
Ichiro Hasuo (Ed.)

 123

LN
CS

 9
60

8

13th IFIP WG 1.3 International Workshop, CMCS 2016
Colocated with ETAPS 2016
Eindhoven, The Netherlands, April 2–3, 2016, Revised Selected Papers

Coalgebraic Methods 
in Computer Science



Lecture Notes in Computer Science 9608

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Ichiro Hasuo (Ed.)

Coalgebraic Methods
in Computer Science
13th IFIP WG 1.3 International Workshop, CMCS 2016
Colocated with ETAPS 2016
Eindhoven, The Netherlands, April 2–3, 2016
Revised Selected Papers

123



Editor
Ichiro Hasuo
University of Tokyo
Tokyo
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-40369-4 ISBN 978-3-319-40370-0 (eBook)
DOI 10.1007/978-3-319-40370-0

Library of Congress Control Number: 2016941298

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

The 13th International Workshop on Coalgebraic Methods in Computer Science,
CMCS 2016, was held during April 2–3, 2016, in Eindhoven, The Netherlands, as a
satellite event of the Joint Conference on Theory and Practice of Software, ETAPS
2016. In more than a decade of research, it has been established that a wide variety of
state-based dynamical systems, such as transition systems, automata (including
weighted and probabilistic variants), Markov chains, and game-based systems, can be
treated uniformly as coalgebras. Coalgebra has developed into a field of its own interest
presenting a deep mathematical foundation, a growing field of applications, and
interactions with various other fields such as reactive and interactive system theory,
object-oriented and concurrent programming, formal system specification, modal and
description logics, artificial intelligence, dynamical systems, control systems, category
theory, algebra, analysis, etc. The aim of the workshop is to bring together researchers
with a common interest in the theory of coalgebras, their logics, and their applications.

Previous workshops of the CMCS series have been organized in Lisbon (1998),
Amsterdam (1999), Berlin (2000), Genoa (2001), Grenoble (2002), Warsaw (2003),
Barcelona (2004), Vienna (2006), Budapest (2008), Paphos (2010), Tallinn (2012), and
Grenoble (2014). Starting in 2004, CMCS has become a biennial workshop, alternating
with the International Conference on Algebra and Coalgebra in Computer Science
(CALCO), which, in odd-numbered years, has been formed by the union of CMCS
with the International Workshop on Algebraic Development Techniques (WADT).

The CMCS 2016 program featured a keynote talk by Jiří Adámek (Technische
Universität Braunschweig, Germany), an invited talk by Andreas Abel (University of
Gothenburg, Sweden), and an invited talk by Filippo Bonchi (CNRS/ENS Lyon,
France). In addition, a special session on weighted automata and coalgebras was held,
featuring invited tutorials by Borja Balle (Lancaster University, UK) and Alexandra
Silva (University College London, UK).

This volume contains revised regular contributions (10 accepted out of 13 sub-
missions), an invited paper, and the abstracts of two keynote/invited talks. Special
thanks go to all the authors for the high quality of their contributions, to the reviewers
and Program Committee members for their help in improving the papers presented at
CMCS 2016, and to all the participants for active discussions.

April 2016 Ichiro Hasuo



Organization

CMCS 2016 was organized as a satellite event of the Joint Conference on Theory and
Practice of Software (ETAPS 2016).

Program Committee

Paolo Baldan Università di Padova, Italy
Corina Cîrstea University of Southampton, UK
Ugo Dal Lago Università di Bologna, Italy
Ichiro Hasuo University of Tokyo, Japan
Tom Hirschowitz CNRS, Université de Savoie, France
Bart Jacobs Radboud University Nijmegen, The Netherlands
Shin-ya Katsumata Kyoto University, Japan
Bartek Klin University of Warsaw, Poland
Barbara König Universität Duisburg-Essen, Germany
Stefan Milius FAU Erlangen-Nürnberg, Germany
Matteo Mio CNRS/ENS Lyon, France
Larry Moss Indiana University, USA
Rasmus Ejlers Møgelberg IT University of Copenhagen, Denmark
Fredrik Nordvall Forsberg University of Strathclyde, UK
Dirk Pattinson The Australian National University
Daniela Petrisan Université Paris Diderot—Paris 7, France
Jean-Eric Pin LIAFA, CNRS and University Paris 7, France
John Power University of Bath, UK
Jurriaan Rot ENS Lyon, France
Jan Rutten CWI, The Netherlands
Alexandra Silva University College London, UK
Joost Winter University of Warsaw, Poland
James Worrell Oxford University, UK

Publicity Chair

Fabio Zanasi Radboud University Nijmegen, The Netherlands

Additional Reviewers

Soichiro Fujii
Helle Hvid Hansen

Henning Kerstan
Lutz Schroeder

Toby Wilkinson



Sponsoring Institutions

IFIP WG 1.3
Support Center for Advanced Telecommunications Technology Research (SCAT),
Tokyo, Japan

VIII Organization



Contents

Fixed Points of Functors - A Short Abstract . . . . . . . . . . . . . . . . . . . . . . . . 1
Jiří Adámek

Compositional Coinduction with Sized Types . . . . . . . . . . . . . . . . . . . . . . . 5
Andreas Abel

Lawvere Categories as Composed PROPs . . . . . . . . . . . . . . . . . . . . . . . . . 11
Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi

Transitivity and Difunctionality of Bisimulations. . . . . . . . . . . . . . . . . . . . . 33
Mehdi Zarrad and H. Peter Gumm

Affine Monads and Side-Effect-Freeness . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Bart Jacobs

Duality of Equations and Coequations via Contravariant Adjunctions . . . . . . 73
Julian Salamanca, Marcello Bonsangue, and Jurriaan Rot

Category Theoretic Semantics for Theorem Proving in Logic Programming:
Embracing the Laxness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Ekaterina Komendantskaya and John Power

Product Rules and Distributive Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Joost Winter

On the Logic of Generalised Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . 136
Octavian Babus and Alexander Kurz

A Complete Logic for Behavioural Equivalence in Coalgebras of Finitary
Set Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

David Sprunger

Coalgebraic Completeness-via-Canonicity: Principles and Applications . . . . . 174
Fredrik Dahlqvist

Relational Lattices via Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Luigi Santocanale

On Local Characterization of Global Timed Bisimulation for Abstract
Continuous-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Ievgen Ivanov

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

http://dx.doi.org/10.1007/978-3-319-40370-0_1
http://dx.doi.org/10.1007/978-3-319-40370-0_2
http://dx.doi.org/10.1007/978-3-319-40370-0_3
http://dx.doi.org/10.1007/978-3-319-40370-0_4
http://dx.doi.org/10.1007/978-3-319-40370-0_5
http://dx.doi.org/10.1007/978-3-319-40370-0_6
http://dx.doi.org/10.1007/978-3-319-40370-0_7
http://dx.doi.org/10.1007/978-3-319-40370-0_7
http://dx.doi.org/10.1007/978-3-319-40370-0_8
http://dx.doi.org/10.1007/978-3-319-40370-0_9
http://dx.doi.org/10.1007/978-3-319-40370-0_10
http://dx.doi.org/10.1007/978-3-319-40370-0_10
http://dx.doi.org/10.1007/978-3-319-40370-0_11
http://dx.doi.org/10.1007/978-3-319-40370-0_12
http://dx.doi.org/10.1007/978-3-319-40370-0_13
http://dx.doi.org/10.1007/978-3-319-40370-0_13


Fixed Points of Functors - A Short Abstract

Jǐŕı Adámek(B)

Institute for Theoretical Computer Science,
Technische Universität Braunschweig, Braunschweig, Germany

j.adamek@tu-braunschweig.de

Abstract. Fixed points of endofunctors play a central role in program
semantics (initial algebras as recursive specification of domains), in coal-
gebraic theory of systems (terminal coalgebras and coinduction) and in
a number of other connections such as iterative theories (rational fixed
point). In this survey we present some older and new results on the
structure of the three fixed points we have mentioned.

1 Initial Algebras

The classical example of Σ–algebras as algebras for the polynomial set functor
FΣ yields the initial algebra

μFΣ = all finite Σ-trees.

This holds for all finitary signatures, whereas for the infinitary ones the initial
algebra is formed by all well-founded trees. These are the trees in which every
path is finite. The concept of well-foundedness is fundamental for initial algebras.
This is a property of coalgebras studied by Osius [9] and Taylor [12].

In [4] we have proved that for all set functors F the initial algebra coincides
with the terminal well-founded coalgebra. And every fixed point of F has a
largest well–founded part which is the initial algebra of F , see [3].

The iterative construction of μF as F i(0) (for some ordinal i), introduced
in [1], converges for every set functor with a fixed point, see [13]. Moreover the
least such ordinal i is an infinite regular cardinal or at most 3, as proved in [6].
In contrast,

– on the category of many-sorted sets convergence can take place at any ordinal,
and

– on the category of graphs endofunctors exist having an initial algebra although
the iterative construction does not converge,

see [6].
Most of the above results extend from set functors to enfodunctors of “rea-

sonable” categories preserving monomorphisms. For example locally finitely pre-
sentable categories whose initial object is simple are “reasonable”.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 1–4, 2016.
DOI: 10.1007/978-3-319-40370-0 1



2 J. Adámek

2 Terminal Coalgebras

The importance of terminal coalgebras as systems was demonstrated by Rutten
in his fundamental paper [10].

A number of classical examples are special cases of the following:

νFΣ = all Σ-trees.

The case of automata with n inputs, HnX = Xn × {0, 1}, is an example
where Σ consists of two n–ary operations (and Σ–trees just represent languages
in n∗). And streams, FX = A × X + B, correspond to unary operations in A
and constants in B.

In case of set functors, it is useful to work with pointed coalgebras. E.g., the
classical automata are pointed coalgebras for Hn.

Definition 1. A well–pointed coalgebra is a pointed coalgebra having no proper
subobject and no proper quotient.

Thus minimal automata are precisely the well-pointed coalgebras for Hn.
Let T be the collection of all well–pointed coalgebras up to isomorphism. If F
is a set functor preserving intersections, every pointed coalgebra has a canonical
“minimization” to a well–pointed one. This yields a coalgebra structure on T .
And in [4] we presented the following characterizations:

νF = all well-pointed coalgebras(up to isomoprhism)

and

μF = all well-founded well-pointed coalgebras (up to isomoprhism).

“The dual of the iterative initial-algebra construction, i.e. the cochain F i(1)
as a construction of νF , was first explicitly considered by Barr [7]. In contrast to
the initial chain the convergence does not always happen at a cardinal: Worrell
proved that for the finite power-set functor that cochain converges in ω+ω steps.
And for all λ–accessible set functors (i.e., those preserving λ–filtered colimits),
he proved that the construction converges in λ+λ steps or sooner, see [14]. Until
recently, for uncountable λ, no example has been known where the full λ + λ
steps are actually needed. Such an example is the functor of all λ–generated
filters, see [2].

An important classical result concerns enriched endofunctors of the cartesian
closed category CPO (of posets with directed joins and a bottom and strict
continuous maps): Smyth and Plotkin proved in [11] that the terminal coalgebra
equals the initial algebra, and both constructions converge in ω steps. This is
based on the limit-colimit coincidence for embedding-projection pairs of Scott. In
[3] we prove that for the (much wider) class of endofunctors that are just locally
monotone the existence of a fixed point implies that the terminal coalgebra exists
and equals the initial algebra.



Fixed Points of Functors - A Short Abstract 3

3 Rational Fixed Point

This (much younger) fixed point arose in the study of iterative algebras. These
are algebras A that have a unique solution of every finite guarded system of
recursive equations (with parameters in A). In [5] we proved that every finitary
set functor has an initial iterative algebra which is a fixed point, notation: ρF .
And we called this the rational fixed point. Classical examples: for automata as
coalgebras we have

ρHn = all regular languages in n∗,

and for general signatures

ρFΣ = all rational Σ-trees,

that is, trees that have, up to isomorphism, only finitely many subtrees.
The rational fixed point can be described as the filtered colimit of all finite

coalgebras. This has inspired Milius [8] to define locally finite coalgebras for a
set functor as coalgebras that are directed unions of finite subcoalgebras. And
then he proved that

ρF = the terminal locally finite coalgebra.

In a complete analogy to the above characterization of the initial and terminal
fixed point we have that

ρF = all finite well-pointed coalgebras (up to isomorphism).

All the above generalizes easily to finitary endofunctors of all finitely locally
presentable categories.

Can we play the same game with countable sets in place of finite ones? No,
only finite sets yield something new: the terminal locally countable coalgebra is
all of νF , see [5].

References

1. Adámek, J.: Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carol. 15, 589–602 (1974)

2. Adámek, J., Koubek, V., Palm, T.: Fixed points of set functors: how many itera-
tions are needed? (submitted)

3. Adámek, J., Milius, S., Moss, L.: Initial algebras and terminal coalgebras (to
appear)

4. Adámek, J., Milius, S., Moss, S., Sousa, L.: Well-pointed coalgebras. Log. Meth.
Comput. Sci. 9, 1–51 (2013)

5. Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Struct. Com-
put. Sci. 16, 1085–1131 (2006)

6. Adámek, J., Trnková, V.: Initial algebras and terminal coalgebras in many-sorted
sets. Mathem. Str. Comput. Sci. 21, 481–509 (2011)



4 J. Adámek

7. Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci.
124, 182–192 (1994)

8. Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceeding
of 25th Annual Symposium on Logic in Computer Science (LICS 2010). IEEE
Computer Society (2010)

9. Osius, G.: Categorical set theory: a characterization of the category of sets. J. Pure
Appl. Algebra 4, 79–119 (1974)

10. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci.
249, 3–80 (2000)

11. Smyth, M., Plotkin, G.: Category-theoretical solution of recursive domain equa-
tions. SIAM Journ. Comput. 11, 761–783 (1982)

12. Taylor, P.: Towards a unified treatment of induction i: the general recursion theo-
rem. Preprint (1995–6). http://www.paultaylor.eu/ordinals/#towuti

13. Trnková, V., Adámek, J., Koubek, V., Reiterman, J.: Free algebras, input processes
and free monads. Comment. Math. Univ. Carol. 16, 339–351 (1975)

14. Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci.
338, 184–199 (2005)

http://www.paultaylor.eu/ordinals/#towuti


Compositional Coinduction with Sized Types

Andreas Abel(B)

Department of Computer Science and Engineering, Gothenburg University,
Rännvägen 6, 41296 Göteborg, Sweden

andreas.abel@gu.se

Proofs by induction on some inductively defined structure, e. g., finitely-
branching trees, may appeal to the induction hypothesis at any point in the
proof, provided the induction hypothesis is only used for immediate substruc-
tures, e. g., the subtrees of the node we are currently considering in the proof.
The basic principle of structural induction can be relaxed to course-of-value
induction, which allows application of the induction hypothesis also to non-
immediate substructures, like any proper subtree of the current tree. If course-
of-value induction is not sufficient yet, we can resort to define a well-founded
relation on the considered structure and use the induction hypothesis for any
substructure which is strictly smaller with regard to the constructed relation. At
a closer look, however, this well-founded induction is just structural induction
on the derivation of being strictly smaller. This means that in a logical sys-
tem that allows us to construct inductive predicate and relations, such as, e. g.,
Martin-Löf Type Theory (Nordström et al. 1990) or the Calculus of Inductive
Constructions (Paulin-Mohring 1993), structural induction is complete for any
kind of inductive proof.

In all these flavors of induction, validity of induction hypothesis application
can be checked easily and locally, independent of its context. In proof assistants,
in principle a structural termination checker (Giménez 1995; Abel 2000) suffices1

to check such inductive proofs, which looks at the proof tree, extracts all calls
to the induction hypotheses, and checks that they happen only on structurally
smaller arguments. In practice, mutual induction is supported as well, based
on a simple static call graph analysis (Abel and Altenkirch 2002; Barras 2010;
Ben-Amram 2008; Hyvernat 2014).

Dually to structural induction, in a coinductive proof of a proposition defined
as the greatest fixed-point of a set of rules, we may appeal to the coinduction
hypothesis to fill the premises of the rule we have chosen to prove our goal. For
instance, two infinite streams may be defined to be bisimilar if their heads are
equal and their tails are bisimilar, coinductively. Our goal might be to show
that bisimilarity is reflexive, i. e., any stream is bisimilar to itself. To establish
bisimilarity, we use the sole rule with the first subgoal to show that the head
of the stream is equal to itself. After this breath-taking enterprise, we are left

1 Even for induction, type-based termination offers significant advantages for composi-
tionality and robustness, as argued, e. g., by Barras and Sacchini (2013). However, at
this point there is no mature implementation in proof assistants based on dependent
types.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 5–10, 2016.
DOI: 10.1007/978-3-319-40370-0 2



6 A. Abel

with the second subgoal to show that the tail of the stream is bisimilar to itself,
which we solve by appeal to the coinduction hypothesis. At this point, it is
worth noting that not the stream got smaller (the tail of an infinite stream is
still infinite), but the coinductive hypothesis is guarded by a rule application.
This means that the coinductive proof can unfold into a possibly infinitely deep
derivation without getting into a “busy loop”, meaning the proof is productive.

In a similar way as for induction, we seek to relax the criterion for well-
formed coinductive proofs, which states that only the immediate subgoals of the
final rule application can be filled by the coinductive hypothesis. We can allow
several rule applications until we reach the coinductive hypothesis from the root
of the derivation. This is dual to course-of-value induction and could be called
guarded coinduction.2

In contrast to induction, checking the validity of calls to the coinduction
hypothesis requires us to look at the context of the calls rather than the call
arguments. We have to check that the calls to the coinductive hypotheses hap-
pen in a constructor context, i. e., a context of coinductive rule applications only.
This lack of locality also leads to a loss of compositionality of proofs by guarded
coinduction. For instance, consider a coinductive proof of the bisimilarity of two
streams through a bisimilarity chain, i. e., via some intermediate streams and
the use of transitivity of bisimilarity. Transitivity is not a constructing rule for
bisimilarity,3 but an admissible rule proven by coinduction. As transitivity is
not a constructor, we cannot use the coinduction hypothesis under transitivity
nodes in the proof tree. In practice, often a severe restructuring of a natural
informal proof is necessary to make it guarded and please a structural guarded-
ness checker. The resulting proofs may be highly non-compositional and bloated,
especially if proofs of previous lemmata have to be inlined and fused into the
current proof.

To regain compositionality, we have to relax the contexts of coinductive
hypothesis applications to include admissible rules and lemma invocation in gen-
eral, without jeopardizing productivity. Such contexts need to produce one more
rule constructor than they consume, which must be easily verifiable by the pro-
ductivity checker. Sized types (Hughes et al. 1996; Amadio and Coupet-Grimal
1998; Barthe et al. 2004; Abel 2008; Sacchini 2013) offer the necessary tech-
nology. Coinductive types, propositions, and relations are parameterized by an
ordinal i ≤ ω which denotes the minimum definedness depth of their derivations.
Semantically, this idea is already present in Mendler’s work (Mendler et al. 1986;
Mendler 1991), and it is implicit in the principle of ordinal iteration to construct

2 Coquand (1994) calls it guarded induction, Giménez (1995) guarded by constructors.
3 In fact, it is well-known that every coinductive relation with a transitivity rule is

trivial, i. e., the total relation. The proof of relatedness of arbitrary objects is just the
infinite tree all of whose nodes are applications of the transitivity rule. This problem
can be overcome with mixed coinductive-inductive types (Abel 2007; Nakata and
Uustalu 2010), to allow only finitely many applications of the transitivity rule in a
row (Danielsson and Altenkirch 2010).



Compositional Coinduction with Sized Types 7

the greatest fixed point of a monotone operator F . We define the approximants
νiF of the greatest fixed-point νωF by induction on ordinal i as follows:

ν0 F = �
νi+1 F = F (νiF )
νω F =

�
i<ω νiF

For monotone F , we obtain a descending chain ν0F � ν1F � · · · � νωF . The
greatest fixed point of F is reached at stage ω if F is continuous in the sense that�

i∈I F (Ai) � F (
�

i∈I Ai). For instance, all strictly positive type transformers
correspond to continuous operators (Abel 2003, Theorem 1).

An alternative construction of the greatest fixed-point uses deflationary iter-
ation (Sprenger and Dam 2003; Abel 2012; Abel and Pientka 2013),

νiF =
�

j<i

F (νjF )

which gives a descending chain without the monotonicity of F . However, the
same conditions on F are needed to reach the fixed point at stage ω.

Giving names to the approximants νiF of coinductive type νωF , we can
express through the type system when a term t, which acts as the context for
the coinductive hypothesis, produces one more constructor than it consumes: it
needs to have type ∀i. νiF → νi+1F polymorphic in “size” (depth) i. Such a
context is called guarding. A weaker, but very common and useful property of
a function t is to be guardedness preserving, i. e., having type ∀i. νiF → νiF .
For instance, consider bisimilarity on streams, which is defined using relation
transformer F (X)(x, y) = (headx ≡ head y) × X (tailx) (taily). The symmetry
lemma of bisimilarity ∀i. νiF (x, y) → νiF (y, x) is guardedness preserving: to
produce one constructor of the requested bisimilarity derivation, it only needs
to inspect the last constructor of the given bisimilarity derivation. Analogously,
transitivity of bisimilarity receives type ∀i. νiF (x, y) → νiF (y, z) → νiF (x, z).
Here, to produce the last rule of the output derivations we only need to inspect
the last rule of the two input derivations. This typing allows us to freely use tran-
sitivity in coinductive proofs without jeopardizing the validity of the coinductive
hypothesis.

Tracking guardedness levels in the type systems through “sized” coinduc-
tive types gives us compositional coinduction, as we can freely abstract out,
for instance, guardedness-preserving contexts without upsetting some structural
productivity checker who can only deal with concretely given code.

Recently, guardedness-preserving functions have been rediscovered in the con-
text of Isabelle/HOL as friendly operations (Blanchette et al. 2015). Prototyp-
ical implementations of type-based termination with sized types exist for Coq
(Sacchini 2015) and Agda. The latter has been subjected to a larger case study: an
implementation of normalization by evaluation using the coinductive delay monad
(Abel and Chapman 2014). Compositional coinduction with sized types seems to
be a promising alternative to parameterized coinduction (Hur et al. 2013) and up-
to techniques (Pous and Sangiorgi 2012).



8 A. Abel

References

Abel, A.: Specification and verification of a formal system for structurally
recursive functions. In: Coquand, T., Nordström, B., Dybjer, P., Smith, J.
(eds.) TYPES 1999. LNCS, vol. 1956, pp. 1–20. Springer, Heidelberg (2000).
http://dx.doi.org/10.1007/3-540-44557-9 1

Abel, A.: Termination and productivity checking with continuous types. In: Hofmann,
M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 1–15. Springer, Heidelberg (2003).
http://dx.doi.org/10.1007/3-540-44904-3 1

Abel, A.: Mixed inductive/coinductive types and strong normalization. In: Shao, Z.
(ed.) APLAS 2007. LNCS, vol. 4807, pp. 286–301. Springer, Heidelberg (2007).
http://dx.doi.org/10.1007/978-3-540-76637-7 19

Abel, A.: Semi-continuous sized types and termination. Log. Methods Comput. Sci.
4(2:3), 1–33 (2008). http://dx.doi.org/10.2168/LMCS-4(2:3)2008, CSL 2006 special
issue

Abel, A.: Type-based termination, inflationary fixed-points, and mixed inductive-
coinductive types. In: Miller, D., Ésik, Z. (eds.) Proceedings of 8th Work-
shop on Fixed Points in Computer Science (FICS 2012), Electronic Proceedings
in Theoretical Computer Science, vol. 77, pp. 1–11 (2012). http://dx.doi.org/
10.4204/EPTCS.77.1, invited talk

Abel, A., Altenkirch, T.: A predicative analysis of structural recursion. J. Funct. Pro-
gram. 12(1), 1–41 (2002). http://dx.doi.org/10.1017/S0956796801004191

Abel, A., Chapman, J.: Normalization by evaluation in the delay monad: a
case study for coinduction via copatterns and sized types. In: Levy, P.,
Krishnaswami, N. (eds.) Proceedings of 5th Workshop on Mathematically Struc-
tured Functional Programming, MSFP 2014, Grenoble, France, Electronic Pro-
ceedings in Theoretical Computer Science, vol. 153, pp. 51–67, 12 April 2014.
http://dx.doi.org/10.4204/EPTCS.153.4

Abel, A., Pientka, B.: Wellfounded recursion with copatterns: a unified approach to
termination and productivity. In: Morrisett, G., Uustalu, T. (eds.) Proceedings
of 18th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2013, pp. 185–196. ACM Press, Boston, MA, USA, 25–27 September 2013.
http://doi.acm.org/10.1145/2500365.2500591

Amadio, R.M., Coupet-Grimal, S.: Analysis of a guard condition in type theory
(extended abstract). In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, p. 48.
Springer, Heidelberg (1998). http://dx.doi.org/10.1007/BFb0053541

Barras, B.: The syntactic guard condition of Coq. In: Talk at the Journée “égalité et
Terminaison” du 2 février 2010 in Conjunction with JFLA 2010 (2010). http://coq.
inria.fr/files/adt-2fev10-barras.pdf

Barras, B., Sacchini, J.L.: Type-based methods for termination and productivity in
Coq. In: Mahboubi, A., Tassi, E. (eds.) The 5th Coq Workshop, A Satellite Work-
shop of ITP 2013, Rennes, 22 July 2013. https://coq.inria.fr/coq-workshop/2013#
Sacchini

Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termina-
tion of recursive definitions. Math. Struct. Comput. Sci. 14(1), 97–141 (2004).
http://dx.doi.org/10.1017/S0960129503004122

Ben-Amram, A.M.: Size-change termination with difference constraints. ACM Trans.
Program. Lang. Syst. 30(3) (2008). http://doi.acm.org/10.1145/1353445.1353450

http://dx.doi.org/10.1007/3-540-44557-9_1
http://dx.doi.org/10.1007/3-540-44904-3_1
http://dx.doi.org/10.1007/978-3-540-76637-7_19
http://dx.doi.org/10.2168/LMCS-4(2:3)2008
http://dx.doi.org/10.4204/EPTCS.77.1
http://dx.doi.org/10.4204/EPTCS.77.1
http://dx.doi.org/10.4204/EPTCS.77.1
http://dx.doi.org/10.1017/S0956796801004191
http://dx.doi.org/10.4204/EPTCS.153.4
http://doi.acm.org/10.1145/2500365.2500591
http://dx.doi.org/10.1007/BFb0053541
http://coq.inria.fr/files/adt-2fev10-barras.pdf
http://coq.inria.fr/files/adt-2fev10-barras.pdf
https://coq.inria.fr/coq-workshop/2013#Sacchini
https://coq.inria.fr/coq-workshop/2013#Sacchini
http://dx.doi.org/10.1017/S0960129503004122
http://doi.acm.org/10.1145/1353445.1353450


Compositional Coinduction with Sized Types 9

Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: a
proof assistant perspective. In: Fisher, K., Reppy, J.H. (eds.) Proceedings of
20th ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, pp. 192–204. ACM Press, Vancouver, BC, Canada, 1–3 September 2015.
http://doi.acm.org/10.1145/2784731.2784732

Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T.
(eds.) TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994).
http://dx.doi.org/10.1007/3-540-58085-9 72

Danielsson, N.A., Altenkirch, T.: Subtyping, declaratively. In: Bolduc, C., Desharnais,
J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 100–118. Springer, Heidelberg
(2010). http://dx.doi.org/10.1007/978-3-642-13321-3 8

Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P.,
Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1994). http://dx.doi.org/10.1007/3-540-60579-7 3

Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using sized
types. In: Boehm, H.J., Jr., G.L.S. (eds.) Conference Record of POPL 1996: The 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 410–423. ACM Press, St. Petersburg Beach, Florida, USA, 21–24 January 1996.
http://doi.acm.org/10.1145/237721.240882

Hur, C., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization
in coinductive proof. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2013, pp. 193–206. ACM Press, Rome, Italy, 23–25 January 2013.
http://doi.acm.org/10.1145/2429069.2429093

Hyvernat, P.: The size-change termination principle for construc-
tor based languages. Log. Methods Comput. Sci. 10(1) (2014).
http://dx.doi.org/10.2168/LMCS-10(1:11)2014

Mendler, N.P., Panangaden, P., Constable, R.L.: Infinite objects in type theory. In: Pro-
ceedings, Symposium on Logic in Computer Science, pp. 249–255. IEEE Computer
Society, Cambridge, Massachusetts, USA, 16–18 June 1986

Mendler, N.P.: Inductive types and type constraints in the second-
order lambda calculus. Ann. Pure Appl. Log. 51(1–2), 159–172 (1991).
http://dx.doi.org/10.1016/0168-0072(91)90069-X

Nakata, K., Uustalu, T.: Resumptions, weak bisimilarity and big-step semantics for
while with interactive I/O: an exercise in mixed induction-coinduction. In: Aceto,
L., Sobocinski, P. (eds.) Proceedings of 7th Workshop on Structural Operational
Semantics, SOS 2010, Paris, France, Electronic Proceedings in Theoretical Computer
Science, vol. 32, pp. 57–75, 30 August 2010. http://dx.doi.org/10.4204/EPTCS.32.5

Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin
Löf’s Type Theory: An Introduction. Clarendon Press, Oxford (1990).
http://www.cs.chalmers.se/Cs/Research/Logic/book/

Paulin-Mohring, C.: Inductive definitions in the system Coq - rules and properties. In:
Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345. Springer,
Heidelberg (1993). http://dx.doi.org/10.1007/BFb0037116

Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Sangiorgi,
D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction. Cambridge
University Press, Cambridge (2012)

Sacchini, J.: Coq̂: Type-based termination in the Coq proof assistant (2015). project
description, http://qatar.cmu.edu/sacchini/coq.html

http://doi.acm.org/10.1145/2784731.2784732
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/3-540-60579-7_3
http://doi.acm.org/10.1145/237721.240882
http://doi.acm.org/10.1145/2429069.2429093
http://dx.doi.org/10.2168/LMCS-10(1:11)2014
http://dx.doi.org/10.1016/0168-0072(91)90069-X
http://dx.doi.org/10.4204/EPTCS.32.5
http://www.cs.chalmers.se/Cs/Research/Logic/book/
http://dx.doi.org/10.1007/BFb0037116
http://qatar.cmu.edu/ sacchini/coq.html


10 A. Abel

Sacchini, J.L.: Type-based productivity of stream definitions in the calculus of con-
structions. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, pp. 233–242. IEEE Computer Society Press, New Orleans, LA, USA,
25–28 June 2013. http://dx.doi.org/10.1109/LICS.2013.29

Sprenger, C., Dam, M.: On the structure of inductive reasoning: circular and
tree-shaped proofs in the µ-calculus. In: Gordon, A.D. (ed.) FOSSACS 2003
and ETAPS 2003. LNCS, vol. 2620, pp. 425–440. Springer, Heidelberg (2003).
http://dx.doi.org/10.1007/3-540-36576-1 27

http://dx.doi.org/10.1109/LICS.2013.29
http://dx.doi.org/10.1007/3-540-36576-1_27


Lawvere Categories as Composed PROPs

Filippo Bonchi1(B), Pawel Sobocinski2, and Fabio Zanasi3

1 CNRS, École Normale Supérieure de Lyon, Lyon, France
filippo.bonchi@ens-lyon.fr

2 University of Southampton, Southampton, UK
3 Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. PROPs and Lawvere categories are related notions adapted
to the study of algebraic structures borne by an object in a category,
but whereas PROPs are symmetric monoidal, Lawvere categories are
cartesian. This paper formulates the connection between the two notions
using Lack’s technique for composing PROPs via distributive laws. We
show Lawvere categories can be seen as resulting from a distributive law
of two PROPs — one expressing the algebraic structure in linear form
and the other expressing the ability of copying and discarding variables.

