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Abstract. We present a portable active binocular robot vision architec-
ture that integrates a number of visual behaviours. This vision architecture
inherits the abilities of vergence, localisation, recognition and simultane-
ous identification of multiple target object instances. To demonstrate the
portability of our vision architecture, we carry out qualitative and com-
parative analysis under two different hardware robotic settings, feature
extraction techniques and viewpoints. Our portable active binocular robot
vision architecture achieved average recognition rates of 93.5 % for fronto-
parallel viewpoints and, 83 % percentage for anthropomorphic viewpoints,
respectively.

1 Introduction

Active robot vision systems are dynamic observers that exploit recovered infor-
mation from the imaged scene to perform actions and fulfil tasks [7]. Active
robot vision systems mainly comprise hard-wired, ad-hoc visual functions that
are intended to be capable of robustly exploring a scene and finding objects
contained in a database of pre-trained object examples [9,10]. However, current
systems are limited in their visual capabilities and their software modules are
crafted according to the robot’s specific geometric configuration and hardware
components. These limitations constrain the scope of potential applications for
such vision systems.

In this paper, we present a portable active binocular robot head architec-
ture that is able to execute vergence, localisation, recognition and simultaneous
identification of multiple target object instances. In this paper, we focus on the
development of a portable architecture while preserving visual behaviours previ-
ously reported in [2,3]. We have chosen the Sensor Fusion Effects (SFX) architec-
ture [16] as the foundation for our portable robot head (Fig. 1). We must point
out that our robot architecture is not an attempt to model the mammalian visual
pathway itself, but it is a functional system that robustly carries out the specific
high-level task of autonomous scene exploration. To demonstrate the portability
of our system, we conducted experiments considering three important variables
for any active scene exploration tasks, namely; the hardware used, visual rep-
resentation and view(s) of the scene. Hence, we present experiments with three
different state-of-the-art feature extraction techniques, namely SIFT [12], SURF
[8] and KAZE [1] and, different hardware and scene settings.
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Fig. 1. Our active binocular robot vision architecture.

This paper is organised as follows: Sect. 2 presents a literature review of
current robot vision technologies. Sections 3 and 4 presents our robot vision
architecture. Finally, Sects. 5 and 6 details the experimental validation of the
system and concluding remarks of this paper, respectively.

2 Literature Review

In robotic vision, active vision can potentially offer a sheer amount of information
about the robot’s environment. Should a visual task becomes ill-posed, the gaze
of a robot can be shifted to perceive the scene from a different viewpoint [7];
and therefore a better understanding of the task. Current research in active
robot heads has focused on the “lost and found” problem [15]. That is, a robot
is commanded to search and locate an object in its working environment for
exploration tasks [6,10], manipulation tasks [18,20] and/or navigation [15].

In an effort to replicate the nature of visual search scan paths [21], researchers
have proposed a variety of visual search mechanisms according to the task at
hand (e.g. [13,15,18]). These heuristic approaches are mainly driven by the out-
puts of available feature extraction techniques. For example, Rasolzadeh et al.
[18] used depth to segment the scene according to the distance between a tar-
geted object and the robot as part of a visual object search heuristic. Likewise,
Merger et al. [15] implemented a saliency map that combines intensity, colour
and depth features to drive attention, biased by a top-down feature detection
based on the MSER feature extractor [14] for object recognition and navigation.
Aydemir et al. [6] have recently presented a strong correlation between local 3D
structure and object placement in everyday scenes. By exploiting the relation-
ship between local 3D structure and different object classes, the authors are able
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to localise and recognise complex 3D objects without implementing specialized
visual search routines. Finally, Collet et al. [10] have proposed an Iterative Clus-
tering Estimation (ICE) algorithm that combines feature clustering along with
robust pose estimation. This approach relies on creating sparse 3D models to
localise and detect multiple same-class object instances. Advancements in visual
search mechanisms have been promising in recent years of which they are not
merely restricted to the feature extraction used and rather powered by cogni-
tion. For instance, a notable approach proposed in [11] looks at the problem
of a robot searching for an object by reasoning about an object and possible
interactions with the object. However this robot vision system is limited to one
single instance per object class in the scene.

