Authoring Tools for Augmented Reality:
An Analysis and Classification of Content
Design Tools

Rafael Alves Roberto! ™), Jodo Paulo Lima!2?, Roberta Cabral Mota?,
and Veronica Teichrieb!

! Voxar Labs, CIn, Universidade Federal de Pernambuco, Recife, Brazil
{rar3,vt}@cin.ufpe.br
2 DEINFO, Universidade Federal Rural de Pernambuco, Recife, Brazil
jpsml@deinfo.ufrpe.br
3 University of Calgary, Calgary, Canada
roberta.cabralmota@ucalgary.ca

Abstract. Augmented Reality Authoring Tools are important instru-
ments that can help a widespread use of Augmented Reality. They can
be classified as programming or content design tools in which the latter
completely removes the necessity of programming skills to develop an
Augmented Reality solution. Several solutions have been developed in
the past years, however there are few works aiming to identify patterns
and general models for such tools. This work aims to perform a trend
analysis on content design tools in order to identify their functionalities
regarding Augmented Reality, authoring paradigms, deployment strate-
gies and general dataflow models. This work is aimed to assist devel-
opers willing to create authoring tools, therefore, it focuses on the last
three aspects. Thus, 24 tools were analyzed and through this evaluation
it were identified two authoring paradigms and two deployment strate-
gies. Moreover, from their combination it was possible to elaborate four
generic dataflow models in which every tool could be fit into.

Keywords: Augmented reality - Authoring tools - Content design tools

1 Introduction

Recently, Augmented Reality (AR) technology started to be widely used in var-
ious application domains, such as advertising, medicine, education, and others.
However, the time and technical expertise needed to create AR applications is
one of the reasons that has prevented widespread use. In this sense, authoring
tools have become a largely used solution to boost mainstream use of AR since
they facilitate the development of AR experiences [25].

AR authoring tools can be broadly organized into two different approaches:
AR authoring for programmers and non-programmers [11]. In the former case,
tools are typically code libraries that require programming knowledge to author

© Springer International Publishing Switzerland 2016
A. Marcus (Ed.): DUXU 2016, Part ITI, LNCS 9748, pp. 237-248, 2016.
DOI: 10.1007/978-3-319-40406-6_22

238 R.A. Roberto et al.

the application. In this work, these approaches are called programming tools.
In the latter case, abstraction is added and low level programming capability
is removed or hidden. Thus, tools for non-programmers are content driven and
commonly include graphical user interfaces for building applications without
writing any lines of code. Here, it is addressed as content design tools.

These two generic categories can be further organized into low-level and
high-level, as seen in Fig. 1. Low-level programming tools require low-level cod-
ing while high-level ones use high-level libraries. Furthermore, low-level content
design tools demand scripting skills and high-level tools use visual authoring
techniques. All of these authoring approaches are built upon each other. Abstrac-
tion is gradually added and low-level functionalities and concepts are removed
or hidden. Also, different abstraction levels address different target audiences
with different technical expertise.

R CONTENT DESIGN
= HIGH-LEVEL
:
2 LOW-LEVEL
E
3 HIGH-LEVEL
=
PROGRAMMING | —
CONCEPT ABSTRACTION g

Fig. 1. Schematic view of AR authoring tools [11].

Among the approaches of AR authoring tools, it is important to note the
relevance of the content design tools. They are particularly important because
they leverage the widespread adoption of AR, since they highly simplify the
authoring process and allow the development of applications and content by
ordinary users, which do not need to have programming knowledge. Therefore,
content design tools in AR have greater relevance when we take into account the
potential amount of users that can use AR solutions in the future.

From the first solutions [12] to the most recent ones [27], it is possible to see
that several content design tools have been developed. However, there are a few
works aiming to provide a classification or to identify tendencies and patterns
for such tools. To the best of the authors knowledge, there is only one work
that proposes a taxonomy for AR authoring tools. In turn, this classification is
according to the application interface and concept abstraction [11], in which the
most abstract application interfaces are named content design frameworks and
the least abstract are called programming frameworks.