1 Introduction

PROPs [28] are symmetric monoidal categories with objects the natural num-
bers. In the last two decades, they have become increasingly popular as an
environment for the study of diagrammatic formalisms from diverse branches
of science in a compositional, resource sensitive fashion. Focussing on computer
science, they have recently featured in algebraic approaches to Petri nets [11,35],
bigraphs [12], quantum circuits [15], and signal flow graphs [1,5,7,20].

PROPs describe both the syntax and the semantics of diagrams, with the
interpretation expressed as a PROP morphism [[·]] : Syntax → Semantics. Typ-
ically, Syntax is freely generated by a signature Σ of operations with arbitrary
arity/coarity and can be composed sequentially and in parallel. Thus diagram
syntax—which we refer to as Σ-terms—is inherently 2-dimensional: the term
structure is that of directed acyclic graphs, rather than trees, as in the famil-
iar case of operations with coarity 1. A crucial aspect is linearity : variables in
Σ-terms cannot be copied nor discarded.

It is often useful to axiomatise the equivalence induced by [[·]] by means of a
set of equations E, and then study the theory (Σ,E). For PROPs, completeness
proofs typically provide a serious challenge, involving the retrieval of a normal
form for Σ-terms modulo E. The difficulty can be drastically reduced by exploit-
ing certain operations on PROPs: an example of this modular methodology is
provided by [5,7], where the PROP operations of sum and composition are cru-
cial for giving a sound and complete axiomatization of signal flow diagrams.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 11–32, 2016.
DOI: 10.1007/978-3-319-40370-0 3



12 F. Bonchi et al.

Sum is just the coproduct in the category of PROPs. Whenever two PROPs
T1 and T2 can be presented by the theories (Σ1, E1) and (Σ2, E2), then their
sum T1 + T2 is presented by the disjoint union (Σ1 � Σ2, E1 � E2).

Composition of PROPs is more subtle, as it requires certain compatibility
conditions between the structure of T1 and T2. Lack [25] describes this oper-
ation formally by means of distributive laws, seeing PROPs as monads in the
2-categorical sense of Street [36]. In a nutshell, a distributive law λ : T1 ; T2 →
T2 ; T1 of PROPs is a recipe for moving arrows of T1 past those of T2. The
resulting PROP T2 ; T1 enjoys a factorisation property: every arrow in T2 ; T1

decomposes as one of T2 followed by one of T1. The graph of λ can be seen as a
set of directed equations Eλ := ( ∈T1−−→ T2−→) ≈ ( T2−→ T1−→) and T2 ; T1 is presented
by the theory (Σ1 � Σ2, E1 � E2 � Eλ).

This work uses distributive laws of PROPs to characterise Lawvere cate-
gories1, a well known class of structures adapted to the study of categorical
universal algebra. The essential difference with PROPs is that Lawvere cate-
gories express cartesian theories (Σ,E), i.e. where Σ only features operations
with coarity 1 and E may include non-linear equations. Our starting observa-
tion is that the Lawvere category LΣ on a cartesian signature Σ exhibits a
factorisation property analogous to the one of composed PROPs: arrows can
always be decomposed as ∈Cm−−−→ ∈TΣ−−−→, where Cm is the PROP of commutative
comonoids, generated by a copy 1 → 2 and a discard 1 → 0 operation, and TΣ

is the PROP freely generated by Σ. This factorisation represents cartesian Σ-
terms by their syntactic tree — the TΣ-part — with the possibility of explicitly
indicating variable-sharing among sub-terms — the Cm-part. This simple obser-
vation leads us to the main result of the paper: for any cartesian signature Σ,
there is a distributive law of PROPs λ : TΣ ; Cm → Cm ; TΣ which is presented
by equations that express the naturality of copier and discarder; the resulting
composed PROP Cm ; TΣ is the Lawvere category LΣ.

By a quotient construction on distributive laws, it follows immediately that
the above theorem holds more generally for any cartesian theory (Σ,E) where
the set of axioms E only contains linear equations. For instance the Lawvere
category of commutative monoids LMn can be obtained by means of PROP
composition, while the one LGr of abelian groups cannot, because of the non-
linear axiom x × x−1 = 1. Obviously, one can still formulate LGr as the quotient
of the composite LMn by adding this equation, see Example 4.6 below.

As a side remark, we observe that, by taking the sum Cm + TΣ, rather than
the composition, we are able to capture a different, well-known representation for
cartesian Σ-terms, namely term graphs, which are acyclic graphs labeled over Σ.
With respect to the standard tree representation, the benefit of term graphs is
that the sharing of any common sub-term can be represented explicitly, making
them particularly appealing for efficient rewriting algorithms, see e.g. [34] for a

1 Usually called Lawvere theories in the literature: i.e. finite product categories with
set of objects the natural numbers, where product on objects is addition [23,27]. In
order to keep the exposition uniform, we reserve the word theory for presentations
and refer to the presentation (Σ, E) of a Lawvere theory as a cartesian theory.



Lawvere Categories as Composed PROPs 13

survey on the subject. As shown in [16], Σ-term graphs are in 1-1 correspondence
with the arrows of the free gs-monoidal category generated by Σ, a concept
that actually amounts to forming the sum of PROPs Cm + TΣ. Thus the only
difference between term graphs and the representation of terms given by Cm ; TΣ

is in the validity of naturality of copier and discarder. Intuitively, a term where
a resource is explicitly copied is not identified with the term where two copies
appear separately: in short, copying is not natural.

Related Works. The motto “cartesian terms = linear terms + copying and dis-
carding” inspired several papers exploiting the role of Cm in Lawvere categories,
see e.g. [14,16,26]. In our work, Lawvere categories feature as a distinguished
example of a construction, PROP composition, that is increasingly important
in many recent research threads [5,6,20,32]. The significance of this exercise is
two-fold. First, it gives a deeper understanding of the nature of Lawvere cate-
gories and how they formally relate to PROPs, by showing the provenance of the
natural copy-discard structure. Second, our result provides a canonical means of
defining a distributive law for freely generated PROPs, showing that the result
of composition is a familiar algebraic notion and enjoys a finite axiomatisation.

The following construction, reported by Baez in [2], is close in spirit to our
work. There is pseudo-adjunction between symmetric monoidal and categories
with finite products

SMCat
L

��⊥ FPCat
R

��

where R is the evident forgetful functor and L adds to any object of C ∈ SMCat
a natural copy-discard structure: natural diagonals and projections. Baez [2]
states an equivalence between RL(C) and C ⊗Cm, with the tensor ⊗ defined by
SMCat[C1⊗C2, C3] � SMCat[C1,SMCat[C2, C3]]. Indeed, our main construction,
as well as being a distributive law, is also an instance of a tensor or Kronecker
product of symmetric monoidal theories; a concept that has been explored in
some detail in the cartesian setting of Lawvere categories, see e.g. [22].

Our work restricts attention to PROPs TΣ ∈ SMCat freely generated by a
cartesian signature Σ: in this case, it is enough to add a copy-discard structure
for the object 1 and RL(TΣ) coincides with PROP composition Cm ; TΣ. Our
perspective exploiting distributive laws has the advantage of providing a finite
presentation in terms of the naturality axioms.

It is also worth mentioning that the relationship between symmetric monoidal
and cartesian structures is central in the categorical semantics of linear logic; in
this perspective, the presence of Cm allows to interpret the structural rules of
contraction and weakening — see e.g. [24,30].

Prerequisites and Notation. We assume familiarity with the basics of category
theory (see e.g. [10,29]), the definition of symmetric strict monoidal category [29,
33] (often abbreviated as SMC) and of bicategory [3,10]. We write f ; g : a → c
for composition of f : a → b and g : b → c in a category C, and C[a, b] for the



14 F. Bonchi et al.

(t1 ; t3) ⊕ (t2 ; t4) = (t1 ⊕ t2) ; (t3 ⊕ t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) idn ; c = c = c ; idm

(t1 ⊕ t2) ⊕ t3 = t1 ⊕ (t2 ⊕ t3) id0 ⊕ t = t = t ⊕ id0

σ1,1 ; σ1,1 = id2 (t ⊕ idz) ; σm,z = σn,z ; (idz ⊕ t)

Fig. 1. Axioms of symmetric strict monoidal categories for a PROP T .

hom-set of arrows a → b. It will be sometimes convenient to indicate an arrow
f : a → b of C as x

f∈C−−−→ y or also ∈C−−→, if names are immaterial. For C an SMC,
⊕ is its monoidal product, with unit object I, and σa,b : a ⊕ b → b ⊕ a is the
symmetry associated with a, b ∈ C.

2 PROPs

Our exposition is founded on symmetric monoidal theories: specifications for
algebraic structures borne by objects in a symmetric monoidal category.

Definition 2.1. A (one-sorted) symmetric monoidal theory (SMT) is a pair
(Σ,E) consisting of a signature Σ and a set of equations E. The signature Σ
is a set of generators o : n → m with arity n and coarity m. The set of Σ-
terms is obtained by composing generators in Σ, the unit id : 1 → 1 and the
symmetry σ1,1 : 2 → 2 with ; and ⊕. This is a purely formal process: given Σ-
terms t : k → l, u : l → m, v : m → n, one constructs new Σ-terms t ; u : k → m
and t ⊕ v : k + n → l + n. The set E of equations contains pairs (t, t′ : n → m)
of Σ-terms with the same arity and coarity.

The categorical concept associated with symmetric monoidal theories is the
notion of PROP (product and permutation category [28]).

Definition 2.2. A PROP is a symmetric strict monoidal category with objects
the natural numbers, where ⊕ on objects is addition. Morphisms between PROPs
are strict symmetric identity-on-objects monoidal functors: PROPs and their
morphisms form the category PROP. We call a sub-PROP a sub-category of a
PROP which is also a PROP; i.e. the inclusion functor is a PROP morphism.

The PROP T freely generated by an SMT (Σ,E) has as its set of arrows
n → m the set of Σ-terms n → m taken modulo the laws of symmetric strict
monoidal categories — Fig. 1 — and the smallest congruence (with respect to ;
and ⊕) containing the equations t = t′ for any (t, t′) ∈ E.

There is a natural graphical representation for arrows of a PROP as string
diagrams, which we now sketch, referring to [33] for the details. A Σ-term n →
m is pictured as a box with n ports on the left and m ports on the right.
Composition via ; and ⊕ are rendered graphically by horizontal and vertical
juxtaposition of boxes, respectively.



Lawvere Categories as Composed PROPs 15

In any SMT there are specific Σ-terms generating the underlying symmetric
monoidal structure: these are id1 : 1 → 1, represented as , the symmetry
σ1,1 : 1 + 1 → 1 + 1, represented as , and the unit object for , that is,
id0 : 0 → 0, whose representation is an empty diagram . Graphical represen-
tation for arbitrary identities idn and symmetries σn,m are generated according
to the pasting rules in (1).

Example 2.3.

(a) We write (ΣM , EM ) for the SMT of commutative monoids. The signature
ΣM contains a multiplication and a unit . Equations
EM assert associativity (A1), commutativity (A2) and unitality (A3).

We call Mn the PROP freely generated by the SMT (ΣM , EM ).
(b) We also introduce the SMT (ΣC , EC) of cocommutative comonoids. The

signature ΣC consists of a comultiplication and a counit
. EC is the following set of equations.

We call Cm the PROP freely generated by (ΣC , EC). Modulo the white vs.
black colouring, string diagrams of Cm can be seen as those of Mn “reflected
about the y-axis”. This observation yields Cm ∼= Mnop.

(c) The PROP B of (commutative/cocommutative) bialgebras is generated by
the theory (ΣM � ΣC , EM � EC � B), where B is the following set of equa-
tions.

Remark 2.4 (Models of a PROP). The assertion that (ΣM , EM ) is the SMT
of commutative monoids—and similarly for other SMTs appearing in our
exposition—can be made precise using the notion of model (sometimes also
called algebra) of a PROP. Given a strict symmetric monoidal category C, a
model of a PROP T in C is a symmetric strict monoidal functor F : T → C.
Then LinMod(T , C) is the category of models of T in C and natural transforma-
tions between them.

Turning to commutative monoids, there is a category Monoid(C) whose
objects are the commutative monoids in C, i.e., objects x ∈ C equipped with



16 F. Bonchi et al.

arrows x ⊕ x → x and I → x, satisfying the usual equations. Given any model
F : Mn → C, it follows that F(1) is a commutative monoid in C: this yields
a functor LinMod(Mn, C) → Monoid(C). Saying that (ΣM , EM ) is the SMT of
commutative monoids means that this functor is an equivalence natural in C.
We shall not focus on models as they are not central in our developments and
refer the reader to [19,25] for more information.

Example 2.3 only shows PROPs freely generated from an algebraic specifi-
cation. However, one can also define PROPs in a more direct manner, without
relying on SMTs. Two basic examples will be useful for our exposition:

– the PROP F whose arrows n → m are functions from n to m, where n =
{0, 1, . . . , n − 1}.

– the PROP P whose arrows n → m exist only if n = m, in which case they are
the permutations on n.

This kind of definition is often useful as a different, more concrete perspective on
PROPs that arise from symmetric monoidal theories. For instance, F is presented
by the theory of commutative monoids, in the sense that F and Mn are isomor-
phic PROPs: once can consider a string diagram t ∈ Mn[n,m] as the graph of
a function of type {1, . . . , n} → {1, . . . , m}. For instance,
describes the function f : {1, 2} → {1, 2} mapping both elements to 1. By duality,
Cm ∼= Fop , that is, Fop is presented by the theory of commutative comonoids.

Similarly, P provides a concrete description of the theory (∅, ∅) with empty
signature and no equations. It is the initial object in the category PROP.

3 PROP Composition

A basic operation on SMTs (Σ,E) and (Σ′, E′) is to take their sum (Σ�Σ′, E�
E′). In PROP, the PROP generated by (Σ �Σ′, E �E′) is the coproduct T +S
of the PROP T generated by (Σ,E) and S, generated by (Σ′, E′).

The sum T +S is the least interesting way of combining theories, because there
are no equations that express compatibility between the algebraic structures in T
and S. This is a standard pattern in algebra: e.g. a ring is given by a monoid and
an abelian group, subject to equations that ensure that the former distributes
over the latter. Similarly, the equations of bialgebras (Example 2.3) describe the
interplay of a monoid and a comonoid. Ordinary functions, which can always be
decomposed as a surjection followed by an injection, are another example.

In [25] Lack shows how these phenomena can be uniformly described as the
operation of composing PROPs. The conceptual switch is to understand PROPs
as monads, and their composition as a distributive law. These monads live in a
certain bicategory [3], as in the classical work by Street [36]2.

2 Actually, Street worked in a 2-category, but the same theory can be developed in
any bicategory with the obvious, minor modifications [25, §3.1].



Lawvere Categories as Composed PROPs 17

Definition 3.1. A monad on an object x of a bicategory B is a 1-cell F : x → x
with 2-cells ηF : idx → F and μF : F ; F → F (called the unit and the multipli-
cation respectively) making the following diagrams–in which we suppress the asso-
ciativity isomorphisms—commute.

A morphism between monads x
F−→ x and x

G−→ x is a 2-cell θ : F → G making
the following diagrams commute3.

An epimorphic monad morphism is called a monad quotient.

For B = Cat, the above definition yields the standard notion of monad as
an endofunctor with a pair of natural transformations. Something interesting
happens for the case of the bicategory B = Span(Set) whose objects are sets, 1-
cells are spans of functions (with composition defined by pullback) and 2-cells are
span morphisms: monads in Span(Set) are precisely the small categories. Indeed,
a monad (F , η, μ) there consists of a span Ob dom←−−− Ar cod−−→ Ob , which yields a
set Ob of objects, one Ar of arrows and domain/codomain maps Ar ⇒ Ob . The
unit η : id → F is a span morphism associating an identity arrow to each object
(below left). The multiplication μ : F ; F → F is a span morphism defining

composition for any two arrows a
f−→ b

g−→ c in Ar (below right).

Ob
id
�����

η

��

id
�����

Ob Ob

Ardom

�����
cod

�����

Pp1

		������� ��

μ





p2

���������

Ardom

		������ cod

��						 Ardom

		������ cod

��						

Ob Ob Ob

Ar
dom

��














 cod

���������������

By thinking of categories as monads, one can define the composition of categories
with the same set of objects as monad composition by a distributive law in
Span(Set). This phenomenon is studied in [31].

Definition 3.2. Let (F , ηF , μF ), (G, ηG , μG) be monads in a bicategory B on
the same object. A distributive law of F over G is a 2-cell λ : F ; G → G ; F
in B making the following diagrams—in which we again omit associativity—
commute.
3 A notion of morphism can be defined also between monads on different objects, like

in [36]. We will not need that level of generality here.



18 F. Bonchi et al.

F
FηG

��

ηGF
����

��
��

��

F ; G λ �� G ; F

G
ηF G

��

GηF

��

F ; G ; G
FμG

��

λG �� G ; F ; G Gλ �� G ; G ; F
μGF

��
F ; G λ �� G ; F

F ; F ; G
μF G

��

Fλ
�� F ; G ; F

λF
�� G ; F ; F

GμF
�� (6)

A distributive law λ : F ; G → G ; F yields a monad G ; F with the following
unit and multiplication:

ηG ;F : id
ηF
−−→ F ηGF−−−→ G ; F

μG ;F : G ; F ; G ; F GλF−−−→ G ; G ; F ; F μGFF−−−−→ G ; F ; F GμF
−−−→ G ; F

(7)

Let us verify how the abstract definition works for the case of categories. Pick
categories C and D with the same set Ob of objects, seen as monads Ob domC←−−−
ArC

codC−−−→ Ob and Ob domD←−−− ArD

codD−−−→ Ob in Span(Set). A distributive law
λ : C ; D → D ; C is a span morphism

		���������

λ





��							

ArC
domC

�������� codC

�������� ArD
domD

�������� codD

��������

Ob Ob Ob

ArD

domD

��������
codD

��������
ArC

domC

��������
codC

��������

.

��							
��

���������

mapping composable pairs a
∈C−−→ ∈D−−→ b to composable pairs a

∈D−−→ ∈C−−→ b. As
described in (7), λ allows to define a monad structure on D ; C. That means, λ

yields a category D ; C whose arrows a → b are composable pairs a
∈D−−→ ∈C−−→ b of

arrows of D, C and composition is defined as

(
a

f∈D−−−→ g∈C−−→ b
)

;
(

b
f ′∈D−−−→ g′∈C−−−→ c

)
:=

(
a

f∈D−−−→ λ(
g∈C−−→ f ′∈D−−−→)

g′∈C−−−→ c

)
.

PROPs are understood as monads in the same sense that small categories
are. The difference is that one needs to refine the bicategory of interest, in order
for the composition of PROPs-monads to yield another PROP-monad and not
an arbitrary small category. These refinements are in two steps. First, one takes
the bicategory Span(Mon) whose 1-cells are spans in the category of monoids,
instead of sets. This accounts for the monoidal structure — in fact, monads
in Span(Mon) are small strict monoidal categories. The second refinement has
the purpose of correctly account for the symmetry structure of PROPs: one



Lawvere Categories as Composed PROPs 19

takes the bicategory Bimod(Span(Mon)) whose objects are small strict monoidal
categories and 1-cells are the bimodules in Span(Mon). PROPs are then monads
on the object P of Bimod(Span(Mon)).

We shall gloss over further details about the exact formalisation of this obser-
vation, as it is out of the scope of this paper — we refer to [25] and [37, § 2.4] for
the detailed definitions. The simpler setting of composition of mere categories
should provide enough guidance to follow the rest of our exposition.

It is important for our purposes to remark how composition works for PROPs
T1, T2 generated by SMTs, say (Σ1, E1) and (Σ2, E2). The PROP T1 ; T2 induced
by a distributive law λ : T2 ; T1 → T1 ; T2 will also enjoy a presentation by gener-
ators and equations, consisting of the sum (Σ1 �Σ2, E1 �E2) plus the equations
Eλ arising from the the distributive law. The set Eλ is simply the graph of λ,
now seen as a set of directed equations ( ∈T2−−→ ∈T1−−→) ≈ ( ∈T1−−→ ∈T2−−→) telling how
Σ2-terms modulo E2 distribute over Σ1-terms modulo E1. In fortunate cases,
it is possible to present Eλ by a simpler, or even finite, set of equations, thus
giving a sensible axiomatisation of the compatibility conditions expressed by λ.
This is the case for both examples considered below.

Example 3.3.

(a) The PROP F of functions can be described as the composite of PROPs
for surjections and injections. Let In be the PROP whose arrows n → m
are injective functions from n to m. The PROP Su of surjective functions is
defined analogously. There is a distributive law λ : In ; Su → Su ; In defined by
epi-mono factorisation: it maps a composable pair ∈In−−→ ∈Su−−→ to a composable
pair ∈Su−−→ ∈In−−→ [25]. The resulting PROP Su ; In is isomorphic to F because any
function in F can be uniquely factorised (up-to permutation) as a surjection
followed by an injection. In more syntactic terms, using the isomorphism
F ∼= Mn, this result says that Mn is the composite Mu ; Un, where Mu ∼= Su is
the PROP freely generated by the SMT and Un ∼= In

by the SMT . The distributive law λ : In ; Su → Su ; In is then
presented by the remaining equation (A3) of Mn, which indeed describes
how the generator of Un can be moved past the one of Mu.

(b) The composition of Cm and Mn yields the PROP B of commutative bialge-
bras. First, because Mn ∼= F and Cm ∼= Fop , we can express a distributive law
λ : Mn ; Cm → Cm ; Mn as having the type F ; Fop → Fop ; F. This amounts
to saying that λ maps cospans n

f∈F−−→ g∈F←−− m to spans n
p∈F←−− q∈F−−→ m.

Defining this mapping via (chosen) pullback in F satisfies the conditions of
distributive laws [25]. One can now read the equations arising by the dis-
tributive law from pullback squares in F. For instance:



20 F. Bonchi et al.

where the second diagram is obtained from the pullback by applying the
isomorphisms F ∼= Mn and Fop ∼= Cm. In fact, Lack [25] shows that the equa-
tions presenting Cm ; Mn arise from (those of Cm+Mn and) just four pullback
squares, yielding equations (A7)–(A10). Therefore, Cm ; Mn is isomorphic to
the PROP B of bialgebras encountered in Example 2.3. Furthermore, these
PROPs have a “concrete” descriptions as Fop ; F. In the terminology of [3],
one can see Fop ; F as the classifying category of the bicategory Span(F),
obtained by identifying the isomorphic 1-cells and forgetting the 2-cells.

There is a tight relationship between distributive laws and factorisation sys-
tems. Distributive laws of small categories are in 1-1 correspondence with so-
called strict factorisation systems [31], in which factorisations must be specified
uniquely on the nose, rather than merely up-to isomorphism. Distributive laws
of PROPs correspond instead to a more liberal kind of factorisation system, for
which decompositions are up-to permutation. As this perspective will be useful
later, we recall the following result from Lack [25].

Proposition 3.4 ([25], Theorem 4.6). Let S be a PROP and T1, T2 be

sub-PROPs of S. Suppose that each arrow n
f∈S−−→ m can be factorised as

n
g1∈T1−−−−→ g2∈T2−−−−→ m uniquely up-to permutation, that is, for any other decom-

position n
h1∈T1−−−−→ h2∈T2−−−−→ m of f , there exists permutation

p∈P−−→ such that the
following diagram commutes.

g2

��������g1
��������

h1

��
p

��

h2

�� .

Then there exists a distributive law λ : T2 ; T1 → T1 ; T2, defined by associating
to a composable pair

f∈T2−−−→ g∈T1−−−→ the factorisation of f ; g, yielding S ∼= T1 ; T2.

Quotient of a Distributive Law. Definition 3.1 introduced the notion of quo-
tient θ : F → G of a monad F : the idea is that the monad G is obtained by
imposing additional equations on the algebraic theory described by F . As one
may expect, distributive laws are compatible with monad quotients, provided
that the law preserves the newly added equations. This folklore result appears
in various forms in the literature: [9] gives it for distributive laws of endofunc-
tors over monads and [4,8] for distributive laws of monads. All these references
concern distributive laws in Cat. For our purposes, it is useful to state the result
for arbitrary bicategories.

Proposition 3.5. Suppose that λ : F ; H → H ; F is a distributive law in a
bicategory B, θ : F → G a monad quotient and λ′ : G ; H → H ; G another 2-cell
of B making the following diagram commute.

F ; H θH ��

λ
��

G ; H
λ′

��
H ; F Hθ �� H ; G

(8)



Lawvere Categories as Composed PROPs 21

Then λ′ is a distributive law of monads.

Proof. The diagrams for compatibility of λ′ with unit and multiplication of G
commute because θ is a monad morphism and (8) commutes. For compatibility
of λ′ with unit and multiplication of H, one needs to use commutativity of (8)
and the fact that θ is epi.

We remark that Proposition 3.5 holds also in the version in which one quo-
tients the monad H instead of F . It is now useful to instantiate the result to the
case of distributive laws of PROPs.

Proposition 3.6. Let T be the PROP freely generated by (Σ,E) and E′ ⊇ E be
another set of equations on Σ-terms. Suppose that there exists a distributive law
λ: T ; S → S ; T such that, if E′ implies c = d, then λ( c∈T−−−→ e∈S−−→) = λ(d∈T−−−→ e∈S−−→).
Then there exists a distributive law λ′ : T ′ ; S → S ; T ′ presented by the same equa-
tions as λ, i.e., Eλ′ = Eλ.

Proof. There is a PROP morphism θ : T → T ′ defined by quotienting string dia-
grams in T by E′. This is a monad quotient in the bicategory Prof(Mon) where
PROPs are monads. We now define another 2-cell λ′ : T ′ ; Cm → Cm ; T ′ as fol-

lows: given e∈T ′
−−−→ c∈Cm−−−→, pick any d∈T−−−→ such that θ(d) = e and let c′∈Cm−−−−→ d′∈T−−−→

be λ( d∈T−−−→ c∈Cm−−−→). Define λ′( e∈T ′
−−−→ c∈Cm−−−→) as c′∈Cm−−−−→ θ(d′)∈T ′

−−−−−−→. λ′ is well-defined
because, by assumption, if θ(d1) = θ(d2) then E′ implies that d1 = d2 and thus
λ( d1−→ c−→) = λ( d2−→ c−→).

Now, λ, λ′ and θ satisfy the assumptions of Proposition 3.5. In particular,
(8) commutes by definition of λ′ in terms of λ and θ. The conclusion of Proposi-
tion 3.5 guarantees that λ′ is a distributive law. By construction, λ′ is presented
by the same equations as λ.

We will see an application of Proposition 3.6 in the next section (Lemma 4.8).

4 Lawvere Categories as Composed PROPs

This section introduces and characterises Lawvere categories via a certain class
of distributive laws of PROPs. As mentioned in the introduction, Lawvere cat-
egories are closely related to PROPs: the essential difference is that, whereas
a Lawvere category is required to be a category with finite products — hence-
forth called a cartesian category, a PROP may carry any symmetric monoidal
structure, not necessarily cartesian.

Just as PROPs, Lawvere categories can be also freely obtained by genera-
tors and equations. By analogy with symmetric monoidal theories introduced
in Sect. 2, we organise this data as a cartesian theory : it simply amounts to
the notion of equational theory that one typically finds in universal algebra, see
e.g. [13].



22 F. Bonchi et al.

Definition 4.1. A (one-sorted) cartesian theory (Σ,E) consists of a signature
Σ = {o1 : n1 → 1, . . . , ok : nk → 1} and a set E of equations between cartesian
Σ-terms, which are defined as follows:

– for each i ∈ N, the variable xi is a cartesian term;
– suppose o : n → 1 is a generator in Σ and t1, . . . , tn are cartesian terms. Then

o(t1, . . . , tn) is a cartesian term.

The Lawvere category L(Σ,E) freely generated by (Σ,E) is the category whose
objects are the natural numbers and arrows n → m are lists 〈t1, . . . , tm〉 of
cartesian Σ-terms quotiented by E, such that, for each ti, only variables among
x1, . . . , xn appear in ti. Composition is by substitution:
(

n
〈t1,...,tm〉−−−−−−→ m

)
;
(

m
〈s1,...,sz〉−−−−−−→ z

)
= n

〈s1[ti/xi|1≤i≤m],...,sz [ti/xi|1≤i≤m]〉−−−−−−−−−−−−−−−−−−−−−−−−→ z

where t[t′/x] denotes the cartesian term t in which all occurrences of the variable
x have been replaced with t′.

L(Σ,E) is equipped with a product × which is defined on objects by addition
and on arrows by list concatenation and suitable renaming of variables:

(
n

〈t1,...,tm〉−−−−−−→ m

)
×

(
z

〈s1,...,sl〉−−−−−−→ l

)

= n + z
〈t1,...,tm,s1[xi+m/xi|1≤i≤l],...,sl[xi+m/xi|1≤i≤l]〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m + l.

We use notation ovar(t) for the list of occurrences of variables appearing
(from left to right) in t and, more generally, ovar(t1, . . . , tm) for the list ovar(t1)
:: · · · :: ovar(tm). Also, |l| ∈ N denotes the length of a list l. We say that a list
〈t1, . . . , tm〉 : n → m is linear if each variable among x1, . . . , xn appears exactly
once in ovar(t1, . . . , tm).

Our first observation is that Lawvere categories are PROPs.

Proposition 4.2. L(Σ,E) is a PROP.

Proof. Let × act as the monoidal product, 0 as its unit and define the symmetry
n + m → m + n as the list 〈xn+1, . . . , xn+m, x1, . . . , xn〉. It follows that L(Σ,E)

equipped with this structure satisfies the laws of symmetric strict monoidal cat-
egories, thus it is a PROP.