The vision architecture we present, advances the robot vision system
described in [2,3]. That is, we have previously reported an active vision sys-
tem that is capable of binocular vergence, localisation, recognition [2,3] and
simultaneous identification of multiple target object instances [4]. We struc-
ture this initial system as a collection of ad-hoc functions in order to explore
autonomously a scene by operating solely with SIFT features. Our system was
also constrained to the hardware and, therefore, the limitation of its portability
remained an issue. Recent developments in robotic middleware (e.g. the Robot
Operating System [17]) technologies have made possible the deployment of hard-
ware independent robotic systems. We thus propose an active binocular robot
head architecture that integrates visual behaviours in a parsimonious and generic
robot vision architecture based on the Robot Operating System (ROS).

While we do not make explicit use of 3D information in this paper, an explicit
goal was to determine if we could reliably maintain binocular vergence of an
actuated stereo-pair of cameras while actively exploring a scene. This converged
binocular camera configuration supports the recovery of feature locations in 3D
and also provide images for stereo-matching for dense 3D range map extrac-
tion. This feature underpins visual competences for other robotic applications
as demonstrated in [19] where we presented a dual-arm robot manipulating
deformable objects using the binocular system reported in this paper.

3 Robot Vision Architecture

As stated before, we have based our active vision system on the hybrid deliber-
ative/reactive Sensor Fusion Effector architecture (SFX, [16]). Specifically, the
SFX architecture, as implemented, relates how deliberative and reactive modules
are interconnected with sensor and actuator functions. Visual behaviours in our
architecture implement the configuration of the visual streams in the mid-level
of the SFX architecture. This arrangement exploits sensed visual information in
order to explore the environment without further reasoning (i.e. the mid-layer
senses and acts accordingly) while the deliberative layer manages visual behav-
iours and, consequently, orchestrates the required set of commands to carry out
a high-level visual task; for instance, manipulation/interaction tasks [19].

Specifically, Fig. 1 shows our architecture. The processing levels are clas-
sified in terms of their function (i.e. low-level, mid-level and high-level).
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Fig. 2. Internal representation of visual behaviours (Fig. 1). White boxes denote
abstract behaviours, whereas grey boxes represent primitive behaviours.

The corresponding low-level and mid-level functions consist of simple yet effective
behaviours that subserve upper-level goals, whilst the high-level functions relate
to the intelligence, deliberation and reasoning (out of the scope in this paper).

High-level functions (as observed in Fig. 1(a)) specify visual tasks and goals.
This layer, this paper, is cast as scripted meta-behaviours (Sect. 4) that orches-
trate the sequential activation of visual behaviours in order to fulfil the task of
autonomous visual object exploration.

Low-level and mid-level (Figs. 1(a) and 2(b)) integrate a number of prim-
itive and abstract behaviours. On the one hand, primitive behaviours com-
prise monolithic methods that only serve a single purpose; i.e. they are simple
stimulus-response mappings that transform a collection of sensed information
into data structures. On the other hand, abstract behaviours comprise a collec-
tion of primitive or other abstract behaviours. Figure 2(b) illustrates the mid-
level processing architecture that comprises pre-attentive, attentive, inhibition
of return and binocular vergence visual behaviours previously reported in [2,3].
Sensor and motor behaviours are decoupled from the mid- and high-level layers.
This configuration allows us to maintain visual behaviours that are not con-
strained to the chosen feature extraction technique and hardware components.

