
Making Examples Tangible: Tool Building

for Program Comprehension

Marcel Taeumel and Robert Hirschfeld

Abstract Best practices in design thinking suggest creating and working with

tangible prototypes. In software engineering, programmers interact with source

code more than with customers. Their intent is to understand the effects of abstract

source code on programs in execution. Existing tools for program exploration,

however, are tailored to general programming language concepts instead of

domain-specific characteristics and programmer’s system knowledge. In this chap-

ter, we establish the need for adapting programming tools in use when navigating,
viewing, and collecting examples to increase tangibility, that is, clarity of a concept

or idea based on what can be experienced on screen. We present our Vivide tool-

building environment, which is a data-driven, scriptable approach to constructing

graphical tools with low effort. By exploring common programming scenarios, we

conclude that tool building does not have to be a detached, effortful activity but can

be accomplished by the same programmers who detect deficiencies during their

programming tasks. Then exemplary information about software systems can

become tangible.

1 Introduction

Best practices in design thinking include prototyping, which helps verify assump-

tions and gain a better understanding of the often abstract and unclear problem and

solution space. Such prototyping activities will typically produce tangible artifacts.
This means that designers work with real-world materials such as paper, glue,

pencils, whiteboards, and index cards. Externalizing thoughts and ideas in simple

but concrete things can foster team communication or enable first user testing. The

quality of prototypes can range from low-end to high-end while retaining their

M. Taeumel (*) • R. Hirschfeld

Software Architecture Group, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam,

Germany

e-mail: marcel.taeumel@hpi.de; robert.hirschfeld@hpi.de

© Springer International Publishing Switzerland 2016

H. Plattner et al. (eds.), Design Thinking Research, Understanding Innovation,

DOI 10.1007/978-3-319-40382-3_11

161

mailto:marcel.taeumel@hpi.de
mailto:robert.hirschfeld@hpi.de

exemplary nature: It’s not about experiencing the final product but about holding in
your hands a low-cost, incomplete, yet tangible analogy.

When the product is going to be a piece of software, prototyping can support

programmers and customers to talk about requirements in a shared language.

Typical tangible artifacts include user stories (Cohn 2004) on index cards, brico-

lages of graphical user interfaces (Shneiderman and Plaisant 2010), or descriptive

personas (Courage and Baxter 2005) on whiteboards.

Despite the many social aspects involved in software engineering, most of the

time programmers have to focus on talking to source code instead of customers.

Among all information related to software systems, only the source code is always

up-to-date because it describes the system’s actual behavior. Every programming

activity includes reading and modifying source code. There is in fact an over-

whelming amount of information available in large systems. Not only the numerous

lines of source code but also related artifacts, such as program execution traces and

external documentation, can support understanding. Programmers continuously ask

questions about system parts while fixing bugs or adding features. The helpful

answers to these questions represent tangible examples of information needed to

accomplish programming tasks.

In programming-the notion of tangibility does not address primarily a physical

representation but an aspect of cognition. Examples representing concepts, mech-

anisms, or intents should be “capable of being precisely identified or realized by the

mind”1 to be tangible. In a given task, programmers have to understand the

particular mapping between the problem domain and the source code as well as

between the source code and the software system in execution. General questions
include: “How is domain knowledge represented in source code?” and “How are the

rather abstract descriptions from the source code put into action during program

execution?” as depicted in Fig. 1.

To acquire this understanding, programmers use tools for collecting, navigating,
and viewing source code and other related software artifacts. These tools are called

browsers, editors, debuggers, or explorers. Once created without anticipating spe-

cific domains, these tools provide only generic support for the underlying program-

ming language constructs. For example, the language Smalltalk knows packages,

classes, categories, and methods. Tools support finding those artifacts and navigat-

ing their relationships. There are common strategies to approach a larger system

such as “top-down” where programmers begin with the most abstract or coarse-

grained structure and then dive into the details (Von Mayrhauser and Vans 1995).

However, program comprehension is a creative activity influenced by human

factors and domain-specific characteristics. There is typically no single strategy that

works equally well for all programmers or in all known domains. On the one hand,

people vary in terms of existing knowledge, cognitive capabilities, mood and

motivational triggers (Csikszentmihalyi 2008), or even vision. On the other hand,

domains carry specific terms and rules that have to be considered when using

1Definition of “tangible” from http://merriam-webster.com, accessed on Dec 3, 2015.

162 M. Taeumel and R. Hirschfeld

http://merriam-webster.com/

standard tools. For example, to answer “Why doesn’t this Tetromino2 rotate

clockwise when the arrow-right key is pressed?” requires mapping from specific

terms to generic actions, which the tools dictate in this case as “Add breakpoint”,

“Browse declaration”, and “Open documentation”.

By accommodating personal preferences and domain-specific characteristics,

programmers are expected to find tangible examples more efficiently. Many tools

offer a means of configuration by switching color schemes, keyboard shortcuts,

window layouts, content filters, or integration with other tools. This possibility can

reduce the number of user interactions and the chance to make mistakes due to

cognitive overload or slip ups (Norman 2002). Hence, it can save time. As tools

being software systems themselves, programmers have the skills to approach any

task from the best possible angle.

However, there are two serious challenges that affect using these skills: (1) Not

many programmers reflect regularly about their working habits yet come up with

ideas for improvement and (2) simple tool customization is quite limited, extended

customization typically not worth the usually high effort. At the end of the day,

current habits remain unchanged. Programmers keep on using generic tools for a

specific information space. This habit impedes navigating, viewing, and collecting

software artifacts and hence finding the tangible examples that quickly answer

program comprehension questions.

