Patch i . The dispersal of individuals is captured
via a Lagrangian approach defined in terms of residence times [3, 4], a concept
developed for communicable diseases for n patch setting [4] and applied to vector-
borne diseases to an arbitrary number of host groups and vector patches in [3].

We model the new cases of infection per unit of time as follows:

• The density of infected individuals mingling in Patch 1 at time t, who are only
capable of infecting susceptible individuals currently in Patch 1 at time t , that is,
the effective infectious proportion in Patch 1 is given by

p11
I1(t)

N1
+ p21

I2(t)

N2
,

where p11 denotes the proportion of time residents from Patch 1 spend in Patch 1
and p21 the proportion of time that residents from Patch 2 spend in Patch 1.

• The number of new infections within members of Patch 1, in Patch 1 is therefore
given by

β1 p11S1

(
p11

I1(t)

N1
+ p21

I2(t)

N2

)
.
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• The number of new cases of infection within members of Patch 1, in Patch 2 per
unit of time is therefore

β2 p12S1

(
p12

I1(t)

N1
+ p22

I2(t)

N2

)
,

where p12 denotes the proportion of time that residents fromPatch 1 spend in Patch
2 and p22 the proportion of time that residents from Patch 2 spend in Patch 2; given
by the effective density of infected individuals in Patch 1

p11
I1(t)

N1
+ p21

I2(t)

N2
, (∗)

while the effective density of infected individuals in Patch 2 is given by

p12
I1(t)

N1
+ p22

I2(t)

N2
. (∗∗)

Further, since, p11 + p12 = 1 and p21 + p21 = 1 then we see that the sum of (*)
and (**) gives the density of infected individuals in both patches, namely,

I1
N1

+ I2
N2

,

as expected. If we further assume that infection by dead bodies occurs only at
the local level (bodies are not moved) then, by following the same rationale as in
Model (1), we arrive at the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 = S1 + E1 + I1 + D1 + R1

N2 = S2 + E2 + I2 + D2 + R2

Ṡ1 = −β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
− β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
− ε1β1 p11S1

D1
N1

Ė1 = β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
+ ε1β1 p11S1

D1
N1

− κE1 − αE1

İ1 = κE1 − γ I1
Ḋ1 = fdeadγ I1 − νD1

Ṙ1 = (1 − fdead)γ I1 + νD1 + αE1

Ṡ2 = −β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
− β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
− ε2β2 p22S2

D2
N2

Ė2 = β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
+ ε2β2 p22S2

D2
N2

− κE2 − αE2

İ2 = κE2 − γ I2
Ḋ2 = fdeadγ I2 − νD2

Ṙ2 = (1 − fdead)γ I2 + νD2 + αE2

(2)
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The difference, in the formulation of the infection term, from the one considered in
[4] is the effective proportion of infected. Here, the effective proportion of infected
in Patch 1, for example, is

p11
I1
N1

+ p21
I2
N2

whereas in [4], it is
p11 I1 + p21 I1
p11N1 + p21N1

.

The proportions of infected individuals are taken, in each patch, before the coupling
for the former and after the coupling for the latter at the beginning of the infection.
Hence, modeling the effective proportion of infected as p11

I1
N1

+ p21
I2
N2

is well suited
for a single outbreak such as the one considered in this paper.

By using the next generation approach [16, 34], we arrive at the basic reproductive
number for the entire system, namely,

R0 = κ

2(κ + α)

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν
+ β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν

+

√√√√√√√√√√√√√√√

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν

)2

+
(

β1 p221 + β2 p222
γ

+ fdeathε2β2 p22
ν

)2

− 2

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν

)(
β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν

)

+ 4

(
β1 p11 p21

N1

γN2
+ β1 p12 p22

N1

γN2

)(
β1 p11 p21

N2

N1
+ β1 p12 p22

N2

N1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see, for example, that whenever the residents of Patch j ( j = 1, 2) live in
communities where travel is not possible, that is, when p12 = p21 = 0 or p11 =
p22 = 1, then the populations decouple and, consequently, we have that

R0 = max{R1,R2}

where Ri =
(

βi

γ
+ 1

ν
fdeathεiβi

)
κ

κ + α
for i = 1, 2; that is, basic reproduction

number of Patch i , i = 1, 2, if isolated.

4.2 Final Epidemic Size in Heterogeneous Risk
Environments

We keep track of the dead to make the mathematics simple. That is, to assuming that
the population within each Patch is constant. And so, from the model, we get that



132 B. Espinoza et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ1 = −β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
− β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
− ε1β1 p11S1

D1
N1

Ė1 = β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
+ ε1β1 p11S1

D1
N1

− (κ + α)E1

İ1 = κE1 − γ I1
Ḋ1 = fdeadγ I1 − νD1

Ṡ2 = −β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
− β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
− ε2β2 p22S2

D2
N2

Ė2 = β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
+ ε2β2 p22S2

D2
N2

− (κ + α)E2

İ2 = κE2 − γ I2
Ḋ2 = fdeadγ I2 − νD2,

(3)

with initial conditions

S1(0) = N1, E1(0) = 0, I1(0) = 0, D1(0) = 0,

S2(0) = N2, E2(0) = 0, I2(0) = 0, D2(0) = 0,

Weuse the abovemodel to find an “approximate” final size relationship, following
the method used in [1, 7–9].

Notation

We make use of the notation ĝ(t) for
∫ t
0 g(s)ds and g∞ for limt→+∞ g(t). We see

that our analysis results guarantee that if g(t) is a positive decreasing function then
g∞ = 0.

Since Ṡ1 + Ė1 = −(κ + α)E1 ≤ 0, then E∞
1 = 0 and since Ṡ1 + Ė1 + I1 =

−αE1 − γ I1 ≤ 0 then I∞
1 = 0. If we now consider that Ṡ1 + Ė1 + I1 + D1 =

−αE1 − (1 − fdead)γ I1 − νD1 ≤ 0 then it follows that D∞
1 = 0. Similarly, it can

be shown that
E∞
2 = I∞

2 = D∞
2 = 0.

Focusing on the first two equations of System (3), we arrive at

S∞
1 − N1 = −(κ + α)Ê1.

Consequently, since İ1 = kE1 − γ I1, we have that I∞
1 = κÊ1 − γ Î1 and therefore

κÊ1 = γ Î .

Using the equation for Ḋ1, we find that

ν D̂1 = fdeadγ Î1.

Similarly, we can deduce the analogous relationships for Patch 2, namely that,

S∞
2 − N2 = −(κ + α)Ê2, κÊ2 = γ Î and ν D̂2 = fdeadγ Î2
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From the equation for susceptible populations in Patch 1, we have that

Ṡ1
S1

= −β1 p11

(
p11

I1
N1

+ p21
I2
N2

)
− β2 p12

(
p12

I1
N1

+ p22
I2
N2

)
− ε1β1 p11

D1

N1

and, therefore that,

log
S01
S∞
1

= β1 p11

(
p11

Î1
N1

+ p21
Î2
N2

)
+ β2 p12

(
p12

Î1
N1

+ p22
Î2
N2

)
+ ε1β1 p11

D̂1

N1
.

For the second patch, we have that

log
S02
S∞
2

= β1 p21

(
p11

Î1
N1

+ p21
Î2
N2

)
+ β2 p22

(
p12

Î1
N1

+ p22
Î2
N2

)
+ ε2β2 p22

D̂2

N2
.

Rewriting the expressions of Îi and D̂i in terms of S∞
i , S0i , E

0
i and I 0i , we arrive at

the following two-patch “approximate” (since we are counting the dead), the final
size relation. More precisely, with N 0 = N , we have that

log
N1

S∞
1

= β1 p11

(
p11κ

γ(κ + α)

(
1 − S∞

1

N1

)
+ p21κ

γ(κ + α)

(
1 − S∞

2

N2

))

+ β2 p12

(
p12κ

γ(κ + α)

(
1 − S∞

1

N1

)
+ p22κ

γ(κ + α)

(
1 − S∞

2

N2

))

+ ε1β1 p11
fdead
ν

κ

α + κ

(
1 − S∞

1

N1

)

log
N2

S∞
2

= β1 p21

(
p11κ

γ(κ + α)

(
1 − S∞

1

N1

)
+ p21κ

γ(κ + α)

(
1 − S∞

2

N2

))

+ β2 p22

(
p12κ

γ(κ + α)

(
1 − S∞

1

N1

)
+ p22κ

γ(κ + α)

(
1 − S∞

2

N2

))

+ ε2β2 p22
fdead
ν

κ

α + κ

(
1 − S∞

2

N2

)

Or in vectorial notation, we have that
⎡
⎢⎢⎢⎣

log
N1

S∞
1

log
N2

S∞
2

⎤
⎥⎥⎥⎦ =

⎡
⎣
K11 K12

K21 K22

⎤
⎦

⎡
⎢⎢⎢⎣

1 − S∞
1

N1

1 − S∞
2

N2

⎤
⎥⎥⎥⎦ (4)
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where

K11 =
(

β1 p211 + β2 p212
γ

+ fdeathε1β1 p11
ν

)
κ

κ + α
.

Furthermore, we note that K11 = A1 also appears in the next generation matrix, used
to compute R. Further, we also have that,

K12 = K21 = (β1 p11 p21 + β2 p12 p22)
κ

γ(κ + α)
,

K22 =
(

β1 p221 + β2 p222
γ

+ ε2β2 p22
fdead
ν

)
κ

α + κ

Note that the vector in (4) is given by

⎡
⎢⎣
1 − S∞

1
N1

1 − S∞
2
N2

⎤
⎥⎦

representing the proportion of people in patches one and two able to transmit Ebola in-
cluding transmission fromhandlingdeadbodies. K 2

12 = K12K21 = A2A3, K22 = A4,
we conclude that the matrix K and the next generation matrix have the same eigen-
values, a result also found in [4].

5 Simulations

The basic model parameters used in the simulations are taken directly from the liter-
ature [11, 14, 24, 26, 33]. We consider two patches and, for simplicity, it is assumed
that they house the same number of individuals, namely, N1 = N2 = 1000000. How-
ever, implicitly, it is assumed that the density is considerably higher in the high risk
area. We assume that an outbreak starts in the high risk Patch 1 with β1 = 0.3056.
It propagates into Patch 2, low risk, defined by β2 = 0.1. The difference between β1

and β2 or β1 − β2 provides a rough measure of the capacity to transmit, treat and
control Ebola within connected two-patch systems. The initial conditions are set as
S1(0)= N − 1, S2(0)= N , E1,2(0)= 0, D1,2(0)= 0, R1,2(0)= 0, I1 = 1, I2 = 0.
The local basic reproductive numbers for each patch under isolation areR1

0 = 2.41 >

1 and R2
0 = 1.08 > 1.

We chose to report on three different mobility scenarios: one way movement,
symmetric and asymmetric mobility. For the first case, only residents from Patch 1
travel, that is p12 ≥ 0 and p21 = 0. Given that Patch 1 is facing an epidemic, it is
reasonable to assume that people in Patch 2 prefer to avoid traveling to Patch 1, and
so, it is reasonable to assume that p21 = 0. Mobility is allowed in both directions
in a symmetric way, that is, residents of Patch 1 spend the same proportion of time
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in Patch 2 that individuals from Patch 2 spend in Patch 1; i.e. p21 = p12. The third
scenario assumes that mobility is asymmetric, and so, we make use, in this case, of
the relation p21 = 1 − p12.

5.1 One Way Mobility

Simulations show that when only individuals from Patch 1 are allowed to travel, the
prevalence and final size are lower that under a cordon sanitaire. Figure3, shows the
levels of Patch prevalence when p12 = 0, 20, 40 and 60%. For low p12’s, prevalence
decreases in Patch 1 but remains high in both patches, which as expected, has a direct
impact in the final size of the outbreak.

In Fig. 4, simulations show that the total final size is only greater than the cor-
doned case when p12 = 20%, possibly the result of the assumption that γ1 = γ2
and ν1 = ν2. However, we see under the assumption of higher body disposal rates
in Patch 2, that the total final size under p12 = 20% may turn out to be smaller than
in the cordoned case. That is, it is conceivable that a safer Patch 2, may emerge as a
result of a better health care infrastructure and efficient protocols in the handling of
dead bodies.

Finally, Fig. 4 shows that mobility can produce the opposite effect; that is, reduce
the total final epidemic size, given that (for the parameters used) the residence times
are greater than p12 = 25% but smaller than p12 = 94%.

Fig. 3 Dynamics of prevalence in each Patch for values of mobility p12 = 0, 20, 40, 60%
and p21 = 0, with parameters: ε1,2 = 1.2,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α =
0, ν = 1/2, γ = 1/6.5



136 B. Espinoza et al.

Fig. 4 Dynamics of prevalence in each Patch for values of mobility p12 = 0, 20, 40, 60% and
p21 = 0, with parameters: ε1,2 = 1,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α = 0, ν =
1/2, γ = 1/6.5

5.2 Symmetric Mobility

Simulations under symmetric mobility show that prevalence and final size are
severely affectedwhen compared to the cordoned case. Figure5 shows that the preva-
lence in Patch 1 exhibits the same behavior as in the one way scenario. However, in
this case the prevalence in Patch 1 is decreasing at a slower rate due to the secondary
infections produced by individuals traveling from Patch 2. On the other hand, preva-
lence in Patch 2 is much bigger than in the one way scenario, the result of secondary
infections generated by individuals traveling from Patch 2 to Patch 1.

We saw that final size in Patch 1 decreases when residency increases while an
increment of the final size in Patch 2. That is, the total final size curve may turn out
to be greater than in the cordoned case for almost all residence times. As seen in
Fig. 6, allowing symmetric travel would negatively affect the total final size (almost
always).

Fig. 5 Dynamics of prevalence in each Patch for values of mobility p12 = 0, 20, 40, 60%
and p21 = 0, with parameters: ε1,2 = 1.2,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α =
0, ν = 1/2, γ = 1/6.5



Assessing the Efficiency of Movement Restriction as a Control Strategy of Ebola 137

Fig. 6 Dynamics of prevalence in each Patch for values of mobility p12 = 0, 20, 40, 60%
and p21 = 0, with parameters: ε1,2 = 1.2,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α =
0, ν = 1/2, γ = 1/6.5

5.3 Final Size Analysis

In order to clarify the effects of residence times and mobility on the total final size.
We analyze its behavior under one way and symmetric mobility (Fig. 7). Figure7a
shows, one way mobility, the existence of a proportional resident time interval when
the total final size is reduced below that generated under the cordoned case. For
residence times between 25 and 94%. In particular, the best case scenario takes
place when p12 = 58%, that is, when the final size reaches its all time minimum.

Figure7b shows that under symmetric mobility, the total final size increases for
almost all resident times. Therefore traveling under these initial conditions has a
deleterious effect to the overall population for almost all residence times.

Fig. 7 Dynamics of maximum final size and maximum prevalence in Patch-one with parameters:
ε1,2 = 1.2,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α = 0, ν = 1/2, γ = 1/6.5
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5.4 Final Size and Basic Reproductive Number Analysis

It is important to notice that reductions in the total final size are related not only to
residence times and mobility type but also to the prevailing infection rates. In Fig. 8
simulations show the existence of an interval of residence times for which the total
final size is less than the final size under the cordoned case under β2 < 0.12.

Simulations (see Fig. 9) show that mobility is always beneficial, that is, it reduces
the global R0. However, mobility on its own is not enough to reduce R0 below the
threshold (less than 1). Bringing R0 < 1 would require reducing local risk, that is,
getting a lower β2.

Fig. 8 Dynamics of maximum final size in the one way case with parameters: ε1,2 = 1.2,β1 =
0.305,β2 = 0.122, 0.12, 0.118, fdeath = 0.708, k = 1/7,α = 0, ν = 1/2, γ = 1/6.5

Fig. 9 Dynamics ofR0 with parameters: ε1,2 = 1.2,β1 = 0.305,β2 = 0.06, 0.05, 0.04, fdeath =
0.708, k = 1/7,α = 0, ν = 1/2, γ = 1/6.5
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6 Conclusion

A West-Africa calibrated two-patch model of the transmission dynamics of EVD is
used to show that the use of cordons sanitaires not always leads to the best possible
global scenario and neither does allowing indiscriminate mobility. Mobility may
reduced the total epidemic size as long as the low risk Patch 2 is “safe enough”,
otherwise mobility would produce a detrimental effect. Having an infection rate
β2 < 0.12 in Patch 2 guarantees (under our simulations) the existence of non-trivial
residence times that reduce the total final size under one way mobility. The global
basic reproductive number may be brought bellow one by mobility, whenever a
the transmission rate in Patch 2 is low enough. Finally, the choice of non zero α,
that is, the recovery rate of asymptomatic that do not develop infection, bring the
reproduction number R0 below one much faster for one way mobility than the case
of α = 0 for a wide range of residence times.
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Appendix 1: Computation ofR0 and Final Epidemic Size

Let us consider the infected compartments, i.e. E, I and D. By following the next
generation approach [16, 34], we have that:

F =
⎛
⎝

βS I
N + εβS D

N
0
0

⎞
⎠ and V =

⎛
⎝

−(κ + α)E
κE − γ I

fdeadγ I − νD

⎞
⎠

thus, we have:

DF =
⎛
⎝
0 β S

N εβ S
N

0 0 0
0 0 0

⎞
⎠ and DV =

⎛
⎝

−(κ + α) 0 0
κ −γ 0
0 fdeadγ −ν

⎞
⎠ .

At the DFE, S = N , hence

F =
⎛
⎝
0 β εβ
0 0 0
0 0 0

⎞
⎠ and V =

⎛
⎝

−(κ + α) 0 0
κ −γ 0
0 fdeadγ −ν

⎞
⎠ ,

and the basic reproduction number is the spectral radius of the next generationmatrix:
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−FV−1 =
⎛
⎝

κβ
(κ+α)γ

+ εκ fdeadβ
(κ+α)ν

β
γ

+ ε fdeadβ
ν

εβ
ν

0 0 0
0 0 0

⎞
⎠ .

Thus the basic reproduction number is

R0 =
(

β

γ
+ ε fdeadβ

ν

)
κ

κ + α
,

The total population of system (1) is constant, we can consider only the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −βS I
N − εβS D

N

Ė = βS I
N + εDβS D

N − (κ + α)E

İ = κE − γ I

Ḋ = fdeadγ I − νD

(5)

We suppose S(0) = N , E(0) = I (0) = D(0) = 0. By summing the first two equa-
tions of (5),we have: Ṡ + Ė = −(κ + α)E ≤ 0. This implies that E∞ = 0. Similarly
by adding the first three and first four equations, we will have I∞ = 0 and D∞ = 0.

By integrating the first 2 equations, we have S∞ − N = −(κ + α)Ê . Hence Ê =
N − S∞

κ + α

Similarly, we have Î = κ

γ(κ + α)
(N − S∞) and D̂ = fdead

ν

κ

κ + α
(N − S∞)

By using the first equation, we have:

log
N

S∞ = β

γ

κ

κ + α

N − S∞

N
+ εβ

fdead
ν

κ

κ + α

N − S∞

N

Hence, we have the final epidemic relation:

log
N

S∞ = R0

(
1 − S∞

N

)

Appendix 2: Basic Reproduction Number and Final
Epidemic Size in Heterogeneous Risk Environments

In heterogeneous risk environments let us consider the infected compartments, i.e.
E1, I1, D1, E2, I2 and D2. By following the next generation approach, we have:
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F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
+ ε1β1 p11S1

D1
N1

0
0

β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
+ ε2β2 p22S2

D2
N2

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(κ + α)E1

κE1 − γ I1
fdeadγ I1 − νD1

−(κ + α)E2

κE2 − γ I2
fdeadγ I2 − νD2

⎞
⎟⎟⎟⎟⎟⎟⎠

Hence, we have:

DF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 β1 p211
S1
N1

+ β2 p212
S1
N1

β1 p11ε1
S1
N1

0 β1 p11 p21
S1
N2

+ β11p12 p22
S1
N2

0
0 0 0 0 0 0
0 0 0 0 0 0
0 β1 p11 p21

S2
N1

+ β1p12 p22
S2
N1

0 0 β1 p221
S2
N2

+ β2 p222
S2
N2

β2 p22ε2
S2
N2

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

DV =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(κ + α) 0 0 0 0 0
κ −γ 0 0 0 0
0 fdeathγ −ν 0 0 0
0 0 0 −(κ + α) 0 0
0 0 0 κ −γ 0
0 0 0 0 fdeathγ −ν

⎞
⎟⎟⎟⎟⎟⎟⎠

At the DFE, S∗
1 = N1 and S∗

2 = N2, hence

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 β1 p211 + β2 p212 β1 p11ε1 0 β1 p11 p21
N1
N2

+ β11p12 p22
N1
N2

0
0 0 0 0 0 0
0 0 0 0 0 0
0 β1 p11 p21

N2
N1

+ β1p12 p22
N2
N1

0 0 β1 p221 + β2 p222 β2 p22ε2
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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and

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(κ + α) 0 0 0 0 0
κ −γ 0 0 0 0
0 fdeathγ −ν 0 0 0
0 0 0 −(κ + α) 0 0
0 0 0 κ −γ 0
0 0 0 0 fdeathγ −ν

⎞
⎟⎟⎟⎟⎟⎟⎠

The basic reproduction number is the spectral radius of the next generation matrix:

−FV−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 A2
β1 p11ε1

ν
A3 A4 0

0 0 0 0 0 0
0 0 0 0 0 0
A5 A6 0 A7 A8

β2 p22ε2
ν

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

where

A1 =
(

β1 p211 + β2 p212
γ

+ fdeathε1 p11β1

ν

)
κ

κ + α
,

A2 = β1 p211 + β2 p212
γ

+ fdeathε1β1 p11
ν

,

A3 = (β1 p11 p21 + β2 p12 p22)
N1

N2

κ

γ(κ + α)
,

A4 = (β1 p11 p21 + β2 p12 p22)
N1

γN2
,

A5 = (β1 p11 p21 + β2 p12 p22)
N2

N1

κ

γ(κ + α)
=
(
N2

N1

)2

A3,

A6 = 1

γ
(β1 p11 p21 + β2 p12 p22)

N2

N1
,

A5 = (β1 p11 p21 + β2 p12 p22)
N2

N1

κ

γ(κ + α)
=
(
N2

N1

)2

A3,

A6 = 1

γ
(β1 p11 p21 + β2 p12 p22)

N2

N1
,

A7 =
(

β1 p221 + β2 p222
γ

+ fdeathε2β2 p22
ν

)
κ

κ + α
,

A8 = β1 p221 + β2 p222
γ

+ fdeathε2β2 p22
ν

.
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We can easily see that −FV−1 has the same nonzero eigenvalues as the matrix

(
A1 A3

A5 A7

)
=
(
Ã1 Ã2

Ã3 Ã4

)

R0 = 1

2

(
Ã1 + Ã4 +

√
( Ã1 + Ã4)2 − 4( Ã1 Ã4 − Ã2 Ã3)

)
κ

κ + α

= 1

2

(
Ã1 + Ã4 +

√
Ã2
1 + Ã2

4 + 2 Ã1 Ã4 − 4( Ã1 Ã4 − Ã2 Ã3)

)

= 1

2

(
Ã1 + Ã4 +

√
Ã2
1 + Ã2

4 − 2 Ã1 Ã4 + 4 Ã2 Ã3

)

More precisely, we have:

R0 = κ

2(κ + α)

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν
+ β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν

+

√√√√√√√√√√√√√√√

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν

)2

+
(

β1 p221 + β2 p222
γ

+ fdeathε2β2 p22
ν

)2

− 2

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν

)(
β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν

)

+ 4

(
β1 p11 p21

N1

γN2
+ β1 p12 p22

N1

γN2

)(
β1 p11 p21

N2

N1
+ β1 p12 p22

N2

N1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Patch Models of EVD Transmission
Dynamics

Bruce Pell, Javier Baez, Tin Phan, Daozhou Gao,
Gerardo Chowell and Yang Kuang

Abstract Mathematical models have the potential to be useful to forecast the course
of epidemics. In this chapter, a family of logistic patch models are preliminarily eval-
uated for use in disease modeling and forecasting. Here we also derive the logistic
equation in an infectious disease transmission context based on population behavior
and used it for forecasting the trajectories of the 2013–2015 Ebola epidemic in West
Africa. The logistic model is then extended to include spatial population hetero-
geneity by using multi-patch models that incorporate migration between patches and
logistic growth within each patch. Each model’s ability to forecast epidemic data
was assessed by comparing model forecasting error, parameter distributions and
parameter confidence intervals as functions of the number of data points used to cali-
brate the models. The patch models show an improvement over the logistic model in
short-term forecasting, but naturally require the estimation of more parameters from
limited data.

Keywords Logistic equation · Infectious disease forecasting ·Patchmodel ·Ebola ·
Behavior change · Bootstrap
1 Introduction

The 2013–2015 Ebola epidemic in West Africa has become the most severe Ebola
virus disease (EVD0) outbreak in history, with a case fatality rate of 70–71% and
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a hospitalized fatality rate of 57–59% [7, 23, 24]. This epidemic is significantly
different in both size and duration compared to previously reported EVD epidemics.
As of August 30, 2015, over 28,000 cases have been reported, of which over 11,000
patients have succumbed to the disease, making it the deadliest Ebola epidemic in
history [24]. This latest outbreak far surpasses the number of reported cases and
deaths from ten major previous ebola outbreaks combined with an estimated 1,531
cases and 1,002 deaths [6].

Although, EVD was first discovered in 1976, the virus had not triggered a major
regional epidemic until Dec. 2013. Standard practices to prevent the outbreak in
these countries were not as effective partly due to their poor health infrastructure,
including the lack of public health surveillance systems to rapidly detect emerging
outbreaks [11]. In addition, no licensed vaccine against EVDwas available during the
2013–2015 epidemic [1, 26]. Instead, quarantine, isolation and education programs
were used to mitigate the spread of the disease.

Measuring the effect that control interventions have on epidemics can be achieved
by measuring shifts in R0 and Re(t), the basic and effective reproduction numbers,
respectively. R0 is defined as the average number of secondary infections generated
by one infectious agent in a completely susceptible population. Nevertheless, R0

assumes the epidemic first occurs in a fully susceptible population and thus does not
account for time-dependent variations. Re(t) is defined as the actual average number
of new infections by one infectious agent in a population with both infected and
uninfected individuals at time t. Re(t) shows time-dependent variation due to the
implementation of control strategies and the decline in susceptible individuals.

Several studies have used mathematical models to quantify the effect that control
interventions and behavior changes have on managing the epidemic. In [3], Althaus,
employs an SEIR (susceptible-exposed-infectious-removed, [4]) model and the esti-
mated effective reproduction number to gain insights into the real-time intervention
effects for the 2013–2015 EVD epidemic. They suggest that the effective reproduc-
tion numbers in Guinea and Sierra Leone decreased to around unity by the end of
May and July 2014 due to sufficient control measures. However, that was not the case
in Liberia where efforts needed to be improved. In a similar spirit, Chowell et al. [8],
employed the logistic model to capture early signs of intervention and behavior
changes in the population. Furthermore, they showed that phenomenological mod-
els are useful for understanding early epidemic dynamics, specifically because of
the small number of parameters that need to be estimated. With more complexity,
Agusto et al. [2], used a mathematical model to explore the effects of traditional
belief systems and customs on the transmission process, concluding that the 2014
outbreaks may be controllable by using a moderately-effective basic public health
intervention plan.

Other studies have used mathematical models to investigate the affects of spatial
structure on disease dynamics. For instance, Valdez et al. [22], embeds a compart-
mental model into a 15-patch spatial framework (representing 15 counties of Liberia)
and shows that reducing mobility only delays the overall control of the epidemic.
Their findings suggest that safe burials and hospitalizations are key to controlling
EVD. In particular, if safe burials and hospitalizations were established in mid-July
2014, their model predicts that the epidemic would have been three months shorter
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and infected individuals would have been 80% less than if the controls were imple-
mented in mid-August. Gomes et al., employs the Global Epidemic and Mobility
Model that incorporates mobility and demographic data at a worldwide scale cou-
pled to a stochastic epidemic model [13]. They concluded that the probability of
the disease spreading outside of Africa was highly unlikely. Merler et al., employs
a spatial agent-based model to examine the effectiveness of safe burials, household
protection kits and to estimate Ebola virus transmission parameters [18]. They sug-
gest that the majority of infections occur within hospitals and households. Their
findings indicate that the decline in disease incidence is due in part by the increased
number of Ebola treatment units, safe burials and household protection kits. Using
a discrete, stochastic SEIR model that is embedded within a three-scale community
network model, Kiskowski, shows that effects from community mixing along with
stochasticity can explain the different growth rates of reported cases observed in
Sierra Leone, Liberia and Guinea [15].

Multiple studies have used mathematical models for forecasting the potential
number of future cases and estimating transmission parameters for the 2013–2015
Ebola epidemic. Meltzer et al., constructs the EbolaResponse modeling tool that
tracks patients through multiple stages of infection and categorizes patient infec-
tiousness depending on whether they are in a hospital, a low-risk community setting
or at home with no isolation [17]. The EbolaResponse model was used to estimate
how control and prevention measures could stop the epidemic and to forecast future
cases. Meltzer et al., suggest that policy makers rapidly increase the number of Ebola
treatment units. In another study by Shaman et al., a stochastic compartmental model
is coupled with the Ensemble Adjusted Kalman Filter (EAKF) to forecast state vari-
ables and parameters sixweeks into the future [21]. The EAKF adjusts the parameters
and ensemble state variables as more data becomes available. Parameter estimations
provided some evidence that the epidemic growth was slowing down in Liberia.

We present a simple approach that phenomenologically connects the effects of
behavior changes to mitigate transmission rates and population spatial structure.
Our method derives the logistic equation from an assumption about the effect of
population behavior and introduces spatial heterogeneity via logistic patch models.
In particular, we contribute the following:

• The logistic model is derived from a susceptible-infected compartmental model
in Sect. 2.1, justifying its use in [8].

• Formulas for the basic and effective reproduction numbers are presented in
Sect. 2.2.

• We build upon the work done in [8], by incorporating spatial heterogeneity via
logistic patch models.

• Models are validated by comparing their fits to total reported case data in Sect. 4.1.
• As seen in Fig. 4, we show that these models improve upon the short term fore-
casting error in Sect. 4.2. Furthermore we perform Kruskal–Wallis tests to analyze
the variation across the different models.

• Further model validation and comparison is presented in Sect. 4.3, via parameter
estimations and confidence intervals. This section shows that patch models are not
well constrained due to limited data.
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• Weprovide estimates and 95% confidence intervals ofR0 for Liberia, Sierra Leone
and Guinea respectively in Sect. 4.4.

2 Modeling Methods

2.1 Logistic Equation as an Ebola Cumulative Infections
Case Model

From a basic SI compartmental model and an assumption about population behavior
we can derive the logistic equation. Assuming there are no births, natural deaths or
immigration of susceptible individuals and that infected individuals do not return
to the susceptible class, the classical Kermack and McKendrick infectious disease
model can be adapted to obtain the following:

S(t)′ = − βS(t)I(t)

S(t) + I(t)
,

I(t)′ = βS(t)I(t)

S(t) + I(t)
− μI(t),

(1)

where β is the infection rate andμ is the disease induced death rate. From system (1)
the cumulative number of infections at time t, denoted by x(t), has derivative x′(t) =
β SI

S+I ≈ βI , (assuming S
S+I ≈ 1). Below we assume that x′(t) = βI .

As an increasing number of cases are reported during an outbreak, the behavior of
the individuals in the affected region may change due to disease education programs,
an increase in care or quarantine facilities and help from health care workers.

As an example, dead bodies infected with Ebola virus remain infectious, caus-
ing participants to unknowingly contract the infection during funeral burials. In the
beginning stage of the outbreak, unsuspecting mourners would carry the infection
back to other parts of the community and would infect more individuals. By having
specific handling guidelines of human remains, communities were able to decrease
exposure to the Ebola virus [27]. In general, this is the notion of a positive behavioral
change in the community. Based on these observations we make what we call the
behavior assumption:

• (Behavior assumption): During an epidemic, a change in behavior in the commu-
nity that mitigates the transmission rates is expected as an epidemic unfolds. This
response is modeled by a function of the total reported cases and has a decreasing
effect on per-capita infection rate. That is,

I ′(t)
I(t)

= f (x(t)) (2)

is a decreasing function of the total number of reported cases x(t).
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In the following, we assume that f (x(t)) = r(1 − ax(t)) for some positive con-
stants r := β − μ and a. Hence

I ′(t) = rI(t)(1 − ax(t)) = r

β
x′(t)(1 − ax(t)).

Therefore,

I(t) − I(0) = r

β

(
x(t) − a

2
[x(t)]2

)
− r

β

(
x(0) − a

2
[x(0)]2

)
.

Since I(0) = x(0) ≈ 0, we see that I(t) can be approximated by r
β

(
x(t) − a

2 [x(t)]2
)
.

Therefore

x′(t) = βI(t) = r
(
x(t) − a

2
[x(t)]2

)
= rx(t)

(
1 − x(t)

K

)
, (3)

Fig. 1 Predictions of the cumulative number of Ebola cases in Sierra Leone by the logistic growth
Eq. (3). Data points start on June 2, 2014 and end December 23, 2015. 95% prediction bands are
superimposed. Gray disks are data points for model calibration, while black dots are forecasting
data points
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where K = 2/a. Here we interpret r as the intrinsic infection rate, a is a proportion-
ality constant that corresponds to strength and effectiveness of disease interventions
and preventive strategies and K is the final epidemic size.

In [8], the saturation effect of the logistic equation was used to implicitly account
for the behavior change in the population. The above derivation provides a rigorous
framework of this modeling effort and emphasizes the role behavior plays in the
saturation effect. Figure1 shows the change in the 95% prediction band using the
delta method as more data points are incorporated when fitting the logistic model to
epidemic data [5].

2.2 Derivation of R0 and Re

During an outbreak, there may not be enough data to calibrate mechanistic models of
the exact transmission processes, thus the logistic model can provide useful insights
into the early outbreak dynamics. To derive R0 and Re first observe that,

I(t + T) = Re (t) I (t) , (4)

whereT is themean generation interval and is defined as the time between infection in
an index case patient and infection in a patient infected by that index case patient [23].
FromEq. (2), we have that I ′ (t) = f (x (t)) I(t), integrating both sides from t to t + T
yields

ln (I (t + T)) − ln (I(t)) =
∫ t+T

t
f (x (s)) ds.

Solving for I(t + T) and dividing by I(t) yields I(t+T)

I(t) = e
∫ t+T
t f (x(s))ds, which from

Eq. (4) yields

Re(t) = e
∫ t+T
t f (x(s))ds. (5)

Lastly, define R0 := erT which is approximately equal to the usual definition of the
basic reproduction number, β

μ
, of model 1 when β

μ
is close to 1.

2.3 Incorporating Population Heterogeneity: Multi-patch
Models

District geography, topology, health care centers and quarantined regions can influ-
ence population movement. This motivates the need for incorporating spatial struc-
ture in transmission models. We do this by partitioning a district into a network of
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two or more sub-districts (patches). In each sub-district, cumulative infections obey
logistic growth individually.

Let xi be the cumulative infections in patch i and letmij be the rate of cumulative
infections that travel from patch i to patch j, where i, j = 1, 2, i �= j.

The equations for the two-patch model are:

x′
1 = r1x1

(
1 − x1

K1

)
− m12x1 + m21x2,

x′
2 = r2x2

(
1 − x2

K2

)
− m21x2 + m12x1.

Similarly, the three-patch model is given by:

x′
1 = r1x1

(
1 − x1

K1

)
− (m12 + m13) x1 + m21x2 + m31x3,

x′
2 = r2x2

(
1 − x2

K2

)
− (m21 + m23) x2 + m12x1 + m32x3,

x′
3 = r3x3

(
1 − x3

K3

)
− (m31 + m32) x3 + m13x1 + m23x2.

In addition, we will consider two special cases of each model: symmetric migration
(S)withmij = mji andhomogeneousmigration (H)with,mij = m for all i, j and i �= j.

Assume that ri and Ki are positive in the above models. It is easy to see that these
patch models are cooperative in nature which generate a strictly monotone semiflow.
It is shown that the positive solutions of the above models tend to a unique positive
steady state (see Lemma 3.1 in [12]).

Let x = ∑N
i=1 xi. As with the derivation of Re and R0 for the logistic model above,

define the basic reproduction number for an N-patch model as

Re(t) = exp

(
r̂
∫ t+T

t
1 − 2

K̂
x(s) ds

)
,

where r̂ =
∑N

i=1 riKi

K̂
, K̂ = ∑N

i=1 Ki are weighted averages and for simplicity we
assume T = 2 weeks, instead of 2.18 [1]. Similarly to above, we define R0 :=
Re(0) ≈ erT .

3 Comparison Methods

We use district data from the World Health Organization (WHO) patient database,
which contains weekly reported confirmed, suspected and probable infections from
Liberia, Sierra Leone and Guinea [24]. Data ranges from Mar. 1, 2014 to Aug. 5,
2015.
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Table 1 Number of parameters for each model

Logistic Two-patch
(H)

Two-patch Three-patch
(H)

Three-patch
(S)

Three-patch

Number of
parameters

2 5 6 7 9 12

Table1 lists the number of parameters of eachmodel. By studying the special cases
of the patch models we reduce the number of parameters that need to be estimated,
which constrains model fits and reduces the likelihood of over-fitting the data.

We use Matlab’s built-in function, fminsearch, to help locate optimized parame-
ter values for data fitting. fminsearch is a derivative-free method that is based on
the Nelder-Mead Simplex [16] and searches for minimums, but does not guarantee
global minimums. We are searching for a biologically reasonable parameter set that
minimizes the error between the simulations and the observed data. To this end, we
define the weighted error function:

Ew = 1

N − P

N∑
i=1

∣∣yi − ŷi
∣∣ e−0.1(tf −ti), (6)

where tf is the final date thatwe have an observation for,P is the number of parameters
and N is the number of observations. ŷi denotes the observation at time ti and yi the
value of our model at the ith observation. We make the assumption that recent data
has higher significance for forecasting future cases, as reflected by the exponential
factor. The value of 0.1 in the exponential term is used because it gave a reasonable
temporal-weight to the data points.

3.1 Ranking Models by Fitting and Forecasting Errors

To compare the models, we use absolute and relative errors that penalize models that
have more parameters. The absolute error is calculated using the following equation,

Eabs = 1√
N − P

√√√√ N∑
i=1

(
yi − ŷi

)2
(7)

and the relative error is given by,

Erel = 1√
N − P

√√√√ N∑
i=1

(
yi − ŷi
ŷi

)2

. (8)
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Since we are interested in assessing and ranking the forecasting performance of
all models, we define the forecasting error as follows:

Efcst = 1√
N − N̂ − P

√√√√ N∑
i=i∗

[
y (ti) − ŷ (ti)

]2
, (9)

where i∗ corresponds to the temporal index at which we start forecasting our models,
N is the total number of observations and N̂ is the total number of observations used
for model calibration and P is the number of parameters. If i∗ was not an integer
value, we took its floor value.

3.2 Parameters and Confidence Interval Assessment

To further compare and assess the models we compute 95% confidence intervals
for the logistic, two-patch (H) and three-patch (H) models. Only these models were
considered, because they have the least number of parameters which reduces the
likelihood of overfitting the models to data. Bootstrapping can be used as a way to
estimate standard errors of parameter estimates in statistical models. The basic idea
is to fit the model to data, find the residuals and add them to the data. Next, randomly
sample with replacement B times, where B is large and fit the model to each of these
newly created data sets to obtain B different parameter sets from the fitted model.
This allows one to obtain a distribution of the parameters without assuming anything
prior about them. For further details see [9, 10, 20].

Recall a statistical model, with y = (y1, . . . , yn) being explained by k explanatory
variables x = (x1, . . . , xk) using p parameters θ = (θ1, . . . , θp):

yi = g(xi|θ) + εi

for i = 1, . . . , n. Where g is a mathematical model such as an ordinary differential
equation model, partial differential equation model, algebraic model, etc. ε is the
error and is a random variable and y is another random variable. Let G be the partial
derivative matrix with respect to θ and the leverages, h1, . . . , hn be the diagonal
elements of the G(G†G)−1G† matrix, where † denotes matrix transpose.

The bootstrapping method is described below.

1. Fit the model to the original data with an initial parameter set, θ̂ , and for each xi,
compute the corresponding residual ε̂i = yi − ŷi for i = 1, 2, . . . n, where n is the
total number of data points and ŷi = g(xi, θ̂).

2. Correct for the potential heteroscedasticity in the residual variances by computing
themodified residuals: r̂i = ε̂i√

1−hi
and compute the centered residuals r∗

i = ε̂i −
r̂i, where hi are the leverages.

3. Sample with replacement from the n modified and centered residuals.
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Fig. 2 Illustration of the model fitting and forecasting for Conakry, the capital and largest city of
Guinea. Left column models trained on the first one-third data. Right column models trained on the
first two-thirds of data. Gray shaded region represents 95% prediction bands
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4. Generate bootstrap sample, ȳi := ŷi + r∗
j , for all i and where j is random.

5. Fit the model to these new ȳi values and obtain a new set of parameter values, θ̄ .
6. Repeat steps 3, 4 and 5 a large number of times1 of times (say 2,000). This gen-

erates 2,000 bootstrap samples and corresponding sets of parameter estimations.
7. Use the 2,000 parameter estimates to generate distributions to find confidence

intervals.

3.3 Challenges

Whenever fitting a mathematical model to time series data that ranges from small
values to very large values, deciding at what time to initiate the model can seriously
influence its forecasting ability. For example, training a model on a large set of data
that is relatively near zero except for the last couple of points will force the fitting to
be heavily biased by the large amount of initial points near zero, thus not providing
a good forecast. We remedied this by starting the models after there were no three
consecutive weeks that had no infections and by using the weighted error (Eq.6) for
fitting. This was done due to the fact that smaller outbreak waves happened before
the main wave of infections appeared.

Forecasting anongoingdisease outbreak in real-timebringsmanychallenges.New
data being available means that computer programs must be designed to process and
incorporate new data sets with ease and in a timely fashion. In our case, fitting six
models (including special cases) to forty-one data sets requires a significant amount
of computing resources.

4 Results

4.1 Data Based Model Validation

To validate the patch models for epidemic modeling, we fit all models to all data sets
and comparemodel fits and errors. To illustrate this fittingprocess, Fig. 2 showsmodel
fits of the logistic, two-patch and three-patch models with homogenous migration to
cumulative reported case data from Conakry, Guinea.

We report the means for the weighted, relative and absolute error (respectively
Eqs. 6, 7 and 8) for all 39 data sets in Table 2. Observe that the patch models show an
improvement over the logistic model when fitting the data. Additionally, we see that
the homogeneousmigrationmodels perform better than their freemigration versions.

1Results from Efron and Tibshirani [10] suggest that accurate results for confidence intervals can
be obtained from 1000 bootstrap samples. For standard errors this number is reduced to 200.



158 B. Pell et al.

Table 2 Mean error statistics

Model Weighted error Relative error Absolute

Logistic 82.2822 1.3387 102.198

2-Patch (H) 53.6764 1.1271 63.1193

2-Patch 58.6311 1.2124 72.7197

3-Patch (H) 48.709 1.1256 59.3391

3-Patch (S) 55.0951 1.1515 65.1694

3-Patch 54.215 1.1727 66.0885

In what follows, we summarize the different fitting and forecasting cases. Let
FTG be the fitting error from Eq.6 and FCST be the forecasting error from
Eq.9. We use the following convention to denote the different errors: FTG-Δ and
FCST-Δ-Ω , where Δ is the fraction of data used for fitting and Ω is the number of
weeks forecasted ahead (Table5).

Fitting errors were calculated using Eq.6 and the first one-third and the first two-
thirds of each data set. All fitting errors are provided in Table5 given in the appendix.
From Fig. 3, most of the patch models had smaller mean fitting error than the logistic
model.

Four and eight week forecasts were made after training all models to the first one-
third and first two-thirds of the data set. Figure3 shows that in all cases, the patch
models had smaller mean forecasting errors. This supports the hypothesis that mod-
eling spatial structure within the district improved forecasting error. Additionally,
all models perform better when forecasting the short-term rather than long-term epi-
demic trajectory. Forecasting error variancewas lowest with FCST-2/3-4. In contrast,
the variance was the largest with FCST-1/3-8.

Fig. 3 Mean forecasting and fitting errors. Models are along the x-axis and variance is along the
y-axis. We connect points for aesthetic purposes
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Table 3 p-values of the
Kruskal–Wallis test show
forecasting errors do not
significantly differ across
models

Case p-value

FCST-3-4 0.9806

FCST-3-8 0.9872

FCST-23-4 0.9933

FCST-23-8 0.9894

Results of Kruskal-Wallis tests were not significant for FCST-1/3-4, FCST-1/3-
8, FCST-2/3-4 and FCST-2/3-8; the mean ranks for all forecasting cases did not
significantly differ. We include the p-values (95%) in Table3 for this test.

4.2 Forecasting Error as a Function of Forecasting Points

Forecasting error for Port Loko, Guinea, Liberia and Sierra Leone was calculated
for varying amounts of forecasting points.
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Fig. 4 Relative error of forecasting points for the logistic, two and three patch models with homo-
geneous migration rate: Port Loko, Guinea, Liberia and Sierra Leone
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The forecasting error for Port Loko in Fig. 4, suggests that the patch models have
smaller forecasting errors than the logistic equation for short-term forecasts (4–70
days). Additionally, it shows erratic long-term forecasting of the patch models for
Port Loko, because they are not well constrained due to the limited data. Figure4
further shows lower short-term error for Sierra Leone and Liberia by the two-patch
model.Wenote that the three-patchmodel yielded the smallest errorwhen forecasting
ten prediction points or less (4–10 days).

4.3 Confidence Interval Assessment

Parameter confidence intervals for the logistic equation decrease in length as we
decrease the number of prediction points (Fig. 5) for Port Loko. Similar assessments
were done using data from Sierra Leone, Liberia and Guinea at the country level.
Results were similar as the Port Loko case except for Liberia, where confidence
interval lengths begin to increase when we forecast less data points. In summary, the
logistic model shows well behaved parameter values when we fit to an increasing
number of data points for three out of four data sets used.

The patch models tell a different story. The confidence intervals are larger and
show erratic behavior when forecasting a large number of points. Indeed for the
two-patch model (Fig. 6), the confidence intervals for r1 actually increase when we
are predicting a small number of data points from Port Loko. This variability is seen
to be worse in the confidence intervals for the final epidemic sizes (Ki’s) for both
two and three patch models, but they are so erratic that they cannot be shown in a
reasonable way and therefore are not included. The fact that the patch models have
more parameters allows for different parameter sets that produce a well fit curve, but
allow for large variability in the parameter sets. The same is seen in the confidence
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Fig. 5 95% CI for r and K from (3). (Bottom) Plot of the length of the CI for r and K as a function
of the number of forecasting points. District: Port Loko
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interval assessment using data from Sierra Leone, Guinea and Liberia, (not shown
here).

4.4 Implications for Liberia, Sierra Leone and Guinea: R0

From the bootstrapping method, we calculated 95% confidence intervals for R0 in
Guinea, Liberia and Sierra Leone (see Table 4).

5 Discussion

In this chapter, a family of logistic patch models were preliminarily evaluated for use
in disease modeling and forecasting. An explicit formula for the cumulative number
of infectious individuals was derived from a SI compartmental model which takes
the form of the well known logistic model. This derivation follows from the behavior
change assumption, Eq. (2). We then extended the logistic model to include spatial
population heterogeneity by using multi-patch models that incorporate migration
between patches and logistic growth within each patch. Each model’s ability to
forecast epidemic datawas assessed by comparingmodel forecasting error, parameter
distributions and parameter confidence intervals as functions of the number of data
points used to calibrate the models. The patch models show an improvement over
the logistic model in short-term forecasting, but naturally require the estimation of
more parameters from limited data.

The models were tested by fitting them to the total reported case data from 39
districts inWest Africa. In particular, themeans of theweighted, relative and absolute
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errors of the patch models are less than the logistic model’s, suggesting that spatial
structure improved the data fitting. Next, models were compared by their forecasting
capabilities in two ways: comparing forecasting error and comparing parameter con-
fidence intervals. These latter efforts were restricted to the logistic, two-patch and
three-patch models with homogeneous migration. The forecasting errors from Fig. 3
show that the patch models forecast better than the logistic model. However, Fig. 4
shows long-term forecasting variability from the patch models, because of the lim-
ited data. In contrast to these results, the Kruskal-Wallis test showed no significant
difference in the forecasting errors across the models.