To achieve generic and preserve a modular arrangement within the architec-
ture, we devised an egocentric coordinate system which are not related to the
real-world units of the observed environment. The egocentric coordinate map is
defined as a relative pixel-based map where the frame of reference is established
with respect to a “home” position of the robot head.
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4 Visual Search Task Definition

The high-level layer is defined as a macro-script that specifies the visual search
task, controls and schedules behavioural resources in lower layers (ref. [3]), and
monitors the progress of the task. In this paper, we define a pre-attentive-
inhibition of return-attentive cycle in order to allow our system to perform
autonomous scene exploration (Table 1). That is, the robot acts according to
the sensed visual information and reports recognised object classes stored in
database.

By replacing the macro script with a cognitive/intelligent layer, the sequence
of behaviours required to convey a visual task can be generated deliberatively
thereby removing the fixed-task limitation of the current control scheme. Accord-
ingly, the architecture we describe here has been designed such that a deliber-
ative/cognitive module might replace the fixed script in future modifications of
the robot system without altering the underlying visual behaviours.

Table 1. Pseudo-code of macro script in Figs. 1 and 2.

Inputs: None

Outputs: List of objects recognised and attended to.

1: Generate database

2: Verge cameras and extract features from the image pair

(binocular arrangement)

3: Obtain pre-attentive object and salient hypotheses

4: Set the saccade number to 1

5: Loop until possible object or salient hypotheses are not empty

or no. of saccades is less than a user-defined number

6: Select an object from the possible obj. hypotheses that has

the maximum recognition score (see [3])

7: Verge and attend to the selected object and return features

from both cameras after verging and the lists of the

remaining object and salient hypotheses

8: Update pre-attentive object and salient hypotheses

9: Inhibit (inhibition of return) new pre-attentively found

objects w.r.t previous possible object and salient hyps

10: Saccade no. increments 1

11: Report objects stored

5 Experiments

5.1 Robot Head Hardware and Software Interface

These experiments are designed to validate the portability of our active robot
vision architecture in two different scene settings and hardware components.
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Fig. 3. Left: The Prosiclica robot head exploring the scene. Right: An image of the
dual-arm robot featuring the Nikon robot head on top. Additionally, this robot features
grippers specifically designed for manipulating clothing [19].

The first active binocular robot head (Fig. 3) comprise two Prosilica cameras
(GC2450C and GC2450 ; colour and mono, respectively) at 5 Mega pixels of
resolution fitted with Gigabit Ethernet interfaces and 4 high-accuracy stepper-
motors and motor-controllers (Physik Instrumente). The robot vision architec-
ture is arranged as follows for the latter robot head. Low-level components,
namely, image acquisition and motor control modules (Fig. 1); are interfaced to
a Pentium 4 computer with 2 GB in RAM running under Windows XP and
MATLAB R2008a. Whilst, image feature extraction, mid-level and high-level
components (Fig. 1) are interfaced to a 4-core Intel Xeon (model E5502) with
a CPU clock speed of 2 GHz, with 24 GB in RAM running under Windows 7
and MATLAB R2009b. Both computers are interconnected through the local
network by means of a collection of network socket functions for MATLAB1.

The second active binocular robot head (Figure) consists of two Nikon DSLR
cameras (D5100) at 16 Mega pixels of resolution. Cameras are mounted on two
pan and tilt units (PTU-D46) with their corresponding controllers. This robot
head is mounted on a dual-arm robot with anthropomorphic features. Low-level
functions where implemented as ROS nodes and interfaced with Matlab 2014a
with pymatlab2. The hardware is interfaced to an Intel Core i7-3930K computer
at 3.20 GHz with 32 GB of RAM running Ubuntu 12.04 and ROS.

5.2 Methodology

In order to test the robustness and repeatability of our architecture, for both
binocular robot heads, we performed 3 visual exploration tasks for each scene,
each visual task with a random initial home position. It must be noted that we
terminate the visual search task if the robot’s pre-attentive behaviour does not
find an object within 5 consecutive saccades; i.e. the system is only targeting
1 http://code.google.com/p/msocket/ (verified on 4 March, 2016).
2 https://pypi.python.org/pypi/pymatlab (verified on 4 March, 2016).

http://code.google.com/p/msocket/
https://pypi.python.org/pypi/pymatlab
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salient features. This halting criterion has been implemented in order to reduce
the execution time while conducting these experiments.