Authoring Tools for Augmented Reality 239

Due to the relevance of content design tools, this paper aims at conducting a
trend analysis in order to understand the current tendencies of such tools. This
investigation attempts to identify the current tendencies regarding the authoring
paradigms and deployment strategies of AR experiences that have been used
in both commercial and academic realms. Furthermore, these strategies were
combined to elaborate generic dataflow models in which all of the content design
tools could fit into. Finally, based on these findings, it was introduced a taxonomy
representing the different authoring and deployment trends, as well as each of
the general models. This classification may guide researchers and companies to
develop solutions aiming at their needs.

This work is organized as follows: Sect.2 describes the methodology used
to perform the trend analysis. Section 3 presents the results obtained from the
analysis while Sect. 4 discusses them. Finally, the conclusions of this work are
drawn in Sect. 5.

2 Methodology

Three steps were taken to explore the trends regarding AR authoring tools. The
first one was the selection of content design tools available in the marketplace
and the literature. Then, as a second step, the analysis relied on observing the
dataflow of development and access to the AR content of each one of the selected
tools. Finally, the third step consisted in discovering the authoring paradigms
and deployment strategies used in the content design tools. Their combination
was used to elaborate general dataflow models.

2.1 Selection

Initially, the keywords and expressions (“authoring tool” AND “augmented real-
ity”) were searched in IEEE Xplore Digital Library and ACM Digital Library
in order to find relevant papers concerning authoring tools in AR. That allowed
for an investigation over important publications from 2001 to 2015. During this
examination, only authoring tools classified as content design tools were selected
for analysis.

2.2 Analysis

Following this, a deeper analysis was performed of each one of the selected
authoring tools in order to understand the dataflow for development and access
to the AR content. On a high level, this dataflow describes the end-to-end sce-
nario that outlines the authoring and deployment of AR experiences, from the
creation of AR semantic through authoring tools to its visualization by end-users.

240 R.A. Roberto et al.

2.3 Categorization

The deeper analysis performed on each of the selected content design tools made
possible the observation of trends regarding authoring and distribution strategies
of AR experiences that have been used. Furthermore, this observation also tried
to understand (a) how the different authoring paradigms may support AR, con-
tent development, and (b) how the deployment strategies seek to reach a larger
number of end-users. Finally, the identification of AR authoring and deployment
trends allowed the translation of the project-specific dataflow, observed in the
selected content design tools, into the creation of general dataflow models. In
this sense, a minimum number of combinations of trends was performed in order
to elaborate generic models, in which all of the content design tools could fit
into.

3 Results

The search on the scientific libraries returned 147 papers and 14 works about
content design tools were selected for analysis. Moreover, 10 commercial tools
that are well consolidated or relevant in the market were chosen. Thus, taking
into account both academic and commercial realms, there were 24 content design
tools. Thereafter, a dataflow analysis was performed in each of the selected tools.

3.1 AR Authoring Paradigms

Once individual analyses were performed in each of the previous selected content
design tools, it was observed that two authoring paradigms have been used to
create AR solutions: stand-alone and AR plug-in approaches.

Stand-Alone. AR authoring tools that use the stand-alone paradigm are soft-
ware with all the necessary components for the development of complete AR
experiences, as can be seen in Fig.2(a). In turn, these components may include
a graphical user interface, a series of importers, sensor interfaces, tracking and
rendering engines, among others. In this sense, each stand-alone content design
tool is a new software that allows designers to create their custom AR projects
with more or less ease.

As an example, the Layar Creator [17] provides a complete set of features
along the entire creation workflow, such as graphical user interface including
drag and drop to ease the scenario creation.

AR Plug-in. Similar to conventional digital plug-ins, AR plug-ins are third-
party software components installed on host applications in order to enable
additional features, as illustrated in Fig.2(b). In this sense, these authoring
tools provide AR capabilities to software that natively does not support it, such
as tracking techniques, access to physical sensors, three-dimensional rendering
engine, among others.