We think that programming languages and programming environments influ-

ence the way programmers think about tooling and the possibilities for improving

their workings. In this chapter, we describe several existing means and triggers that

Fig. 1 Programmers write source code to make applications fit customer specifications. Large

software systems pose challenges in uncovering the mapping between domain and code as well as

code and running applications

2A “Tetromino” is the block in Tetris games. In such games the player has to arrange falling pieces

of varying shapes to fill rows to gather points.

Making Examples Tangible: Tool Building for Program Comprehension 163

foster the creative nature of program comprehension to gather the tangible exam-

ples more efficiently to answer the questions that arise in programming tasks. We

emphasize the benefits of having a self-sustaining, reflective environment with

access to the tool’s underlying source code. We present our tool building environ-

ment, called Vivide.3 It is implemented in Squeak/Smalltalk4 and employs a data-

driven perspective on programming tools. It supports a scriptable way to create

graphical tools for programming with low effort.

In Sect. 2, we give background information and motivate the need for employing

the best practices of self-sustaining programming environments such as Squeak/

Smalltalk. We present several examples of deficiencies in generic programming

tools in Sect. 3, which reveal their deficiencies when applied to domain-specific

programming tasks. We explain and apply our Vivide programming and tool

building environment in Sect. 4. Finally, we conclude our thoughts in Sect. 5.

2 Learn About Your Environment’s Possibilities

In this section, we establish the need for learning and applying the concepts that

particular programming languages and environments provide. We argue that this is

a requirement for efficient reflection about personal working habits and the adap-

tation of programming tools in use.

2.1 Being Aware of Different Concepts

Creativity draws from existing knowledge and previous experiences. Programmers

can be creative when developing a program comprehension strategy, especially if

they know and understand their surroundings, that is their programming languages,

tools, and environments used. Programming tools are also described with source

code, just like the application that has to be created for a customer. Hence, there is

the chance that programmers can understand how tools work and how they can be

modified to better support the circumstances. Unlike many users of software

systems, programmers train particular skills that allow them to understand the

building blocks of programs and their algorithmic, logic nature. Unfortunately,

there are also many programmers who treat programming tools as “black boxes”

and hence remain simply users. They are, however, unwilling to dig into internals

and improve the modus operandi.

The tools’ sources have to be available (Weiser 1987). The curiosity of a

programmer is not worth a dime, if there is no access to a human-readable

3The Vivide environment: http://www.github.com/hpi-swa/vivide, accessed on Dec 3, 2015.
4The Squeak/Smalltalk programming system: http://www.squeak.org, accessed on Dec 3, 2015.

164 M. Taeumel and R. Hirschfeld

http://www.github.com/hpi-swa/vivide
http://www.squeak.org/

description of the program. Source code gets translated into byte code to be

interpreted by a virtual machine or compiled into machine code to be executed on

the actual computer hardware. Such target representations are hardly readable by

programmers. The preservation of the source code is required for maintenance.

Having originated in a commercial context, many programming tools

(or environments, respectively) such as Eclipse and Visual Studio do not offer

sources. There are, however, full-source environments such as Squeak/Smalltalk

where applications and tools are open, readable, and ready to be modified.

Whenever programmers learn new languages or tools, they build on existing

knowledge and try to apply familiar concepts. This works quite well because many

new ideas originate from previous experiences and retain best practices. For imper-
ative programming languages, this might be the for-loop or if-else-conditional

expression. For programming tools, this usually includes having text editors, copying

code via the keyboard shortcut [Ctrl] + [C] and pasting contents via [Ctrl] + [V], or

setting breakpoints and invoking a debugger. However, programmers have to be open

for new ideas. Especially when switching from a familiar language or environment to

an unfamiliar one. That other environment might be used in familiar ways but its

power can only unfold once its unique concepts become clear. For a brief example, in

Squeak/Smalltalk, programmers can modify running applications by easily exchang-

ing portions of code. However, it is also possible to kill and restart applications over

and over again after every little modification. If programmers fail to learn and apply

the concepts, patterns, and idioms, they cannot improve their working habits and

hence only work inefficiently in the given environment.

2.2 Tool Mechanics

In this report, we focus on graphical tools for programming. These are tools that

have windows, buttons, lists, text fields, or other kinds of interactive widgets. We

think that programmers can benefit from graphics-based interfaces in terms of

increased information density and convenient input methods such as mouse and

touch. Text-based interfaces, for example command lines, are still popular in

several communities and maybe one indication for inconvenient designs in the

graphical world. However, this is precisely where programmers can take the

opportunity to tailor their tools as needed. This can work if the mechanics of the

underlying tool-building framework are comprehensive and easy to apply.

There are many ways to model the structure of programming tools. We think that

it is useful to distinguish between the data that is accessed and the visuals that are

produced as depicted in Fig. 2. For tool builders, a query language is used to access
the data. For tool users, a presentation language has to be learned to make sense of

the visuals. Usually, there is also a mapping language because many software

artifacts do not have an inherent graphical representation and hence have to be

mapped to the graphical properties of standard widgets such as scrollable lists or

text boxes.