There are three possible outcomes while actively exploring a scene:

– True positives comprise all correctly detected and identified object hypotheses
where the system is able to centre the hypothesised object in the field of view.

– False positives include when the system localises an object hypothesis, but
without being able to centre the object in the field of view of both cameras
during the attentive cycle or, similarly, an attended object hypothesis does
not correspond to the object class in the scene.

– Not found comprise the system’s failures when an object instance is not
detected in the visual search task.

For each robot head, we have arranged scenes comprising a mix of several
multiple same-class and different-class object instances, arranged in different
poses. We define scene complexity according to the number of similar unknown
objects in the scene (i.e. a typical source of potential outliers) and by the degree
of background clutter present. We detail below the experimental methodology.

Fig. 4. Left: View from the Prosilica robot head’s left camera exploring a scene.
Right: View of the Nikon-based robot head as viewed from the left camera.

Prosilica Robot Head. We arranged 7 different scenes3 of differing complex-
ity, based on combinations of 20 known object instances, of 10 different object
classes. Figure 4 shows an example of a scene. Objects were placed in arbitrary
poses and locations. We have also created a database of the 10 known objects
by capturing stereo-pair images of an object at angular intervals of 45◦ and 60◦.
These captured images are then manually segmented in order to contain only
the object of interest. We have considered two databases in order to measure the
recognition performance of our system with different visual knowledge.

Nikon Binocular Robot Head. Scenes for these experiments consist of
objects placed on top of a table. The goal is to investigate the response of
our active vision architecture to different viewpoints, different feature extrac-
tion techniques and hardware components for the sake of portability. With this
3 All 7 scenes can be accessed at http://www.gerardoaragon.com/taros2016.html.

http://www.gerardoaragon.com/taros2016.html
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robot head, we are also able to investigate the effects of having an anthropomor-
phic robot configuration as opposed to a fronto-parallel configuration as above.
Figure 5 shows examples of the scenes we created. Object databases used in
these experiments include stereo-pair images of object instances sampled ran-
domly in order to cover the objects’ view-sphere by placing the object in isolation
on the working table. Each object instance stored in the database is manually
segmented.

We therefore arranged 3 different scenes4 of variable complexity. Each scene
is a composition of 14 known object instances observing arbitrary poses and
locations, of 9 different object classes. Scene 1 is considered to be the simplest
while scene 3, the most complex (Fig. 5). We must note that Scene 2 and Scene
3 include flat objects and objects with 3D structure while Scene 1 only comprise
objects having 3D structure. In order to effectively understand the response of
the system to different feature extraction techniques, each of the three scenes
were explored by our system with SIFT, KAZE and SURF features.

(a) Scene 1 (b) Scene 2 (c) Scene 3

Fig. 5. Scenes used for the Nikon robot head. (a) Scene 1 depicts less complexity.
(b) Scene 2, medium complexity. (c) Scene 3, most complex scene of the last two.

5.3 Analysis and Discussion

Investigating all experiments and three randomly starting position for each
scene, we can deduce that our active robot vision architecture presents stochastic
behaviours. Accordingly, neither robot vision head follows a pre-defined visual
scan path but it adapts according to the contents of the scene while exploring the
scene. Summary of the outcomes for each robot head are presented as follows.

Prosilica Robot Head. Table 2 illustrates the system’s recognition rates for
all experiments. False positives emerged due to the object feature descriptors
matching with unknown objects and, in consequence, these matches were not
consistent with the reference object centre in the database while generating
object hypotheses pre-attentively (as previously reported in [2]). However, the

4 All 3 scenes can be accessed at http://www.gerardoaragon.com/taros2016.html.

http://www.gerardoaragon.com/taros2016.html
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Fig. 6. Overall recognition rate for the visual tasks for the Prosilica robot head.