The value of R0 during the outbreak in Liberia, Guinea and Sierra Leone were
estimated to be in the same range as previous studies that were based on compart-
mental models [3, 13, 14, 28]. In particular, from Table4 the estimates from the two
and three patch models for R0 are similar with Althaus et al., but our confidence
intervals are not as small [3]. This agreement further supports the reliability of the
logistic and patch models with homogeneous migration.

In reality, early in the Ebola 2013–2015 epidemic, the public’s behavior in Liberia,
Sierra Leone and Guinea did not swiftly change in a manner that mediated disease
transmission nor has there been any evidence supporting that the per-capita infection
rate decreased linearly. Actually, the public’smisunderstanding of the disease, lack of
resources and fear fostered high-risk behaviors and resulted in an increased disease
transmission in West Africa during the epidemic [19, 25]. However, health-care
workers supplied valuable public awareness programs and medical resources that
helped manage the spread. Our modeling assumptions approximate these notions
and provide immediate behavior change in the spirit of Eq. (2), but this is modeled
simultaneously everywhere in space and is one reasonwhy the logisticmodel does not
fit the datawell. The patch-models overcome this issue bymodeling behavior changes
at different times, rates and locations, but requiremore data to be constrained. Indeed,
an issue with the patch models is that the number of parameters increase quickly as
more patches are introduced.

Table 4 R0 and 95% confidence intervals for R0

Althaus [3] Team
et al. [23]

Logistic 2-Patch (H) 3-Patch (H)

Guinea 1.51
(1.50–1.52)

1.71
(1.44–2.01)

1.252 (1.249,
1.255)

1.52 (1.42,
1.92)

1.45 (1.39,
1.51)

Liberia 1.59
(1.57–1.60)

1.83
(1.72–1.94)

2.11 (2.07,
2.15)

1.45 (1.12,
1.94)

1.43 (1.06,
2.199)

Sierra Leone 2.53
(2.41–2.67)

2.02
(1.79–2.26)

2.28 (2.25,
2.32)

2.27 (2, 2.62) 2.12 (1.87,
2.26)
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Further work can be done with between-country and between-district scales. The
latter would allow for more parameter constraint, but would have to be restricted to
a small number of patches that represent a small number of neighboring districts.
The problem with incorporating all districts is that it ultimately requires a high-
dimensional patch model with many parameters on a complicated network. This
may be remedied with a partial differential equation model or by using mobility
data to constrain the migration parameters. In addition, exploring different behavior
functions would be another direction to expand this work.

Although the logistic model is phenomenological, it is capable of fitting the sig-
moid curves that usually result from plotting the cumulative reported cases of disease
outbreaks. The logistic and the patch models provide a general framework for dis-
ease modeling, because they do not model specific disease transmission processes.
Specifically, they are based on two fundamental mechanisms that influence disease
outbreaks: behavior change in the community and movement of individuals within
that community. We find that incorporating the latter mechanism decreased forecast-
ing errors with respect to the logistic model, but also require more data for model
calibration.

Acknowledgments This work is partially supported by NSF grant DMS-1518529.

Appendix

Forecast and Fitting Error Tables

See Table5.



164 B. Pell et al.

Ta
bl
e
5

Fi
tti
ng

er
ro
rs
fo
r
al
lm

od
el
s

D
is
tr
ic
t

L
og

is
tic

Tw
o-
pa
tc
h
(H

)
Tw

o-
pa
tc
h

T
hr
ee
-p
at
ch

(H
)

T
hr
ee
-p
at
ch

(S
)

T
hr
ee
-p
at
ch

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

B
O
M
I

3.
61
47

1.
19
8

1.
74
39

0.
39
96
8

2.
23

0.
49
68
3

1.
98
91

0.
43
95

3.
17
11

0.
52
02

2
3.
97

24
0.
47

54
9

B
O
N
G

1.
43
65

0.
54
44
8

1.
51
16

0.
42
22
7

1.
64
47

0.
46
93
7

1.
67
53

0.
53
51

2.
12
65

0.
49
34

7
2.
90

81
0.
58

44
3

G
B
A
R
PO

L
U

0.
71
88
1

0.
07
83
03

0.
65
92

0.
08
70
46

1.
00
1

0.
08
87

1.
11
62

0.
09
51
64

1.
14
36

0.
07
72
54

2.
52

21
0.
11

75
8

G
R
A
N
D
B
A
SS

A
1.
80
93

0.
68
23
8

1.
17
74

0.
29
88
4

1.
81
18

0.
41
69
5

1.
71
76

0.
38
73
5

2.
28
39

0.
44
52

3
3.
29

18
0.
58

29
2

G
R
A
N
D
A
PE

M
O
U
N
T

3.
33
3

0.
57
62

3.
73
19

0.
63
04
9

3.
80
35

0.
65
23
2

3.
37
11

0.
67
54
2

5.
00
92

0.
73
39

6
8.
03

73
0.
83

72
9

G
R
A
N
D
K
R
U

0.
61
51
8

0.
17
03
3

0.
80
23
1

0.
09
97
53

0.
84
57
7

0.
17
67
3

0.
64
96
1

0.
12
37
2

1.
08
54

0.
17
53

2.
35

81
0.
25

28

L
O
FA

5.
27
55

0.
36
48
6

5.
60
01

0.
26
83
3

6.
90
35

0.
36
26
3

7.
93
03

0.
34
86
2

6.
41
73

0.
27
56

2
11

.1
91

8
0.
47

29
8

M
A
R
G
IB
I

3.
42
93

0.
73
83
3

4.
41
85

0.
67
45
7

4.
33
63

0.
72
39
9

4.
54
71

0.
72
41
8

5.
61
9

0.
79
60
8

7.
72

91
0.
89

11
7

M
O
N
T
SE

R
R
A
D
O

4.
25
03

8.
34
87

4.
92
2

2.
22
96

5.
27
84

1.
88
97

5.
69
34

2.
35
07

6.
78
71

1.
5

9.
10

43
2.
42

4

N
IM

B
A

1.
21
04

0.
12
81
3

1.
35
1

0.
13
70
1

1.
45
61

0.
14
13
5

1.
57
92

0.
14
64

1.
96
73

0.
15
57

8
2.
79

93
0.
17

44
9

R
IV

E
R
G
E
E

0.
15
97
7

0.
01
38
1

0.
17
85

0.
01
55
99

0.
17
44
5

0.
01
55
13

0.
18
50
4

0.
01
43
29

0.
23
39
8

0.
01
90

05
0.
35

97
0.
01

94
46

R
IV

E
R
C
E
SS

0.
68
38
6

0.
07
78
73

0.
51
15
5

0.
09
36
33

0.
54
03
4

0.
02
73
55

1.
12
07

0.
14
03

1.
65
64

0.
10
54

6
3.
84

0.
20

52
1

SI
N
O
E

0.
71
36
1

0.
07
47
11

0.
76
26
4

0.
06
91
35

0.
92
10
5

0.
08
96
01

1.
10
15

0.
09
50
67

1.
50
29

0.
09
97
03

2.
85

64
0.
13

22
6

C
O
N
A
K
R
Y

2.
48
51

2.
27
49

2.
41
27

2.
42
8

3.
17
21

2.
44
3

3.
46
15

2.
54
74

4.
01
75

2.
61
53

7.
28

11
2.
97

71

C
O
Y
A
H

2.
94
29

3.
16
08

1.
63
38

3.
40
47

2.
00
82

2.
91
53

3.
18
34

3.
12
61

5.
21
35

3.
24
36

5.
40

88
4.
64

79

D
U
B
R
E
K
A

1.
89
75

1.
02
83

0.
84
36
8

1.
02
97

2.
58
79

0.
70
31
6

5.
21
54

1.
02
43

3.
08
84

1.
00
03

5.
76

92
1.
16

07

FA
R
A
N
A
H

2.
12
81

0.
37
70
1

2.
17
99

0.
42
64
3

2.
40
97

0.
41
30
7

3.
82
66

0.
50
51
5

5.
09
19

0.
53
02
4

25
.1
46

4
0.
24

83
9

FO
R
E
C
A
R
IA

H
1.
63
64

3.
11
11

2.
08
21

2.
82
57

2.
23
14

3.
38
16

1.
67
43

13
.7
98
7

2.
92
66

3.
40
89

5.
39

69
3.
85

71

K
A
N
K
A
N

1.
19
65

0.
14
14
3

2.
39
18

0.
15
66

1.
48
82

0.
15
61

3.
15

0.
49
16
3

3.
00
55

0.
16
25

7
3.
79

05
0.
23

45
9

K
IN

D
IA

2.
02
81

1.
13
6

1.
14
96

0.
91
48
7

1.
64
64

1.
07
1

1.
51
16

0.
38
33
4

2.
57
37

1.
05
92

5.
38

94
1.
25

42

K
IS
SI
D
O
U
G
O
U

2.
98
94

0.
40
93
9

2.
30
94

0.
47
53
7

3.
09
04

0.
53
03
7

2.
35
11

1.
16
83

5.
33
64

0.
39
52
8

21
.0
68

5
0.
77

64
4

(c
on
tin

ue
d)



Patch Models of EVD Transmission Dynamics 165

Ta
bl
e
5

(c
on
tin

ue
d)

D
is
tr
ic
t

L
og

is
tic

Tw
o-
pa
tc
h
(H

)
Tw

o-
pa
tc
h

T
hr
ee
-p
at
ch

(H
)

T
hr
ee
-p
at
ch

(S
)

T
hr
ee
-p
at
ch

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

O
ne
-t
hi
rd

Tw
o-
th
ir
ds

M
A
C
E
N
TA

0.
41
15

5.
22
17

1.
60
22

5.
58
68

1.
87
95

5.
38
56

2.
01
31

0.
62
80
5

4.
08
98

5.
98
09

6.
77

02
6.
16

07

N
Z
E
R
E
K
O
R
E

2.
55
79

0.
38
89
1

0.
44
25
7

0.
40
02
4

0.
42
03
2

0.
41
51
9

1.
02
54

5.
71
62

1.
32
83

0.
49
41
4

0.
68

87
5

0.
53

33
1

SI
G
U
IR
I

0.
44
14
1

0.
30
19
6

3.
18
56

0.
32
25
2

3.
50
61

0.
25
17
1

3.
85
16

0.
43
14

5.
01
28

0.
35
81
9

8.
86

83
0.
41

55
9

T
E
L
IM

E
L
E

0.
10
55
5

0.
55
76
1

0.
42
01
9

0.
59
3

0.
45
17

0.
62
46
9

0.
65
17
3

0.
34
47
7

0.
75
66
6

0.
67
42

1.
85

85
0.
72

79
4

B
O

5.
07
01

2.
22
53

0.
12
91
5

2.
40
11

0.
13
44
9

2.
06
31

0.
17
5

0.
61
29
8

0.
15
86
6

2.
44
55

0.
24

84
3

2.
66

33

B
O
M
B
A
L
I

8.
85
38

9.
05
96

1.
94
31

3.
21
13

1.
77
43

4.
47
6

4.
08
98

2.
23
12

5.
87
81

3.
89
64

6.
13

61
4.
92

03

K
A
IL
A
H
U
N

13
.4
44
1

2.
32
16

3.
00
16

0.
67
13
2

3.
88
11

0.
66
04
4

4.
96
54

3.
32
01

7.
84
43

2.
22
52

8.
50

21
1.
20

32

K
A
M
B
IA

3.
09
24

2.
82
05

5.
14
35

1.
69
91

3.
71
8

1.
15
92

7.
65
97

1.
01
76

11
.6
42
5

1.
49
46

13
.3
82

1.
56

34

K
E
N
E
M
A

10
.8
48
3

2.
47
77

1.
34
23

1.
22
26

2.
14
51

0.
83
16
4

3.
47
72

1.
49
73

4.
88
96

0.
85
42
2

4.
74

83
1.
03

99

K
O
IN

A
D
U
G
U

2.
18

0.
38
46
5

8.
10
16

0.
25
25
4

4.
98
44

0.
44
87
8

6.
32
07

1.
26
81

15
.0
37
3

0.
35
36

3
6.
27

45
0.
40

97
7

K
O
N
O

5.
32
72

3.
29
19

2.
75
68

3.
38
97

3.
10
07

3.
35
25

1.
72
13

0.
45
54

4.
71
25

3.
26
59

7.
53

91
3.
68

74

M
O
Y
A
M
B
A

2.
18

0.
38
46
5

6.
76
62

0.
25
25
4

6.
82
82

0.
44
87
8

7.
46
65

3.
66
81

9.
97
78

0.
35
36
3

15
.8
27

9
0.
40

97
7

PO
R
T
L
O
K
O

15
.4
46
5

15
.1
16
3

2.
75
68

2.
22
17

3.
10
07

6.
46
25

1.
72
13

0.
45
54

4.
71
25

14
.2
09
6

7.
53

91
2.
71

81

PU
JE
H
U
N

0.
22
98
5

0.
02
16
4

16
.4
26
8

0.
01
70
28

11
.3
13

0.
01
70
84

13
.1
7

3.
61
44

12
.6
91
6

0.
01
78
23

17
.2
57

0.
04

86
21

T
O
N
K
O
L
IL
I

11
.6
00
3

3.
39
44

0.
18
35
9

1.
59
8

0.
29
05
3

1.
99
64

0.
25
74

0.
01
61
34

0.
42
98
5

4.
02
86

0.
62

98
6

1.
83

15

PU
JE
H
U
N

0.
22
98
5

0.
02
16
4

7.
35
16

0.
01
70
28

4.
53
75

0.
01
70
84

4.
58
32

1.
61
87

6.
89
8

0.
01
78

23
10

.2
67

6
0.
04

86
21

W
E
ST

E
R
N
A
R
E
A

R
U
R
A
L

8.
59
67

11
.4
65
6

0.
18
35
9

3.
01
42

0.
29
05
3

5.
90
14

0.
25
74

0.
01
61
34

0.
42
98
5

7.
07
12

0.
62

98
6

4.
01

12

W
E
ST

E
R
N
A
R
E
A

U
R
B
A
N

5.
63
9

13
.5
54
4

5.
78
48

8.
67
58

6.
08
17

8.
77
1

6.
09
87

3.
10
66

7.
35
91

10
.3
35

7
8.
54

5
16

.8
17

M
od

el
s
w
er
e
tr
ai
ne
d
on

on
e-
th
ir
d
an
d
tw
o-
th
ir
ds

of
ea
ch

di
st
ri
ct
da
ta
se
t



166 B. Pell et al.

References

1. Agnandji, S.T., Huttner, A., Zinser, M.E., Njuguna, P., Dahlke, C., Fernandes, J.F., Yerly, S.,
Dayer, J.A., Kraehling, V., Kasonta, R., et al.: Phase 1 trials of rVSV Ebola vaccine in Africa
and Europe–preliminary report. N. Engl. J. Med. (2015)

2. Agusto, F.B., Teboh-Ewungkem, M.I., Gumel, A.B.: Mathematical assessment of the effect
of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks.
BMC Med. 13(1), 96 (2015)

3. Althaus, C.L.: Estimating the reproduction number of Ebola virus (EBOV) during the 2014
outbreak in West Africa. PLoS currents 6 (2014)

4. Anderson, R.M., May, R.M.: Infectious Diseases of Humans, vol. 1. Oxford University Press,
Oxford (1991)

5. Bickel, P.J., Doksum, K.A.: Mathematical Statistics: Basic Ideas and Selected Topics, Volume
I, vol. 117. CRC Press, Boca Raton (2015)

6. Center for Disease Control: Outbreaks Chronology: Ebola Virus Disease. Website (2015).
http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html

7. Chowell, G., Nishiura, H.: Transmission dynamics and control of Ebola virus disease (EVD):
a review. BMC Med. 12(1), 196 (2014)

8. Chowell, G., Simonsen, L., Viboud, C., Kuang, Y.: Is West Africa approaching a catastrophic
phase or is the 2014 Ebola epidemic slowing down? Different models yield different answers
for Liberia. PLoS currents 6 (2014)

9. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application, vol. 1. Cambridge
university press, Cambridge (1997)

10. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC press, Boca Raton (1994)
11. Frieden, T.R., Damon, I., Bell, B.P., Kenyon, T., Nichol, S.: Ebola 2014 – new challenges, new

global response and responsibility. N. Engl. J. Med. 371(13), 1177–1180 (2014)
12. Gao, D., Ruan, S.: A multipatch malaria model with logistic growth populations. SIAM J.

Appl. Math. 72(3), 819–841 (2012)
13. Gomes, M.F., y Piontti, A.P., Rossi, L., Chao, D., Longini, I., Halloran, M.E., Vespignani,

A.: Assessing the international spreading risk associated with the 2014 West African Ebola
outbreak. PLOS Curr. Outbreaks 1 (2014)

14. Khan, A., Naveed, M., Dur-e Ahmad, M., Imran, M.: Estimating the basic reproductive ratio
for the Ebola outbreak in Liberia and Sierra Leone. Infect. Dis. Poverty 4(1), 13 (2015)

15. Kiskowski, M.A.: A three-scale network model for the early growth dynamics of 2014 West
Africa Ebola epidemic. PLoS Curr. 6 (2014)

16. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-
Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

17. Meltzer, M.I., Atkins, C.Y., Santibanez, S., Knust, B., Petersen, B.W., Ervin, E.D., Nichol,
S.T., Damon, I.K., Washington, M.L.: Estimating the future number of cases in the Ebola
epidemic–Liberia and Sierra Leone, 2014–2015. MMWR Surveill Summ 63(suppl 3), 1–14
(2014)

18. Merler, S., Ajelli, M., Fumanelli, L., Gomes, M.F., y Piontti, A.P., Rossi, L., Chao, D.L.,
Longini, I.M., Halloran, M.E., Vespignani, A.: Spatiotemporal spread of the 2014 outbreak
of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a
computational modelling analysis. Lancet Infect. Dis. 15(2), 204–211 (2015)

19. Nielsen, C.F., Kidd, S., Sillah, A., Davis, E., Mermin, J., Kilmarx, P.H.: Improving burial
practices and cemetery management during an ebola virus disease epidemic-Sierra Leone,
2014. MMWR Surveill Summ 64, 1–8 (2015)

20. Pardoe, I., Weisberg, S.: An Introduction to bootstrap methods using Arc. Unpublished Report
available at www.stat.umn.edu/arc/bootmethREV.pdf (2001)

21. Shaman, J., Yang, W., Kandula, S.: Inference and forecast of the current West African Ebola
outbreak in Guinea, Sierra Leone and Liberia. PLoS Curr. 6 (2014)

22. Valdez, L., Rêgo, H.H.A., Stanley, H., Braunstein, L.: Predicting the extinction of Ebola spread-
ing in Liberia due to mitigation strategies. Scientific Reports 5, Article no. 12172

http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html
www.stat.umn.edu/arc/bootmethREV.pdf


Patch Models of EVD Transmission Dynamics 167

23. WHO Ebola virus disease in West Africa–the first 9 months of the epidemic and forward
projections. N. Engl. J. Med. 371(16), 1481–1495 (2014)

24. World Health Organization: Ebola Response Roadmap Situation report 03-05-2015 (2015).
http://www.who.int/csr/disease/ebola/situation-reports/en/

25. World Health Organization: Ebola response: What needs to happen in 2015 (2015). http://
www.who.int/csr/disease/ebola/one-year-report/response-in-2015/en/

26. World Health Organization: Ebola vaccines, therapies, and diagnostics (2015). http://www.
who.int/medicines/emp_ebola_q_as/en

27. WorldHealthOrganization:Guidance forSafeHandlingofHumanRemains ofEbolaPatients in
U.S. Hospitals and Mortuaries (2015). http://www.cdc.gov/vhf/ebola/healthcare-us/hospitals/
handling-human-remains.html

28. Yamin, D., Gertler, S., Ndeffo-Mbah, M.L., Skrip, L.A., Fallah, M., Nyenswah, T.G., Altice,
F.L., Galvani, A.P.: Effect of Ebola progression on transmission and control in Liberia. Ann.
Intern. Med. 162(1), 11–17 (2015)

http://www.who.int/csr/disease/ebola/situation-reports/en/
http://www.who.int/csr/disease/ebola/one-year-report/response-in-2015/en/
http://www.who.int/csr/disease/ebola/one-year-report/response-in-2015/en/
http://www.who.int/medicines/emp_ebola_q_as/en
http://www.who.int/medicines/emp_ebola_q_as/en
http://www.cdc.gov/vhf/ebola/healthcare-us/hospitals/handling-human-remains.html
http://www.cdc.gov/vhf/ebola/healthcare-us/hospitals/handling-human-remains.html


From Bee Species Aggregation to Models
of Disease Avoidance: The Ben-Hur effect

K.E. Yong, E. Díaz Herrera and C. Castillo-Chavez

Abstract ThemovieBen-Hur highlights the dynamics of contagion associated with
leprosy, a pattern of forced aggregation driven by the emergence of symptoms and
the fear of contagion. The 2014 Ebola outbreaks reaffirmed the dynamics of redis-
tribution among symptomatic and asymptomatic or non-infected individuals as a
way to avoid contagion. In this manuscript, we explore the establishment of clusters
of infection via density-dependence avoidance (diffusive instability). We illustrate
this possibility in two ways: using a phenomenological driven model where disease
incidence is assumed to be a decreasing function of the size of the symptomatic pop-
ulation and with a model that accounts for the deliberate movement of individuals
in response to a gradient of symptomatic infectious individuals. The results in this
manuscript are preliminary but indicative of the role that behavior, here modeled
in crude simplistic ways, may have on disease dynamics, particularly on the spatial
redistribution of epidemiological classes.
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1 Introduction

The effect that aggregation of susceptible and infected populations of individuals
has on the basic reproduction number, R0, and the final size has been studied by
various researchers (see [1–3, 6, 7, 16, 25]). The effect of aggregation on R0 and
the final outbreak size is not necessarily the same as a small core group with a high
activity level can substantially contribute toR0 while having little impact on the final
outbreak size [15].O.Diekmann et al. [14] showed that aggregationof susceptible and
infective individuals reduces the number of groups required to capture the dynamics
of a large system provided that one assumes identical levels of infectivity for all
groups. These researchers also observed that increased levels of aggregation may
lead to lower values ofR0 [7, 14].

Spatial transmission of diseases has been studied by various researchers
[21, 26, 27, 31, 38], often using reaction diffusion equations (see [5, 8, 10, 11, 24,
28, 37, 40]). In this paper, two novel reaction-diffusion models are introduced that
model the spread of a communicable diseasewhen the presence of symptoms reduces
contacts among all types and, in the process, ameliorates disease spread (Model (1)).
We also examine the impact that the movement of individuals, in response to gradi-
ents of symptomatic infectious individualsmodeled via cross-diffusion (Model (18)),
has on disease dynamics. This paper is organized as follows: Sect. 2 introduces a phe-
nomenologicalmodel and identifies conditions for clustering via diffusive instability;
Sect. 3 examines the role of cross-diffusion on epidemiological spatial aggregation;
Sect. 4 collects thoughts and conclusions.

2 Phenomenological Model

Epidemics are capable of generating shifts on population level interactions possibly
as a function of the presence of growing levels of severe infection as reflected by
the impact of symptomatic populations [9, 17, 18] on the contacts between individ-
uals and survival. A simple epidemiological model that accounts for reductions in
transmission as the size of the symptomatic population increases is described below
motivated by observed disease patterns in leprosy [4, 33, 34], Ebola [12, 22, 30, 39],
and influenza [32]. We let S(x, y, t) denote the susceptible population at time t and
position (x, y), and divide the infected population in two groups, a group that exhibits
symptoms and a group that does not, the “asymptomatic” infectious group. Specifi-
cally, we let I1(x, y, t) denote the symptomless infectious population, assumed to be
infectious, and let I2(x, y, t) denote the infected population with visible symptoms.
The incidence term in a susceptible-infectious-susceptible (SIS) type model is mod-
ified by the addition of spatial diffusion to each class under the assumption that the
symptomatic class, that is, I2-members are in principle, to be avoided. The model
equations are given by the following phenomenologically derived reaction-diffusion
epidemiological model:
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∂S
∂t = − β

1+I2
SI1 + α I2 + DS∇2S,

∂ I1
∂t = β

1+I2
SI1 − δ I1 + DI1∇2 I,

∂ I2
∂t = δ I1 − α I2 + DI2∇2 I2,

(1)

where ∇2 = Δ = ∂2/∂x2 + ∂2/∂y2, the Laplace operator. Setting I2 = 0 leads to
the “standard” SI S system with diffusion [21]. The incidence term gets altered by
assuming that all contacts decrease with the size of the I2-population, that is, the
incidence is modeled as follows:

β

1 + I2
SI1. (2)

The question posed in [13] is whether or not System (1) can support non-uniform
distributions via diffusive instability. The assumption of constant population size
implies, without loss of generality, that we can take S ≡ 1 − I1 − I2, a substitution
that allows us to focus on the equations for I1 and I2. We observe that System (1)
supports the following positive steady states in the absence of diffusion (DS = DI1 =
DI2 = 0):

(I ∗
1 , I ∗

2 ) =
(

α(β − δ)

βα + βδ + δ2
,

δ(β − δ)

βα + βδ + δ2

)
,

from where we identify the basic reproductive number as

R0 = β

δ
.

The effects of small perturbations of the (I ∗
1 , I ∗

2 )-equilibrium are introduced via the
following variables:

�i (x, y, t) = Ii (x, y, t) − I ∗
i , i = 1, 2. (3)

Substituting (3) into the last two equations of System (1) leads, after ignoring higher
order terms, to the following linearized system

∂�1

∂t
=J11�1 + J12�2 + DI1∇2�1,

∂�2

∂t
=J21�1 + J22�2 + DI2∇2�2,

(4)

where the matrix (Ji j ) is the Jacobian of System (1) in the absence of diffusion
evaluated at the equilibrium (I ∗

1 , I ∗
2 ), namely

J = (Ji j ) =
(

α(δ−β)

α+2δ
α(α2−β2)

β(α+2δ)

δ −α

)
. (5)
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The three conditions that guarantee diffusive instability [35] are given by the
following inequalities:

J11 + J22 < 0, (6)

J11 J22 − J12 J21 > 0, (7)

J11DI2 + J22DI1 > 2
√
DI1DI2(J11 J22 − J12 J21). (8)

Condition (6) always holds, since

J11 + J22 = −α

(
δ + β + α

α + 2δ

)
< 0.

Condition (7) is satisfied provided that

J11 J22 − J12 J21 = βα2(β − δ) + δα(α2 − β2)

β(α + 2δ)

is positive, which is true as long as

β2(α + β) > αδ(β + α),

or, equivalently as long as R0 = β

δ
> 1 and β

α
> 1. Now, we make use of the fact

that Condition (8) is equivalent to the inequality

J11 J22 − J12 J21 − 1

4DI1DI2

(
J11DI2 + J22DI1

)2
< 0. (9)

After substituting the corresponding values from Eq. (5) we see that whenever the
following inequality

2DI1DI2
α + 2δ

αβ

[
β2(α + 2δ) − αδ(β + 2α)

] − D2
I1(δ − β) − D2

I2(α + 2δ)2 < 0,

(10)
is satisfied, Condition (9) is satisfied. Using R0 > 1 leads to

δ

β
(β + 2α) < β + 2δ; (11)

while α < β leads to

− β

α
(α + 2δ) < −(α + 2δ). (12)

The addition of Conditions (11) and (12) leads to the inequality

δ

β
(β + 2α) − β

α
(α + 2δ) < β − α. (13)
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Thus, we conclude that Condition (8) (Inequality (10)) holds as long as

R0 = β

δ
> 1 and

β

α
> 1 (14)

The main conclusion of this section can be stated as follows:

Theorem 1 The linear System (4) satisfies necessary and sufficient conditions for
diffusive instability wheneverR0 > 1 and β

α
> 1. In other words, diffusive instabil-

ity takes place when the endemic state exists (R0 > 1) and I2 individuals are not
infectious for too long.

The steady state non-uniform distribution of infected individuals (symptomatic and
asymptomatic) loses stability due small perturbations of the form

�i (x, t) = αi cos(qx)e
σ t , i = 1, 2. (15)

The present analysis works as long as the perturbations are sufficiently small to make
the linear approximation (Model (4)) a valid representation of the truly nonlinear
representation of Model (1). When the perturbations have been amplified beyond
a small size, the analysis is no longer adequate. As a result of the above analysis,
we expect that an initial spatially distributed population, will begin to “break up”
and aggregate according to the presence or absence of symptoms. See Figs. 1, 2
and 3 generated via the simulations carried out under Condition (14). We see that
aggregation occurs faster if the difference in diffusion rates is large for both the linear
Model (4) (see Figs. 1 and 2) and nonlinear Model (1) (see Fig. 3).

3 Cross-Diffusion Models

The dynamics of solitary and honey bees and their role in enhancing cross-pollination
in California almond tree farms was studied via a cross-diffusion model in [41]. The
model for the interaction of honey bees, u1(x, y, t), and solitary bees, u2(x, y, t) at
time t and position (x, y) ∈ Ω , proposed in [41], is given by the system:

∂

∂t
ui = ∇2 (αi + βi1u1 + βi2u2) ui + γi∇ · (ui∇W ) in Ω × (0, T ),

ui (x, y, 0) = ξi (x, y) on Ω × {t = 0},
∂ui
∂ν

= 0 on ∂Ω × (0, T ),

(16)

where αi ≥ 0 represents the intrinsic diffusion, βi j ≥ 0 represents the self-diffusion
for i = j and cross-diffusion for i �= j , W = W (x, y, t) represents the environ-
mental potential, and γi ∈ R is the coefficient associated with W . The dynamics of
avoidance between honey and solitary beeswas captured by the addition of cross- and
self-diffusion terms to the model in [36]. Numerical simulations were used to show
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Fig. 1 Spatial aggregation for Model (4) occurs quickly when the difference between diffusion
rates is large. (DI1 = 10 and DI2 = 80. α = 0.05, β = 0.13 and δ = 1.3, chosen so that Condition
(14) is satisfied)

that cross-diffusion was indeed capable of capturing the observed spatial aggregation
of individuals by species. The resulting spatial aggregating of bees by species, as a
result of a strong cross-diffusion (β12), is illustrated in Fig. 4. This figure shows that
in areas of high solitary bee density (u2) result in low honey bee density (u1) and in
areas of low solitary bee densities result in honey bees aggregating in high densities.

The use of cross-diffusion to model spatially explicit epidemics has been studied
in the past (see [24, 28, 37, 40]). Most recently, the role of density-dependent cross-
diffusion in epidemiology has been explored numerically by Berres and Ruiz-Baier
[5] via the model

∂S

∂t
= r S

(
1 − S

K

)
− β

SI

S + I
+ DS∇2S + c∇ · (S∇ I )

∂ I

∂t
= β

SI

S + I
− γ I + DI∇2 I (17)
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Fig. 2 Spatial aggregation forModel (4) occurs slowly when the difference between diffusion rates
is small. (DI1 = 10 and DI2 = 20. α = 0.05, β = 0.13 and δ = 1.3, chosen so that (14) is satisfied)
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aggregation occurs faster than when the difference between diffusion rates is small (right). Not
linear model, we use the same parameters from model (4), except for a bigger β (α = 0.05, β = 1
and δ = 1.3, chosen so that (14) is satisfied)
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Fig. 4 The effects of a high cross-diffusion effect of solitary bees on honey bees (α1 = α2 = β11 =
β21 = β22 = 1, γ1 = γ2 = 5,β12 = 10).Honey bees (u1) are in lowdensities in areaswhere solitary
bees (u2) are in high densities and honey bees are found in high densities in areas where solitary
bees are in low densities, thus demonstrating the avoidance effects of cross-diffusion [41]

where K is the carrying capacity, r is the intrinsic birth rate, β is the transmission
rate, γ is the recovery rate, DS and DI are the susceptible and infective diffusion
coefficients, respectively, and c is the cross-diffusion coefficient.

Following the approach in [41], the role of density-dependent cross-diffusion in
the aggregation of individuals according to epidemiological states during a nefarious
disease outbreak is carried out below.We expand on the type of cross-diffusionmodel
in [6] via the use only of a population of S-individuals (susceptible) and I -individuals
(infectives), that is, symptomatic infectious individuals. The model below assumes
that symptoms generate avoidance.

3.1 SI Model with Diffusion

Let the densities for populations susceptible to a disease and infective with a disease,
at time t and position (x, y) ∈ Ω be S(x, y, t) and I (x, y, t), respectively. We use
the following SI epidemiological system

∂S

∂t
= r Sα1

(
1 − Sα1

K

)
− β

SI

(S + I )α2
+ DS∇2S + c∇ · (S∇ I )

∂ I

∂t
= β

SI

(S + I )α2
− γ I + DI∇2 I.

(18)

Finally, it is further assumed that we have a closed system involving no external
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input; thus the use of Neumann boundary conditions

∂

∂ν
S = ∂

∂ν
I = 0, (19)

is acceptable. The initial conditions are as follows

S(x, y, 0) = S0(x, y) and I (x, y, 0) = I0(x, y). (20)

Whenever DS and DI are the dominant coefficients, System (18) reduces essen-
tially to the heat equation, which under Neumann boundary conditions will go to the
average of the initial data as t → ∞ [29].

3.2 Effects of Recruitment

Next we examine System (18) with α2 = 1, that is, we focus on the study of the
effects of recruitment. When α1 = 1, logistic recruitment, System (18) reduces to
System (17).

Lemma 1 System (17) will support Turing’s diffusive instability if

R0 := β

γ
<

r

γ
+ 1, (21)

Z := −DS
(β − γ )

R0
− DIr + DIβ − DI

γ

R0
− (β − γ )2

β
c
K (r − (β − γ ))

r
> 0,

(22)
and

Z2 ≥ DSDIγ (β − γ )(r − β + γ ). (23)

Proof To show Turing’s diffusive instability, we first examine System (17) without
diffusion terms (DS = DI = c = 0). The corresponding endemic equilibrium point
is

(S∗, I ∗) =
(
K (r − β + γ )

r
,
K (r − β + γ )(β − γ )

rγ

)
, (24)

the basic reproduction number is

R0 = β

γ
, (25)

and the Jacobian of System (17) without diffusion evaluated at the endemic equilib-
rium is
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J =
(

−r + β − γ 2

β
− γ 2

β
(β−γ )2

β
− γ (β−γ )

β

)
. (26)

By [23, 42], Turing’s diffusive instability occurs if the following four conditions are
satisfied

trJ = J11 + J22 < 0 (27)

det J = J11 J22 − J12 J21 > 0 (28)

det D̂ = D̂11 D̂22 − D̂12 D̂21 > 0 (29)

(D̂11 − D̂22)
2 + 4D̂12 D̂21 ≥ 0 (30)

D̂11 J22 + D̂22 J11 − D̂12 J21 − D̂21 J12 > 0 (31)

(D̂11 J22 + D̂22 J11 − D̂12 J21 − D̂21 J12)
2 − 4 det D̂ det J ≥ 0 (32)

where the diffusion matrix is given by

D̂ =
(
D̂11 D̂12

D̂21 D̂22

)
=

(
DS c K (r−(β−γ ))

r
0 DI

)
.

Notice that in the absence of cross-diffusion, D12 = D21 = 0, Conditions (27), (28),
and (32) become Conditions (6)–(8) from Model (1).

Conditions (27) and (28) hold if

β < r + γ, (33)

which is equivalent to

R0 <
r

γ
+ 1. (34)

thus we must have that
1 < R0 <

r

γ
+ 1. (35)

It can be shown that Conditions (29) and (30) hold if DS, DI �= 0, while Condition
(31) holds if

Z := −DS
(β − γ )

R0
− DIr + DIβ − DI

γ

R0
− (β − γ )2

β
c
K (r − (β − γ ))

r
> 0

(36)
and Condition (32) holds if

Z2 ≥ DSDIγ (β − γ )(r − β + γ ) (37)

�
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When α1 = 0, constant recruitment, System (18) becomes

∂S

∂t
= Λ − β

SI

S + I
+ DS∇2S + c∇ · (S∇ I )

∂ I

∂t
= β

SI

S + I
− γ I + DI∇2 I

(38)

where Λ = r
(
1 − 1

K

)
.

Lemma 2 Model (38) does not support Turing’s diffusive instability.

Proof The endemic equilibrium is

(S∗, I ∗) =
(

Λ

β − γ
,
Λ

γ

)
. (39)

The basic reproductive number is

R0 = β

γ
. (40)

and we assume β > γ so that R0 > 1.
The Jacobian is

J =
(

− (β−γ )2

β
− γ 2

β
(β−γ )2

β
− γ (β−γ )

β

)
, (41)

and the diffusion matrix is

D̂ =
(
DS c Λ

β−γ

0 DI

)
.

Note that Condition (31) fails due to the assumption that β > γ , and thus from
[23, 42] we know that Turing diffusive instability is not possible. �

In short, logistic recruitment seems critical for supporting Turing’s diffusive insta-
bility in the proposed cross-diffusion model.

3.3 Effects of Incidence Functions

The literature has often focused on modeling epidemics using the so called “mass-
action” law (α2 = 0) or “standard” incidence (α2 = 1). In this section, we explore
the role of this assumption in support of diffusive instability in our setting.
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When α2 = 0, the mass action law comes into play and System (18) becomes

∂S

∂t
= r S

(
1 − S

K

)
− βSI + DS∇2S + c∇ · (S∇ I )

∂ I

∂t
= βSI − γ I + DI∇2 I

(42)

Lemma 3 System (42) will not support Turing’s diffusive instability.

Proof The endemic equilibrium is

(S∗, I ∗) =
(

γ

β
,
r(Kβ − γ )

Kβ2

)
, (43)

where the basic reproductive number is

R0 = βK

γ
. (44)

The Jacobian evaluated at the endemic equilibrium is

J =
( − r

R0
−γ

r
(
1 − 1

R0

)
0

)
. (45)

The diffusion matrix is

D̂ =
(
DS c γ

β

0 DI

)
.

Notice that Condition (31) fails if R0 > 1 is imposed. Thus (42) will not result in
Turing’s diffusive instability. �
The case α2 = 1, standard incidence, corresponds to the case when System (18)
becomes System (17), and so, Turing’s diffusive instability is possible. The use of
standard incidence seems critical to the support of Turing’s diffusive instability in
our setting.

3.4 Necessary and Sufficient Conditions

Theorem 2 For a density dependent cross-diffusion SI model of the form System
(18), logistic recruitment and standard incidence functions are necessary for Turing’s
diffusive instability.

Proof The proof is a direct result of the preceding lemmas. �
See Fig. 5 for simulations for Model (17) carried out under Conditions (21)–(23).
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Fig. 5 The distribution for Model (18) under constant recruitment (α1 = 0) and mass action
incidence function (α2 = 0) under the conditions DS = 0.1, DI = 2, c = 0.02, r = 0.4, K =
100, β = 0.5, chosen so that Conditions (21)–(23) are satisfied for t = 0 (top), t = 500 (bottom). As
time increases the distributions of both susceptible and infective populations have a homogeneous
distribution, with no patches

4 Discussion and Conclusion

We have proposed two models: a phenomenological model that examined the effects
of an “unusual” incidence function and a cross-diffusion model. Model (1) can be
applied to the studyof sexually transmitted diseases such as chlamydia andgonorrhea
as well as to communicable diseases like leprosy or possibly Ebola. In all three
examples some form of social distancing is assumed to be generated in response to
the presence of symptoms. Model (1) predicts that changes in behavior will result in
spatial aggregation (via diffusive instability) and that such natural responses help, in
fact, to reduce the population’s levels of infection.

An SI model with density dependent cross-diffusion, where susceptible individ-
uals avoid increasing gradients of infective individuals is also considered. Indeed
if the sign of the diffusion coefficient is negated, individuals would be attracted to
increasing gradients of infective populations, as shown in the Keller–Segel model
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[19, 20], rather than repelled from infective populations. Using Model (18) as a
starting point, we examine the effects of the choice of recruitment and incidence
functions and conclude that a logistic recruitment and standard incidence functions
are necessary to have pattern formations, Turing’s diffusive instability. Mass action
incidence function, a popular choice, does not result in diffusive instability.

Appendix: Derivation of the SI Model with Diffusion

As a starting point, let the densities for populations susceptible to a disease and
infectivewith a disease, at time t and position (x, y) ∈ Ω be S(x, y, t) and I (x, y, t),
respectively.We assume the model takes the form of the following reaction-diffusion
model

∂S

∂t
= −∇ · J1 + f1(S, I ) in Ω × (0, T ),

∂ I

∂t
= −∇ · J2 + f2(S, I ) in Ω × (0, T ),

(46)

where f1, f2 and J1, J2 are the reaction andflux terms for the susceptible and infective
populations, respectively. The reaction terms are modeled as follows:

f1(S, I ) = r Sα1

(
1 − Sα1

K

)
− β

SI

(S + I )α2
, f2(S, I ) = β

SI

(S + I )α2
− γ I,

where K is the carrying capacity, r is the intrinsic birth rate, β is the transmis-
sion rate, γ is the recovery rate, α1 ∈ {0, 1}, α2 ∈ {0, 1}; α1 = 1 corresponding to
logistic growth and α1 = 0 to constant recruitment; α2 = 0 accounts for mass-action
transmission while α2 = 1 models standard incidence.

It is assumed that each population is influenced by increasing gradients of infec-
tious individuals that result in the “directional”s dispersive migrations of each pop-
ulation towards its own type. Let DS and DI be the intrinsic-diffusion constants of
the susceptible and infective populations, respectively, then the intrinsic dispersal
forces of S and I in the flux are given by the gradient of the densities, DS∇S, DI∇ I ,
respectively [28]. The assumption that DS, DI ≥ 0 means that the dispersal is in
directions away from high densities, the last assumption justified by the tendency
of susceptible to avoid increasing gradient populations of symptomatic infectious
individuals, that is, it is assumed that they tend to move towards decreasing gradients
of symptomatic individuals. The cross-diffusion coefficient measuring the impact
of the infective population on the susceptible population is denoted by the constant
c ≥ 0. Therefore, the cross-diffusion force of infective on susceptible populations in
the flux is given by cS∇ I . We further assume that there are no other cross-diffusion
forces. Thus the flux for S and I are modeled as
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J1 = −DS∇S − cS∇ I

J2 = −DI∇ I,

which takes the form of the celebrated Keller–Segel model [19, 20].
Incorporating the reaction and diffusion terms leads to the following SI epidemi-

ological system

∂S

∂t
= r Sα1

(
1 − Sα1

K

)
− β

SI

(S + I )α2
+ DS∇2S + c∇ · (S∇ I )

∂ I

∂t
= β

SI

(S + I )α2
− γ I + DI∇2 I.

(47)

Finally, it is further assumed that we have a closed system involving no external
input; thus the use of Neumann boundary conditions

∂

∂ν
S = ∂

∂ν
I = 0, (48)

is acceptable. The initial conditions are as follows

S(x, y, 0) = S0(x, y) and I (x, y, 0) = I0(x, y). (49)

Whenever DS and DI are the dominant coefficients, System (18) reduces essen-
tially to the heat equation, which under Neumann boundary conditions will go to the
average of the initial data as t → ∞ [29].
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Designing Public Health Policies to Mitigate
the Adverse Consequences of Rural-Urban
Migration via Meta-Population Modeling

Zhilan Feng, Yiqiang Zheng, Nancy Hernandez-Ceron and Henry Zhao

Abstract This study extends the model considered in [3] (Chap.8 in this volume)
by incorporating spatially explicit migration of individuals. A three-patch meta-
population model is used to explore vaccination strategies for a vaccine-preventable
disease. Spatial movements of individuals between patches are mainly migration
from rural to urban and peri-urban for greater economic opportunities. Stochastic
simulations evaluate the effects of alternative vaccination strategies on preventing
disease outbreaks, examine the distribution of possible outcomes, and compare the
likelihood of outbreak mitigation and prevention across immunization policies. Two
types of vaccine coverage are compared. One is homogeneous coverage, inwhich rel-
evant sub-populations receive vaccinationwith equal probability; and the other is het-
erogeneous coverage, inwhich sub-populations can receive vaccinationwith different
probabilities. Results suggest that when sub-populations differ in density (whichmay
affect contact rates), heterogeneous vaccination coverage among migrants is most
effective according to measures such as final epidemic size, peak size, number of
vaccine doses needed to prevent outbreaks, and likelihood of containing an outbreak.
This suggests that public health efforts to mitigate vaccine-preventable diseases must
consider migration.
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1 Introduction

Rural people migrate to urban areas largely because economic opportunities are
greater there, even absent education or special skills. Such migrations may be sea-
sonal, to sell goods produced or harvested locally where potential consumers are
more concentrated.Migrationmay also bemotivated by the need for medical or other
services available only in densely populated areas. Depending on sojourn duration,
immigrants may stay with friends or relatives in peri-urban shanty towns. Those
wishing to remain permanently and are able to sustain themselves in urban environ-
ments may move from peri-urban to urban areas while others return to the rural areas
from whence they came.

By virtue of the difference in population density, infectious diseases against which
immunity is long-lasting may be epidemic in rural, but endemic in urban areas. If so,
immigrants are less likely to be immune than urban people the same age. Together
with births, rural-urban migration thus increases the proportions of urban or peri-
urban populations that are susceptible to infection by the pathogens causing these
diseases. In the preceding chapter, Jos Cassio de Moraes et al. argue that–insofar
as the coverage required to prevent outbreaks is lower in rural than urban areas—
rural-urban migration motivates regional versus local design of optimal vaccination
programs.

Here we consider a model with three sub-populations consisting of urban, peri-
urban, and rural populations. One of the main differences between these sub-
populations is their density (and immunity, naturally acquired or vaccine-induced).
The model is constructed to include not only the usual mixing between the three
sub-populations (deterministic) but also seasonally-driven migrations of individuals
from rural to urban areas (stochastic). In addition to routine vaccination within each
patch, supplementary vaccination may be used to mitigate the consequences of the
migration.

While deterministic models provide the expected effects of various immunization
policies, policymakers must consider the inherent randomness of contact between
susceptible and infectious people. Stochastic models allow us to examine the dis-
tribution of possible outcomes and compare the likelihood of certain results across
immunization policies. When the threat of a disease outbreak cannot be eliminated
entirely, it may be possible to limit those exceeding specific levels, whatever those
might be. Stochastic simulations can be used to analyze the likelihood of containing
outbreaks to any prescribed final or peak size. Perhaps the goal is a below 5% risk of
the disease spreading tomore than that threshold level, because the policies necessary
to eliminate that final 5% are prohibitively expensive or unrealistic to implement.
Stochastic models are more suitable for obtaining such insights than deterministic
ones. Detailed examples are presented in the following sections.

Effects of spatial movement of humans on the spread and control of infectious
diseases have been studied using mathematical models in other settings, particularly
for the 2014 West Africa Ebola outbreak (see, for example, [1, 5, 9]). These studies
focus on international spread of Ebola virus via air travel, and the efficacy of control
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measures including travel restrictions or exit and entry screening of travelers. They
provide important quantitative information about the benefits and associated costs
of screening and restriction of travel, which can be very helpful for policy-making.
The study presented in the current paper aims at assessing the role of vaccinating
migrants from a rural area at their entry to urban and peri-urban areas, where disease
transmission rates can be much higher due to greater population densities. Results in
this work suggest that such a difference in population densities can have important
implications for disease outbreaks and vaccination strategies.

2 Models and Analysis

Because the objective of this study is to identify the best short-termvaccination policy
to mitigate outbreaks, we focus on an epidemic model (neither births nor deaths) and
stochastic simulations over a short period. On the other hand, population immunity
is influenced by the routine vaccination policy over a longer period. Thus, we use
a deterministic endemic model for each sub-population to compute the steady-state
distribution of the epidemiological classes, which is then used as initial conditions
for short-term stochastic simulations. Following the approach of Lloyd et al. [8], we
use discrete-time models here.