As a side observation, note that the unique PROP morphism P → L(Σ,E)

given by initiality of P in PROP sends p : n → n to 〈xp−1(1), . . . , xp−1(n)〉.
Remark 4.3. In spite of Proposition 4.2, cartesian theories are not a subclass of
symmetric monoidal theories: in fact, the two concepts are incomparable. On the
one hand, a symmetric monoidal theory (Σ,E) is cartesian if and only if all gen-
erators in Σ have coarity 1 and, for all equations t = s in E, t and s are Σ-terms
with coarity 1. Under these conditions, there is a canonical wayto interpret any



Lawvere Categories as Composed PROPs 23

Σ-term n → m as a list of m cartesian Σ-terms on variables x1, . . . , xn. Below,
o ranges over Σ:

The inductive cases are defined using the operations ; and ⊕ on lists given
in Definition 4.1. Note that Σ-terms always denote (lists of) linear cartesian
terms. This explains why, conversely, not all the cartesian theories are symmet-
ric monoidal: their equations possibly involve non-linear Σ-terms, which are not
expressible with (symmetric monoidal) Σ-terms. The subtlety here is that, in
a sense, we can still simulate a cartesian theory on signature Σ with a sym-
metric monoidal theory, which however will be based on a larger signature Σ′,
recovering the possibility of copying and discarding variables by the use of addi-
tional generators. This point will become more clear below, where we will see
how copier and discharger, i.e., the cartesian structure, can be mimicked with
the use of the PROP Cm.

Example 4.4. The SMT (ΣM , EM) of commutative monoids is cartesian. It gen-
erates the Lawvere category LΣM ,EM

whose arrows n → m are lists 〈t1, . . . , tm〉
of elements of the free commutative monoid on {x1, . . . , xn}.

The example of commutative monoids is particularly instructive for sketching
our approach to Lawvere categories as composed PROPs. First, note that the
Lawvere category LΣM ,EM

includes the PROP Mn freely generated by (ΣM , EM).
Indeed, any string diagram of Mn can be interpreted as a list of terms following
the recipe of Remark 4.3. For instance,

As we observed above, string diagrams of Mn can only express linear terms.
What makes LΣM ,EM

more general than Mn is the ability to copy and discard
variables. Indeed, just as any monoidal category in which ⊕ is the cartesian prod-
uct, LΣM ,EM

comes equipped with canonical choices of a “copy” and “discard”
operation

cpy(n) := 〈x1, . . . , xn, x1, . . . , xn〉 : n → 2n dsc(n) := 〈 〉 : n → 0 n ∈ N

natural in n, which satisfy some expected equations: copying is commutative
and associative; copying and then discarding is the same as not doing anything
— see e.g. [14,18].

How can we mimic the copy and discard structure in the language of PROPs?
First, for each n > 1 one can define cpy(n) and dsc(n) in terms of cpy(1) and
dsc(1), which can therefore be regarded as the only fundamental operations4.
4 For n = 0, both operations are equal to the identity on 0.



24 F. Bonchi et al.

Also, the equations that they satisfy can be synthesised as saying that cpy(1)
acts as the comultiplication and dsc(1) as the counit of a commutative comonoid
on 1. Therefore, they are none other than the generators of the PROP Cm:

Our approach suggests that a copy of Mn and of Cm “live” inside LΣM ,EM
. We

claim that these two PROPs provide a complete description of LΣM ,EM
, that

means, any arrow of LΣM ,EM
can be presented diagrammatically by using Mn

and Cm. For instance,

Observe that the diagram is of the factorised form ∈Cm−−−→ ∈Mn−−−→. Intuitively, Cm
is deputed to model the interplay of variables — in this case, the fact that x1

is copied and x3 is deleted — and Mn describes the syntactic tree of the terms.
Of course, to claim that this factorisation is always possible, we need additional
equations to model composition of factorised diagrams. For instance:

The second equality holds if we assume the equation (A8) of the SMT of bial-
gebras. Thus the example suggests that composition by substitution in LΣM ,EM

can be mimicked at the diagrammatic level by allowing the use of bialgebra
equations, which as we know from Example 3.3(b) present the composite PROP
Cm ; Mn. Therefore, the conclusive conjecture of our analysis is that LΣM ,EM

must be isomorphic to Cm ; Mn and can be presented by equations (A1)–(A10).
We now generalise and make formal the above approach. Our main result is

the following.

Theorem 4.5. Suppose that (Σ,E) is an SMT which is also cartesian and let
T(Σ,E) be its freely generated PROP. Then L(Σ,E)

∼= Cm ; T(Σ,E), where distribu-
tive law T(Σ,E) ; Cm → Cm ; T(Σ,E) yielding L(Σ,E) is presented by equations

for each o ∈ Σ.

Before moving to the proof of Theorem4.5, we show its significance by revis-
iting some well-known theories in terms of our result.



Lawvere Categories as Composed PROPs 25

Example 4.6.

(a) If we instantiate Theorem 4.5 to the theory (ΣM , EM ) of commutative
monoids (Example 2.3), then (Lw1)–(Lw2) are the bialgebra equations (A7)–
(A10). The result that B ∼= Cm ; Mn (Example 3.3(b)) is now an immediate
consequence of Theorem 4.5 and tells us that the Lawvere category of com-
mutative monoids can be considered as the PROP of bialgebras.

(b) In the case of monoids, the resulting Lawvere category is precisely a compos-
ite PROP, because all the equations only affect the linear part of the theory,
that means, the generating cartesian theory is also an SMT. As observed
in Remark 4.3, this is not true in general: for instance, the cartesian the-
ory (ΣG, EG) of abelian groups extends the one (ΣM , EM ) of commutative
monoids with an inverse operation and a non-linear equation

. In such cases, Theorem 4.5 still yields useful infor-
mation about the structure of the resulting Lawvere category. For instance,
it means that L(ΣG,EG) is isomorphic to the PROP Cm ; TΣG,EM

quotiented
by the above non-linear equation, which is rendered in string diagrams as:

Interestingly, the result of this quotient is isomorphic to the PROP of integer
matrices, see e.g. [37, §3.5] and its models in a symmetric monoidal category
are the Hopf algebras [17], with playing the role of the antipode.

(c) In [21] Fritz presents the category of finite sets and probabilistic maps
using generators and equations. The resulting Lawvere category LProb

can be decomposed following the scheme of Theorem 4.5: there is a lin-
ear part (ΣP , EP ) of the theory — given by binary convex combinations

and suitable associativity and com-
mutativity laws in EP , a commutative comonoid structure, and the two inter-
act according to (Lw1)–(Lw2). This interaction yields a composite PROP
Cm ; T(ΣP ,EP ) which, quotiented by non-linear equations and

, yields LProb. 5

Remark 4.7. It is instructive to observe how Theorem 4.5 translates to models of
theories. We recalled what is a model for a PROP in Remark 2.4; there is an anal-
ogous notion for Lawvere categories. A model for a Lawvere category L(Σ,E) is a
cartesian category C together with a cartesian (i.e., finite-products preserving)
functor L(Σ,E) → C: models of L(Σ,E) in C and natural transformations between
them form a category CartMod(L(Σ,E), C). Now, for (Σ,E) and T(Σ,E) as in The-
orem 4.5, we have that models of L(Σ,E) in C cartesian are the same as models of
T(Σ,E) in C, now seen more abstractly as a symmetric monoidal category. That
means, there is an equivalence LinMod(T(Σ,E), C) � CartMod(L(Σ,E), C).

5 In fact, the Lawvere category in [21] has finite coproducts, while our LProb is based
on finite products. This is just a matter of co-/contra-variant presentation of the
same data: one can switch between the two by “vertical rotation” of diagrams.



26 F. Bonchi et al.

The rest of the section is devoted to proving Theorem4.5. First we observe
that, by the following lemma, it actually suffices to check our statement for SMTs
with no equations. This reduction has just the purpose of making computations
in L(Σ,E) easier, by working with terms instead of equivalence classes.

Lemma 4.8. If the statement of Theorem 4.5 holds in the case E = ∅, then it
holds for any cartesian SMT (Σ,E).

Proof. Let (Σ,E) be a cartesian SMT and TΣ, T(Σ,E) be the PROPs freely gen-
erated, respectively, by (Σ, ∅) and (Σ,E). By assumption, Theorem4.5 holds for
(Σ, ∅), yielding a distributive law λ : TΣ ; Cm → Cm ; TΣ. A routine check shows
that λ preserves the equations of E, whence Proposition 3.6 gives a distributive
law λ′ : T(Σ,E) ; Cm → Cm ; T(Σ,E) with the required properties.

In the sequel, let us abbreviate LΣ,∅ as LΣ. By virtue of Lemma 4.8, we shall
prove Theorem 4.5 for LΣ and by letting TΣ be the PROP freely generated by
(Σ, ∅). We shall obtain the distributive law TΣ ; Cm → Cm ; TΣ from the recipe
of Proposition 3.4, by showing that any arrow of LΣ decomposes as ∈Cm−−−→ ∈TΣ−−−→.

We now give some preliminary lemmas that are instrumental for the definition
of the factorisation and the proof of the main result. We begin by showing how
string diagrams of Cm and TΣ are formally interpreted as arrows of LΣ.

Lemma 4.9.

– Cm is the sub-PROP of LΣ whose arrows are lists of variables. The inclusion
of Cm in LΣ is the morphism Φ : Cm → LΣ defined on generators of Cm by

– TΣ is the sub-PROP of LΣ whose arrows are linear terms. The inclusion of
TΣ in LΣ is the morphism Ψ : TΣ → LΣ defined on generators of TΣ by

Proof. First, it is immediate to verify that lists of variables are closed under
composition, monoidal product and include all the symmetries of LΣ: therefore,
they form a sub-PROP. The same holds for linear terms.

We now consider the first statement of the lemma. There is a 1-1 corre-
spondence between arrows n

f∈LΣ−−−−→ m that are lists of variables and functions
m → n: the function for f maps k, for 1 ≤ k ≤ m, to the index l of the vari-
able xl appearing in position k in f . This correspondence yields an isomorphism
between the sub-PROP of LΣ whose arrows are lists of variables and Fop . Com-
posing this isomorphism with Cm

∼=−→ Fop yields Φ as in the statement of the
lemma.

For the second statement, faithfulness is immediate by the fact that arrows
of TΣ are Σ-terms modulo the laws of SMCs, with no additional equations. One
can easily verify that Ψ : TΣ → LΣ identifies the linear terms in LΣ following the
observations in Remark 4.3.



Lawvere Categories as Composed PROPs 27

Henceforth, for the sake of readability we shall not distinguish between Cm
and the isomorphic sub-PROP of LΣ identified by the image of Φ, and similarly
for TΣ and Ψ . Lemma 4.9 allows us to use LΣ as an environment where Cm and
TΣ interact. The following statement guarantees the soundness of the interaction
described by (LW1)–(Lw2).

Lemma 4.10. Equations (LW1) and (Lw2) are sound in LΣ.

Proof. We first focus on (Lw1). Following the isomorphisms of Lemma 4.9,
is interpreted as the arrow 〈o(x1, . . . , xn)〉 ∈ LΣ[n, 1] and
as 〈〉 ∈ LΣ[1, 0]. The left-hand side of (Lw1) is then the com-

posite 〈o(x1, . . . , xn)〉 ; 〈〉 ∈ LΣ[n, 0], which is equal by definition to 〈〉 ∈ LΣ[n, 0].
Therefore, the left- and right-hand side of (Lw1) are the same arrow of LΣ.

It remains to show soundness of (Lw2). Following Lemma 4.9, the left-hand
side is interpreted in LΣ as 〈o(x1, . . . , xn)〉 ; 〈x1, x1〉 and the right-
hand side as 〈x1, . . . , xn, x1, . . . , xn〉 ; 〈o(x1, . . . , xn), o(xn+1, . . . , xn+n)〉. By def-
inition, both composites are equal to 〈o(x1, . . . , xn), o(x1, . . . , xn)〉 in LΣ. There-
fore, (Lw2) is also sound in LΣ.

It is useful to observe that (Lw1)–(Lw2) allows us to copy and discard not
only the generators but arbitrary string diagrams of TΣ.

Lemma 4.11. Suppose is a string diagram of TΣ. Then the following holds
in TΣ + Cm quotiented by (Lw1)–(Lw2).

Proof. The proof is by induction on . For (Lw3), the base cases of
and follow by the laws of SMCs (Fig. 1). The base case of , for o a
generator in Σ, is given by (Lw2). The inductive cases of composition by ; and
⊕ immediately follow by induction hypothesis. The proof of (Lw4) is analogous.

We can now show the factorisation lemma.

Lemma 4.12. Any arrow n
f∈LΣ−−−−→ m has a factorisation n

ĉ∈Cm−−−→ d̂∈TΣ−−−→ m
which is unique up-to permutation.

Proof. Since the cartesian theory generating LΣ has no equations, n
f−→ m is

just a list of cartesian Σ-terms 〈t1, . . . , tm〉. The factorisation consists in replac-
ing all variables appearing in 〈t1, . . . , tm〉 with fresh ones x1, . . . , xz, so that
no repetition occurs: this gives us the second component of the decomposi-

tion as a list of linear terms z
d̂∈TΣ−−−→ m. The first component ĉ will be the

list n
ovar(t1,...,tm)∈Cm−−−−−−−−−−−−→ z of variables originally occurring in f , so that post-

composition with d̂ yields 〈t1, . . . , tm〉. It is simple to verify uniqueness up-to
permutation of this factorisation.



28 F. Bonchi et al.

We now have all the ingredients to conclude the proof of our main statement.

Proof (Theorem 4.5). Using the conclusion of Lemma 4.12, Proposition 3.4 gives
us a distributive law λ : TΣ ; Cm → Cm ; TΣ such that LΣ

∼= Cm ; TΣ. It remains
to show that (Lw1)–(Lw2) allow to prove all the equations arising from λ. By
Proposition 3.4, λ maps a composable pair n

d∈TΣ−−−→ c∈Cm−−−→ m to the factorisation

n
c′∈Cm−−−−→ d′∈TΣ−−−−→ m of d ; c in LΣ, calculated according to Lemma 4.12. The cor-

responding equation generated by λ is d ; c = c′ ; d′, with d, c, c′, d′ now seen as
string diagrams of TΣ + Cm. The equational theory of LΣ

∼= Cm ; TΣ consists of
all the equations arising in this way plus those of TΣ + Cm. What we need to
show is that

the string diagrams d ; c and c′ ; d′ are equal modulo the (†)
equations of TΣ + Cm and (Lw1)–(Lw2).

Since our factorisation is unique up-to permutation, it actually suffices to
show a weaker statement, namely that

there exists a factorisation n
c′′∈Cm−−−−→ d′′∈TΣ−−−−→ m of d ; c (‡)

in LΣ such that the string diagrams d ; c and c′′ ; d′′ are
equal modulo the equations of TΣ + Cm and (Lw1)–(Lw2).

Statement (‡) implies (†) because, by uniqueness of the factorisation c′ ; d′

up-to permutation, there exists
p∈P−−→ such that d′ = p ; d′′ and c′′ = c′ ; p in LΣ.

Since p is an arrow of both sub-PROPs TΣ and Cm, the first equality also holds
in TΣ and the second in Cm. So c′ ; d′ = c′ ; p ; d′′ = c′′ ; d′′ in TΣ + Cm.

Therefore, we turn to a proof of (‡). We describe a procedure to transform

the string diagram d∈TΣ−−−→ c∈Cm−−−→ into the form c′′∈Cm−−−−→ d′′∈TΣ−−−−→ by only using the
equations in TΣ + Cm plus (Lw1)-(Lw2). Lemmas 4.9 and 4.10 guarantee that
d ; c = c′′ ; d′′ as arrows of LΣ.

1. First, there is a preparatory step in which we move all symmetries to the
outmost part of the string diagram d ; c, to ease the application of (Lw1)–
(Lw2). By definition, d only contains components of the kind ,

and . Using naturality (Fig. 1), we can move
all symmetries to the left of components .

The result is a string diagram p ; d̄ ; c′, where p only contains components
and — i.e., it is a string diagram of P — and d̄ is a string diagram

of TΣ where does not appear.



Lawvere Categories as Composed PROPs 29

We then perform a symmetric transformation on the string diagram c. By
definition, c contains components , ,
and . By naturality, we can move all symmetries to the
right of any component and .

The result is a string diagram p ; d̄ ; c̄ ; p′, where c̄ is a string diagram of Cm
in which does not appear and p′ is a string diagram of P.

2. We now make d̄ and c̄ interact. First note that, since d̄ does not contain
and all generators o ∈ Σ have coarity 1, d̄ must the ⊕-product d̄1 ⊕ . . . ⊕ d̄z

of string diagrams d̄i : ki → 1 of TΣ.

For analogous reasons, c̄ is also a ⊕-product c̄1⊕ . . .⊕ c̄z where, for 1 ≤ i ≤ z,

We thus can present c̄ as follows:

We are now in position to distribute each d̄i over the corresponding c̄i. Sup-
pose first c̄i satisfies the left-hand equality in (9). By assumption, all the
equations of TΣ +Cm, Lw1 and (Lw2) hold. Thus, by Lemma4.11, also (Lw3)
holds. Starting from d̄i ; c̄i, we can iteratively apply (Lw3) to obtain a string
diagram of shape ∈Cm−−−→ ∈TΣ−−−→:



30 F. Bonchi et al.

In the remaining case, c̄i satisfies the right-hand equality in (9). Then, one
application of (Lw1) also gives us a string diagram of shape ∈Cm−−−→ ∈TΣ−−−→.

Applying the above transformations for each d̄i ; c̄i yields a string diagram of

the desired shape c′′∈Cm−−−−→ d′′∈TΣ−−−−→.

Observe that all the transformations that we described only used equations in
TΣ +Cm, (Lw1) and (Lw2). This concludes the proof of (‡) and thus of the main
theorem.

Acknowledgements. The first author acknowledge support by project ANR
12IS02001 PACE. The third author acknowledges support from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement n◦ 320571.

References

1. Baez, J.C., Erbele, J.: Categories in control (2014). CoRR abs/1405.6881



Lawvere Categories as Composed PROPs 31

2. Baez, J.C.: Universal algebra and diagrammatic reasoning. Lecture (2006). http://
math.ucr.edu/home/baez/universal/universal hyper.pdf

3. Studer, C.: Introduction. In: Studer, C. (ed.) Numerics of Unilateral Contacts and
Friction. LNACM, vol. 47, pp. 1–8. Springer, Heidelberg (2009)

4. Bonchi, F., Milius, S., Silva, A., Zanasi, F.: Killing epsilons with a dagger – a
coalgebraic study of systems with algebraic label structure. Theoret. Comput. Sci.
604, 102–126 (2015)

5. Bonchi, F., Sobociński, P., Zanasi, F.: A categorical semantics of signal flow graphs.
In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 435–450.
Springer, Heidelberg (2014)

6. Bonchi, F., Sobociński, P., Zanasi, F.: Interacting bialgebras are Frobenius. In:
Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 351–365.
Springer, Heidelberg (2014)

7. Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2015, pp. 515–526 (2015)

8. Bonchi, F., Zanasi, F.: Bialgebraic semantics for logic programming. Log. Methods
Comput. Sci. 11(1:14), 1–47 (2015)

9. Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting distributive laws. In:
Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 95–109. Springer,
Heidelberg (2013)

10. Borceux, F.: Handbook of Categorical Algebra 1 - Basic Category Theory. Cam-
bridge Univ. Press, Cambridge (1994)

11. Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets inter-
actions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
312–326. Springer, Heidelberg (2011)

12. Bruni, R., Montanari, U., Plotkin, G.D., Terreni, D.: On hierarchical graphs: rec-
onciling bigraphs, gs-monoidal theories and gs-graphs. Fundam. Inform. 134(3–4),
287–317 (2014)

13. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer,break
Heidelberg (1981)

14. Burroni, A.: Higher dimensional word problems with applications to equational
logic. Theor. Comput. Sci. 115, 43–62 (1993)

15. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New J. Phys. 13(4), 043016 (2011)

16. Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-
monoidal categories. Appl. Categorical Struct. 7(4), 299–331 (1999)

17. Dascalescu, S., Nastasescu, C., Raianu, S.: Hopf Algebras, Pure and Applied Math-
ematics, vol. 235. Marcel Dekker Inc., New York (2001). An Introduction

18. Eilenberg, S., Kelly, G.M.: Closed categories. In: Eilenberg, S., Harrison, D.K.,
MacLane, S., Röhri, H. (eds.) Proceedings of the Conference on Categorical Alge-
bra, pp. 421–562. Springer, Heidelberg (1966)

19. Fiore, M., Devesas Campos, M.: The algebra of directed acyclic graphs. In: Coecke,
B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games and Quantum
Foundations. LNCS, vol. 7860, pp. 37–51. Springer, Heidelberg (2013)

20. Fong, B., Rapisarda, P., Sobociński, P.: A categorical approach to open and inter-
connected dynamical systems (2015). CoRR/1510.05076

21. Fritz, T.: A presentation of the category of stochastic matrices (2009). CoRR
abs/0902.2554. http://arxiv.org/abs/0902.2554

22. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor.
Comput. Sci. 357(1–3), 70–99 (2006)

http://math.ucr.edu/home/baez/universal/universal_hyper.pdf
http://math.ucr.edu/home/baez/universal/universal_hyper.pdf
http://arxiv.org/abs/0902.2554


32 F. Bonchi et al.

23. Hyland, M., Power, J.: The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electron. Notes Theor. Comput. Sci. 172, 437–458
(2007)

24. Jacobs, B.: Semantics of weakening and contraction. Ann. Pure Appl. Logic 69(1),
73–106 (1994)

25. Lack, S.: Composing PROPs. Theor. App. Categories 13(9), 147–163 (2004)
26. Lafont, Y.: Equational reasoning with 2-dimensional diagrams. Term Rewriting.

LNCS, vol. 909, pp. 170–195. Springer, Heidelberg (1995)
27. Lawvere, W.F.: Functorial semantics of algebraic theories. Ph.D. thesis (2004)
28. Mac Lane, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40–106 (1965)
29. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg

(1998)
30. Melliès, P.A.: Categorical semantics of linear logic. In: Interactive Models of

Computation and Program Behaviour, Panoramas et Synthèses 27, Société
Mathématique de France 1196 (2009)

31. Rosebrugh, R., Wood, R.: Distributive laws and factorization. J. Pure Appl. Alge-
bra 175(13), 327–353 (2002). Special Volume celebrating the 70th birthday of
Professor Max Kelly

32. Ross Duncan, K.D.: Interacting Frobenius algebras are Hopf. CoRR
abs/1601.04964 (2016). http://arxiv.org/abs/1601.04964

33. Selinger, P.: A survey of graphical languages for monoidal categories. Springer Lect.
Notes Phys. 13(813), 289–355 (2011)

34. Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.J.D. (eds.): Term Graph Rewrit-
ing: Theory and Practice. Wiley, Chichester (1993)

35. Sobociński, P., Stephens, O.: A programming language for spatial distribution of
net systems. In: Petri Nets 2014 (2014)

36. Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2(1), 243–265
(2002)

37. Zanasi, F.: Interacting Hopf algebras: the theory of linear systems. Ph.D. thesis,
Ecole Normale Supérieure de Lyon (2015)

http://arxiv.org/abs/1601.04964


Transitivity and Difunctionality of Bisimulations

Mehdi Zarrad(B) and H. Peter Gumm

Philipps-Universität Marburg, Marburg, Germany
zarrad@mathematik.uni-marburg.de

Abstract. Bisimilarity and observational equivalence are notions that
agree in many classical models of coalgebras, such as e.g. Kripke struc-
tures. In the general category SetF of F−coalgebras these notions may,
however, diverge. In many cases, observational equivalence, being tran-
sitive, turns out to be more useful.

In this paper, we shall investigate the role of transitivity for the largest
bisimulation of a coalgebra. Passing to relations between two coalgebras,
we choose difunctionality as generalization of transitivity. Since in SetF
bisimulations are known to coincide with F̄−simulations, we are led to
study the notion of L−similarity, where L is a relation lifting.

1 Introduction

In the 1990s, J. Rutten developed a universal theory for state-based systems.
Such systems were represented as coalgebras in [19]. A coalgebra of type F is a
pair consisting of a base set A and a structure map α : A −→ F (A) where F is
any Set-endofunctor. Many of the early structural results, we just exemplarily
mention [16], assumed that the type functor F should preserve weak pullbacks.
In [5], one of the present authors began studying the role of weak pullback
preservation. In [4,14] he extended many results from [19] to the case of arbi-
trary functors, adding new coalgebraic constructions, e.g. for building terminal
coalgebras. A systematic study relating preservation properties of functors to
structural (coalgebraic) properties of their coalgebras was given in [8]. In par-
ticular, preservation properties were related to properties of bisimulations and
congruences. For instance, it was shown that bisimulations restrict to subcoalge-
bras, if and only if the functor F preserves preimages, i.e. pullbacks along regular
monos.

Bisimulations, as compatible relations have been introduced by Aczel and
Mendler in [1]. An alternative definition, equivalent for Set-coalgebras was given
by Hermida and Jacobs [13].

A concept, competing with bisimulations is the notion of a congruence rela-
tion θ as a kernel ker ϕ of a homomorphism ϕ. Just as there is always a largest
bisimulation ∼A, there is also a largest congruence ∇A on every coalgebra A.
The disadvantage of ∼A versus ∇A is, that even though ∼A is reflexive and sym-
metric, it need not be transitive, hence it is not able to reflect logical equivalence.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 33–52, 2016.
DOI: 10.1007/978-3-319-40370-0 4



34 M. Zarrad and H.P. Gumm

Since the equivalence hull of any bisimulation is always a congruence relation
[1], we have the implications

∼A⊆∼∗
A⊆ ∇A

where each of the inclusions may be strict.
Already in [1], bisimulations were defined as relations between two (possi-

ble different) coalgebras A and B. The notion of congruence can as easily be
extended to the notion of 2-congruence, defined as the kernel of a sink of two
homomorphisms ϕ : A → C, and ψ : B → C i.e. as ker(ϕ,ψ) := {(a, b) | ϕ(a) =
ψ(b)}. (2-congruences were studied by S. Staton [21] under the name of kernel-
bisimulations. However they are not necessarily bisimulations in the original
sense, so we prefer to call them 2-simulations). Again, for the case of two coalge-
bras A and B it is easy to see that there is again a largest bisimulation ∼A,B as
well as a largest 2-congruence ∇A,B. The above inequalities do not immediately
generalize, since transitivity makes no sense for relations between different sets.
An alternative notion, however, is difunctionality as introduced by Riguet [18].
The inequality corresponding to the above is then

∼A,B⊆∼d
A,B⊆ ∇A,B

where Rd denotes the difunctional closure of a relation R.
The definition of bisimulation given by Hermida and Jacobs used the fact

that a relation R ⊆ A × B can easily be lifted to a relation F̄R ⊆ F (A) × F (B),
often called the Barr extension of R. Generalizing this to an arbitrary relation
lifting L leads to the notion of L−simulation as studied by Thijs [22] and in a
series of papers by Venema et al., see e.g. [15].

The congruences which can be obtained as transitive closure of bisimula-
tions are exactly the regular congruences i.e. kernels of coequalizers [8]. In the
same paper it was shown that a functor F preserves weak kernel pairs if and
only every congruence on a single coalgebra in SetF is a bisimulation. In the
present paper, which subsumes some results obtained in the first author’s Mas-
ter thesis [24], we want to explain further the relationship between bisimulations
and 2−congruences and, assuming a monotonic relation lifting L, we study the
difunctional closure of L−similarity. A quite useful tool is provided by a result,
giving conditions for a bisimulation to restrict to subcoalgebras without assum-
ing anything about the functor F .

2 Basic Notions

For a product A × B we denote the projections to the components by πA and
πB . Given a relation R ⊆ A × B, the restrictions to R of the projections are
πR

A := πA ◦ ιR where ιR : R ↪→ A × B is set inclusion. Given a second relation S
with R ⊆ S ⊆ A × B we note that πR

A = πS
A ◦ ιSR, where ιSR : R ↪→ S is, again,

the inclusion map.



Transitivity and Difunctionality of Bisimulations 35

The converse of a relation R is R− := {(b, a) | (a, b) ∈ R}. For a subset
U ⊆ A, we let R[U ] := {b ∈ B | ∃u ∈ U.(u, b) ∈ R}. A relation R ⊆ A × A
is transitive if for all x, y, z ∈ A we have (x, y), (y, z) ∈ R =⇒ (x, z) ∈ R.
Equivalently, R is transitive, if R◦R ⊆ R where ◦ is relational composition. The
reflexive transitive closure of R is called R�.

Transitivity makes no sense for relations R ⊆ A × B between different
sets, sodifunctionality [18] can be considered as a possible generalization of
transitivity:

Definition 1. A relation R ⊆ A × B is called difunctional, if for all a1, a2 ∈ A
and for all b1, b2 ∈ B it satisfies:

(a1, b1), (a2, b1), (a2, b2) ∈ R =⇒ (a1, b2) ∈ R.

This notion can be illustrated by the following figure, which explains why
“difunctional” is sometimes called “z-closed”:

a1

�
�

�
� b1

a2

��������
b2

It is elementary to see that the difunctional closure of a relation R is

Rd := R ◦ (R− ◦ R)� = (R ◦ R−)� ◦ R

where R− is the converse relation to R. The difunctional closure can also be
obtained as the pullback of the pushout of πR

A with πR
B [9,18].

2.1 Categorical Notions

We assume only elementary categorical notions and we use the terminology of [2].
Regular monos are equalizers of a parallel pair of morphisms. Analogously, reg-
ular epis are coequalizers. Split epis (split monos) i.e. the right-(left-)-invertible
morphisms are regular epi (regular mono). We denote the sum of a family (Ai)i∈I

of objects and with the canonical injections by eAi
: Ai → Σi∈IAi. Given a sink

(qi : Ai −→ Q)i∈I we denote the induced morphisms from the sum
∑

Ai → Q
by [(qi)i∈I ]. The following lemma will be needed later. It is obviously true in
every category with sums:

Lemma 1. For all morphisms f : A −→ B the map [f, idB ] : A + B → B is
split epi.

Definition 2. A weak limit of a diagram D is a cone over D such that for every
other (competing) cone there is at least one morphism making the relevant
triangles commutative.

If we replace “at least one” in the above definition with “exactly one”, this
is the definition of limit.



36 M. Zarrad and H.P. Gumm

Set-Endofunctors. In the following, F will always be a Set-endofunctor. F
preserves epis, and F preserves monos with nonempty domain. Next, let D a
diagram.

Definition 3. F weakly preserves D-limits if F maps every D-limit into a weak
D-limit.

It is well known that F weakly preserves D-limits if and only if it preserves
weak D-limits, see [5].

An important property of Set-endofunctors is that they preserve finite non-
empty intersections [23]. In order to preserve all finite intersections, it might be
necessary to redefine F on the empty set and on empty mappings to obtain a
(marginally modified) new functor preserving all finite intersections. Therefore,
we are safe to only consider functors which preserve all finite intersections.