Authoring Tools for Augmented Reality 241

It is relevant to note that, from the practical point of view, an AR plug-in
instance will appear in the target software as a set of GUI elements, such as one
or more menu items and toolbar buttons. Therefore, the whole AR authoring
process occurs within the hosting environment, as the designer completely con-
figures the desired AR experience by means of those elements along with the
ones already provided by the target software.

As an example, the DART [7] system is built as a collection of extensions
to the Adobe Director [2], a widely used environment for multimedia content
creation, to support the development of a variety of AR applications.

@ ® |

B TRACKNG ENGNE g s | oG
i - - - i L TRACKING | SENSOR INTERFACES

DESIGNER : H
AR AUTHORING TOOL DESGNER i . RATHORNeTOOL E

Fig. 2. (a) Stand-alone AR authoring tools enable building entire AR experiences.
In order to provide AR capabilities, these tools integrate components such as sensor
interfaces, tracking and rendering engines; (b) AR plug-ins provide AR functionalities
for non-AR authoring environments. The designer interacts directly with the hosting
software in order to create AR experiences.

3.2 AR Deployment Strategies

It was noticed that two deployment strategies have been applied to make these
AR experiences available for end-users: platform-specific (PS) and platform inde-
pendent (PI) methods.

Platform-Specific. In the PS approach, AR projects built using authoring
tools are exported to archive files to be independently distributed. Some com-
mon archive file formats include .exe in Windows, .dmg or .app in Mac OS, .apk
in Android, and .ipa for iOS operating systems. Note that these archive files
are software packages used to distribute and install native application software.
A native app, in turn, is considered a stand-alone program itself since it is a
self-contained program that does not require any auxiliary software to be exe-
cuted, as can be observed in Fig. 3(a). Native apps are usually available through
application distribution platforms, such as App Store, Google Play, and Win-
dows Phone Store. However, they must be downloaded from the platform to the
end-user devices, such as iPhone, Android, Windows phones, or even laptops or
desktop computers.

As an example, the Wikitude Studio [28] supports deployment options to
mobile applications for i0S/Android platforms, and to executable programs for
Windows/Mac OS computers.

242 R.A. Roberto et al.

Platform-Independent. The PI approach delivers the AR solutions as data
files read and executed on a software platform (SP) running on the end-user
device. Also, it is worth pointing out that, after the authoring process, the gen-
erated content requires a platform on which it must be executed. Therefore, the
content cannot be considered a stand-alone program. Rather, it comprehends
data files (commonly structured in XML-based formats) that are interpreted by
the SP, as illustrated in Fig. 3(b).

As an example, k-MART [6] allows designers to export AR solutions as X3D-
based data files. In turn, these files are later executed on a separate content
browser.

Furthermore, since the content does not need to be installed in the device,
a major advantage is the possibility of implementing a cloud-based deployment
service. This increasingly popular variant approach uses a server infrastructure
as a backbone. The remote server is responsible for content storage and retrieval
as requested by the clients. The clients, in turn, are responsible for presenting
the retrieved content on end-user devices. Also, a client comprehends a cloud-
based SP that reaches into the cloud for contents on demand. In turn, all data
files remotely accessed are here referenced as cloud-based applications.

As an example, AR companies like Layar and Wikitude developed Layar App
and Wikitude World AR browsers, respectively. To the end-user, an AR browser
looks very similar to a typical native app: it is downloaded from an app store,
stored on the mobile device, and launched just like a native app. However, the
most prominent advantage of AR browsers is that end-users need only one app
for multiple contents. Once installed, they pull new cloud-based apps on demand.