2.1 The Long-Term Endemic Model

Consider three sub-populations representing urban, peri-urban, and rural popula-
tions, each of which consists of six epidemiological classes: individuals with mater-
nal immunity (Mi ); individuals with temporary immunity due to vaccination (Vi );
susceptible individuals (Si ); exposed or latent (L); infectious (I ); and those who have
recovered from infection (and are immune) (Ri ), where the subscripts i = 1, 2, 3 cor-
respond to urban, peri-urban, and rural populations, respectively. Individuals in both
V and M classes can lose their immunity. Birth and death rates within each patch
are assumed to be equal so that the total population remains constant. A transition
diagram is shown in Fig. 1

Fig. 1 Transition diagram for the long-term model
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The model reads

Mi (n + 1) = θiμi Ni + (1 − μi )(1 − σ)Mi (n)

Vi (n + 1) = αν0
i (1 − μi )e

−β0
i

Ii (n)

Ni Si (n) + (1 − μi )(1 − χ)Vi (n)

Si (n + 1) = (1 − θi )μi Ni + (1 − μi )(1 − αν0
i )e

−β0
i

Ii (n)

Ni Si (n)

+ σ(1 − μi )Mi (n) + χ(1 − μi )Vi (n)

Ei (n + 1) = (1 − μi )(1 − e−β0
i

Ii (n)

Ni )Si (n) + (1 − μi )(1 − γ )Ei (n) (1)

Ii (n + 1) = (1 − μi )γ Ei (n) + (1 − μi )(1 − ρ)Ii (n)

Ri (n + 1) = (1 − μi )ρ Ii (n) + (1 − μi )Ri (n), i = 1, 2, 3,

where Ni = Mi + Vi + Si + Ei + Ii + Ri . For patch i , θi is the proportion of new-
borns with maternal immunity; μi is the daily per-capita birth and death probability
(1/μi is the average lifespan) in patch i ; σ is the daily probability of immunity
loss due to maternal antibodies (1/σ is the average period of maternal immunity);
α is the vaccine efficacy; ν0

i is the daily probability of being vaccinated; β0
i is the

daily transmission rate; 1/χ is the duration of immunity due to vaccination; 1/γ and
1/ρ are the average periods of latency and infection, respectively. The probability

of infection for a susceptible individual in patch i , e−β0
i

Ii
Ni , has the same form as in

[2, 6–8]. All parameters and their meanings are listed in Table1.
The parameter values listed in Table1 are based on measles, and the three sub-

populations have a similar spatial structure to the urban, peri-urban and rural popu-
lations in São Paulo, Brazil. Some parameter values are selected from the literature
while others are calculated or estimated from available data. For example, given the

Table 1 Parameters in the long-term model (1) for patch i (i = 1, 2, 3)

Symbol Description Value (patch 1, 2, 3)

θi Fraction of newborns with maternal immunity (0.7, 0.7, 0.7)

1/μi Lifespan (70, 70, 68) years

1/σ Duration of maternal immunity 6 months

1/χ Duration of vaccine-induced immunity 60 years

α Vaccine efficacy 92–95%

ν0i Daily probability of being vaccinated determined by pi
β0
i Daily transmission rate (1.4, 1.1, 0.85)

Rvi Effective reproduction number (long-term) (1.25, 1.16, 1.03)

R0i Basic reproduction number (long-term) (9.79, 7.70, 5.95)

1/γ Latent period 7 days

1/ρ Infectious period 7 days

N Total population size = N1 + N2 + N3 (0.125N , 0.2N , 0.675N )

The subscripts i = 1, 2, 3 correspond to urban, peri-urban, rural patches, respectively
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long-term vaccination policy of vaccinating pi = 0.9 of susceptibles within 10 years,
the daily probability ν0

i of being vaccinated can be determined from using the rela-
tionship 1 − pi = (1 − ν0

i )
10×360.Also, knowing the basic reproduction numberR0i

and all other parameter values except βi , we can estimate βi . Using these parameter
values, we can numerically compute the steady-state values of each epidemiological
class, which then can be used in stochastic simulations of the short-term model.

Because the long-term model is used to determine the local population immu-
nity within each patch under the routine vaccination policy, no interactions between
patches are modeled. Even though the interactions between patches are ignored,
it is difficult to obtain an explicit expression for the non-trivial steady state of the
system for sub-population i . Numerical computations of these steady states will be
used for short-term simulations. Nevertheless, the effective reproduction number for
sub-population i , denoted by Rvi , can be computed (see Appendix) and is given by

Rvi =
(

(1 − μi )γ

1 − (1 − μi )(1 − γ )

) (
β0
i (1 − μi )

1 − (1 − μi )(1 − ρ)

)
S0i
Ni

, (2)

in which the first factor is the probability that a newly infected individual survives
the latent period, the second factor is the number of new infections that a typical
infectious individual produces during the entire infectious period in a completely
susceptible population, and the third factor is the fraction of the population i that
is susceptible at the disease-free equilibrium. Note that, under the routine vaccina-
tion policy represented by vaccination at rate ν0

i , the fraction of susceptibles (see
Appendix) at the disease-free equilibrium is

S0i
Ni

=
[
(1 − θi ) + θi

σ(1−μi )

1−(1−μi )(1−σ)

]
μi

1 − (1 − μi )(1 − αν0
i ) − χ(1−μi )αν0

i (1−μi )

1−(1−μi )(1−χ)

,
V 0
i

Ni
= αν0

i (1 − μi )S0i /Ni

1 − (1 − μi )(1 − χ)
.

(3)

The expressions in (2) and (3) illustrate how the population susceptibility S0i /Ni and
level of immunity V 0

i /Ni depend on vaccination at rate ν0
i , which may differ among

the three sub-populations. Similarly, it is clear that the endemic equilibrium of patch
i ,

Êi = (M̂i , V̂i , Êi , Îi , R̂i ), i = 1, 2, 3, (4)

depends on both vaccination rate ν0
i and transmission rate β0

i . For example, suscepti-
bility of the rural population might be much higher than that of the urban population
due to vaccination coverage and population density (which affects the values of β0

i
through contact rates). Consequently, migrants from rural to urban or peri-urban
might have a significant impact on the potential for an outbreak (see Chap.8).

Although it is difficult to obtain analytic expressions for Êi , it can be solved for
numerically (see Fig. 2). The long-term steady state values of the components in
Êi will be used as initial conditions for simulations of the short-term model, and
the effects of various vaccination policies on controlling disease outbreaks will be
compared in Sect. 3.

http://dx.doi.org/10.1007/978-3-319-40413-4_8
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Fig. 2 Long-term dynamics of the model (1) for each of the three patches when rural-urban migra-
tion is ignored

2.2 The Short-Term Model

The short-term stochastic model focuses on mitigating a single outbreak during one
season. It ignores the birth and death processes, as well as the vaccination/immunity
loss considered in the long-term model. In this case, the individuals in the V , M , and
R classes are all considered immune so can be combined in the same compartment,
denoted by R. Disease transmission and migration for the short-term model are
depicted in Fig. 3.

The stochasticity is modeled following the approach used in [8]. The model equa-
tions are given by:

Si (n + 1) =
3∑
j=1

m ji (n)Sj (n)e−λ j (n)(1 − η j i (n))

Ei (n + 1) =
3∑
j=1

m ji (n)Sj (n)
[
1 − e−λ j (n)

] +
3∑
j=1

(1 − γ )m ji (n)E j (n)

Ii (n + 1) =
3∑
j=1

γm ji (n)E j (n) + (1 − ρ)Ii (n)

Ri (n + 1) = ρ Ii (n) +
3∑
j=1

m ji (n)R j (n)

V s
i (n + 1) =

3∑
j=1

m ji (n)Sj (n)eλ j (n)η j i (n) +
3∑
j=1

m ji (n)V s
j (n), i = 1, 2, 3,

(5)
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Fig. 3 A disease transmission diagram for the short-term model (top) and a depiction of the
movement between the three patches (bottom). The dashed arrows in the top diagram represent
migration. The parameter mi j represents the daily per capita migration probability from patch i to
patch j

where V s
i denotes the individuals in patch i who are vaccinated due to supplemental

efforts (in addition to the routine vaccination program);mi j (n) is the time-dependent
exiting probability from patch i to patch j at time step n (see the migration diagram
in Fig. 3); ηi j represents the combined routine and supplementary vaccination; γ and
ρ have the same meanings as in the long-term model (1). The force of infection, λi

is given by

λi (n) = βai

3∑
j=1

ci j
I j (n)

N j (n)
, i = 1, 2, 3. (6)

Here, the ci j represent casual mixing between patches i and j , which we consider to
be preferential and are given by

ci j = εiδi j + (1 − εi ) f j , f j = (1 − ε j )a j N j∑
k(1 − εk)akNk

, (7)

where ai denotes the number of contacts per day in patch i , and Ni (n) = Si (n) +
Ei (n) + Ii (n) + Ri (n) + V s

i (n) is the total population in patch i at time n. Note that
the Mi and Vi classes are included in the Ri class in the short-term model.
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We remark that, although vaccinations are also given to individuals in the Ei class
(assuming that no testing will be done before vaccinating), these individuals will
remain in the Ei class, which is why this process need not be explicitly modeled.
However, the wasted vaccines are included in determining the number of doses used.
The parameter εi denotes the proportion of contacts of patch i that is reserved for
others in the same patch. The rest 1 − εi of contacts are distributed proportionately
among all patches including i . The parameter ai denotes the per-capita number of
contacts in population i , and the balance equation ai Nici j = a j N jc ji must be satis-
fied. That is, the total number of contacts from individuals in patch i with individuals
in patch j must equal to the total contacts of individuals in patch j with those in
patch i . We remark that, although Ni (n) may change with time n when migration
rates are not zero, the balance equation will always hold as long as ci j are defined as
in (7).

To evaluate the effect of various short-term vaccination programs, particularly
those involving migrants, it is important to get reasonable parameter values for the
migration probabilities mi j . Although these parameters are chosen to be constant in
many patchmodels, it is not appropriate here as themigration that we are considering
is driven by seasonally-available job opportunities, and migrants will return to their
home patch within one year. To capture this seasonally varying pattern, we consider
piecewise-constant mi j values as described below.

For demonstration purposes, consider the case in which a proportion of rural indi-
viduals will move to urban and peri-urban for jobs during a fixed period of time in a
year and return to their rural homes afterwards; there is nomigration between patches
during the rest of the year. Let M = (mi j ) denote the 3 × 3 migration matrix. Denote
by Mru , Mur , and M0 the matrices for the migration from rural to urban/peri-urban,
the migration from urban/peri-urban back to rural, and no migration, respectively,
during the corresponding periods of a year.

To determine the elements in Mru , assume that the migration season lasts for
d days, and that a fraction l3 of the rural population move to the urban/peri-urban
patches, of which a fraction q1 go to the urban patch and fraction q2 go to the peri-
urban patch. Then 1 − l3 = md

33 or

m33 = (1 − l3)
1
d . (8)

Note that m31 + m32 + m33 = 1 and that

q1 = m31

m31 + m32
, q2 = m32

m31 + m32
.

It follows that
m31 = q1(1 − m33), m32 = q2(1 − m33). (9)
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Thus, the matrix Mru is given by

Mru =
⎡
⎣

1 0 0
0 1 0

q1[1 − (1 − l3)
1
d ] q2[1 − (1 − l3)

1
d ] (1 − l3)

1
d

⎤
⎦ . (10)

For the matrix Mur for migrants returning from urban/peri-urban to rural, let
ni = Ni/(N1 + N2 + N3) denote the ratio of sub-population Ni of patch i to the
total population N . Let li (i = 1, 2) denote the ratios of rural migrants in patch i to
the total population in patches i (i = 1, 2 for urban and peri-urban, respectively).
Then

li = n3l3qi
ni + n3l3qi

= 1 − md
ii , i = 1, 2, (11)

and thus,
m11 = (1 − l1)

1
d , m22 = (1 − l2)

1
d .

Noticing that m21 = m31 = m12 = m32 = 0, m33 = 1, and
∑3

j=1 mi j = 1 (i = 1,
2, 3), we have

Mur =
⎡
⎣

(1 − l1)
1
d 0 1 − (1 − l1)

1
d

0 (1 − l2)
1
d 1 − (1 − l2)

1
d

0 0 1

⎤
⎦ , (12)

where l1 and l2 are determined in (11). The no-migration matrix M0 is simply the
identity matrix I3.

2.3 Stochastic Simulations of the Short-Term Model

For simulations of the short-term model, we use the migration matrices given in (10)
and (12) with (n1, n2, n3) = (0.125, 0.2, 0.675), l3 = 0.25, q1 = 0.3, q2 = 0.7, and
d = 90 days. The values of l2 and l3 can be determined by (11). For the mixing
matrix, the preferential parameters (εi ) are chosen to be (0.95, 0.9, 0.95), which
assumes that the peri-urban residents have a higher probability of having contacts
with people from the other two patches. The per capita contact rates or activity levels
for the three sub-populations are chosen to be (8, 5, 2) based on the assumption that
the activity level for disease transmission is correlated with population density. The
probability of infection per contact is assumed to be β = 0.23. The initial values for
the short-term model are based on the immunity level of each patch estimated from
long-termmodels, which are assumed to be 90%, 87%, 83% of the total population,
1 million in the simulations.

One focus of the short-term vaccination policy is to vaccinate migrants from
patches where density is lower (e.g., rural patch) who are entering patches with
higher density (urban or peri-urban). We assume that it is possible to vaccinate these
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Fig. 4 Deterministic (left) and stochastic (right) simulations of the short-term model (5) over one
year in the absence of supplementary vaccinations. The left figure shows the epidemic curves in
the urban (dot-dashed), peri-urban (dotted), and rural patches (dashed), as well as the total number
of infectious individuals in all three patches (solid). The right figure shows the epidemic curves
from 20 stochastic realizations, each of which shows the total number of infectious individuals in
all three patches. The dashed line indicates the mean of the total peak sizes (564)

immigrants (e.g., at bus stations) if needed. This policy (i.e., vaccinate migrants
only) is compared to other policies including vaccinating (besides routine local vac-
cination) additional local populations. To identify a better vaccination strategy, we
examine several measures including final epidemic and peak sizes. Because of the
costs associated with vaccination programs, identification of the best policy will
consider the total number of doses required to achieve a prescribed goal under the
specific measures mentioned above.

We conducted simulations in both the deterministic and stochastic settings.
Figure4 shows the deterministic (left) and stochastic (right) outcomes of the short-
term model in the absence of supplemental vaccinations. We examine how the out-
break can be affected by various vaccination policies. We compare outbreak sizes
over a fixed period of time, one year in this case.

For ease of reference, we use the term “final size” to denote the number of infec-
tions over the entire period (one year in this case) in each patch, and use the term
“total final size” to denote the final size over all three patches. Similarly, the total
peak size denotes the peak size over the three patches. The measures used for com-
parison include the total final size, total peak size, and total number of vaccine doses
used. For the deterministic outcome shown in Fig. 4 (left) the total final size is 12044,
which is about 12% of the total population, the total peak size is 540, and the total
number of vaccine doses is zero (as this is the case of no supplemental vaccinations).

For stochastic simulations of the short-term model, events (e.g., migration, being
vaccinated, etc.) occur based on their corresponding probabilities. In these simu-
lations, for each fixed set of parameter values, the trajectories can be dramatically
different, as illustrated in Fig. 4 for identical parameter values. This figure illustrates
various levels of outbreaks in the three patches. It demonstrates the result of 20 real-
izations for the case of no supplementary vaccination. Each of the trajectories shows
the total number of infectious individuals in all three patches at time t . We observe
that these epidemic curves exhibit various outbreak as well as peak sizes. The mean
of the total final sizes is 1.2%, and the mean of the total peak sizes is 564.
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(a) (b)

(c)

Fig. 5 Total final size (a) and peak size (b) from the 20 realizations of stochastic simulations shown
in Fig. 4. Peak sizes in the three patches are shown in C. The dashed lines mark the mean values
over the 20 realizations

The final and peak sizes of each of the 20 realizations are plotted in Fig. 5. as well
as the mean values for the total final size and peak size among the 20 realizations
(the dashed lines). Plots A and B illustrate the final size and peak size, respectively,
and plot C shows the peak sizes in each patch. The dot-dashed, dotted and dashed
lines mark the mean values of the peak sizes for urban, peri-urban and rural patches,
respectively. In the peak sizes in each patch shown in plot C, we observe large
variations, particularly in the urban patch, which vary between 150 and 515 with a
mean value of about 400 (marked by the dot-dashed line). The mean peak sizes in
the peri-urban and rural patches are 150 and 50, respectively.

3 Impact of Vaccination Policies on Short-Term Outbreaks

We can compare different ways of distributing supplemental vaccines to identify
the best vaccination strategy. For local populations, we incorporate supplementary
vaccination in the short-termmodel as initial conditions bymoving the corresponding
fraction of susceptible individuals (Si ) in patch i to the vaccinated class V s

i . For
migrants, supplementary vaccination is reflected in the daily vaccination probability
η j i of individuals migrating from patch j to patch i ( j �= i). Because we are focusing
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on migrations from rural to urban and peri-urban patches, we have η j i = 0 for all
i, j except η31 and η32.

For ease of reference, let

hloc = (hloc1, hloc2, hloc3), hmig = (hmig1, hmig2),

where hloc1, hloc2 and hloc3 denote the probabilities of local individuals in urban,
peri-urban and rural, respectively, receiving supplementary vaccinations, and hmig1
and hmig2 denote the vaccination probabilities for migrants. We consider three types
of supplementary vaccination:

Policy I. Vaccinate local populations only, i.e., hloc > 0 and hmig = 0;
Policy II. Vaccinate migrants only, i.e., hloc = 0, and hmig > 0;
Policy III. Vaccinate both local people and migrants, i.e., h loc > 0, h mig > 0.

Introduce the following vector notation

u = (1, 1, 1), v = (a1, a2, a3), w = (1, 1), z = (a1, a2), (13)

where ai > 0 are the activity levels in population i . For ease of reference, we define
several terms based on the properties of hloc and hmig (ki > 0 are constants):

(i) Homogeneous policy I (or Hom I) is a program with hloc = k1u, hmig = 0.
(ii) Heterogeneous policy I (or Het I) is a program with hloc = k2v, hmig = 0.
(iii) Homogeneous policy II (or Hom II) is a program with hmig = k3w, hloc = 0.
(iv) Heterogeneous policy II (or Het II) is a program with hmig = k4z, hloc = 0.
(v) Heterogeneous policy III (or Het III) is a program with hloc > 0, hmig > 0,

and they are not multiples of u or w.

We will compare both homogeneous and heterogeneous coverages. In addition to
the cases mentioned above, we may also consider other heterogeneous programs for
which hmig is a non-zero multiple of neither w nor z.

Figure6 compares the outcomes of four vaccination programs under policies I and
II. The activity levels are the same as in Figs. 4 and 5 (i.e., a1 = 8, a2 = 5, a3 = 2).
In this case, v = (8, 5, 2) and z = (8, 5). Rows 1 and 2 are for policy I with
homogeneous coverage hloc = 0.01u (A1 and B1) and heterogeneous coverage
hloc = 0.0332v (A2 and B2), and rows 3 and 4 are for policy II with homogeneous
coverage hmig = 0.547w (A3 and B3) and heterogeneous coverage hmig = 0.092z
(A4 and B4). For ease of comparison, the results are also summarized in Table2
(see (a)–(d)). The h values are chosen such that all four programs described in rows
(a)–(d) use a similar total number of vaccine doses: 15227, 15244, 15131 and 15091,
respectively. However, the outcomes of these four programs are very different. The
mean total final sizes are 0.47, 0.14, 0.14 and 0.07% of the population, respectively,
and the mean total peak sizes are 190, 57, 55 and 36, respectively. This suggests
that heterogeneous policy II is most effective among the four programs in terms of
reducing total final and peak sizes, while using fewer vaccine doses.
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Fig. 6 Results of 100 stochastic realizations of the short-term model under homogeneous or het-
erogeneous policies I and II. See text for detailed descriptions

Table 2 Comparison of policies I and II under homogeneous and heterogeneous coverages

Policy
type

Values Mean final
size (%)

Mean
peak size

Mean total
doses

Figure

None hloc = hmig = 0 1.21 564 0 Fig. 5

(a) Hom I hloc = 0.1u 0.47 190 15227 Fig. 6 (A1, B1)

(b) Het I hloc = 0.0332v 0.14 57 15244 Fig. 6 (A2, B2)

(c)Hom II hmig = 0.547w 0.14 55 15131 Fig. 6 (A3, B3)

(d) Het II hmig = 0.092z 0.07 36 15091 Fig. 6 (A4, B4)

(e) Het I hloc = 0.01v 0.74 324 4591 Fig. 8 (A1, B1)

(f) Hom II hmig = 0.16w 0.75 316 4180 Fig. 8 (A2, B2)

Hom: Homogeneous policy. Het: Heterogeneous policy. Vectors u, v,w, z are defined in (13)
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Although the mean values presented in Fig. 6 provide useful information, further
insights can be obtained by examining the distribution of possible events shown in
the stochastic results. Particularly important to policy decisions is the likelihood that
the final size of an outbreak may exceed some prescribed level of severity under
various vaccination programs. Figure7 compares the four programs shown in Fig. 6
in terms of the frequencies of the 100 realizations (which is analogous to likelihood
in a single outbreak) under each policy that corresponds to the final sizes being below
some hypothetical prescribed thresholds. We observe that the homogeneous policy I
with hloc = 0.1u is less likely to reduce the final size to be below 0.2% of the total
population, while the heterogeneous policy II with hmig = 0.092z is most likely
(with a 80% chance) to contain the final size to be below 0.1%. The middle two
programs (heterogeneous policy I with hloc = 0.0332v and homogeneous policy II
with hmig = 0.092z) have very similar likelihood for all threshold levels. Similarly,
the heterogeneous policy II has a much higher likelihood than other three policies to
contain the urban peak size to be below 25 or 50.

From Fig. 6, we also observe that, under the similar number of total vaccine
doses, the heterogeneous policy II (A2 and B2) and homogeneous policy I (A3 and
B3) have similar effects in reducing the final and peak sizes. Many of our simula-
tions under other parameter values illustrate similar features. One such example is
demonstrated in Fig. 8. The vaccination programs are represented by hloc = 0.01v
(Fig. 8 (A1 and B1)) and hmig = 0.15w (A2 and B2). The average total numbers of
vaccine doses over 20 realizations in these two cases are similar with 4591 in A1 and
B1, and 4180 in A2 and B2. We observe that the mean final and peak sizes under
these two programs are also similar: the mean total final sizes are 0.74 and 0.75%,
and the mean total peak sizes are 324 and 316. These comparison results are also
listed in Table2. From these and many other simulations, we observe that homoge-
neous policy I is least effective and heterogeneous policy II is most effective in terms
of reducing the total final and peak sizes with a similar number of vaccine doses.
However, it needs to be pointed out that the conclusion that heterogeneous policy II
is more effective depends critically on the relative activity levels ai (i = 1, 2, 3).

We can also compare policies to identify the best strategy in the sense of using
the fewest vaccine doses under a prescribed upper bound for the total final size. One
such example is presented in Table3. All parameter values are the same as in Table2
except for the hi values. The results presented in Table3, however, are computed
from the deterministic model. In rows (a)–(c), the three vaccination programs lead
to the same total final size (0.43%), but the number of vaccine doses required differ
with program (c) being the most effective policy (6896 doses versus 9183 in (a) and
8905 in (b)). Similarly, the vaccination policies represented in (d)–(f) lead to the
same final size (0.19%) but the option (f) of heterogeneous policy II uses the least
vaccine doses (10673 versus 13774 in (d) and 13915 in (e)).

To explore the effects of policy III, in which supplementary vaccination is given
to both local populations and migrants, many factors can influence the allocation of
supplementary vaccines among sub-groups, including the costs associated with vac-
cine distribution and administration. We present in Fig. 9 several scenarios based on
two main objectives. One is to identify the policy that uses the least vaccine doses to
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Fig. 7 Likelihood that the final size of an epidemic may exceed some prescribed level of severity
(top) or the likelihood that the peak size in urban is below certain thresholds (bottom) under the four
vaccination programs presented in Fig. 6 based on 100 stochastic realizations. The four policies
correspond to the vaccination programs shown in A1–A4 in Fig. 6 or cases a–d in Table2
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Fig. 8 Similar to Fig. 6 except the values of hi . A1 and B1 are for the heterogeneous policy I
with hloc = 0.01v, and A2 and B2 are for the homogeneous policy II with hmig = 0.15w. Similar
numbers of vaccine doses, 4591 (top) and 4180 (bottom), were used

Table 3 Comparison of policy I and policy II (equal final size with fewer vaccine doses)

Policy type Values Mean final
size (%)

Mean peak size Mean total doses

(a) Het I hloc = 0.02v 0.43 147 9183

(b) Hom II hmig = 0.32w 0.43 144 8905

(c) Het II hmig = 0.042z 0.43 142 6896

(d) Het I hloc = 0.03v 0.19 55 13774

(e) Hom II hmig = 0.5w 0.19 54 13915

(f) Het II hmig = 0.065z 0.19 54 10673

Hom: Homogeneous policy. Het: Heterogeneous policy. Vectors v,w, z are defined in (13)

contain the final size at the same (or similar) level, and another is to identify a policy
that reduces the final size the most with the same (or similar) vaccine doses. We
compared various vaccination policies for local and migrant populations, including
both homogeneous and heterogeneous coverages. Figure9 (A1) is a baseline sce-
nario, which corresponds to the combination of homogeneous local coverage with
hloc = 0.02u and homogeneous migrant coverage with hmig = 0.028z. It shows 20
realizations of the stochastic simulations. The top panel is for the casewhen local vac-
cinations are homogeneous with hloc = 0.02u, and the bottomB panel is for the case
of heterogeneous local coverage with hloc = 0.07v. The six cases are for different
coverages in migrants: homogeneous with hmig = 0.2w (A1); heterogeneous with
hmig = 0.28z (A2); heterogeneous with hmig = (0.54, 0.054) (A3); homogeneous
withhmig = 0.192w (B1); heterogeneouswithhmig = 0.2z (B2); and heterogeneous
with hmig = (0.52, 0.052) (B3). In each plot, the mean total final size and the mean
total number of vaccine doses are listed. We observe again that, with the same or
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Fig. 9 Comparison of six scenarios under policy III. It shows the epidemic curves from 20 sto-
chastic realizations in each scenario. The top panel is for the case when the local vaccinations are
homogeneous with hloc = 0.02u, whereas the bottom panel is for the heterogeneous local coverage
with hloc = 0.07v. The six cases are for different coverages in migrants. See the text for detailed
information

similar vaccine doses (e.g., see A1, A3, B1 and B3)), heterogeneous coverage
(A3 and B3) will likely lead to a lower final size than homogeneous coverage (A1).
The greater effectiveness can be represented either by a lower final size with similar
vaccine doses (A1 versus A3, or B1 versus B3) or by a lower number of vaccine
doses when final sizes are similar (A1 versus A2, or B1 versus B2).

We need to point out that the assessments presented above are based only on the
final and peak epidemic sizes or the number of vaccine doses needed to achieve a
prescribed epidemic size. When other factors are considered, such as economic costs
related to vaccinating local populations versusmigrants, the conclusionsmight differ.
In addition, parameter values may affect the relative effectiveness of these programs,
including population density, migration patterns, infectious period, and others.

4 Discussion

The objective of this study is to evaluate vaccination policies for a vaccine-
preventable disease using a meta-population model that explicitly incorporates
migration between patches. This is an extension of the model considered in [3]
(Chap. 8 in this volume), in which migrations are modeled implicitly. In model (5),
seasonal spatial movements from one patch to another are included to capture the
migration from rural to urban or peri-urban for employment opportunities and return
home afterwards. The main findings of the study suggest that (because of the sig-
nificant difference in population density, which directly influences the contact rate,
affecting the rate of disease transmission), vaccinating migrants can be a very impor-
tant means of preventing outbreaks. Particularly, heterogeneous coverages among
migrants are likely the most effective vaccination strategies.

http://dx.doi.org/10.1007/978-3-319-40413-4_8
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The model outcomes are generated by both deterministic and stochastic sim-
ulations. Various vaccination programs are compared in terms of three measures:
number of vaccine doses used, final epidemic size, and peak epidemic size (either
within individual patches or over all three patches). Deterministic simulations help
identify suitable vaccination scenarios for comparison, and stochastic simulations
with multiple realizations provide a range of possibilities in terms of epidemic sizes,
for which the mean value of each measure also provides useful insights into possible
outcomes of various vaccination policies.

Our comparisons focused on identifying the best vaccination strategy based on two
objectives: Objective 1 is to apply fewer vaccine doses while bringing the epidemic
size below a prescribed level, and Objective 2 is to reduce the outbreak size the
most with a given number of vaccine doses. Three types of vaccination policies are
considered in terms of the allocation of supplementary vaccines: policy I involves
vaccinating only local populations; policy II involves vaccinating only migrants; and
policy III involves combinedvaccinations of both local andmigrant populations. In all
comparisons, we considered homogeneous and heterogeneous vaccination coverages
in either local populations or migrants or both. One of the main results is that,
in the case when the heterogeneity in population density is significant, the best
vaccination strategy likely involves heterogeneous coverages among migrants. For
example, Fig. 6(A1–A4) and the cases (a-d) in Table2 present four policies that use
similar vaccine doses. The homogeneous policy I (A1 and (a)) corresponds to amuch
higher final size than the other three policies, while the heterogeneous policy II (A4
and (d)) leads to the lowest final size. The results presented in Table3 show two cases
in which heterogeneous policy II is more effective then heterogeneous policy I in
terms of using fewer doses while leading to similar final sizes.

In most cases, heterogeneous coverages are taken to be proportional to the activity
levels v = (a1, a2, a3), which are related to the population densities in urban, peri-
urban and rural patches (i.e., hloc = kv or hmig = k ′z for some positive constants k
and k ′). Results are shown for v = (a1, a2, a3) = (8, 5, 2). For the set of parameter
values used, simulation results show that the selection of vaccination policies should
be guided by the objectives of outbreak prevention, and that for the evaluation of
certain types of policy goals, stochastic models can provide more useful insights
than deterministic ones. For example, based on 100 realizations from stochastic
simulations of the short-term model (5) presented in Fig. 6 or the corresponding
scenarios listed in (a)–(d) in Table2, it is shown in Fig. 7 that the heterogeneous
policy I is more likely than the homogeneous policy II to contain the outbreak within
a small size (e.g., final size below0.05 or 0.1%, or urban peak size below20or 50), but
that homogeneous policy II is more likely than the heterogeneous policy I to contain
the outbreak within a medium to larger size (e.g., final size below 0.15 or 0.2%, or
urban peak size below 75 or 100). This illustrates that, while the deterministic model
implies that these two vaccination policies are essentially identical, the stochastic
model reveals meaningful differences.

It is important to emphasize that the conclusion that heterogeneous coverages
among migrants are more effective is critically dependent on heterogeneity in con-
tact and migration rates. If these heterogeneities are not very strong, vaccinating
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local populations could be more effective than vaccinating migrants. Which vacci-
nation strategies are most effective may also depend on other characteristics of the
population such as immunity (see [4]).

Acknowledgments We thank John Glasser for suggesting this study and for helpful comments and
suggestions throughout the writing of this chapter.

Appendix

In this Appendix, we derive the reproduction numbers Rvi for model (1).
Denote the disease-free equilibrium by U 0

i = (M0
i , V

0
i , S0i , E

0
i , I

0
i , R0

i ), i =
1, 2, 3. Then, E0

i = I 0i = R0
i = 0, and U 0 can be solved by the following equation:

Mi = θiμi Ni + (1 − μi )(1 − σ)Mi

Vi = αν0
i (1 − μi )Si (n) + (1 − μi )(1 − χ)Vi

Si = (1 − θi )μi Ni + (1 − μi )(1 − αν0
i )Si + σ(1 − μi )Mi (n) + χ(1 − μi )Vi ,

with Ni being constants. Solving the above equations we obtain

M0
i

Ni
= θiμi

1 − (1 − μi )(1 − σ)
,

S0i
Ni

=
[
(1 − θi ) + θi

σ(1−μi )
1−(1−μi )(1−σ)

]
μi

1 − (1 − μi )(1 − αν0i ) − χ(1 − μi )
αν0i (1−μi )

1−(1−μi )(1−χ)

,

V 0
i

Ni
= αν0

i (1 − μi )

1 − (1 − μi )(1 − χ)

[
(1 − θi ) + θi

σ(1−μi )

1−(1−μi )(1−σ)

]
μi

1 − (1 − μi )(1 − αν0
i ) − χ(1 − μi )

αν0
i (1−μi )

1−(1−μi )(1−χ)

.

Noticing that the Jacobian matrix at U 0
i has the form F + T , where

F =
[
0 (1 − μi )β

0
i
S0i
Ni

0 0

]
, T =

[
(1 − μi )(1 − γ ) 0

(1 − μi )γ (1 − μi )(1 − ρ)

]
.

Then

(1 − T )−1 =
[

1
1−(1−μi )(1−γ )

0
(1−μi )γ

(1−(1−μi )(1−γ ))
1

(1−(1−μi )(1−ρ))
1

1−(1−μi )(1−ρ)

]
,

and

F(1 − T )−1 =
[

(1−μi )γ

1−(1−μi )(1−γ )

(1−μi )β
0
i (S0i /Ni )

1−(1−μi )(1−ρ)

(1−μi )β
0
i (S0i /Ni )

1−(1−μi )(1−ρ)

0 0

]
.
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Therefore,

Rvi = �(F(1 − T )−1) = (1 − μi )γ

1 − (1 − μi )(1 − γ )

(1 − μi )β
0
i (S

0
i /Ni )

1 − (1 − μi )(1 − ρ)
,

where (1−μi )γ

1−(1−μi )(1−γ )
is the probability that an infected individual survives the latent

period, and (1−μi )β
0
i (S0i /Ni )

1−(1−μi )(1−ρ)
is the number of new infections that an infectious individual

can generate during the entire infectious period in a population where the fraction of
susceptibles is S0i /Ni .
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Age of Infection Epidemic Models

Fred Brauer

Abstract The age of infection model, first introduced by Kermack andMcKendrick
in 1927, is a general structure for compartmental epidemic models, including models
with heterogeneous mixing. It is possible to estimate the basic reproduction number
if the initial exponential growth rate and the infectivity as a function of time since
being infected are known, and this is also possible for models with heterogeneous
mixing.

Keywords Epidemic models · Age of infection model · Heterogenous mixing ·
Basic reproduction number · Exponential growth rate · Infectivity

1 Introduction

Throughout recorded history diseases have emerged or re-emerged. Sometimes,
as with SARS (Severe Acute Respiratory Syndrome) in 2002–2003, a disease has
appeared once and not recurred. In other instances, as with the Black Death in the
Middle Ages, seasonal influenza outbreaks, and Ebola since 1976, disease outbreaks
have recurred. In most cases, the outbreaks have been of short duration, and it is
appropriate to model them as epidemics without including demographic effects.

Many times throughout history it has been observed that an epidemic would
invade a community but would eventually disappear without having infected the
entire population. In 1927, W.O. Kermack and A.G. McKendrick formulated the
first mathematical model for an epidemic that exhibited such behavior. In fact,
such behavior was exhibited by a simple special case of their model, and for many
years this special case was known as “the” Kermack–McKendrick epidemic model.
However, the general model of Kermack and McKendrick included infectivity that
could depend on the age of infection—the time since becoming infective.
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The original formulation of the Kermack–McKendrick age of infection epidemic
model given in [7] was

v(t) = −x′(t)

x′(t) = −x(t)

[∫ t

0
A(s)v(t − s)ds + A(t)y0

]

z′(t) =
∫ t

0
C(s)v(t − s)ds + C(t)y0

y(t) =
∫ t

0
B(s)v(t − s)ds + B(t)y0.

(1)

Here, x(t) is the number of susceptibles, y(t) is the number of infectious individ-
uals, and z(t) is the number of recovered individuals. Also ϕ(s) is the recovery rate
when the age of infection is s, ψ(s) is the recovery rate at infection age s, and

B(s) = e− ∫ t
0 ψ(s)ds, A(s) = ϕ(s)B(s).

It is assumed that there are no disease deaths, so that the total population size
remains constant. Kermack and McKendrick did not bring the basic reproduction
number into their analysis, but were able to derive a final size relation in the form

log
1 − y0

N

1 − p
= pN

∫ ∞

0
A(s)ds, (2)

in which N is the total population size and p is the attack ratio

p = 1 − x∞
N

.

If we define

S(t) = x(t), A(s) = B(s) = e−γ s, I(t) = 1

β
y(t),

the model (1) can be reduced to the system

S′ = −βSI (3)

I ′ = βSI − γ I,

which is the simple Kermack–McKendrick model.
In their later work on disease transmission models [8, 9], Kermack and

McKendrick did not include age of infection, and age of infection models were
neglected for many years. Age of infection reappeared in the study of HIV/AIDS, in
which the infectivity of infected individuals is high for a brief period after becoming
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infected, then quite low for an extended period, possibly several years, before increas-
ing rapidly with the onset of full-blownAIDS. Thus the age of infection described by
Kermack and McKendrick for epidemics became very important in some endemic
situations; see for example [11, 12].

Various disease outbreaks, including the SARS epidemic of 2002–2003, the con-
cern about a possible H5N1 influenza epidemic in 2005, the H1N1 influenza pan-
demic of 2009, and the Ebola outbreak of 2014 have re-ignited interest in epidemic
models, beginning with the reformulation of the Kermack–McKendrick model by
Diekmann, Heesterbeek and Metz [6].

2 The Modern Infection Age Epidemic Model

In [6], Diekmann, Heesterbeek, and Metz rewrote the model (1) as

S′(t) = S(t)
∫ ∞

0
A(s)S′(t − s)ds, (4)

with S(t) denoting the density of susceptibles and A(s) the expected infectivity of
an individual that became infected s time units ago. In this general description, A(s)
includes factors describing the rate of secondary infections caused by a contact, the
fraction of individuals still infected at infection age s and the infectivity of such
individuals. This model is formulated under the same assumptions as for (1), namely

• a single infection triggers an autonomous process within the host,
• the disease results in either recovery with complete immunity or death,
• contacts are according to the law of mass action,
• all individuals are equally susceptible,
• the population is closed; at the time scale of disease transmission the influx of
new susceptibles into the population and the outflow due to natural deaths are
negligible,

• the population is large enough to warrant a deterministic description.

Here, we present a description and analysis of a model equivalent to (4), and an
extension of this model to epidemics with heterogeneous mixing. The results in this
section are not new but we believe that this approach will be useful for developing
more general epidemic models.

We suppose that individuals in the population make an average of a contacts suffi-
cient to transmit infection in unit time and that the total population size is a constant
N (assuming no disease deaths). Then the rate of contacts made by a susceptible that
produce a new infection is aϕ(t)/N , where ϕ(t) is the total infectivity of infected
individuals, the number of infective individuals multiplied by their average rela-
tive infectivity. The number of new infections at time (t − s) is [−S′(t − s)] and on
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average the infectivity of these new infections at time t is A(s). Thus the total infec-
tivity at time t is

ϕ(t) =
∫ ∞

0
A(s)S′(t − s)ds.

Our formulation differs slightly from that of [6], by including inA(s) only the fraction
of individuals still infected at infection age s and the infectivity of such individuals,
taking out the factor a/N describing the rate of contacts of such individuals.

Then

S′(t) = − a

N
S(t)ϕ(t)

ϕ(t) = −
∫ ∞

0
A(s)S′(t − s)ds = a

N

∫ ∞

0
A(s)S(t − s)ϕ(t − s)ds.

(5)

We may combine the two equations of (5) into a single equation

S′(t) = a

N
S(t)

∫ ∞

0
A(s)S′(t − s)ds. (6)

The model (6) or (5) is more general than the model (3) in two respects. It allows an
arbitrary sequence of infective compartments and it allows an arbitrary distribution
of stays in each compartment.

We assume that the disease outbreak begins at time t = 0, so that S(u) = N for
u < 0 and there may be a discontinuity in S(u) at u = 0 corresponding to an initial
infective distribution.

It is pointed out in [6] that the quantity

R0 = a
∫ ∞

0
A(s)ds (7)

can be interpreted as the expected number of secondary disease cases produced by
one typical primary case.

Further, there is an invasion criterion given in [6] and also in [14]. Initially, when
S(t) is close to N , we may replace S(t) in (6) by its initial value N , giving a linear
equation,

S′(t) = a
∫ ∞

0
A(s)S′(t − s)ds.

This equation is, in fact, the linearization of the system (5) at the equilibrium S =
N, ϕ = 0. The condition that this linear equation has a solution S(t) = S0ert is

1 = a
∫ ∞

0
A(s)e−rsds. (8)
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Combination of (7) and (8) gives a relation between the initial exponential growth
rate r and the basic reproduction number R0, namely

R0 =
∫ ∞
0 A(s)ds∫ ∞

0 e−rsA(s)ds
. (9)

The relation (9) provides a means to estimate the basic reproduction number from
measurements of the initial exponential growth rate provided the infectivity distrib-
ution is known. Also, it is clear from (9) that r > 0 if and only if R0 > 1. We may
define an epidemic as a situation in which for the model (5) we have r > 0, so that
initially the solution grows exponentially.

Division of the Eq. (6) by S(t) and integration with respect to t from 0 to∞ gives,
with an interchange of order of integration

log
S0
S∞

= a

N

∫ ∞

0
[S(−s) − S∞]A(s)ds.

Since we are assuming that the epidemic does not begin until time t = 0, so that
S(−s) = N if s < 0, so that

log
S0
S∞

= a
(N − S∞)

N

∫ ∞

0
A(s)ds,

and then, using (7) we obtain the final size relation

log
S0
S∞

= R0

[
1 − S∞

N

]
.

3 Example: The General SEIRModel

As an example of formulation of a model in age of infection form, we consider
an SEIR model with general distributions of stay in both the exposed and infec-
tious period. Here, we consider the exposed period to be the time period from the
acquisition of infection to the time when an individual can transmit infection, and
the infective period to be the time period during which an individual can transmit
infection.

Suppose the fraction of exposed individuals who are still in the exposed class s
time units after being exposed is PE(s) and the fraction of individuals who are still
in the infectious class s time units after entering the infectious class is PI(s), with
PE(s),PI(s) non-negative, non-increasing functions such that

PE(0) = 1,
∫ ∞

0
PE(s)ds < ∞,
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PI(0) = 1,
∫ ∞

0
PI(s)ds < ∞.

Then PE and PI represent survival probabilities in the classes E and I respectively.
We assume that E0 newly exposed members enter the exposed class at time t = 0.

Then

S′ = −a
S

N
I

E(t) = E0PE(t) +
∫ t

0
[−S′(s)]PE(t − s)ds.

If we assume that S(u) = N for u < 0 and that S(u) has a jump of −E0 at u = 0,
then we may write the equation for E(t) as

E(t) =
∫ ∞

0
[−S′(s)]PE(t − s)ds.

Differentiation of the equation for E(t) shows that the output from E to I at time t is

−E0P
′
E(t) −

∫ t

0
[−S′(s)]P′

E(t − s)ds = −
∫ ∞

0
[−S′(s)]P′

E(t − s)ds.

Then

I(t) = −
∫ ∞

0

∫ ∞

0
[−S′(s)]P′

E(t − s − u)PI(u)duds, (10)

and

I(t) =
∫ ∞

0
[−S′(s)]AI(t − s)ds,

with

AI(z) = −
∫ ∞

0
P′
E(z − v)PI(v)dv,

The model is

S′ = −a
S

N
I

E(t) =
∫ ∞

0
[−S′(s)]PE(t − s)ds

I(t) =
∫ ∞

0
[−S′(s)]AI(t − s)ds,

(11)

which is in age of infection form with ϕ = I and A(z) = AI(z). Then
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R0 = a
∫ ∞

0
A(z)dz

= −a
∫ ∞

0

∫ z

0
P′
E(z − u)PI(u)dudz

= a
∫ ∞

0
PI(u)du,

using − ∫ ∞
0 P′

E(v)dv = PE(0) − PE(∞) = 1.
The initial exponential growth rate of the general SEIR model (11) satisfies

a
∫ ∞

0
e−rs

∫ s

0
[−P′

E(s − u)]PI(u)duds = 1,

which reduces to

1 = a
∫ ∞

0
[−PE(v)e−rvdv

∫ ∞

0
e−ruPI(u)du

= a

[
1 − r

∫ ∞

0
e−rvPE(v)dv

] ∫ ∞

0
e−ruPI(u)du, (12)

with the aid of integration by parts.

4 A Heterogeneous Mixing Age of Infection Model

The basic age of infection model (6) extends the simple SIR epidemic model by
allowing an arbitrary number of stages in themodel and arbitrary distributions of stay
in each stage. However, it does not include the possibility of subgroups with different
activity levels and heterogeneous mixing between subgroups. This possibility can
be included in a heterogeneous mixing age of infection model as in [3, 4]. As in
homogeneous mixing models, the age of infection approach is more general than
simpler models in several respects. For an epidemic model, in which we assume the
time scale is short enough thatmembers donot age over the course of the epidemic, the
grouping could be by age. However, for a longer term disease transmission model
with age-dependent transmission it would be necessary to use an age-structured
model that includes the passage of members between age classes.

We consider two subpopulations of sizes N1,N2 respectively, each divided into
susceptibles and infected members with subscripts to identify the subpopulation.
Suppose that Ai(s) is the mean infectivity of individuals in the subgroup i who have
been infected s time units previously, and that a1, a2 are the contact rates of the two
subpopulations. By contact, we mean contact sufficient to transmit infection, but we
may include infectivity factors in the infectivity distributions Ai(s). If the two groups
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also have different susceptibilities this may be indicated by including susceptibility
factors σi in the model.

A two-group model may describe a population with groups differing by activity
levels and possibly by vulnerability to infection, but not by infectivity, so that a1 �= a2
but A1(s) = A2(s). It may also describe a population with one group which has been
vaccinated against infection, so that the two groups have the same activity level but
different diseasemodel parameters. In this case, a1 = a2 butA1(s) �= A2(s), σ1 �= σ2.

It is necessary to describe also the mixing between the two groups. Suppose that
the fraction of contacts made by a member of group i that is with a member of group
j is pij, i, j = 1, 2. Then

p11 + p12 = p21 + p22 = 1.

For the properties of the mixing matrix, see [10]
An age of infection model with two subgroups is

S′
1 = −a1σ1S1

[
p11
N1

ϕ1 + p12
N2

ϕ2

]

ϕ1(t) =
∫ ∞

0
[−S′

1(t − τ)A1(τ )]dτ

S′
2 = −a2σ2S2

[
p21
N1

ϕ1 + p22
N2

ϕ2

]

ϕ1(t) =
∫ ∞

0
[−S′

2(t − τ)A2(τ )]dτ.

(13)

Here, ϕi(t) is the total infectivity of infected members of group i and σi is the relative
susceptibility to infection of group i.

Just as for the homogeneous mixing model, we may write this model using only
the equations for S1, S2,

S′
1(t) = −a1σ1S1(t)

[
p11
N1

∫ ∞

0
A1(s)S

′
1(t − s)ds + p12

N2

∫ ∞

0
A2(s)S

′
2(t − s)ds

]

S′
2(t) = −a2σ2S2(t)

[
p21
N1

∫ ∞

0
A1(s)S

′
1(t − s)ds + p22

N2

∫ ∞

0
A2(s)S

′
2(t − s)ds

]

(14)

The next generation matrix [13] is

P =
[

a1σ1p11
∫ ∞
0 A1(s)ds a1σ1p12

N1
N2

∫ ∞
0 A2(s)ds

a2σ2p21
N2
N1

∫ ∞
0 A1(s)ds a2σ2p22

∫ ∞
0 A2(s)ds

]
.

The matrix P is similar to the matrix Q = R−1PR, with
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R =
[
N1 0
0 N2

]

and

Q =
[
a1σ1p11

∫ ∞
0 A1(τ )ds a1σ1p12

∫ ∞
0 A2(s)ds

a2σ2p21
∫ ∞
0 A1(s)ds a2σ2p22

∫ ∞
0 A2(s)ds

]
.

Thus R0 is the largest root of

det

[
a1σ1p11

∫ ∞
0 A1(s)ds − λ a1σ1p12

∫ ∞
0 A2(s)ds

a2σ2p21
∫ ∞
0 A1(s)ds a2σ2p22

∫ ∞
0 A2(s)ds − λ

]
= 0, (15)

and

R0 =
p11a1σ1Â1 + p22a2σ2Â2 +

√(
p11a1σ1Â1 − p22a2σ2Â2

)2 + 4p12p21a1σ1a2σ2Â1Â2

2

Here, we have written Âi for
∫ ∞
0 Ai(s)ds.

In order to obtain a more useful expression for R0, it is necessary to make some
assumptions about the nature of the mixing between the two groups. The mixing
is determined by the two quantities p12, p21 since p11 = 1 − p12 and p2 = 1 − p21.
However, these quantities are not completely arbitrary. The total number of contacts
made in unit time by members of group 1 with members of group 2 is a1p12N1 and
because this must equal the total number of contacts by members of group 2 with
members of group 1, we have a balance relation

p12a1
N2

= p21a2
N1

.

There has been much study of mixing patterns, see for example [1, 2, 5]. One
possibility is proportionate mixing, that is, that the number of contacts between
groups is proportional to the relative activity levels. In other words, mixing is random
but constrained by the activity levels [10]. Under the assumption of proportionate
mixing,

pij = ajNj

a1N1 + a2N2
,

and we may write
p11 = p21 = p1, p12 = p22 = p2,

with p1 + p2 = 1. In particular,

p11p22 − p12p21 = 0,

and thus
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R0 = p1a1σ1Â1 + p2a2σ2Â2.

Another possibility is preferred mixing [10], in which a fraction πi of each group
mixes randomly with its own group and the remaining members mix proportionately.
Thus, preferred mixing is given by

p11 = π1 + (1 − π1)p1, p12 = (1 − π1)p2
p21 = (1 − π2)p1, p22 = π2 + (1 − π2)p2,

(16)

with

pi = (1 − πi)aiNi

(1 − π1)a1N1 + (1 − π2)a2N2
.