Making Examples Tangible: Tool Building for Program Comprehension 165

Presentation languages encompass interactive, graphical widgets. For example,

standard tools offer buttons, lists, trees, or tables. Sometimes they have maps or

charts to visualize larger data sets and embed them into context in a meaningful

way. This typically two-dimensional output is accompanied by mouse, keyboard, or

touch input. There is usually a high degree of reuse of well-known concepts in new

tools to support learning and foster best practices. For example, many tools have

overlapping windows, tool bars, context/pop-up menus, save dialogs, or keyboard

shortcuts. Depending on the domain, there might also be several unique widgets

such as sheet editors in music composition tools (Wright et al. 1997).

Query languages support accessing and preparing data for widgets. They are

programming languages with a specific focus. For example, if the information is

stored in a relational database, SQL can be used to access those tables and to

perform filter and aggregation operations. Given the concept of tables and rows, the

expression “SELECT name FROM customers WHERE age> 60” reads the table

“customers” and selects the rows with a certain age value to finally return the

“name” column. One might easily have a textual or graphical representation in

mind when querying data but such languages are independent of presentation. Tools

can present the same information in different ways.

Mapping languages are required because the data providers and the interactive

widgets usually do not speak a shared language, meaning that there is no inherent

graphical representation for many software artifacts. Of course, it is easy to map

information to textual representations because many data providers, internally, talk

text-only. In information technology, textual representation of information is very

important and is standardized, for example in the Unicode standard. This standard-

ization is necessary for the sake of sharing, persistence, and long-lasting compre-

hension. However, in programmers’ minds, some software artifacts have a more

vivid appearance than others. Computer graphics employs lines, shapes, colors, or

animation to make digital information almost tangible on screen. List widgets, for

example, may benefit from “icons” or “color” but the data is only text. Here,

mapping languages can be used to “materialize” concepts, that is, for example,

mapping the string “red” to actual color information to be displayed on screen.

Fig. 2 Graphical tools for programming query system data to retrieve software artifacts such as

source code, external documentation, and run-time traces. A subset of the artifacts’ information is

extracted and mapped to what interactive widgets support such as textual labels and color

properties. The tool’s source code is basically an adapter between databases and widgets

166 M. Taeumel and R. Hirschfeld

2.3 Live Programming Environments

A central issue in program comprehension is how the rather abstract source code is

put into action when it is executed on the computer. That means, understanding the

correspondence between observable program output and its sources is paramount.

To achieve this understanding, programmers execute smaller portions of a program

called tests or pause program execution at certain points referring to (conditional)

locations in source code, called breakpoints. Assumptions can be verified by

exploring a program’s run-time state or the result of a test run. Having such a

unit of observation, small changes to the source code can also be used to check

behavioral variations.

Edit-compile-run cycles can be minimized in live programming environments

such as Squeak/Smalltalk. Programmers can evaluate any piece of source code in a

text field within a particular context. There is always the global context, which

means that 3 + 4 will evaluate to 7 andMorph new openInHand will create a blue

rectangle attached to the mouse cursor as depicted in Fig. 3. More specific contexts

occur, for example, if an algorithm is in the middle of execution and it is paused by

breakpoint. In that context, the keyword self evaluates to the object holding the

shared state the algorithm is working with. For graphical objects, the expression self

color will then evaluate to the object’s current color. Although traditional environ-

ments such as Java/Eclipse5 or C#/Visual Studio6 do provide context when

debugging, Smalltalk environments provide many more opportunities for program-

mers to work with run-time information. Setting breakpoints is then not always the

first choice. Depending on the scenario, it can actually feel like “debugging mode is

the only mode”7, which is not feasible when writing, for example, a Java program.

Fig. 3 In Squeak/Smalltalk code can be evaluated in any text field. Here, two workspaces

illustrate this concept. The blue rectangle is a morph and the result of the execution of the lower

code snippet

5The Eclipse programming environment, http://www.eclipse.org, accessed on Dec 3, 2015.
6Microsoft Visual Studio programming environment, http://www.visualstudio.com, accessed on

Dec 3, 2015.
7“Debug Mode is the Only Mode”, blog post from Gilad Brancha, http://gbracha.blogspot.de/

2012/11/debug-mode-is-only-mode.html, accessed on Dec 3, 2015.

Making Examples Tangible: Tool Building for Program Comprehension 167

http://www.eclipse.org/
http://www.visualstudio.com/
http://gbracha.blogspot.de/2012/11/debug-mode-is-only-mode.html
http://gbracha.blogspot.de/2012/11/debug-mode-is-only-mode.html

Moreover, the Smalltalk programming language is also quite convenient to use

as a query language for tool customization. The information is accessed in terms of

Smalltalk objects such as morphs or colors as mentioned above. Program execution

is structured with objects for processes, classes, methods, class instances, and

method activations. Smalltalk can be used to query this information and prepare

it for tools.

Smalltalk can be used as a mapping language, too. In Squeak, there is the

interactive, graphical system called Morphic. All graphical objects are called

morphs, which are basically rectangular areas that support composition in terms

of holding sub-morphs. Although the boundaries blend, both the Smalltalk lan-

guage and the Morphic system are important for mapping data to graphical repre-

sentations. Programmers can describe custom morphs to display any kind of data.

The Squeak environment provides tools that support code browsing, writing, and

running activities with the help of windows, buttons, text fields, and lists. Every

software artifact is an object, every graphical thing is a morph. This is a quite simple

yet powerful concept that programmers can employ to accommodate any program-

ming challenge.