@ (®)
(U SENSORINTERACES .a o
BN B - -~ X

NATIVE APPLICATION Q| -k SOFTWARE PLATFORM END-USER

I 05 (10S, ANDROID, WINDOWS, MAC 08, ETC) | | 0S (10S, ANDROID, WINDOWS, MAC 0S, ETC) |

Fig. 3. (a) A native app includes all required elements to execute AR experiences,
thus can be considered a stand-alone software itself. Also, the term native comprises
applications compiled at runtime, such as an Android app, or precompiled executable
programs; (b) Data files are interpreted by a native shell, which provides the required
infrastructure to present AR experiences.

3.3 General Models

Given the authoring and deployment trends explored in the previous subsections,
it was possible to elaborate four general dataflow models that represent the
content design tools’ dataflow analysed in this work.

Authoring Tools for Augmented Reality 243

@ g oesom (b) @ DESIGNER

X X

l — [— l _,\
) []
el RS B
))END-USER

- EI - END-USER

(c) (d) @ DESIGNER

DATA FILES I
1 N

] —E~
-2 -2

DESIGNER END-USER|: .
L = END-USER

Fig. 4. (a) Model 1 combines a stand-alone authoring with a PS distribution. Therefore,
each generated native application is individually installed and accessed by end-users;
(b) Model 2 unites a stand-alone authoring paradigm with a PI distribution; (¢) Model
3 combines a stand-alone authoring with a PI distribution. Yet, both designers and
end-users utilize the same ambient to create and visualize AR solutions; (d) Model 4
merges an AR plug-in authoring with a PI distribution.

Model 1: Stand-Alone PS Model. As can be observed in Fig.4(a), this
dataflow model embodies a stand-alone authoring approach combined with a
native distribution strategy. In this sense, the designer first creates AR experi-
ences through stand-alone content design tools. Then he exports the project as
PS files, which are used to deliver stand-alone, native applications for Android,
iOS, Windows or other operating system.

Model 2: Stand-Alone PI Model. Similarly to the previous model, the
designer first builds AR experiences using stand-alone content design tools. How-
ever, this model applies a PI strategy for reaching interoperability and maintain-
ability. In this sense, the designer exports the authored AR solutions as data files
that run on a separate SP. Note that, a content design tool can generate one or
more data files which can be interpreted in a single SP and in different periods
of time, as seen in Fig.4(b). Yet, since each stand-alone content design tool is
a brand new software, the data files created by distinct tools generally differ in
their structures, logics, and formats.

Model 3: All-in-One Model. As illustrated in Fig.4(c), in this model, both
designers and end-users utilize the same environment to build and access AR
solutions. In the sense, the designer creates and saves AR solutions as data files.

244 R.A. Roberto et al.

Table 1. Classification of each commercial (without year) and academic tool according
to the general dataflow models.

Content Design Tools
Metaio Creator [22]

Metaio AR Creator Plugin [21]
Wikitude Studio [28]

Layar Creator [17]

Build AR [14]

AR-media Plugin [15]

Playme [23]

CraftAR [4]

Aurasma Studio [13]

DAQRI 4D Studio [8]
Powerspace [12]

Authoring Wizard [29]
AMIRE [1]

DART [19]

CDT1 [18]

ComposAR [26]

VREditor [20]
ARBookCreator [9]

AR Scratch [24]

k- MART [6]

CDT?2 [16]

AVATAR [10]

CDT3 [3]
CDT4 [27]

Eventually, these files are read and executed within the same environment in
order to present the AR experience to end-users. Hence, similarly to the previous
model, the all-in-one comprehends a stand-alone authoring approach combined
with a PI distribution. However, the major difference resides in the fact that
production and delivery services are merged within a single system.

Model 4: AR Plug-in PI Model. In this dataflow model, the designer first
builds AR projects using hosting software integrated with AR plug-ins. Then,
these projects are saved as data files that are later retrieved and executed on
a separate application. In other words, this model includes a plug-in approach
combined with a PI deployment strategy, as can be observed in Fig. 4(d).

All the content design tools that were selected and analyzed in this work
are listed in Table 1. The table divides the commercial and academic tools and
indicates to which of the four general dataflow models each tool belongs. It is
important to keep in mind that it is not mandatory for a tool to be categorized

Authoring Tools for Augmented Reality 245

into only one general model since a content design tool can provide different
distribution approaches and, consequently, different dataflow models.