Proportionate mixing is the special case of preferred mixing with π1 = π2 = 0.
It is also possible to have like-with-like mixing, in which members of each group

mixes only with members of the same group. This is the special case of preferred
mixing with π1 = π2 = 1. For like-with-like mixing,

p11 = p22 = 1, p12 = p21 = 0.

Then the roots of (15) are a1σ1Â1 and a2σ2Â2, and the reproduction number is

R0 = max
[
a1σ1Â1, a2σ2Â2

]
.

By calculating the partial derivatives of p11, p12, p21, p22 with respect to π1, π2,
we may show that p11 and p22 increase when either π1 or π2 is increased, while p12
and p21 decrease when either π1 or π2 is increased. From this, we may see from the
general expression for R0 that increasing either of the preferences π1, π2 increases
the basic reproduction number.

5 The Invasion Criterion

In order to obtain an invasion criterion, initially when S1(t) is close to S1(0) = N1

and S2(t) is close to S2(0) = N2, we replace S1(t) and S2(t) by N1,N2 respectively
to give a linear system, and the condition that this linear system have a solution
S1(t) = N1ert, S2(t) = N2ert is

1 = a1σ1p11

∫ ∞

0
e−rsA1(s)ds + a1σ1p12

∫ ∞

0
e−rsA2(s)ds

1 = a2σ2p21

∫ ∞

0
e−rsA1(s)ds + a2σ2p22

∫ ∞

0
e−rsA2(s)ds.

(17)
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The initial exponential growth rate is the solution r of the equation

det

⎡
⎣
a1σ1p11

∫ ∞
0 e−rsA1(s)ds − 1 a1σ1p12

∫ ∞
0 e−rsA2(s)ds

a2σ2p21
∫ ∞
0 e−rsA1(s)ds a2σ2p22

∫ ∞
0 e−rsA2(s)ds − 1

⎤
⎦ = 0. (18)

In the special case in which the two groups have the same infectivity distribution
but may have different activity levels and possibly vulnerability to infection, so that
A1(s) = A2(s) = A(s),R0 is the largest root of

det

[
a1σ1p11

∫ ∞
0 A(s)ds − λ a1σ1p12

∫ ∞
0 A(s)ds

a2σ2p21
∫ ∞
0 A(s)ds a2σ2p22

∫ ∞
0 A(s)ds − λ

]
(19)

and the initial exponential growth rate is the solution r of the equation

det

⎡
⎣
a1σ1p11

∫ ∞
0 e−rsA(s)ds − 1 a1σ1p12

∫ ∞
0 e−rsA(s)ds

a2σ2p21
∫ ∞
0 e−rsA(s)ds a2σ2p22

∫ ∞
0 e−rsA(s)ds − 1

⎤
⎦ = 0. (20)

Comparing the Eqs. (19) and (20), we see that each of R0/
∫ ∞
0 A(s)ds and

1/
∫ ∞
0 e−rsA(s)ds is the largest root of the equation

x2 − (a1p11σ1 + a2p22σ2)x + a1a2σ1σ2(p11p22 − p12p21) = 0.

Thus
R0∫ ∞

0 A(s)ds
= 1∫ ∞

0 e−rsA(s)ds
,

which implies the same relation as for the homogeneous mixing model. Thus, if
we assume heterogeneous mixing, we obtain the same estimate of the reproduction
number from observation of the initial exponential growth rate. The estimate of the
basic reproduction number from the initial exponential growth rate does not depend
on heterogeneity of the model. This result does not generalize to the case A1(s) �=
A2(s), but it does remain valid for an arbitrary number of groupswith different contact
rates.

In the special case of proportionate mixing, in which p11 = p21, p12 = p22, so that
p12p21 = p11p22, the basic reproduction number is given by

R0 = a1σ1p11

∫ ∞

0
A1(s)ds + a2σ2p22

∫ ∞

0
A2(s)ds,

and the Eq. (18) reduces to
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a1σ1p11

∫ ∞

0
e−rsA1(s)ds + a2σ2p22

∫ ∞

0
e−rsAi(s)ds = 1. (21)

There is an epidemic if and only ifR0 > 1.

6 The Final Size of a Heterogeneous Mixing Epidemic

With homogeneous mixing, knowledge of the basic reproduction number translates
into knowledge of the final size of the epidemic.However,with heterogeneousmixing
the size of the epidemic is not determined uniquely by the basic reproduction number.

For the heterogeneous mixing model (14) there is a pair of final size relations. We
divide the first equation of the model by S1(t) and integrate with respect to t from 0
to∞. Much as in the derivation of the final size relation for the homogeneous mixing
model we obtain

log
S1(0)

S1(∞)
= a1σ1

p11
N1

[N1 − S1(∞)]
∫ ∞

0
A1(s)ds

+a1σ1
p12
N2

[N2 − S2(∞)]
∫ ∞

0
A2(s)ds.

The same process applied to the second equation gives

log
S2(0)

S2(∞)
= a2σ2

p21
N1

[N1 − S1(∞)]
∫ ∞

0
A1(s)ds

+a2σ2
p22
N2

[N2 − S2(∞)]
∫ ∞

0
A2(s)ds.

Thus we have a pair of final size relations whichmay be solved for S1(∞), S2(∞).

log
S1(0)

S1(∞)
= a1σ1

p11
N1

[N1 − S1(∞)]
∫ ∞

0
A1(s)ds

+ a1σ1
p12
N2

[N2 − S2(∞)]
∫ ∞

0
A2(s)ds

log
S2(0)

S2(∞)
= a2σ2

p21
N1

[N1 − S1(∞)]
∫ ∞

0
A1(s)ds

+ a2σ2
p22
N2

[N2 − S2(∞)]int∞0 A2(s)ds.

(22)

The system of equations (22) has a unique solution (S1(∞), S2(∞)).
In order to prove the existence of a unique solution of (22), we define
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g1(x1, x2) = log
S1(0)

x1
− a1σ1

2∑
j=1

p1j

[
1 − xj

Nj

] ∫ ∞

0
Aj(s)

g2(x1, x2) = log
S1(0)

x2
− a2σ2

2∑
j=1

p1j

[
1 − xj

Nj

] ∫ ∞

0
Aj(s)ds.

A solution of (22) is a solution (x1, x2) of the system

g1(x1, x2) = 0, g2(x1, x2) = 0.

For each x2, g1(0+, x2) > 0, g1(S1(0), x2) < 0. Also, as a function of x1, g1(x1, x2)
either decreases or decrease initially and then increases to a negative valuewhen x1 =
S1(0). Thus for each x2 < S2(0), there is a unique x1(x2) such that g1(x1(x2), x2) =
0. Also, since g1(x1, x2) is an increasing function of x2, the function x1(x2) is
increasing. Now, since g2(x1, 0+) > 0, g2(x1, S2(0)) < 0, there exists x2 such that
g2(x1(x2), x2) = 0. Also, g2(x1(x2), x2) either decreases monotonically or decreases
initially and then increases to a negative value when x2 = S2(0). Therefore this solu-
tion is also unique. This implies that

(x1(x2), x2)

is the unique solution of the final size relations.

7 Conclusions

The age of infection model is a general framework for epidemic models. It allows
arbitrary compartmental structure as well as arbitrary distributions of stay in a com-
partment. In addition, it can be extended to situationswith heterogeneousmixing. For
a given disease outbreak, if we understand the compartmental structure and the dis-
tribution of stay in each compartment, it is possible to estimate the basic reproduction
number.

If themixing structure between groups is also known, the final size of the epidemic
can be estimated. The reproduction number of an epidemic model is not sufficient to
determine the size of the epidemic if there is heterogeneity in the model. Numerical
simulations indicate that models with heterogeneous mixing may give very different
epidemic sizes than models with the same basic reproduction number and homoge-
neous mixing. We conjecture that for a given value of the basic reproduction number
the maximum epidemic size for any mixing is obtained with homogeneous mixing.
This would suggest that the assumption of homogeneous mixing would be appro-
priate for estimating the worst case scenario in an epidemic. Since the public health
approach is to hope for the best but prepare for the worst, use of a homogeneous
mixing age of infection model with measurement of the initial exponential growth
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rate to estimate the basic reproduction number and the epidemic final size would
be a good first step in planning control strategies. When more data are obtained
we suggest that the number of groups to be considered for different treatment rates
should determine the number of groups to be used in the model. On the other hand,
the number of groups to be considered should also depend on the amount and reli-
ability of data, and these two criteria may be contradictory. A model with fewer
groups and parameters chosen as weighted averages of the parameters for a model
with more groups may give predictions that are quite similar to those of the more
detailed models. We suggest also that use of the final size relations for a model with
total population size assumed constant is a good time-saving procedure for making
predictions if the disease death rate is small.
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Optimal Control of Vaccination
in an Age-Structured Cholera Model
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Abstract A cholera model with continuous age structure is given as a system of
hyperbolic (first-order) partial differential equations (PDEs) in combination with
ordinary differential equations. Asymptomatic infected and susceptibles with partial
immunity are included in this epidemiology model with vaccination rate as a control;
minimizing the symptomatic infecteds while minimizing the cost of the vaccinations
represents the goal. With the method of characteristics and a fixed point argument, the
existence of a solution to our nonlinear state system is achieved. The representation
and existence of a unique optimal control are derived. The steps to justify the optimal
control results for such a system with first order PDEs are given. Numerical results
illustrate the effect of age structure on optimal vaccination rates.
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1 Introduction

Cholera is a diarrhoeal disease that affects millions of residents annually in regions
with poor sanitation across the world. The bacterium responsible for the outbreaks,
Vibrio cholerae, is environmentally endemic throughout Asia and Africa, and hence
without proper control strategies, we can well expect cholera to continue to plague
human populations indefinitely.

Populations with clean water and adequate sanitation are not vulnerable to a
cholera epidemic, even if an individual manages to contract the disease through
environmental interaction. However, when sanitation is lacking, there is a fecal-
environmental amplification of the bacteria in the human environment, and an out-
break ensues [36]. Once an outbreak is present, oral rehydration therapy is extremely
effective in preventing death, but the cost of the associated morbidity is quite large
[38]. Unfortunately, administration, especially prophylactically, of antibiotics may
lead to bacterial resistance quickly [24]. While antibiotic resistance is indeed an issue,
there remain effective antibiotics for treating cholera (like azithromycin in Haiti),
and their usage is frequently advocated as part of the effort to combat cholera [48].
Other key tools for decreasing morbidity by safely slowing the spread of cholera
are sanitation (clean water, waste treatment, food safety), vaccination, or perhaps
quarantine. Recent studies have sought to consider which of these control measures,
or which combination of measures, might be most cost-effective in reducing the
financial and societal cost of cholera outbreaks in affected regions [20, 38]. Because
cholera results in symptomatic infections more often for the very young or old, one
concern is whether age-based vaccination protocols that target priority populations
can effectively slow the spread of disease while limiting the costs of intervention.

There have been many developments in cholera modeling over the past fifteen
years. In 2001, Codeço formulated an ODE cholera model which considered the
interplay between infected humans and the concentration of cholera bacteria in
the surrounding environment and the resulting disease dynamics [6]. The next year
Merrell and Butler reported that freshly shed cholera bacteria from human intestines
are as much as 700 times more infectious than bacteria shed only hours previously
[31]. Thus, to model this pathway of infection, Hartley et al. [18] proposed a model
with hyperinfective vibrios introduced into the water reserves by the infected people
in the population; that new model explained the frequent explosive nature of the
disease due to the human-environmental amplification [36].

King et al. [22] proposed a two-patch cholera ODE model including classes for
‘inapparent’ infections and the feature of varying periods of waning immunity. The
work by Miller Neilan et al. [32] incorporated several ideas from the paper by King
et al. [22] into a model influenced by Hartley et al., [18], investigating the optimal
control balancing of three strategies to slow the spread of the disease in an ODE
model with hyperinfectious vibrios, both symptomatic and asymptomatic infected
populations, and waning immunity.

Other recent work includes a four compartment modeling approach that tracks
pathogen in the water; this system of four ODEs has been used to simulate cholera
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in the 19th century in London [44, 45]. The ODE system was further extended to a
multi-patch model to study the recent cholera outbreak in Haiti [46]. Mukandavire
et al. proposed another model that incorporated both direct and indirect transmis-
sion pathways and applied it to the 2008–2009 Zimbabwean cholera outbreak [33].
A more general modeling framework for cholera was proposed in [43, 47], and
later extended to a periodic environment for the investigation of seasonal impact
[39]. Some discussion of the influence of human behavior on cholera dynamics was
conducted in a recent study [49]. In addition, more sophisticated multi-group and
multi-patch cholera models incorporating general incidence functions appeared in
[9, 42].

Cholera dynamics such as the risk for contracting the disease and then for becom-
ing symptomatic [36] may depend on the age of the humans and amount of previous
exposure to this disease. The immunity from vaccination may also depend on age [34]
and previous exposure. To investigate optimal control of vaccination for cholera, we
use an age-structured model, a system with first order partial differential equations
(PDEs) and ordinary differential equations (ODEs).

We want to illustrate how optimal control can be applied to an age-structured PDE
and ODE coupled model for this specific disease application. Optimal control of a
first order PDE system is quite different from optimal control applied on second order
PDE systems, due to the difference in regularity of the state solutions. Specifically
elliptic and parabolic systems with nonlinearities in the lower order terms have H1

regularity in the spatial variable, while solutions of first order systems usually do not
have such regularity. The H1 regularity gives some additional compactness, which
usually gives a more straightforward path to obtain the existence of an optimal control.
One can see the background of optimal control of second order PDE in [28, 29] and
see some specific applications in [25, 27, 35]. To obtain the existence of an optimal
control in the first order PDE case, the foundation was laid by Barbu [4, 5] with the
use of Ekeland Principle’s [10] to obtain the existence of an optimal control. See
related applications of this technique in [2, 3, 5, 11, 12, 37]. We will point out the
steps in our analysis that are needed to use Ekeland’s Principle and this technique.

Our age-structured model includes seven human classes. There is one group of
humans who experience disease (susceptible S → infected I → recovered R) with
no prior immunity, while the remainder of the population has some partial immunity
as it moves through the S → I → R process. We assume that both classes of suscep-
tible humans are equally likely to become infected after contact with cholera bacte-
ria, but that partially immune individuals will experience asymptomatic infections,
while fully susceptible individuals can either have symptomatic or asymptomatic
infections. The length of illness is much shorter for asymptomatic infections than
for symptomatic infections, and additionally immunity from asymptomatic infec-
tions wanes more quickly than for symptomatic infections [22, 36]. Vaccinated
humans are placed in a vaccinated class, which is assumed to wane more slowly
than either recovered class due to the multi-strain nature of cholera vaccines. The
bacteria are modeled following Hartley et al. and Miller-Neilan et al. with hyper-
and low-infectious bacterial classes, [18, 32].
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This paper provides a discussion of an age-structured cholera model in Sect. 2,
as well as, the incorporation of intervention as a control. In Sect. 3, we prove the
existence of a solution in L1 and L∞ to our PDE system using a fixed point argument
on a representation derived from the method of characteristics. In Sect. 4, the con-
ditions for optimal control representation are determined and the characterization
of the control is developed. Section 5 provides the analysis of the characterization
and the uniqueness of the optimal control. In Sects. 5 and 6 respectively, we discuss
parameter choices and then illustrate some numerical results. Some conclusions are
given at the end.

2 The Model and Optimal Control Formulation

In our cholera model, the susceptible human population is compartmentalized into
those who are fully susceptible S and those with partial immunity Ŝ. We assume
that some age-varying proportion p(a) of the fully susceptible humans who become
infected will have symptomatic infections IS , while the remainder of those and the
partially immune humans, who become infected, will be asymptomatic IA. Humans
who recover from symptomatic infections enter one recovered class RS , while those
who recover from asymptomatic infections enter a separate class RA. Humans who
are in either susceptible class may become vaccinated V . All human classes are
modeled as functions of time, measured in weeks, and age, measured in years.

Infection occurs as a result of human contact with the cholera bacteria. As we
mentioned in the introduction, contact with freshly shed vibrios may be 700 times
more likely to result in infection than for contact with bacteria that have been shed
five or more hours in the past. Thus, we model the density of both low-infectious and
high-infectious bacteria in the environment using classes BL and BH , respectively,
depending only on time.

Figure 1 suggests the key interactions and corresponding rates assumed for this
cholera model, with parameter definitions given in Table 1.

In this work, we analyze the behaviors that result from an outbreak in a population
with separate fully susceptible and partially immune dynamics. We then propose
an intervention u(a, t) that represents a time- and age-based movement of humans
from susceptible classes to the vaccinated class. Formally, we consider the age-time
domain, Q = (0,A) × (0,T), with vaccination rates u in

Γ = { u ∈ L∞(Q) | 0 ≤ u(a, t) ≤ N1, a.e. in Q}, (1)

where N1 ≤ 1 denotes the maximum rate of vaccination. Given a control u ∈ Γ , the
corresponding state variables,

(S, IS,RS, Ŝ, IA,RA, V,BH ,BL) = (S, IS,RS, Ŝ, IA,RA, V,BH ,BL)(u)
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Control 

Control 

births

Fig. 1 Diagram of cholera dynamics. The solid arrows show movement through the S–I–R stages
of disease within and between the two human tracks, as well as the intervention moving humans
from susceptible classes to the vaccinated class. The dot-dashed lines in the figure refer to the
coefficient describing the infection resulting from contact between infected vibrios and humans.
The four dashed lines show the four routes in which immunity is lost

satisfy the state system as follows:

∂S

∂t
+ α

∂S

∂a
= −

[
βL(a)

BL(t)

κL(a) + BL(t)
+ βH (a)

BH (t)

κH (a) + BH (t)

]
S(a, t)

− d(a)S(a, t) + ω3(a)Ŝ(a, t) + ω4(a)V (a, t) − u(a, t)S(a, t), (2)
∂IS
∂t

+ α
∂IS
∂a

= p(a)

[
βL(a)

BL(t)

κL(a) + BL(t)
+ βH (a)

BH (t)

κH (a) + BH (t)

]
S(a, t)

− [d(a) + γ2(a) + e2(a)] IS(a, t) (3)
∂RS
∂t

+ α
∂RS
∂a

= − [d(a) + ω2(a)]RS(a, t) + γ2(a)IS(a, t), (4)

∂Ŝ

∂t
+ α

∂Ŝ

∂a
= −

[
βL(a)

BL(t)

κL(a) + BL(t)
+ βH (a)

BH (t)

κH (a) + BH (t)

]
Ŝ(a, t) (5)

− [d(a) + ω3(a) + u(a, t)] Ŝ(a, t) + ω1(a)RA(a, t)

+ ω2(a)RS(a, t), (6)
∂IA
∂t

+ α
∂IA
∂a

=
[
βL(a)

BL(t)

κL(a) + BL(t)
+ βH (a)

BH (t)

κH (a) + BH (t)

]
Ŝ(a, t)

− [d(a) + γ1(a) + e1(a)] IA(a, t)

+ (1 − p(a))

[
BL(t)

κL(a) + BL(t)
+ βH (a)

BH (t)

κH (a) + BH (t)

]
S(a, t), (7)

∂RA
∂t

+ α
∂RA
∂a

= − [d(a) + ω1(a)]RA(a, t) + γ1(a)IA(a, t), (8)
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Table 1 Summary of notation for parameters

Parameter Description

u Rate of vaccination for S and Ŝ

A1 Weight for human morbidity in OC

A2, A3 Weights for cost in OC

p Prob. of indiv. in S to be symp. when infected

βL Ingestion rate of non-HI vibrio from environment

βH Ingestion rate of HI vibrio from environment

κL Half saturation constant of non-HI vibrios

κH Half saturation constant of HI vibrios

e1 Cholera-related death rate for asymp. infecteds

e2 Cholera-related death rate for symp. infecteds

γ1 Cholera recovery rate for asymptomatic infecteds

γ2 Cholera recovery rate for symptomatic infecteds

ω1 Rate of waning cholera immunity from RA to Ŝ

ω2 Rate of waning cholera immunity from RS to Ŝ

ω3 Rate of waning cholera immunity from Ŝ to S

ω4 Rate of waning cholera immunity from V to S

η1 Rate of contribution to HI vibrios in environment by asymptomatic infecteds

η2 Rate of contribution to HI vibrios in environment by symptomatic infecteds

χ Transition rate of vibrios from HI to non-HI state

δ Death rate of vibrios from HI to non-HI state

f fecundity rate of humans

d Natural death rate of humans

∂V

∂t
+ α

∂V

∂a
= u(a, t)

[
S(a, t) + Ŝ(a, t)

]
− [ω4(a) + d(a)] V (a, t), (9)

dBH
dt

=
∫ A

0
η1(a)IA(a, t)da +

∫ A

0
η2(a)IS(a, t)da − χ(t)BH (t), (10)

dBL
dt

= χ(t)BH (t) − δ(t)BL(t). (11)

In the above equations, α = 1
52

weeks
years is a coefficient introduced to balance the

units of age a in years and time t in weeks. Also, A which appears in the equation
for BH is an upper bound on the age of people in the model (here A = 72 years). The
human compartments have units of number of individuals, while the two bacteria
compartments have units of number of vibrios/ml.
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The boundary and initial conditions are given below. Since there are low disease
rates in infants, due perhaps to breastfeeding or cross-protection from Escherichia
coli infections that are caused by a similar toxin, [14, 40], we choose to place new-
borns in the symptomatic recovered class.

S(0, t) = 0, (12)

IS(0, t) = 0, (13)

RS(0, t) =
∫ A

0
(S(a, t) + Ŝ(a, t) + IS(a, t) + IA(a, t)

+RS(a, t) + RA(a, t) + V (a, t))f (a)da, (14)

Ŝ(0, t) = 0, (15)

IA(0, t) = 0, (16)

RA(0, t) = 0, (17)

V (0, t) = 0, (18)

BH(0) = BH0, BL(0) = BL0, (19)

where the fecundity function f is modeled as

f (a) =
{

1
5 sin2

[(
a−15

30

)
π
]
, 15 < a < 45,

0, otherwise.
(20)

S(a, 0) = S0(a), IS(a, 0) = IS0(a), RS(a, 0) = RS0(a)

Ŝ(a, 0) = Ŝ0(a), IA(a, 0) = IA0(a),

RA(a, 0) = RA0(a), V (a, 0) = V0(a), BH(0) = BH0 = 0, BL(0) = BL0. (21)

We wish to suggest an age- and time-based vaccination strategy that is effective
in decreasing the morbidity due to a cholera outbreak while being mindful of cost.
Thus, we seek to minimize the functional,

J (u) =
∫ T

0

∫ A

0
A1IS(a, t) + A2 u(a, t)(S(a, t) + Ŝ(a, t) + IA(a, t)

+RA(a, t)) da dt + 1

2

∫ T

0

∫ A

0
A3 u

2(a, t) da dt, (22)

over u ∈ Γ , where A1, A2 and A3 are weight factors. The weight A1 is a balancing
term suggesting our emphasis on mitigating morbidity within the population. The
weightA2 balances the cost of the intervention on the two susceptible populations and
the two asymptomatic populations. Thus there is a cost associated with vaccinating



228 K.R. Fister et al.

humans who may be unaware of recent asymptomatic infections though the model
does not assume movement to the vaccinated class V from the asymptomatic classes
IA and RA. If the vaccination of those persons in the two asymptomatic classes affects
their immune status, one could move them into the vaccinated class V , but we did
not include this feature in our model. To clarify in our minimization problem, an
optimal control u∗ in Γ will satisfy

J (u∗) = inf
u∈Γ

J (u).

3 Existence of the Solution to the State System

Given a control, the existence of the corresponding state solution can be obtained
by using a fixed point theorem and the representation of solution by the method of
characteristics, [4, 50]. Then we prove the existence of a using a contraction mapping
principle.

We let M be chosen such that

0 ≤ S0(a), IS0(a), RS0(a), Ŝ0(a), IA0(a), RA0(a), V0(a) a.e., (23)∫ A

0
S0(a)da ≤ M,

∫ A

0
IS0(a)da ≤ M,

∫ A

0
RS0(a)da ≤ M, (24)

∫ A

0
Ŝ0(a)da ≤ M,

∫ A

0
IA0(a)da ≤ M,

∫ A

0
RA0(a)da ≤ M, (25)

∫ A

0
V0(a)da ≤ M, 0 ≤ BH0,BL0 ≤ M. (26)

We define our state solution space as

X =
{
(S, IS,RS, Ŝ, IA,RA, V,BH ,BL) ∈ (L∞(0,T ;L1(0,A)))7 × (L∞(0,T))2|

sup
t

∫ A

0
|S(a, t)|da ≤ 2M, sup

t

∫ A

0
|IS(a, t)|da ≤ 2M, sup

t

∫ A

0
|RS(a, t)|da ≤ 2M,

sup
t

∫ A

0
|Ŝ(a, t)|da ≤ 2M, sup

t

∫ A

0
|IA(a, t)|da ≤ 2M, sup

t

∫ A

0
|RA(a, t)|da ≤ 2M,

sup
t

∫ A

0
|V (a, t)|da ≤ 2M, |BH (t)| ≤ 2M, |BL(t)| ≤ 2M a.e. t

}
.

To illustrate the structure of the representation of the solution from the method of
characteristics (including the birth terms), see the two terms below.
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RS(a, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e− ∫ t
0 d(ατ−αt+a)dτRS0(a − αt)

+ ∫ t
0 e

− ∫ t
s d(ατ−αt+a)dτ× if a > αt

(ω2(αs + a − αt)RS(αs + a − αt, s)+
γ2(αs + a − αt)IS(αs + a − αt, s)) ds

( 1
α
)
∫ a

0 e− ∫ a
s

d(τ )

α dτ×
∫ A

0

[
S + Ŝ + V + IS + IA + RS + RA

]
(s, αt−a

α
)f (s) ds

+( 1
α
)
∫ a

0 e− ∫ a
s

d(τ )

α dτ× if a < αt,

ω2(s)RS(s,
s+αt−a

α
) + γ2(s)IS(s,

s+αt−a
α

) ds
(27)

and

BH(t) = BH0e
−χt +

∫ t

0

∫ A

0
e−χ(t−s) [η1(a)IA(a, t) + η2(a)Is(a, t)] da ds. (28)

To prove the following existence theorem, one would have a representation of
each state variable similar to the representation above for RS . To use a fixed point
theorem, define a map as

L : X → X such that

where for N = (S, IS,RS, Ŝ, IA,RA, V,BH ,BL) ∈ X, we define

L(N) = (L1(N),L2(N),L3(N),L4(N),L5(N),L6(N),L7(N),L8(N),L9(N)).

Then the right side of (27) is L3(N). In a fixed point argument for the operator L,
the third component would be RS = L3(N). A fixed point argument (similar to [11])
would give the existence of a solution as stated in this theorem. From results in
Chap. 2 in Webb [50] with the specific structure of the right hand sides of the state
equations, we can obtain the non-negativity of the solutions.

Theorem 1 (Existence of solutions) For u ∈ Γ as defined in (1) and T sufficiently
small, there exists a solution (S, IS,RS, Ŝ, IA,RA, V,BH ,BL) to the state system (2)–
(11) with boundary and initial conditions (12)–(19) and (21).

In order to prove the optimality conditions and to prove the existence of an optimal
control, we require estimates involving Lipschitz conditions of the solutions in terms
of the control.

Theorem 2 For T sufficiently small, the map:

u ∈ Γ → N = N(u) ∈ X.

is Lipschitz in the following ways where the dependence on age and time is
suppressed:
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∫
Q
(|S1 − S2| + |IS1 − IS2| + |RS1 − RS2| + |Ŝ1 − Ŝ2|

+|IA1 − IA2| + |RA1 − RA2| + |V1 − V2|) da dt
+

∫ T

0
(|BH1 − BH2| + |BL1 − BL2|) dt ≤ C1T

(∫
Q

|u1 − u2|(a, t) da dt
)

and

‖S1 − S2‖L∞(Q) + ‖IS1 − IS2‖L∞(Q) + ‖RS1 − RS2‖L∞(Q) + ‖Ŝ1 − Ŝ2‖L∞(Q)

+‖IA1 − IA2‖L∞(Q) + ‖RA1 − RA2‖L∞(Q) + ‖BH1 − BH2‖L∞(0,T)

+‖BL1 − BL2‖L∞(0,T) ≤ C2T
(‖u1 − u2‖L∞(Q)

)
,

where (Si, ISi,RSi, Ŝi, IAi,RAi, Vi,BHi,BLi)=(Si, ISi,RSi, Ŝi, IAi,RAi,Vi,BHi,BLi)(ui)
for i = 1, 2 and for u1 and u2 in Γ .

The proof of these estimates follow similarly as in the corresponding result found
in Fister and Lenhart, [11, 12]. The proof utilizes the representations of the state
solution system coming from the method of characteristics. The representations for
the state vectors corresponding to two controls, u1 and u2, are subtracted and then
the differences are estimated. Additionally, one must use care in the order in which
these estimates are determined, especially for the case when age is larger than time.
From the representations found through the method of characteristics, we first find
the L1 estimate. Then we estimate L1 integral of the difference of the state variables
depending on age and time in the age variable to obtain the L∞ estimate.

4 Conditions for Optimality

We derive the sensitivity functions which provide the differentiability of the solu-
tion map of u → N = N(u) whereN = (S, IS,RS, Ŝ, IA,RA, V,BH ,BL). These func-
tions provide the information necessary to differentiate the objective functional with
respect to the control. The sensitivity functions are then used to determine the adjoint
equations.

Theorem 3 The map

u ∈ Γ → N = N(u) ∈ X

is differentiable in the following sense:

N(u + εl) − N(u)

ε
→ (φ,ψS, rS, φ̂,ψA, rA, v, θH , θL)
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in (L∞(Q))7 × (L∞(0,T))2, for (u + εl), u ∈ Γ and ε → 0, with l ∈ L∞(Q). Fur-
thermore, the sensitivities (φ,ψS, rS, φ̂,ψA, rA, v, θH , θL) satisfy

∂φ

∂t
+ α

∂φ

∂a
= −βL(a)

[
BL(t)

κL(a) + BL(t)
φ(a, t) + S(a, t)κL(a)θL(t)

(κL(a) + BL(t))2

]

−βH (a)

[
BH (t)

κH (a) + BH (t)
φ(a, t) + S(a, t)κH (a)θH (t)

(κH (a) + BH (t))2

]

− d(a)φ(a, t) + ω3φ̂(a, t) + ω4v(a, t)

− u(a, t)φ(a, t) − l(a, t)S(a, t) (29)
∂ψS

∂t
+ α

∂ψS

∂a
= p(a)βL(a)

[
BL(t)

κL(a) + BL(t)
φ(a, t) + S(a, t)κL(a)θL(t)

(κL(a) + BL(t))2

]

+ p(a)βH (a)

[
BH (t)

κH (a) + BH (t)
φ(a, t) + S(a, t)κH (a)θH (t)

(κH (a) + BH (t))2

]

− [d(a) + γ2(a) + e2(a)] ψS(a, t) (30)
∂rS
∂t

+ α
∂rS
∂a

= − [d(a) + ω2(a)] rS(a, t) + γ2(a)ψS(a, t) (31)

∂φ̂

∂t
+ α

∂φ̂

∂a
= −βL(a)

[
BL(t)

κL(a) + BL(t)
φ̂(a, t) + Ŝ(a, t)κL(a)θL(t)

(κL(a) + BL(t))2

]

−βH (a)

[
BH (t)

κH (a) + BH (t)
φ̂(a, t) + Ŝ(a, t)κH (a)θH (t)

(κH (a) + BH (t))2

]

− [d(a) + ω3(a) + u(a, t)] φ̂(a, t) − l(a, t)Ŝ(a, t)

+ω1(a)rA(a, t) + ω2(a)rS(a, t), (32)

∂ψA

∂t
+ α

∂ψA

∂a
= βL(a)

[
BL(t)

κL(a) + BL(t)
φ̂(a, t) + Ŝ(a, t)κL(a)θL(t)

(κL(a) + BL(t))2

]

+βH (a)

[
BH (t)

κH (a) + BH (t)
φ̂(a, t) + Ŝ(a, t)κH (a)θH (t)

(κH (a) + BH (t))2

]

− [d(a) + γ1(a) + e1(a)] ψA(a, t)

+ (1 − p(a))βL(a)

[
BL(t)

κL(a) + BL(t)
φ(a, t) + S(a, t)κL(a)θL(t)

(κL(a) + BL(t))2

]

+ (1 − p(a))βH (a)

[
BH (t)

κH (a) + BH (t)
φ(a, t) + S(a, t)κH (a)θH (t)

(κH (a) + BH (t))2

]
(33)

∂rA
∂t

+ α
∂rA
∂a

= − [d(a) + ω1(a)] rA(a, t) + γ1(a)ψA(a, t), (34)

∂v

∂t
+ α

∂v

∂a
= u(a, t)

[
φ(a, t) + φ̂(a, t)

]
+ l(a, t)

[
S(a, t) + Ŝ(a, t)

]

− [ω4(a) + d(a)] v(a, t), (35)

dθH

dt
=

∫ A

0
η1(a)ψA(a, t)da +

∫ A

0
η2(a)ψS(a, t)da − χ(t)θH(t), (36)

dθL

dt
= χ(t)θH(t) − δ(t)θL(t), (37)

with initial and boundary conditions
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For a ∈ (0,A),

φ(a, 0) = 0, ψS(a, 0) = 0, rS(a, 0) = 0, φ̂(a, 0) = 0, ψA(a, 0) = 0,

rA(a, 0) = 0, v(a, 0) = 0;
for t ∈ (0,T),

φ(0, t) = 0, ψS(0, t) = 0, φ̂(0, t) = 0, ψA(0, t) = 0,

rA(0, t) = 0, v(0, t) = 0,

rS(0, t) =
∫ A

0
f (a)

[
φ + φ̂ + ψS + ψA + rS + rA

]
(a, t) da;

θH(0) = 0, θL(0) = 0. (38)

Proof We see that the map of the control to the solution, u → N is Lipschitz in L∞ by
Theorem 2, Thus, the Gateaux derivative for each of the sensitivity variables exists.
[4]. We pass to the limit in the equations satisfied by the quotients (like (Sε−S)(a,t)

ε
) We

find that (φ,ψS, rS, φ̂,ψA, rA, v, θH , θL) satisfies our system (29–37) with boundary
conditions (38). �

To derive the optimal control representation, we incorporate adjoint variables
and an adjoint operator coming from the sensitivity functions. Using the following
notation:

ζ(a, t) = βL(a)
BL(t)

κL(a) + BL(t)
+ βH(a)

BH(t)

κH(a) + BH(t)
,

H(a, t) = βH(a)κH(a)

(κH(a) + BH(t))2
, and K(a, t) = βL(a)κL(a)

(κL(a) + BL(t))2
, (39)

the adjoint system associated with control u(a, t) and state variables

(S, IS,RS, Ŝ, IA,RA, V,BH ,BL)

is

−
(

∂λ1

∂t
+ α

∂λ1

∂a

)
= −ζ(a, t)λ1(a, t) − (d(a) + u(a, t))λ1(a, t)

+ p(a)ζ(a, t)λ2(a, t)

+ (1 − p(a))ζ(a, t)λ5(a, t) + u(a, t)λ7(a, t)

+A2u(a, t) + λ3(0, t)f (a) (40)

−
(

∂λ2

∂t
+ α

∂λ2

∂a

)
= −(d(a) + γ2(a) + e2(a))λ2(a, t) + γ2(a)λ3(a, t)

+ η2(a)λ8(t) + λ3(0, t)f (a) + A1 (41)

−
(

∂λ3

∂t
+ α

∂λ3

∂a

)
= − [d(a) + ω2(a)] λ3(a, t) + ω2(a)λ4(a, t)

+λ3(0, t)f (a), (42)
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−
(

∂λ4

∂t
+ α

∂λ4

∂a

)
= −ζ(a, t)λ4(a, t) − (d(a) + ω3(a))λ4(a, t) − u(a, t)λ4(a, t)

+ω3(a)λ1(a, t) + ζ(a, t)λ5(a, t)

+ u(a, t)λ7(a, t) + A2u(a, t) + λ3(0, t)f (a) (43)

−
(

∂λ5

∂t
+ α

∂λ5

∂a

)
= −(d(a) + e1(a) + γ1(a))λ5(a, t) + γ1(a)λ6(a, t)

+ η1(a)λ8(t) + λ3(0, t)f (a) + A2u(a, t), (44)

−
(

∂λ6

∂t
+ α

∂λ6

∂a

)
= − [d(a) + ω1(a)] λ6(a, t) + ω1(a)λ4(a, t)

+λ3(0, t)f (a) + A2u(a, t), (45)

−
(

∂λ7

∂t
+ α

∂λ7

∂a

)
= −(d(a) + ω4(a))λ7(a, t)

+ω4(a)λ1(a, t) + λ3(0, t)f (a) (46)

− dλ8

dt
= χ(t)(λ9(t) − λ8(t))

+
∫ A

0
H(a, t)

[−λ1(a, t) + p(a)λ2(a, t) + (1 − p(a))λ5(a, t)
]
S(a, t) da

+
∫ A

0
H(a, t)(λ5(a, t) − λ4(a, t))Ŝ(a, t) da (47)

−dλ9

dt
=

∫ A

0
K(a, t)

[−λ1(a, t) + p(a)λ2(a, t) + (1 − p(a))λ5(a, t)
]
S(a, t) da

+
∫ A

0
K(a, t)(λ5(a, t) − λ4(a, t))Ŝ(a, t) da − δ(t)λ9(t), (48)

with the initial and boundary conditions as

λi(a,T) = 0 for a ∈ [0,A] and i = 1, . . . , 7

λi(A, t) = 0 for t ∈ [0,T ] and i = 1, . . . , 7

λ8(T) = λ9(T) = 0 (49)

We note that the existence of the adjoint solutions can be proven through a fixed
point argument mapping principle [4]. The solution to the adjoint system satisfies a
Lipschitz condition, which needed in the proof of the existence and uniqueness of
our optimal control.
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Theorem 4 For u ∈ Γ , the adjoint system (40)–(49) has a weak solution

(λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9)

in (L∞(Q))7 × (L∞(0,T))2 such that

‖λ1 − λ̂1‖L∞(Q) + ‖λ2 − λ̂2‖L∞(Q) + ‖λ3 − λ̂3‖L∞(Q) + ‖λ4 − λ̂4‖L∞(Q)

+‖λ5 − λ̂5‖L∞(Q) + ‖λ6 − λ̂6‖L∞(Q) + ‖λ7 − λ̂7‖L∞(Q)

+‖λ8 − λ̂8‖L∞(0,T) + ‖λ9 − λ̂9‖L∞(0,T)

≤ C5T
(‖u1 − u2‖L∞(Q)

)
, (50)

with adjoint solutions (λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9) and (λ̂1, λ̂2, λ̂3, λ̂4, λ̂5, λ̂6,

λ̂7, λ̂, λ̂9) corresponding to control u1(a, t) and u2(a, t), respectively.

We next determine the characterization of our optimal control.

Theorem 5 If u∗ in Γ is an optimal control that minimizes J (u) and

(S, IS,RS, Ŝ, IA,RA, V,BH ,BL;λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9)

are the corresponding state and adjoint variables, then

u∗(a, t) = min
[
N1, max

[
0,

(
λ1S+λ4Ŝ−λ7(S+Ŝ)−A2(S+Ŝ+IA+RA)

A3

)]]
(51)

a.e. in L∞(Q).

Proof Since u∗ is an optimal control, then we have

0 ≤ lim
ε→0+

J (u∗ + εl) − J (u∗)
ε

(52)

=
∫ T

0

∫ A

0

(
A1ψS + A2u

∗φ + A2u
∗φ̂ + A2u

∗ψA + A2u
∗rA

)
da dt

+
∫ T

0

∫ A

0

[
A2l(a, t)

(
S + Ŝ + IA + RA

)
+ A3u

∗l(a, t)
]
da dt

=
∫ T

0

∫ A

0

(
λ1(−l(a, t)S) + λ4(−l(a, t)Ŝ) + λ7l(a, t)(S + Ŝ)

)
da dt

+
∫ T

0

∫ A

0

[
A2l(a, t)

(
S + Ŝ + IA + RA

)
+ A3u

∗l(a, t)
]
da dt

=
∫ T

0

∫ A

0
l(a, t)

[
A2

(
S + Ŝ + IA + RA

)
+ A3u

∗ − λ1S − λ4Ŝ + λ7(S + Ŝ)
]
, (53)

where we simplify terms through the adjoint and the sensitivity functions and using
integration by parts. The optimal control characterization result follows from standard
optimality arguments with choosing the variation l. �
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5 Existence of the Optimal Control

We next prove the result of this manuscript that shows the key difference in obtaining
existence of optimal controls in first order PDEs versus parabolic PDEs. The difficulty
is to find a sequence of controls and corresponding states that converges to the
optimal control and states. There is a lack of compactness in this setting and one can
use Ekeland’s Principle [4, 10] to use the convergence of minimizing sequences of
approximate functionals. We note that J (u) is lower semi-continuous with respect
to strong L1(Q) convergence. However, it is not so with respect to weak L1(Q)

convergence. To use Ekeland’s Principle for our functional J , we need that J is
bounded below and lower semicontinuous in L1(Q). Note that 0 is a lower bound on
J here. The lower semicontinuity follows from the Lipschitz properties.

For ε > 0, there exists (uε) in L1(Q) such that

(i) J (uε) < inf
u∈Γ

J (u) + ε (54)

(ii) J (uε) = min
{
J (u) + √

ε‖uε − u‖L1(Q)

}
. (55)

Note that uε is a minimizer for Jε defined by

Jε(u) = J (u) + √
ε
(‖uε − u‖L1(Q)

)
. (56)

For completeness, we provide the representation of the approximate optimal con-
trol through the theorem below. This proof can be obtained similar to the proof of
Theorem 5 by differentiating Jε(u).

Theorem 6 If uε is an optimal control minimizing the functional Jε(u), then

uε = min

[
N1, max

[
0,

(
λε

1S
ε + λε

4Ŝ
ε − λε

7(S
ε + Ŝε) − A2(Sε + Ŝε + IεA + Rε

A) − √
εθε

A3

)]]

where the function θε belongs to L∞(Q) such that |θε(a, t)| ≤ 1 for all (a, t) ∈ Q.

The existence of a unique optimal control is proven below using the L∞ Lipschitz
estimates for the states and the adjoints in terms of the control and the approximate
minimizing sequence through the use of Ekeland’s principle.

Theorem 7 If
T

A3
is sufficiently small, there exists a unique optimal control u∗ min-

imizingJ (u).

Proof First we define a function F(u) as

F : Γ → Γ by

F(u) = max

[
N1, min

[
0,

(
λ1S + λ4Ŝ − λ7(S + Ŝ) − A2(S + Ŝ + IA + RA)

A3

)]]
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with the corresponding state and adjoint variables associated with control u(a, t).
Consider two controls, u1(a, t) and u2(a, t), and corresponding states, with the terms
corresponding to u2 having subscripts 2 on the states and hats on the adjoints. All
of the norms are in L∞(Q) in the work below unless otherwise noted. With use of
Lipschitz properties, we have

‖F(u1) − F(u2)‖ ≤ ||
(

λ1S + λ4Ŝ − λ7(S + Ŝ) − A2(S + Ŝ + IA + RA)

A3

)

−
(

λ̂1S2 + λ̂4Ŝ2 − λ̂7(S2 + Ŝ2) − A2(S2 + Ŝ2 + IA2 + RA2)

A3

)
||

≤ ‖λ1‖ ‖S − S2‖ + ‖S2‖
∥∥∥λ1 − λ̂1

∥∥∥ + ‖λ4‖
∥∥∥Ŝ − Ŝ2

∥∥∥ +
∥∥∥Ŝ2

∥∥∥
∥∥∥λ4 − λ̂4

∥∥∥
+

∥∥∥Ŝ + S
∥∥∥

∥∥∥λ7 − λ̂7

∥∥∥ +
∥∥∥λ̂7

∥∥∥
(∥∥∥Ŝ − Ŝ2

∥∥∥ + ‖S − S2‖
)

+ ‖A2‖L∞(0,A)

(∥∥∥Ŝ − Ŝ2

∥∥∥ + ‖S − S2‖ + ‖IA − IA2‖ ‖RA − RA2‖
)

≤ C6T

A3
‖u1 − u2‖L∞(Q) (57)

where the constant C6 depends on the L∞ bounds on the state and adjoint solutions
and the Lipschitz constants. If C6T

A3
< 1, then F(u) has a unique fixed point, called u∗.

To prove this fixed point is an optimal control, we use the approximate sequence uε

generated through Ekeland’s principle with its associated state and adjoint variables
having superscripts of ε and obtain

∥∥∥∥∥F(uε) − min

[
N1, max

[
0,

(
λε

1S
ε + λε

4Ŝ
ε − λε

7(S
ε + Ŝε) − A2(Sε + Ŝε + IεA + Rε

A) − √
εθε

A3

)]]∥∥∥∥∥

=
∣∣∣
∣∣∣
(

λε
1S

ε + λε
4Ŝ

ε − λε
7(S

ε + Ŝε) − A2(Sε + Ŝε + IεA + Rε
A)

A3

)

−
(

λε
1S

ε + λε
4Ŝ

ε − λε
7(S

ε + Ŝε) − A2(Sε + Ŝε + IεA + Rε
A) − √

εθε

A3

) ∣∣∣
∣∣∣

≤
√

εθε

A3
≤

√
ε

A3
. (58)

We use the fixed point estimate (57) and the estimate with the approximate mini-
mizer (58) to show the convergence of the approximate minimizer to our fixed point
u∗(a, t) in L∞(Q). We have

∥∥u∗ − uε

∥∥

=
∥∥∥∥∥F(u∗) − min

[
N1, max

[
0,

(
λε

1S
ε + λε

4Ŝ
ε − λε

7(S
ε + Ŝε) − A2(Sε + Ŝε + IεA + Rε

A) − √
εθε

A3

)]]∥∥∥∥∥
≤ ∥∥F(u∗) − F(uε)

∥∥

+
∥∥∥∥∥F(uε) − min

[
N1, max

[
0,

(
λε

1S
ε + λε

4Ŝ
ε − λε

7(S
ε + Ŝε) − A2(Sε + Ŝε + IεA + Rε

A) − √
εθε

A3

)]]∥∥∥∥∥
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≤ C6T

A3
‖u∗ − uε‖L∞(Q) +

√
ε

A3
. (59)

For
T

A3
small, we have

∥∥u∗ − uε

∥∥ ≤
√

ε

A3
× 1

1 − C6T
(

1
A3

)

for which the convergence follows.
Since our approximate minimizer converges to our fixed point, we need to show

that our fixed point minimizes the objective functional. Using Ekeland’s princi-
ple, we pass to the limit in J (uε) < inf

u∈Γ
J (u) + ε as ε → 0 and we see that

J (u∗) ≤ inf
u∈Γ

J (u). �

With our representation of our now unique optimal control, we have a solution
of our optimality system which is our state system (2–11) coupled with our adjoint
system (40–47) with the corresponding initial and boundary conditions found in (21)
and (49).

6 Parameter Choices

One of the difficulties in trying to create meaningful models is that we have many
unknown parameters and a limited amount of observational data. There are a number
of parameter assumptions that deserve discussion. While this initial work shows the
potential for optimal control to shed light on age-based vaccination strategies for
a cholera epidemic, we believe future work should be informed by the uncertainty
within our parameter choices. Given a specific dataset, one could alternatively fit
many of the model parameters using data.

Our choices for the initial state of the populations are in Table 2. If a cholera epi-
demic affects a long-affected region, we expect Ŝ to be large, but in epidemiologically
naive populations we expect Ŝ to be zero; here we choose an initial Ŝ population in
the middle of those two cases. The assumptions are summarized in Table 2.

6.1 Proportion of Symptomatic Infections p

An interesting aspect of the spread of cholera is that only some humans will have
symptomatic infections. The number of severe infections depends on the bacterial
biotype [21], genetic factors [36], as well as perhaps nutrition (see [36] versus [15]).
Prior exposure to the disease is known to lead to complete or partial immunity,
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Table 2 Initial conditions and age distributions

State variable Age distribution

S(a, 0) 450a, 0 ≤ a ≤ 2,−0.4289a2 + 18.1373a + 867.402, 2 < a ≤ 72

Ŝ(a, 0) −0.381a2 + 14.2381a + 900, 0 ≤ a ≤ 72

IA(a, 0) 0.02Ŝ(a, 0)

IS(a, 0) 0.02S(a, 0)

RA(a, 0) 0

RS(a, 0) 0

V (a, 0) 0

BL(0) κL
100

BH (0) 0

[30, 36], so that minimally recovery from symptomatic cholera should provide short-
term protection from a severe case of cholera [13]. Data prove that in areas for which
the disease occurs frequently, there are fewer symptomatic illnesses [36].