The conceptual distance (Hutchins et al. 1985) between morphs and interactive

widgets, such as buttons, is rather long., There are tool building frameworks that build
on top of Morphic to minimize the amount of source code that has to be written for

tools. We will explore our approach Vivide (Taeumel et al. 2014), which is a tool

building environment with a data-centric focus, in the remainder of this chapter.

3 Reflect on Your Working Habits

In this section, we describe some prominent, recurrent scenarios where standard

tools, which are aligned with programming language concepts, impede the

discoverability of tangible examples and hence programming tasks. This should

raise programmers’ awareness to discover tool building as an opportunity to

improve current program comprehension and modification strategies.

3.1 About Finding Tangible Examples

Programmers search for answers to program comprehension questions by navigat-

ing, viewing, and collecting software artifacts. Often, the means to navigate, view,

or collect presents a challenge. Therefore, programmers should consider improving

the situation by adapting the tools involved. A situation becomes challenging

whenever programmers have to remember much information, interact with many

tools back and forth in a loop, or continually ignore the same redundant or

unimportant information over and over again. The screen real estate has to be

optimized and necessary user input minimized. Finally, all important information

168 M. Taeumel and R. Hirschfeld

has to be presented on screen so that the programmer can think about the current

task with minimal cognitive overhead and come up with a solution involving where

to modify the application to fix that bug or add that feature.

Programming tools are the means to navigate, view, collect, and even modify

software artifacts. Primarily, programmers have to understand existing source code,

modify existing source code, and write new source code. There is also other

information that materializes in software artifacts. It originates from the operating

system, programming language, execution environment, and other tools. Such

artifacts are called files, classes, methods, tickets, emails, traces, processes and so

on. They are typically related in one way or another. For example, emails can

contain text referring to pieces of source code or traces can contain links to methods

from program execution. Such relationships may not be explicit but have to be

derived. Tools can help navigate relationships automatically to combine artifacts of

different kinds with each other. For example, Mylyn (Kersten and Murphy 2006)

achieves this for source code and tasks, represented via tickets in an issue tracker.

The tools’ interactive widgets can help to display the information in a way that is

helpful for the programmer to reveal news or recall what was already known and

again of importance for the current task.

There are facts and there is information derived from those facts based on rules.
For example, the birthdate of a person is a fact and its current age a derived

information. In this respect, the source code comprises many facts. When running

code, more data can be derived and interesting properties can be observed. Pro-

grammers use tools to learn about facts and also explore derived information. Some

rules, however, are implicit and have to be inferred if necessary. For example, the

way debuggers acquire access to the current program state is typically hidden in the

internals of the debuggers’ source code.
Programming environments support intra-tool communication. If the operating

system is the programmers’ environment, then files are typically used to store

source code and exchange related artifacts between editors, compilers, or debug-

gers. There are programming environments that work on top of the operating

system such as Emacs, Eclipse, or Visual Studio. Their means of tool communica-

tion enrich the file concept with, for example, text buffers or object-oriented

structures. This simplifies the programming model for the tool builder. In Squeak/

Smalltalk, programmers are almost completely shielded from the file system and

only work in terms of objects, meaning classes, instances, methods, or method

activations. While there is still support for text, object-orientation fosters abstract

yet domain-specific thinking and also the creation of interactive, graphical pro-

gramming tools. For example, if the project is about building an address book, then

the objects might include persons or addresses and the tools can reflect their

relationships with appropriate views and provide appropriate navigation links. A

specialized object explorer, for example, might resemble a real-world address book

to support program comprehension tasks.

The information space is changing. New source code gets written, and depre-

cated code gets removed. Yesterday’s fact may have become derived from another

fact based on some rules. Source code evolves in the way that it gets partially

Making Examples Tangible: Tool Building for Program Comprehension 169

rewritten, called “refactoring.” This occurs many times as programmers learn more

about the respective problem domain and make changes accordingly. Such addi-

tional knowledge about the system or domain is also exchanged via emails or

tickets. All kinds of software artifacts are constantly changing, which means that

the tools will also have to change to accommodate domain-specific characteristics

and personal traits.

3.2 Search for Examples and Navigate the Results

In most environments there is a text-based search tool that supports programmers in

finding software artifacts by name or (text-based) contents by typing in a search

term. Unfortunately, there is usually only a fraction of all information accessible,

which is the source code and maybe some external documentation. However, this

serves as a valid starting point for many program comprehension or modification

tasks (Sillito et al. 2008). Programmers ask questions using terms from the problem

domain and expect software artifacts to be named or described likewise in the code

or comments. Having such starting points, exploration can continue with, for

example, setting breakpoints and running the application.

An important tool for understanding the correspondence between source code

and run-time is called “object explorer.” In a class-based system such as Squeak,

objects are instances of classes that have instance variables for object composition.

This composite structure can be navigated because object explorers expose all such

instance variables by name and with a textual summary of the particular referred to

object, as depicted in Fig. 4. Having this, the programming language dictates the

functionality of this tool. Challenges arise when domain-independent relationships
increase the tool interaction effort or when related artifacts have to be explored in

Fig. 4 The object explorer

in Squeak. Exploring layout

properties of a morph is

challenging because morphs

hide that state in an

extension object and in an

additional dictionary

structure. In this example,

the information is at the

third level in the tree

structure

170 M. Taeumel and R. Hirschfeld

separate tools. For example, morphs in Squeak encapsulate several properties, such

as related to layouting, in an “extension” structure. Programmers always have to

navigate this extension to find out about the current layout. When comparing the

state of two different morphs, it is necessary to interact back and forth with two

object explorers. However, simple integration points, for example the name of the

instance variable, could be used to create a combined object explorer.