4 Discussion

The major findings permitted a discussion in regards to (a) the benefits and
shortcomings of each of the AR authoring paradigms and deployment strategies
and (b) the results obtained from the classification of the analyzed content design
tools according to the four generic dataflow models. Each one of these discussions
are approached in the following subsections.

4.1 Stand-Alone vs. AR Plug-in

Reusability. Stand-alone authoring tools generally offer a smaller set of features
when they are compared to full-fledged hosting software. In the plug-in app-
roach, the designer may create the AR experience by using not only the extra
functionalities provided by the plug-in, but also the mature existing features in
the target software. On the other hand, it would require strong effort and time
to implement these features in a stand-alone authoring tool.

Domain specificity. Another benefit of the AR plug-in over the stand-alone
approach is that each created plug-in can be specialized for a specific application
domain. By using the plug-in approach, one can propose a set of functionalities
tailored to one specific application domain. Thus, only the required features are
implemented and not every possible one that usually a stand-alone tool must
provide.

Learning curve. Given a situation in which stand-alone tools are focused on
specific tasks or application areas, the learning curve and the time employed to
learn how to use each new tool, with different interfaces, is longer if compared
to integrated tools. Since the plug-ins are usually implemented on the same
environment, each focusing on a specific task or application domain, the designer
would not need to interact with a new interface.

However, the time spent to learn how to create an AR application using a
plug-in can be bigger when compared with a stand-alone solution in case the
user does not have experience with the host tool. It is due to the fact that they
commonly have a complex interface. Thus, the learning curve for simple and
focused tools is usually shorter.

Integration restraints. Bringing AR capabilities inside non-AR authoring
tools is neither straightforward nor trivial. First, it must be considered the avail-
ability of an SDK for the target software. It is extremely hard to manage the
integration when dealing with a closed system. Another factor is the GUI. When
designing an integrated AR plug-in for a host software, it is mandatory to cre-
ate GUI elements with the same look-and-feel as the target software. Moreover,
the authoring metaphor must be used in a coherent way with it. In this sense,
obstacles may arise during the development of functionalities that follow the
traditional authoring style and, at the same time, enable AR content creation
with ease.

246 R.A. Roberto et al.

4.2 Platform-Specific vs. Platform-Independent

Portability. Since native apps are built using the device’s native programming
language, they only run on their designated platform. This means that the
same app cannot be re-used between platforms. Thus, deploying a native app to
Android, i0S and Windows Phone would require creating three different applica-
tions to run on each platform. Contrastingly, one major promise about platform
independence is that designers only have to write the application once and then
it will be able to run anywhere, without having to be recreated by the designer
for each separate platform.

Maintenance cost. Maintaining native applications is also expensive for the
designer. As a native app is built for a particular device and its operating system,
whenever new OS versions are rolled out, native apps may require considerable
updates to work on these newer versions. Moreover, data files run independent
on a PS shell that operates as an abstraction layer that encapsulates the under-
lying hardware and software updates. Hence, the designer does not have to worry
about updating and resubmitting apps.

Offtine functionality and speed. An advantage for native apps is the off-line func-
tionality and speed. Since the application remains installed on the device from
the original download, depending on the nature of the app, no internet connec-
tion may be required. Another area where native apps have a clear advantage is
speed. These apps, by definition, run at native speed. PI apps run on top of addi-
tional layers, which consume computing resources and can therefore decrease the
execution speed.

4.3 General Models

As can be seen in Table 1 the stand-alone PI model is the most used approach
in both commercial and academic realms. It can also be noticed that the stand-
alone PS model is the less used approach. In turn, these results might indicate
that there is a strong trend towards PI strategies, which provide two key deter-
minants for delivering widely deployable AR, experiences.