2.2 F -coalgebras

Definition 4. Let F : Set → Set be a Set-endofunctor. An F -coalgebra A =
(A,α) consists of a set A and a structure map α : A → F (A). A map ϕ : A → B
between two coalgebras A = (A,α) and B = (B, β) is called a homomorphism,
if β ◦ ϕ = Fϕ ◦ α. A subcoalgebra of a coalgebra A is a subset U ⊆ A with a
structure map αU such that the inclusion map ιXU : U ↪→ X is a homomorphism.

The class of all F−coalgebras with coalgebra homomorphisms forms the cate-
gory SetF . In [3] it is proved that SetF is cocomplete i.e. every colimit exists. Epis
are exactly the surjective homomorphisms [19]. Monomorphisms in SetF need
not be injective. Regular monos are exactly the injective homomorphisms [6].

Bisimulations

Definition 5 (Aczel and Mendler [1]). A bisimulation between two coalge-
bras A and B is a relation R ⊆ A×B for which there exists a coalgebra structure
ρ : R → F (R) such that the projections πR

A : R → A and πR
B : R → B are homo-

morphisms. A bisimulation R on a coalgebra A is a bisimulation between A and
itself.

The union of bisimulations is a bisimulation and ∅ is always a bisimulation,
so that the bisimulations between A and B form a complete lattice with largest
element called ∼A,B . For the same reason, every relation R between coalgebras
A and B contains a largest bisimulation, which we denote by [R]. It is the union
of all bisimulations contained in R.

Congruences and 2−congruences

Definition 6. A congruence θ on a coalgebra A is the kernel of a homomor-
phism ϕ : A → C, i.e θ = kerϕ = {(a, a′) ∈ A × A |ϕ(a) = ϕ(a′)}.



Transitivity and Difunctionality of Bisimulations 37

If θ is a congruence on A, then there is a structure map on the factor set
A/θ := {[a]θ | a ∈ A}, such that πθ : A −→ A/θ with πθ(a) := [a]θ := {a′ ∈ A |
aθa′} becomes a homomorphism. The set of all congruences on a coalgebra A
forms a complete lattice [7] with largest element called ∇A and smallest element
ΔA = {(a, a) | a ∈ A}. The supremum of a family of congruences is obtained as
the transitive closure of their union. We denote the lattice of all congruences by
Con(A).

Given a bisimulation R on A, its equivalential hull, that is the smallest equiv-
alence relation containing R is a congruence relation [1]. It follows immediately,
that ∼A⊆ ∇A. Congruences arising as equivalential hulls of a bisimulation are
called regular. This notion is suggested by the following result from [8]:

Lemma 2. A morphism ϕ : A → B is mono iff [kerϕ] = ΔA and regular mono,
iff it is injective.

An epi ϕ : A � B is regular epi (in SetF ) iff its kernel is a regular congruence
iff kerϕ = [kerϕ]�.

For technical reasons, we call a homomorphism ϕ strictly regular, if its kernel
is a bisimulation, i.e. if kerϕ = [kerϕ]. Notice that this notion is not an abstract
categorical one, but a coalgebraic notion.

Definition 7. A 2−congruence between two coalgebras A and B is the kernel
(pullback in the category Set) of two homomorphisms ϕ : A → C and ψ : B → C,
i.e.

θ = ker(ϕ,ψ) := {(a, b) ∈ A × B |ϕ(a) = ψ(b)}.

Just as congruences are transitive, 2−congruences are difunctional. The
largest 2−congruence between A and B is called observational equivalence and
written ∇A,B. For each bisimulation R between A and B, its difunctional hull Rd,
being the kernel of the pushout of the components πR

A and πR
B is a 2-congruence,

so Rd ⊆ ∇A,B.

3 Observational Equivalence and Bisimilarity

When A and B are coalgebras, elements a ∈ A and b ∈ B are called bisimilar,
if there exists a bisimulation R between A and B containing (a, b). This is the
same as saying that for some coalgebra R and homomorphisms ϕA : R → A
and ϕB : R → B there is some r ∈ R with ϕA(r) = a and ϕB(r) = b. In short, a
and b are bisimilar, if they have a common ancestor.

Dually, a and b are called observationally equivalent, iff they have a common
offspring, meaning that there exists a coalgebra C and homomorphisms ψA :
A → C and ψB : B → C with ψA(a) = ψB(b). We first study the situation
for the case A = B. Here a, a′ are bisimilar iff (a, a′) ∈∼A and observationally
equivalent iff (a, a′) ∈ ∇A.



38 M. Zarrad and H.P. Gumm

3.1 Nabla and Simple Coalgebras

Definition 8. A coalgebra A is called simple, if ∇A = ΔA and extensional, if
∼A= ΔA.

It is well known that a coalgebra A is simple iff each morphism starting in A
is injective [4]. If a terminal coalgebra T exists, simple coalgebras are precisely
the subcoalgebras of T [4]. For every coalgebra A, the factor coalgebra A/∇A
is simple. The notions of simplicity and extensionality differ [7]. The coalgebra
of the following example is extensional but not simple.

Example 1.

�������	0
�� ��

��

�������	1
��

����
�������	
������2

��

�� ��

�������	
������3
��

��

		

Consider the above 2 × P≤3−coalgebra A := ({0, 1, 2, 3}, α) with α(0) :=
(0, {0, 1, 2}), α(2) := (1, {0, 1, 2}), α(1) = (0, {1, 2, 3}), α(3) = (1, {1, 2, 3}). It is
easy to check that ∇ = {(0, 1), (1, 0), (2, 3), (3, 2)}∪ΔA. Suppose that (0, 1) ∈∼ .
Then there is (0,M) ∈ 2 × P≤3 ∼ with π1[M ] = (0, 1, 2) and π2[M ] = (1, 2, 3).
Hence M = {(0, 1), (1, 1), (2, 2), (2, 3)}. This is a contradiction, because |M | = 4.
Similarly (2, 3) �∈∼. We obtain ∼= Δ �= ∇.

The following lemma helps us to verify whether a congruence θ is the largest
congruence. It suffices to check that the codomain of a factor is simple.

Lemma 3. Subcoalgebras of simple coalgebras are simple. More generally, if ϕ :
A → C is a homomorphism and C is simple, then ker ϕ = ∇A.

Proof. Let ι : U ↪→ C be the inclusion morphism, and assume that θ is a congru-
ence on U . The pushout of ι with πθ yields a homomorphism ψ : C → P. Since C
is simple, ψ is injective. It follows that πθ is injective. This means that ∇U = ΔU .
Next, let ϕ : A → C be a homomorphism and C simple. The image of A under ϕ
is a subcoalgebra of C, which, as we have just seen, must be simple. Thus we may
as well assume that ϕ is epi. Obviously, kerϕ ⊆ ∇A, so there is a homomorphism
ψ : C → A/∇A with π∇A = ψ ◦ ϕ. So ψ is surjective, and injective, since C is
simple. It follows that ψ is an isomorphism, whence ker ϕ = ker π∇A = ∇A.

The following lemma relates observational equivalence between two coalge-
bras to observational equivalence on their sum:

Lemma 4. [14] (a, b) ∈ ∇A,B ⇐⇒ (eA(a), eB(b)) ∈ ∇A+B.



Transitivity and Difunctionality of Bisimulations 39

Proof.

(a, b) ∈ ∇A,B ⇐⇒ ∃C, ϕ : A → C, ψ : B → C. ϕ(a) = ψ(b)
⇐⇒ ∃C, χ : A + B → C, χ(eA(a)) = χ(eB(b))
⇐⇒ (eA(a), eB(b)) ∈ ∇A+B.

We need to extend Lemma 3 to the case of a cospan of two homomorphisms:

Lemma 5. If ϕ : A → C and ψ : B → C are homomorphism and C is simple,
then ker(ϕ,ψ) = ∇A,B.

Proof. Consider [ϕ,ψ] : A + B → C with ϕ = [ϕ,ψ] ◦ eA and ψ = [ϕ,ψ] ◦ eB. By
Lemma 3, we obtain ker[ϕ,ψ] = ∇A+B, so with this and Lemma 4 we calculate:

ϕ(a) = ψ(b) ⇐⇒ [ϕ,ψ] ◦ eA(a) = [ϕ,ψ] ◦ eB(b)
⇐⇒ (eA(a), eB(b)) ∈ ker[ϕ,ψ]
⇐⇒ (eA(a), eB(b)) ∈ ∇A+B
⇐⇒ (a, b) ∈ ∇A,B.

The following construction will be used in various places. It can be used to
change the structure map α of a coalgebra while at the same time preserving
other important properties as seen in the ensuing lemma:

Definition 9. Given a coalgebra A = (A,α), element x0 ∈ A and subset U ⊆ A.
We define a new coalgebra AU

x0
:= (A, ᾱ) on the same base set by constantly

mapping all elements of U to α(x0) and retaining α on all other elements, i.e.:

ᾱ(x) :=

{
α(x0) if x ∈ U

α(x) else.

Lemma 6. Let ϕ : A → C be a homomorphism and U ⊆ [x0] ker ϕ for some
x0 ∈ A. Then the map ϕ : A → C is also a homomorphism ϕ : Ā→ C where
Ā := AU

x0
. Moreover, ∇A = ∇Ā.

Proof. If x ∈ U, then (Fϕ ◦ ᾱ)(x) = (Fϕ)(αA(x0)) = αC(ϕ(x0)) = αC(ϕ(x)). If
x /∈ U , nothing has changed, so ϕ keeps being a homomorphism. With C = A/∇A
and Lemma 3, we obtain ∇A = ker ϕ = ∇Ā.

3.2 Restricting Bisimulations

For the following we assume that R ⊆ A1 ×A2 is a bisimulation between coalge-
bras A1 = (A,α1) and A2 = (A,α2), and Ui ≤ Ai are subcoalgebras for i = 1, 2.

Definition 10. R restricts to U := U1 × U2, if R � U := R ∩ (U1 × U2) is a
bisimulation between U1 and U2.



40 M. Zarrad and H.P. Gumm

Without any further assumption, bisimulations will not necessarily restrict
to subcoalgebras. In fact in [6] it was shown that all bisimulations restrict to all
subcoalgebras, globally throughout SetF , if and only if F preserves preimages. In
spite of this, here we can identify conditions on R and on the Ui that guarantee
that R restricts to U1 × U2 without any condition on F . The main result of this
section is the following theorem and its applications:

Theorem 1. If there exist κi : Ai → Ui left inverses to the inclusion maps,
satisfying for all a1 ∈ A1,a2 ∈ A2:

(a1, a2) ∈ R =⇒ (κ1a1, κ2a2) ∈ R

then R restricts to U .

Instantiating the existential quantifier in this theorem with particularly nat-
ural left inverses to the inclusion maps, we shall obtain the following, easy-to-
apply criterion (Here R[U ] denotes {y | ∃x ∈ U.(x, y) ∈ R} and R− is the
converse relation to R):

Theorem 2. If R[U1] ⊆ U2 and R−[U2] ⊆ U1 then R restricts to a bisimulation
between U1 and U2.

The following further specialization with U ≤ A and R a bisimulation on A
will likely be the most useful one:

Corollary 1. A bisimulation R on A restricts to the subcoalgebra U ≤ A, pro-
vided that R[U ] ⊆ U and R−[U ] ⊆ U .

Given an epimorphism ϕ : A � B, the largest bisimulation contained in its
kernel reveals, whether ϕ is a regular epi in the category SetF or not. We start
with [ker ϕ], the largest bisimulation contained in the kernel of ϕ. The criterion
found in [8] is, that the transitive hull of [kerϕ] should be all of kerϕ. Expressed
as a formula this is: [kerϕ]� = ker ϕ. Studying this further, we show the following
result, which turns out to be another corollary:

Corollary 2. From ϕi : Ai → Bi construct ϕ1 +ϕ2 : A → B with A := A1 +A2

and B := B1 + B2. Consider ker ϕi as subsets of A, then [ker (ϕ1 + ϕ2)] =
[kerϕ1] ∪ [kerϕ2].

To see why this follows from Corollary 1, choose Ui := Ai ≤ A: If R ⊆
ker (ϕ1 + ϕ2) is a bisimulation, then R[Ai] ⊆ ker (ϕ1 + ϕ2)[Ai] = Ai and
symmetrically R−[Ai] ⊆ Ai. Thus R restricts to Ai ⊆ A1 + A2. This proves
that [ker (ϕ1 + ϕ2)] ⊆ [ker ϕ1] ∪ [ker ϕ2]. The other direction is trivial, since
kerϕi ⊆ ker(ϕ1 + ϕ2), hence [kerϕi] ⊆ [ker(ϕ1 + ϕ2)].

We now turn to the proof of Theorem1:

Proof (of Theorems 1 and 2). Consider the following diagram, where we use ι,
possibly with indices, to denote inclusion maps and similarly πi or π̄i to denote
projection maps to the i-th component, for i = 1, 2. The κi are the mentioned



Transitivity and Difunctionality of Bisimulations 41

left inverses to the ιi and κ := κ1 ×κ2. The condition of the theorem guarantees
that κ′s codomain is indeed R � U , and by definition, we have:

π̄i ◦ κ = κi ◦ πi.

Simply define

ρ̄ := F (κ) ◦ ρ ◦ ι

and chase the following diagram:

R
πi 



ρ

��

κ

��
Ai

αAi

��

κi

��
Ui

αUi

��

��ιi
 R � U

π̄i

ρ̄

��

� �

ι

��

F (R)
Fπi 



F (κ)

��
F (Ai)

Fκi

��
F (Ui)��Fιi

 F (R � U)
Fπ̄i

F π̄i ◦ ρ̄ = F π̄i ◦ Fκ ◦ ρ ◦ ι

= Fκi ◦ Fπi ◦ ρ ◦ ι

= Fκi ◦ αAi
◦ πi ◦ ι

= Fκi ◦ αAi
◦ ιi ◦ π̄i

= Fκi ◦ Fιi ◦ αUi
◦ π̄i

= FidAi
◦ αUi

◦ π̄i

= αUi
◦ π̄i

For the proof of Theorem 2, we note that the case where R � U is empty
becomes trivial. Otherwise fix any pair (u1, u2) ∈ R � U and define the following
inverses κi to the inclusions ιi : Ui → Ai:

κi(a) := if (a ∈ Ui) then a else ui.

Given (a1, a2) ∈ R, the conditions R[U1] ⊆ U2 and R−[U2] ⊆ U1 guarantee
that a1 ∈ U1 ⇐⇒ a2 ∈ U2. By definition of κi then, either (κ1a1, κ2a2) =
(a1, a2) or (κ1a1, κ2a2) = (u1, u2).

4 Relationships Between Bisimilarity and Observational
Equivalence

Bisimilarity and observational equivalence need not be distinguished in many
classical systems, such as e.g. in Kripke structures. In particular, the famous



42 M. Zarrad and H.P. Gumm

Hennessy-Milner theorem [12] relates bisimilarity with logical equivalence. How-
ever, the generalization of this result to coalgebras, as given by Pattinson [17],
demonstrates that logical equivalence should rather be related to observational
equivalence. In hindsight, this appears obvious, as bisimilarity need not be tran-
sitive, whereas observational equivalence always is transitive, and clearly so is
logical equivalence. Thus in the case of the Hennessy-Milner theorem, “luckily”
both notions agreed. The reason for this is, that the type functor for Kripke-
structures, is rather well behaved, in that it weakly preserves kernel pairs, even
arbitrary pullbacks.

4.1 Weak Preservation of Kernel Pairs

A kernel pair is the pullback of two equal morphisms. A preimage is a pullback
with a regular epimorphism. The role of weak preservation of pullbacks in gen-
eral, of kernel pairs and of preimages has been studied by Gumm and Schröder
[8]. In particular, we recall that:

Theorem 3 [8]. The following are equivalent :
(1) F weakly preserves kernel pairs (of epis).
(2) Every congruence is a bisimulation.

Thus weak preservation of kernel pairs is equivalent to all epis ϕ being strictly
regular, meaning that [ker ϕ] = kerϕ. We shall show below that this is equivalent
to all epis just being regular, i.e. [ker ϕ]� = ker ϕ.

A joint result of the second author and C. Henkel, to be found in the latter’s
Master thesis [11], also turns out to be useful:

Theorem 4 [11]. The following are equivalent:

1. F weakly preserves kernel pairs
2. F weakly preserves pullbacks of epimorphisms.

In [8], furthermore, the implications (1) =⇒ (2) =⇒ (3) have been shown
for the following properties:

1. F weakly preserves kernel pairs
2. every epi is regular epi
3. every mono is regular mono.

In [20] it was further claimed that (3) ⇒ (1), rendering all three properties
equivalent. Unfortunately, the proof contained a gap, so until today, (3) ⇒ (1)
remains open. Nevertheless, we are able to close the loop at (2) ⇒ (1) in the fol-
lowing Theorem 5, so (1) and (2) indeed turn out to be equivalent. The following
innocuous lemma holds a key for the proof.

Lemma 7. Let ϕ be the coequalizer of ψ1, ψ2 : Q → A and let x ∈ A. If there
exists y �= x with ϕ(x) = ϕ(y) then for some q in Q either ψ1(q) = x �= ψ2(q)
or ψ2(q) = x �= ψ1(q).



Transitivity and Difunctionality of Bisimulations 43

Proof. In the category Set, the coequalizer ϕ of ψ1 and ψ2 is obtained
by factoring A by the equivalence relation generated by the relation R =
{(ψ1(q), ψ2(q)) | q ∈ Q}. Thus ker ϕ = Eq(R) = (ΔA ∪ R ∪ R−)∗. If x ker y
for some y �= x, there must be therefore be at least some y′ �= x with xRy′ or
xR−y′.

The following theorem was obtained in the master thesis of the first author:

Theorem 5 [24]. F weakly preserves kernel pairs iff every epi is regular epi.

Proof “⇒” is from [8].
“⇐”: By Theorem 3 it suffices to show, that F preserves weak kernel pairs of
epis. Let ϕ : A � C be a surjective map, ã,b̃ ∈ F (A) and c̃ ∈ F (C) with (Fϕ)ã =
c̃ = (Fϕ)b̃. We need to find p̃∈ F (kerϕ) with (Fπ1)p̃ = ã and (Fπ2)p̃ = b̃. In
case ϕ is injective, then the pullback of ϕ is an intersection. We have assumed
in this paper that functors preserve intersections. Otherwise there are x, y ∈ A
with x �= y and ϕ(x) = ϕ(y). We define structure maps αA : A −→ FA and
αC : C −→ FC as follows:

αA(z) :=

{
ã if z = x

b̃ otherwise

and
αC(z) := c̃.

Clearly ϕ is a surjective homomorphisms, since (αC ◦ ϕ)(z) = αC(ϕ(z)) = c̃
= (Fϕ)(αA(z)) = ((Fϕ) ◦ αA)(z) for every z ∈ A. By assumption ϕ is regular
epi, so it is the coequalizer of two homomorphisms ψ1 and ψ2: Q −→ A. By
Lemma 7 there is some q ∈ Q with (ψ1(q) = x and ψ2(q) �= x) or (ψ1(q) �= x
and ψ2(q) = x). Since ϕ is the coequalizer of ψ1 and ψ2, (Q,ψ1, ψ2) becomes a
competitor for the pullback (kerϕ, π1, π2) in Set. Thus there is a map m with
π1 ◦ m = ψ1 and π2 ◦ m = ψ2.

Q

ψ1

��ψ2
��

m


����

αQ

��

kerϕ
π1 


π2



 A
ϕ 

 



αA
��

C

αC
��

FQ
Fψ1

��

Fψ2

��Fm


��� Fkerϕ

Fπ1 


Fπ2



 F (A)
Fϕ 

 F (C)

Since ψ1(q) = x and ψ2(q) �= x it follows that αA(ψ1(q)) = ã and αA(ψ2(q)) = b̃.
Then Fψ1 ◦ αQ(q) = ã and Fψ2 ◦ αQ(q) = b̃ because ψ1 and ψ2 are homo-
morphisms. From property of functor this implies: Fπ1 ◦ Fm ◦ αQ(q) = ã and
Fπ2 ◦ Fm ◦ αQ(q) = b̃. Then Fπ1(Fm ◦ αQ(q)) = ã and Fπ2(Fm ◦ αQ(q)) = b̃.
This shows the existence of some p̃ ∈ Fker ϕ with (Fπ1)p̃ = ã and (Fπ2)p̃ = b̃.



44 M. Zarrad and H.P. Gumm

Lemma 8. If an epimorphism ϕ : U � B can be factored as ϕ = ψ ◦ e with
e : U ↪→ A regular mono and ψ : A � B a strictly regular epi, then ϕ is strictly
regular epi.

Proof. If U = ∅ then ker ϕ = ∅ is a bisimulation, so we may assume that U �= ∅.
Since ϕ is epi, then ϕ is surjective and the axiom of choice yields a right inverse
map r for ϕ. With its help we obtain a map l : A −→ U as

l(x) :=

{
u if e(u) = x

r(ψ(x)) otherwise.

It is easy to check that ϕ ◦ l = ψ.

ker ϕ
π1 


π2



 U
ϕ 

 



� �

e

��

B

r

��

ker ψ
π̄1 


π̄2



 A

ψ

�� ���������������

l

��

(ker ϕ, e ◦ π1, e ◦ π2) is a competitor to the pullback ker ψ. This yields a map
m : ker ϕ −→ ker ψ with π̄i ◦m = e◦πi for i = 1, 2. Similarly, (kerψ, l ◦ π̄1, l ◦ π̄2)
is a competitor to the pullback kerϕ, providing another map m̄ : ker ψ −→ kerϕ
with l ◦ π̄i = πi ◦ m̄. Now let us assume that ker ψ is a bisimulation, then there
exists a structure map ρ : ker ψ −→ F ker ψ such that αA ◦ π̄i = F π̄i ◦ ρ for
i = 1, 2.

ker ϕ

m

��

π1 


π2



 U� �

e

��
ker ψ

m̄

��

π̄1 


π2



 A

l

��

We claim that ρ′ := Fm̄ ◦ ρ ◦ m is a structure map witnessing that ker ϕ is a
bisimulation.

Fπi ◦ ρ′ = Fπi ◦ Fm̄ ◦ ρ ◦ m

= Fl ◦ F π̄i ◦ ρ ◦ m

= Fl ◦ αA ◦ π̄i ◦ m

= Fl ◦ αA ◦ e ◦ πi

= Fl ◦ Fe ◦ αU ◦ πi

= αU ◦ πi



Transitivity and Difunctionality of Bisimulations 45

Lemma 9. Let ϕ : A � B be an epimorphism. ϕ is strictly regular epi iff
[ϕ, idB ] is strictly regular epi.

kerϕ
π1 


π2



 A
ϕ 

 



� �

eA

��

B

ker [ϕ, idB ]
π̄1 


π̄2



 A + B

[ϕ,idB ]

���������������

Proof. “⇒” : ker [ϕ, idB ] = ker ϕ ∪ graphϕ ∪ (graph ϕ)− ∪ ΔA+B. Since kerϕ is
bisimulation, ker [ϕ, idB ] is bisimulation, too.
“⇐” [ϕ, idB ] is regular epi by Lemma 1 and eA is regular mono since it is injec-
tive. The rest follows from Lemma 8.

Proposition 1. Let ϕ : A −→ B and ψ : C −→ D be two homomorphisms. ϕ
and ψ are regular epi iff ϕ + ψ is regular epi.

Proof. “⇒” This holds in every cocomplete category [2].
“⇐” By Corollary 2 [ker(ϕ + ψ)]A+C = [ker ϕ]A ∪ [ker ψ]C . By Lemma 2 ker ϕ ∪
ker ψ = ker(ϕ+ψ) = [ker(ϕ+ψ)]∗A+C = [ker ϕ]∗A∪[ker ψ]∗C . Then ker ϕ = [ker ϕ]∗A
and ker ψ = [ker ψ]∗A. From Lemma 2 it then follows that ϕ and ψ are regular epi.

[ker ϕ]
π1 


π2



 A
ϕ 

 



� �

eA

��

B� �

eB

��
[ker (ϕ + ψ)]

π̄1 


π̄2



 A + C
ϕ+ψ



 B + D

[ker ψ]
π1 


π2



 C
ψ 

 

��

eC

��

D
��

eD

��

We define an order over all homomorphisms with the same domain by ϕ ≤
ψ :⇔ ker ϕ ⊆ ker ψ

Lemma 10. For any epimorphism ϕ : A � B, the infimum of idB + [ϕ, idB ]
and [idB , ϕ] + idB is idB + ϕ+idB .

Proof. Mark the two isomorphic copies of B as B1 and B2 and abbreviate ψ1 :=
idB1 + [ϕ, idB2 ], ψ2 := [idB1 , ϕ] + idB2 and ψ := idB1 + ϕ + idB2 . We need to
check that ker ψ = ker ψ1 ∩ ker ψ2. Given x �= y, then

(x, y) ∈ ker ψ1 ∩ ker ψ2 ⇐⇒ ∃(a, a′) ∈ ker ϕ. x = eA(a) ∧ y = eA(a′)
⇐⇒ (x, y) ∈ ker ψ.



46 M. Zarrad and H.P. Gumm

Theorem 6. The following are equivalent:

1. F preserves weak kernel pairs,
2. Rd is a bisimulation, whenever R is,
3. [θ] is difunctional for each 2−congruence θ,
4. [θ] is transitive for each congruence θ,
5. [θ]∗ = θ for every congruence θ,
6. the regular congruences form a sublattice of Cong(A).

Proof. (1)⇒(2) Let R be a bisimulation between two coalgebras A1 and A2. We
factor the projections πR

i : R → Ai into ιi ◦ π̄R
i as an epi followed by a regu-

lar mono and produce the pushout (p1, p2) of (π̄R
1 , π̄R

2 ). Then p1 and p2 are epi
and.Rd = ker(p1, p2). It follows from Theorem 4 that Rd is a bisimulation.
(2) ⇒ (3) is evident
(3) ⇒ (4) If θ is a congruence, [θ] also must be reflexive and symmetric. Con-
sidered as a 2−congruence between A and itself, the hypothesis yields that [θ]
is difunctional, too. Difunctionality with reflexivity and symmetry implies tran-
sitivity.
(4) ⇒ (5) θ = kerϕ for some epimorphism ϕ : A � B. By Lemma 1, ker[ϕ, idB] is
a regular congruence, so ker[ϕ, idB] = [ker[ϕ, idB]]�. By hypothesis, [ker[ϕ, idB]]
is transitive, so in fact ker[ϕ, idB] = [ker[ϕ, idB]], witnessing that ker[ϕ, idB] is a
bisimulation. From Lemma9, we can conclude now, that ker ϕ = θ is a bisimu-
lation, too. Consequently, θ = [θ] and a fortiori θ = θ� = [θ]�.
(5) ⇒ (6) is evident, because all congruences are regular.
(6) ⇒ (1) Let ϕ : A � B be an epimorphism. Let ψ1 : B + A + B −→ B + B,
ψ2 : B + A + B −→ B + B and ψ : B + A + B −→ B + B + B be defined
as ψ1 := idB + [ϕ, idB ], ψ2 := [idB , ϕ] + idB and ψ := idB + ϕ + idB . From
Lemma 1 and Proposition 1 we obtain that ψ1 and ψ2 are regular epis. From the
hypothesis it follows that the infimum of ψ1 and ψ2 is regular epi. By Lemma 10
then ψ is regular epi. By Lemma 1 then ϕ is again regular epi.

4.2 Transitivity of ∼
The next theorem clarifies which properties assure the transitivity of bisimilarity.
The equivalence (1) ⇔ (3) appears in [8] under the additional assumption that
F should preserve preimages. Its proof will need a simple lemma allowing us to
extend bisimulations in certain situations.

Theorem 7. The following are equivalent:
(1) ∼A= ∇A for each F−coalgebra A.
(2) ∼∗

A= ∇A for each F−coalgebra A.
(3) ∼A is transitive for each F−coalgebra A:

Proof. (1) ⇒ (2) and (1) ⇒ (3) are evident, since ∇A is transitive.
(2) ⇒ (1): Given A = (A,α), we have to show that ∇A is a bisimulation. Hence
for arbitrary (x0, y0) ∈ ∇A we need to find some p ∈ F∇A with Fπ1(p) = α(x0)
and Fπ2(p) = α(y0) where π1, π2 : ∇A → A are the projection maps.



Transitivity and Difunctionality of Bisimulations 47

If x0 = y0 then (x0, y0) ∈ ΔA which is already a bisimulation contained
in ∇A. But for each bisimulation S contained in ∇A with (x0, y0) ∈ S there
is already some q ∈ F (S) with FπS

A(q) = α(x0) and FπS
A(q) = α(x0). The

inclusion map ι∇S : S ↪→ ∇A yields an element p := Fι∇S (q) ∈ F (∇A) for
which Fπ1(p) = Fπ1(Fι∇S (q) = F (π1 ◦ ι∇S )(q) = F (πS

1 )(q) = α(x0), and likewise
Fπ2(p) = α(y0).

If x0 �= y0, we consider Ā := AU
x0

(see Definition 9), where we choose U :=
{x | x0∇Ax �= y0}. Invoking Lemma 6 with π∇A : A → A/∇A and recalling
that A/∇A is simple, we obtain ∇Ā = ∇A =: ∇. By assumption (2), there
is a bisimulation S on Ā with S� = ∇, so in particular x0S

�y0. As x0 �= y0,
there is some z �= y0 with x0 S�z S y0 and a fortiori x0∇zSy0. Since S is a
bisimulation on Ā, there is some q ∈ F (S) with Fπ1(q) = ᾱ(z) = α(x0) and
Fπ2(q) = ᾱ(y0) = α(y0).
(3) ⇒ (1):

∇
π1 


π2



 A
π∇ 

 



� �

eA
��

A/∇

ker [π∇, idA/∇]
π̄1 


π̄2



 A + A/∇
[π∇,idA/∇]

���������������

By Lemma 1 [π∇, idA/∇] is regular epi. From Theorem 2 we obtain ∼∗
A+A∇=

∇A+A/∇. Then

[ker [π∇, idA∇ ]] = [∇A+A/∇] lemma 3
=∼A+A∇

=∼∗
A+A∇ hypothesis

= ker [π∇, idA/∇].

Therefore, ker [π∇, idA/∇] is a bisimulation, and by Lemma9, ∇ is a bisimulation.

For image finite Kripke structures A, i.e. coalgebras for D × Pfin where D
is a fixed output set and Pfin the finite-powerset functor, it is well known that
∼A= ∇A. However, considered as a coalgebra of D ×P≤k where P≤kX := {U ⊆
X | |U | ≤ k} the same Kripke structure may fail to satisfy ∼A= ∇A. The fact
that for k ≥ 3 the functor P≤k, defined as a subfunctor of P, does not preserve
weak kernel pairs was noticed in [8].