Refactoring tools require a set of source code artifacts to operate. For example,

those tools support renaming or restructuring methods and update all related parts

of the code. In dynamically typed programming languages such as Smalltalk,

refactoring tasks benefit from additional information, such as run-time types and

user-defined filters, to prevent inadvertent code changes. However, embedding a

refactoring activity into an exploration activity can be challenging if tool integra-

tion is missing. All the different kinds of information involve handling separate

tools and hence increase the cognitive effort, and also the risk of making mistakes.

Sometimes, a rule that describes integration points can be simple like “Only

consider the source code that I’ve modified during the last 2 h.” Such a rule should

be manifested in tools to optimize the current program comprehension strategy.

3.3 View Information About Software Artifacts

Programmers perceive software artifacts by viewing a subset of the artifacts’
information on screen. Mainly, there are inherent textual descriptions such as

names or numerical values. However, there is usually more information about an

artifact available than there is screen space and programmers only want to see the

relevant details. Hence, filtering is a common way to customize the tools’ widgets.
Many tools anticipate this action directly in the user interface without having to

modify their source code.

The console, in Squeak called Transcript, is a common tool used by program-

mers for debugging. The practice is sometimes referred to as printf-debugging
because standard libraries for the C programming language offer the function

printf to write text to the standard console output. In Squeak, this corresponds to

Transcript show: someObject name, which, for example, prints the object’s
name. Programmers use the Transcript to trace information in the program without

having to pause its execution. They have to map data or object structures to text but

they can access anything from the particular context. Challenges arise when pro-

grammers fail to extract the relevant information and thus have to re-execute the

presumably deterministic part of the program. As the output is typically in a text

format, there is no other way to explore the underlying software artifacts with this

strategy. See Fig. 5 for an example.

There are many tools that require a textual representation of objects for

on-screen display such as the object explorer in Fig. 4. When there is a class

hierarchy with a common base class—seeObject in Squeak or Java—programmers

can overwrite #printString (resp. toString()) in a subclass to accommodate

Making Examples Tangible: Tool Building for Program Comprehension 171

domain-specific characteristics. The default textual representation of objects in

Squeak is constructed with the class name and the identity hash like “aPerson

(1234),” which is rather abstract. In fact, this example is not tangible at all. A

slightly better mapping could be “John, Doe, 32.” However, the underlying concept

of persons would be rather implicit and only discoverable if the programmer

associates that information with the concepts of name and age and eventually

with a person. A very elaborate version can reveal all details: “aPerson (forename:

John, surname: Doe, age: 32).” However, this representation not scale when printed

on the console among much other information. It is also independent from any

particular programming task or personal preference or existing knowledge. There is

a need to adapt the textual representation ad-hoc according to the current situation.

Many programming tools have list-like widgets. Examples include class

browsers, search result explorers, and save dialogs. List-like widgets provide an

overview and typically some interaction to view, select, move, or drag items.

Fig. 5 “printf debugging” in Squeak. If programmers do not extract helpful information, they

have to modify debugging statements and re-execute the program

Fig. 6 Three views that display the same software artifacts but reveal different information. The

list (left), the tree (middle), and the tree map (right) support labels and colors. The list ignores the

hierarchical structure. The tree has much unused whitespace. The tree map has a space-filling

approach

172 M. Taeumel and R. Hirschfeld

Although there is often support for filtering, lists usually lack support for shaping an

item’s graphical appearance, including layout properties. See Fig. 6 for the same

artifacts displayed in a list, a tree, and a tree map. Note that it is not feasible to

modify #printString as described above because programmers may want to see

different information in different tools and, most importantly, according to the

relevance for the current programming task.

3.4 Collect Useful Pieces of Information

Programmers can take notes in files via text editors, which are part of many

programming environments. However, a textual representation of complex object

structures requires filtering and summarization, which may be too early to do with

the present system knowledge. Programmers may omit to write down important

information. This practice suffers from the same problems as printf-debugging, as

described above. In Squeak, there is a text-editor-like tool calledWorkspace, which
supports source code evaluation (Fig. 3). It also supports dropping graphical

objects, which then get captured and are referenceable with a variable like

droppedMorph. These objects can be explored by evaluating the snippet

droppedMorph explore within that workspace. It can be beneficial to keep track

of interesting software artifacts and defer setting up a representation on screen until

later in the course of the programming task when concepts become clearer and

examples more tangible.

Tools consist of one or more windows to manage their contents. Basically,

windows are rectangular areas that show a document or a scrollable portion of

it. Tool operations become accessible via push buttons, menu bars, and other

additional widgets, typically arranged around a central view. Finding an efficient

window manager for programming environments with graphical user interfaces has

a long history (Myers 1988). Semi-automatic window layout strategies range from

overlapping (Squeak) to tiling (Eclipse) to stacking (Web browsers)—or any

combination. Managing the position and extent of tool windows is still part of

programmers’ frequent activities, and is in the focus of research (Rӧthlisberger
et al. 2009).