First, it permits cross-platform usage of the created AR experiences and the
more platforms are covered, the more people are reached. In this sense, leading
AR companies have commercial content design tools that suit into the stand-
alone PI model. In these scenarios, AR solutions are executed on their respective
AR browsers. In turn, these browsers are cross-platform applications that run
across different operating systems.

Second, the PI strategy also allows content aggregation for leveraging distri-
bution and discovering of AR solutions. In this sense, it can provide an unified
AR platform to access multiple content, thus avoiding the cumbersome task of
downloading and installing each one of the AR solutions.

Table1 shows that seven out of the eight generic dataflow models target
data files for specifying the AR solutions. Therefore, based on these results,
it is possible to observe that there is a consensus in academia and industry
for adopting descriptive data formats, which includes JSON and, most often,
XML-based formats such as ARML, KARML, and XML.

Authoring Tools for Augmented Reality 247

5 Conclusion

AR authoring tools can provide several levels of abstraction, thus targeting audi-
ences within a range of different technical expertise. Particularly, those catego-
rized as content design tools allow non-technologists to explore the AR creation
medium and, therefore, these tools are an essential component for helping AR to
gain popularity in different application domains. Due to their relevance, several
content design tools have been developed recently. However, no work was found
that presents an analysis and classification of those tools.

In this sense, this work analyzed 24 commercial and academic content design
tools in order to identify tendencies of such tools. The investigation revealed that
there are two authoring paradigms and two distribution strategies that have been
widely used for such tools. Furthermore, these authoring and deployment trends
were combined to elaborate four generic dataflow models.

Furthermore, this paper discussed the authors’ findings on the authoring and
deployments tendencies by comparing one trend against its alternatives in order
to discuss their advantages and limitations. Thereafter, it discussed the results
obtained from the classification of the content design tools according to the four
general dataflow models.

The authors believe that the proposed taxonomy along with the discussion
regarding the major findings can help users to find the best tools for them or
guide researchers and companies to develop solutions aiming their needs.

References

1. Abawi, D.F., Dérner, R., Grimm, P.: A component-based authoring environment
for creating multimedia-rich mixed reality. In: EGMM 2004 (2004)
2. Adobe Systems Incorporated: Adobe Director, January 2015. http://goo.gl/
QnkQni
3. Barbadillo, J., Sdnchez, J.R.: A web3d authoring tool for augmented reality mobile
applications. In: Web3D 2013 (2013)
4. Catchroom: CraftAR: Augmented Reality and Image Recognition toolbox, January
2015. http://goo.gl/ThRVvT
5. Cho, H., Gray, J., Sun, Y.: Quality-aware academic research tool development. In:
APSEC 2012, vol. 2, pp. 66—72, December 2012
6. Choi, J., Kim, Y., Lee, M., Kim, G., Nam, Y., Kwon, Y.: k-MART: Authoring tool
for mixed reality contents. In: ISMAR 2010, pp. 219-220, October 2010
7. Coleman, M.G.: Creating augmented reality authoring tools informed by designer
workflow and goals. Ph.D. thesis, Georgia Institute of Technology (2012)
DAQRI: 4D Studio DAQRI, January 2015. http://goo.gl/y8kLvr
9. Do, T.V., Lee, J.W.: Creating 3d e-books with ARBookCreator. In: ACE 2009
(2009)
10. Fei, G., Li, X., Fei, R.: AVATAR: Autonomous visual authoring of tangible aug-
mented reality. In: VRCAI 2012 (2012)
11. Hampshire, A., Seichter, H., Grasset, R., Billinghurst, M.: Augmented reality
authoring: Generic context from programmer to designer. In: OZCHI 2006 (2006)
12. Haringer, M., Regenbrecht, H.: A pragmatic approach to augmented reality author-
ing. In: ISMAR 2002, pp. 237-245 (2002)

®

http://goo.gl/QnkQni
http://goo.gl/QnkQni
http://goo.gl/ThRVv7
http://goo.gl/y8kLvr

248

13.
14.
15.

16.

17.
18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

R.A. Roberto et al.