4.3 Difunctionality of ∼
In an attempt to generalize the results of the previous subsection to relations
between two coalgebras, we consider the following conditions:

1. For all F−coalgebras A,B: ∼A,B= ∇A,B
2. For all F−coalgebras A,B: ∼d

A,B= ∇A,B



48 M. Zarrad and H.P. Gumm

3. For all F−coalgebras A,B: ∼A,B is difunctional.

We will show in the next section that the direction (2) ⇒ (1) holds more gener-
ally, yet the implication (3) ⇒ (1) fails in general. We provide a counterexample
(Example 2) in the next section. We will use the following characterization of
preimages preservation.

Theorem 8 [6]. The following are equivalent:

(1) F preserves preimages
(2) If U , V are subcoalgebras of A, B then bisimulations between U and V are
just the restrictions to U × V of bisimulations between A and B.

Under the assumption that F should preserves preimages we will see that
difunctionality and transitivity of bisimulations are equivalent.

Theorem 9. If F preserves preimages, then the following are equivalent:

(1) For all F−coalgebras A,B: ∼A,B= ∇A,B
(2) For all F−coalgebras A,B: ∼A,B is difunctional.
(3) For all F−coalgebras A: ∼A= ∇A.

Proof. (1)⇒ (2) is evident because ∇A,B is difunctional.
(2) ⇒ (3) From the hypothesis it follows that ∼A is transitive for all
F−coalgebras A, because ∼A is reflexive and symmetric. By Theorem 7 we
obtain that for all F−coalgebras A: ∼A= ∇A.
(3) ⇒ (1) Let A = (A,α) and B = (B, β) two coalgebra. We have to show
∼A,B= ∇A,B.

(a, b) ∈ ∇A,B ⇐⇒ (eA(a), eB(b)) ∈ ∇A+B by lemma 4
⇐⇒ (eA(a), eB(b)) ∈∼A+B by hypothesis
⇐⇒ (a, b) ∼A,B by theorem 8.

4.4 Relation Liftings

An alternative definition of bisimulation was given by C. Hermida and B. Jacobs
in [13]. The idea is to define a bisimulation R as a relation R ⊆ A×B satisfying:

xR y =⇒ α(x) F̄ (R)α(y)

where F̄ is the “lifting” of the relation R ⊆ A × B to a relation F̄ (R) ⊆ F (A) ×
F (B), known as Barr-extension:

F̄ (R) := {(FπR
A(u), FπR

B(u)) | u ∈ F (R)}.

Choosing the Barr-extension may be one particular method for extending
a relation between A and B to a relation between F (A) and F (B), but there
might likely be others, so we define:



Transitivity and Difunctionality of Bisimulations 49

Definition 11. A relation lifting L is a transformation sending every relation
R ⊆ A × A into a relation L(R) ⊆ FA × FB. It is called monotonic, if R ⊆ S
implies L(R) ⊆ L(S). For a given relation lifting L and coalgebras A = (A,αA)
and B = (B,αB), an L−simulation is a relation R ⊆ A × B such

xR y =⇒ α(x)L(R)α(y).

Diagrammatically, R is an L-simulation if and only if the map sending (x, y)
to (αA(x), αB(y)) factors through L(R), which is the same as saying that there
exists a map m such that the following diagram commutes:

A

◦α

��

R
πA πB 



m

���
�
� B

◦ α

��
F (A) LR

πF (A)
πF (B)

 F (B)

Thus a Hermida-Jacobs-bisimulation is the same as an L−simulation where
L = F̄ . Observe, that categorically, F̄ (R) arises by applying the functor F to
the source πR

A : R → A and πR
B : R → B, then factoring the resulting source

FπR
A : F (R) → F (A) and FπR

B : F (R) → F (B), into an epi q followed by a
mono-source:

F (A) F̄R
πF (A)

πF (B) 

 F (B)

F (R)
FπR

A

��								 FπR
B

��









q

����

This diagram can be readily used to demonstrate the well known fact that
our earlier definition of bisimulation agrees with that of Hermida and Jacobs in
the presence of the axiom of choice. When L = F̄ , we can paste it to the bottom
line of the previous diagram in order to see that any bisimulation ρ : R → F (R)
yields an F̄−simulation and conversely, any choice of right inverse e for q yields
a bisimulation ρ := e ◦ m.

Thijs in [22] defined relators as relation liftings with additional properties
and generalized the notion of coalgebraic simulation. In [15] Marti and Venema
introduced further properties, in an attempt to achieve that L−similarity should
capture observational equivalence. The union of all L−simulations between given
coalgebra A and B is denoted by ≈

L
A,B. If L is monotonic then ≈

L
A,B is again an

L−simulation. For L = F̄ , of course, ≈
L
A,B agrees with ∼A,B.

In [15] it was also shown that there is no relation lifting L for the neigh-
borhood functor which captures observational equivalence in the sense that
≈L

A,B= ∇A,B for all coalgebras A,B. In particular, for this functor there are
coalgebras A and B such that ∼A,B �= ∇A,B.



50 M. Zarrad and H.P. Gumm

Example 2. Consider the neighborhood functor 22
−
. From Theorem 6 ∼A,B is

difunctional for all coalgebras A,B, since 22
−

weakly preserves kernel pairs [10].
But ∼A,B= ∇A,B does not hold.

In [9] we have shown, that bisimulations can be enlarged as long as the
structure maps are not affected in the following sense:

Proposition 2 [9]. Let A1 and A2 be coalgebras with corresponding structure
maps α1 and α2. Let R ⊆ A1 ×A2 be a bisimulation and R′ an enlargement i.e.
R ⊆ R′ ⊆ ker α1 ◦ R ◦ ker α2. Then R′ is also a bisimulation.

A relation lifting L is called extensible, if for all coalgebras A1 and A2

the statement of the above proposition holds with “bisimulation” replaced by
“L−simulation”. It turns out, that this property precisely captures monotonicity,
i.e.:

Proposition 3. A relation lifting L is monotonic iff it is extensible.

Proof. The proof of the if -direction closely follows, but is not identical to, the
proof of Proposition 2 from [9]: R is a L−simulation, so there exists a map
ρ : R → L(R) with αi ◦ πR

i = πLR
i ◦ ρ. Let ι : R → R′ be the inclusion map,

then clearly πR
i = πR′

i ◦ ι. By assumption, we find for every (x′, y′) ∈ R′ a pair
(x, y) ∈ R such that α1(x) = α1(x′) and α2(y) = α2(y′). The axiom of choice
provides for a map μ : R′ → R satisfying

αi ◦ πR′
i ◦ ι ◦ μ = αi ◦ πR′

i .

We now define ρ′ : R′ → L(R′) by ρ′ :=⊆ ◦ρ ◦ μ.

R′
πR′
i

������������

ρ′

���
�
�
�
�
�
�μ

�����
���

���
�

R

ρ

��

�	

ι

������������ πR
i 

 Ai

αi

��

L(R′)
πLR′
i

��







L(R)

�

⊆

��










πLR
i



 F (Ai)

For the only-if direction, let R ⊆ R′ ⊆ A1 ×A2 and (x̃, ỹ) ∈ LR. We have to
show (x̃, ỹ) ∈ LR′. Since (x̃, ỹ) ∈ LR then R is a L−simulation between (A1, cx̃)
and (A2, cỹ). By the hypothesis R′ is also a L−simulation. Then (x̃, ỹ) ∈ LR′.

With the help of this proposition, we can now somehow simplify the task
of proving that ≈L

A,B captures observational equivalence, provided that L is
monotonic:

Theorem 10. For a monotonic relation lifting L, the following are equivalent:



Transitivity and Difunctionality of Bisimulations 51

1. For all coalgebras A,B: ≈A,B= ∇A,B
2. For all coalgebras A,B: ≈d

A,B= ∇A,B

Proof. (1) ⇒ (2) is evident as ∇A,B is difunctional.
(2) ⇒ (1): For any A = (A,α) and B = (B, β), we have to show that ∇A,B
is an L−simulation. Given (x0, y0) ∈ ∇A,B, let U := [x0]∇A and V := [y0]∇B,
let ϕ := π∇A+B ◦ eA and ψ := π∇A+B ◦ eB. Since A + B/∇A+B is simple, it
follows from Lemma 5 that ker ϕ = ∇A and ker ψ = ∇B. We define now two
coalgebras Ā := AU

x0
and B̄ := BV

y0
as in Definition 9. Since U ⊆ [x0]ker ϕ and

V ⊆ [x0]ker ψ, we can use Lemma 6 to see that both ϕ : Ā −→ A + B/∇A+B
and ψ : B̄ −→ A + B/∇A+B are homomorphisms to a simple coalgebra, so by
Lemma 5, ∇Ā,B̄ = ker(ϕ,ψ) = ∇A,B. By hypothesis (x0, y0) ∈≈d

Ā,B̄, so there
is x1 ∈ A with x1 ≈Ā,B̄ y0. From ≈d

Ā,B̄= ∇A,B it follows that ≈Ā,B̄⊆ ∇A,B,
so (x1, y0) ∈ ∇A,B. Hence ϕ(x1) = ψ(y0) = ϕ(x0) and consequently (x0, x1) ∈
ker ϕ = ∇A. By construction of Ā then ᾱ(x1) = α(x0) = ᾱ(x0). With the help of
Proposition 3 we obtain x0 ≈Ā,B̄ y0. Hence (ᾱ(x0), β̄(y0)) ∈ L ≈Ā,B̄ and finally
(α(x0), β(y0)) ∈ L∇A,B since ≈Ā,B̄⊆ ∇A,B and L is monotonic.

The Barr extension F̄ is an example of a monotonic relation lifting, so we
obtain:

Corollary 3. The following are equivalent:

1. For all coalgebras A,B: ∼A,B= ∇A,B.
2. For all coalgebras A,B: ∼d

A,B= ∇A,B.

5 Conclusion and Further Work

In this paper we exhibited conditions under which bisimulations restrict to sub-
coalgebras without requiring the type functor to preserve preimages. Further,
we have shown that if the transitive, resp. difunctional hull of bisimilarity covers
observational equivalence then bisimilarity and observational equivalence agree.
If bisimilarity is transitive for all F -coalgebras, then it agrees with observational
equivalence.

A negative result is that difunctionality is not enough to cover observational
equivalence between two coalgebras. Assuming preimage preservation for the
type functor F , transitivity and difunctionality of bisimilarity are equivalent.

We also show that F weakly preserves kernel pairs if and only if every epi is
regular epi. While it is known that this implies that every mono is regular mono,
the converse remains an open question.

A further open question is: If every extensional coalgebra is simple, does this
mean that ∼A= ∇A for all coalgebras A? In order to put this question into a
more general framework, we plan to investigate L−extensionality for arbitrary
relation liftings L.



52 M. Zarrad and H.P. Gumm

References

1. Aczel, P., Mendler, N.: A final coalgebra theorem. In: Pitt, D.H., Rydeheard, D.E.,
Dybjer, P., Pitts, A.M., Poigné, A. (eds.) Category Theory and Computer Science.
LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

2. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley,
New York (1990)

3. Barr, M.: Terminal coalgebras in well-founded set theory. Theor. Comput. Sci.
144(2), 299–315 (1993)

4. Gumm, H.P.: Elements of the General Theory of Coalgebras. LUATCS 1999. Rand
Afrikaans University, Johannesburg (1999)

5. Gumm, H.P.: Functors for coalgebras. Algebra Univers. 45, 135–147 (2001)
6. Gumm, H.P., Schröder, T.: Coalgebraic structure from weak limit preserving func-

tors. Electron. Notes Theor. Comput. Sci. 33, 113–133 (2000)
7. Gumm, H.P., Schröder, T.: Products of coalgebras. Algebra Univers. 46, 163–185

(2001)
8. Gumm, H.P., Schröder, T.: Types and coalgebraic structure. Algebra Univers. 53,

229–252 (2005)
9. Gumm, H.P., Zarrad, M.: Coalgebraic simulations and congruences. In: Bonsangue,

M.M. (ed.) CMCS 2014. LNCS, vol. 8446, pp. 118–134. Springer, Heidelberg (2014)
10. Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures.

In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS,
vol. 4624, pp. 279–293. Springer, Heidelberg (2007)

11. Henkel, C.: Klassifikation coalgebraischer Typfunktoren. Diplomarbeit, Universität
Marburg (2010)

12. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
Assoc. Comput. Mach. 32, 137–161 (1985)

13. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Inform. Comput 145(2), 107–152 (1998)

14. Ihringer, T., Gumm, H.P.: Allgemeine Algebra. Heldermann Verlag, Wiesbaden
(2003)

15. Marti, J., Venema, Y.: Lax extensions of coalgebra functors. In: Pattinson, D.,
Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 150–169. Springer, Heidelberg
(2012)

16. Lawrence, S.: Moss: coalgebraic logic. Ann. Pure Appl. Logic 96, 277–317 (1999)
17. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction.

Notre Dame J. Formal Logic 45, 19–33 (2004)
18. Riguet, J.: Relations binaires, fermetures, correspondances de Galois. Bulletin de

la Societe Mathematique de France 76, 114–155 (1948)
19. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci.

249(1), 3–80 (2000)
20. Schröder, T.: Coalgebren und Funktoren. Doktorarbeit, Universität Marburg

(2001)
21. Staton, S.: Relating coalgebraic notions of bisimulaions. Log. Methods Comput.

Sci. 7(1), 1–18 (2011)
22. Thijs, A.: Simulation and fixpoint semantics. Ph.D. thesis, University of Groningen

(1996)
23. Trnková, V.: Some properties of set functors. Comm. Math. Univ. Carolinae 10(2),

323–352 (1969)
24. Zarrad, M.: Verträgliche Relationen auf Coalgebren. Diplomarbeit, Universität

Marburg (2012)



Affine Monads and Side-Effect-Freeness

Bart Jacobs(B)

Institute for Computing and Information Sciences,
Radboud Universiteit, Nijmegen, The Netherlands

bart@cs.ru.nl

Abstract. The notions of side-effect-freeness and commutativity are
typical for probabilistic models, as subclass of quantum models. This
paper connects these notions to properties in the theory of monads.
A new property of a monad (‘strongly affine’) is introduced. It is shown
that for such strongly affine monads predicates are in bijective corre-
spondence with side-effect-free instruments. Also it is shown that these
instruments are commutative, in a suitable sense, for monads which are
commutative (monoidal).

1 Introduction

In a recent line of work in categorical quantum foundations [3–6,13,16] the notion
of effectus has been proposed. Within that context one associates an instrument
with each predicate, which performs measurement. These instruments are coal-
gebras, of a particular form, which may change the state. Indeed, it is one of
the key features of the quantum world that measurement can change the object
under observation. Thus, observation may have a side-effect.

In [6] a subclass of commutative effectuses is defined where there is a one-to-
one correspondence between predicates and side-effect-free instruments. These
commutative effectuses capture the probabilistic models, as special case of quan-
tum models. Examples of commutative effectuses are the Kleisli categories K�(D)
and K�(G) of the distribution monad D and the Giry monad G, and the category
of commutative von Neumann algebras.

The starting point for the work presented here is: can we translate these
notions of side-effect-freeness and commutativity from effectus theory to the the-
ory of monads — and coalgebras of monads — since they are instrumental in the
semantics of programming languages? Especially, is there a connection between:

1. side-effect-freeness of measurment-instruments and the property that a
monad is affine (that is, preserves the final object);

2. commutativity as in effectus theory and commutativity of a monad?

B. Jacobs—The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement nr. 320571.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 53–72, 2016.
DOI: 10.1007/978-3-319-40370-0 5



54 B. Jacobs

The main point of the paper is that these questions can be answered positively.
The first question makes sense because both the distribution and the Giry

monad are affine, and it seems that this property is typical for monads that are
relevant in probability theory. We shall see below that we actually need a slightly
stronger property than ‘affine’, namely what we call ‘strongly affine’.

Given the terminological coincidence, the second question may seem natural,
but the settings are quite different and a priori unrelated. Here we do establish
a connection, via a non-trivial calculation.

The relation between predicates and associated actions (instruments / coal-
gebras) comes from quantum theory in general, and effectus theory in particular.
This relationship is complicated in the quantum case, but quite simple in the
probabilistic case (see Theorem 1 below). It is the basis for a novel logic and
type theory for probabilism in [4] (see also [17]).

The background of this work is effectus theory [6] in which logic (in terms of
effect modules) and instruments play an important role. Here we concentrate on
these instruments, and show that they can be studied in the theory of monads,
independent of the logic of effect modules. Including these effect modules in the
theory (for special monads) is left to future work.

2 Preliminaries

We assume that the reader is familiar with the notion of monad. We recall
that a monad T = (T, η, μ) on a category with finite products (×, 1) is called
strong if there is a ‘strength’ natural transformation st1 with components
(st1)X,Y : T (X) × Y → T (X × Y ) making the following diagrams commute —
in which we omit indices, for convenience.

T (X) × Y

π1 ������������
st1 �� T (X × Y )

T (π1)

��
T (X)

(T (X) × Y ) × Z
∼= ��

st1×id
��

T (X) × (Y × Z)

st1

��

T (X × Y ) × Z

st1
��

T ((X × Y ) × Z)
∼= �� T (X × (Y × Z))

(1)

X × Y

η×id
��

X × Y

η
��

T 2(X) × Y

μ×id
��

st1 �� T (T (X) × Y )
T (st1)�� T 2(X × Y )

μ
��

T (X) × Y
st1

�� T (X × Y ) T (X) × Y
st1

�� T (X × Y )

(2)

Each monad on the category Sets of sets and functions is automatically strong,
via the definition st1(u, y) = T (λx. 〈x, y〉)(u).



Affine Monads and Side-Effect-Freeness 55

Given a strength map st1 : T (X) × Y → T (X × Y ) we define an associated
version st2 via swapping:

st2 =
(
X × T (Y )

γ

∼=
�� T (Y ) × X

st1 �� T (Y × X)
T (γ)

∼=
�� T (X × Y )

)

where γ = 〈π2, π1〉 is the swap map.
The monad T is called commutative (following [19]) when the order of apply-

ing strength in two coordinates does not matter, as expressed by commutation
of the following diagram.

T (X × T (Y ))
T (st2) �� T 2(X × Y ) μ

��
T (X) × T (Y )

st1 ��

st2 ��

T (X × Y )

T (T (X) × Y )
T (st1)

�� T 2(X × Y ) μ

��
(3)

We then write dst: T (X) × T (Y ) → T (X × Y ) for ‘double strength’, to indicate
the resulting single map, from left to right. Notice that dst ◦ γ = T (γ) ◦ dst.

Below we shall use distributive categories. They have finite products (×, 1)
and coproducts (+, 0), where products distribute over coproducts, in the sense
that the following maps are isomorphisms.

0
! �� 0 × X (A × X) + (B × X)

dis1=[κ1×id,κ2×id] �� (A + B) × X

(4)
Swapping yields an associated distributivity map:

(X × A) + (X × B)
dis2=[id×κ1,id×κ2]

= γ◦dis1◦(γ+γ)
�� X × (A + B)

It is an easy exercise to show that dis1 and dis2 interact in the following way.

(

(A×X)+(B×X)
)

+
(

(A×Y )+(B×Y )
) dis1+dis1��

		

[κ1+κ1,κ2+κ2] ∼=

��

((A+B)×X)+((A+B)×Y )

dis2��
(A+B)×(X+Y )

(

(A×X)+(A×Y )
)

+
(

(B×X)+(B×Y )
)

dis2+dis2

�� (A×(X+Y )+(B×(X+Y )

dis1

		 (5)

The strength and distributivity maps also interact in the obvious way. There are
two equivalent versions, with st1 and dis2 and with st2 and dis1. We describe
the version that we actually need later on — and leave the verification to the
meticulous reader.



56 B. Jacobs

A × T (X) + B × T (X)
dis1 ��

st2+st2
��

(A + B) × T (X)

st2

��

T (A × X) + T (B × X)

[T (κ1),T (κ2)]
��

T ((A × X) + (B × X))
T (dis1) �� T ((A + B) × X)

(6)

The object 2 = 1+1 will play a special role below. In a distributive category we
have two ‘separation’ isomorphisms written as:

2 × X
sep1

∼=
�� X + X X × 2

sep2

∼=


 (7)

Explicitly, they are defined as:

2 × X
sep1 ��

dis−1
1

��

X + X X × 2
sep2



dis−1
2

��
1 × X + 1 × X π2+π2



X × 1 + X × 1π1+π1

��

These separation maps are natural in X and satisfy for instance:

∇ ◦ sep1 = π2 ∇ ◦ sep2 = π1

(! + !) ◦ sep1 = π1 (! + !) ◦ sep2 = π2

[κ2, κ1] ◦ sep1 = sep1 ◦ ([κ2, κ1]×id) [κ2, κ1] ◦ sep1 = sep2 ◦ (id×[κ2, κ1])
(8)

These two maps are related via: sep1 ◦ γ = sep2, for γ = 〈π2, π1〉.
In the special case where X = 2 we have inverses

2 × 2

sep1

��∼= 2 + 2
[[〈κ1,κ1〉,〈κ1,κ2〉],[〈κ2,κ1〉,〈κ2,κ2〉]]

��

[[〈κ1,κ1〉,〈κ2,κ1〉],[〈κ1,κ2〉,〈κ2,κ2〉]]
��∼= 2 × 2

sep2

��

It is not hard to see that:

sep1 ◦ γ = sep2 = [κ1 + κ1, κ2 + κ2] ◦ sep1 (9)

The isomorphism [κ1 + κ1, κ2 + κ2] : 2 + 2 ∼=−→ 2 + 2 can be illustrated as:

2 + 2 = (1

��

+ 1)

���
��

��
�+ (1

����
��

��
+ 1)

��
2 + 2 = (1 + 1) + (1 + 1)



Affine Monads and Side-Effect-Freeness 57

3 Affine and Strongly Affine Monads

In this section we recall what it means for a monad to be affine (see [11,20,
21]), and introduce a slightly stronger notion. We describe basic properties and
examples.

Definition 1. Let C be a category with a monad T : C → C.

1. Assuming that C has a final object 1, one calls T affine if the map T (1) → 1
is an isomorphism, or simply, if T (1) ∼= 1.

2. Assuming that C has binary products × and T is a strong monad, we call T
strongly affine if the squares below are pullbacks.

T (X) × Y
π2 ��

st1

��

Y

ηY

��
T (X × Y )

T (π2)
�� T (Y )

(10)

The notion of an ‘affine monad’ is well-known. What we call ‘strongly affine’
is new. The relationship with ordinary affine monads is quite subtle. Example 2
below show that ‘strongly affine’ is really stronger than ‘affine’. But first we
describe some properties and examples.

Lemma 1. Let T be a strong monad on a category C with finite products (×, 1).

1. The monad T is affine iff the diagrams (10) commute. As a result, a strongly
affine monad is affine.

2. There is at most one mediating (pullback) map for the diagram (10).

The first point gives an alternative formulation of affiness. An older alterna-
tive formulation is: 〈T (π1), T (π2)〉 ◦ dst = id, see [20, Theorem 2.1], where dst
is the double strength map from (3), for a commutative monad T .

The second point is useful when we wish to prove that a particular monad
is strongly affine: we only need to prove existence of a mediating map, since
uniqueness holds in general, see Example 1.

Proof. For the first point, let T be affine. We stretch Diagram (10) as follows.

T (X) × Y
T (!)×Y

��

st1

��

π2

��
T (1) × Y

π2

∼= ��

st1

��

Y

ηY

��
T (X × Y )

T (!×id) ��

T (π2)

��T (1 × Y )
T (π2)

∼=
�� T (Y )



58 B. Jacobs

The square on the left commutes by naturality of strength. For the one on the
right we use that T (1) is final, so that π2 : T (1) × Y → Y is an isomorphism,
with inverse 〈η1 ◦ !Y , id〉. Hence:

T (π2) ◦ st1 = T (π2) ◦ st1 ◦ 〈η1 ◦ !Y , id〉 ◦ π2

= T (π2) ◦ st1 ◦ (η1 × id) ◦ 〈!Y , id〉 ◦ π2
(2)
= T (π2) ◦ η1×Y ◦ 〈!Y , id〉 ◦ π2

= ηY ◦ π2 ◦ 〈!Y , id〉 ◦ π2

= ηY ◦ π2.

In the other direction, assume that diagrams (10) commute. We consider the
special case X = Y = 1.

T (1) × 1
π2 ��

st1

��

π1

�������������� 1

η1

��
T (1 × 1)

T (π2)=T (π1)

∼= �� T (1)

The lower triangle commutes by (1). We need to prove that T (1) is final. It
suffices to prove that the composite η1 ◦ ! : T (1) → 1 → T (1) is the identity.
This is obtained from the upper triangle:

η1 ◦ ! = η1 ◦ π2 ◦ 〈id, !〉 = π1 ◦ 〈id, !〉 = id.

For the second point in the lemma we prove uniqueness of mediating maps.
Assume we have two maps f, g : Z → T (X) × Y with π2 ◦ f = π2 ◦ g and
st1 ◦ f = st1 ◦ g. We then obtain π1 ◦ f = π1 ◦ g from:

π1 ◦ f
(1)
= T (π1) ◦ st1 ◦ f = T (π1) ◦ st1 ◦ g

(1)
= π1 ◦ g. �

Example 1. Three examples of affine monads are the distribution monad D on
Sets for discrete probability, the Giry monad G on the category Meas of mea-
surable spaces, for continuous probability, and the expectation monad E on Sets.
We show that all of them are strongly affine.

(1) The elements of D(X) are the finite formal convex combinations
∑

i ri|xi 〉
with elements xi ∈ X and probabilities ri ∈ [0, 1] satisfying

∑
i ri = 1. We

can identify such a convex sum with a function ϕ : X → [0, 1] whose support
supp(ϕ) = {x | ϕ(x) 	= 0} is finite and satisfies

∑
x ϕ(x) = 1. We can thus write

ϕ =
∑

x ϕ(x)|x〉.
We have D(1) ∼= 1, since the sole element of D(1) is the distribution 1| ∗ 〉,

where we write ∗ for the element of the singleton set 1 = {∗}.
We show that this monad is also strongly affine. So let in Diagram (10)

ϕ ∈ D(X ×Y ) be a given distribution with D(π2)(ϕ) = 1|z 〉 for a given element



Affine Monads and Side-Effect-Freeness 59

z ∈ Y . Let’s write ϕ =
∑

x,y ϕ(x, y)|x, y 〉, so that D(π2)(ϕ) is the marginal
distribution:

D(π2)(ϕ) =
∑

y

( ∑
x ϕ(x, y)

)∣∣y〉
.

If this is the trivial distribution 1|z 〉, then ϕ(x, y) = 0 for all x and y 	= z. We
obtain a new distribution ψ = D(π1)(ϕ) ∈ D(X), which takes the simple form
ψ(x) = ϕ(x, z). The pair (ψ, z) ∈ D(X) × Y is the unique element giving us the
pullback (10), since:

st1
(
ψ, z

)
=

∑
x ψ(x)|x, z 〉 =

∑
x ϕ(x, z)|x, z 〉 =

∑
x,y ϕ(x, y)|x, y 〉 = ψ.

(2) Next we consider the Giry monad G on the category Meas of measurable
spaces. The elements of G(X) are probability measures ω : ΣX → [0, 1]. The
unit η : X → G(X) is given by η(x)(M) = 1 if x ∈ M and η(x)(M) = 0 if
x 	∈ M , for each M ∈ ΣX . The strength map st1 : G(X) × Y → G(X × Y )
is defined as the probability measure st1(ω, y) : ΣX×Y → [0, 1] determined by
M × N �→ ω(M) · η(y)(N), see also [10,12,22].

So let’s consider the situation (10) for T = G, with a joint probability measure
ω ∈ G(X × Y ) and an element z ∈ Y with

G(π2)(ω)(N) = ω(X × N) = η(z)(N), (11)

for all N ∈ ΣY . We prove ‘non-entwinedness’ of ω, that is, ω is the product of its
marginals. Abstractly this means ω = dst

(G(π1)(ω),G(π2)(ω)
)
, and concretely:

ω(M × N) = ω(M × Y ) · ω(X × N), (12)

for all M ∈ ΣX and Y ∈ ΣY . We distinguish two cases.

– If z 	∈ N , then, by monotonicity of the probability measure ω,

ω(M × N) ≤ ω(X × N)
(11)
= η(z)(N) = 0.

Hence ω(M × N) = 0. But also:

ω(M × Y ) · ω(X × N)
(11)
= ω(M × Y ) · η(z)(N) = ω(M × Y ) · 0 = 0.

– If z ∈ N , then z 	∈ ¬N , so that:

ω(M × N) = ω(M × N) + 0
= ω(M × N) + ω(M × ¬N) as just shown
= ω

(
(M × N) ∪ (M × ¬N)

)
by additivity

= ω(M × Y )
= ω(M × Y ) · η(z)(N)
(11)
= ω(M × Y ) · ω(X × N).



60 B. Jacobs

We now take φ ∈ G(X) defined by φ(M) = G(π1)(ω)(M) = ω(M ×Y ). The pair
(φ, z) ∈ G(X) × Y is then mediating in (10):

st1(φ, z)(M × N) = φ(M) · η(z)(N) = ω(M × Y ) · η(z)(N)
(11)
= ω(M × Y ) · ω(X × N)
(12)
= ω(M × N).

Hence the Giry monad G is strongly affine.
(3) We turn to the expectation monad E(X) = EMod([0, 1]X , [0, 1]) on Sets,

where EMod is the category of effect modules, see [15] for details. Let h ∈
E(X × Y ) satisfy E(π2)(h) = η(z), for some z ∈ Y . This means that for each
predicate q ∈ [0, 1]Y we have h(q ◦ π2) = q(z).

Our first aim is to prove the analogue of the non-entwinedness equation (12)
for E , namely:

h(1U×V ) = h(1U×Y ) · h(1X×V ), (13)

for arbitrary subsets U ⊆ X and V ⊆ Y . Here we write 1U×V : X × Y → [0, 1]
for the obvious indicator function. We distinguish:

– if z 	∈ V , then h(1U×V ) ≤ h(1X×V ) = h(1V ◦ π2) = 1V (z) = 0. Hence (13)
holds since both sides are 0.

– if z ∈ V , then h(1U×V ) = h(1U×V ) + h(1U×¬V ) = h(1U×Y ) = h(1U×Y ) ·
h(1X×V ).

By [15, Lemma 12] each predicate can be written as limit of step functions.
It suffices to prove the result for such step functions, since by [15, Lemma 10]
the map of effect modules h is automatically continuous.