While windows can be used to collect and arrange information about software

artifacts on screen, their tool-driven characteristics entail much redundant and task-

independent information. A window does not correspond to a single software

artifact but many. Tool windows in Squeak, for example, are self-contained and

display full context information such as code browsers do for displaying class
definitions and method source code. This has the disadvantage that two code

browsers that browse two methods from the same class will both display the

same context information. This means both will display irrelevant message

names, message categories, and other classes in the same package, and class

categories with similar spelling (Fig. 7). In Eclipse, tools use a tiling layout strategy

and display more specific and less redundant information in their windows such as

Making Examples Tangible: Tool Building for Program Comprehension 173

the class outline at the side and the dedicated text editor in the center. Tiling,

however, is much more restrictive when it comes to collecting examples because

screen space is limited and quickly exhausted if you can only arrange windows

side-by-side. If you stack them, like tabbing in web browsers, you will save screen

space but also sacrifice visibility of information completely. Programmers should

be able to choose the best way to arrange examples on screen because this level of

control can improve tangibility.

3.5 Improve the Means to Navigate, View, and Collect

Tool modification is necessary to accommodate domain-specific tasks and individ-

ual system knowledge. A dedicated tool builder who usually creates tools with a

high level of prospective reuse can only provide means for common tasks, which

are usually aligned to the particular programming language and execution environ-

ment. Domain-specific characteristics and personal traits cannot be known upfront.

Programmer who have concrete tasks, such as fixing bugs and adding features, are

best suited to improve working habits by adapting the tools in use themselves.

Thus, whenever navigation repeatedly requires many user interactions, the

visual display hides relevant details, or the collection of insights is challenging,

programmers can take the chance to act as tool builders. As one would build a level

editor for a game to support the creation of game content, programmers can build

customized tools to support the work on any software system.

4 Apply Data-Driven Tool Building

Programmers can find tangible examples for comprehension tasks by using pro-

gramming tools for navigating, viewing, and collecting software artifacts. Such

tools are built with a query language to access and process artifacts, a mapping

Fig. 7 There is much redundant information visible when comparing, for example, two methods

from the same class (here: < and ¼ from Point). This is not necessarily a problem of window

management but of the tool’s user interface design

174 M. Taeumel and R. Hirschfeld

language to cope with inappropriate or missing graphical representations, and a

presentation language to serve the user with an interactive front-end. Whenever

detecting deficiencies in tools, programmers have the skills to improve those tools

ad-hoc—even for scenarios that may be unique.

However, tool building frameworks require a high effort for tracing a tool’s
observable deficiency to the responsible portion of the tool’s source code. Addi-

tionally, code changes are rather verbose and tools do not update consistently so

that programmers have to restart and hence constantly repeat certain interactions

before proceeding with the actual programming task. Eventually, the prospective

cost-benefit ratio might render such a tool adaptation pointless and hence pro-

grammers keep on using standard tools and inconvenient working habits.

We created a new tool building framework, called Vivide (Taeumel et al. 2014),

that projects a data-driven perspective on graphical tools and employs a scriptable

way to modify the tools in use with low effort. The extensible presentation language

consists of common widgets such as buttons, text boxes, and lists. Both query and

mapping language are based on Smalltalk and integrate seamlessly existing object-

oriented code. In this section, we will describe Vivide’s concepts in detail and apply
them for navigating, viewing, and collecting software artifacts to increase tangibil-

ity of the exemplary information shown on screen.

4.1 The Vivide Tool Building Environment

Vivide (Taeumel et al. 2014) is a programming environment that supports pro-

grammers to focus on their domain-specific data. It projects a data-driven perspec-

tive on graphical tools and employs scripts that express rules for transforming data

and extracting relevant information to be stored in a model. That model will be

interfaced from interactive widgets such as lists or buttons. We think that by putting

the domain-specific data (resp. software artifacts) in the foreground the notion of

tools fades into the background. Programmers are more likely to create or modify

tools as an unnoticed side-activity while navigating, viewing, and collecting rele-

vant information.

The Vivide environment provides a direct correspondence between all graphical

parts of the user interface and the internal tool logic as depicted in Fig. 8. Vivide is

implemented in Squeak/Smalltalk and builds on top of the Morphic framework,

which supports direct manipulation of all graphical objects. Every morph has a

meta-menu, called halo. It can be invoked with a dedicated user interaction such as
a click on the middle mouse button, that represents a graphical meta-interface to

perform inspection and modification tasks. Vivide makes use of the halo concept to

provide access to the underlying tool mechanics as depicted in Fig. 9. Now,

programmers can easily find responsible data transformation scripts starting with

a visual impression and express modifications in the script source code. Due to this

simple yet powerful abstraction, the Vivide framework can update all running tools

Making Examples Tangible: Tool Building for Program Comprehension 175

consistently when scripts change. The programmer can continue the programming

task without having to repeat previous tool interactions.

Thus, Vivide is not only a programming environment but also a tool building

framework. Building tools means composing widgets, like in a GUI builder, and

writing script code. Script code describes rules for transforming software artifacts

and extracting relevant information to be used by widgets. For example, a script that

transforms classes into methods and extracts the selector from methods to be

displayed in a list can be created with only a few lines of code as depicted in Fig. 10.

There is also a wizard involved that tries to detect 1:n, n:1, or n:m transforma-

tions to further reduce programming effort. In general, programmers have full

control over the input and output of objects in a script. In Smalltalk terms, a script

is a collection of blocks in the form [:in :out | "..."], and the Vivide framework will

Fig. 8 Traditional tools (left) provide a rather complex, indirect correspondence between user

interface and program entities; Vivide tools (right) provide a direct correspondence. Rectangular
portions of the user interface are called panes. Programmers have to think about tools being only

data-exchanging panes

Fig. 9 Every graphical part (pane) of tools in Vivide has a halo that provides access to data-flow

properties and the underlying script via floating buttons

176 M. Taeumel and R. Hirschfeld

initiate block evaluation with actual objects. The wizard expands [:a | a + 1] to [:in

:out | out addAll: (in collect: [:a | a + 1])] and other expressions to similar

constructs.