Prior studies leave the role of asymptomatic individuals in the spread of cholera a
somewhat open question with a variety of values of the proportion of asymptomatic
infections [13, 22, 36, 41]. Our choice for values of p(a), the proportions of individu-
als of age a in the fully susceptible class S who will experience symptomatic cholera
infections, is complicated and seeks to explain some proportion of asymptomatic
illness through the mechanism of gaining partial immunity through recovery from
symptomatic disease.

A Bangladeshi study found that children under the age of five infected with Vibrio
cholerae O1 El Tor were two to three times more likely to become symptomatic than
older-age individuals [36]. In our simulations, we hypothesized that a large majority
of fully susceptible youth and elderly would be likely to experience symptoms,
while a smaller portion of the remaining population would experience symptoms.
We assume for the purposes of this illustration that

p(a) = 0.75 − 0.021a + 0.00029a2,

with a given in years.

6.2 Transmission Rates βL and βH

Compounding the misunderstanding of the numbers of asymptomatic infections is a
lack of understanding of the environmental contribution of humans who are unknow-
ingly shedding infectious bacteria, albeit in smaller quantities than for their infec-
tious counterparts. Some researchers suggest the inapparent infections may drive the
spread of disease [22, 41], while others claim the impact from this class of individuals
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is minimal [36]. As with many models, the contact rates βL and βH of humans with
low-infectious and hyper-infectious bacteria, are practically impossible to identify.
While previously many models, perhaps following [6], where the contact rate is 1.5,
have based the values of βL and βH (or only one of these depending on the model)
on the amount of water that an average human would drink in a day, the reality is
that the contact with the bacteria additionally comes from contamination of food and
household items [36]. In various cholera models, we observe ranges of beta from
0.023 to 2.1 [33] versus 0.00108–0.00285 [8].

In areas of endemicity, cases of cholera are concentrated in children aged 2–9
with a secondary peak in women in their childbearing years (15–35) [21]. For our
simulations, we hypothesize that infants are protected through breast-feeding, and
elderly are protected through less environmental contact. We suppose that youth and
those caring for youth would be subject to the highest bacterial contact. We define
M = 1.5 milliliters per day, and we assume a piecewise linear function allowing no
contact for infants, heading to a contact rate of M at age 7, decreasing to the rate of
M
10 contact at age of 15, increasing once more to M

2 at age 25, and finally decreasing
to M

2 at our terminal age of 72:

βL(a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if a < 2
M
5 (a − 2), if 2 ≤ a ≤ 7

M
80 (143 − 9a), if 7 < a ≤ 15
M
50 (2a − 25), if 15 < a ≤ 25
M

470 (335 − 4a) otherwise

, (60)

βH = 1.5βL. (61)

6.3 Waning Immunity

Given the disagreement in the literature regarding the proportions of the population
who experience symptomatic infections, it is not surprising that choices for the length
of immunity for humans in each class (denoted by ω1 and ω2 in our model) are in
doubt.

Although statistical pairing of data from Bangladesh with a mathematical model
for cholera suggested that the immunity from an asymptomatic infection most likely
lasts a significantly shorter period of time than does the immunity from symptomatic
infection [22], it is difficult to validate this idea from a microbiological viewpoint.
Multiple sources suggest that length of immunity from symptomatic cholera is likely
at least 3 years [21, 41]. We will assume that symptomatic and asymptomic infections
result in equivalent waning immunity.

Additionally, we have not found an estimate for the rate of waning of partial
immunity outside of that deduced from a mathematical model (10 years [23]). We
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assume that partial immunity wanes over a period of 5 years. Due to our boundary
conditions and our intention to remove infants from the susceptible class for only a
short time period, we assume age-based waning is only slow after age 3.

Finally, we have to approximate immunity due to vaccination using the fact that
the World Health Organization estimates 50 % efficacy over 3–5 years and 67 %
after 2 years. A study by the International Vaccine Institute suggests 85 % protective
efficacy in the first 6 months, and 60 % after 18 months.

As a mechanistic tool to allow protection for infants, we assume that infants
are born with immunity, but that the immunity quickly wanes. In addition, there is
evidence that young children do not retain immunity from vaccination as long as
older children and adults [34].

Our assumptions governing immunity are summarized in the equations below:
Waning immunity to the partially immune class following asymptomatic or symp-
tomatic infection:

ω1(a) = ω2(a) =

⎧⎪⎨
⎪⎩

2
365 , if 0 ≤ a ≤ 1

11−5a
3·365 , if 1 < a ≤ 2

1
3·365 , otherwise

(62)

Waning immunity from partially immune to fully susceptible:

ω3(a) =

⎧⎪⎨
⎪⎩

2
365 if 0 ≤ a ≤ 2

28−9a
5·365 , if 2 < a ≤ 3

1
5·365 , otherwise

(63)

Waning immunity from vaccinated to fully susceptible:

ω4(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a
365 , if 0 ≤ a ≤ 2
2

365 , if 2 < a ≤ 5
33−5a
4·365 , if 5 < a ≤ 6

3
4·365 , otherwise

(64)

6.4 Death Rates

We chose to have our simulations reflect the expectation of a higher cholera-related
death rate for symptomatic young and elderly humans:

e2(a) = 4ê2

A2
a2 − 4ê2

A
a + 2ê2, (65)
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where ê2 = 0.004. We would expect no deaths from asymptomatic class, and thus
e1 = 0. For this illustration, the natural death rate is d(a) = 0.16

(10)365 for a ≤ 2 and

d(a) = ( 1
10 − 19(a−2)

700 ) 0.16
365 for a > 2, which starts out flat and then linearly goes down.

6.5 Michaelis Constants κL and κH

It is a frequent assumption that the Michaelis constant for our density-based infection
should be chosen as 106 (see [18, 32], for example), although there are circumstances
when other choices may be preferred (see [36], for example). For the purposes of
illustration in this age-based model, we hypothesize that younger individuals would
require a lower concentration of cholera vibrios to become ill, although we do not
base this hypothesis on a microbiological study. Accordingly, we define the Michaelis
constant as

κL(a) =
{

a
15 × 106, if 0 ≤ a < 15

106, if a ≥ 15
. (66)

Following [18, 32], and based on a microbiological study by [31], we assume that
freshly-shed vibrios are hyperinfectious and thus 700 times more infectious than they
will be in about 5 h:

κH(a) = 1

700
κL(a). (67)

6.6 Shedding Rates η1 and η2

In Sect. 6.2 we explored the difficulty in quantifying transmission rates in general,
and in particular to choose contact/transmission rates for contact with hyperinfec-
tious versus low-infectious bacteria. It is similarly difficult to quantify the so-called
“shedding rate,” the rate of fecal-oral environmental contamination resulting from
symptomatic and asymptomatic infected individuals (i.e., the parameter values for
η1 and η2). First, although certainly we can quantify the daily numbers of bacteria
that are shed from the infected humans [21], we cannot quantify the number that
might be leaked into the environment due to inadequate sanitation, nor can we view
the reservoir as having fixed and known value so that the amount of shed bacteria
can be converted to describe an increment to the density of infectious bacteria in the
water. Considering the relative values of the two shedding parameters, we note that
although we can quantify the difference in shedding rates between the symptomatic
and asymptomatic humans [36], we suspect that symptomatic individuals could be
more likely to be careful about protecting the environment from their waste, while
unknowing carriers may unwittingly spread their disease in a larger environment.

In the literature we observe a wide variety of choices for the shedding rate, mea-
sured in cells per milliliter per day. For example, we observe a shedding rate of 10
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[7], or 0.5 for asymptomatic versus 50 to symptomatic [32]. For these simulations,
we chose to set the shedding rates at η1 = 5 and η2 = 50 per milliliter per day.

6.7 Vibrio Rates

Varying the parameter values in current models can cause a very big change in
model predictions [16, 41]. However, for this current study, we use an often-cited
assumption that the vibrios are not viable after about 30 days in the environment
[1, 18] with δ = 7

30 , week−1.
From [31], we took the transition rate from hyperinfectious to low-infectious

bacteria to be χ = 7 ∗ 5, week−1.

6.8 Maximum Daily Vaccination Rate

Note that the vaccination rates are based on factors such as the level of development of
the infrastructure. In areas without infrastructure we might see 1–2 % as a vaccination
rate but in areas with infrastructure, such as a refuge camp, we expect up to a 4 %
daily vaccination rate with N1 = 0.04. For some data on vaccination rates in Haiti,
see the paper by Iver et al. [19].

7 Numerical Results

Our numerical scheme for the age-structured model (2)–(11) is based on a semi-
implicit finite-difference scheme for partial differential equations based on finding
solutions along characteristic lines [37]. The corresponding backwards scheme is
used for the adjoint system. Starting with initial age distributions defined in Table 2
for susceptible, infectious, recovered and vaccinated humans; using finite difference
schemes, and the forward-backward sweep numerical method [17, 26], we obtain
simulations for our optimality system.

We chose a large value of the weight A1, the importance of reducing symptomatic
infections, to see the possible impact of wide-spread vaccination. Thus the weights
in the objective functional are A1 = 2000 and A2 = A3 = 1. In the code, units on
the rates are calculated using the units of age a and of time t as years and weeks,
respectively.
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Figure 2 portrays the dynamics of all susceptible individuals (including both fully
and partially-immune) in the population in the absence/presence of vaccination. In the
presence of vaccination, we see only a modest decrease in the number of susceptible
in the population.

Figure 3 shows the dynamics of asymptomatic and symptomatic infected individ-
uals in the absence/presence of vaccination in the population. Because the infections
in the epidemic occur early in time and our ability to vaccinate quickly is limited,
we again see only modest improvements in both cases with our control.

Figure 4 indicates the number of humans with vaccinated immunity given by
u(a, t)(S(a, t) + Ŝ(a, t) + IA(a, t) + RA(a, t)). The figure shows the clear depen-
dence on age in the number who are vaccinated, reflecting the age structure of the
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Fig. 3 Asymptomatic and symptomatic infected individuals in the absence/presence of control

population. The rate of control is essentially at the maximum wherever control is
applied; thus, the effect of age structure on the control is evident with the times at
which vaccination is recommended for each age group, with less vaccination recom-
mended for ages near 10 and 30.

The optimal vaccination is shown in Fig. 5. In this figure, our simulations suggest
vaccinating all age groups within the first few weeks followed by less vaccination
for individuals of ages in the neighborhood of 10 and 30 as indicated in Fig. 4. The
rate of control is mostly at the maximum wherever control is applied; thus, the effect
of age structure on the control is evident with the times at which vaccination is
recommended for each age group. The contact rate decreasing about ages 7–15 may
cause the decrease in the control at later times for those ages.
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8 Conclusions

We formulated an age-structured model with human population compartmentalized
into fully susceptible and individuals with partial immunity. An optimal vaccination
problem with the goal of minimizing symptomatic infected humans is formulated and
analyzed. We established a Lipschitz property for the state solutions in terms of the
vaccination function, and sensitivity and adjoint equations are derived. We obtained
an optimal control characterization and established the existence of optimal control
using Ekeland’s Principle. Using a minimizing sequence obtained via Ekeland’s
Principle, we established uniqueness results.

The steps for this optimal control analysis were shown for this model. Illustrating
the steps in the technique of optimal control of such age-structured models can serve
to facilitate more applications of these techniques.

Numerical results indicate a clear dependence on age in the number of individuals
vaccinated, and suggest less vaccination for individuals in the young and middle-aged
adults, which is expected from the choices of our rates depending on age. In a situation
with better known rates in terms of age and more well-informed assumptions, this
work could provide a useful tool for suggesting vaccination strategies.

Due to uncertainty in some of the parameters, an interesting future direction would
be to perform a sensitivity analysis of the objective functional value and the structure
of the optimal control as the parameters are varied. Other types of control actions
could also be incorporated.
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AMulti-risk Model for Understanding
the Spread of Chlamydia

Asma Azizi, Ling Xue and James M. Hyman

Abstract Chlamydia trachomatis, CT, infection is the most frequently reported
sexually transmitted infection in the United States. To better understand the recent
increase in disease prevalence, and help guide in mitigation efforts, we created and
analyzed a multi-risk model for the spread of chlamydia in the heterosexual com-
munity. The model incorporates the heterogeneous mixing between men and women
with different number of partners and the parameters are defined to approximate the
disease transmission in the 15–25 year-old New Orleans African American commu-
nity. We use sensitivity analysis to assess the relative impact of different levels of
screening interventions and behavior changes on the basic reproduction number. Our
results quantify, and validate, the impact that reducing the probability of transmission
per sexual contact, such as using prophylactic condoms, can have on CT prevalence.

Keywords Mathematicalmodeling ·Sexually transmitted infection ·STI ·Chlamy-
dia · Epidemic model · Basic reproduction number · Sensitivity analysis

1 Introduction

Over 1.8 million cases of chlamydia trachomatis, CT, are reported each year [35]
in the United States. This sexually transmitted infection (STI) is a major cause of
infertility, pelvic inflammatory disease, and ectopic pregnancy among women [7, 8,
14, 15, 17, 28, 32, 40, 41], and has been associated with increased HIV acquisition
and transmission [7, 13, 14, 17, 28, 31, 32, 39–41]. Untreated, an estimated 16% of,
women with CT will develop PID [33], and 6% will have tubal infertility [38]. We
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developed and analyzed a multicompartmental risk-based heterosexual transmission
model that can be used to help understand the spread of the disease and quantify the
relative effectiveness of different mitigation efforts.

Mathematical models create frameworks for understanding underling epidemiol-
ogyof diseases andhow they are correlated to the social structure of the infected popu-
lation [9, 11, 12, 18–25]. Transmission-based models can help the medical/scientific
community to understand and to anticipate the spread of diseases in different popu-
lations, and help them to evaluate the potential effectiveness of different approaches
for bringing the epidemic under control. The primary goal of our modeling effort is
to create a model that can be used to understand the spread of CT and to predict the
impact of screening, sexual contact tracing, and treatment programs on mitigating
the CT epidemic.

In modeling the spread of CT, the population is divided into the susceptible sexu-
ally active population (S), the exposed infected, but not infectious, population (E), and
the infectious population (I). Once a person has recovered fromCT infection, they are
again susceptible to infection. Therefore, the models all have a S→E→I→S (SEIS)
structure, or an SIS structure if the exposed state is combinedwith the infectious state.
The SEIRS CT transmission model developed by Althaus et al. [1] captured the most
essential transitions through an infectionwith CT to assess the impact of CT infection
screening programs. Using sensitivity analysis, they identified the time to recover
from infection and duration of the asymptomatic period as the two most important
model parameters governing the disease prevalence. Longer recovery times dimin-
ishes the effect of screening, however longer duration of the asymptomatic period
results in a more pronounced impact of program. They also used their model to
improve the estimates for the duration of the asymptomatic period by reanalyzing
previously published data on persistence of CT in asymptomatically infectedwomen.
This model did not divide the population into separate risk groups and assumed that
all men and women had the same number of partners.

Our model is also closely related to the deterministic population-based model
developed by Clarke et al. [6] to explore the short-term impacts of increasing screen-
ing and contact tracing. They investigated how control plans can affect observable
quantities and demonstrated that partner positivity (the probability that the partner
of an infected person is infected) is insensitive to changes in screening coverage or
contact tracing efficiency. They also evaluated the cost-effectiveness of increasing
contact tracing versus screening and concluded that partner notification along with
screening is the most cost effective mitigation approach.

The number of partners a person has (his/her risk), and the number of partners
that their partners have (his/her partner’s risk) both affect the spread of CT. That
is, different assumptions about the distribution of risk behavior for the population
will result in different disease forecasts. We use the selective sexual mixing STI
model developed by Hyman et al. [19] to capture the heterogenous mixing among
people with different number of partners. This model is well-described by Del Valle
et al. [10] to investigate the impact of different mixing assumptions on spread of
infectious diseases and how sensitivity analysis can be used to prioritize different
possible mitigation efforts.
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Kretzschmar et al. and Turner et al. [26, 27] evaluated different screening and
partner referral methodologies in controlling CT. They compared their RIVMmodel
to evaluate the effectiveness of opportunistic CT screening program in the Nether-
lands [27]; the ClaSS model to evaluate proactive, register-based CT screening using
home sampling in the UK [29]; and the HPAmodel to evaluate opportunistic national
CT screening program in England [36]. We relied on these studies in formulating
our differential equation compartmental model.

Our model is closely related to the STI models for the spread of the HIV/AIDS
virus in a heterosexual network [23, 24]. These models account for the distribution
of risk in a population based on realistic sexual contact networks [9, 11, 12, 21–24].
Although age, ethnicity, economic statues, and the spatial location of the individuals
all influence the assortative mixing of sexual contacts, the risk of contracting CT is
primarily a function of the number of partners a person has, number of contacts per
partner, the probability that a partner is infected, and the use of prophylactics (e.g.
condoms).

In our ordinary differential equationmodel (ODE),we considered defining the risk
categories based on either the number of partners a person has, or their total number of
sexual contacts. The relative importance of the number of partners and the number of
contacts per partner on the spread of an STI depends on the disease infectiousness.
CT is a very infectious and the probability of transmission, per contact, from an
infected person to uninfected one is high; one contact with an infected person is
enough to catch the infection. Therefore, the number of people a person infects, and
a person’s risk, depends mostly upon the number of partners he/she has.

Parameters in the model were estimated within a reasonable level of accuracy in
order for results to give qualitative and quantitative understanding of how the disease
is spreading [19]. We use local sensitivity analysis to identify the relative importance
of the model parameters and numerical examples to illustrate how we can prioritize
mitigation strategies based on their predicted effectiveness.

After formulating the mathematical model, we derived the basic reproduction
number, R0 for two main risk groups (high-risk and low-risk) for men and women.
We then use sensitivity analysis of R0 and the equilibrium points with respect to
the model parameters to study how the heterogeneous mixing affects the spread of
CT. Our numerical simulations illustrate the behavior of the model system and the
effectiveness of screening to reduce the spread of CT.

2 Mathematical Model

Because the exposed (infected, but not infectious) time period is short compared
to time in the infectious stage, we do not include an exposed stage in our model.
Recovered individuals are immediately susceptible to reinfection; We divide men
and women into n risk groups based on the number of partners an individual has
in a year. This SIS model can be written as the system of 2n ordinary differential
equations:
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dSk
dt

= μ(No
k − Nk) − λk Sk + ρk Ik, (1)

dIk
dt

= λk Sk − ρk Ik − μIk, (2)

where k = 1, . . . , n denotes men with risk from 1 to n, and k = n + 1, . . . , 2n
denotes women with risk from 1 to n. The migration rate, μ, determines the rate
at which people enter and leave the population, Nk = Sk + Ik is the total population
of group k, No

k is total population of group k in the absence of infection, λk is the
rate at which a susceptible person in risk group k is being infected, and ρk is the rate
that a person recovers either through treatment, screening, or natural recovery.

2.1 Migration Rate

We model a population of 15–25 year-old individuals and assume that the primary
mechanism formigration is by aging into, and out of, the population, wheremigration
rate μ = 0.1 = [(25 − 15) years]−1, with the assumption that death is negligible
compared to the rate that people enter and leave the modeled population. We assume
that, in the absence of infection, equilibrium population No

k for each risk group of
men and women is given, and that everyone aging into the model population enters
as a susceptible person.

2.2 Disease Recovery Rate

The rate the infected population is treated, ρk , depends upon the sex of the person and
their risk level. The treatment can be initiated when infection is identified through
screening, contact tracing, or a medical check-up. Most infected people are asymp-
tomatic and, when a significant fraction of a population is infected, then screening
has been found to be a cost-effective approach to identify, and treat, infected people.

We separate the recovery rate into two parts, ρk = ρn
k + ρs

k , where the natural
recovery rate ρn

k depends only on the sex of the infected person, and the screening
rate ρs

k depends upon both the sex and risk level of an individual. Natural recovery
rate, ρn

k , is determined by assuming an exponential distribution for the average time
to recovery 1/ρn

k . We define the probablity that an individual is screened each day,
ρs
k , in terms of the fraction of the population that will be screened at least once within

a year as f sk . That is,
ρs
k = 1 − (1 − f sk )1/365. (3)
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2.3 Disease Transmission Rate

We will derive the disease transmission rate for the heterosexual case where a
susceptible person in group k can be infected by someone of the opposite sex in
any of the infected groups j . This force of infection, λk , is the rate that people in risk
group k are infected through sexual contacts. Here a contact is any sexual act that
can transmit the disease between individuals. We define λi as the sum of the rate of
disease transmission from each infected group, I j , to the susceptible group, Sk :

λk =
n∑
j=1

λk j . (4)

The rate of disease transmission from the infected people I j in group j to the sus-
ceptible individuals Sk in group k, λk j , is defined as the product of three factors:

λk j =

⎛
⎜⎜⎝

Number of partners
a susceptible in group k
has with someone in
group j per unit time

⎞
⎟⎟⎠

⎛
⎝

Probability of
disease transmission

per partner

⎞
⎠

⎛
⎝

Probability that
partner in group j
that is infected

⎞
⎠

= pkj βk j

(
I j
N j

)
.

These terms are defined as:

• the number of sexual partners per unit time that each individual in group k has
with someone in group j , (pkj ), and

• the probability of disease transmission per partner, βk j , for a susceptible person in
group k with their partner in group j , and

• the probability of that the person in group j is infectious.

For this last factor, we assume that the partners in group j are all equally likely to be
infected. That is, the probability of that the person in group j is infected is the same
as the fraction of the people in group j that are infected, (I j/N j ).

2.3.1 Partnership Formation

The extent that CT spreads through a population is sensitive to the heterogenous mix-
ing (partnership selection) among the different risk groups. Themodels approximates
the mixing through the mixing probabilities, pkj , that define how many partners a
typical person in group k has with someone in group j . These mixing functions must
dynamically change to account for variations in the size of the groups [4, 10, 18].
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The force of infection, λk , depends on howmany partners people in group k have,
the number of contacts they have per partner, and the probability that their partners
are infected. The mixing is biased since people who only have a few sexual partners
(low-risk) typically have partners who are also at low-risk.

We define the model parameters so that someone in group k has, on average, pkj
partners who are in group j per day. Therefore, the total number of partnerships
per day between people in group k and group j is then pkj Nk = p jk N j . Since each
partnership may have more than one contact, we define ck as the average number of
contacts per partner for people in group k. We define β̄ as the average probability of
transmitting the infection per contact. Both ck and β̄ will then be used to define the
average transmission rate βk per partnership. Finally, the product, pkjβk , is the rate
that the susceptible people in group k are infected by an infected person in group j .

To determine pkj , we use a heterogenous mixing algorithm developed in [18].
This approach starts by defining p̄k as the desired number of partnerships someone
in group k wishes to have per unit time. Because there may not be sufficient available
partners for everyone to have their desired number of partners, the actual number of
partners could be different.

We define the proportional partnership (mixing) as the desired fraction dkj of
these partnerships that a person in group k wants to have with someone in group j .
That is, a person in group k wants to have an average of dkj p̄k partnerships per unit
time with someone in group j . Unfortunately, there is no guarantee that the total
number of desired partnership people in group k want to have with people in group
j will be the same as the total number of desired partnerships that people in group
j want to have with people in group k. That is, in general dkj p̄k Nk �= d jk p̄ j N j , and
this must be reconciled.

Since not everyone can have their desired number of partners distributed exactly as
they wish, the different heterogenous mixing algorithms represent different compro-
mises to resolve these conflicts. All of the heterogenous mixing algorithms maintain
the detailed balance for mixing where the total number of partnerships for people in
group k with people in group j is the same as the total number of partnerships that
people in group j have with people in group k. In our model, we use the heterogenous
mixing algorithm based on the algorithm described in [10, 18] to determine pkj .

The population in group k desires dkj p̄k Nk partners from group j , and the popu-
lation in group j desires d jk p̄ j N j partners from group k. As a compromise, we set
the total number of partners the people in group k have with people in group j , and
visa versa, to be the harmonic mean

pkj Nk = p jk N j = 2(dkj p̄k Nk)(d jk p̄ j N j )

(dkj p̄k Nk) + (d jk p̄ j N j )
. (5)

Other possibilities include the geometric mean or minimum of (dkj p̄k Nk) and
(d jk p̄ j N j ). All of these averages satisfy the balance condition to have the property
that if d jk = 0 then pkj = p jk = 0, where if one group refuses to have a partnership
with another group, then this partnership does not happen. In our model, we use the
harmonic mean and define



A Multi-risk Model for Understanding the Spread of Chlamydia 255

pkj = 1

Nk

2(dkj p̄k Nk)(d jk p̄ j N j )

(dkj p̄k Nk) + (d jk p̄ j N j )
. (6)

Hence, pk = ∑
j pk j is the actual average number of partners someone in group k

has per day.
Note that this approach is only appropriate if the desired number of partners

between any two groups is in close agreement, that is, dkj p̄k Nk ≈ d jk p̄ j N j . This is
because, the approach assumes that if the partners are not available from the desired
group, then the individuals will not change their preferences to seek partners in other
risk groups. The model can be extended to handle these situations where the people
adjust their desires to be in closer alignment with the availability of partners through
a simple iterative algorithm. However, we avoid this complication in our simulations
and initialize the populations so the groups desires are close to the availability of
partnerships.

2.3.2 Disease Transmission per Partnership

The probability of a susceptible person catches infection from their infected partners
depends upon the number of contacts between the people. We allow the number of
contacts per partner for a person in group k, ck , to depend upon the number of his
(her) actual partners,(pk), and his (her) total number of contacts per unit time, (Ck),
i.e. Ck = ck pk .

However, the number of contacts for a person in group k, should be the same
as the number of contacts per partner for their partner in group j , c j . To make it
compatible, we define harmonic average ck j (Fig. 1):

ck j = 2ckc j
ck + c j

,

Fig. 1 The number of
contacts per partnership per
year, ck , is a decreasing
function of p̄k j , that is
people with more partners
have fewer contacts per
partner than people with
fewer partners. If Ck is total
number of contacts for a
person in group k, ck is
defined as ck = Ck

pk
= Ck∑

j pk j
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Table 1 The values of variables and parameters in the simulations

Parameters or
variables

Description Value

N1 Population for group 1 (high-risk men) 695

N2 Population for group 2 (low-risk men) 6257

N3 Population for group 3 (high-risk women) 652

N4 Population for group 4 (low-risk women) 1239

β̄ Probability of transmission per contact 0.1100

C1 Total number of contacts per day for group 1 0.1400

C2 Total number of contacts per day for group 2 0.0740

C3 Total number of contacts per day for group 3 0.0750

C4 Total number of contacts per day for group 4 0.0410

P̄1 Desired number of partners for group 1 0.1400

P̄2 Desired number of partners for group 2 0.0312

P̄3 Desired number of partners for group 3 0.0570

P̄4 Desired number of partners for group 4 0.0180

d13 Desired fraction of partners by group 1 with group 3 0.7500

d31 Desired fraction of partners by group 3 with group 1 0.7500

d24 Desired fraction of partners by group 2 with group 4 0.8000

d42 Desired fraction of partners by group 4 with group 2 0.8000

ρi Natural recovery rate for group i 0.0056

μ Migration rate 0.0003

as number of contacts between a person in group k and their partner in group j. The
probability of transmission per contact, β̄, can be used to define the probability that
a susceptible person will not be infected by a single contact with an infected person,
1 − β̄. Therefore, the probability of someone in group k not being infected after ck j
contacts with an infected partner in group j is (1 − β̄)ck j . Hence, the probability of
being infected per partner is [22]

βk j = 1 − (1 − β̄)ck j . (7)

With this definition, we have βk j = β jk .
Tables 1 and 2 contain a complete list of the model parameters and their baseline

values.

3 Basic Reproduction Number

The basic reproduction number is the number of new infected introduced if a newly
infectous person is introduced into a disease free population at the (Sk = Nk , Ik =
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Table 2 Variables and parameters in the model and their dimensions

Variables Description Unit

S j Number of susceptible humans in risk group j Number

I j Number of infectious humans in risk group j Number

N j Total human population in risk group j Number

μ Migration rate Time−1

ρ j Per capita recovery rate for humans from the infectious state to the
susceptible state

Time−1

β̄ Probability of transmission of infection from an infectious human
to a susceptible one per contact per time

Time−1

C j Total number of contacts for a person in risk group j per time Time−1

p̄ j Desired number of contacts for a person in group j Dimensionless

d̄ jk Desired fraction of contacts for a person in group j wants to have
with group k

Dimensionless

Numerical values for these parameters are provided in Table1

0). After using a branching process approach to describe how the infections move
through the population, we will use the next generation matrix approach [16, 37] to
derive R0.

3.1 Branching Process Analysis

The equation for the nondimensionalized infected population can be written as

dIk
dt

=
∑
j

αk j I j − τ−1
k Ik . (8)

Here τk = 1/(ρk + μ) is the average time that an infected person stays in the kth
infection compartment. The force from infection, αk j = βk jqk j S j , is the rate (per
day) that a typical infected person in group j infects a susceptible in group k. Here
the factor qkj is defined as qkj = (pkj/N j ) and because we had pkj Nk = p jk N j ,
therefore, (pkj/N j ) = (p jk/Nk), and that means qkj = q jk is the fraction of people
in group j someone in group k has as a partner.

We define the group j-to-group k reproduction number, R j→k
0 = α jkτ j , as the

average number of people that a new infected person in group j will infect someone
in group k at the DFE. Note that in our model, if group j and group k are of the same
sex, then R

j→k
0 = 0.

Consider the situation where the first infection is in group j , then the number of
secondary infections over all possible groups is R j→∗

0 = ∑
k R

j→k
0 . Each of these

secondary infections in group k then infect Rk→∗
0 others. That is, the total number of

new infections is a branching process and grows geometrically.
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The reproduction numbers measure the average number of new infected cases
over a single infection cycle and is defined as the square-root of the number of new
infections over two cycles. We can define the basic reproduction number for group
j as

R
j
0 =

√∑
k

(
R

j→k
0 R

k→∗
0

) =
√∑

k

(
R

j→k
0

∑
i

R
k→i
0

)
.

3.2 Next Generation Derivation of Basic Reproduction
Number

Wewill derive the basic reproduction number,R0, using the next generation approach
for situations with two risk levels for men and women labeled: 1 = (high-risk men),
2 = (low-riskmen), 3 = (high-riskwomen) and 4 = (low-riskwomen). The differen-
tial equations (8) for the infected populations, x = (I1, I2, I3, I4)T , can be written as
a matrix equation for the rate of production of new infections, F , minus the removal
rate of individuals from that population class, V ,

dx

dt
= Fx − Vx, (9)

where the klth element of the matrix Fkl = αkl and V is diagonal matrix Vkk = τ−1
k ,

for k, l = 1, 4.
At the DFE, αk j = βk jqk j Nk and the Jacobian matrices, JF and J−1

V , of Fx and
V x are

JF =

⎛
⎜⎜⎝

0 0 α13 α14

0 0 α23 α23

α31 α32 0 0
α41 α42 0 0

⎞
⎟⎟⎠ , JV =

⎛
⎜⎜⎝

τ1 0 0 0
0 τ2 0 0
0 0 τ3 0
0 0 0 τ4

⎞
⎟⎟⎠ ,

We define R0 as spectral radius of JF J
−1
V or (equivalently) J−1

V JF ,

JF J
−1
V =

⎡
⎢⎢⎣

0 0 α13τ3 α14τ4
0 0 α23τ3 α24τ4

α31τ1 α32τ2 0 0
α41τ1 α42τ2 0 0

⎤
⎥⎥⎦ , J−1

V JF =

⎡
⎢⎢⎣

0 0 α13τ1 α14τ1
0 0 α23τ2 α24τ2

α31τ3 α32τ3 0 0
α41τ4 α42τ4 0 0

⎤
⎥⎥⎦ .

(10)

Note that jkth element of JF J
−1
V is R j→k

0 = α jkτk .
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Based on a result of Sylvester’s inertia theorem [34],1 if amatrix K can be factored
into the product of a diagonal positive definite matrix A and a symmetric matrix B,
then eigenvalues of K are the same as eigenvalues of A

1
2 BA

1
2 . To apply this result,

we rewrite J−1
V JF = AB where A is a diagonal positive definite matrix and B is

symmetric,

A =

⎡
⎢⎢⎣
N1τ1 0 0 0
0 N2τ2 0 0
0 0 N3τ3 0
0 0 0 N4τ4

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0 β13q13 β14q14
0 0 β23q23 β24q24

β31q31 β32q32 0 0
β41q41 β42q42 0 0

⎤
⎥⎥⎦ . (11)

Therefore, eigenvalues of J−1
V JF are the same as eigenvalues of symmetric block

anti-diagonal generation matrix

A
1
2 BA

1
2 =

⎡
⎢⎢⎣

0 0
√

α13τ1α31τ3
√

α14τ1α41τ4
0 0

√
α23τ2α32τ3

√
α24τ2α42τ4√

α31τ3α13τ1
√

α32τ3α23τ2 0 0√
α41τ4α14τ1

√
α42τ4α42τ2 0 0

⎤
⎥⎥⎦ =

[
04×4 M
MT 04×4

]
,

(12)

where MT is transpose of M

M =
[√

α13τ1α31τ3
√

α14τ1α41τ4√
α23τ2α32τ3

√
α24τ2α42τ4

]
=

[
r13 r14
r23 r24

]
, (13)

where r jk =
√
R

j→k
0 R

k→ j
0 is the geometric average of group j-to-group k and group

k-to-group j reproduction numbers.
The basic reproduction number is spectral radius of J−1

V JF . Therefore, R0 =
ρ(A

1
2 BA

1
2 ) = √

ρ(MT M) where

MT M =
[

r213 + r223 r13r14 + r23r24
r13r14 + r23r24 r214 + r224

]
,

and

R0 = 1

2
((r213 + r223 + r214 + r224) +

√
(r213 + r223 − r214 − r224)

2 + 4(r13r14 + r23r24)2)

(14)

1Let K be a hermitian matrix. We define e+(K ) as the number of positive eigenvalues, e−(K ) as
the number of negative eigenvalues, and e0(K ) as the number of zero eigenvalues. Inertia of K is
a tuple (e+(K ), e−(K )), e0(K ). If A is an invertible matrix then Sylvester inertia theorem states:
inertia(K ) = inertia(A−1K A).
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4 Sensitivity Analysis

We use sensitivity analysis to quantify the change in model output quantities of
interest (QOIs), such as the basic reproduction number,R0, and endemic equilibrium
point, due to variations in the model input parameters of interest (POIs), such as the
average time to recovery after infection [2, 3, 5, 30].

Consider the situationwhere the baseline value of the input POI is pb and generates
the baseline output QOI qb = q(pb). Sensitivity analysis is used to address what
happens if pb is changed by the fraction θp, pnew = pb(1 + θp) and we want to
know the resulting fractional change in the output variable qnew = qb(1 + θ

q
p ). That

is, the normalized sensitivity index measures the relative change in the input variable
p, with respect to the output variable q and can be estimated by the Taylor series

qnew = q(pb + θp pb) ≈ qb + θp pb
∂q

∂p

∣∣∣∣
p=pb

= qb(1 + θq
p ). (15)

We define the normalized sensitivity index as

S
q
p := pb

qb

∂q

∂p

∣∣∣∣
p=pb

= θ
q
p

θp
. (16)

That is, if the input p is changed by θp percent, then the output q will change by
θ
q
p = S

q
pθp percent. The signofS

q
p determines the direction of changes, increasing(for

positive Sqp) and decreasing (for negative Sqp). Note that this local sensitivity index
is valid only in a small neighborhood of the baseline values (Table1).

4.1 Sensitivity Indices of R0

The ability of CT to become established in a population and its early growth rate
is characterized by the basic reproduction number (14). Sensitivity analysis of R0

can quantify the relative importance of the the different social and epidemiologi-
cal parameters in reducing the ability of the STI to become established in a new
population.

Table3 of the sensitivity indices of R0 shows that it is most sensitive to the
probability of transmission per contact β with SR0

β
= 1.95. That is, if the probability

of infection per contact decreases, say by increasing the use of condoms, by 15%
then θβ̄ = −0.15 and R0 will decrease by 29.25% from 1.357 to 0.96

R0new = R0

(
1 + θβ̄S

R0

β

)
= 1.357(1 − 0.15 × 1.95) = 0.96 < 1.
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Table 3 The sensitivity indices of R0 with respect to parameters of the model at the baseline
parameter values where R0 = 1.357

Parameter Value S
q
p

β̄ 0.1100 1.95

C1 0.1354 0.76

C2 0.0739 0.15

C3 0.0750 0.71

C4 0.0410 0.22

d13 0.7500 0.35

d31 0.7500 0.58

d24 0.8000 0.04

d42 0.8000 0.12

p̄1 0.1352 0.05

p̄2 0.0312 −0.06

p̄3 0.0567 0.24

p̄4 0.0185 −0.07

ρ1 0.0056 −0.95

ρ2 0.0056 −0.48

ρ3 0.0056 −0.95

ρ4 0.0056 −0.48

μ 0.0003 −0.09

The most sensitive parameter is the probability of transmission per contact, β̄, followed by the
recovery (screening) rates of the high-risk men and women ρ1 and ρ3

Hence, sensitivity analysis can quantify the amount of behavior change that would
be needed to keep an epidemic from becoming established in a new population.

A negative sensitivity index indicates that R0 is a decreasing function of corre-
spondent parameter, while the positive ones show R0 increases when the parameter
increases. The second most important model parameters for the early growth rate are
the recovery rates of the high-risk men and women ρ1 and ρ3. These rates depend
upon the screening recovery ρ3, the rate that a person is identified through screening
and treated. Since, SR0

ρ1
= S

R0
ρ3

= −0.95, a 10% increase in the screening rate would
result in a 9.5% decrease in R0. This supports the need to actively screen both men
and women for CT infection.

The number of contacts for high-risk men, C1, is also an important parameter for
controlling the early growth of the CT. Because local-sensitivity analysis is valid in
a small neighborhood of the baseline case, sometimes it is useful to plot the change
in the QOI over a wide range of possible values. The sensitivity index is then the
slope of the response curve at the baseline values. Figure 2 shows how R0 changes
as these parameters are varied over a broad range.
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Fig. 2 The sensitivity of R0
with respect to β (solid line),
C1 (dashed line), and ρ1
(dotted line). The sensitivity
index is then the slope of the
response curve at the
baseline values, indicated by
∗. The response is
approximately linear near the
baseline case and, therefore,
the local sensitivity analysis
is actually valid over a broad
range of parameters

4.2 Sensitivity Indices of Endemic Equilibriums

The current CT epidemic is established in many cities, and to evaluate the rel-
ative impact of the model parameters in bringing it under control requires that
the sensitivity analysis is preformed about the current state of the system, the
steady-state endemic equilibrium. We will investigate the impact of the mitiga-
tion efforts on the relative change in the number of infected people as a func-
tion of the relative change in the model parameters. This is best done in terms
of the nondimensional variables defined by dividing each variable by the steady-
state zero-infection equilibrium total population for each sex. That is, im = Im/No

m ,
iw = Iw/No

w, n1 = N1/No
m , n2 = N2/No

m , n3 = N3/No
w, and n4 = N4/No

w. Here,
No
m = No

1 + No
2 , N

o
w = No

3 + No
4 .

Table4 shows that the sensitivity indices for endemic (steady-state) equilibrium
infected populations, i j , as a function of the model parameters. Note that the mag-
nitudes (relative importance) of sensitivity indices have the same order as they did
for R0, although the magnitudes are different.

The prevalence of infection, i j , is most sensitive to probability of transmission
per contact β̄, i.e. increasing β̄ increases i j s more than other parameters. Then C j s
and ρ j s have the second most effect on i j s in positive and negative direction, corre-
spondingly.

Prevalence in high-risk men, i1, is sensitive to the total number of contacts for the
high-risk men C1 and ρ1 more than the other C j s and ρ j s for j �= 1. Prevalence in
high-risk women, i3, is also sensitive toC3 and ρ3 more than the otherC j s and ρ j s for
j �= 3. It means when high-risk people increase their number of contacts, regardless
of what others do, the fraction of infected people among high-risk people increases,
because they have lots of partners. On the other hand, when infection period for
high-risk people increases, the prevalence in high-risk increases.
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Table 4 Local sensitivity indices of the endemic equilibrium points

Parameter Baseline i1 i2 i3 i4

β̄ 0.1100 2.61 4.05 2.70 4.02

C1 0.8000 1.07 0.58 0.71 0.66

C2 0.8000 0.31 1.50 0.33 1.00

C3 0.8000 0.65 0.56 1.13 0.53

C4 0.8000 0.42 1.18 0.37 1.61

d13 0.7500 0.36 −0.21 0.24 −0.36

d31 0.7500 0.41 −0.15 0.56 0.03

d24 0.8000 0.02 −0.13 0.08 −0.10

d42 0.8000 0.15 −0.21 0.08 −0.33

p̄1 0.1352 0.04 0.17 0.08 0.23

p̄2 0.0312 −0.02 0.01 −0.03 −0.002

p̄3 0.0567 0.27 0.31 0.21 0.26

p̄4 0.0185 −0.05 0.03 −0.03 0.04

ρ1 0.0056 −1.10 −0.60 −0.73 −0.68

ρ2 0.0056 −0.35 −1.66 −0.37 −1.11

ρ3 0.0056 −0.66 −0.56 −1.13 −0.53

ρ4 0.0056 −0.47 −1.31 −0.41 −1.78

μ 0.0003 −0.13 −0.20 −0.13 −0.20

At this baseline R0 ≥ 1, so this endemic point is a solution of model at steady state

For low-risk men, the prevalence, i2, has the same sensitivity to C2 and C4. It
means when low-risk people increase their contact, the prevalence in low-risk men
increases, and we have the same story for low-risk women. It is reasonable, because
low-risk people don’t have too many partners, and therefore more contact for them
and their partners plays an important role.

Prevalence in low-risk men, i2, has also the same sensitivity to ρ2 and ρ4. It
means when we decrease ρ2 and ρ4, infected people in low-risk men stay in infection
category more and also infected women in low-risk group stay in infection category
more, we see increment in the value of i2 more than the other parameters. There is
a similar analysis for low-risk group i4: low-risk group i4 is sensitive to ρ2 and ρ4

with the same magnitude and more than the other ρ j s.
Another interesting result is that the endemic equilibrium points are more sensi-

tive, than R0, to most of the parameters. This result says, controlling parameters to
have a low fraction of infected population is easier than adjusting the parameters to
have smaller R0.
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5 Numerical Simulations

In these numerical simulations, all the parameters are fixed with the baseline values
given in Table3, unless specifically defined otherwise.

In the first simulation, we assume that number of people who can be screened
each day, ρs , is limited by a budget, or other factors. For example, if the budget for
screening is $10, 000 per year and cost of screening is $25 per person, then we can
screen a total of 10, 000/25 = 400 people per year, or an average of ρs = 1.096
people per day. We also assume that if an infected person is screened for CT, then
there is a 95% probability that disease will be detected.

We will compare the fraction of the population that is infected as a function of the
screening rate ρs

k people from different subgroups k. We will also optimize the ρs ,
for a fixed budget, that will minimize the number of infected people at steady state.
That is, if (I ∗

1 , I ∗
2 , I ∗

3 , I ∗
4 ) are the number of infected people at steady state, we find

the optimal screening rates that solve the optimization problem:

minimize
ρs
i

4∑
j=1

I ∗
j (ρ

s
1, ρ

s
2, ρ

s
3, ρ

s
4),

subject to
4∑
j=1

ρs
j = ρs .

Figure3 show the result for six scenarios: (1) no screening, (2) screening high-risk
men, (3) screening high-risk women, (4) screening low-risk men, (5) screening low-
risk women, and (6) optimized screening for those with positive test result.
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Fig. 3 Left panel the fractionof infectedpeople after implementingdifferent scenarios: no screening
(solid line), screen 400 people per year for: high-risk men (dash line), high-risk women (dash-dot
line), low-risk men (dash-star), low-risk women (dash-circle), and optimized screening (dotted
line). Right panel zooms on the optimized screening, by optimized screening the disease dies out
very fast
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Table 5 Basic reproduction number, R0, for different scenarios with respect to parameters of the
model at the baseline parameter values

Scenario R0 Scenario R0

No screening 1.3566 Screen low-risk men 1.2567

Screen high-risk men 0.8646 Screen low-risk women 1.2243

Screen high-risk women 0.9102 Optimized screening 0.1196

Implementing optimized screening decreases R0 to the order of −1

We observe that in case of no screening the epidemic goes up to its original
endemic equilibrium point. The effectiveness of screening is seen by the dramatic
reduction in the fraction of infected people. However, among all scenarios screening
high-risk people and optimized screening cause that epidemic dies out and for optimal
choice it dies out much faster than the two other cases.

Table5 lists the value ofR0 for different scenarios. Based on the Fig. 3 and Table5,
it is obvious that R0 > 1 implies a persistent infection, though not a macroscopic
outbreak in screening cases, and when R0 < 1 epidemic goes to disease-free equi-
librium point. Also, for the optimized scenario, which its R0 is the lowest one, the
epidemic dies out faster than the other scenarios.

Therefore, optimized screening was the most effective scenario among all 6 cases.
To push our understanding of the effect of optimized screening further, we do sen-
sitivity analysis of equilibrium points w.r.t screening rates at their optimized values.
In this case sensitivity index become a matrix like:

S =

⎛
⎜⎜⎝

I ∗
1 0 0 0
0 I ∗

2 0 0
0 0 I ∗

3 0
0 0 0 I ∗

4

⎞
⎟⎟⎠

−1

× JI ∗(ρs) ×
⎛
⎝

ρs
1 0 0
0 ρs

2 0
0 0 ρs

3

⎞
⎠ ,

where JI ∗(ρs) is jacobian matrix. Each column k of S represents sensitivity indexes
of equilibrium points w.r.t screening rate ρs

k . Therefore (k, j)th element of S is
sensitivity index of I ∗

k w.r.t ρs
j . Table6 lists the elements of this matrix. All the

values in table are negative, it means there is a inverse pattern between equilibrium
points and screening rate: when we increase screening rates the number of infected
people at steady state will decrease. Among all, I ∗

1 is the most sensitive one, it means
changing screening rates affects on the number of high-riskmenmore than the others.

Table 6 Sensitivity indices of equilibrium points w.r.t screening rates at optimized baseline values

Screening rates Equilibrium points

I ∗
1 = 0.000 I ∗

2 = 0.000 I ∗
3 = 0.000 I ∗

4 = 0.000

ρs
1 = 0.0600 −0.1294 −0.0015 −0.0065 −0.1319

ρs
2 = 0.2033 −0.5576 −0.3706 −0.2728 −0.4056

ρs
3 = 0.0475 −0.0805 −0.0918 −0.0946 −0.0941

The most sensitive output parameter is number of infected high-risk men
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6 Summary and Conclusions

We created a two-risk sexual heterosexual SIS transmission model for the spread of
CT with biased mixing partnership selection to investigate the impact that screening
for the disease can have in controlling its spread.We derived the threshold conditions
for the early spread of the disease and defined the basic reproductive number, R0,
using the next generation matrix approach. The analysis of R0 identified a new
approach to reduce the size of the next generation matrix for a heterosexual STI
model with n risk groups from an 2n × 2n nonsymmetric sparse matrix to an n × n
symmetric full matrix. This approach can be used in similar heterosexual STI models
to greatly simplify the threshold analysis.

The sensitivity analysis of R0 and endemic equilibrium steady-state solutions
quantifies the relative effectiveness of different intervention strategies in mitigating
the disease. The analysis identified the probability of transmission per contact (related
to condom use) is the most sensitive parameter in controlling the epidemic. The
second most effective control mechanism was the screening, and treating infections,
of both high-risk men and women. Currently, most mitigation programs only target
screening high-riskwomen, themodel indicates that it is equally important to identify
infections and treat high-risk men. We confirmed that in the model the higher-risk
groups are driving the epidemic and thatR0 is most sensitive to the behavior of these
higher-risk people.

We implemented different screening scenarios consist of screening only high-risk
men, only high-risk women, only low-riskmen, only low-risk women, and optimized
screening. We then solved for an optimal screening strategy for infection mitigation
when there are limited resources and determined that best screening approach to
minimize the endemic steady state infection prevalence. Not surprisingly, we found
that this same strategy also minimizes R0.