Hence we concentrate on an arbitrary step function p ∈ [0, 1]X×Y of the
form p =

∑
i,j ri,j1Ui×Vj

, where the Ui ⊆ X and Vj ⊆ Y form disjoint covers,
and ri,j ∈ [0, 1]. We prove that h(p) = st1

(E(π1)(h), z
)
(p), so that we can take

E(π1)(h) ∈ E(X) to obtain a pullback in (10).
Let j0 be the (unique) index with z ∈ Vj0 , so that p(x, z) =

∑
i ri,j01Ui

(x).
Then:

h(p) = h
( ∑

i,j ri,j1Ui×Vj

)
=

∑
i,j ri,jh

(
1Ui×Vj

)
(13)
=

∑
i,j ri,jh

(
1Ui×Y

) · h
(
1X×Vj

)
=

∑
i,j ri,jh

(
1Ui×Y

) · 1Vj
(z)

=
∑

i ri,j0h
(
1Ui×Y

)
= h

( ∑
i ri,j01Ui×Y

)
= h

(
λ(x, y). p(x, z)

)
= st1

(E(π1)(h), z
)
(p).

The following (counter) example is due to Kenta Cho.

Example 2. An example of an affine but not strongly affine monad is the ‘gen-
eralised distribution’ monad D± on Sets. Elements of D±(X) are finite formal
sums

∑
i ri|xi 〉 with ri ∈ R and xi ∈ X satisfying

∑
i ri = 1. The other data



Affine Monads and Side-Effect-Freeness 61

of a (strong) monad are similar to the ordinary distribution monad D. Clearly
D±(1) ∼= 1, i.e. D± is affine.

Now consider the square (10) with X = {x1, x2} and Y = {y1, y2}. Define:

ϕ = 1|x1, y1 〉 + 1|x1, y2 〉 + (−1)|x2, y2 〉 ∈ D±(X × Y ).

We have D±(π2)(ϕ) = 1|y1 〉 = η(y1), since the terms with y2 cancel each other
out. But there is no element ψ ∈ D±(X) such that st1(ψ, y1) = ϕ. Hence the
square (10) is not a pullback.

The fact that the terms in this example cancel each other out is known as
‘interference’ in the quantum world. It already happens with negative coeffi-
cients. This same monad D± is used in [1]. How the notions of non-locality and
contextuality that are studied there relate to strong affineness requires further
investigation.

For the record we recall from [2,23] that each endofunctor on Sets can be
written as a coproduct of affine functors.

The following result gives a ‘graph’ construction that is useful in conditional
constructions in probability, see the subsequent discussion.

Proposition 1. For a strongly affine monad T there is a canonical bijective
correspondence:

Y
f �� T (X)

==============================
Y g

�� T (X × Y ) with T (π2) ◦ g = η

What we mean by ‘canonical’ is that the mapping downwards is given by f �→
st1 ◦ 〈f, id〉.
Proof. The if-part of the statement is obvious, since the correspondence is a
reformulation of the pullback property of the diagram (10). In the other direction,
let T be strongly affine. As stated, the mapping downwards is given by f = st1 ◦
〈f, id〉. Then:

T (π2) ◦ f = T (π2) ◦ st1 ◦ 〈f, id〉 (10)
= η ◦ π2 ◦ 〈f, id〉 = η.

In the other direction we map g : Y → T (X × Y ) to g = T (π1) ◦ g. Then:

f = T (π1) ◦ st1 ◦ 〈f, id〉 (1)
= π1 ◦ 〈f, id〉 = f.

In order to prove g = g we notice that by the pullback property of diagram (10)
we know that there is a unique h : Y → T (X) with g = st1 ◦ 〈h, id〉 = h. But
then h = h, by what we have just shown, so that:

g = h = h = g. �



62 B. Jacobs

The correspondence in this proposition is used (for the distribution monad D)
as Lemma 1 in [9]. There, the map st1 ◦ 〈f, id〉 is written as gr(f), and called
the graph of f . It is used in the description of conditional probability. It is also
used (implicitly) in [8, §3.1], where a measure/state ω ∈ G(X) and a Kleisli map
f : X → G(Y ) give rise to a joint probability measure gr(f) • ω in G(X × Y ).

4 Affine Parts of Monads, and Causal Maps

It is known for a long time that the ‘affine part’ of a monad can be extracted via
pullbacks, see [21] (or also [11]). Here we shall relate this affine part to ‘causal’
maps in Kleisli categories of monads.

Proposition 2. Let T be a monad on a category C with a final object 1. Assume
that the following pullbacks exist in C, for each object X.

Ta(X) ! ��

ιX

��

�� 1

η

��
T (X)

T (!)
�� T (1)

(14)

Then:

1. the mapping X �→ Ta(X) is a monad on C;
2. the mappings ιX : Ta(X) → T (X) are monic, and form a map of monads

Ta ⇒ T ;
3. Ta is an affine monad, and in fact the universal (greatest) affine submonad

of T ;
4. if T is a strong resp. commutative monad, then so is Ta.

Proof. These results are standard. We shall illustrate point (3). If we take X = 1
in Diagram (14), then the bottom arrow T (!X) : T (X) → T (1) is the identity.
Hence top arrow Ta(1) → 1 is an isomorphism, since isomorphisms are preserved
under pullback.

To see that Ta ⇒ T is universal, let σ : S ⇒ T be a map of monads, where S
is affine, then we obtain a map σX in:

S(X) !S(X)

��

σX

��

σX

��
Ta(X) ! ��

��
ιX

��

�� 1

ηT

��
T (X)

T (!)
�� T (1)



Affine Monads and Side-Effect-Freeness 63

The outer diagram commutes since S is affine, so that ηS
1 ◦ !S(1) = idS(1); then:

T (!X) ◦ σX = σ1 ◦ S(!) = σ1 ◦ ηS
1 ◦ !S(1) ◦ S(!X) = ηT

1 ◦ !S(X). �

Example 3. We list several examples of affine parts of monads.

1. Let M = MR≥0 be the multiset monad on Sets with the non-negative real
numbers R≥0 as scalars. Elements of M(X) are thus finite formal sums∑

i ri|xi 〉 with ri ∈ R≥0 and xi ∈ X. The affine part Ma of this monad
is the distribution monad D since 1| ∗ 〉 = M(!)(

∑
i ri|xi 〉) = (

∑
i ri)| ∗ 〉 iff∑

i ri = 1. Thus D(X) = Ma(X) yields a pullback in Diagram (14).
The monad D± used in Example 2 can be obtained in a similar manner as an
affine part, not of the multiset monad MR≥0 with non-negative coefficients,
but from the multiset monad MR with arbitrary coefficients: its multisets are
formal sums

∑
i ri|xi 〉 where the ri are arbitrary real numbers.

2. For the powerset monad P on Sets the affine submonad Pa � P is given by
the non-empty powerset monad. Indeed, for a subset U ⊆ X we have:

P(!)(U) =
{{∗} if U 	= ∅

∅ if U = ∅

Hence P(!)(U) = {∗} = η(∗) iff U is non-empty. It is not hard to see that the
non-empty powerset monad Pa is strongly affine.

3. Let T (X) = (S × X)S be the state monad on Sets, for a fixed set of states
S. The unit η : X → T (X) is defined as η(x) = λs ∈ S. (s, x) so that the
pullback (14) is given by:

Ta(X) = {f ∈ (S × X)S | T (!)(f) = η(∗)}
= {f ∈ (S × X)S | ∀s. (id × !)(f(s)) = (s, ∗)}
= {f ∈ (S × X)S | ∀s. π1f(s) = s}
∼= XS .

Thus, Kleisli maps Y → Ta(X) = XS may use states s ∈ S to compute the
output in X, but they cannot change states: they are side-effect-free.
In a similar way one shows that the list monad X �→ X� and the lift monad
X �→ X + 1 have the identity monad as affine submonad.

4. Fix a set C and consider the continuation, (or double-dual) monad C on Sets
given by C(X) = C(CX), with unit η : X → C(X) given by η(x)(f) = f(x).
The pullback (14) is then:

Ca(X) = {h ∈ C(CX) | C(!)(h) = η(∗)}
= {h ∈ C(CX) | ∀f ∈ C1. h(f ◦ !) = f(∗)}
= {h ∈ C(CX) | ∀c ∈ C. h(λx. c) = c}.

This is the submonad of functions h : CX → C which have output c ∈ C on
the constant function λx. c : X → C.



64 B. Jacobs

We write K�(T ) for the Kleisli category of a monad T , and we write a fat
bullet • for Kleisli composition g • f = μ ◦ T (g) ◦ f . For each object X there is
a special ‘ground’ map:

X = (15)

This is the result of applying the standard functor C → K�(T ) to the map
! : X → 1 in the underlying category C.

Causal maps have been introduced in the context of CP∗-categories, see [7],
where they express that measurements in the future, given by , cannot influence
the past.

Definition 2. A Kleisli map f : X → T (Y ) will be called causal or unital if it
preserves ground, in the sense that:

Causal maps are used in [6] to construct effectuses. Here we define them quite
generally, for an arbitrary monad. Notice that each map f : X → T (Y ) is causal
when T is an affine monad. The following elementary observation gives a more
precise description.

Lemma 2. A Kleisli map f : X → T (Y ) is causal if and only if it restricts to
a (necessarily unique) map f ′ : X → Ta(Y ) for the affine submonad ι : Ta � T ,
where ιY ◦ f ′ = f .

Proof. Obviously, the causality requirement
means that the outer diagram commutes in:

X !

��

f

��

f ′

��
Ta(Y ) ! ��

��
ιY

��

�� 1
η

��
T (Y )

T (!)
�� T (1)

�

As a result, a Kleisli map X → D(X) for the distribution monad D can equiv-
alently be described as a causal map X → M(X) for the multiset monad M, see
Example 3 (1). This gives a more systematic approach than the “constrained”
description from [18], which restricts multisets to a certain subset.

5 Predicates and Instruments

In a very general sense we can define a predicate on an object X in the Kleisli
category K�(T ) of a monad T as a map p : X → 2, where 2 = 1 + 1, that is as a
map p : X → T (2) in the underlying category. There is always a ‘truth’ predicate

. Similarly there is



Affine Monads and Side-Effect-Freeness 65

falsity predicate 0 = η ◦ κ2 ◦ !, and a negation operation p⊥ = T ([κ2, κ1]) ◦ p
obtained by swapping. Clearly, p⊥⊥ = p and 1⊥ = 0. In certain cases there is
more algebraic structure, see [6], where predicates form effect modules.

At this stage we informally describe an instrument associated with a predi-
cate p : X → T (1+1) as a map instrp : X → T (X +X) with T (!+!) ◦ instrp = p.
Such an instrument is called side-effect-free if the following diagram commutes
in K�(T ).

X
instrp ��

�����������

����������� X + X

∇=[id,id]

��
X

Equivalently, if T (∇) ◦ instrp = η in the underlying category.
This instrument terminology comes from [13] (see also [6]), where it is used in

a setting for quantum computation. Here we adapt the terminology to a monad
setting. The instrument is used to interpret, for instance, a conditional statement
as composite:

if p then f else g =
(
X

instrp �� X + X
[f,g] �� Y

)
.

For example, for the distribution monad D a predicate on a set X is a function
p : X → D(1 + 1) ∼= [0, 1]. For such a ‘fuzzy’ predicate there is an instrument
map instrp : X → D(X + X) given by the convex sum:

instrp(x) = p(x)|κ1x〉 + (1 − p(x))|κ2x〉.

The associated if-then-else statement gives a weighted combination of the two
options, where the weights are determined by the probability p(x) ∈ [0, 1].

Next we describe how such instruments can be obtained via a general con-
struction in distributive categories.

Definition 3. Let T be a strong monad on a distributive category C. For a
predicate p : X → T (1 + 1) we define an instrument instrp : X → T (X + X) as
composite:

instrp =
(

X
〈p,id〉→ T (2)×X

st1→ T (2×X)
T (sep1)→∼= T (X+X)

)

where sep1 is the separation isomorphism from (7).

We collect some basic results about instrument maps.

Lemma 3. In the context of the previous definition we have:

1. T (! + !) ◦ instrp = p; in particular, instrp = p for each p : 1 → T (2);
2. if p is causal, then instrp is side-effect-free and causal;
3. instr1 = η ◦ κ1 and instr0 = η ◦ κ2, and instrp⊥ = T ([κ2, κ1]) ◦ instrp;



66 B. Jacobs

4. for a map f : Y → X in the underlying category,

T (f + f) ◦ instrp◦f = instrp ◦ f.

5. for predicates p : X → T (2) and q : Y → T (2),

instr[p,q] = [T (κ1 + κ1), T (κ2 + κ2)] ◦ (instrp + instrq).

Proof. We handle these points one by one.

1. We have:

T (! + !) ◦ instrp = T (! + !) ◦ T (sep1) ◦ st1 ◦ 〈p, id〉
(8)
= T (π1) ◦ st1 ◦ 〈p, id〉
(1)
= π1 ◦ 〈p, id〉
= p.

2. Assume that the predicate p is causal, that is . We first show
that the instrument instrp is side-effect-free:

T (∇) ◦ instrp = T (∇) ◦ T (sep1) ◦ st1 ◦ 〈p, id〉
= T (∇) ◦ T (π2 + π2) ◦ T (dis−1

1 ) ◦ st1 ◦ 〈p, id〉
= T (π2) ◦ T (∇) ◦ T (dis−1

1 ) ◦ st1 ◦ 〈p, id〉
= T (π2) ◦ T (∇ × id) ◦ st1 ◦ 〈p, id〉
= T (π2) ◦ st1 ◦ (T (∇) × id) ◦ 〈p, id〉
= T (π2) ◦ st1 ◦ 〈T (!) ◦ p, id〉
= T (π2) ◦ st1 ◦ 〈η ◦ !, id〉 since p is causal
(2)
= T (π2) ◦ η ◦ 〈!, id〉
= η ◦ π2 ◦ 〈!, id〉
= η.

The instrument instrp is causal too:

3. For the truth predicate 1 = η ◦ κ1 ◦ ! we have:

instr1 = T (sep1) ◦ st1 ◦ 〈η ◦ κ1 ◦ !, id〉
(2)
= T (sep1) ◦ η ◦ 〈κ1 ◦ !, id〉
= η ◦ sep1 ◦ 〈κ1 ◦ !, id〉
= η ◦ κ1.



Affine Monads and Side-Effect-Freeness 67

Similarly one obtains instr0 = η ◦ κ2. Next,

T ([κ2, κ1]) ◦ instrp

= T ([κ2, κ1]) ◦ T (sep1) ◦ st1 ◦ 〈p, id〉
(8)
= T (sep1) ◦ T ([κ2, κ1] × id) ◦ st1 ◦ 〈p, id〉
= T (sep1) ◦ st1 ◦ (T ([κ2, κ1]) × id) ◦ 〈p, id〉
= T (sep1) ◦ st1 ◦ 〈p⊥, id〉
= instrp⊥ .

4. In a straightforward manner we obtain for a map f in the underlying category:

T (f + f) ◦ instrp◦f

= T (f + f) ◦ T (sep1) ◦ st1 ◦ 〈p ◦ f, id〉
= T (sep1) ◦ T (id × f) ◦ st1 ◦ 〈p ◦ f, id〉 by naturality of sep1

= T (sep1) ◦ st1 ◦ (id × f) ◦ 〈p ◦ f, id〉
= T (sep1) ◦ st1 ◦ 〈p, id〉 ◦ f

= instrp ◦ f.

5. Via point (4) we get:

[T (κ1 + κ1), T (κ2 + κ2)] ◦ (instrp + instrq)
= [T (κ1 + κ1) ◦ instr[p,q]◦κ1 , T (κ2 + κ2) ◦ instr[p,q]◦κ2 ]
= [instr[p,q] ◦ κ1, instr[p,q] ◦ κ2]
= instr[p,q].

�

The main result of this section gives, for strongly affine monads, a bijective
correspondence between predicates and side-effect-free instruments.

Theorem 1. Let T be a strongly affine monad on a distributive category. Then
there is a bijective correspondence between:

predicates X
p �� T (1 + 1)

===============================
X

f
�� T (X + X) with T (∇) ◦ f = η

Proof. The mapping downwards is p �→ instrp, and upwards is f �→ T (! + !) ◦ f .
Point (2) in Lemma 3 says that T (∇) ◦ instrp = η, since p is causal (because
T is affine); point (1) tells that going down-up is the identity. For the up-down
part we need to show that f = instrp, for p = T (! + !) ◦ f . We use the ‘strongly



68 B. Jacobs

affine’ pullback (10) to get a predicate q in:

X

f

��

〈q,id〉 ��
T (2) × X

π2 ��

st1

��

�� X

η

��
T (X + X)

sep−1
1

∼=
��

T (∇)

��T (2 × X)
T (π2) �� T (X)

The outer diagram commutes by (8). By construction we have f = instrq, see
Definition 3. We thus need to prove that q = p. But this follows from Lemma 3 (1):

p
def= T (! + !) ◦ f = T (! + !) ◦ instrq = q. �

Example 4. We shall illustrate the situation for the powerset monad P on the
(distributive) category Sets. We write 1 + 1 = 2 = {0, 1}, where we identify the
element 0 ∈ 2 with κ2∗ and 1 ∈ 2 with κ1∗. Hence P(2) = {∅, {0}, {1}, {0, 1}}
and Pa(2) = {{0}, {1}, {0, 1}}, where Pa � P is the affine submonad of non-
empty subsets, see Example 3 (2).

For a predicate p : X → P(2) the associated instrument instrp : X → P(X +
X) is, according to Definition 3, given by:

instrp(x) = {κ1x | 1 ∈ p(x)} ∪ {κ2x | 0 ∈ p(x)}

=

⎧
⎪⎪⎨
⎪⎪⎩

∅ if p(x) = ∅
{κ1x} if p(x) = {1}
{κ2x} if p(x) = {0}
{κ1x, κ2x} if p(x) = {0, 1}.

We thus see:

(P(∇) ◦ instrp

)
(x) = {x | 0 ∈ p(x) or 1 ∈ p(x)} =

{{x} if p(x) 	= ∅
∅ if p(x) = ∅.

Hence these instruments are not side-effect-free, in general. But if we restrict
ourselves to the (strongly affine) submonad Pa of non-emptyset subsets, then we
do have side-effect-freeness — as shown in general in Lemma 3 (2).

In that case we have a bijective correspondence between maps f : X →
Pa(X + X) with Pa(∇) ◦ f = {−} and predicates p : X → Pa(2) — as shown
in general in Theorem 1.



Affine Monads and Side-Effect-Freeness 69

6 Commutativity

In this section we assume that T is a strong monad on a distributive category C,
so that we can associate an instrument instrp : X → T (X + X) with a predicate
p : X → T (2), like in Definition 3.

Given such a predicate p we define the assert map asrtp : X → T (X + 1) as:

asrtp = T (id + !) ◦ instrp = T (π2 + π1) ◦ T (dis−1
1 ) ◦ st1 ◦ 〈p, id〉.

These assert maps play an important role to define conditional probabilities
(after normalisation), see [4]. Here we illustrate how one can define, via these
assert maps, a sequential composition operation — called ‘andthen’ — on pred-
icates p, q : X → T (2) as:

p & q = [q, κ2] • asrtp in K�(T )
= μ ◦ T ([q, T (κ2) ◦ η]) ◦ asrtp in C.

This operation incorporates the side-effect of p, if any. Hence, in principle, this
is not a commutative operation.

Example 5. We elaborate the situation described above for the state monad
T (X) = (S × X)S from Example 3 (3). A predicate on X can be identified with
a map p : X → (S + S)S , since:

T (2) =
(
S × 2

)S ∼= (
S + S

)S
.

For x ∈ X and s ∈ S the value p(x)(s) ∈ S + S describes the ‘true’ case via
the left component, and the ‘false’ case via the right component. Clearly, the
predicate can also change the state, and thus have a side-effect.

The associated instrument instrp : X → (S × (X +X))S ∼= (S ×X +S ×X)S

is described by:

instrp(x)(s) =
{

κ1(s′, x) if p(x)(s) = κ1s
′

κ2(s′, x) if p(x)(s) = κ2s
′

Similarly, asrtp : X → (S × (X + 1))S ∼= (S × X + S)S is:

asrtp(x)(s) =
{

κ1(s′, x) if p(x)(s) = κ1s
′

κ2s
′ if p(x)(s) = κ2s

′

Hence for predicates p, q : X → (S+S)S we have p & q : X → (S+S)S described
by:

(
p & q

)
(x)(s) =

{
q(x)(s′) if p(x)(s) = κ1s

′

κ2s
′ if p(x)(s) = κ2s

′

The side-effect s′ of p is passed on to q, if p holds. Clearly, & is not commutative
for the state monad.



70 B. Jacobs

The theorem below plays a central role for commutativity of the andthen
operation &. It establishes a connection between commutativity of sequential
composition and commutativity of the monad, as described in Diagram (3).

Theorem 2. If T is a commutative monad, then instruments commute: for
predicates p, q : X → T (2), the following diagram commutes in K�(T ).

X
instrp �� X + X

q+q �� 2 + 2

[κ1+κ1,κ2+κ2]∼=
��

X
instrq

�� X + X
p+p

�� 2 + 2

(16)

Proof. The structure of the proof is given by the following diagram in the under-
lying category.

X

〈p,id〉

����
��

��
�� 〈q,id〉

��		
		

		
		 ��

instrq

��





��

instrp

�	

��

T (2) × X

st1

��












id×q

��

T (2) × X

st1

��������������

id×p

��
T (2 × X)

T (sep1) (a)

��

T (2) × T (2)
γ=〈π2,π1〉

∼=
��

dst

��

����
��

��
��

��
��

��
��

��
T (2) × T (2)

dst

��

��












 T (2 × X)

T (sep1)(a)

��
T (X + X)

T (q+q)

��

T (2 × 2)
T (γ)

∼=
��

T (sep1)(b)

��

T (2 × 2)

T (sep1) (b)

��

T (X + X)

T (p+p)

��
T (T (2) + T (2))

μ ◦

T ([T (κ1),T (κ2)])

�� T (2 + 2)
T ([κ1+κ1,κ2+κ2])

(c)

∼= �� T (2 + 2) T (T (2) + T (2))
μ ◦

T ([T (κ1),T (κ2)])





The sub-diagrams (a) commute by naturality, and sub-diagrams (b) by (6) com-
mutation of (c) is equation (9), and the square in the middle is commutativity
of the monad T , see (3). Details are left to the interested reader. ��
Corollary 1. For a commutative monad (on a distributive category), sequential
composition & is commutative on causal predicates.

Proof. We first note that in K�(T ) we can write . Hence
if p, q are both causal, then:



Affine Monads and Side-Effect-Freeness 71

7 Conclusions

We have translated the notions of side-effect-freeness and commutativity from
quantum foundations (in the form of effectus theory) to monad theory, and
proven some elementary results. This is only a starting point. Expecially, con-
nections between (strong) affineness and non-locality need to be clarified.

Further, the current work forms the basis for a categorical description (that
is in the making) of probability theory using strongly affine monads.

We should point out that the setting of the current work is given by distrib-
utive categories, with finite cartesian products, and not tensor products. They
form in themselves already a classical setting.

Acknowledgements. Thanks are due to Kenta Cho and Fabio Zanasi for helpful
discussions on the topic of the paper, and to the anonymous referees for suggesting
several improvements.

References

1. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and
contextuality. New J. Phys. 13, 113036 (2011)

2. Adámek, J., Velebil, J.: Analytic functors and weak pullbacks. Theor. Appl. Categ.
21(11), 191–209 (2008)

3. Adams, R.: QPEL: quantum program and effect language. In: Coecke, B.,
Hasuo, I., Panangaden, P. (eds.) Electrical Proceedings in Theoretical Computer
Science on Quantum Physics and Logic (QPL) 2014, no. 172, pp. 133–153 (2014)

4. Adams, R., Jacobs, B.: A type theory for probabilistic and Bayesian reasoning
(2015). arXiv.org/abs/1511.09230

5. Cho, K.: Total and partial computation in categorical quantum foundations. In:
Heunen, C., Selinger, P., Vicary, J. (eds.) Electrical Proceedings in Theoretical
Computer Science on Quantum Physics and Logic (QPL) 2015, no. 195, pp. 116–
135 (2015)

6. Cho, K., Jacobs, B., Westerbaan, A., Westerbaan, B.: An introduction to effectus
theory (2015). arXiv.org/abs/1512.05813

7. Coecke, B., Heunen, C., Kissinger, A.: Categories of quantum and classical chan-
nels. Quantum Inf. Process. 1–31 (2014)

8. Fong, B.: Causal theories: a categorical perspective on Bayesian networks. Master’s
thesis, Univ. of Oxford (2012). arXiv.org/abs/1301.6201

9. Furber, R., Jacobs, B.: Towards a categorical account of conditional probability.
In: Heunen, C., Selinger, P., Vicary, J. (eds.) Electronic Proceedings in Theoretical
Computer Science of Quantum Physics and Logic (QPL) 2015, no. 195, pp. 179–195
(2015)

10. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics, vol.
915, pp. 68–85. Springer, Berlin (1982)

11. Jacobs, B.: Semantics of weakening and contraction. Ann. Pure Appl. Logic 69(1),
73–106 (1994)

12. Jacobs, B.: Measurable spaces and their effect logic. In: Logic in Computer Science.
IEEE, Computer Science Press (2013)

http://arxiv.org/abs/org/abs/1511.09230
http://arxiv.org/abs/org/abs/1512.05813
http://arxiv.org/abs/org/abs/1301.6201


72 B. Jacobs

13. Jacobs, B.: New directions in categorical logic, for classical, probabilistic and quan-
tum logic. Logical Methods in Comp. Sci. 11(3), 1–76 (2015)

14. Jacobs, B.: Effectuses from monads. In: MFPS 2016 (2016, to appear)
15. Jacobs, B., Mandemaker, J.: The expectation monad in quantum foundations. In:

Jacobs, B., Selinger, P., Spitters, B. (eds.) Elecronic Proccedings in Theoretical
Computer Science of Quantum Physics and Logic (QPL) 2011, no. 95, pp. 143–182
(2012)

16. Jacobs, B., Westerbaan, B., Westerbaan, B.: States of convex sets. In: Pitts, A.
(ed.) FOSSACS 2015. LNCS, vol. 9034, pp. 87–101. Springer, Heidelberg (2015)

17. Jacobs, B., Zanasi, F.: A predicate/state transformer semantics for Bayesian learn-
ing. In: MFPS 2016 (2016, to appear)

18. Klin, Bartek: Structural operational semantics for weighted transition systems. In:
Palsberg, Jens (ed.) Semantics and Algebraic Specification. LNCS, vol. 5700, pp.
121–139. Springer, Heidelberg (2009)

19. Kock, A.: Monads on symmetric monoidal closed categories. Arch. Math. XXI,
1–10 (1970)

20. Kock, A.: Bilinearity and cartesian closed monads. Math. Scand. 29, 161–174
(1971)

21. Lindner, H.: Affine parts of monads. Arch. Math. XXXIII, 437–443 (1979)
22. Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)
23. Trnková, V.: Some properties of set functors. Comment. Math. Univ. Carolinae

10, 323–352 (1969)



Duality of Equations and Coequations
via Contravariant Adjunctions

Julian Salamanca1(B), Marcello Bonsangue1,2, and Jurriaan Rot3

1 CWI, Amsterdam, The Netherlands
salamanc@cwi.nl

2 LIACS - Leiden University, Leiden, The Netherlands
3 LIP, Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, INRIA,

Université Claude-Bernard Lyon 1, Lyon, France

Abstract. In this paper we show duality results between categories of
equations and categories of coequations. These dualities are obtained
as restrictions of dualities between categories of algebras and coalge-
bras, which arise by lifting contravariant adjunctions on the base cate-
gories. By extending this approach to (co)algebras for (co)monads, we
retrieve the duality between equations and coequations for automata
proved by Ballester-Bolinches, Cosme-Llópez and Rutten, and general-
ize it to dynamical systems.

1 Introduction

Equations play a fundamental role in (universal) algebra. Their categorical dual
in universal coalgebra is the notion of coequations. Coequations were studied
extensively in the search for a dual of Birkhoff’s theorem and the specification
of classes of coalgebras (see, e.g., [1,2,5,9,11,12,18,19,21–23]).

The aim of the current paper is a different one: to relate equations to coequa-
tions and vice versa. Our starting point is the abstract definition of (co)equations
on (co)algebras for an endofunctor. These definitions give rise to categories of
equations and coequations; we seek sufficient conditions to obtain dual equiva-
lences between such categories.

We start with a more general concept than a duality, namely, a contravari-
ant adjunction. Our approach is to lift adjunctions to categories of algebras and
coalgebras [13]. In the setting of a contravariant adjunction, and by using preser-
vation of limits by adjoints, we have that sets of equations are sent to sets of
coequations. To guarantee the converse, i.e., that coequations are also mapped

J. Salamanca—The research of this author is funded by the Dutch NWO project
612.001.210.
J. Rot—Supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) oper-
ated by the French National Research Agency (ANR).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 73–93, 2016.
DOI: 10.1007/978-3-319-40370-0 6



74 J. Salamanca et al.

to equations, we assume that the contravariant adjunction is a duality. This
gives us a duality result between equations and coequations. We derive known
dualities between equations and coequations for automata [7,24,25] as a special
case of this abstract approach, and we generalize the duality shown in [7] to
include (general) dynamical systems.

As a natural next step in this study we include monads and comonads into the
picture and prove a lifting theorem to lift contravariant adjunctions to Eilenberg-
Moore categories. From this lifting theorem we show the following results:

– Dualities between equations and coequations for Eilenberg-Moore categories.
– Lifting of contravariant adjunctions to Eilenberg-Moore categories where,

given a contravariant adjunction and a comonad, we define a canonical monad.
– Lifting of dualities to Eilenberg-Moore categories where, given a duality and

a monad, we define a canonical comonad.

The paper is organized as follows. Section 2 is a preliminary section in which
we introduce some notation we use in the paper. In Sect. 3 we introduce the
abstract definitions of equations and coequations, satisfaction of equations for
algebras and satisfaction of coequations for coalgebras. Section 4 introduces the
notion of a contravariant adjunction. We state a theorem for lifting contravariant
adjunctions (Theorem 3), which is essentially a special case of [13, 2.14.Theorem],
and then illustrate this lifting theorem through several examples. In Sect. 5 we
focus on the particular case that the contravariant adjunction is a duality to
show a general duality result between equations and coequations. Further, we
show how to get a canonical notion of satisfaction of equations for coalgebras. In
Sect. 6 we include monads and comonads in our setting to prove a lifting theorem
(Theorem 11) that allows us to lift contravariant adjunctions to a contravariant
adjunction between Eilenberg-Moore categories. We show how to construct a
comonad from a given monad and vice versa to get respective lifting theorems.
Finally, in Sect. 7 we apply the lifting theorems (to Eilenberg-Moore) to the
study of equations and coequations for dynamical systems and deterministic
automata.