Table 2. Outcomes for the Prosilica robot head.

Scene no Performance True False Not found Recover from

(%) positives positives failures

1 82 56 5 7 0

2 93 57 1 3 0

3 97 60 2 0 2

4 97 60 2 0 2

5 91 59 5 1 4

6 98 59 0 1 1

7 97 59 1 1 0

Total 93.5 410 16 13 9

system recovered from false positives. These results further support the active
vision paradigm, since the robot vision architecture is able to recover from these
failures while investigating the scene from different views. Thus, the robot is able
to locate almost all of the object instances, despite not noticing every object
instance present during each pre-attentive cycle.

Nikon Robot Head. From Table 3, we can observe that the recognition per-
formance is linked to the feature extraction techniques used. Average recognition
rates for SURF, SIFT and KAZE are 60 %, 77 % and 83 % percentage, respec-
tively. SIFT and KAZE, in these experiments, achieved better recognition rates
than SURF due to the inherent properties of being “almost” invariant to per-
spective transformations. It is also worth noting that both SIFT and KAZE tech-
niques are less prone to false positives as opposed to SURF. As we described
above, our portable active vision architecturewas testedusing ananthropomorphic
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Fig. 7. Outcomes for experiments with the Nikon robot head.

Table 3. Outcomes for the Nikon robot head.

Descriptor Scene no Performance True False Not Recover from

(%) positives positives found failure

SURF 1 53 16 5 14 54

2 66.6 26 4 13 65

3 59.5 25 2 17 64

Total 60 67 11 44 184

SIFT 1 80 24 0 6 30

2 74 29 0 10 54

3 76 32 0 10 59

Total 77 85 0 26 143

KAZE 1 100 30 0 0 30

2 76.9 30 0 9 39

3 71.4 30 0 12 29

Total 83 90 0 21 98

configuration where objects are not in similar 2D planes as it is the case from the
Proscilica robot head experiments. By comparing Table 3 with Table 2, we can
observe a decrease in the performance. That is, 3D structures from an anthropo-
morphic configuration are more difficult to recognise and, therefore, the robustness
of feature descriptions decrease. We can also observe more recoveries from failures
(last column in Table 3) in these set of experiments. We deduce that this particular
configuration introduces challenging geometric transformations that state-of-the-
art feature descriptions are still not able to cope with. Hence, the chosen feature
extraction has a key role in the overall recognition performance. Nevertheless, our
active robot head is able to explore a scene regardless of hardware configuration,
different view point while maintaining acceptable recognition rates.
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6 Conclusions and Future Work

We have presented a portable active binocular robot head that integrates
visual behaviours in a unified and parsimonious architecture that is capable of
autonomous scene exploration. That is, our robot architecture can identify and
localise multiple same-class and different-class object instances while maintain-
ing vergence and directing the system’s gaze towards scene regions and objects.

Our portable robot vision architecture has been validated over challenging
scenes and realistic scenarios in order to investigate and study the performance
of the visual behaviours as an integrated architecture. By carrying out a qual-
itative comparison with current robot vision systems whose performance has
been reported in the literature, we argue that our architecture clearly advances
the reported state-of-the-art [3,5,13,15,18] in terms of our system’s innate visual
capabilities and portability to different environment settings, e.g. multiple same-
class object identification and tolerated degree of visual scene complexity. Our
architecture is therefore portable enough in order to be adapted to different
hardware configuration, feature description and view-points.

In biological systems, it is found that a region in the scene that is suffi-
ciently salient can capture the attention of an observer more than once during a
visual task [21,22]. Our current inhibition of return behaviour, however, has been
formulated explicitly to prevent the robot from visiting a previously attended
location. We propose to revise this behaviour by incorporating an exponential
decay criterion that dictates the mean-lifetime of inhibition of an attended loca-
tion. The robot would then be able to re-visit a previously attended location,
perhaps in the context of a spatial awareness model with a cognitive module.
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