We think that programmers who build tools with Vivide will benefit from time-

related advantages compared to traditional tool building approaches. This may have

an impact on the cost-value ratio of tools and thus also on the whole tool building

community.

4.2 Support Navigation with Adapted Tree Structure

Scripts in Vivide support describing tree structures to be used by widgets. Each

script is a set of object transformation and property extraction rules. With this,

programmers can transform any collection of input objects into any other collection

of output objects. For example, programmers can navigate existing relationships or
perform a computation to derive new information. The empty script is [:in :out | out

addAll: in], which just forwards all objects from the input buffer to the output

buffer. After transforming objects, programmers can describe properties of interest

such as #text as extracted in the example above. Alternating transformation and

extraction means describing multiple levels of a tree structure. While plain list

widgets might not take notice of such a tree structure, tree widgets will do as

depicted in Fig. 11. Programmers can adapt tree structures to simplify navigation

and make efficient use of screen real estate. An example of this is presented in

Fig. 12.

Scripts can process multiple data sources as a means of combination and

integration. Multiple sources, meaning collections of objects, can be combined as

the Cartesian product. The scripts still operate on collections of objects but these

then contain n-tuples, where n depends on the number of data sources. For example,

having two sources (1, 2) and (a, b, c), the script then handles [(1, a), (1, b), (1, c),

(2, a), (2, b), (2, c)]. Programmers have to know about this in their scripts. The

aforementioned script wizard helps combine multiple data sources.

{ [:class | class methods]
-> { #view -> ListView }.

[:method | { #text -> method selector }].
} openScriptWith: {Morph}.

Fig. 10 In Vivide, only a few lines of Smalltalk code (left) are needed to describe an interactive

tool (right). Here the tool operates on the Morph class, transforms it into methods, and displays the

methods’ selectors in a list that supports drag-and-drop for continuing the exploration

Making Examples Tangible: Tool Building for Program Comprehension 177

Programmers can then use Vivide scripts to describe arbitrary navigation paths

via tree structures. A single tool can shorten navigation paths by only exploiting the

relationships of interest as depicted in Fig. 12.

4.3 Support Views with Named Properties

Scripts can be used to map any information of a software artifact to something that

widgets can use. For example, programmers can derive color information, setup

labels or tooltips, and so on. Such property extractions have the form of an array

with associations as depicted in Fig. 13. Besides visual mappings, any object-
specific information can be provided for widgets given a name. Common properties

include #text, #icon, #balloonText, and #color. The widgets decide about those

means of configuration and can, theoretically, adapt their whole behavior. It is not

part of the concept of Vivide to prescribe the use of such properties. The tree map in

Fig. 13 is able to use text, weight, color, and elevation.

Scripts also have a set of object-independent properties. For example, Vivide

stores a flag #isProperty to distinguish between object transformation and property

{ [:a | a + 5].
[:a | #text -> a].
[:b | b even ifTrue: [b / 2]].
[:b | #text -> b]

} openScriptWith: #(1 2 3 4 5 6).

Fig. 11 Alternating transformation and extraction describes different levels (a and b) in the tree

structure. Note that Smalltalk code can be used in all scripts. The wizard will expand all four

blocks into the form [:in :out | "..."]

Fig. 12 On the left there is a default object explorer showing details about the window of a code

browser. On the right the same object structure is simplified by only navigating the composite GUI

structure (sub-morphs) while exposing layout properties. The same object, a text input field, is

selected in both windows to emphasize the efficient use of available screen space

178 M. Taeumel and R. Hirschfeld

extraction scripts. Widgets also get the chance to configure themselves according to

script-properties. The tree map in Fig. 13 reads #layout and #sort to adapt its

general layout strategy and sort order.

Programmers are in control of the presentation of software artifacts. They can

choose between a set of views such as lists, tables, trees, tree maps, and other charts.

Furthermore, they can tweak those views at the script level. Any change in script

code will immediately update the corresponding views in the programming envi-

ronment. Such short feedback loops support programmers in exploring information

and finding examples. Those examples can become tangible if programmers can

find an appropriate way to show them on the screen—tailored to the domain and

personal preferences.

4.4 Support Collection with Arbitrary Containers

Vivide supports overlapping windows for tools like Squeak does. However, Vivide

entails the idea that “window management” can be pluggable. Based on the authors’
experiences, overlapping windows suffice most of the time. Common tool win-

dows, however, have their contents tiled or stacked as depicted in Fig. 13. Within

those tiles, the layout strategy may be different. List widgets, for example, arrange

their items vertically side-by-side. In another example, tree maps can have

Fig. 13 A rather complex example of a script (background) that extracts properties for a tree map

(foreground). Object-specific properties include text, weight, color, and elevation. View-specific

properties include layout strategy and sort order. Left of the tree map, the tool also offers a tree

representing part of a directory structure with source code files

Making Examples Tangible: Tool Building for Program Comprehension 179

overlapping items when supporting elevation—or even a 3D canvas. Based on these

observations, we think that programmers should be able to decide about the layout

strategy for each level in a tool’s graphical hierarchy. The concept of rectangular

tool building blocks, called panes, in Vivide is expanded to multi-pane widgets.
These widgets encapsulate multiple panes to apply any possible layout strategy. For

an example, see Fig. 14. Such means of content organization are independent of

actual visualizations. Programmers can employ them as required to make software

artifacts more tangible on screen.