Hewlett-Packard Development Company: Aurasma Studio. https://goo.gl/Ix8vgr
HIT Lab NZ: BuildAR Pro, January 2015. http://goo.gl/1LtXvt

Inglobe Technologies S.r.l.: AR-media - AR-media Products, January 2015. http://
goo.gl/TbLeM8&

Langlotz, T., Mooslechner, S.; Zollmann, S., Degendorfer, C., Reitmayr, G.,
Schmalstieg, D.: Sketching up the world: In situ authoring for mobile aug-
mented reality. Personal Ubiquitous Comput. 16(6), 623-630 (2012). http://dx.doi.
org/10.1007/s00779-011-0430-0

Layar: Layar creator, January 2015. http://goo.gl/rQOPIP

Lee, G., Nelles, C., Billinghurst, M., Kim, J.: Immersive authoring of tangible
augmented reality applications. In: ISMAR 2004, pp. 172-181 (2004)

Maclntyre, B., Gandy, M., Dow, S., Bolter, J.D.: DART: a toolkit for rapid design
exploration of augmented reality experiences. In: UIST 2004 (2004)

Mavrogeorgi, N., Koutsoutos, S., Yannopoulos, A., Varvarigou, T., Kambourakis,
G.: Cultural heritage experience with virtual reality according to user preferences.
In: CENTRIC 2009, pp. 13-18, September 2009

Metaio GmbH: metaio — AR Creator Plugin — Products, January 2015. http://
g00.gl/Z5E9ym

Metaio GmbH: metaio — Creator Overview, January 2015. http://goo.gl/6xwegyF
Playme AR: Playme AR Creator Features — Playme AR - Simple Augmented
Reality Software, January 2015. http://goo.gl/nGAf9t

Radu, I., MacIntyre, B.: Augmented-reality scratch: A children’s authoring envi-
ronment for augmented-reality experiences. In: IDC 2009 (2009)

Ramireza, H., Mendivila, E.G., Floresa, P.R., Gonzalez, M.C.: Authoring software
for augmented reality applications for the use of maintenance and training process.
In: International Conference on Virtual and Augmented Reality in Education. pp.
189-193, October 2013

Seichter, H., Looser, J., Billinghurst, M.: ComposAR: An intuitive tool for author-
ing ar applications. In: ISMAR 2008, pp. 177-178, September 2008

Shim, J., Kong, M., Yang, Y., Seo, J., Han, T.D.: Interactive features based aug-
mented reality authoring tool. In: 2014 IEEE International Conference on Con-
sumer Electronics (ICCE), pp. 47-50, January 2014

Wikitude GmbH: Wikitude Studio - the world’s easiest augmented reality creation
tool, January 2015. http://goo.gl/LrOuOK

Zauner, J., Haller, M., Brandl, A., Hartman, W.: Authoring of a mixed reality
assembly instructor for hierarchical structures. In: ISMAR 2003, pp. 237-246,
October 2003

https://goo.gl/Ix8vgr
http://goo.gl/1LtXvt
http://goo.gl/TbLeM8
http://goo.gl/TbLeM8
http://dx.doi.org/10.1007/s00779-011-0430-0
http://dx.doi.org/10.1007/s00779-011-0430-0
http://goo.gl/rQ0PlP
http://goo.gl/Z5E9ym
http://goo.gl/Z5E9ym
http://goo.gl/6xwgyF
http://goo.gl/nGAf9t
http://goo.gl/Lr0uOK

	Authoring Tools for Augmented Reality: An Analysis and Classification of Content Design Tools
	1 Introduction
	2 Methodology
	2.1 Selection
	2.2 Analysis
	2.3 Categorization

	3 Results
	3.1 AR Authoring Paradigms
	3.2 AR Deployment Strategies
	3.3 General Models

	4 Discussion
	4.1 Stand-Alone vs. AR Plug-in
	4.2 Platform-Specific vs. Platform-Independent
	4.3 General Models

	5 Conclusion
	References