2 Preliminaries

In this section we introduce the notation for categories of algebras and coalgebras
that we will use in the paper. We assume that the reader is familiar with basic
concepts from category theory and coalgebra, see, e.g., [6,22].

Given a category D and an endofunctor L : D → D, we denote by alg(L) the
category of L-algebras and their homomorphisms, i.e., objects in alg(L) are pairs
(X,α) where X is an object in D and α ∈ D(LX,X), and a homomorphism from
an L-algebra (X1, α1) to an L-algebra (X2, α2) is a morphism h ∈ D(X1,X2)
such that h ◦ α1 = α2 ◦ Lh.

Dually, for a given endofunctor B : C → C on a category C, coalg(B) denotes
the category of B-coalgebras, i.e., objects in coalg(B) are pairs (Y, β) where Y



Duality of Equations and Coequations via Contravariant Adjunctions 75

is an object in C and β ∈ C(Y,BY ), and a homomorphism from a B-coalgebra
(Y1, β1) to a B-coalgebra (Y2, β2) is a morphism h ∈ C(Y1, Y2) such that β2 ◦h =
Bh ◦ β1.

In case that we have a monad L = (L, η, μ), we let Alg(L) denote the category
of (Eilenberg-Moore) L-algebras, i.e., algebras for the monad L. Similarly, for
a comonad B = (B, ε, δ), the category Coalg(B) consists of Eilenberg-Moore
coalgebras for the comonad B. Notice that we use the notation L,B to refer to
(co)monads, and L,B to refer to the underlying functors.

Each of the categories alg(L), Alg(L), coalg(B), and Coalg(B) has a canonical
forgetful functor into the underlying category. For instance, the forgetful functor
for Alg(L) is the functor U : Alg(L) → D defined as U(X,α) = X and Uf = f
for any L-algebra morphism f . We will refer to those forgetful functors without
giving them a specific name.

3 Equations and Coequations

We introduce the abstract definitions of equations and coequations. Let L be
an endofunctor on D and S be an object in D. The free L-algebra on S gen-
erators is an algebra F(S) = (F(S), τ) ∈ alg(L) together with a morphism
η ∈ D(S,F(S)), called unit, satisfying the following universal property: for any
L-algebra X = (X,α) and any morphism f ∈ D(S,X) there is a unique mor-
phism f � ∈ alg(L)(F(S),X) such that f � ◦ η = f , i.e., the following diagram
commutes:

S

F(S)

LF(S)

X

LX

η
∀f

τ α
f �

Lf �

We define equations for L on S generators as epimorphisms with domain F(S),
i.e., elements eP ∈ alg(L)(F(S), P ) that are epimorphisms for some P = (P, ζ) ∈
alg(L). Observe that if L is a polynomial functor on Set (see, e.g., [22, Section 10])
then equations can be identified with L-congruences C of F(S), since F(S)/C ∼=
P for C = ker(eP ), and elements in C are pairs of terms with variables on the set
S. This corresponds to the classical definition of equations in universal algebra.
Finally, we say that an L-algebra X = (X,α) satisfies the equation eP , denoted
as (X,α) |= eP , if for any morphism f ∈ D(S,X) the morphism f � factors
through eP , i.e., there exists gf ∈ alg(L)(P,X) such that the following diagram
commutes:



76 J. Salamanca et al.

S

F(S)

LF(S)

P

LP

X

LX

η

eP

τ

LeP

ζ α
gf

Lgf

∀f

f �

Now, assuming that the free L-algebra on S generators F(S) = (F(S), τ)
exists, we can define the category eq(L, S) of equations for L on S generators as
follows:

Objects of eq(L, S) : epimorphisms eX ∈ alg(L)(F(S),X) for some
X = (X,α) ∈ alg(L).

Arrows of eq(L, S) : for eXi
∈ eq(L, S), i = 1, 2, a morphism

f ∈ eq(L, S)(eX1 , eX2) is a morphism f ∈ alg(L)(X1,X2)
such that the following diagram commutes:

F(S) X1

X2

eX1

eX2 f

Notice that morphisms in eq(L, S) are necessarily epimorphisms.

Example 1. Consider the Set endofunctor L given by LX = A × X, where A
is a fixed set, and the singleton set S = 1 of generators. Then an L-algebra
together with an assignment of the single generator is a pointed deterministic
automaton, i.e., a triple (X,α, x) consisting of a set of states X, a transition
function α : A × X → X and an element x ∈ X.

The free L-algebra on 1 is given by A∗ = (A∗, τ) where τ : A × A∗ → A∗

is defined by τ(a,w) = wa and the unit η : 1 → A∗ maps the single generator
to the empty word ε ∈ A∗, i.e., η = ε. Given a pointed automaton (X,α, x) we
obtain a unique homomorphism rx : A∗ → X, given by rx(ε) = x and rx(wa) =
α(a, rx(w)). In the sequel we sometimes denote rx(w) by w(x), the state we reach
from the state x by processing the word w.

A right congruence on A∗ is an equivalence relation C ⊆ A∗ × A∗ such that
for any a ∈ A and (u, v) ∈ C we have that (ua, va) ∈ C. Right congruences
C correspond to equations as defined above, by letting A∗/C = (A∗/C, [τ ]) ∈
alg(L) where [τ ] is given by [τ ](a, [w]) = [wa] and the epimorphism (equation)
eC ∈ alg(L)(A∗, A∗/C) maps every word to its equivalence class.



Duality of Equations and Coequations via Contravariant Adjunctions 77

An L-algebra (X,α) satisfies the equation eC , i.e., (X,α) |= C, if and only
if for every (u, v) ∈ C and any x ∈ X, we have rx(u) = rx(v). This coincides
with satisfaction of equations as defined in [7].

Notice that the function τ ′ : A × A∗ → A∗ defined as τ ′(a,w) = aw is such
that the algebra (A∗, τ ′) is also a free L-algebra, which gives us the notion of
left congruence as a corresponding notion of equation. �	
We dualize the definition of equations to obtain the definition of coequations,
e.g., [18,19,22]. Let B be an endofunctor on C and R be an object in C. The cofree
B-coalgebra on R colours is a coalgebra C(R) = (C(R), υ) ∈ coalg(B) together
with a morphism ε ∈ C(C(R), R), called counit, satisfying the following universal
property: for any B-coalgebra Y = (Y, β) and any morphism (colouring) f ∈
C(Y,R) there is a unique morphism f � ∈ coalg(L)(Y,C(R)) such that ε ◦ f � = f ,
i.e., the following diagram commutes:

R

C(R)

BC(R)

Y

BY

ε∀f

υβ
f �

Bf �

We define coequations for B on R colours as monomorphisms with codomain
C(R), i.e., elements mQ ∈ coalg(B)(Q,C(R)) that are monomorphisms for
some Q = (Q, δ) ∈ coalg(B). We say that a B-coalgebra Y = (Y, β) satisfies
the coequation mQ, denoted as (Y, β) ||= mQ (notice the difference between
the symbols: |= for equations and ||= for coequations), if for any morphism
(colouring) f ∈ C(Y,R) the morphism f � factors through mQ, i.e., there exists
gf ∈ coalg(B)(Y,Q) such that the following diagram commutes:

R

C(R)

LC(R)

Q

BQ

Y

BY

ε

mQ

υ

BmQ

δβ
gf

Bgf

∀f

f �

Assuming that the cofree B-coalgebra on R colours C(R) = (C(R), υ) exists,
define the category coeq(B,R) of coequations for B on R colours whose objects
are monomorphisms mY ∈ coalg(B)(Y,C(R)) for some Y = (Y, β) ∈ coalg(B),
and, a morphism between two objects mY1 and mY2 in coeq(B,R) is a mor-
phism g ∈ coalg(B)(Y1, Y2) such that mY2 ◦ g = mY1 . Notice that morphisms in
coeq(B,R) are necessarily monomorphisms.



78 J. Salamanca et al.

Example 2. For a given set A, consider the Set endofunctor B defined by
BX = XA, and consider the two-element set R = 2 of colours. Then a B-
coalgebra together with an assignment of colours to states is a coloured deter-
ministic automaton: a triple (Y, β, f) consisting of a set of states Y , a transition
function β : Y → Y A and an assignment of final states f : Y → 2.

The cofree B-coalgebra on 2 colours is given by 2A∗
= (2A∗

, υ) where
υ : 2A∗ → (2A∗

)A is given by right derivative

υ(L)(a) = La = {w | aw ∈ L}
and the counit ε : 2A∗ → 2 is given by ε(L) = L(ε). Given a coloured determinis-
tic automaton (Y, β, f), we obtain a unique B-coalgebra morphism l : Y → 2A∗

that maps every state to the language it accepts, i.e., l(x)(ε) = f(x) and
l(x)(aw) = l(β(x)(a))(w).

Coequations for B on R correspond to subsets of 2A∗
that are closed

under right derivatives, i.e., subcoalgebras of 2A∗
. Given any monomorphism

(coequation) mQ with codomain 2A∗
and a B-coalgebra (Y, β), we have that

(Y, β) ||= mQ if and only if for every 2-colouring f ∈ Set(Y, 2) the set of those
languages accepted by the states of the coloured automaton (Y, β, f) is contained
in Im(mQ). This coincides with satisfaction of coequations as defined in [7].

Similarly to the previous example, the function υ′ : 2A∗ → (2A∗
)A given by

left derivative
υ′(L)(a) = aL = {w | wa ∈ L}

is such that (2A∗
, υ′) is also a cofree B-coalgebra for which the corresponding

notion of coequations are subsets of 2A∗
closed under left derivatives. �	

4 Lifting Contravariant Adjunctions

In this section we recall the notion of a contravariant adjunction and how to lift it
to categories of algebras and coalgebras, according to [13,14]. We instantiate this
abstract approach in examples of constructions on various kinds of automata.

Given two contravariant functors F : C → D and G : D → C (i.e., F and G
reverse the direction of arrows), a contravariant adjunction between F and G,
denoted by F 
� G, is a bijection

D(X,FY ) ∼= C(Y,GX)

which is natural in both X ∈ D and Y ∈ C. Observe that both F and G
are on the codomain of the Hom-sets. Such a contravariant adjunction can be
equivalently defined by two units ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF that
satisfy the triangle identities GηFG ◦ ηGF

G = IdG and FηGF ◦ ηFG
F = IdF .

By standard preservation properties, both F and G map colimits to limits, in
particular initial objects to final objects and epimorphisms to monomorphisms.

Given a contravariant adjunction as above, if ηGF and ηFG are isomorphisms
then we say F,G form a duality, and denote it by F ∼= G. In this case, limits are
mapped to colimits and vice versa.



Duality of Equations and Coequations via Contravariant Adjunctions 79

Our basic setting consists of a contravariant adjunction between F and G, an
endofunctor B on C and an endofunctor L on D, depicted in the diagram below.
Throughout this paper we depict contravariant functors in diagrams with an ‘×’
at the beginning of the arrow.

C D


�

F

B

G

L

In this setting, we are interested in lifting the adjunction to a contravariant
adjunction between lifted functors F̂ : coalg(B) → alg(L) and Ĝ : alg(L) →
coalg(B) of F and G, respectively, as in the following picture:

C D

coalg(B) alg(L)


�

�

F

B

G

L

F̂

Ĝ

(1)

where the vertical arrows are forgetful functors. An important consequence of
such a lifting is that, if L has an initial algebra, then it is mapped by Ĝ to a
final B-coalgebra.

In [13, 2.14.Theorem] it is shown that a sufficient condition for such a lifting
is the existence of a natural isomorphism γ : GL ⇒ BG. This is summarized by
the theorem below.

Theorem 3. Let F : C → D and G : D → C be contravariant functors that
form a contravariant adjunction. Let B be an endofunctor on C and L be an
endofunctor on D. If there is a natural isomorphism γ : GL ⇒ BG, then

1. The adjunction F 
� G lifts to an adjunction as in Diagram (1), i.e.,
to a contravariant adjunction between functors F̂ : coalg(B) → alg(L) and
Ĝ : alg(L) → coalg(B).

2. If F,G form a duality then F̂ , Ĝ form a duality as well.

The functors F̂ : coalg(B) → alg(L) and Ĝ : alg(L) → coalg(B) are defined
on objects as:

(Y
β−→ BY )

̂F−→ (LFY
ρY−→ FBY

Fβ−→ FY )

(LX
α−→ X)

̂G−→ (GX
Gα−→ GLX

γX−→ BGX)



80 J. Salamanca et al.

and on morphisms as F̂ = F and Ĝ = G. The natural transformation ρ : LF ⇒
FB in the definition of F̂ is defined as the mate of the inverse γ−1 : BG ⇒ GL:

ρ
def.= FBηGF ◦ Fγ−1F ◦ ηFGLF,

using the units ηGF and ηFG of the adjunction. Natural transformations of the
form ρ : LF ⇒ FB and the definition of F̂ form the heart of the approach
to coalgebraic modal logic based on contravariant adjunctions/dualities (see,
e.g., [8,15,16,20]). There is a one-to-one correspondence between such natural
transformations and those of the form BG ⇒ GL, using the above construction.
We are only interested in the case where the natural transformation BG ⇒ GL
is an isomorphism, to lift adjunctions, as in [17]. For notational convenience, the
direction in γ : GL ⇒ BG is reversed in the current paper.

In the rest of this section we provide examples and applications of Theorem 3
and the setting in Diagram (1).

Example 4. [17, Example 4] For a fixed set A consider the following situation:

Set Set

FX = GX = 2X

LX = (A × X) + 1

BY = 2 × Y A

γX : 2A×X+1 → 2 × (2X)A

�

F

B

G

L

Here L-algebras are pointed deterministic automata on A (Example 1) and B-
coalgebras are two-coloured deterministic automata on A (Example 2). The con-
travariant functors F and G form a contravariant adjunction which, by The-
orem 3, can be lifted to an adjunction between F̂ and Ĝ. The isomorphism
γ : GL ⇒ BG is defined for any X as the function γX : 2A×X+1 → 2 × (2X)A

such that γX(f) = (f(·), λa. λx.f(a, x)).
Given a B-coalgebra (Y, 〈c, β〉) we have that F̂ (Y, 〈c, β〉) = (2Y , [α, i]) where

α : A × 2Y → 2Y and i : 1 → 2Y are functions defined as follows:

i(·) = c−1({1}) = accepting states of (Y, 〈c, β〉),
α(a, Z) = {y ∈ Y | β(y)(a) ∈ Z}.

Given an L-algebra (X, [α, i]) we have that Ĝ(X, [α, i]) = (2X , 〈c, β〉) where the
functions c : 2X → 2 and β : 2X → (2X)A are defined as:

c(Z) = 1 iff i(·) ∈ Z

β(Z)(a) = {x ∈ X | α(a, x) ∈ Z}
Recall from Example 1 that the initial L-algebra is given by (A∗, [η, τ ′]),

where A∗ is the free monoid with generators A and identity element ε, η : 1 → A∗

is the empty word ε and τ ′ : A×A∗ → A∗ is the concatenation function given by
τ ′(a,w) = aw. Because of the contravariant adjunction, the initial L-algebra is



Duality of Equations and Coequations via Contravariant Adjunctions 81

sent by Ĝ to the final B-coalgebra, given by Ĝ(A∗, [η, τ ′]) = (2A∗
, 〈ε̂, τ̂〉) where

ε̂(L) = L(ε) and τ̂(L)(a)(w) = L(aw). Note that the final B-coalgebra is not
sent by F̂ to the initial L-algebra. �	
Example 5. Let CABA be the category of complete atomic Boolean algebras
whose morphisms are complete Boolean algebra homomorphisms. For a fixed set
A consider the following situation:

CABA Set

FY = At(Y )

GX = 2X

LX = (A × X) + 1

BY = 2 × Y A

γX : 2A×X+1 → 2 × (2X)A

∼=
F

B

G

L

Here At(Y ) denotes the set of atoms of the object Y in CABA. The contravariant
functors F and G form a contravariant adjunction, in fact a duality, which, by
Theorem 3, can be lifted to a duality between F̂ and Ĝ if we consider the canon-
ical natural isomorphism γ : GL ⇒ BG defined for every X as the morphism
γX : 2A×X+1 → 2 × (2X)A such that γX(f) = (f(·), λa. λx.f(a, x)).

Given a B-coalgebra (Y, 〈c, β〉), we have that F̂ (Y, 〈c, β〉) = (At(Y ), [α, i])
where the functions α : A × At(Y ) → At(Y ) and i : 1 → At(Y ) are defined as
follows:

i(·) = the unique element y0 ∈ At(Y ) s.t. c(y0) = 1,
α(a, y) = the unique element y′ ∈ At(Y ) s.t. β(y′)(a) ≥ y.

In particular, if P ⊆ 2A∗
is a preformation of languages [7, Definition 11], i.e.,

P ∈ CABA and it is closed under left and right derivatives1, then (P, 〈ε̂, τ̂ ′〉) ∈
coalg(B) where ε̂(L) = L(ε) and τ̂ ′(L)(a) = aL. In this case, F̂ (P, 〈ε̂, τ̂ ′〉) =
free(P ) which is the quotient A∗/C where C is the set, in fact congruence, of
all equations satisfied by the automaton (P, τ̂), where τ̂(L)(a) = La (see [7]).

Given an L-algebra (X, [α, i]), we have that Ĝ(X, [α, i]) = (2X , 〈c, β〉) where
the CABA morphisms c : 2X → 2 and β : 2X → (2X)A are defined as

c(Z) = 1 iff i(·) ∈ Z

β(Z)(a) = {x ∈ X | α(a, x) ∈ Z}.

In particular, if C is a congruence of the monoid A∗ then (A∗/C, [[τ ′], [ε]]) ∈
alg(L) where [τ ′](a, [w]) = [aw]. In this case, Ĝ(A∗/C, [[τ ′], [ε]]) ∼= cofree(A∗/C)
which is the minimum set of coequations that the automaton (A∗/C, [τ ]) satisfies,
where [τ ](a, [w]) = [wa] (see [7]).

1 P ⊆ 2A∗
is closed under right (left) derivatives if for every L ∈ P and a ∈ A, La ∈ P

(aL ∈ P ). Here La(w) = L(aw), and aL(w) = L(wa), w ∈ A∗.



82 J. Salamanca et al.

Similarly to the previous example, the initial L-algebra A∗ = (A∗, [η, τ ′]),
where η = ε and τ ′(a,w) = aw, is sent by Ĝ to the final B-coalgebra 2A∗

=
(2A∗

, 〈ε̂, τ̂〉), where ε̂(L) = L(ε) and τ̂(L)(a)(w) = L(aw). Also, because the
contravariant adjunction is a duality, the final B-coalgebra 2A∗

is sent by F̂
to the initial L-algebra A∗. We will explore this case further in Sect. 5 to get
dualities between sets of equations and sets of coequations. �	
Example 6. For a fixed field K, let VecK be the category of vector spaces over K
with linear maps. Let A be a fixed set and consider the following situation:

VecK VecK

FX = GX = X∂

LX = K + (A × X)

BY = K × Y A

γX : (K + A × X)∂ → K × (X∂)A


�

F

B

G

L

Here X∂ = VecK(X,K), the dual space of X, and A × X :=
∐

a∈A X. We
have that the contravariant functors F and G form a contravariant adjunction
which, by Theorem 3, can be lifted to a contravariant adjunction between F̂
and Ĝ if we consider the canonical natural isomorphism γ : GL ⇒ BG defined
for every X as the map γX : (K + A × X)∂ → K × (X∂)A such that γX(ϕ) =
(ϕ(1), λa. λx.ϕ(a, x)).

Given a B-coalgebra (Y, 〈c, β〉), we have that F̂ (Y, 〈c, β〉) = (Y ∂ , [i, α]) where
i : K → Y ∂ and α : A × Y ∂ → Y ∂ are linear maps which are defined on the
canonical basis as:

i(1)(y) = c(y)
α(a, ϕ)(y) = (ϕ ◦ β(y))(a) = ϕ(β(y)(a))

In particular, if S ⊆ K
A∗

is a subsystem such that for every f ∈ S and a ∈ A,
fa, af ∈ S, where fa(w) = f(aw) and af(w) = f(wa), w ∈ A∗, then we have
that (S, 〈ε̂, τ̂ ′〉) ∈ coalg(B) where ε̂(f) = f(ε) and τ̂ ′(f)(a) = af . In this case,
F̂ (S, 〈ε̂, τ̂ ′〉) ∼= free(S) which is the quotient V (A∗)/C where C is the set, in fact
linear congruence, of all linear equations satisfied by the automaton (S, τ̂). Here
V (A∗) = {φ : A∗ → K | supp(φ) is finite}, where supp(φ) = {w ∈ A∗ | φ(w) �=
0} is the support of φ, and the function τ̂ is defined as τ̂(f)(a) = fa (see [25]).

Given an L-algebra (X, [i, α]), we have that Ĝ(X, [i, α]) = (X∂ , 〈c, β〉) where
the linear maps c : X∂ → K and β : X∂ → (X∂)A are defined as

c(ϕ) = ϕ(i(1))
β(ϕ)(a)(x) = ϕ(α(a, x))

In particular, if C ⊆ V (A∗) × V (A∗) is a linear congruence on V (A∗), then
we have that (V (A∗)/C, [[τ ′], [ε]]) ∈ alg(L), where [τ ′](a, [φ]) = [aφ], and we



Duality of Equations and Coequations via Contravariant Adjunctions 83

have that Ĝ(V (A∗)/C, [[τ ′], [ε]]) ∼= cofree(V (A∗)/C) which is the minimum set
of coequations (power series) satisfied by the automaton (V (A∗)/C, [τ ]), where
[τ ](a, [φ]) = [φa] (see [25]).

Notice that the contravariant adjunction is not a duality, but if we restrict to
vector spaces of finite dimension then we get a duality. In the latter case there
is no initial L-algebra or, equivalently, there is no final B-coalgebra. �	

5 Duality Between Equations and Coequations

In Sect. 3, we defined equations as epimorphisms from an initial algebra and
coequations as monomorphisms into a final coalgebra. In the previous section,
we have seen how to relate initial algebras and final coalgebras by lifting con-
travariant adjunctions and dualities. Next, we describe how to apply these liftings
to obtain a correspondence between equations and coequations.

If we lift the contravariant adjunction on the base categories to a contravari-
ant adjunction F̂ : coalg(B) → alg(L) and Ĝ : alg(L) → coalg(B) as in the
previous section, then Ĝ sends the initial L-algebra to the final B-coalgebra,
and Ĝ sends epimorphisms to monomorphisms. As a consequence, equations are
sent by Ĝ to coequations. However, F̂ does not map coequations to equations,
in general.

In order to obtain a full correspondence between equations and coequations,
suppose that the contravariant adjunction between F and G is a duality (and
that there is a natural isomorphism γ : GL ⇒ BG). Then, by Theorem 3, the
duality between F and G lifts to a duality between F̂ and Ĝ. In this case, we
can add another level to the picture in (1), yielding a duality between equations
and coequations:

C D

coalg(B) alg(L)

coeq(B, G(S)) eq(L, S)

∼=

∼=

∼=

F

B

G

L

F̂

Ĝ

F̂

Ĝ

(2)

where eq(L, S) and coeq(B,G(S)) are the categories of equations for L on S
generators and coequations for B on G(S) colours respectively, as defined in



84 J. Salamanca et al.

Sect. 3, lower vertical arrows are forgetful functors, and upper vertical arrows are
the canonical functors U : coeq(B,G(S)) → coalg(B) and V : eq(L, S) → alg(S)
which are defined as U(mY ) = Y and V (eX) = X on objects and Uf = f and
V g = g on morphisms.

Theorem 7. Let F : C → D and G : D → C be contravariant functors that form
a duality. Let B be an endofunctor on C, L be an endofunctor on D with an
object S in D such that the free L-algebra F(S) on S generators exists. If there
is a natural isomorphism γ : GL ⇒ BG then:

1. The duality between F and G lifts to a duality F̂ : coeq(B,G(S)) → eq(L, S)
and Ĝ : eq(L, S) → coeq(B,G(S)), as in Diagram (2).

2. Given eP ∈ eq(L, S), mQ ∈ coeq(B,G(S)), (X,α) ∈ alg(L), and (Y, β) ∈
coalg(B) we have:
(i) (X,α) |= eP if and only if Ĝ(X,α) ||= Ĝ(eP ).
(ii) F̂ (Y, β) |= F̂ (mQ) if and only if (Y, β) ||= mQ.

As an application of the previous theorem we have the following.

Example 8. (cf. Example 5) For a fixed set A consider the following situation:

CABA Set

FY = At(Y )

GX = 2X

LX = A × X

BY = Y A

γX : 2A×X → (2X)A

∼=
F

B

G

L

If we put S = 1, then we get a duality between eq(L, 1), whose objects can
be identified with right congruences of A∗, and coeq(B, 2), whose objects can
be identified with subalgebras Q ⊆ 2A∗

in CABA that are closed under left
derivatives. From this setting, if we consider congruences of A∗ and subalgebras
of 2A∗

that are closed both under left and right derivatives, we can derive the
duality between equations and coequations that was shown in [7, Theorem 22].
We will come back to this situation in a more general setting in Sect. 7.1 and
also in a slightly different setting in Sect. 7.2. �	
Example 9. In this example we explicitly show that if the contravariant adjunc-
tion is not a duality then sets of coequations are not always sent to sets of
equations. For the set A = {a, b} consider the situation:

Set Set

FX = GX = 2X

LX = A × X

BY = Y A

γX : 2A×X → (2X)A


�

F

B

G

L



Duality of Equations and Coequations via Contravariant Adjunctions 85

In this case, consider the set S = 1 of generators. The free L-algebra on S
generators is given by A∗ = (A∗, τ ′), where τ ′(a,w) = aw, and unit η = ε. The
cofree B-coalgebra on G(S) = 2 colours is the coalgebra 2A∗

= (2A∗
, υ) = Ĝ(A∗),

where υ(L)(a)(w) = L(aw), and counit ε(L) = L(ε). Now, consider the element
mQ ∈ coeq(B, 2) where Q = {∅, A∗} and mQ is the inclusion map mQ : Q → 2A∗

.
Then the codomain of F̂ (mQ) is (2Q, α) where α(a, f) = α(b, f) = f for all
f ∈ 2Q (this definition of α follows from Example 4).

We have that 2Q = (2Q, α) cannot be a homomorphic image of A∗. In fact, if
there exists an epimorphism e ∈ alg(L)(A∗, 2Q) then there is a right congruence
C of A∗ such that (A∗/C, [τ ′]) ∼= (2Q, α) which means that A∗/C has four
equivalence classes and for each equivalence class [w] ∈ A∗/C we have that
[w] = [aw] = [bw], which is a contradiction since the last equality implies that
there is only one equivalence class. �	

5.1 Equations for Coalgebras

In this section we show how to define equations for coalgebras by using liftings
of contravariant adjunctions. The concepts presented here can be dualized to
define coequations for algebras.

Assume that we have lifted a contravariant adjunction between functors
F : C → D and G : D → C to a contravariant adjunction between F̂ : coalg(B) →
alg(L) and Ĝ : alg(L) → coalg(B) for an endofunctor B on C and an endofunctor
L on D. Given an equation eP ∈ eq(L, S) for some S in D, we define, for a given
coalgebra (Y, β) in coalg(B), (Y, β) |= eP , and say that the coalgebra (Y, β)
satisfies the equation eP , as:

(Y, β) |= eP
def⇔ F̂ (Y, β) |= eP .

Notice that if F̂ and Ĝ form a duality then F̂ (Y, β) |= eP is equivalent to
(Y, β) ||= Ĝ(eP ). One could be tempted to use (Y, β) ||= Ĝ(eP ) as a definition for
(Y, β) |= eP since Ĝ(eP ) ∈ coeq(B,G(S)) but we prefer to avoid this since the
dual argument is not true in general, i.e., given mQ ∈ coeq(B,G(S)), F̂ (mQ) is
not always in eq(L, S), as it was shown in Example 9.

Example 10. Consider the situation given in Example 4 and let S = ∅. Then
we have that for a B-coalgebra (deterministic automaton) Y = (Y, 〈c, β〉) and a
right congruence C on A∗:

(Y, 〈c, β〉) |= C ⇔ ∀(u, v) ∈ C u(i(·)) = v(i(·)) in ̂F (Y, 〈c, β〉)
⇔ ∀(u, v) ∈ C {x ∈ X | c(u(x)) = 1} = {x ∈ X | c(v(x)) = 1}.

In words, a right congruence C on A∗ is satisfied by Y = (Y, 〈c, β〉) if for every
pair (u, v) ∈ C the set of states that accept u coincides with the set of states
that accept v.

In Example 1 we also defined satisfaction of right congruences for determin-
istic automata, as the canonical notion that arises by viewing (the transition



86 J. Salamanca et al.

structure of) automata as algebras. According to this, if we consider (Y, β) as
an A × IdSet-algebra, we have a direct definition for (Y, β) |= C. We conclude
this example by showing the relation between (Y, 〈c, β〉) |= C and (Y, β) |= C.

Consider the coloured automaton (Y, 〈c, β〉) on A = {a} given by:

t

a

s
a

r
a

If we denote by 〈u = v〉 the least right congruence containing the pair (u, v) ∈
A∗ × A∗, then we have that (Y, 〈c, β〉) |= 〈a = aa〉 since

{y ∈ Y | c(a(y)) = 1} = {r, s, t} = {y ∈ Y | c(aa(y)) = 1}

but (Y, β) �|= 〈a = aa〉 since a(r) = s �= t = aa(r). One can prove that (Y, β) |=
〈u = v〉 implies (Y, 〈c, β〉) |= 〈u = v〉 and that the converse holds if (Y, 〈c, β〉) is
minimal. �	

6 Lifting Contravariant Adjunctions to Eilenberg-Moore
Categories

In this section we extend the results from the previous sections, on lifting adjunc-
tions and dualities, to the case that the endofunctor L is a monad and the functor
B is a comonad. We state the main theorem for lifting contravariant adjunctions
to Eilenberg-Moore categories (Theorem 11), and obtain a theorem for dualities
between equations and coequations as a consequence. Further, given either a
monad or a comonad, we show how to derive a corresponding canonical comonad
or monad, respectively.

Assume a contravariant adjunction between F : C → D and G : D → C, a
monad L = (L, η, μ) on D, and a comonad B = (B, ε, δ) on C, as summarized in
the following picture:

C D


�

F

B = (B, ε, δ)

G

L = (L, η, μ)

Then we can ask under what conditions the contravariant adjunction can be
lifted to functors F̂ : Coalg(B) → Alg(L) and Ĝ : Alg(L) → Coalg(B) on the
Eilenberg-Moore categories. Similar to the approach in Sect. 4, we require a
natural isomorphism γ : GL ⇒ BG, but for the current case we also require γ
to satisfy certain conditions that relate the monad L and the comonad B.