Acknowledgments We thank Patricia Kissinger for her insight and guidance in determining what
factors need to be considered in modeling the spread of CT. We also thank Jeremy Dewar for his
assistance with the sensitivity analysis and feedback on the manuscript. This work was supported
by the endowment for the Evelyn and John G. Phillips Distinguished Chair in Mathematics at
Tulane University, and National Institute of General Medical Sciences of the National Institutes
of Health program for Models of Infectious Disease Agent Study (MIDAS) under Award Number
U01GM097658. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

References

1. Althaus, C.L., Heijne, J., Roellin, A., Low, N.: Transmission dynamics of chlamydia trachoma-
tis affect the impact of screening programmes. Epidemics 2(3), 123–131 (2010)

2. Arriola, L., Hyman, J.M.: Sensitivity analysis for uncertainty quantification in mathematical
models. In: Mathematical and Statistical Estimation Approaches in Epidemiology, pp. 195–
247. Springer, New York (2009)



A Multi-risk Model for Understanding the Spread of Chlamydia 267

3. Arriola, L.M., Hyman, J.M.: Being sensitive to uncertainty. Comput. Sci. Eng. 9(2), 10–20
(2007)

4. Busenberg, S., Castillo-Chavez, C.: A general solution of the problem of mixing of subpopu-
lations and its application to risk-and age-structured epidemic models for the spread of aids.
Math. Med. Biol. 8(1), 1–29 (1991)

5. Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of
malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5),
1272–1296 (2008)

6. Clarke, J., White, K.A., Turner, K.: Exploring short-term responses to changes in the control
strategy for chlamydia trachomatis. Comput. Math. Methods Med. 11(4), 353–368 (2012)

7. Cohen, M.S.: Sexually transmitted diseases enhance HIV transmission: no longer a hypothesis.
Lancet 351, S5–S7 (1998)

8. Datta, S.D., Torrone, E., Kruszon-Moran, D., Berman, S., Johnson, R., Satterwhite, C.L., Papp,
J., Weinstock, H.: Chlamydia trachomatis trends in the united states among persons 14 to 39
years of age, 1999–2008. Sex. Transm. Dis. 39(2), 92–96 (2012)

9. Del Valle, S., Hethcote, H., Hyman, J.M., Castillo-Chavez, C.: Effects of behavioral changes
in a smallpox attack model. Math. Biosci. 195(2), 228–251 (2005)

10. Del Valle, S.Y., Hyman, J.M., Chitnis, N.: Mathematical models of contact patterns between
age groups for predicting the spread of infectious diseases. Math. Biosci. Eng. MBE 10, 1475
(2013)

11. Del Valle, S.Y., Hyman, J.M., Hethcote, H.W., Eubank, S.G.: Mixing patterns between age
groups in social networks. Soc. Netw. 29(4), 539–554 (2007)

12. Eaton, D.K., Kann, L., Kinchen, S., Shanklin, S., Ross, J., Hawkins, J., Harris, W.A., Lowry,
R., McManus, T., Chyen, D., et al.: Youth risk behavior surveillance-united states, 2009. Morb.
Mortal. Wkly. Rep. Surveill. Summ. (Washington, DC: 2002), 59(5), 1–142 (2010)

13. Golden, M.R., Hogben, M., Handsfield, H.H., St Lawrence, J.S., Potterat, J.J., Holmes, K.K.:
Partner notification for HIV and STD in the united states: low coverage for gonorrhea, chlamy-
dial infection, and HIV. Sex. Transm. Dis. 30(6), 490–496 (2003)

14. Gottlieb, S.L., Brunham, R.C., Byrne, G.I., Martin, D.H., Xu, F., Berman, S.M.: Introduc-
tion: the natural history and immunobiology of chlamydia trachomatis genital infection and
implications for chlamydia control. J. Infect. Dis. 201(Supplement 2), S85–S87 (2010)

15. Gottlieb, L.S., Martin, D.H., Xu, F., Byrne, G.I., Brunham, R.C.: Summary: the natural history
and immunobiology of chlamydia trachomatis genital infection and implications for chlamydia
control. J. Infect. Dis. 201(Supplement 2), S190–S204 (2010)

16. Heffernan, J.M., Smith, R.J., Wahl, L.M.: Perspectives on the basic reproductive ratio. J. R.
Soc. Interface 2(4), 281–293 (2005)

17. Hillis, S.D.,Wasserheit, J.N.: Screening for chlamydia: a key to the prevention of pelvic inflam-
matory disease. N. Engl. J. Med. 334(21), 1399–1401 (1996)

18. Hyman, J.M., Li, J.: Behavior changes in SIS STD models with selective mixing. SIAM J.
Appl. Math. 57(4), 1082–1094 (1997)

19. Hyman, J.M., Li, J.: Disease transmission models with biased partnership selection. Appl.
Numer. Math. 24(2), 379–392 (1997)

20. Hyman, J.M., Li, J., Stanley, E.A.: The differential infectivity and staged progression models
for the transmission of HIV. Math. Biosci. 155(2), 77–109 (1999)

21. Hyman, J.M., Li, J., Stanley, E.A.: The initialization and sensitivity of multigroup models for
the transmission of HIV. J. Theor. Biol. 208(2), 227–249 (2001)

22. Hyman, J.M., Li, J., Stanley, E.A.: Modeling the impact of random screening and contact
tracing in reducing the spread of HIV. Math. Biosci. 181(1), 17–54 (2003)

23. Hyman, J.M., Stanley, E.A.: Using mathematical models to understand the AIDS epidemic.
Math. Biosci. 90(1), 415–473 (1988)

24. Hyman, J.M., Stanley, E.A.: The effect of social mixing patterns on the spread of AIDS.
In: Castillo-Chavez, C.C., Levin, S.A., Shoemaker, C.A. (eds.) Mathematical Approaches to
Problems in Resource Management and Epidemiolog, pp. 190–219. Springer, Berlin (1989)



268 A. Azizi et al.

25. Hyman, J.M., Stanley, E.A.: A risk-based heterosexual model for the AIDS epidemic with
biased sexual partner selection. In: Kaplan, E.E., Brandeau, M. (eds.) Modeling the AIDS
Epidemic, pp. 331–364. Raven Press, New York (1994)

26. Kretzschmar, M., van Duynhoven, Y.T.H.P., Severijnen, A.J.: Modeling prevention strategies
for gonorrhea and chlamydia using stochastic network simulations. Am. J. Epidemiol. 144(3),
306–317 (1996)

27. Kretzschmar, M.,Welte, R., Van den Hoek, A., Postma,M.J.: Comparative model-based analy-
sis of screening programs for chlamydia trachomatis infections. Am. J. Epidemiol. 153(1),
90–101 (2001)

28. Lan, J., van den Brule, A.J., Hemrika, D.J., Risse, E.K., Walboomers, J.M., Schipper, M.E.,
Meijer, C.J.: Chlamydia trachomatis and ectopic pregnancy: retrospective analysis of salpingec-
tomy specimens, endometrial biopsies, and cervical smears. J. Clin. Pathol. 48(9), 815–819
(1995)

29. Low, N., McCarthy, A., Macleod, J., Salisbury, C., Campbell, R., Roberts, T.E., Horner, P.,
Skidmore, S., Sterne, J.A., Sanford, E., et al.: Epidemiological, social, diagnostic and economic
evaluation of population screening for genital chlamydial infection. Health Technol. Assess.
(Winchester, England), 11(8):iii–iv (2007)

30. Manore, C.A., Hickmann, K.S., Xu, S., Wearing, H.J., Hyman, J.M.: Comparing dengue and
chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J. Theor.
Biol. 356, 174–191 (2014)

31. Niccolai, L.M., Livingston, K.A., Laufer, A.S., Pettigrew,M.M.: Behavioural sources of repeat
chlamydia trachomatis infections: importance of different sex partners. Sex. Transm. Infect.
87(3), 248–253 (2011)

32. Pearlman, M.D., Mcneeley, S.G.: A review of the microbiology, immunology, and clinical
implications of chlamydia trachomatis infections. Obstet. Gynecol. Surv. 47(7), 448–461
(1992)

33. Schwebke, J.R., Rompalo, A., Taylor, S., Sena, A.C., Martin, D.H., Lopez, L.M., Lensing,
S., Lee, J.Y.: Re-evaluating the treatment of nongonococcal urethritis: emphasizing emerging
pathogens-a randomized clinical trial. Clin. Infect. Dis. 52(2), 163–170 (2011)

34. Sylvester, J.J.: Xix. a demonstration of the theorem that every homogeneous quadratic polyno-
mial is reducible by real orthogonal substitutions to the form of a sum of positive and negative
squares. Lond. Edinb. Dublin Philos. Mag. J. Sci. 4(23), 138–142 (1852)

35. Torrone, E., Papp, J., Weinstock, H.: Prevalence of chlamydia trachomatis genital infection
among persons aged 14–39 years-united states, 2007–2012. MMWR Morb. Mortal. Wkly.
Rep. 63(38), 834–838 (2014)

36. Turner, K.M.E., Adams, E.J., LaMontagne, D.S., Emmett, L., Baster, K., Edmunds, W.J.:
Modelling the effectiveness of chlamydia screening in England. Sex. Transm. Infect. 82(6),
496–502 (2006)

37. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

38. Walker, J., Tabrizi, S.N., Fairley, C.K., Chen, M.Y., Bradshaw, C.S., Twin, J., Taylor, N.,
Donovan, B., Kaldor, J.M., McNamee, K., et al.: Chlamydia trachomatis incidence and re-
infection among young women-behavioural and microbiological characteristics. PLoS One
7(5), e37778 (2012)

39. Ward, H., Rönn, M.: The contribution of STIs to the sexual transmission of HIV. Curr. Opin.
HIV AIDS 5(4), 305 (2010)

40. Westrom, L.: Effect of pelvic inflammatory disease on fertility. Venereol. Off. Publ. Natl.
Venereol. Counc. Aust. 8(4), 219–222 (1995)

41. Weström, L.V.: Sexually transmitted diseases and infertility. Sex. Transm. Dis. 21(2 Suppl),
S32–S37 (1993)



The 1997 Measles Outbreak in Metropolitan
São Paulo, Brazil: Strategic Implications
of Increasing Urbanization

José Cassio de Moraes, Maria Claudia Corrêa Camargo,
Maria Lúcia Rocha de Mello, Bradley S. Hersh and John W. Glasser

The findings and conclusions in this report are those of the
authors and do not necessarily represent the official position of
the Centers for Disease Control and Prevention or other
institutions with which they are affiliated.

Abstract Background: Despite a routine two-dose measles vaccination program,
mass campaigns in 1987 and 1992 and low subsequent incidence, São Paulo expe-
rienced an outbreak between May and October of 1997 with over 42,000 confirmed
cases, mostly young adults, and 42 measles-associated deaths, mostly infants. To
eliminate measles, the Pan American Health Organization (PAHO) recommended
supplementing routine childhood vaccination (keep-up) via mass campaigns, initially
to reduce (catch-up) and periodically to maintain (follow-up) susceptible numbers
below the epidemic threshold.Methods: To determine if a follow-up campaign during
1996, when due in São Paulo State, might have prevented or mitigated this outbreak,
we modeled measles in metropolitan São Paulo. We also evaluated the actual impact
of emergency outbreak-control efforts and hypothetical impact of vaccinating ado-
lescent and young adult immigrants. Results: A mass campaign targeting children
aged 6–59 months reduced cases as much as 77 %, but a follow-up campaign among
children aged 1–4 years during 1996 might have been even more effective. Suscepti-
ble adolescents would have escaped, however, setting the stage for future outbreaks.
Vaccinating people in the immigrant age range mitigated this potential. Conclusions:
As the immunity required to prevent outbreaks depends on population density, rural
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people are less likely to be immune than urban ones the same age. Thus, when there
is rural-urban migration, births are not the sole demographic process eroding urban
population immunity. Vaccinating immigrants in bus stations, peripheral shanty-
towns, or sites of employment for unskilled laborers is more efficient than increasing
rural immunity.

Keywords Measles · Epidemic model · Vaccination · Brazil · Mass campaign ·
Immunity · Vaccination strategies

1 Introduction

In 1994, countries in the Americas adopted the goal of measles elimination by 2000
(Resolution XVI of the XXIV Pan American Sanitary Conference). In São Paulo
State, Brazil, more than 42,000 measles cases were confirmed from December 1996
through October 1997, 42 people died of complications, and disease spread to other
Latin American countries. This setback raised important questions: Are outbreak-
prevention strategies being implemented as recommended? And if so, do they suffice
for the task?

1.1 Background

Following measles vaccine licensure in 1973, the primary prevention strategy in
Brazil was infant vaccination. Public health authorities initially recommended a
dose of single-antigen measles vaccine at 9 months of age. In 1979, to protect
younger infants without compromising lifetime protection, officials in São Paulo
State replaced this schedule with 7- and 15-month doses, for the second of which
measles and rubella vaccine was used. However, because vaccine efficacy is less than
80 % among infants younger than 10 months (Brazilian, Chilean, Costa Rican, and
Ecuadorian Ministries of Health and PAHO [3]), many first-dose recipients remained
susceptible. And, because second-dose coverage remained low, 1,636 measles cases
occurred per 105 children aged less than 15 years during 1986 despite 84 % of infants
being vaccinated. To interrupt the 2–4 year outbreak cycle [15], the Department of
Health restored the 9 month age at first dose and conducted a mass vaccination cam-
paign throughout São Paulo State during May of 1987. Authorities estimate that 86 %
of residents aged 9 months to 14 years were vaccinated [29]. During June of 1992, a
second campaign targeted children aged 1–10 years for measles, mumps and rubella
vaccination.

Together with single-dose routine vaccination programs, periodic mass campaigns
comprised PAHO’s tripartite strategy for eliminating measles in Latin America [11].
Catch-up campaigns were designed to increase immunity among those 9 months
through 14 years of age, reducing younger infants’ risk of infection, permitting
delayed first doses and increasing vaccine efficacy. The immunity maintained via
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routine keep-up efforts determines how frequently follow-up campaigns are required
to prevent susceptible children from exceeding the threshold above which infectious
people would on average infect more than one susceptible person, causing outbreaks.
Measles is endemic in populations of 300,000 or more absent vaccination [2], with
alternating years of higher and lower incidence. In the belief that births alone could
exceed urban population-immunity thresholds, strategists reasoned that, once vacci-
nation began, uptake among resident children and efficacy together would determine
the period required to attain critical levels of susceptibility. In diverse Latin American
and Caribbean countries, 3–5 years was both the typical interval between successive
follow-up campaigns and upper age. As this strategy proved effective [6], the inter-
national health community adopted it [5].

1.2 Outbreak Control in São Paulo

Only sporadic cases were reported to the Department of Health, São Paulo State,
until early 1997 [4]. Of the 65,540 suspected cases of measles reported that year,
23,907 (37.0 %) were either confirmed via detection of measles-specific IgM anti-
bodies in blood specimens via enzyme immunoassay (EIA) or linked via contact
with laboratory-confirmed measles cases, 18,148 (28.1 %) were confirmed on clin-
ical grounds alone without laboratory investigation, and 23,485 (35.8 %) were dis-
carded. Of the 42,055 confirmed cases, 36,803 (87.5 %) occurred among residents
of metropolitan São Paulo and 29,916 (56.8 %) among adults aged 20 years or older.
The greatest incidence was observed in São Paulo County (246 cases per 105 peo-
ple), followed by suburban São Paulo (181 cases per 105 people) and the interior of
São Paulo State (30 cases per 105 people). The greatest age-specific incidence
occurred among infants (1,577 cases per 105 people), adults 20–29 years of age
(539 cases per 105 people) and children 1–4 years of age (205 cases per 105 people).

Despite a selective vaccination campaign mid-June, the outbreak continued
seemingly unabated. So a mass campaign targeting children aged 6–59 months was
conducted mid-August; the outbreak ended several weeks later. Here we present a
synthesis of relevant surveys and results from experiments with a mathematical model
designed to assess the effectiveness of prevention and control strategies employed in
São Paulo. We also assess the potential impact of more frequent follow-up campaigns
and supplemental adolescent and young adult vaccination.

2 Methods

We assembled measles case reports, vaccination and serological surveys, and inter-
nal migration surveys. Scrutiny of this information led us to attribute the unusual
age-distribution of cases during the 1997 outbreak to (1) the aging of unvaccinated
children who had been protected by the vaccination of others and (2) an unusual
influx, following a protracted drought and resulting crop failures [8], of adoles-
cents and young adults from rural areas with lower population immunity. Next,
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using an age-structured model of the metropolitan São Paulo population, includ-
ing immigration from and emigration to its environs, we reproduced the outbreak.
Then we experimented with our model to evaluate control efforts and to determine
if timely implementation of the follow-up portion of PAHO’s strategy could have
prevented or mitigated this outbreak and if not, to evaluate other measures, such as
supplemental vaccination of adolescents and young adults, particularly immigrants
from rural areas. The tables to which we refer in this section are in the Appendix.

2.1 Descriptive Modeling

We synthesized information from five serological surveys conducted during
1987–1998 (Table A.2) via multivariate logistic regression in which both age and
time are represented as polynomials. As these variables are related biologically (i.e.,
people aged x in year y are aged x + 1 in year y + 1), our regression model includes
all un-aliased interaction terms. We used GLIM4 [17], which eliminates parameter
combinations that are aliased. We also calculated age-specific immigration and emi-
gration rates from the age-distribution of migrants and overall migration rates during
1988-95 from the Brazilian Institute of Geography and Statistics (http://www.ibge.
gov.br/english/).

In our transmission model, newborns are protected or susceptible, depending on
their mother’s immune status, but passively acquired maternal antibodies decay, after
which children may be infected, transiting latent and infectious states, or vaccinated,
alternative routes to lifelong immunity. The age-specific proportions of residents who
were susceptible on 1 January 1995, when simulations began, are complements of a
cross-section through our synthesis of serological surveys. Similarly, we estimated
the age-specific rates of infection among susceptible people by fitting a catalytic
model [13] to the 1 January 1985 cross-section. Then we calculated the correspond-
ing attack rates and, using the mixing model of Jacquez et al. [22], age-specific
probabilities of infection on contact and, finally, infection rates.

We estimated proportions protected via passively-acquired maternal antibodies
by fitting a logistic regression to published results from a serological survey during
1987 [29]. Our vaccination rates were calculated from overall coverage and Gamma
distributed age-specific proportions via the relationship between rates and propor-
tions, proportion = 1 − exp(−rate × time). The Gamma distribution’s parameters
were (a) estimated from a composite of cluster vaccination surveys of children born
in 1996 who resided in 8 neighborhoods differing in socio-economic status during
October of 1998 [10], (b) calculated via the method of moments from the age ranges
targeted in follow-up and emergency outbreak-control campaigns or (c) fitted to the
age distribution of immigrants. Our measles mortality rates were quotients of deaths
attributed to measles and laboratory-confirmed cases.

As individuals simultaneously age through ten classes (<1, 1–4, 5–9, . . ., 30–39,
40–49, 50+ years), they risk dying of other causes, emigrating, and if female, giving
birth, all at age-specific rates. Individuals from rural areas immigrate at rates calcu-
lated from the average age-distribution from 1988–1995 immigration surveys and

http://www.ibge.gov.br/english/
http://www.ibge.gov.br/english/
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average annual immigration rate from 1992–1995. Age-specific proportions immune
(and susceptible, their complements) were calculated by multiplying those from the
above-mentioned 1995 cross-section through our synthesis of serological surveys by
age-specific ratios of proportions immune in rural and urban Maryland early in the
20th Century [12]. Individuals also emigrate at rates that we calculated similarly.

2.2 Mechanistic Modeling

Our model system comprises equations for metropolitan residents who are protected
by maternal antibodies, Vi(t); susceptible, Wi(t); harboring latent infections (i.e.,
infected, but not yet infectious), Xi(t); infectious, Yi(t); and immune following dis-
ease or vaccination, Zi(t). Our equations describe the rates at which persons in age
group i (<1, 1–4, 5–9, . . ., 30–39, 40–49 and 50+ years) transit these 5 epidemio-
logical states at time t.

dV1

dt
= V0(t) − [σ + μ1 + o1 − ι1(1 − ϕ1) − θ1] V1(t)

dVk
dt

= Vk−1θk−1 − [
σ + μk + ok − ιk(1 − ϕk) − θi

]
Vk(t), 1 < k < n

dVn
dt

= Vn−1θn−1 − [σ + μn + on − ιn(1 − ϕn)] Vn(t)

dW1

dt
= W0(t) + σV1(t) − (αν1 + λ1(t) + μ1 + o1 − ι1ϕ1 − θ1)W1(t)

dWk

dt
= Wk−1θk−1 + σVk(t) − (ανk + λk(t) + μk + ok − ιkϕk − θi)Wk(t), 1 < k < n

dWn

dt
= Wn−1θn−1 + σVn(t) − (ανn + λn(t) + μn + on − ιnϕn)Wn(t)

dX1

dt
= λ1(t)W1(t) − (γ + μ1 + o1 − ι1ϕ1 − θ1)X1(t)

dXk
dt

= Xk−1θk−1 + λk(t)Wk(t) − (γ + μk + ok − ιkϕk − θi)Xk(t), 1 < k < n

dXn
dt

= Xn−1θn−1 + λn(t)Wn(t) − (γ + μn + on − ιnϕn)Xn(t)

dY1

dt
= γX1(t) − (ρ + δ1μ1 + o1 − ι1ϕ1 − θ1)Y1(t)

dYk
dt

= Yk−1θk−1 + γXk(t) − (ρ + δkμk + ok − ιkϕk − θi)Yk(t), 1 < k < n

dYn
dt

= Yn−1θn−1 + γXn(t) − (ρ + δnμn + on − ιnϕn)Yn(t)

dZ1

dt
= αν1W1(t) + ρY1(t) − [μ1 + o1 − ι1(1 − ϕ1) − θ1]Z1(t)

dZk
dt

= Zk−1θk−1 + ανkWk(t) + ρYk(t) − [
μk + ok − ιk(1 − ϕk) − θi

]
Zk(t), 1 < k < n

dZn
dt

= Zn−1θn−1 + ανnWn(t) + ρYn(t) − [μn + on − ιn(1 − ϕn)] Zn(t)



274 J. de Moraes et al.

The transition processes and their respective per capita rates are vaccination, νi,
whose efficacy is α; infection, λi(t); becoming infectious, γ ; and recovering, ρ.
The reciprocals of γ and ρ are the latent and infectious periods, 6–9 and 6–7 days,
respectively [1]. Newborns with immune mothers are protected via passively acquired
antibodies that decay at rate σ ; others are susceptible. Individuals immigrate and
emigrate at per capita rates ιi and oi, respectively, with probabilities ϕi of being
susceptible and 1 − ϕi immune, and die at per capita rates μi, which disease increases
by factors δi. The forces (or hazard rates) of infection,

λi(t) = aiβi

∑
j
cij

[
Yj(t)

Nj(t)

]
, 1 ≤ i, j ≤ n

Ni(t) = Vi(t) + Wi(t) + Xi(t) + Yi(t) + Zi(t),

where ai are per capita rates of contact, called activities, βi are probabilities of infec-
tion on contact and cij are proportions of their contacts that members of group i have
with members of group j [9]. We formulate cij as follows: If a proportion εi of i-group
contacts is reserved for others in group i, called preferences, and the complement
(1 − εi) is distributed among all groups, including i, via the proportionate mixing
formula, fj, then

cij = εiδij + (1 − εi) fj, where fj =
(
1 − εj

)
ajNj∑

k (1 − εk) akNk
,

where δij is the Kronecker delta (i.e., δij = 1 if i = j and 0 otherwise). Glasser et al.
[18] derive this expression, which Jacquez et al. [22] obtained by allowing preference,
ε in Nold’s [27] preferred mixing model, to vary among groups. Hethcote’s [19]
Eq. (4.14) is equivalent to hers with epsilon and its complement reversed.

We chose εi = 0.2∀i, meaning that 20 % of contacts were reserved for others in
the same age group and the complement was distributed randomly among all groups.
Then we estimated the ai × βi required to yield pre-vaccination λi that we obtained
by fitting F(α) = 1 − e− ∫ α

0 λ(u)du, where λ(α) = (wα − y)e−xα + z, α is age and
w, x, y, and z are fitted parameters [13], to the 1 January 1985 cross-section through
our synthesis of serological surveys. We analyzed histories of measles in Baltimore
and rural Maryland recorded early in the 20th Century similarly to learn how rural
and urban immune profiles differed.

2.3 Parameters and Initial Conditions

As demographic processes may affect disease dynamics (cf. [23]), we also modeled
metropolitan São Paulo’s population dynamics (i.e., via its age and gender distrib-
utions and vital statistics, Table A.3). Protected and susceptible children are born at
rates V0(t) = ∑

i fi × Pr(i, ♀) × Zi(t) and W0(t) = ∑
i fi × Pr(i, ♀) × Si(t), respec-
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tively, withper capita rate fi, proportions female Pr(i, ♀), and susceptible populations,
Si(t) = Wi(t) + Xi(t) + Yi(t).

We represent the age-distribution of vaccination via Gamma distributions whose
parameters we estimated or calculated via the method of moments from recent sur-
veys or age ranges targeted in various campaigns, respectively. And we formulate
aging after Ferguson, Nokes and Anderson [14], whose per capita rates θ are recip-
rocals of age class widths, which is accurate only when widths are small.

Proportions of the resident population that were susceptible and immune by age
group were obtained from the 1 January1995 cross-section through our synthesis
of serological surveys. Proportions immune among members of the rural popula-
tion who immigrated to metropolitan São Paulo were estimated by multiplying the
proportions in São Paulo by age-specific ratios of cumulative incidences in rural
and urban Maryland. This is tantamount to assuming that vaccination affected the
immune profiles of São Paulo and its environs similarly.

The per capita immigration and emigration rates were quotients of the estimated
annual numbers of immigrants and emigrants and the metropolitan São Paulo pop-
ulation (Tables A.3 and A.4). Expressing immigration rates as functions of source
populations would have been preferable, but that information was not available at the
time. Immigrants have the immune profile calculated as described above, whereas
emigrants have that of the metropolitan Sao Paulo population. Because greater pro-
portions of immigrants were susceptible than residents in any age group, there was
an influx of susceptible people even in the age groups with negative net migration.

2.4 Experimental Design

To assess the effectiveness of outbreak-control efforts in São Paulo and determine
if this epidemic could have been mitigated if not prevented, we simulated the actual
scenario, a routine two-dose vaccination program and emergency mass campaign.
Parameters that we could not estimate from observations in contemporary São Paulo
were adjusted to reduce disparities between predicted and observed case reports.
Then we simulated three scenarios: 1) routine vaccination only (i.e., with routine
2-dose vaccination, but not the emergency campaign); 2) plus the recommended
1996 follow-up campaign (i.e., routine vaccination plus a hypothetical mass cam-
paign among children aged 6 to 59 months during the week of 15 June 1996); and
3) plus adolescent and young adult vaccination (i.e., routine vaccination, the hypo-
thetical 1996 campaign and supplemental vaccination having the age distribution of
immigrants).

Because these hypothetical scenarios are nested, we can evaluate individual inter-
ventions: The difference between actual (i.e., routine doses at 9 and 15 months,
plus mass campaign among children aged 6–59 months during the week of 16
August 1997) and hypothetical scenario 1 estimates the impact of outbreak-control
efforts. Similarly, the difference between scenarios 1 and 2 estimates the hypothetical
follow-up campaign’s impact. And finally, the difference between scenarios 2 and 3
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estimates the impact of targeted adolescent and adult vaccination. All comparisons
are conditional on routine vaccination, and the last also is conditional on periodic
follow-up campaigns.

3 Results

We present descriptive results suggesting the cause of the 1997 measles outbreak in
São Paulo and modeling results to evaluate that hypothesis and possible remedies
separately.

3.1 Descriptive Epidemiology

Figures 1 and 2a describe proportions of the metropolitan São Paulo populace who
were immune by age and time from the early 1980s through mid-90s. In the table

Fig. 1 Synthesis of five serological surveys during 1987–1998 (Pannuti et al. [29] and Table A.2)
via bivariate logistic regression: a cubic polynomial in age, quadratic polynomial in time and,
because people age in time, all interactions
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below, selected GLIM4 output from our logistic regression modeling of historical
published [29] and unpublished (Table A.2) serological surveys in metropolitan São
Paulo, A denotes age, Y year, and l is the intercept:

scaled deviance = 422.31
residual degrees of freedom = 46
number of observations: 58
linear model: 1+A+A2+A3+Y+Y2+A.Y+A2.Y+A3.Y+A.Y2+A2.Y2
+A3.Y2

Estimate Standard Error Parameter
−1308. 426.9 1
159.9 138.5 A
14.42 14.85 A2
−1.131 0.5699 A3
28.85 9.445 Y
−0.1589 0.05217 Y2
−3.524 3.050 A.Y
−0.3213 0.3241 A2.Y
0.02525 0.01236 A3.Y
0.01961 0.01675 A.Y2
0.001757 0.001765 A2.Y2
−0.0001396 0.00006687 A3.Y2

scale parameter: 1.000

The data are numbers of sera containing measles-specific IgM antibodies and num-
bers tested, the link is logit, and the probability distribution is binomial. The trough
that develops when vaccination intensified during the mid-80s represents children
who either were not vaccinated or who failed to respond immunologically. By virtue
of others being vaccinated, some also escaped infection, and had become adolescents
by 1997.

Immigration rates varied year to year, but their age distributions were remarkably
similar (Fig. 2b). Almost half of São Paulo’s residents originated elsewhere, with
2.6 % having resided in the metropolitan area for less than a year, but net migration
was −7.5 per 104 people per year (i.e., emigration exceeded immigration) during
the most recent period available, 1992–1995 (Brazilian Institute of Geography and
Statistics). Because of drought and resulting crop failures in the northeast, immigra-
tion accelerated during 1997 [8]. We attribute the deepening and faster movement
of the trough along the age axis of Fig. 1 than before—which Fig. 2a emphasizes via
several recent cross-sections—to the confluence of these factors.
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Fig. 2 a Cross-sections through the surface illustrated in Fig. 1 at 1 January 1995 (blue× symbols),
1996 (pink ♦ symbols), and 1997 (green� symbols) and 1 July 1996 (gold + symbols) and b Ages
of immigrants to (blue + symbols) and emigrants from (red × symbols) metropolitan São Paulo in
1991 and 1994, respectively (Fundação Seade, State Data Analysis System Foundation)

Figure 3 is a diagram of our transmission model and Fig. 4a, b are fits of Farring-
ton’s [13] catalytic model to the 1995 cross section through our serological surface
and estimates of the age-specific forces (or hazard rates) of infection, respectively.
Analysis of information presented by Fales [12] suggests that immunity among
children aged 0–4, 5–9, 10–14, 15–19 years in rural Maryland was roughly 0.63,
0.69, 0.72, 0.74, respectively, of that among similarly-aged children in Baltimore
(Fig. 4c, d), suggesting that immunity increased more slowly with age in rural than
urban Maryland and ultimately attained only about three-quarters of the urban level.
These population-immunities are consistent with rural and urban �0 (the average
number of effective contacts while infectious, where effective contacts suffice for
infection if susceptible) during this period (5–6 in Kansas and 11–12 in Ontario,
Table 4.1 of Anderson and May [1]). Because contact rates are in the numerator of
expressions for �0, these observations also are consistent with Hethcote’s and van
Ark’s [20] belief that contact rates in urban areas are at most twice those in rural
ones.

3.2 Mechanistic Modeling

The sum of squared differences between predictions of our optimized model and
laboratory-confirmed case reports, R2 ≈ 0.67 (Fig. 5). Modeled and observed out-
breaks are roughly concordant, with disease spreading from young adults to children
(and thence other ages). But incidence among older people is less accurately pre-
dicted than among younger ones, and the observed outbreak was more explosive than
predicted. These disparities may be due to our stratification on age alone and use
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Fig. 4 a 1 January 1985 cross-section through Fig. 1 and b risks of infection deduced from Far-
rington’s [13] catalytic model with w = 0.52, x = 0.29, y = 0.12, and z = 0.01. Figures c and d
illustrate risks of infection estimated similarly from histories of measles in Baltimore and rural
Maryland from 1908–1917 [12]. In these models, z ≈ 0; other parameters are w = 0.13, x = 0.22,
and y = 0.03 in Baltimore and w = 0.07, x = 0.24, and y = 0.01 in rural Maryland

of constant versus time-varying immigration rates. Compared to residents, recent
immigrants of any age are more likely to be concentrated via crowded housing,
public transportation, or limited sites of employment for unskilled and semi-skilled
workers. However, these differences could not be quantified with resources available
immediately after this outbreak.

With routine age-appropriate vaccination, but without an emergency campaign
reaching 80 % of 1–4 year old children, our age-stratified model with constant rates
predicts 77 % more cases than reported (Fig. 6a and Table 1). With a hypothetical 1996
follow-up campaign, it predicts 98 % fewer cases (Fig. 6c and Table 1), not however
including adolescents 10–14 years and older who might have seeded future outbreaks.
Finally, our model predicts that vaccinating 70 % of adolescents and young adults via
the immigrant age-distribution would have prevented 92 % of the remaining cases
(Fig. 6d and Table 1), whereupon the predicted outbreak would have been barely
perceptible. Thus, together with PAHO’s tripartite keep-up, catch-up and follow-up
strategy, supplemental vaccination of immigrants would prevent future outbreaks.
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4 Discussion

Based on historical serological and migration surveys, together with a contempo-
rary drought and crop failures in the northeast, we hypothesized that the 1997 out-
break of measles in São Paulo resulted from the confluence of two processes—
accumulation of susceptible children and influx of susceptible adolescent and young
adult immigrants—only the first anticipated by current vaccination policy. We made
a mathematical model capable of reproducing this phenomenon and experimented
with it to deduce the impact of actual and hypothetical interventions.

4.1 Policy Implications

Our model explains roughly two-thirds of the temporal variation in case reports, par-
ticularly among younger people, with predicted and observed epidemics differing
notably in explosiveness (Fig. 5). We attribute this disparity to the differential con-
centration of recent immigrants in favelas (i.e., peripheral shantytowns), unskilled
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Fig. 6 Predicted cases under four hypothetical scenarios, left to right and top to bottom: a with
routine age-appropriate vaccination alone; b averted by outbreak control efforts (i.e., difference
between routine vaccination with and without outbreak control efforts); c would not have been
averted by follow-up of children aged 1–4 years during 1996 (i.e., difference between routine
vaccination with and without follow-up); d would not have been averted by a supplemental program
having the age distribution of recent immigrants (i.e., difference between routine and follow-up with
and without supplemental immunization). Ordinates differ markedly. Symbols as in Fig. 5

and semiskilled occupations (e.g., agriculture and construction, respectively), and
on public transportation. Modeling migration among, and differential concentration
within rural, urban and recent immigrant sub-populations, phenomena whose rele-
vance this outbreak indicates (see Chap. 12), would have required information that
was not available.

Our model indicates that the emergency mass campaign effectively controlled
the 1997 measles outbreak in São Paulo, which the recommended follow-up cam-
paign would have even more effectively mitigated, but not prevented (Table 1). This
may be counter-intuitive insofar as these interventions were and would have been,
respectively, directed at children 6–59 months of age, whereas roughly half of the
cases occurred among adults 20–29 years old. Children are more active than adults,
and school-aged ones have more contacts, particularly with classmates, but also sib-
lings [18]. Moreover, children have relatively poor personal hygiene (e.g., are more
likely to wipe their noses on their hands and cough in each other’s faces than adults).

http://dx.doi.org/10.1007/978-3-319-40413-4_12
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Because the number and intimacy of contacts affect disease transmission, children
are super-spreaders [24]. These interventions were and would have been effective,
respectively, because they reduced, and might even have eliminated this source.

Were most susceptible adolescents and young adults longtime residents, increased
second dose coverage or extension of the upper age of follow-up campaigns (as in
1992, albeit to catch-up older children for the inclusion of rubella among routine
vaccinations) would be indicated. If immigrants, the immunity of rural children
must be increased or adolescents and young adults must be vaccinated upon arrival.
The latter approach has proven effective in São Paulo; for example, health authorities
prevented urban yellow fever, epidemic in rural areas, by vaccinating in bus stations
and airports. Many immigrants lack technical skills, narrowing the scope of their
economic opportunities, but facilitating access to them for vaccination in workplaces.
Similarly, the concentration of immigrant families in favelas also facilitates access
via community outreach.

Neither of the processes that produced the susceptible adolescents and young
adults in this outbreak is unique to São Paulo in 1997. Vaccination not only protects
recipients, but others whom they might have infected had they become infectious, an
indirect effect popularly called herd immunity [16]. Unvaccinated people who escape
infection, at least temporarily, accompany all vaccination programs with gradually
increasing coverage, and may cause future problems (e.g., congenital rubella syn-
drome). Internal migration is another potential source of susceptible people. Its mag-
nitude depends on characteristics of urban centers and their rural environs, between
which economic disparities are increasing, especially where measles remains a major
source of morbidity and mortality.

4.2 Reflections

PAHO’s keep-up and follow-up strategies may have been successful in part because
routine age-appropriate vaccination and mass campaigns are complementary. Cam-
paigns reach children who are not receiving routine care or whose immune systems
did not respond to vaccination. But PAHO’s catch-up campaigns are designed to
reach children who are too old to have been vaccinated, but who escaped infec-
tion by virtue of the immunization of others. Their target does not include the older
adolescents, much less the young adults who immigrated to São Paulo during 1997.

The 1997 measles outbreak in São Paulo identified a source of susceptible people
that is not unique to that time or place. Internal migration must be considered in
designing regional vaccination strategies to ensure that the ever increasing urbaniza-
tion of the developing world does not impede measles eradication.
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Because of rural-urban migration, this was not a prototypical post-honeymoon
outbreak [7, 26]. Under these circumstances, the optimum strategy for urban policy-
makers depends on socio-demographic and epidemiological characteristics of rural
populations (and, possibly, vice versa). Health authorities in São Paulo State could
vaccinate migrants or rural inhabitants. Should migrants contribute to outbreaks
elsewhere in Latin America (see, e.g., PAHO [28]), not to mention the increasingly
urbanized developing world, successful measles eradication will depend on policy-
makers adopting such regional versus local perspectives.

4.3 Further Modeling

We attribute the explosiveness of this outbreak to the concentration of recent immi-
grants, via residing in favelas and traveling to and from common workplaces in
crowded conveyances for examples, but modeled none of those phenomena. A model
of São Paulo State as loosely coupled rural, urban and possibly recent immigrant sub-
systems beginning in the mid-1980s would improve our understanding of movement
among and differential concentration within populations differing in other relevant
characteristics (see Chap. 12).

The utility of supplemental immunization activities is better appreciated nowa-
days. Rural adolescents and young adults will migrate to urban areas in search of
greater economic opportunities, particularly during droughts, and be concentrated
via marginal housing, public transportation and limited occupations for unskilled and
semi-skilled workers, not just in Latin America. Together, these phenomena can lead
to outbreaks of vaccine-preventable diseases that may be best averted by vaccinating
immigrants.

To ensure that the ever increasing urbanization of the developing world does not
impede measles eradication, the development of more realistic models with which
to explore regional vaccination strategies is warranted.
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Appendix

Table A.2 Unpublished metropolitan São Paulo serological surveys included, together with that
reported by Pannuti et al. [29], in the synthesis illustrated in Fig. 1

Age 1992 1993 1994 1998

Sera N(+) Sera N(+) Sera N(+) Sera N(+)

0 63 36

1 200 196 165 164 171 166

2 197 193 220 219 160 158

3 219 214 205 199 148 148

4 223 218 152 151 80 79

5 192 190 248 244 176 172

6 209 205 155 155 143 140

7 209 201 137 134 50 50

8 207 201

9 217 213

10 186 181

11 188 168 166 164

12 202 192 195 193

13 180 172 193 190

14 161 157 123 123

15 15 15

16 21 20

17 22 22

18 24 23

19 19 18

20 17 17

21 30 29

22 64 59

23 50 49

24 38 37

25 30 29

26 46 43

27 43 41

28 47 46

29 42 41

Totals 2059 2013 1668 508

Massad et al. [25] describe the methodology for the 1992 and 1993 surveys. In 1994, the 50
individuals in the 7-year row were 7–10 years of age. The 1998 survey was among controls in
the study conducted during the outbreak to determine risk factors for disease [4], explaining the
apparent lack of susceptible adults
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Table A.3 Initial conditions (t = 0 is 1 January 1995) and parameters estimated from observations
in São Paulo, Brazil, via standard demographic methods

Age Ni(0) Si(0) Pr(i, ♀) fi μi δi

<1 300,240 174,889 0.4806 0 0.01969 3.089

1–4 1,193,592 89,723 0.4849 0 0.00089 26.395

5–9 1,545,968 27,996 0.4901 0 0.00033 24.439

10–14 1,584,251 196,327 0.496 0.00239 0.0005 8.536

15–19 1,593,181 238,337 0.5055 0.07978 0.00172 2.541

20–24 1,553,289 152 0.5088 0.13509 0.00265 1.984

25–29 1,481,538 0 0.5095 0.12486 0.00285 2.171

30–39 2,664,412 0 0.5006 0.06405 0.00346 2.973

40–49 1,947,447 0 0.5206 0.00613 0.00538 5.444

50+ 2,755,566 0 0.5476 0 0.04746 3.177

Age-specific population numbers, Ni(0), were back calculated from the 1997 census, children per
mother, fi, and overall death rates, μi, that year. Susceptible numbers, Si(0), were derived from them
and proportions susceptible (Fig. 1). Factors by which disease transiently increases the death rates,
δi, were derived from age-specific probabilities of dying from measles and all causes, estimated
from μi via a conventional abridged life table. All-cause probabilities were adjusted to 30 days, the
period during which deaths were attributed to measles, assuming constancy within age classes

Table A.4 Estimated average annual numbers of immigrants and emigrants by age, 1992–1995,
from which the age-specific per capita immigration, ιi, and emigration rates, oi, were derived
(Brazilian Institute of Geography and Statistics)

Age group Immigrants Emigrants Net

<1 13,997 20,237 −6,240

1–4 49,914 48,326 1,587

5–9 78,194 66,608 11,586

10–14 80,639 69,295 11,343

15–20 68,195 63,083 5,112

20–24 51,341 53,106 −1,766

25–29 35,805 42,464 −6,660

30–39 23,653 32,739 −9,086

40–49 15,006 24,564 −9,558

50+ 9,227 18,047 −8,819

Totals 425,970 438,470 −12,500
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Methods to Determine the End of an
Infectious Disease Epidemic: A Short Review

Hiroshi Nishiura

Abstract Deciding the end of an epidemic is frequently associatedwith forthcoming
changes in infectious disease control activities, including downgrading alert level in
surveillance and restoring healthcare workers’ working shift back to normal. Despite
the practical importance, there have been little epidemiological and laboratory meth-
ods that were proposed to determine the end of an epidemic. This short review
was aimed to systematically discuss methodological principles of a small number
of existing techniques and understand their advantages and disadvantages. Existing
epidemiological methods have been mostly limited to a single-and-brief exposure
setting, while the application to human-to-human transmissible disease epidemic
with stochastic dependence structure in the observed case data has remained to be
a statistical challenge. In veterinary applications, a large-scale sampling for labora-
tory testing has been commonly adapted to substantiate a freedom from disease, but
such study has only accounted for binomial sampling process in estimating the error
probability of elimination. Surveillance and mathematical modeling are two com-
plementary instruments in the toolbox of epidemiologists. Combining their strengths
would be highly beneficial to better define the end of an epidemic.

Keywords Epidemic · Ebola · Epidemic elimination · Incubation period ·
Exposure · Polio · Heuristic method

1 Prologue

Rather than declaring the start of an epidemic, it has been harder to determine the
end of the epidemic. Erroneous declaration of the start might be understood as
part of errors in risk assessment practice, and such an occasional error might not
impose serious irreversible damage to our society. However, deciding the end of an
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epidemic is frequently associated with forthcoming changes in infectious disease
control activities, and its decision imposes a pressure to epidemiologists to a certain
extent. Declaring the end of an epidemic, the alert level in surveillance system may
be downgraded, and working shift of medical and public health experts in charge
of control practice (e.g. contact tracing effort) may also be restored [1]. In the case
of the end of a vaccine preventable disease, the declaration would always lead to
a discussion over the cessation of routine immunization [2]. The impact of the end
of an epidemic is not limited to healthcare settings. Reduced volume of travelers
may be recovered to normal due to declaration of the end of an outbreak, and thus,
the declaration of safety would involve a pressure from tourism industry and have
substantial impact on associated economics. In the case of an epizootic event of a
veterinary disease, especially among livestock animals, the freedom from the epi-
zootic disease indicates a permission to restart international transportation or trade
of specific animals [3]. Getting along with these social and political interests, the
end of an epidemic must be determined without serious errors and the announcement
should be made carefully and appropriately.

Despite the importance of the determination of the end of an epidemic, there
have been little available methods to explicitly judge the end of an epidemic [4]. In
particular, published studies have been mostly limited to a setting with single and
brief exposure, e.g. a point source outbreak of food-borne disease. While methods
are scarce, there have been multiple practical events on the ground that did require
explicit methodological assistance in deciding the end of an epidemic. Nevertheless,
it is also true that practical side has involved a number of complications that can-
not be immediately addressed by epidemiological modeling only. For instance, many
epidemics have involved a substantial number of asymptomatic infections, ascertain-
ment biases and underreporting issues. In passive surveillance, diagnosed cases are
notified to the public health authority. In addition to passive information, there might
be datasets based on active surveillance (e.g. case finding effort through outbreak
investigation) or laboratory testing of (a part of) possible exposed individuals, but
their utilities have not been taken into account in the determination of the end of an
epidemic. Moreover, one may ultimately wish to judge the end of an epidemic, not
using notified case data but using other informative resources such as event-based or
syndromic surveillance data.

Facing these complexities in empirical observation, what can epidemiological
modelers offer to the society? The purpose of this short review is to understand
methodological principles of available criteria of the end of an epidemic, identifying
their advantages and disadvantages. This exercise will shed light on future path of
the objective judgment of the end of infectious disease epidemics.

2 Classical WHO Approach

Themost stimulating practice has been seen in the adoption of classical criteria by the
World Health Organization (WHO) on its definition of zero Ebola cases from 2013-
15 [6]. In that criteria, the outbreak of EVD is considered ended in any one of affected
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Fig. 1 Probability density
function of the incubation
period of Ebola virus disease
(EVD). The daily frequency
of the incubation period, the
time from infection to illness
onset, for EVD is shown [5].
The mean and variance of
the incubation period were
assumed at 9.7 and 30.3
days2, respectively. A
lognormal distribution was
employed, and parameters μ

and σ were thus 2.13 and
0.53, respectively

countries (e.g. Guinea, Liberia and Sierra Leone) after 42 days have passed since the
last confirmed case has tested negative twice for the virus on blood samples. Along
with this criterion, it has been also suggested that, after the 42-day period has elapsed,
each country should maintain a system of heightened surveillance for a further 90
days, and ensure that ongoing EVD surveillance and notification thereafter will be
conducted. Moreover, it is determined that the end of the EVD outbreak in the West
African sub-region will be declared when the 42-day period has elapsed in the last
affected country.

The choice of 42 days stems from the right tail of the incubation period. Figure1
shows the probability density function of the incubation period of EVD [5]. Empiri-
cally observed certain maximum of the incubation period has been 21 days. Taking a
double of this empiricalmaximumvalue, 42-daywaiting period has been determined.
Unfortunately, there has beennoadditional justificationof using the incubationperiod
and taking twice the empirical maximum, but the choice of a fixed length has been
very transparent to public health societies and the criteria were made easy to follow
for those working on the ground in West African countries.

Incubation period is the time from infection to illness onset [7]. As long as the
time of potential exposure among traced contacts is known, the incubation period
could indicate the length of time to be waited to ensure that no more symptomatic
case exists. Even provided that the time of potential exposure is not directly observed,
the use of the latest time at which an exposure could have occurred (e.g. the last date
of PCR positive outcome in the last confirmed case) as “clock zero” point would
offer a conservative suggestion to ascertain the absence of additional symptomatic
infections [8].

Nevertheless, despite the simple and transparent fixed length, the classical
approach suffers from a number of technical problems. First, the use of empirically
observed maximum would be vulnerable to sample size of the incubation period.
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Namely, the greater the sample size, the greater the observed value of maximum
would be [9]. Second, it is evident that the use of the incubation period is not jus-
tified for diseases that involve substantial number of asymptomatic infections [10].
There could be unrecognized chains of transmission among asymptomatic cases.
Third, due to the shortage of objectiveness, the waiting period does not directly mea-
sure the probability of the end of an epidemic. For instance, it appeared that viable
Ebola virus could be maintained in semen of infected males even after recovery from
convalescent phase. A number of sexual transmission events have been reported to
have fueled local reemergence of EVD, but such event has never been captured by the
right tail of the incubation period. As a consequence, several erroneous declarations
of the end of Ebola epidemic were unfortunately observed in West Africa.