Collecting objects via drag-and-drop with a pointing device (mouse or touch) is

a common practice in Vivide. Many widgets support dragging their displayed

objects. Then, there are containers that help collect those objects as depicted in

Fig. 15. Programmers can collect pieces of source code from across the system and

view them side-by-side as a convenient, problem-centric representation. Program-

mers can also mix different kinds of objects such as run-time artifacts and code

artifacts. Although Vivide provides support at the level of graphical, interactive

tooling, the Squeak/Smalltalk environment is the reason for run-time information

being omnipresent in general.

5 Conclusion

Program comprehension benefits from tangible examples. Due to the abstract

characteristics of source code, tangibility does not refer to a physical representation

but to conceptual clarity and understanding. Regarding a concept in the source

Fig. 14 Window management should be pluggable and any layout strategy applicable in any part

of the graphical hierarchy as needed. Here, the hierarchy on the right models the tools on the left. In
the hierarchy, circles denote multi-pane widgets, squares denote panes, and rounded squares other
morphs in the world

180 M. Taeumel and R. Hirschfeld

code, its correspondence in the problem domain has to be understood as well as its

effects during program execution. Having this, finding the subset of relevant

information and presenting them in a tangible way is a matter of efficient program-

ming tools and programming environments. This efficiency is specific to the

domain and to the programmer’s personal preferences and existing knowledge.

Traditional programming tools, however, align with generic programming lan-

guage concepts; specific scenarios are not well supported. Tool adaptation seems

beneficial but is typically expensive.

We presented the Vivide programming and tool building environment, which is

a data-driven, scriptable, interactive approach to construct graphical tools for

programming. We applied Vivide in several examples to illustrate ways to improve

the means to navigate, view, and collect software artifacts. While programmers do

not have to come up with the perfect solution right from the beginning, Vivide’s
direct feedback after each tool modification fosters an iterative and explorative

working mode. Programmers can safely try out ideas and undo mistakes with ease.

Even unique scenarios can be improved, and reuse can then become of secondary

interest.

References

Cohn M (2004) User stories applied. Pearson Education Inc., Boston, MA

Courage C, Baxter K (2005) Understanding your users: a practical guide to user requirements.

Elsevier, San Francisco

Fig. 15 Vivide provides a

generic container to collect

software artifacts via drag-

and-drop. Each dropped

artifact is displayed in an

interactive view. Here, there

is an object explorer for a

color object, a code editor

for a Point method, and a

mouse cursor about to drop

a rectangle morph

Making Examples Tangible: Tool Building for Program Comprehension 181

Csikszentmihalyi M (2008) Flow: the psychology of optimal experience. Harper Perennial Modern

Classics, New York

Hutchins EL, Hollan JD, Norman DA (1985) Direct manipulation interfaces. Hum-Comput

Interact 1(4):311–338

Kersten M, Murphy GC (2006) Using task context to improve programmer productivity. In:

Proceedings of the 14th international symposium on foundations of software engineering

(FSE)

Myers BA (1988) A taxonomy of window manager user interfaces. IEEE Comput Graph Appl 8

(5):65–84

Norman DA (2002) The design of everyday things. Basic Books, New York

Rӧthlisberger D, Nierstrasz O, Ducasse S (2009) Autumn leaves: curing the window plague in

IDEs. In: Proceedings of the 16th working conference on reverse engineering

Shneiderman B, Plaisant C (2010) Designing the user interfaces: strategies for effective human-

computer interaction. Addison-Wesley, Reading, MA

Sillito J, Murphy GC, De Volder K (2008) Asking and answering questions during a programming

change task. IEEE Trans Softw Eng 34(4):434–451

Taeumel M, Perscheid M, Steinert B, Lincke J, Hirschfeld R (2014) Interleaving of modification

and use in data-driven tool development. In: Proceedings of the 2014 ACM international

symposium on new ideas, new paradigms, and reflections on programming & software

Von Mayrhauser A, Vans AM (1995) Program comprehension during software maintenance and

evolution. IEEE Comput 28(8):44–55

Weiser M (1987) Source code. IEEE Comput 20(11):66–73

Wright J, Oppenheim D, Jameson D, Pazel D, Fuhrer R (1997) CyberBand: a ‘Hands On’ music

composition program. In: Proceedings of the international computer music conference

182 M. Taeumel and R. Hirschfeld

	Making Examples Tangible: Tool Building for Program Comprehension
	1 Introduction
	2 Learn About Your Environment´s Possibilities
	2.1 Being Aware of Different Concepts
	2.2 Tool Mechanics
	2.3 Live Programming Environments

	3 Reflect on Your Working Habits
	3.1 About Finding Tangible Examples
	3.2 Search for Examples and Navigate the Results
	3.3 View Information About Software Artifacts
	3.4 Collect Useful Pieces of Information
	3.5 Improve the Means to Navigate, View, and Collect

	4 Apply Data-Driven Tool Building
	4.1 The Vivide Tool Building Environment
	4.2 Support Navigation with Adapted Tree Structure
	4.3 Support Views with Named Properties
	4.4 Support Collection with Arbitrary Containers

	5 Conclusion
	References