3 Single Exposure Approach

Food-borne outbreak is frequently referred to as the common source outbreak,
because the causative food is mostly shared among exposed individuals. The point
source outbreak is a special case of common source outbreak in that the exposure is
very brief in time (e.g. sharing an identical party lunch menu on the same day). The
point source outbreak has been well studied by statisticians, because the resulting
epidemic curve can be assumed as identical to the density function of the incubation
period (Fig. 2), permitting us to estimate the time of exposure and analyze a variety
of statistical features of that distribution.

Determination of the end of point source outbreak is perhaps themost well studied
statistical subject in the context of the end of outbreak. Figure2 shows the typical

Fig. 2 Fitting a three-parameter log-normal distribution to the epidemic curve of Salmonellosis
in Gifu prefecture, Japan, 2003. An outbreak of food-borne Salmonellosis was observed in Gifu
prefecture involving a total of 178 cases [7]. A three-parameter log-normal distribution includes
not only μ and σ but a threshold parameter that determines the time at which an exposure occurred
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epidemic curve of food-borne outbreak, caused by Salmonellosis in Gifu, Japan,
2003. To capture the epidemic pattern, one can fit the following three-parameter
log-normal distribution:

f (t; γ, μ, σ 2) = 1

(t − γ )σ
√
2π

exp

(−(ln(t − γ ) − μ)2

2σ 2

)
, (1)

for t − γ > 0, where t is the calendar time and γ is the so-called threshold parameter
indicating the time at which an exposure occurred. In the Gifu outbreak example,
the maximum likelihood estimate of γ was 11.7 on the calendar time scale in June
2003, indicating that the most likely brief exposure may have happened at lunch or
dinner on 11 June. In many food-borne outbreaks, food traceback effort during the
outbreak investigation involves a serious problem of recall bias. However, employing
the model (1), one could dramatically narrow down the scope of food menus to be
recalled [7].

In addition to estimating the time of exposure, one can subsequently assess the
right tail in detail, because the percentile of the incubation period distribution directly
indicates the proportion of cases that we have already observed by a given calendar
time. Brookmeyer andYou [4] have exploited this knowledge to develop a hypothesis
testing method. Suppose that the total outbreak size is N among which we have
already observed n cases.We have the ordered calendar time of disease onset of cases,
y1, . . . , yn and suppose that T days have passed since the last case (yn) occurred.
The hypotheses are H0 : N > n versus H1 : N = n.

For the hypothesis testing, we consider the j th spacing s j = y j+1 − y j . Assum-
ing that the incubation period follows a two-parameter exponential model with a
guarantee time G, i.e., f (u) = λ exp(−λ(u − G)) for u > G and 0 for u < G, j th
spacing arising from a sample size of N from the two parameter exponential model
also has an exponential distribution with parameter λ(N − j), and thus, the density
function of the spacing is

f (s j ) = λ(N − j) exp(−λ(N − j)s j ). (2)

The probability that the nth spacing is greater than t days is

Pr(sn > t) = exp(−λ(N − n)t) (3)

Let α be the level of significance test. The length of waiting time t is set such that
the Eq. (3) is equal to α at the particular null hypothesis when N = n + 1. Then, we
obtain

T ≥ −1

λ
ln(α) (4)

In general for any N > n, the probability of rejecting H0 is
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Pr

(
sn ≥ −1

λ
ln(α)

)
= α(N−n) (5)

While themethod is statistically very solid, the range of direct application is unfor-
tunately limited to the point source outbreak. Moreover, the application is justified
only when all of infected individuals develop symptoms and all cases are reported.
Despite these problems, the proposed method is maintained very simple and can
be implemented in some other settings with a little extensions, especially when the
spacing of a single distribution can be applied.

4 Laboratory Testing to Ensure the Absence of Cases

In veterinary epidemiological practice, a mass laboratory testing may be more easily
implemented than in human population. Due to economic interest to urge the gov-
ernment to be acknowledged as being free from a specific disease and resume trade,
the cost that is required for laboratory testing may be justified well. Obtaining labo-
ratory samples even from a part of the population, the following assessment would
be feasible.

Suppose that we have a perfect laboratory test and we handle infinitely large
population of animals. The probability of selecting a given number of positives
when randomly selecting n animals from a population with disease prevalence p is
given by the binomial distribution [11]:

Pr(X = x) =
(
n

x

)
px (1 − p)(n−x) (6)

Using the perfect test (i.e. with 100% sensitivity and 100% specificity), an epidemi-
ological survey to substantiate freedom from disease requires that no positives are
found. When x = 0, the Eq. (6) simplifies to:

Pr(X = 0) = (1 − p)n (7)

Even in the case that we should consider imperfect laboratory testing, the abovemen-
tioned scheme can be easily extended [11]. The probability of observing x positive
animals when testing n animals from an infinite population is given by the binomial
distribution:

Pr(X = x) =
(
n

x

)
(pSe + (1 − p)(1 − Sp))x (p(1 − Se) + (1 − p)Sp)(n−x),

(8)
Of course, the Eq. (8) is followed by the same argument in (7) to calculate the
probability that substantiates freedom from disease. That equation or the Eq. (7)
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would help veterinary epidemiologist to determine the minimum sample size of
laboratory testing.

The abovementioned model is kept very simple. However, the method heavily
relies on laboratory testing performance and sampling effort. As an important remark
about the sampling, considering that clustering is common for directly transmitted
infectious diseases, it is hard to truly achieve a random sampling. Another technical
issue is that the prevalence is assumed to be a constant, and thus, the stationarity is
inherently assumed. For the similar reason, it is quite unfortunate that the error prob-
ability of elimination is only based on binomial sampling error (without accounting
for stochastic dependence structure in empirical data of cases). Despite these prob-
lems, it is worth noting that the use of laboratory testing can overcome the problem
of involving asymptomatic infections.

5 An Explicit Method for Multiple Exposure Setting

Epidemiological methods to determine the end of an epidemic in the presence of
multiple exposures (and thus, involving stochastic dependence structure) are very
scarce. This might be attributable to a difficulty in capturing the complex epidemic
dynamics using simple equations in the presence of human-to-human transmissions.

An exceptionally careful pioneering study in this context was conducted by Eich-
ner and Dietz [12] on poliomyelitis. Polio virus infection involves a substantial
number of asymptomatic infections, and it is believed that only one paralytic case
would occur among a total of 200 infections in naive host. Besides, because polio
eradication program is underway due to effective vaccines and routine immunization
programs, the so-called endgame of polio has called for a solid method to determine
the local elimination of polio.

In principle, a stochastic compartmental model was employed for simulations,
and Eichner and Dietz examined the probability that silent infections are underway
as a function of time since the observation of last paralytic case [12]. Using the
Markov jump process and simulating from the endemic equilibrium, the probability
of silent infections as a function of the time since the last paralytic case, as shown
in Fig. 3, was obtained. Examining realistic range of the frequency of paralytic case,
ranging from one among 300 infections to 100 infections, Fig. 3 indicated that the
probability of silent infections would be less than 1% if 5 years is secured as the
waiting time since the last paralytic case.

Fitting the stochastic model to empirically observed epidemiological data would
be perhaps the most straightforward method to estimate the probability of extinction
(and thus, the probability that the epidemic is still going on). Such model could
also have a potential to be fitted to the dataset both with and without case finding
efforts on the ground. Nevertheless, in practice, it is extremely difficult to fit such a
stochastic model to a portion of epidemic data. That is, fitting to the latest data only
would force us to focus on a chopped epidemic curve (with unknown infection-age
structure) and the determination of the end of epidemic without fully realizing the
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Fig. 3 Probability of silent infection as a function of time since the last paralytic polio case.
Probability that silent infections still occur when no paralytic polio cases have been observed for
a given period of time is shown [12]. The figure was reproduced by the author with reference to
methods of Eichner and Dietz [12] for the scenario in which IPV (inactivated polio vaccine) was
employed with the 80% vaccination coverage. One case per 100 infections (bold line), one case per
200 infections (solid line), and one case per 300 infections (dashed line) were assumed

epidemiological dynamics might be too challenging. In fact, Fig. 3 is the result from
simulations starting with a boundary condition and is not the time from the actual
latest observation.

6 A Heuristic Method for Multiple Exposure Setting

The last approach to be reviewed is a heuristic approach in the presence of stochastic
dependence structure with an application to the Middle East respiratory syndrome
(MERS) in the Republic of Korea [1]. Not involving any additional cases of MERS
for several weeks in the South Korea, the government and the WHO discussed an
appropriate timing to declare the end of the outbreak. As discussed in the second
section, a widely acknowledged criteria of theWHO to decide the end of an epidemic
has been to ensure no further report of cases, setting twice the long incubation
period (i.e. 14 days for MERS) as the standard waiting period since the latest date
of diagnosis or recovery. Adopting 28 days as the waiting time and count days
from 4 July, the date on which the latest case was diagnosed, the earliest date that
Korean government could have declared the end of outbreak was 2 August adhering
to the WHO criteria. If we count the days from the last PCR positive date, the
date of declaration would even have been in late December 2015. Nevertheless, to
emphasize the safety to the nation as well as forthcoming international travelers at
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an earlier time, the Korean government made an original decision to announce the
end of MERS outbreak on 27 July due to the fact that the last quarantined case was
freed from movement restriction. To judge the appropriateness of these decisions,
the probability of observing additional cases as a function of calendar time was
explicitly calculated and such objective judgment was compared against that based
on the WHO criteria.

The probability of observing additional caseswas derived, using the serial interval,
i.e. the time from illness onset in a primary case to illness onset in the secondary case,
and the transmissibility of MERS. Let F(t) be the cumulative distribution function
of the serial interval. If time t is elapsed since the last case and provided that the
last case were able to produce only one secondary case, the probability that at least
one additional case is observed at time t since the illness onset of last case would
be 1 − F(t). To address the potential of observing multiple secondary transmissions
produced by a single primary case,we use the offspring distribution py = Pr(Y = y).
Then, the risk of observing at least one additional case at time t since the illness onset
of primary case is

Pr(X ≥ 1) = 1 −
∞∑
y=0

py F(t)y (9)

Using the dataset of ti , the calendar date of illness onset of diagnosed cases i (i =
0, 1, . . . , 185), the probability of observing additional cases in future at calendar date
t is calculated as

Pr(X ≥ 1) = 1 −
185∏
i=1

∞∑
y=0

py F(t − ti )
y (10)

It should be noted that the Eq. (10) does not manually subtract all existing secondary
transmissions from the model, despite the fact that the observed cases have already
generated a part of secondary cases that they have been supposed to cause. For
that reason, the probability that is derived from the Eq. (10) may be slightly an
overestimate.

As practiced in the determination of the length of quarantine [8, 10], one can
declare the end of outbreak if that probability is smaller than 5%, a threshold value.
Our analysis showed that the first date on which the posterior median probability
decreased to less than 5% was 21 July (Fig. 4). The first date on which the posterior
median lowered 1% was 23 July. Namely, compared with 2 August as calculated
from the WHO criteria, the declaration date of the end of outbreak could have been
11 and 9 days earlier, respectively.

The calculated probability is interpreted as the risk of observing at least one
more case on or after a specified date and has a good potential to assist objective
determination of the end of outbreak. The model efficiently addressed three practical
problems in objectively calculating the probability that an outbreak leads to the end:
(i) multiple cases on the same date, (ii) several recent cases with different illness
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Fig. 4 Estimated probability of observing additional cases of theMiddle East respiratory syndrome
coronavirus infection in the Republic of Korea, 2015. Probability of observing additional cases on
each calendar date, given no illness onset has been observed, is calculated [1]. Circles represent
posterior median values that were calculated from resampled parameters governing the offspring
distribution and serial interval. Whiskers extend to upper and lower 95% credible intervals

onset dates, and (iii) variations in the number of secondary cases generated by a
single primary case.

Of course, missing undiagnosed or mild cases is not taken into account in this
method, and under-diagnosiswould considerably extend the time to declare the end of
outbreak (and thus, the proposed method is not directly applicable to EVD in West
Africa to which we are presently developing an alternative method), all possible
contact of diagnosed cases in the late phase of MERS outbreak in Korea were all
traced, and thus, it was appropriate to ignore ascertainment bias in this specific
setting. Important limitations include (i) the absence of dependence between serial
interval and offspring distribution (as long as the two were estimated separately
from independent datasets) and (ii) need to infer the offspring distribution precisely,
perhaps requiring us to analyze contact tracing data or outbreak size distribution.

7 Conclusions

Epidemiological and laboratory methods of ascertaining the end of an epidemic
were reviewed. To declare the end of an epidemic, it has been shown that multitude
of methods might be used in combination with or without case finding efforts and
biological samples for laboratory testing. To achieve this task, it is evident that
surveillance and mathematical modeling are two complementary instruments in the
toolbox of epidemiologists. Combining their strengths would be highly beneficial to
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better define the end of an epidemic so that necessary public health actions can be
taken properly.

Lastly, it is inevitable that the decision for declaring the end of an epidemic is
highly politicized, and thus, the final decision must not solely be based on math-
ematical modeling results alone. Nevertheless, offering scientific evidence would
make a big difference in epidemiological capacity and definitely ease the decision
by policymakers. Ideally, there should be regular opportunity for modeling experts
and policymakers to sit together to work on and discuss this matter.
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Statistical Considerations in Infectious
Disease Randomized Controlled Trials

Matthew J. Hayat

Abstract Randomized controlled trials (RCT) provide the highest standard of
evidence available for assessing treatment efficacy. Causal inferences are enabled
and effects may be directly attributed to a treatment. The nature of infectious disease
presents challenges to the design, conduct, and analysis of a trial for a new drug
or therapy. Many of these challenges are statistical in nature and can be addressed
with modern methods for planning and analyzing RCT data. In this chapter, some
of these challenges are described and reviewed. Modern statistical modeling meth-
ods for analysis of correlated data are covered. Some challenges with sample size
determination are outlined and updated methods for data monitoring, interim, and
subgroup analyses detailed. Also, discernment is made between multisite and cluster
randomized trials. Recommendations for best practices are included.

Keywords Randomized controlled trial · Treatment efficacy · Causal inference ·
Therapy · Cluster randomized trial

1 Introduction

Many questions abound around the ethicality of conducting a rigorous randomized
controlled trial (RCT) to test efficacy of a new therapy in the midst of an infectious
disease outbreak. A compelling argument for RCTs was made by [4] and published
in NEJM at the peak of the 2014 Ebola virus disease epidemic. The authors argued
against the exclusion of a concurrent control group, suggesting its necessity in mea-
suring effects of an investigational therapy. In the absence of random allocation,
potential imbalances and biases prevent accurate estimation of true treatment effects.

Testing efficacy with an infectious disease RCT necessitates thoughtful statistical
thinking and reasoning in the design, conduct, and analysis. The RCT is the scientific
gold standard for enabling causal inference and is based on a random allocation of
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treatment. Such randomness of assignment provides a theoretical basis for the control
of confounders and a valid inference that any resulting observed efficacy is the result
of a preceding treatment cause.

Unique statistical challenges arise with the implementation of an infectious dis-
ease RCT. In an acute outbreak, there is often little to no time to properly plan
and conduct the traditional phase I and phase II studies that are usually intended to
provide the needed information to carefully and thoughtfully plan a phase III RCT.
Sample size determination is difficult without a well-informed effect size. Tradi-
tional RCTs are known to be tedious and slow, which is ill-aligned with the needs in
infectious disease. Fortunately, advances in trial structure and design have attempted
to address these modern needs. For example, data monitoring and interim analyses
are methodologies that have been developed to reduce the time needed to determine
effective treatment, as well as more quickly identify harm and safety concerns [26].
Multilevel studies and cluster randomized trials are designs that offer potential ben-
efit of efficiently handling contamination concerns while addressing multilevel data
structures with within-cluster correlation [11].

With the advent of many statistical techniques and paradigms for advancing the
science of infectious disease RCTs, inadequacies with the conduct and reporting
of new methodologies have unfortunately been problematic [1]. Multiple reviews
of studies published in the infectious disease research literature have revealed high
quantities of errors in the statistical analysis and/or reporting of results. For example,
a review of articles in the journal Infection and Immunity found that about half of the
reviewed articles had problems with the statistical results presented [20]. A study of
the Journal of Virology found similar problems [23]. In fact, studies dating back to the
1960’s reviewing the health and biomedical literature have attempted to quantify and
describe statistical analysis and reporting errors [25]. MacArthur, R.D., and Jackson,
G.G. [16] found in their evaluation of the Journal of Infectious Diseases that “Almost
all of the articles that used statistics contained at least one statistical error.”

Renowned statistician Karl Pearson famously said “statistics is the grammar of
science” (Pearson 1897). Statistical analysis and reporting provides a framework for
using observed study data to best answer the research question of interest. Reporting
problems, which may include application of the wrong statistical method, poor or
inadequate summary of statistical analyses, or errors in displayed results, give pause
to the validity of inferences made and conclusions drawn. Not surprisingly, the scien-
tific community has placed a premium on reporting of RCT results. For example, the
Consolidated Standards of Reporting Trials (CONSORT) Group, begun in 1993, was
formed [19]. The CONSORT guidelines is a working document with comprehensive
recommendations for reporting of clinical trials. The CONSORT team consists of
a group of experts in clinical trial methodology, guideline development, biomedical
journal editors, and research funders. The effort was created with the intention of
addressing the problems resulting from inadequate reporting of RCTs.

The purpose of this chapter is to highlight selected statistical considerations that
arise in the design, conduct, and analysis of randomized controlled trials. I focus
on considerations that particularly present in the arena of infectious disease trials.
This chapter is organized as follows. Four general domains of statistical consider-
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ations in the design and analysis of randomized controlled trials are presented and
discussed. The first domain pertains to modern approaches appropriate for the sta-
tistical analysis of RCT data. Sample size determination and challenges that arise
with this important topic are considered in the second domain. The third domain
focuses on data monitoring and interim analyses, along with statistical issues with
multiple comparisons that arise in these processes. The fourth domain is in the area
of multisite and cluster randomized trials.

2 Modern Statistical Analysis of RCT Data

Classical statistical methods, usually the focus in a first or second semester graduate
health sciences course in statistics, are inadequate for statistical analysis of clinical
trials data. Such conventional statistical methods have been the focus in statistics
education for non-statisticians. This means working within the general linear models
(GLM) framework. The GLM framework is powerful and very useful in science.
Yet, its limitations present challenges for its application in the analysis of clinical
trials data since the GLM assumes independent observations. Clinical trials data
usually includes 2 or more measurements for each subject, cluster, or unit. Thus, the
measurements are correlated and the independence assumption not met.

The nature of study of treatment for infectious disease involves a temporal com-
ponent. In other words, repeated measurements are taken on each individual at 2 or
moredistinct timepoints.Classical statisticalmethods assume independencebetween
measurements. However, this assumption is violated with repeated measures data.
Modern methods for analyzing repeated measures data extends the classical general
linear model framework to account for multiple measurements on each participant
[10]. This is also known as multilevel data. In particular, the GLM is extended to the
general linearmixedmodel (GLMM), which involves the addition of random effects.
Mixed refers to the mixing of fixed and random effects. Fixed effects contribute to
knowledge about the mean of the dependent variable, whereas random effects add to
understanding about its variance. Also commonly known as subject-specific models,
GLMM partition the variance of the dependent variable into components to account
for the multilevel structure of RCT data.

With the advent and dramatic increase in computing power during the past two
decades, procedures to fit the GLMM have been made readily available in modern
statistical software packages. This was not always the case. Historically, analyses of
experimental studies in the health sciences applied naïve methods of inference [10].
For example, a common practice applied to RCT data with a continuous outcome
used to be to calculate pre to post change and apply a classical GLM approach with
change as the single outcome measure for each study subject. Another method was
to calculate percent change and analyze these percent changes as the dependent vari-
able. These approaches are deeply problematic, as they ignore baseline value and an
individual’s condition prior to treatment. This can lead tomisleading inferences, since
change from baseline is usually the effect of interest. Common occurring phenomena



306 M.J. Hayat

with infectious disease outcomes, which limits further the value of only considering
change, are floor and ceiling effects with the outcome of interest. In addition, partial
data on a subject, a common occurrence in infectious disease trials due to attrition
and loss to follow-up, may not be used with these naïve approaches. By contrast, in
a GLMM model the baseline and follow-up values(s) are each included together in
a dependent variable vector format for each subject. The GLMM uses all available
information on each subject, including partial data due to loss to follow-up [5].

Continuous outcome data that can be reasonably assumed to be normally dis-
tributed are best modeled with a GLM or GLMM [22]. Other dependent variable
types, such as skewed continuous, count, dichotomous, polychotomous, and ordi-
nal, may be handled with a broader framework of linear models referred to as the
generalized linear model (GzLM) and generalized linear mixed model (GzLMM).
The distribution of the dependent variable can be specified in accompaniment with
the link function describing the relationship between the independent and dependent
variables.

The GLMM and GzLM are conditional models. They condition on the random
effect, thus lending to subject-specific interpretations of slope estimates for fixed
effects. This is particularly useful and of interest when it is desirable to make infer-
ences at an individual level by conditioning on covariates for a subject. Marginal
models provide an alternative approach to mixed models for analysis of RCT data.
Also referred to as population averaged models, slope estimates are averaged over
the population, rather than estimated differently for varying subject characteristics.
For example, a marginal interpretation may describe the average change each of the
treatment and control groups, for a one-unit increase in time or some other covariate.
The consensus in the statistics literature is marginal models be used for the analysis
of repeated measures binary data, and mixed models otherwise be used with other
outcome data types [8, 27]. This is especially useful with respect to infectious disease
trials, given the common use of a dichotomous outcome measure (e.g., infected or
not, diseased or not, survived or not, protected or not).

3 Sample Size Determination

Sample size is an ethical consideration [17]. An underpowered study lacks sufficient
statistical power to detect an effect, resulting in an inability to establish treatment
benefit. While an underpowered study is problematic, an overpowered study is also
unacceptable since this means exposing more subjects to risk than necessary. There
are two approaches for sample size determination deemed acceptable by govern-
mental funding agencies (e.g., NIH, NSF, PCORI). Power analysis is a classical
methodology for estimating sample size as a function of the level of significance,
statistical power, and effect size, whereas precision estimation inverts a confidence
interval and describes the number needed as based on a pre-specified desired level
of precision [9].
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It is commonplace for researchers to seek a scientifically objective approach to
sample size determination. However, power analysis and precision are necessarily
applied a priori prior to enrollment. Each approach involves unavoidable subjectivity.
For example, the level of significance, statistical power, relevant effect size estimate,
between and within subject variability, and/or precision level, need be specified in
advance before data are collected. The threshold for allowedType I error (level of sig-
nificance) and Type II error (1-statistical power), as well as the pre-defined meaning
of efficacy, are subjectively determined by the researcher. There are different schools
of thought on deciding effect size [9]. This author suggests effect size specification
in an infectious disease trial is best defined with a clinically meaningful change in the
primary outcome of interest (Lenth 2001). Effect size can be defined with a defined
clinically important change in disease status, or some other primary endpoint. For an
alternative approach that attempts an effect size estimate based on observed effects
in previous studies is described in [2]. However, the author has encountered signif-
icance challenges with this approach. Publications of previously completed clinical
trials often present results in the form of summary statistics by treatment arm at
each time point. These types of summaries often cannot be properly used in effect
size estimation for a future RCT, since the quantity of interest is likely individual
change. Summary statistics on change from baseline to follow are needed in order
to include a correct variance estimate in the sample size calculation. Further, effect
size estimation for binary comparisons may be more arbitrary than for continuous
outcomes.

Statistical power is an a priori concept [3]. Study planning should include a rig-
orous consideration of needed sample size [6]. However, statistical power is not
considered in the data analysis. When evaluating analyses on the back end of a clin-
ical trial, statistically significant results means there was sufficient statistical power
to find an effect. Lack of statistically significant findings suggests two possibilities:
(i) there is really not an effect; or, (ii) the study was underpowered. In fact, there is
not a way with classical statistical inference to determine which it is. One approach
some researchers try is to perform a post hoc power analysis to determine how much
statistical power one had with a non-significant finding. This approach is flawed and
misleading, as power is a desired and specified (not an observed) quantity, and sta-
tistical power has a perfect negative correlation with the p-value [13]. This means
that a small p-value equates to high, and a large p-value to low statistical power. Post
hoc power analysis is not meaningful and should be avoided [9].

Traditional RCT designs consider a total fixed study sample size to be achieved by
completion of data collection, and the sample size is conceptualized as a constant once
data collection begins. This is a limitation and presents challenges with the pressing
need occurring with infectious disease trials. Methodological developments in the
past few decades have included changes to the traditional framework, to allow for
sample size as a random variable that may change during the progression of a trial
[14]. Termedadaptive designs, these approaches conditiononobserveddata as a study
progresses, and allows for change to the sample size as data are accumulated. In order
to conduct a power analysis to determine an a priori target sample size, information
on effect size and within or between subject variability are needed. This information
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may not be readily available, or precision in estimates lacking. Commonly termed
sample size re-estimation, a variety of approaches have been developed in recent
years to utilize partial data with pre-planned interim analyses to re-calculate sample
size as a trial progresses. For example, [18] describe an approach that begins a trial
with a small up-front sample size target. Through interim analyses, efficacy potential
is assessed, and if promising results obtained, additional subjects are enrolled and
the target sample size increased.

4 Data Monitoring, Interim, and Subgroup Analyses

Data monitoring during data collection is important. Logistical problems may be
detected early and considerations of benefit and riskweighedprior to trial completion.
Some trials may persist for years in duration. Ethical considerations require that the
safety of human subjects be prioritized in the conduct of a clinical trial. This includes
closelymonitoring safety and efficacy. If a vaccine or treatment for infectious disease
can be measured with reasonable certainty to be effective prior to trial end, it may be
sensible to make the treatment available to all participants. Conversely, if a vaccine
or drug presents undue safety risk, a moral and ethical obligation may be to stop
administration of an experimental treatment. An independent committee of clinical
and scientific experts make up a trial’s data and safety monitoring board/committee
(DSMB/DSMC). This group is responsible for datamonitoring and closely following
the conduct and happenings in a clinical trial with human subjects.

Alpha spending functions were developed to address multiplicity concerns that
occur with multiple statistical tests performed on a primary RCT outcome (DeMets
and Lan 1995). The traditional RCT prescribes avoidance of data analysis, nor any
data looks, prior to total completion of data collection. However, human considera-
tions and ethical concerns quickly arise due to the waiting period needed for RCT
completion in the midst of acute outbreak of an infectious disease. Data monitoring
is a practice dating back to the 1960’s and provided a framework for interim review
of accumulated data during the course of a clinical trial. The goal was to provide
scientific criteria for early termination of a trial due to (i) unacceptable toxicity, (ii)
substantial and persuasive evidence of beneficial effect, or (iii) futility, which results
when it is known that continued data collection will not result in a superior treat-
ment. Scientific criteria were developed, and termed stopping rules. These describe
pre-determined thresholds on which to stop a trial.

Data monitoring and interim data analyses need to be planned, and accompanied
by a pre-determined spending allocation plan of the study alpha to the different
interim data analyses [15]. Pre-defining the number of interim data looks is essential
in order to adequately address the anticipated multiplicity challenges resulting from
multiple statistical tests on the same primary endpoint or other measures of interest.
Measures of interest in addition to the primary endpoint may also be related to safety
[7]. Alpha spending functions are valuable for planning ahead, and many types of
functions have been developed to support different analysis strategies.
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Three common procedures used are the Pocock, O’Brien-Fleming, and Peto alpha
spending functions. The Pocock function assumes a fixed alpha level at each interim
look. For instance, for a conventional α = 0.05 study wide significance level and
planned interim data analyses at 6 and 12 months (with 12 months as the final study
endpoint), the Pocock method would assign a testing alpha level of 0.029 at 6 months
and 0.029 at 12 months. These values differ from a more simplistic idea of 0.025
at each time point due to the use of a discrete probability distribution for estimated
alpha levels. The O’Brien-Fleming spending function protects against easily finding
an effect in a trial’s early stages. Thus, the alpha level increases with interim looks
at the trial progresses. The alpha levels with this method would be 0.005 at 6 months
and 0.048 at 12 months. Another useful approach is Peto’s function, which is more
likely to find an effect at the last time point (end of trial). This method would yield
alpha levels of 0.001 at 6 months and 0.05 at 12 months. Alpha spending functions
are used to avoid an inflated number of false positives that results with multiple
statistical tests.

Henao-Restrepo et al. [12] presented results of an interim analysis for an ongoing
Ebola vaccine cluster-randomized trial. Interim results suggested the experimental
treatment may be highly efficacious and safe in preventing Ebola virus disease. The
authors made use of a conservative O’Brien-Fleming alpha spending function and an
independent DSMB reviewed the interim 3 months after trial commencement, with
an interim analysis cutoff of α = 0.0027. Study results at this interim analysis were
based on proportion of clusters with one or more eligible disease cases. Applying
Fisher’s exact test, the statistical test result was p=0.0036. Since this result failed
to reach statistical significance, the trial continued. This study is an exemplar of
careful forethought, including an analytic plan with pre-defined interim analyses
and established stopping rules with the use of an alpha spending function.

Subgroup analyses is another common practice with analysis of RCT data. Con-
sider a vaccination trial with infection as the primary endpoint. In addition to com-
parison of treatment and control, consideration of variations in risk for different
subgroups is often of interest. For example, risk may differ for men and women,
across different age groups, or by a prognostic factor such as a pre-existing condi-
tion. It is common for researchers, after conducting a test for efficacy on all subjects,
to test for efficacy within a subgroup. This is problematic for two substantial rea-
sons. First, the study was powered on the primary endpoint. As a result, a subgroup
analysis will likely suffer from an inadequacy of statistical power. Second, multiple
statistical tests on the same measure results in an increased rate of false positives.
Deeming a treatment efficacious in absence of a real effect has led some researchers
to observe that “subgroups kill people” due to the resulting harm from false positive
findings [26].

Heterogeneity of treatment effects often exists with respect to demographics,
physiology, pathology, and many other possible characteristics. If a researcher con-
ducting an infectious disease RCT wishes to test for efficacy within subgroups, it
is essential for subgroups to be anticipated and predefined. When a substantial sub-
group effect is anticipated, a stratified randomization plan by subgroup variables is
advisable and preferred. With a stratified randomization, the sample size determina-
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tion can be approached so that adequate sample sizes for detecting treatment effects
are derived for each stratum. While ideal, stratifying by one or more variables mul-
tiplicatively increases the sample size needed, which may create an untenable study
size due to economic, time, and financial limitations.

In the absence of a possibility of stratification, and a subgroup analysis instead
chosen, it is essential it be predefined and planned. In conducting a subgroup analysis,
the first analytic step is to test for an interaction (moderation) subgroup-treatment
effect. If there is not a significant interaction effect, no further significance tests
within subgroups should be performed. In the event of a significant interaction effect,
significance tests within subgroups may be done, but should be interpreted with
caution. In addition, many statisticians have argued for multiplicity adjustments.
[24] suggests the use of an alpha spending function with subgroup analyses to adjust
for the multiplicity problems that ensue as a result of multiple statistical tests on the
same outcome.

5 Multisite and Cluster Randomized Trials

Classical statistical methods assume independence between observations. Yet, by
default, causal inference necessitates a temporal sequence of measurements, in order
to establish a preceding cause to a sequential effect. As such, clinical trials usually
entail at minimum a baseline and post-treatment measurement for each individual.
This lends to a multilevel data structure, since two measurements observed from
the same individual possess a within-subject correlation. A traditional RCT with
repeated measurements on each subject leads to a 2-level data structure. Further,
vaccine and treatment trials for infectious disease are often implemented at more
than one site and persons treated at the same site are likely to have commonalities
that lend to a within-site correlation. This creates a third level of data.

A clinical trial conducted at multiple sites, with random assignment at the patient
level for all subjects at all sites, is a multisite trial. The benefits of multisite studies
are often seen in the increased access to the number of needed study subjects. How-
ever, several challenges may compromise the integrity of a multisite trial. For exam-
ple, contamination, provider availability, an inability to direct treatment to selected
patients, and other practical limitations, may prevent patient randomization. An alter-
native approach is to randomize at the site level. A cluster randomized trial controls
for within-cluster correlation by administering the same treatment arm to all indi-
viduals within a cluster. The difference between a multisite and cluster randomized
trial is with the level of randomization.

Cluster randomized trial data can be analyzed with the use of multilevel statistical
models. Variance components of the primary endpoint are partitioned into cluster
level and patient level variances. Properly accounting for thismultilevel data structure
is needed to obtain valid standard error estimates needed for correct inferences.
Variance components for each model level are estimated, and conditional on these,
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mean effects estimated with proper accounting of the within-subject and within-
cluster correlations inherent in cluster trials.

6 Discussion

Statistical considerations play an essential role in the design, conduct, and analysis
of a clinical trial. Planning and carrying out an infectious disease trial to measure
treatment effects presents many challenges. Research on human subjects is com-
plex. Statisticians and methodologists have made valiant efforts to improve statisti-
cal approaches, develop new methods, and improve existing ones, to allow for more
realistic analysis, understanding, and reporting of clinical trial findings. Researchers
apply these methods to attempt to analytically describe the complexities of clinical
research, and statistical inference is used to interpret and generalize study results
beyond the study sample.

In this chapter I’ve described modern statistical modeling approaches appropriate
for tackling the multilevel data structure inherent in clinical trials data. Sample size
determination should be considered in the research planning stages, and meaningful
effects of interest carefully defined. Data monitoring is used in infectious disease
trials, and managed by the trial’s DSMB/DSMC. Interim and subgroup analyses
need to be planned before data collection commences, and alpha spending functions
used to address the multiplicity problems that ensue with multiple statistical tests on
the primary endpoint. Cluster randomized trials present powerful alternatives when
patient level randomization is problematic or not possible.

Intensive planning and forethought are needed in the planning of an infectious
disease trial. Most of the topics touched on here are considerations to be made before
data collection begins. When ready to publish trial findings, the CONSORT report
and guidelines provide a cohesive and comprehensive framework for the reporting
of clinical trials. Statistical considerations are detailed and clear guidelines given.
Structured suggestions and advices are provided in the CONSORT documents for
reporting on the different statistical considerations touched on in this chapter.
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Epidemic Models With and Without
Mortality: When Does It Matter?

Lisa Sattenspiel, Erin Miller, Jessica Dimka, Carolyn Orbann
and Amy Warren

Abstract We use an agent-based computer simulation designed to model the spread
of the 1918 influenza pandemic to address the question of whether, and if so, when
disease-related mortality should be included in an epidemic model. Simulation out-
comes from identical models that differ only in the inclusion or exclusion of disease-
related mortality are compared. Results suggest that unless mortality is very high
(above a case fatality rate of about 18% for influenza), mortality has a minimal
impact on simulation outcomes. High levels of mortality, however, lower the per-
centage infected at the epidemic peak and reduce the overall number of cases because
epidemic chains are shortened overall, and so a smaller proportion of the population
becomes infected.Analyses also indicate that high levels ofmortality can increase the
chance of oscillations in disease incidence. The decision about whether to include
disease-related mortality in a model should, however, take into account the fact
that diseases such as influenza, that sicken a high proportion of a population, may
nonetheless lead to high numbers of deaths. These deaths can affect a real popu-
lation’s perception of and response to an epidemic, even when objective measures
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suggest the impact of mortality on epidemic outcomes is relatively low. Thus, care-
ful attention should be paid to the possibility of such responses when developing
epidemic control strategies.

Keywords Agent-basedmodel ·Epidemics · Influenza · 1918 influenza pandemic ·
Epidemic control · Mortality

Infectious diseases have been and continue to be major causes of fear, economic loss,
and mortality in human populations worldwide. Many infectious disease models do
not include disease-related mortality, however, even when the disease in question can
kill large numbers of people. For such diseases, e.g. pandemic influenza or Ebola,
the decision to ignore mortality is often questioned, but there are few studies that
systematically compare models with and without disease-related mortality to assess
whether the added complexity of a model with such mortality is truly necessary. In
this paper we explore this issue using agent-based computer simulation, which is
well suited to studying these kinds of questions. Unlike most mathematical models,
agent-basedmodels can easily incorporate heterogeneity in individual characteristics,
such as behaviors that influence the risk of becoming infected or dying, and they
can also easily incorporate stochastic factors that are often very important in the
spread of real epidemics. Agent-based models possess a higher degree of realism
than most mathematical models and can be used to compare scenarios with and
without disease-related death while maintaining a constant and significant level of
underlying heterogeneity and complexity across models.

We have developed a model to study the spread of the 1918 influenza pandemic
in a small fishing community in Newfoundland and Labrador. The choice to model
this situation was motivated by several considerations. First, much attention has
been directed in recent years to research on the 1918 influenza pandemic (see, for
example, the papers in Vaccine, Vol. 29, Suppl. 2 (2011)). Many of these studies
draw upon the experiences of large and developed cities; studies of smaller popu-
lations outside the mainstream of Western Europe and North America are needed
to fully understand the impact of this truly global event. Second, from a modeling
perspective, an important reason to consider small communities is that the detailed
day-to-day activities of community residents can be easily modeled without basing
assumptions about individual-level behaviors on idealized understandings of these
behaviors. Incorporating realistic activity patterns allows a finer-grained resolution
of how individual actions affect epidemic patterns than is possible using either math-
ematical approaches or larger-scale agent-based models.

Our overall project is also fundamentally multidisciplinary, drawing upon knowl-
edge and methods in mathematics, computer science, anthropology, history, public
health, and geography. This multidisciplinary approach combined with the small
scale of the study community allows us to firmly ground model structures as well as
parameter estimates in historical, ethnographic, and epidemiological data and knowl-
edge. It is important to note, however, that like all models, ours is a simplification of
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reality, but the assumptions we have made are based on in-depth understanding of
how real communities in Newfoundland and elsewhere work.

Because of the nature of this volume and space limitations, this paper focuses
on the modeling component of our project, with specific emphasis on the impact of
varying levels of mortality on the outcomes of an epidemic model. We first provide a
brief description of the essential structure of ourmodel.We then compare results from
two versions of the model that are identical in all respects except for the presence of
disease-related mortality. We explore the impact of varying levels of mortality alone
as well as patterns that are observed when allowing both mortality and one of our
other primary model parameters (length of the latent period, length of the infectious
period, transmission probability, and population size) to vary simultaneously. We
present selected results from extensive sensitivity analyses and conclude the paper
by discussing the implications of these results for understanding human experiences
with and responses to infectious disease epidemics.

1 An Agent-Based Influenza Model with Mortality

The model used in this project is an agent-based SEIR epidemic model of the spread
of influenza in a small human community. The model includes a set of agents (indi-
vidual entities) placed on a social/geographic space and a suite of rules that govern
how each agent behaves during each time step of the model. The model was orig-
inally developed using the programming language Java and the Repast Simphony
1.2 simulation libraries and packages [9] and it has also been implemented using
NetLogo 5.2 [16].

1.1 Set-up of the Population

The model agents are designed to represent a realistic human population. Agents
are assigned an age and sex and are allocated into households based on information
in the 1921 census for the community of St. Anthony, Newfoundland and Labrador
[8]. This community was chosen because a variety of historical materials are avail-
able to provide details about what life was like in the community during the early
20th century. Agents are also assigned a specific dwelling, membership in one of
two churches, an occupation, and a disease status. All variables other than disease
status are initialized with values that reflect known conditions in the community as
represented in the ethnographic and historical literature. At initialization all agents
are susceptible; one agent is subsequently given the status of exposed.

Buildings are placed on the model space to facilitate visualization of social activ-
ities, but the space is not reflective of true geographical space—it is designed to
represent a social space. During a time step agents move directly from one cell on
the space to another, dependent on their specific activities for the time step. Social
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interactions (and opportunities for disease transmission) can only occur between an
agent and the four possible von Neumann neighbors surrounding the agent’s destina-
tion. The agents’ instantaneous movement makes the model similar to a traditional
network model because it effectively generates links between agents (nodes), but
the underlying network changes its character every time step. Agents with similar
characteristics are more likely to be linked to one another because they are more
likely to move to the same building during a particular time step, but unless they
choose a cell adjacent to another agent, they will not have a link to that agent during
the time step. Thus, the model’s overall social network is fully dynamic and is based
only on where agents happen to be at each step of the simulation.

The buildings placed on the model space represent the major types of social
activities that would generally occur in a small, early 20th century Newfoundland
fishing community. These buildings include 84 houses, an orphanage (known to be
present in the study community), a school, a hospital (also known to be present), two
churches, and 23 boats. The resulting town map is shown in Fig. 1.

Each day of the simulation is divided into six 4-h time steps. During four of the
six steps (6–10AM, 10AM–2PM, 2–6PM, and 6–10PM), agents move to new cells
in specific buildings corresponding to rules for their behavior based on their assigned
occupations (e.g. fisherman, schoolchild, mother with preschool-aged children) and
the day of week and time of day the step represents. During the remaining two time
steps each day (10PM–2AM and 2–6AM), agents are assumed to be sleeping and
no movement occurs. The model is run for a sufficient number of days to allow
completion of all or nearly all epidemic simulations; depending on the specific para-
meter values, true completion is occasionally difficult to achieve. For the simulations
described below, all model runs began on a Monday morning at 6AM.

1.2 Daily Activities Incorporated into the Model

The nature of agents’ daily activities was decided using insights drawn from relevant
ethnographic and historical materials (e.g., [1, 12]). Mechanistically, the activities
involve choosing a destination cell within a specific building in which an agent’s
assigned activities occur. For example, at the beginning of the Monday–Friday
6–10AM time step all agents are at home. During that step fishermen move to their
assigned boat, school-aged children and teachers move to the school, doctors and
nurses move to the hospital, and all other agents (i.e., servants, preschool-aged chil-
dren, and all adult females who are neither teachers nor nurses) move to a new
location within their dwelling.

Illness-related behaviors, such as changes in normal movement patterns, are not
included at present, but are planned for the future. All living agents follow their
designated movement rules at each time step; only doctors and nurses move to the
hospital. Dead agents are moved to a cell at the corner of the space that is designated
as the “cemetery”, and they no longer participate in the daily activities.
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Fig. 1 Idealized representation of the study community, St. Anthony, Newfoundland and Labrador.
Boats are represented in two shades only to facilitate visualization; their other characteristics are
identical

Sometimes agents have different possibilities for their activities during a time step.
In this case the model includes a hierarchical decision-making process to specify
which of the possible activities is actually pursued. The suite of activities is similar
for all weekdays (M–F); Saturday activities differ slightly from weekday activities
since school is not in session. On Sundays every agent (in family groups) goes to
church, visits another family, is visited by another family, or remains at homewithout
visitors. A more detailed description of these daily activities can be found in [11].
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1.3 The Disease Transmission Process

At the end of each time step, after an agent completes its movement, it determines
whether any other agents are situated directly to the north, south, east, or west.
Infectious-susceptible pairs of neighbors are identified, and then a random number
is drawn to determine whether the pathogen is transmitted to whichever of the two
agents is susceptible, an event that happens if the drawn number is below the user-
determined and pre-set transmission probability. Because “sleeping” agents may be
situated adjacent to other agents within the household, disease transmission is still
possible during the night.

An SEIR framework with mortality is used in the model, but because the model
is limited to a single, short-lived epidemic, vital statistics are not included (i.e., there
are no births or migrations and the only deaths are those due to the pathogen itself).
When agents become infected, they enter an exposed (or latent) stage, which lasts a
fixed length of time, after which the agent becomes infectious. Transmission of the
disease by one agent to another (susceptible) agent can only occur if the transmitting
agent is in the infectious stage. Death can occur with a pre-set probability for each 4-h
time step included in the infectious period. Agents that survive through the infectious
period enter the recovered stage and stay in that state for the remaining steps of the
simulation.

Baseline parameter values are designed to represent the conditions present in
Newfoundland during the 1918 influenza pandemic. The latent and infectious periods
are assumed to be constant, with the latent period set at 1 day (6 time steps) and
the infectious period at 3 days (18 time steps). As there is little consensus in the
influenza literature about the specific values to use for these parameters, a number of
different values were assessed, including published values (e.g., [3, 5–7]) and other
approximations within the range of published values. The specific values chosen
were the integer values deemed to best represent the information available. The
transmission probability was also assumed to be constant at a value of 0.042 per
time step throughout the infectious period. This value was chosen so that the average
simulation attack rate was approximately 55%, the midpoint of a range suggested
by [5] for the 1918 influenza pandemic. The death data recorded for Newfoundland
and Labrador were also used to calculate a growth rate for the epidemic (Chowell,
personal communication). This growth rate was then used to derive another estimate
of the transmission probability, but the resulting value produced simulated epidemics
that did not reflect the overall observed pattern of influenza spread on the island as
well as did the value derived using Ferguson et al.’s [5] estimate of the attack rate.
The estimate for the probability of death per time step was derived from the known
mortality rate (7.5 deaths per thousand population) on the island of Newfoundland
[13]. This mortality rate in combination with the estimated 55% prevalence gave a
case fatality rate of 13.6 deaths per thousand cases. Working back from this observed
rate, the baseline death probability was estimated at 0.00076 per time step during the
infectious period.
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At the end of each time step the numbers of agents with each disease status
(susceptible, exposed, infectious, removed, anddead) are recorded.Once a simulation
has completed its run, data are also collected on the final size and on case-related
data such as the ID number and occupation of the first case; time of infection for
each infected agent; the ID, occupation, and dwelling of the agent responsible for
the infection; and where that infection took place. Data are also collected on when
and where agents die.

2 Analysis of the Model

Extensive sensitivity analyses varying the five primary parameters (length of the
latent period, length of the infectious period, transmission probability, probability
of death, and population size), both singly and in pairs, have been completed. All
analyses were performed on sets of 100 runs of the simulation. In the remainder of
this paper we discuss some of the results and implications of varying the probability
of death.

The model used in analyses with no mortality is an earlier version of the model
with mortality; both have the same structure other than the presence/absence of
mortality. However, analyses of the earlier model used slightly different parameter
values from the baseline values reported above. To ensure that valid comparisons
were made between the models with and without mortality, the sensitivity analyses
discussed here used the same values as were used in the analyses of the model
without mortality. In particular, an infectious period of five days and a transmission
probability of 1 were used in the sensitivity analyses when these parameters were
held constant. Table1 provides the specific parameter values used in model analyses.
Analyses of simulation data primarily focused on assessing the effects of changes
in parameter values on four outcomes: (a) the final numbers of individuals in each
disease class, (b) the number or percentage of the population infected at the peak
of the epidemic, (c) the timing of the epidemic peak, and (d) the time at which the
last infectious agent (last case) is observed. Space does not allow discussion of all
the results from these analyses; instead we highlight several insights derived from
results of simulations varying the probability of death.

2.1 General Effects of Adding Mortality to an Epidemic
Model

The effect of including mortality in an epidemic model can be studied by comparing
the results of simulationswith the probability of death (µ) set at 0 to thosewithµ > 0.
Ourmodel indicates that the overall impact of disease-relatedmortality is variable and
dependent on the specific probability of death being considered. Results demonstrate
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Fig. 2 Change in the time of an epidemic’s last case as the infectious period and probability of
mortality (µ) vary. Note that curves for µ ≤ 0.01 are only slightly different from the curve for
µ = 0 and are indistinguishable from each other; the curve for µ = 0.1 varies somewhat more,
and the remaining curves are significantly different from the curve for µ = 0. Graphs derived from
analyses that varied or co-varied latent period, transmission probability, and population size show
even greater similarities between the curves for µ ≤ 0.01 and that for µ = 0 and more differences
between curves for µ ≥ 0.1 and µ = 0

that unless the probability of mortality is high—well above 0.01 per 4-h time step1—
simulated epidemics with mortality differ only minimally from epidemics generated
from an equivalent model without mortality. These results are most easily seen when
looking at how different levels of mortality affect patterns observed when varying
a second parameter (see Fig. 2, which shows the results for time of the last case).
Results also indicate that high levels of mortality (µ > 0.01) substantially lower the
percentage of the population infected at an epidemic’s peak no matter which other
parameter is varied, but the effects on the peak time of an epidemic and the time of
the last case are more moderate, with the direction of differences (i.e., delaying or
speeding up epidemics) depending on the second parameter.

1Note that the fundamental death parameter in the model is the per-tick probability of mortality, µ.
This parameter can be converted to a case fatality rate (cfr), but the estimate of the latter is dependent
on the value of the infectious period. The cfr can be calculated from the equation cfr= 1 − (1 − µ)i,
where i is the length of the infectious period; (1 − µ)i gives the probability that an individual survives
through the entire infectious period assuming a constant probability of death. Thus, one minus this
quantity gives the probability of dying while infected. If µ = 0.01 and the infectious period is 18
ticks (3 days), the estimate for the 1918 pandemic influenza, the corresponding cfr is 16.5%, a
value substantially higher than that commonly observed during influenza pandemics. The cfr for
µ = 0.01 jumps to 26.0% if the infectious period is 5 days (as used in the sensitivity analyses).
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2.2 The Effect of Mortality on Ultimate Numbers of Cases
and Proportions of a Population Affected by an Epidemic

It might seem reasonable to assume that the higher the probability of mortality, the
more severely an epidemic will affect a population. One unexpected result from
our analyses, however, is that this is not necessarily the case. Figure3 shows the
final numbers of cases and dead as the probability of mortality increases under two
scenarios: (a) the standard parameter set used in the sensitivity analyses, and (b)
the baseline parameter set derived from analysis of epidemiological and historical
materials. In both situations, when the probability of mortality is at or below 0.001
per 4-h time step (a case fatality rate (cfr) of about 1.8% when the infectious period
(infper) is 3 days or 3.0%when infper= 5 days), only a small proportion of thosewho
become infected die. However, above that probability of mortality, the proportion
dying increases rapidly, and in both cases when the probability is 0.1 or greater (cfr
> 85.0% for infper = 3, cfr > 95.8% for infper = 5), almost all cases end in death.

Fig. 3 Change in final
epidemic size as the
probability of mortality
varies. a Results from
simulations using the
parameters chosen for
sensitivity analyses (Table1,
Col. 2). b Results from
simulations using baseline
influenza parameters
(Table1, Col. 1)

(a)

(b)
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This is not at all surprising, but what was unforeseen is that the total proportion
of the population that gets infected at all is actually lower for very high levels of
mortality than it is with moderate levels, and thus the number of deaths is also lower.
Thus, in some sense, high mortality provides a type of protective effect for a certain
proportion of the population. In fact, a similar number of deaths will occur with both
low and high mortality rates, although the reasons for these similar values are very
different. In the case of low mortality rates, low numbers of deaths occur because
the probability of death is low. In the case of very high mortality rates, the relatively
low number of deaths occurs because individual chains of infection are severely
shortened due to death of infected individuals and so fewer people overall become
infected before the epidemic dies out for good. This latter situation is also reflected
in the declining number of cases overall as the mortality probability increases.

This counterintuitive behavior under conditions of high mortality makes sense
given how diseases andmortality work on populations, but it is important to step back
and think about how such a situation would be perceived in a real population. From
the perspective of individuals within the population, although the actual numbers of
cases may not be as high as with moderate levels of mortality, high levels of mortality
will cause the epidemic to be perceived asmuchworse, because the individualswithin
a population are muchmore attuned to the extreme levels of death around them rather
than to the fact that a lower proportion may be getting sick at all. This disconnect
between the actual impact of an epidemic and the perception of that impact will be
discussed further below.

2.3 Models with Mortality and the Development
of Oscillations in the Numbers of Infected Individuals
over Time

A final aspect of model behavior to be addressed here is the impact of mortality
on the overall epidemic patterns across time. Several of the dual variable sensitivity
analyses illustrated conditions under which cycling of epidemics may occur. The
most marked of these in simulations that vary the probability of death is when that
parameter is jointly varied with the length of the latent period. Figure4 illustrates
what happens to epidemic patterns for different lengths of the latent period and a
death probability of 0.4 per time step. Cycling is apparent at all values of the latent
period and becomes particularlymarked at the longest latent periods. In fact, although
Fig. 4 indicates dampening fluctuations (as they must since the population size is
constant and susceptibles are continuously depleted), simulations with the longest
latent periods still had not resulted in extinction of the epidemic when extended to
at least 1000 time steps. In these cases, the epidemic appears to die out, but it is
actually still in the population—just hidden in exposed individuals. In other words,
a sufficient number of cases remain infectious long enough to transmit the epidemic
to a few susceptible individuals, but the transmitting cases die before the newly
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Fig. 4 Averaged epidemic
curves of 100 simulations
with a probability of death of
0.4 and different values of
the latent period. 6 ticks
(time steps) = 1 day

exposed individuals become infectious. Under the proper conditions, this behavior
can be maintained for extensive periods of time until the last susceptible individual
finally becomes infected, although given the stochastic nature of the simulation (and
real epidemics as well), die out will likely occur due to chance well before the disease
reaches all susceptible individuals.

3 Discussion

Until the development of the model described here, mortality was rarely included
in the primary author’s influenza models (e.g., [10, 14, 15]), and given that the
1918 influenza pandemic was the epidemic being modeled, numerous comments
were received asking why mortality was not being considered. The argument was
made that the models were always focused on a single short epidemic and so the
effect of mortality was likely negligible. The results presented here provide a more
nuanced view of why it may be reasonable to ignore mortality in influenza models. In
particular, the case fatality rate for the 1918 influenza pandemic has been estimated
to be under 2%, rates observed for other influenza pandemics of the 19th and 20th
centuries were less than 0.1%, and rates during seasonal outbreaks of influenza are
even lower [2]. Even for the 1918 flu, a major pandemic, the case fatality rate is low
enough that the results for models with and without mortality are nearly identical.
This suggests that for diseases such as influenza, which can result in high numbers of
deaths because of extreme levels of morbidity, models that ignore mortality may not
be far off themark as long as the questions of primary interest do not center on deaths
during the epidemic. In other words, the major impact of epidemics of diseases such
as influenza relates to the high proportions of the population that become ill and the
consequent disruptions in daily life, not to high mortality rates.
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Several other infectious diseases common in today’s world have low levels of
mortality similar to that observed during the 1918 influenza pandemic. Measles case
fatality rates in present-day developing countries range from 0.1 to 6%, although in
localities with high levels of malnutrition and other causes of immune suppression,
rates can be as high as 30% [18]. Dengue fever (not including dengue hemorrhagic
fever) has a case fatality rate of about 2.5% [17]; pertussis kills about 3.7% of
unvaccinated infants and1%of children aged1–4whobecome infected [4].Although
the specific case fatality rate that results in deviations between models with and
without mortality will vary somewhat depending on the particular characteristics of
a disease, it is likely that the low case fatality rates observed in all of these diseases
would result in the same effects we observed with our influenza model.

One dimension of infectious disease epidemics that researchers often fail to con-
sider is the population’s perception of the impact of an epidemic. Our model shows
clearly that very low levels of mortality do not significantly alter disease dynamics,
but real people experiencing an infectious disease epidemic respond to what they
see happening in the world around them, not to ideas about how diseases spread in
a population. It is important to remember this aspect of the infectious disease expe-
rience when evaluating the potential impacts of epidemics, especially when using a
model to inform policies about how best to control disease outbreaks. In the case
of our Newfoundland study population, a mortality rate of 7.5 per thousand people
meant that fewer than four deaths would be expected in the study community of 503
persons, which is not likely to result in high fear levels. But in a population of two
million, that same death rate of 7.5 per thousand people would mean that 15,000
people would die. That might not influence overall disease dynamics, but it certainly
would affect perceptions about the severity of the epidemic and the willingness of
people to comply with different control strategies.

The analyses of the model reported here as well as other, more extensive sensi-
tivity analyses assess the importance of the different base model parameters. One
parameter commonly considered in infectious disease models that we have not stud-
ied in depth with our model is R0, the average number of secondary cases generated
by a single infectious individual in a totally susceptible population. Although this
is an important parameter to consider when designing control strategies for infec-
tious diseases, this is not an explicit parameter in our model; rather, it is probably
some complex combination of all of our base model parameters, and its value is not
easy to determine when doing sensitivity analyses of the model. Every unique set
of parameters in the sensitivity analysis generates a different average curve. These
curves and their associated growth rates (which provide insight into the value of R0)

are outcomes of the simulations, not input values that we control. In other words,
the curves and their growth rates are emergent properties of the model and not para-
meters that are manipulated a priori by the modeler. Thus, analyzing the impact of
systematic variation in R0 is not a straightforward process and is beyond the scope
of this paper.

The main purpose of the research reported here was to assess whether inclu-
sion of mortality in an influenza model was necessary to accurately represent a real
epidemic. To facilitate this goal, the model was parameterized using data related
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directly to the 1918 pandemic in Newfoundland and Labrador and elsewhere. It is
important to remember, however, that our estimate of the value of mortality that is
low enough to be negligible depends on the estimate of the length of the infectious
period, the assumption that death occurs only during the infectious period, and a
further assumption that there is a constant probability of death throughout the entire
infectious period. Additional research relaxing these assumptions as well as using
models designed for other diseases is needed to assess whether, and if so, to what
extent results from our analysis can be generalized to other epidemics, locations, or
diseases. Nonetheless, it may well be that putting mortality into models of diseases
with low probabilities of death adds unnecessary complexity to a model and should
be considered carefully, particularly when dealing with diseases and/or populations
for which data are inadequate in quantity or quality.
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Capturing Household Transmission
in Compartmental Models
of Infectious Disease

Jude Bayham and Eli P. Fenichel

Abstract Social distancing policies may mitigate transmission of infectious disease
by shifting individuals time spent in public into household environments. However,
the efficacy of such a policy depends on the transmission differential between public
and household environments. We extend the standard compartmental model of infec-
tious disease with heterogeneous mixing to explicitly account for the health state of
households. Our model highlights the fact that only households with an infectious
individual pose a transmission risk to other household members. Moreover, suscep-
tible households become infectious at a rate that depends on household size and the
health status of the household members. We demonstrate our model by simulating
an epidemic similar to the A/H1N1 2009 outbreak using empirical mixing patterns
derived from time-use data in the United States. We find that household transmission
accounts for 12–23 % of total cases. These results suggest that while social distancing
policies encourage individuals to spend more time at home, the reduction of time in
public improves public health outcomes on balance.

Keywords Household transmission · Compartmental model · Epidemics · Infec-
tious disease · Pandemic influenza · Heterogeneous mixing

1 Introduction

Mathematical models of infectious disease are an important tool used to forecast
epidemic outcomes and assess public health policy. A useful model is tractable while
incorporating relevant features of the real world. Since [18], compartmental models
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have been modified to accommodate realistic contact patterns [1, 12, 23, 26]. The
heterogeneous mixing model allows contact rates to vary among different population
strata. As researchers operationalize these models by incorporating mixing patterns
from observable data [5, 21, 30], new questions arise about how to integrate empirical
contact patterns that vary by location into compartmental models.

Incorporating household mixing patterns directly into compartmental models
remains a challenge because individual’s movements and infectious status are not
tracked as in agent-based models, though such agent-based models can rapidly
become intractable and over-parameterized. Traditionally, compartmental models
were based on static mixing patterns that capture population means across house-
hold and public or community locations. However, household mixing patterns are
fundamentally different than public contacts because the universe of possible contacts
in the household is limited by the number of individuals in the household, contacts
are often repeated, of longer in duration, and are likely more intimate than public
or community contacts. While household transmission is known to be important,
the contribution of household transmission to the total number of cases during an
epidemic is still under debate in the literature. Increasingly, infectious disease mod-
els use a rule of thumb for household transmission. For example, a commonly cited
number is that 30 % of flu transmission is within-household. However, this number
is tracked back to an agent-based simulation model calibrated (not estimated) to
households in Thailand [14]. We argue that estimates of household transmission can
be improved using empirical mixing patterns.

In this chapter, we extend the heterogeneous mixing model to explicitly account
for household contact patterns as well as contacts in other locations. Specifically, we
separate public from household transmission and provide adjustments for contact pat-
terns based on the composition of the household. The impact of household transmis-
sion depends on the concentration of community-acquired infections in households.
We illustrate the model using empirical contact matrices derived from time-use data
that allow us to distinguish between public and household contacts. We simulate a
severe epidemic resulting in approximately twice the number of cases that arose from
the 2009 A/H1N1 outbreak to quantify the contribution of household transmission
to the total number of cases.

The role of household transmission has received significant attention in the litera-
ture. The empirical literature has sought to estimate transmission parameters that may
differ across community and household environments using reported and serologic
infection data [2, 9, 15, 20]. Theoretical models have been proposed to attempt to
capture household transmission dynamics [4]. We bridge these literatures by propos-
ing an extension to the compartmental model with heterogeneous mixing rates, which
are based on empirical contact patterns in community and household environments.

Social distancing policies or non-pharmaceutical interventions such as school
closure are an important public health policy available to officials during a cri-
sis [6]. Such social distancing policies are designed to mitigate public exposure
to disease risk and consequently, increase exposure in the household [11, 17, 22].
Individuals may also engage in voluntary distancing behavior to avoid infection risk
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[8, 12, 13, 25]. Regardless of the reason for modifying behavior, the ability to model
public and household transmission is critical to forecasting the effect of social dis-
tancing policies.

We find that explicitly modeling household transmission heightens the severity
of the epidemic at the peak as individuals are more likely to make household con-
tacts with potentially infectious family members. However, household transmission
accounts for only 12 % of total cases when new cases concentration into households is
density dependent, and 23 % of total cases when new cases are completely dispersed
among households.

2 Compartmental Model

The standard compartmental model of infectious disease with heterogeneous mixing
is based on mean contact rates between segments of the population [7]. The mean
contact rate at the population level is sufficient when all individuals in the population
may experience potentially infectious contacts with every other individual in the
population. Household mixing patterns differ from public mixing patterns because
the universe of potential contacts is limited to the family members that reside in
their household.1 Moreover, a single household can be either safe with no infected
individuals or infectious with at least one infected individual. As new individuals
become infected, the model must determine the household in which newly infected
individuals reside. The population level model is not designed to track the infection
status of individuals. We solve this problem by introducing a new set of state variables
for the health status of households.

We build on the standard Susceptible-Infectious-Recovered (SIR) model with het-
erogeneity in mixing rates between subpopulations. The subpopulations are defined
by the K = 35 combinations of age group and household size {0–4, 5–12, 13–17,
18–24, 25–49, 50–64, 65+} × {1, 2, 3, 4, 5+}. Mixing rates differ between public
locations and the household. There are L = 5 household sizes {1, 2, 3, 4, 5+}. A
household is considered infected if at least one member of the household is infected.
Each individual and each household is susceptible, infected, or recovered for a total
of 3(K + L) state variables. The transmission dynamics are described by the system
of differential equations.

1Friends of family members may also be potential contacts but we restrict the household population
to family members for simplicity. Moreover, individuals may avoid time with friends during an
epidemic in which health status is uncertain.
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S ◦ δC

(
I
N

)]
◦ HS

H

)
;

ḢI = −
(
Z′

[
S ◦ δC

(
I
N

)]
◦ HS

H

)
− vHI;

ḢR = vI

where ◦ and / denotes element by element multiplication and division. S, I, andR are
K × 1 vectors of susceptible, infectious, and recovered health classes, HS,HI, and
HR are L × 1 vectors of susceptible, infectious, and recovered household classes, and
ẋ = dx/dt for x = {S, I,R,HS,HI,HR}. N is an K × 1 vector of subpopulations in
each segment. NH is a K × 1 vector of the number of households in each subpopula-
tion. H is a L × 1 vector of the number of households in each size class. Z is a K × L
conformability matrix of zeros with ones in each column indicating subpopulations
with household size equal to the column number. ZHI expands the L × 1 vector of
the number of households infected by size class into a K × 1 where the size class is
repeated for each age group. C and Ch are K × K public and household probabilistic
contact matrices, PCM, [5] that describe the interaction time in minutes between an
individual in subpopulation j (rows) and subpopulation k (columns). The PCMs are
estimated from time-use data and are described in Sect. 3. δ is the disease-specific
infectivity parameter, or conditional probability of transmission per minute of contact
between a susceptible and infected individual. 1/v is the average infectious period
constant across classes. We adopt the standard assumption of a constant population,
which impliesN (t) = S (t) + I (t) + R (t) andH (t) = HS (t) + HI (t) + HR (t) for
all t.

Individuals exit the susceptible state and enter the infected state by contracting
the infection through public or household contacts [16, 20]. Infections acquired in
public locations are governed by the term S ◦ δC

(
I
N

)
. This term is the contact time

analog to the standard heterogeneous mixing model. In public locations, susceptible
individuals may encounter any infectious individuals in the population. The second
transmission term describes transmission in households with at least one infected
individual by subpopulation HI; all other households (H − HI) are completely safe
because all household members are susceptible or recovered. Household transmission
dynamics are similar to those in public, but the set of possible contacts at any moment
in time is limited by the number of susceptible individuals in the household (S/NH in
expectation for a randomly chosen household). As the outbreak progresses, the num-
ber of susceptible individuals in the household is displaced by recovered individuals.



Capturing Household Transmission in Compartmental Models … 333

As the number of new infections rises, multiple infected individuals are likely to

be in the same household. The term Z
(
1 − HI

H

)−1
is a contact intensity multiplier

that accounts for the relative increase in infection risk in households with a higher
concentration of infected individuals relative to the population mean

(
I
N

)
.

The second set of state equations determines the health status of households.
Susceptible HS households become infected if at least one member of the house-
hold becomes infected. Therefore, the initial infected member(s) of the household
must acquire the infection from contacts made in a public location. However, not all
new infected individuals are necessarily members of different households. A new
infectious individual does not equal a new infectious household. We assume that
the rate at which a new infected individual translates into a new infected household
is dependent on the density of susceptible households

(HS
H

)
. Early in the outbreak,

most households will be susceptible as each are unlikely to house one of the few
infected individuals, which implies that new infected individuals are more likely to
be a member of a susceptible household. As the epidemic progresses, the probability
that new infections acquired in public reside in already infected households rises,
thus increasing the concentration of infected individuals in the infected household.

Note the contact intensity term within a household Z
(
1 − HI

H

)−1
is inversely pro-

portional to HS
H . We assume that households recover at the same rate as individuals,

which would be true if a household were only infected for a single generation. This
recovery rate could vary by household size as larger households may experience
several generations.

3 Epidemic Simulation and Probabilistic Contact Matrices

We simulate epidemics under several alternative household infection assumptions
to illustrate the role of concentration of infected individuals in households on trans-
mission dynamics. New infections acquired in public may result in a spectrum of
infected households ranging from highly concentrated where each new infected indi-
vidual resides in an already infected household to dispersed where each new infected
individual resides in a different household. We simulate epidemics under these two
extreme assumptions and compare them to our proposed model with density depen-
dent concentration of new infections.

We calibrate the simulations to an epidemic in the U.S. approximately twice as
severe as the 2009 A/H1N1 outbreak. The average infectious period is 2.6 days—
chosen to match the 2009 A/H1N1 epidemic [9, 10, 29]. We calibrate the infectivity
per minute parameter, δ =0.0016, to produce an epidemic approximately twice as
severe as the 2009 A/H1N1 swine flu epidemic, which was estimated to have affected
60.8 [43.3, 89.3] million Americans [24].

The population and mixing patterns data come from the US Census and Bureau
of Labor Statistics. The US population, N, in 2011 is approximately 310 million
and there are 117 million households, H [28]. The probabilistic contact matrices
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are estimated from the American Time-Use Survey (ATUS) (2003–2012) [27]. The
ATUS is subsampled from the U.S. Current Population Survey—a nationally repre-
sentative survey that contains detailed demographic and socioeconomic information
about respondents older than 15 years old and their family members (including chil-
dren under 15 years of age). Survey respondents report a 24-h diary of activities,
locations, and accompanying persons for every minute of the day. We supplement
the ATUS data with time-use data from the National Health and Activity Patterns
Survey (NHAPS), a similar time-use survey, that includes children under 15 years
old [19]. The combined dataset consists of 146,331 respondents with sample weights
that report an average of 16.1 activities per day.

We estimate PCMs, C and Ch for each location or “microenvironment” described
in the ATUS by the proportional time mixing (PTM) method [5, 30]. The PTM
method assumes that subpopulations (e.g., age 19–24 in two-person households)
contact each other in proportion to their share of the population present in a given
microenvironment at a given time. Figure 1 illustrates these contact patterns in pub-
lic and household locations. Details of the PCM calculations are provided in the
supplementary information of [5]. Public contacts occur in non-household microen-
vironments where individuals are likely to experience incidental interactions with
non-acquaintances. Household PCMs capture the contact patterns of individuals with
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Fig. 1 Household and public PCMs with empirical population distributions above. Dark lines
denote the five household size groups. Each household size category consists of the seven age
groups for a total of 35 groups ({0–4, 5–12, 13–17, 18–24, 25–49, 50–64, 65+} × {1, 2, 3, 4, 5+}).
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family members in their home. Each household is treated as a unique microenviron-
ment so that the universe of possible contacts is limited to members of the household.
The population-level household PCM is a weighted average of individual household
contact patterns resulting in the contact patterns of a representative household with
some of each subpopulation. There is no household mixing between household sizes,
because every member of the household shares the household size attribute.

4 Results

We compare the epidemic simulation results under a range of assumptions regarding
the concentration of new infections in households (Fig. 2). The assumptions form a
spectrum where on one end new infected individuals are assumed to be concentrated
if they all reside in the same households such that susceptible and infected individuals
make no contact in the household (blue solid line in Fig. 2). On the other end of the
spectrum, new infected individuals are assumed to fully disperse into susceptible
homes maximizing the potentially infectious household contacts (red dashed line
in Fig. 2). We also consider a density dependent assumption where new infected
individuals are more likely to infect a previously safe household when the proportion
of susceptible or safe households is large (yellow dash-dotted line in Fig. 2). The
simulation results show that peak prevalence under the density dependent assumption
lies between the fully concentrated and fully dispersed assumptions. The attack rate
under density dependence is 48 % of the population versus 42 and 55 % under the
fully concentrated and fully dispersed assumptions, respectively.

Two opposing forces influence household transmission throughout the epidemic.
As individuals become infected, more households necessarily become infected. How-
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infected households so there is no additional risk to the susceptible population. The Dispersed case
assumes that all new infections reside in a different household. The Density Dependent case assumes
that new infections are dispersed across susceptible households when few households are infected,
and become more concentrated when more households are infected
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ever, if those new cases acquired in public return to the same household, the number
of newly infected households grows at a slower rate than the number of new infections
thus increasing the concentration of infectious people in households. The lower rate
of growth in infected households relative to infected individuals (household safety
effect) attenuates the impact of household transmission on the overall progress of the
epidemic. However, susceptible individuals in households with a higher concentra-
tion of infected individuals face increased risk of acquiring the infection (exposure
intensity effect). The simulation results suggest that the household safety effect dom-
inates the contact intensity effect since the peak prevalence and overall attack rate are
smaller under the density dependent assumption compared to the dispersed assump-
tion.

We find evidence of significant heterogeneity in concentration and exposure inten-

sity between household sizes. Figure 3 depicts the concentration index
(

1 − HS
NH

)
by

household size throughout the course of the epidemic. The results show that early in
the epidemic newly infected individuals are very dispersed across households. As the
epidemic gains momentum, the concentration index rises rapidly in each household
size. The concentration index reaches 0.57 in households of two and over 0.90 in
households of 4 or more. The household size distribution from the United States
Census indicates that there are more 2-person households than 4 or more person
households (33 % versus 23 % of total households). The high concentration index
in larger households is a result of an increased likelihood that at least someone in
a household with 4 or more persons becomes infected. However, such statistics are
likely to vary greatly across countries. For example, we may expect Thailand to
have more 4, 5, or even larger households for cultural, economic, and policy rea-

sons. Figure 4 depicts the exposure intensity
(

1 − HI
NH

)−1
by household size over the

course of the epidemic. The peak exposure intensity in 2-person households (1.06)
is slightly more than half of the exposure intensity in 4 or more person households
(1.11).

Fig. 3 Concentration index
by household size over the
course of the epidemic
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Fig. 4 Exposure intensity
by household size over the
course of the epidemic
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The spectrum of concentration assumptions made for the simulation permits a
disentangling of the effects of household versus public or community transmission.
The assumption that all new infected individuals concentrate in the same house-
holds is equivalent to assuming no household transmission occurs. Therefore, all
outcomes under the Concentrated assumption are attributable to public transmis-
sion. Given the simulation under the Density Dependent and Dispersed assumptions
are conducted under identical epidemic conditions, we can infer that any additional
cases resulting from these assumptions are attributable to household transmission.
We find that household transmission accounts for 12 % of total transmission under the
Density Dependent assumption and 23 % of total transmission under the Dispersed
assumption. Thus, the [14] estimate of nearly a third of transmission resulting within
households may be reasonable for societies with large household sizes (though this
would also depend on contact patterns), but is likely to high for western societies
with smaller household sizes.

5 Discussion

Household transmission has received significant attention in the empirical epidemi-
ology literature. However, many studies focus on secondary infections once an index
case has been introduced [9]. Our results suggest that household transmission, while
important, especially to those susceptible individuals in infected households, is likely
small relative to public or community transmission. The relative magnitude of pub-
lic transmission also supports voluntary or mandatory social distancing that leads
people to spend more time at home [5].

We assume that a higher concentration of infected individuals in a household
increases the risk of infection to the susceptible individuals in the same house-
hold. This intuition is consistent with the Reed–Frost model in which contacts are
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considered independent events and cumulatively increase infection risk as contacts
increase [3, 15]. Alternatively, the impact of additional infectious individuals beyond
one may not significantly impact infection risk because the pathogen is already in the
environment. Indeed, [9] find that larger households exhibit lower secondary attack
rates than smaller households. Our exposure intensity measure may be exaggerating
the infection risk in larger households.

Despite our efforts to incorporate realistic features of household transmission,
the compartmental model is a population level model. Consequently, households are
not distinct units. The mechanics of the model effectively allow individuals within
a household size to instantaneously move among like households. While this is not
strictly accurate, accounting for the concentration of new infected individuals into
households can help mitigate the overestimation of transmission.

6 Conclusion

We extend the SIR compartmental model of infectious disease with heterogeneous
mixing to include household transmission. We introduce new household health com-
partments to track the health status of households over the course of the epidemic.
Explicitly modeling household compartments permits a calculation of the concentra-
tion of newly infected individuals. We parameterize density dependent concentration
of newly infected individuals, which captures the likely early dispersal of new infec-
tions into susceptible households and the increased concentration as few susceptible
households remain by the end of the epidemic. The model highlights the countervail-
ing forces of more safe households as concentration rises with the higher exposure
intensity of those susceptible individuals in infected households. Finally, we quantify
the relative contribution of household transmission to public or community trans-
mission and find that it ranges from 12 to 23 % in the United States depending on
the concentration assumption.
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Bistable Endemic States
in a Susceptible-Infectious-Susceptible
Model with Behavior-Dependent Vaccination

Alberto d’Onofrio and Piero Manfredi

Abstract Several new vaccines have the characteristic of being “imperfect” that is
their protection wanes over time and supplies only partial protection from infection.
On the other hand recent research has shown that the agents’ behavioral responses
have the potential to dramatically affect the dynamics and control of infections. In
this paper we investigate, for a simple susceptible-infective-susceptible (SIS) infec-
tion, the dynamic interplay between human behavior, in the form of an increas-
ing prevalence-dependent vaccine uptake function, and vaccine imperfections. The
mathematical analysis of the ensuing SISV model shows a complexly articulated
bifurcation structure. First, the inclusion of the simplest possible hypothesis about
vaccination behavior is capable to trigger, in appropriate windows of the key parame-
ters, phenomena of multistability of endemic states. Second, as far as the stability of
the disease-free equilibrium is concerned, the model preserves the backward bifurca-
tion which is characteristic of SIS-type infections controlled by imperfect vaccines.

Keywords Vaccination · Behavior · Multistability · Epidemic models · Transmis-
sion dynamics · Backward bifurcation

1 Introduction

Multistability, i.e. the presence of multiple co-existing locally stable equilibria, is a
critical concept in nonlinear dynamics, which has numberless and deep implications
in biology andmedicine. Twofields of biomedicinewhere this concept is increasingly
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gaining prominent are immunology andmolecular biology. In the latter, in particular,
the word bistability has became of quite common use also among experimental
scientists.

For several decades the vast majority of mathematical epidemiology research
has focused on monostable systems, and on their well-known paradigm that can be
summarized as follows: there is an appropriate threshold parameter, often termed the
reproduction number (RN) of the model, such that if the RN is smaller than one then
the disease-free equilibrium (DFE) is unique and globally attractive, whereas if the
RN it is larger than one then the DFE is unstable and a unique endemic equilibrium
(EE) appears. Most often the EE is also globally attractive, in other cases, though
far less frequently, it is surrounded by self-sustained oscillations [18].

In last twenty years, however, it has been shown that certain feedback loops,
such as those stemming from vaccine imperfection or waning, may complicate this
scenario since they may induce the onset of bistability through so called “backward
bifurcations” (BB). This type of bifurcation is typically characterized as follows:
there is a value b ∈ (0, 1) such that, although the DFE is locally asymptotically
stable (unstable) for RN < 1 (RN > 1), nevertheless for values of the RN in the
interval (b, 1) there are two endemic equilibria: one unstable and the other one locally
stable. Therefore, for b < B RN < 1 bistability occurs, with the birth at RN = b of
an endemic equilibrium that co-exists with the stable DFE. Note that for RN > 1 the
DFE still exists but becomes unstable. This makes the BB deeply different from the
more known hysteresis bifurcation, where there never is the coexistence of an even
number of equilibria. Backward bifurcations have been found initially in a number
of simple epidemic models [8, 16, 22, 23], in particular in models for infections
without immunity, as the susceptible-infective-susceptible (SIS) model, when the
vaccine is imperfect [23]. There is evidence that the phenomenon is also frequent in
more realistic models, so that BB are also becoming important, due to their negative
implications for infection elimination, from the public health viewpoint [20].

Classical epidemiologicalmodels are built upon some foundingprinciples, namely
the law of mass action of statistical mechanics, which is used to model at once social
contacts between individuals and infection transmission. Though critical in promot-
ing the take off of mathematical epidemiology as a discipline, the law of mass action
is a gross simplification or reality whereby individuals entering into social contacts
are represented as “collisions” between the particles of a perfect gas. This in turn
implies that social contacts and transmission parameters are dealt with as “universal
constants” which are therefore unaffected by e.g. the states of the infection and the
disease. Said otherwise, individuals would continue to come into contact at the same
rate, irrespective of how low or high is the risk of acquiring the infection, or of dying
from it, that they might perceive from the available information on current and past
infection prevalence and seriousness. The idea that human behavior is static is far
distant from the reality and constitutes one of the strongest limitation of traditional
epidemiological models. By their intimate nature, human beings are neither static nor
passive. Changes in humans’ behavior in response to infection threats are indeedwell
documented already in outbreaks in historical epochs (where however they mostly
occurred in the form of community-enforced measures), but seem to be a rule ([15]
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and references therein) in current societies, possibly stemming from the continued
progress of scientific knowledge on diseases and communications technologies [6].
Modern individuals can therefore spontaneously change in a complicatemanner their
social behavior in response to a pandemic threat, as well documented for the 2009
H1N1 pandemics [15], or can shift their sexual activity towards partners that are
perceived as being as less-at-risk in response to news about a threatening STI [21].
But they might also decide not to vaccinate their children after having compared
perceived costs and benefits of a vaccination program, or to stop vaccinating after
a rumour, thereby threatening the success of the program, as it has been the case
for the pertussis whole-cell vaccine scare, and the persistent decline in MMR vac-
cine coverage in the UK due to the alert for the suspected relation between MMR
and autism ([6] and references therein). From the latter standpoint human behavior
is representing an increasing challenge not only for modelers but also for public
health policies. Indeed, depending on not-easy-to-predict circumstances, the effects
of human behavior on infection dynamics can range—and switch—from policy-
enforcing to policy-threatening [7].
The importance of human behavior for the understanding of infection dynamics
and for the development of resilient policy interventions has led in the last fifteen
years to the take-off of the new branch that we termed the behavioral epidemiology
(BE) of infectious diseases [6]. A major area of current behavioral epidemiology
of infections deals with immunization choices, particularly in relation to childhood
vaccine preventable infections. This interest in motivated not only by the aforemen-
tioned vaccine crises related to the big “vaccine scares” but also by the dramatically
changed context of mass immunization in modern societies. This epochal change is
the consequence of decades of successful mass immunization against traditionally
threatening infections, within the overall changed landscape of infectious diseases in
industrialized countries, due to the continued success of man in controlling diseases
threats thanks to medical progress [6]. A major implication of these successes is
for example the full overturning of perceived risks [28], with the perceived risk of
vaccine adverse events becoming the major determinant of vaccination [12].

After a few forerunners [6, 17, 19], the last epoch has seen an explosion of studies
of the interplay between the diffusion of information about perceived risks due to the
infection on the one hand, and risks of vaccine adverse events on the other hand, and
the infection dynamics and control. These investigations have resorted to a variety
of different approaches, either “behavior implicit” or “behavior explicit” based e.g.
on game-theoretic or other representations of behavior, to unfold the complicate
relationship between human choices and infection control (e.g. [3–5, 10–14, 24–27,
29, 30] and references therein).

However, in this fast growing literature on the behavioral epidemiology of vac-
cination no studies have investigated, to the best of our knowledge, the dynamic
implications of vaccinating behavior within the framework of models for imperfect
vaccines showing backward bifurcations. Given the peculiar role played by vaccine
characteristics in promoting or not BBs, it is of interest to investigate whether the
interplay between vaccinating behavior and imperfect vaccines might trigger further
interesting dynamic phenomena.
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In this paper we study a model including a simple behavioral assumption about
vaccination within one of the simplest framework capable to yield a backward bifur-
cation, namely the SISmodel with imperfect vaccination (SISV) byKribs-Zaleta and
Velasco-Hernandez [23]. In particular vaccinating behavior is incorporated follow-
ing the “behavior implicit” [6], phenomenologically-based, formulation proposed in
[10] where the vaccine uptake at birth is specified as an increasing function of current
infection prevalence.

2 The SISV Model with Prevalence-Dependent Vaccine
Uptake and Its Disease-Free Equilibrium

The modelling framework considered is that of a stationary and homogeneously
mixing population where an infection without immunity can be controlled by immu-
nization at birth (instead than [23] who considered vaccination at constant rate).
The vaccine is assumed to be “imperfect” i.e. protection wanes over time and more-
over vaccinated subjects can acquire infection, though at a reduced rate compared
to fully susceptible individuals. Vaccination is assumed to be voluntary according to
a prevalence-dependent schedule p(I ) ∈ [0, 1], where I denotes the relative infec-
tion prevalence and p an increasing function with p(0) ≥ 0. This formulation [10]
amounts to assume that parents decide to vaccinate or not their children depending
on the perceived risk of infection, possibly measured by the publicly available cur-
rent information on infection prevalence. Though oversimplified, because behavior-
implicit, this model can be shown to be consistent with more refined behavioral
schemes, for example with a prevalence-dependent behavior-explicit vaccination
schedule based on an imitation process [4], provided the social spread of behavior is
fast compared to other processes [13]. These hypotheses yield the following SISV
model:

S′ = μ(1 − p(I )) − μS − β I S + γ I + θV,

I ′ = I (β(S + σ V ) − (μ + γ )) , (1)

V ′ = μp(I ) − σβ I V − (μ + θ)V

where: S, I, V , S + I + V = 1, respectively denote the fractions of susceptible,
infective, and vaccinated individuals, μ denotes both the death and birth rates (taken
equal to ensure that the population remains stationary over time), β the transmission
rate for naive susceptibles, σβ (0 < σ < 1) the reduced transmission rate for vacci-
nated subjects, γ the rate of recovery from infection, θ the vaccine waning rate. By
the equality S + I + V = 1 one of the model equations can be eliminated yielding
a 2-dimensional system. Using S = 1 − (I + V ) we get:

I ′ = β I (pcr − I − (1 − σ)V ) , (2)

V ′ = μp(I ) − (μ + θ + σβ I )V (3)
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In (2) the constant pcr is the critical immunization threshold [1] for infection
elimination by a (hypothetical) perfect vaccine, in absence of behavioral effects:

pcr = 1 − 1

R0

where R0 = β/(μ + γ ) denotes the basic reproduction number of the infection,
representing the number of secondary infections caused by a single infective case in
a wholly susceptible population (therefore in the absence of any immunization).

As a preliminary step, note that from the differential inequality

I ′ ≤ β I (pcr − I )

it is trivial to show that it asymptotically holds:

0 < I (t) < pcr .

Thus in the following we shall study system (2) and (3) in the set

A = {(I, V )|I ∈ [0, pcr ] AN D(V, I ) ≥ (0, 0) AN D I + V ≤ 1}

System (2) and (3) always admits the following disease free equilibrium (DFE):

DF E =
(
0,

μ

μ + θ
p(0)

)
.

Alinearization of system (2) and (3) straightforwardly yields that the local asymptotic
stability (LAS) of the DFE is governed by the equation:

i ′ = βi

(
pcr − (1 − σ)

μ

μ + θ
p(0)

)
.

This means that the DFE will be LAS if the following condition holds:

p(0) > pcr
1

1 − σ

(
1 + θ

μ

)
, (4)

which can also be reformulated as RV < 1 where RV is the vaccine reproduction
number:

RV = R0
θ + μ(1 − p(0)) + σμp(0)

θ + μ
, (5)

Condition (4) states that the local stability of the DFE requires that the “zero-
prevalence” vaccine uptake, i.e. the vaccine uptake that spontaneously arises under
conditions of minimal perceived risk of infection, must exceed the critical
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elimination threshold pcr by a factor (1 − σ)−1(1 + θ/μ). Note that this factor is
increasing in both parameters (σ and θ ) tuning the degree of “imperfection” of the
vaccine. Suppose now that the average length of vaccine-induced immunity (θ−1)
is significantly smaller than the average lifespan μ−1. In such a case, condition (4)
might be fulfilled only for diseases that in the same time: (i) are characterized by
a low critical threshold; (ii) can induce, also when their prevalence is low, a large
perceived risk. This condition extends to the present SISV model the result that in
our past work on behavior-implicit SIRV models we termed “elimination: mission
impossible” [13].

In order to proceed further, let us rewrite system (2) and (3) in the following
equivalent form that we will adopt in the next sections:

I ′ = β(1 − σ)I (L(I ) − V ) , (6)

V ′ = (μ + θ + σβ I ) (�(I ) − V ) (7)

where:

L(I ) = pcr − I

(1 − σ)

is the nullcline I ′ = 0; and:

�(I ) = μp(I )

(μ + θ + σβ I )

is the nullcline V ′ = 0.
Endemic equilibria of (6) and (7) are the non-trivial intersections of the twonullclines.

3 Instability of the Disease-Free State: Mono Versus
Multistability

In this sectionwe shall assume that the baseline vaccination rateμp(0) is not sufficient
to guarantee the elimination of the infection, i.e. we shall assume that

0 < p(0) < pcr
1

1 − σ

(
1 + θ

μ

)
. (8)

Note preliminarily that in the case of prevalence-independent vaccine uptake the
following result holds:

Lemma If p(I ) is constant and (8) holds then (6) and (7) admit a unique endemic
equilibrium point.

We now show that if � is non-monotonic then there may be either a single or
multiple equilibrium points.
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As a first step, note that the local stability properties of all endemic equilibria of
(6) and (7) depend on the following characteristic polynomial

λ2 + (μ + θ + (1 + σ)β Ie)λ + β Ie(μ + θ + σβ Ie)
(
1 + (1 − σ)� ′(Ie)

)
, (9)

The condition for the local stability of endemic states therefore reads as follows:

� ′(Ie) > − 1

1 − σ
. (10)

i.e.
� ′(Ie) > L ′(Ie). (11)

The interpretationof condition (10) is immediate: if the linearizednullclineV ′ = 0
at a generic endemic equilibrium (E E) of (6) and (7) is steeper than the linearized
nullcline I ′ = 0 at E E , then that particular endemic state E E is LAS, otherwise it
is unstable.

As far as the V-nullcline �(I ) is concerned, it is worth to note that:

Lemma Under condition (8), if �(I ) is monotone, i.e. if

μp′(I ) > σβ�(I ) O R μp′(I ) < σβ�(I ),

or constant then system (6) and (7) has a unique equilibrium point.

Note, however, that uniqueness of the endemic state can also occur for some
non-monotone �(I ).

If there is a unique endemic equilibrium point, the following proposition holds:

Proposition If system (6) and (7) has a unique equilibrium point E Eu then it is
globally stable in A.

Proof First, it is straightforward to verify that E Eu cannot be unstable, otherwise it
could not be the unique endemic equilibrium. Then, denoting as F the bi-dimensional
vector field associated to system (6) and (7) and applying the Dulac–Bendixon the-
orem with weigth function 1/I one gets:

div

(
1

I
F

)
= −β − σβ − μ + θ

I
< 0.

�

A necessary condition for the presence of multiple co-existing endemic equi-
librium points, i.e. for endemic multistability, is that the V-nullcline �(I ) is non-
monotone. Depending on the parameters of the system, for example σ or c, which are
embedded in the functions L(I ) and�(I ) these equilibria can vary, thus determining
hysteresis or pitchfork bifurcations (see next subsection for a noteworthy example).
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Note that the type of bifurcation described here differs from the backward
bifurcation phenomenonwell known inmathematical epidemiology. Indeed the back-
ward bifurcation describes the onset of bistability where one of the two co-existing
locally stable equilibria is the disease-free equilibrium. Here, instead all the coex-
isting LAS equilibria are endemic equilibria. In the next subsection we will develop
the relevant bifurcation analysis based on a particular form of the vaccine uptake
function p(I ).

3.1 Bistable Endemicity Induced by a Linear-Saturated
Vaccine Uptake p(I)

Let us consider the following linear-saturating vaccination rate:

p(I ) = min(p(0) + cI, 1) (12)

which increases for

0 < I < I∗(c) = 1 − p(0)

c

and is constant thereafter.
It follows that for I > I∗(c) the function�(I ) is a decreasing hyperbolic function:

�(I ) = μ

μ + θ + σβ I
(13)

which does not depend on c. The latter fact is of relevance when considering c as
the bifurcation parameter. Instead, for 0 < I < I∗(c) the function �(I ) depends on
c as follows:

�(I ) = μ(p(0) + cI )

μ + θ + σβ I
(14)

This implies that the condition for � to be increasing in 0 < I < I∗(c) is

c > σβ
p(0)

μ + θ
.

Finally, if �(I ) is increasing in 0 < I < I∗(c) then the condition for bistability
is that the two solutions of the following equation

μ

μ + θ + σβ I
= pcr − I

1 − σ
(15)

are both larger than I∗(c).
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Taking c as the bifurcation parameter, makes it the analysis of the system quite
simple. Note preliminarly that if the Eq. (15) has no real positive solutions (i.e. if
the hyperbolic function (13) does not intersect the nullcline L(I )) then there is only
a unique endemic equilibrium. The other case is that the hyperbolic function (13)
intersect the linear nullcline L(I ) in two points of positive abscissae Il and Ih > Il .
If

I ∗(c) ∈ (Il , Ih)

then there is again a unique endemic equilibrium with

Ie = Ih,

i.e. independent of c. On the contrary if

I ∗(c) < Il

i.e. if

c > cl = 1 − p0

Il
(16)

then there is multistability with three co-existing endemic equilibria: (i) Ih which
is LAS and constant, thus independent of c; (ii) Il which is unstable and again
constant, thus independent of c; (iii) a third equilibrium point Ismall(c) that is LAS
and decreasing function of c, with

Ismall(cl) = Il .

Finally, note that condition (16) for multistability is equivalent to state that

�(I ∗(c)) > L(I ∗(c)). (17)

In order to consider the role of σ as bifurcation parameter, it is useful to define the
following functions

(�1(I ; σ), L1(I )) = (1 − σ)(�(I ), L(I ))

which have the following properties: L1(I ) does not depend any more on σ , whereas
�1(I ; σ) is a strictly decreasing function of σ .

As a consequence, let us consider a pair (c0, σ0) where c0 < cl(σ0). In such a
case we have the above mentioned three equilibria, which also depend on σ . If one
increases σ then the function �1(I ; σ) is pushed downward, the equilibrium Ih(σ )

increases whereas the other two initially get closer and then both disappear. In other
wordswe are describing a scenario of a classical hysteresis bifurcation (Figs. 1 and 2).
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 I/pcr I/pcr c

Fig. 1 Impact of the behavior-related parameter c on the number and location of endemic equilibria.
In all panels σ = 0.333. Left panel for c = 200 the system exhibits three co-existing equilibria, as
resulting from the intersection for the curves�I (I ) and L I (I ); Central panel for c = 10 the central
and the left endemic equilibria disappeared, whereas the right equilibrium was not affected at all by
the change in the value of c; Right panel the full bifurcation diagram. Note that not only the largest
equilibrium is constant, but also the central one (when it exists, i.e. for c > cl )

Fig. 2 Impact of the
parameter σ on the number
and location of endemic
states: bifurcation diagram in
the form Ie vs σ , under
c = 200

 I/pcr

4 Local Stability of the Disease-Free: Global Stability
Versus Backward Bifurcations

In this section, for the sake of mathematical completeness, we shortly consider the
issue of backward bifurcations, which is expected to occur in our model due to its
SISV structure. We therefore focus on the case where the disease-free state is locally
stable, i.e. the case where:

p(0) > pcr
1

1 − σ

(
1 + θ

μ

)
,

or equivalently
�(0) > L(0). (18)

First let us consider the case where the DFE is the unique equilibrium. Not surpris-
ingly, the following proposition holds:
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Proposition If �(I ) ≥ L(I ), i.e. if DFE is the unique equilibrium, then DFE is also
Globally Asymptotically Stable (GAS) in A.

Proof Let us define the following set:

B = {(I, V ) ∈ A|V ≥ L(I )} .

It is straightforward to show that if

�(I ) ≥ L(I ),

then B is a positively invariant set. The GAS of DF E in B then immediately follows
by the following LaSalle–Liapunov function:

L(I ) = I.

�

Remark The above GAS condition yields:

p(I ) >
(pcr − I )(μ + θ + σβ I )

μ(1 − σ)
,

i.e. if the vaccination behavioral response function is greater than the LHS function,
then the global eradication is reachable.

Note however that, still under (18), if the two nullclines intersect then (excluding
the trivial case of tangency) there must be an even number of intersections, as it
follows by applying elementary analysis to the function

D(I ) = �(I ) − L(I ).

Thus we are dealing again with a multistable case where however one of the LAS
equilibrium states involved is represented by the disease-free equilibrium. Therefore,
the related bifurcation which appears when, due to appropriately varying the model
parameters, the system makes a transition from the situation where the DFE is the
unique and globally asymptotically stable equilibrium to such type of multistability
is exactly a “backward bifurcation” of the type described for SISV systems in [23].

5 Concluding Remarks

In relation to the current epoch of development of behavioral epidemiology [25],
a large part of the modeling investigations of the potential effects of immuniza-
tions choices on the dynamics and control of infectious diseases have focused on
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the case of vaccine preventable infections, such as measles, which confers perma-
nent immunity. Consequently most efforts in the literature have concentrated on
susceptible-infective-removed (SIR) frameworks [3–5, 9–14, 24–26, 29, 30], see
also the review in [6] about the historical development of the subject, and references
therein. In relation to this, much of the emphasis has concentrated, though not exclu-
sively, on the issue of the difficulty to eliminate the infection, and possible ways to
prevent this drawback, and on the complicate dynamic patterns (e.g. oscillations) that
can be triggered by more appropriate, both behavior-implicit and explicit, modeling
of individual behavioral responses. This emphasis on traditional vaccine preventable
SIR-type infections by no means exhausts the range of infections for which com-
plicate behavioral responses by agents might be triggered by the introduction of a
vaccine. Many other important infections conform instead to the SISV-type frame-
work that has been considered in this paper. Among the many instances in relation
to this there are for example bacterial infections, such as Meningococcal Meningitis.
Though characterised by a complex epidemiology, Meningococcal Meningitis does
not impart immunity and both vaccines that have been introduced to protect against
the two Meningococci types widely circulating in Europe, namely groups C and
B, are “imperfect”. Another critical example, though based on a more complicate
model structure, is tuberculosis [20]. As demonstrated in this paper the introduc-
tion of even the simplest possible hypothesis about human behavior, namely that
of a behavior-implicit, prevalence-dependent vaccine uptake function, is capable to
enrich the spectrum of possible dynamical behaviors of SISV-typemodels, by adding
to the possibility of multi-stability on the sub-threshold side, the further possibility
of multistability on the above-threshold side. The practical meaning of this finding
is that the presence of agents’ behavioral responses to the introduction of the vaccine
might cause the appearance and coexistence of a number of stable (over appropriate
basins) endemic states. This was to our knowledge the first theoretical investigation
in this direction, based on a very simple, almost trivial, hypothesis on the agents’
behavioral response. The follow-up of this first effort should therefore acknowledge
a number of realistic features that just for the sake of simplicity had been neglected
here. First of all one should, still within the boundary of behavior implicit models,
consider the effects of time-delays, both in information supply and agents response,
as opposed to the instantaneous adaptation of behavior postulated in this paper. These
time-delays can generate complicate dynamical patterns even under simpler mod-
eling frameworks, as the SIR model with information-dependent delay [10]. Even
more interestingwould be the inclusion ofmore structured, namely behavior explicit,
behavioral responses, through e.g. imitation processes or their extensions [4, 5, 13,
14], or game-theoretic frameworks [2, 3, 27, 29, 30].
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