Theorem 11. Let F : C → D and G : D → C be contravariant functors that form
a contravariant adjunction. Let L = (L, η, μ) be a monad on D, and B = (B, ε, δ)



Duality of Equations and Coequations via Contravariant Adjunctions 87

a comonad on C. If there is a natural isomorphism γ : GL ⇒ BG such that the
following two diagrams commute:

G BG

GL

εG

Gη γ

BGL GLL GL

BBG BG

γL Gμ

Bγ

δG

γ (3)

then F lifts to a functor F̂ : Coalg(B) → Alg(L) and G lifts to a functor
Ĝ : Alg(L) → Coalg(B), such that F̂ and Ĝ form a contravariant adjunction.
Additionally, if F and G form a duality then F̂ and Ĝ form a duality.

As an application of the previous theorem we can derive dualities between
equations and coequations in Eilenberg-Moore categories, whose general result is
obtained in a similar way as in Sect. 3. Notice that we do not need to explicitly
assume the existence of free algebras since for any object S in D the algebra
(LS, μS) ∈ Alg(L) has the universal property that characterizes free objects,
with the unit given by ηS : S → LS.

Theorem 12. Let F : C → D and G : D → C be contravariant functors that
form a duality. Let L = (L, η, μ) be a monad on D, and B = (B, ε, δ) a comonad
on C. If there is a natural isomorphism γ : GL ⇒ BG making the diagrams (3)
commute, then:

1. The duality between F and G lifts to a duality F̂ : Coeq(B, G(S)) → Eq(L, S)
and Ĝ : Eq(L, S) → Coeq(B, G(S)).

2. Given eP ∈ Eq(L, S), mQ ∈ Coeq(B, G(S)), (X,α) ∈ Alg(L), and (Y, β) ∈
Coalg(B) we have that:
(i) (X,α) |= eP if and only if Ĝ(X,α) ||= Ĝ(eP ).
(ii) F̂ (Y, β) |= F̂ (mQ) if and only if (Y, β) ||= mQ.

We proceed with special cases of our setting where, given the contravariant
adjunction and a comonad B on C, we can canonically define a monad L on
D such that the contravariant adjunction lifts (Sect. 6.1). We can also do it in
the opposite way, i.e., define a comonad from a given monad, but in this case
additional assumptions are required (Sect. 6.2).

6.1 Defining a Monad from a Comonad

In this part we start with a contravariant adjunction between contravariant
functors F : C → D and G : D → C and a comonad B = (B, ε, δ) on C. That is,
we have the following setting:

C D


�

F

B = (B, ε, δ)

G



88 J. Salamanca et al.

The purpose is to find a canonical monad L = (L, η, μ) on D together with a
lifting F̂ : Coalg(B) → Alg(L) and Ĝ : Alg(L) → Coalg(B) of the contravariant
adjunction. We choose L = FBG, and define η : IdD ⇒ L and μ : LL ⇒ L by:

η = (IdD
ηF G

==⇒ FG
FεG==⇒ FBG)

μ = (FBGFBG
FBηGF

BG=====⇒ FBBG
FδG==⇒ FBG)

(4)

where ηFG and ηGF are the units of the contravariant adjunction. With this
choice of (L, η, μ) we have the following result.

Proposition 13. Let F : C → D and G : D → C be contravariant functors that
form a contravariant adjunction. Let B = (B, ε, δ) be a comonad on C. Then
(L, η, μ) with L = FBG and η, μ defined as in (4) is a monad on D.

Additionally, if ηGF is a natural isomorphism, then the contravariant adjunc-
tion between F and G lifts to a contravariant adjunction between F̂ : Coalg(B) →
Alg(L) and Ĝ : Alg(L) → Coalg(B). In this case, if F and G form a duality then
the lifting F̂ and Ĝ is also a duality.

6.2 Defining a Comonad from a Monad

We can dualize the previous proposition in order to define a comonad on C if we
have a monad on D. In order to do this we will assume that the contravariant
adjunction is a duality so we can use the fact that the units of the contravariant
adjunction are isomorphisms.

Assume that we have a contravariant adjunction between two contravariant
functors F : C → D and G : D → C, and L = (L, η, μ) a monad on D. Define
the endofunctor B on C as B = GLF . Now, if we assume that the contravariant
adjunction is a duality with units ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF that are
natural isomorphisms. Then we can define natural transformations ε : B ⇒ IdC
and δ : B ⇒ BB as:

ε = (GLF
GηF==⇒ GF

(ηGF )−1

=====⇒ IdC)

δ = (GLF
GμF===⇒ GLLF

GL(ηF G)−1
LF=======⇒ GLFGLF )

(5)

Under the previous assumptions and choice of (B, ε, δ) we get:

Proposition 14. Let F : C → D and G : D → C be contravariant functors
that form a duality. Let L = (L, η, μ) be a monad on D. Then (B, ε, δ), where
B = GLF and ε, δ are defined as in (5), is a comonad on C. Further, the
duality between F and G lifts to a duality between F̂ : Coalg(B) → Alg(L) and
Ĝ : Alg(L) → Coalg(B).

7 Applications

In this section we will apply results from the previous section to study equations
and coequations for dynamical systems and deterministic automata.



Duality of Equations and Coequations via Contravariant Adjunctions 89

7.1 Equations and Coequations for Dynamical Systems

Let M = (M, ·, e) be a monoid, let L = (L, η, μ) be the monad on Set defined as:

LX = X × M ηX : X → X × M μX : (X × M) × M → X × M
x → (x, e) (x,m, n) → (x,m · n)

and let B = (B, ε, δ) be the comonad on CABA defined as:

BY = Y M εY : Y M → Y δY : Y M → (Y M )M

f → f(e) f → λm.λnf(n · m)

Consider the duality between CABA and Set given by the contravariant functors
F : CABA → Set and G : Set → CABA defined as FY = At(Y ) and GX = 2X ,
if we consider the natural isomorphism γ : GL ⇒ BG given by the canonical
isomorphism γX : 2X×M → (2X)M then we can easily verify the hypothesis of
Theorem 11 to lift the duality between F and G from the following setting:

CABACABA SetSet

FFYY = At(= At(YY ))

GXGX == 22XX

LXLX == XX ×× MM

BBYY == YY MM

γγXX : 2: 2XX××MM →→ (2(2XX))MM

∼∼==
FF

BB = (= (B, ε, δB, ε, δ))

GG

LL = (= (L, η, μL, η, μ))

Observe that elements (X,α) ∈ Alg(L) are dynamical systems (monoid actions)
on Set, that is, an L-algebra is a set X together with a map α : X × M → X
that satisfies the properties α(x, e) = x and α(α(x,m), n) = α(x,m ·n). Further,
a B-coalgebra is a set Y with a map β : Y → Y M such that β(x)(e) = x and
β(β(x)(m))(n) = β(x)(n · m).

We are going to consider equations and coequations for dynamical systems
for the particular case that the set of generators is S = 1. We have that the free
algebra F(1) in Alg(L) on S = 1 generators is F(1) = (M, τ) where τ : M ×M →
M is given by τ(m,n) = m · n and the unit η : 1 → M is given by η = e, the
identity element in M . On the other hand, the cofree coalgebra C(G(1)) = C(2)
in Coalg(B) on 2 colours is C(2) = (2M , τ̂), where τ̂ : 2M → (2M )M is given by

τ̂(f)(n) = {m ∈ M | f(m · n) = 1}
and the counit ε : 2M → 2 is given by ε(f) = f(e).

According to this, equations in Eq(L, 1) correspond to quotients M/C =
(M/C, [τ ]) where C ⊆ M × M is a right congruence on M , i.e. an equivalence
relation such that for any p ∈ M , (m,n) ∈ C implies (m · p, n · p) ∈ M , and
the function [τ ] : M/C × M → M/C is given by [τ ]([m], n) = [m · n]. On the
other hand coequations in Coeq(L, G(S)) correspond to left-closed-subsystems
Q = (Q, τ̂), i.e. subalgebras Q of the complete atomic Boolean algebra 2M such
that for any f ∈ Q and m ∈ M , τ̂(f)(m) ∈ Q.

Now, by using Theorem 12, we have as a consequence a correspondence
between right congruences and left-closed-subsystems for dynamical systems.



90 J. Salamanca et al.

Proposition 15. There is a duality between Eq(L, 1) and Coeq(B, 2) given by
F̂ and Ĝ that induces a duality between right congruences on M and left-closed-
subsystems of 2M .

Using this duality one can prove that right congruences on M and left-closed
subsystems of 2M characterize the same classes of dynamical systems.

Proposition 16. For any dynamical system (X,α) on M and any right congru-
ence C on M let eC ∈ Alg(L)(M,M/C) be the canonical epimorphism (equation)
defined as eC(m) = [m]. The following are equivalent:

(i) (X,α) |= eC .
(ii) For every colouring c : X → 2 and any x ∈ X we have that

{m ∈ M | c(β(x)(m)) = 1} ∈ Im(Ĝ(eC)).

If M is the free monoid on A generators then we get [24, Corollary 14]. In
this case, property ii) in the previous proposition is the definition for satisfaction
of coequations given in [7] where the set of coequations considered is Im(Ĝ(eC)).

7.2 Equations and Coequations for Automata

Consider the following setting:

CABA Set∼=
F

G

L = (L, η, μ)

where FY = At(Y ), GX = 2X , and L is the monad given by:

LX = X∗ =
∐

i∈N
Xi ηX : X → X∗ μX : (X∗)∗ → X∗

x → x w1 · · · wn → w1 · · · wn

According to Proposition 14, as F and G form a duality, we get a comonad
B = (B, ε, δ) on CABA and a duality between Coalg(B) and Alg(L). Observe
that Alg(L) is isomorphic to the category of monoids.

For any set A, LA = A∗ is the free monoid on A generators, with unit
morphism ηA and multiplication μA. Now we will fix the set A and show how
the notion of satisfaction of equations given in [7] for a deterministic automaton
on A can be equivalently defined in this setting. In fact, given a deterministic
automaton (X,α : X × A → A) on A we can use the correspondence:

α : X × A → X

α : A → XX

to work with the monoid XX = (XX , β) ∈ Alg(L) with composition of functions
as multiplication β. We have that homomorphic images of A∗, i.e., elements in
Eq(L, A), correspond to congruences of the monoid A∗. Given any congruence C



Duality of Equations and Coequations via Contravariant Adjunctions 91

of A∗ we have that (X,α) |= A∗/C, if the unique extension α� ∈ Alg(L)(A∗,XX)
of α factors through the canonical morphism e : A∗ → A∗/C. That is, we have
that (X,α) |= A∗/C if there exists gα ∈ Alg(L)(A∗/C,XX) such that the
following diagram commutes:

A

A∗

(A∗)∗

XX

(XX)∗

A∗/C

(A∗/C)∗

ηA

e

e∗

μA β[μA]
gα

g∗
α

α�

α

this means that for any (u, v) ∈ C the transition functions fu, fv ∈ XX , where
fw(x) = w(x), w ∈ A∗, are the same. This is the notion of satisfaction of
equations we previously defined in Example 1, and which appears in [7].

We apply G to the previous diagram to get the following diagram:

2A

2(A
∗)

2((A
∗)∗)

2(X
X)

2((X
X)∗)

2(A
∗/C)

2((A
∗/C)∗)

2ηA

2e

2e∗

2μA 2β2[μA]

2gα

2g∗
α

2α�

2α

This means that Im(2α�

) ⊆ Im(2e) = {L ∈ 2(A
∗) | ∀ (u, v) ∈ C,L(u) = L(v)},

which is an object in CABA and it is closed under left and right derivatives
because C is a congruence.

By Theorem 12, we get a duality between Eq(L, A) and Coeq(B, G(A)) which
is the duality between equations and coequations given in [7, Theorem 22]. Addi-
tionally, using the previous commutative diagrams, one can prove the equiva-
lence between (i) and (ii) given in Proposition 16 for the case that M = A∗, the
congruences C are congruences of A∗, and the coequations Im(Ĝ(eC)) are sub-
algebras of 2M that are closed under left and right derivatives, cf. [24, Theorem
17].

8 Conclusions

We presented duality results between categories of equations and categories of
coequations, Theorem 7. We started our approach by using a more general con-
cept than a duality, namely, contravariant adjunctions. By using this setting we
can employ algebraic techniques to study coalgebras as we showed by defining



92 J. Salamanca et al.

equations for coalgebras and we can also do it the opposite way, define coequa-
tions for algebras. Then we showed similar results if we add monads and comon-
ads into our setting, to this end, we proved a lifting theorem to lift contravariant
adjunctions to Eilenberg-Moore categories, Theorem 12.

The work here is aimed to understand the interaction between the algebraic
and coalgebraic world, including the interpretation of coequations, and the study
of comonads. In the future we would like to explore more the coalgebraic aspect,
either with the aid of the algebraic side or not, in order to find applications to
e.g., tree automata (cf. [17]). Because of limited space we have left out from our
examples fundamental dualities such as Stone or Priestley dualities, which will
possibly lead to a connection with the recent Eilenberg-type correspondences
studied in [3,4,10]. We also leave open for future work the question if a converse
of Theorem 11 holds.

Acknowledgements. We would like to thank Alexander Kurz for his valuable com-
ments, and Jan Rutten for his support and suggestions.

References

1. Adámek, J.: A logic of coequations. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634,
pp. 70–86. Springer, Heidelberg (2005)

2. Adámek, J.: Birkhoff’s covariety theorem without limitation. Comment. Math.
Univ. Carolinae 46(2), 197–215 (2005)

3. Adámek, J., Milius, S., Myers, R.S.R., Urbat, H.: Generalized eilenberg theorem
I: local varieties of languages. In: FoSSaCS 2014, pp. 366–380 (2014)

4. Adámek, J., Milius, S., Myers, R.S.R., Urbat, H.: Varieties of languages in a cate-
gory. In: Proceedings of LICS 2015. IEEE (2015)

5. Awodey, S., Hughes, J.: Modal operators and the formal dual of Birkhoff’s com-
pleteness theorem. Math. Struct. CS 13(2), 233–258 (2003)

6. Awodey, S.: Category Theory. Oxford University Press, Oxford (2006)
7. Ballester-Bolinches, A., Cosme-Llópez, E., Rutten, J.J.M.M.: The dual equivalence

of equations and coequations for automata. Inf. Comput. 244, 49–75 (2015)
8. Bonsangue, M.M., Kurz, A.: Duality for logics of transition systems. In: Sassone,

V. (ed.) FOSSACS 2005 and ETAPS 2005. LNCS, vol. 3441, pp. 455–469. Springer,
Heidelberg (2005)

9. Clouston, R., Goldblatt, R.: Covarieties of coalgebras: comonads and coequations.
In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 288–302.
Springer, Heidelberg (2005)

10. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 246–257. Springer, Heidelberg (2008)

11. Gumm, H.P.: Birkhoff’s variety theorem for coalgebras. Contrib. Gen. Algebra 13,
159–173 (2000)

12. Gumm, H.P., Schröder, T.: Covarieties and complete covarieties. ENTCS 11, 42–55
(1998)

13. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Inf. Comput. 145(2), 107–152 (1998)



Duality of Equations and Coequations via Contravariant Adjunctions 93

14. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. J. Comput.
Syst. Sci. 81(5), 859–879 (2015)

15. Jacobs, B., Sokolova, A.: Exemplaric expressivity of modal logics. J. Log. Comput.
20(5), 1041–1068 (2010)

16. Klin, B.: ENTCS 173, 177–201 (2007)
17. Klin, B., Rot, J.: Coalgebraic trace semantics via forgetful logics. In: Pitts, A.

(ed.) FOSSACS 2015 and ETAPS 2015. LNCS, vol. 9034, pp. 151–166. Springer,
Heidelberg (2015)

18. Kurz, A.: Logics for coalgebras and applications to computer science. Doctoral
Thesis, Ludwigs-Maximilians-Universität München (2000)

19. Kurz, A., Rosický, J.: Operations and equations for coalgebras. Math. Struct. Com-
put. Sci. 15(1), 149–166 (2005)

20. Pavlovic, D., Mislove, M.W., Worrell, J.B.: Testing semantics: connecting processes
and process logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019,
pp. 308–322. Springer, Heidelberg (2006)

21. Roşu, G.: Equational axiomatizability for coalgebra. Theoret. Comput. Sci. 260
(1–2), 229–247 (2001)

22. Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1),
3–80 (2000)

23. Schwencke, D.: Coequational logic for accessible functors. Inf. Comput. 208(12),
1469–1489 (2010)

24. Salamanca, J., Ballester-Bolinches, A., Bonsangue, M.M., Cosme-Llópez, E.,
Rutten, J.J.M.M.: Regular varieties of automata and coequations. In: Hinze,
R., Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 224–237. Springer,
Heidelberg (2015)

25. Salamanca, J., Bonsangue, M., Rutten, J.: Equations and coequations for weighted
automata. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 444–456. Springer, Heidelberg (2015)



Category Theoretic Semantics for Theorem
Proving in Logic Programming:

Embracing the Laxness

Ekaterina Komendantskaya1(B) and John Power2

1 Department of Computer Science, Heriot-Watt University, Edinburgh, UK
komendantskaya@gmail.com

2 Department of Computer Science, University of Bath, Bath, UK

Abstract. A propositional logic program P may be identified with a
PfPf -coalgebra on the set of atomic propositions in the program. The
corresponding C(PfPf )-coalgebra, where C(PfPf ) is the cofree comonad
on PfPf , describes derivations by resolution. Using lax semantics, that
correspondence may be extended to a class of first-order logic programs
without existential variables. The resulting extension captures the proofs
by term-matching resolution in logic programming. Refining the lax app-
roach, we further extend it to arbitrary logic programs. We also exhibit
a refinement of Bonchi and Zanasi’s saturation semantics for logic pro-
gramming that complements lax semantics.

Keywords: Logic programming · Coalgebra · Term-matching resolu-
tion · Coinductive derivation tree · Lawvere theories · Lax transforma-
tions · Kan extensions

1 Introduction

Consider the following two logic programs.

Example 1. ListNat (for lists of natural numbers) denotes the logic program
1. nat(0) ←
2. nat(s(x)) ← nat(x)
3. list(nil) ←
4. list(cons(x, y)) ← nat(x), list(y)

Example 2. GC (for graph connectivity) denotes the logic program
0. connected(x, x) ←
1. connected(x, y) ← edge(x, z), connected(z, y)

Ekaterina Komendantskaya would like to acknowledge the support of EPSRC Grant
EP/K031864/1.
John Power would like to acknowledge the support of EPSRC grant EP/K028243/1.
No data was generated in the course of this research.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 94–113, 2016.
DOI: 10.1007/978-3-319-40370-0 7



Category Theoretic Semantics for Theorem Proving in Logic Programming 95

A critical difference between ListNat and GC is that in the latter, which is a
leading example in Sterling and Shapiro’s book [31], there is a variable z in the
tail of the second clause that does not appear in its head. The category theoretic
consequences of that fact are the central concern of this paper.

It has long been observed, e.g., in [4,8], that logic programs induce coalge-
bras, allowing coalgebraic modelling of their operational semantics. In [20], we
developed the idea for variable-free logic programs as follows. Using the definition
of a logic program [25], given a set of atoms At, one can identify a variable-free
logic program P built over At with a PfPf -coalgebra structure on At, where
Pf is the finite powerset functor on Set: each atom is the head of finitely many
clauses in P , and the body of each clause contains finitely many atoms. Our
main result was that if C(PfPf ) is the cofree comonad on PfPf , then, given
a logic program P qua PfPf -coalgebra, the corresponding C(PfPf )-coalgebra
structure characterises the and-or derivation trees generated by P , cf [12].

This result has proved to be stable, not only having been further developed by
us [9,10,15,23,24], but also forming the basis for Bonchi and Zanasi’s saturation
semantics for logic programming (LP) [6,7]. In Sects. 2 and 3, we give an updated
account of the work, with updated definitions, proofs and detailed examples, to
start our semantic analysis of derivations and proofs in LP.

In [21], we extended our analysis from variable-free logic programs to arbi-
trary logic programs. Following [1,4,5,19], given a signature Σ of function sym-
bols, we let LΣ denote the Lawvere theory generated by Σ, and, given a logic
program P with function symbols in Σ, we considered the functor category
[Lop

Σ , Set], extending the set At of atoms in a variable-free logic program to the
functor from Lop

Σ to Set sending a natural number n to the set At(n) of atomic
formulae with at most n variables generated by the function symbols in Σ and
the predicate symbols in P . We sought to model P by a [Lop

Σ , PfPf ]-coalgebra
p : At −→ PfPfAt that, at n, takes an atomic formula A(x1, . . . , xn) with at
most n variables, considers all substitutions of clauses in P into clauses with
variables among x1, . . . , xn whose head agrees with A(x1, . . . , xn), and gives the
set of sets of atomic formulae in antecedents, mimicking the construction for
variable-free logic programs. Unfortunately, that idea was too simple.

Consider the logic program ListNat, i.e., Example 1. There is a map in LΣ of
the form 0 → 1 that models the nullary function symbol 0. So, naturality of the
map p : At −→ PfPfAt in [Lop

Σ , Set] would yield commutativity of the diagram

At(1)
p1� PfPfAt(1)

At(0)

At(0)

�

p0
� PfPfAt(0)

PfPfAt(0)

�

But consider nat(x) ∈ At(1): there is no clause of the form nat(x) ← in ListNat,
so commutativity of the diagram would imply that there cannot be a clause in
ListNat of the form nat(0) ← either, but in fact there is one.



96 E. Komendantskaya and J. Power

At that point, proposed resolutions diverged: at CALCO in 2011, we proposed
one approach using lax transformations [21], then at CALCO 2013, Bonchi and
Zanasi proposed another, using saturation semantics [6], an example of the pos-
itive interaction generated by CALCO! In fact, as we explain in Sect. 6, the two
approaches may be seen as complementary rather than as alternatives. First we
shall describe our approach.

We followed the standard category theoretic technique of relaxing the natu-
rality condition on p to a subset condition, e.g., as in [2,3,13,16,18], so that, in
general, given a map in LΣ of the form f : n → m, the diagram

At(m)
pm� PfPfAt(m)

At(n)

At(f)

�

pn

� PfPfAt(n)

PfPfAt(f)

�

need not commute, but rather the composite via PfPfAt(m) need only yield a
subset of that via At(n). So, for example, p1(nat(x)) could be the empty set
while p0(nat(0)) could be non-empty in the semantics for ListNat as required.
We extended Set to Poset in order to express the laxness, and we adopted
established category theoretic research on laxness, notably that of [16], in order
to prove that a cofree comonad exists and behaves as we wished.

For a representative class of logic programs, the above semantics describes
derivations arising from restricting the usual SLD-resolution used in LP to term-
matching resolution, cf. [22,23]. As transpired in further studies [9,15], this par-
ticular restriction to resolution rule captures the theorem-proving aspect of LP
as opposed to the problem-solving aspect captured by SLD-resolution with uni-
fication. We explain this idea in Sect. 2. Derivation trees arising from proofs by
term-matching resolution were called coiductive trees in [22,23] to mark their
connection to the coalgebraic semantics.

Categorical semantics introduced in [21] worked well for ListNat, allowing us
to model its coinductive trees, as we show in Sect. 4 (It was not shown explicitly
in [21]). However, it does not work well for GC, the key difference being that,
in ListNat, no variable appears in a tail of a clause that does not also appear
in its head, i.e., clauses in ListNat contain no existential variables. In contrast,
although not expressed in these terms in [21], we were unable to model the
coinductive trees generated by GC because it is an existential program, i.e.
program containing clauses with existential variables. We worked around the
problems in [21], but only inelegantly.

We give an updated account of [21] in Sect. 4, going beyond [21] to explain how
coinductive trees for logic programswithout existential variables aremodelled, and
explaining the difficulty in modelling coinductive semantics for arbitrary logic pro-
grams. We then devote Sect. 5 of the paper to resolution of the difficulty, providing
lax semantics for coinductive trees generated by arbitrary logic programs.



Category Theoretic Semantics for Theorem Proving in Logic Programming 97

In contrast to this, Bonchi and Zanasi, concerned by the complexity involved
with laxness, proposed the use of saturation, following [4], to provide an alter-
native category theoretic semantics [6,7]. Saturation is indeed an established
and useful construct, as Bonchi and Zanasi emphasised [6,7], with a venerable
tradition, and, as they say, laxness requires careful calculation, albeit much less
so in the setting of posets than that of categories. On the other hand, laxness
is a standard part of category theory, one that has been accepted by computer
scientists as the need has arisen, e.g., by He Jifeng and Tony Hoare to model
data refinement [13,14,18,27]. More fundamentally, saturation can be seen as
complementary to the use of laxness rather than as an alternative to it, as
we shall explain in Sect. 6. This reflects the important connection between the
theorem proving and problem solving aspects of proof search in LP, as Sect. 2
further explains. So we would suggest that both approaches are of value, with
the interaction between them meriting serious consideration.

Saturation inherently yields a particular kind of compositionality, but one
loses the tightness of the relationship between semantic model and operational
behaviour. The latter is illustrated by the finiteness of branching in a coinductive
tree, in contrast to the infinity of possible substitutions, which are inherent in
saturation. To the extent that it is possible, we would like to recover operational
semantics from the semantic model, along the lines of [28], requiring maintenance
of intensionality where possible. We regard the distinction between ListNat and
GC as a positive feature of lax semantics, as a goal of semantics is to shed
light on the critical issues of programming, relation of existential programs to
theorem-proving in LP being one such [9]. So we regard Sect. 6 as supporting
both lax and saturation semantics, the interaction between them shedding light
on logic programming.

2 Background: Theorem Proving in LP

A signature Σ consists of a set F of function symbols f, g, . . . each equipped
with an arity. Nullary (0-ary) function symbols are constants. For any set Var
of variables, the set Ter(Σ) of terms over Σ is defined inductively as usual:

– x ∈ Ter(Σ) for every x ∈ Var .
– If f is an n-ary function symbol (n ≥ 0) and t1, . . . , tn ∈ Ter(Σ), then

f(t1, . . . , tn) ∈ Ter(Σ).

A substitution over Σ is a total function σ : Var → Term(Σ). Substitutions
are extended from variables to terms as usual: if t ∈ Term(Σ) and σ is a
substitution, then the application σ(t) is a result of applying σ to all variables
in t. A substitution σ is a unifier for t, u if σ(t) = σ(u), and is a matcher for t
against u if σ(t) = u. A substitution σ is a most general unifier (mgu) for t and
u if it is a unifier for t and u and is more general than any other such unifier. A
most general matcher (mgm) σ for t against u is defined analogously.

In line with LP tradition [25], we also take a set P of predicate symbols each
equipped with an arity. It is possible to define logic programs over terms only, in



98 E. Komendantskaya and J. Power

line with term-rewriting (TRS) tradition [33], as we do in [15], but we will follow
the usual LP tradition here. This gives us the following inductive definitions of
the sets of atomic formulae, Horn clauses and logic programs (we also include
the definition of terms here for convenience):

Definition 1.

Terms Ter ::= V ar | F(Ter, ..., T er)
Atomic formulae (or atoms) At ::= P(Ter, ..., T er)
(Horn) clauses HC ::= At ← At, ..., At
Logic programs Prog ::=HC, ...,HC

In what follows, we will use letters A,B,C,D, possibly with subscripts, to
refer to elements of At.

Given a logic program P , we may ask whether a certain atom is logi-
cally entailed by P . E.g., given the program ListNat we may ask whether
list(cons(0, nil)) is entailed by ListNat. The following rule, which is a
restricted form of the famous SLD-resolution, provides a semi-decision proce-
dure to derive the entailment:

Definition 2 (Term-Matching (TM) Resolution).

P�[ ]
P�σA1 ··· P�σAn

P�σA if (A ← A1, . . . , An) ∈ P

In contrast, the SLD-resolution rule could be presented in the following form:

B1, . . . , Bj , . . . , Bn �P σB1, . . . , σA1, . . . , σAn, . . . , σBn,

if (A ← A1, . . . , An) ∈ P , and σ is the mgu of A and Bj . The derivation for A
succeeds when A �P [ ]; we use �∗

P to denote several steps of SLD-resolution.
At first sight, the difference between TM-resolution and SLD-resolution

seems to be that of notation. Indeed, both ListNat � list(cons(0, nil)) and
list(cons(0, nil)) �∗

ListNat [ ] by the above rules (see also Fig. 1). However,
ListNat � list(cons(x, y)) whereas list(cons(x, y)) �∗

ListNat [ ]. And, even
more mysteriously, GC � connected(x, y) while connected(x, y) �GC [ ].

As it turns out, TM-resolution reflects the theorem proving side of LP: rules
of Definition 2 can be used to semi-decide whether a given term t is entailed by
P . In contrast, SLD-resolution reflects the problem solving aspect of LP: using
the SLD-resolution rule, one asks whether, for a given t, a substitution σ can be
found such that P � σ(t). There is a subtle but important difference between
these two aspects of proof search.

For example, when considering the successful derivation list(cons(x, y))
�∗

ListNat [ ], we assume that list(cons(x, y)) holds only relative to a computed
substitution, e.g. x �→ 0, y �→ nil. Of course this distinction is natural from
the point of view of theorem proving: list(cons(x, y)) is not a “theorem” in
this generality, but its special case, list(cons(0, nil)), is. Thus, ListNat �
list(cons(0, nil)) but ListNat � list(cons(x, y)) (see also Fig. 1). Similarly,



Category Theoretic Semantics for Theorem Proving in Logic Programming 99

connected(x, y) �GC [ ] should be read as: connected(x, y) holds relative to
the computed substitution y �→ x.

According to the soundness and completeness theorems for SLD-
resolution [25], the derivation � has existential meaning, i.e. when
list(cons(x, y)) �∗

ListNat [ ], the succeeded goal list(cons(x, y)) is not
meant to be read as universally quantified over x an y. On the contrary, TM-
resolution proves a universal statement. That is, GC � connected(x, x) reads
as: connected(x, x) is entailed by GC for any x.

Much of our recent work has been devoted to formal understanding of the
relation between the theorem proving and problem solving aspects of LP [9,15].
The type-theoretic semantics of TM-resolution, given by “Horn clauses as types,
λ-terms as proofs” is given in [9,10].

Definition 2 gives rise to derivation trees. E.g. the derivation (or, equivalently,
the proof) for ListNat � list(cons(0, nil)) can be represented by the following
derivation tree:

list(cons(0, nil))

nat(0)

[ ]

list(nil)

[ ]

In general, given a term t and a program P , more than one derivation for
P � t is possible. For example, if we add a fifth clause to program ListNat:
5. list(cons(0, x)) ← list(x)
then yet another, alternative, proof is possible for the extended program:
ListNat+ � list(cons(0, nil)) via the clause 5:

list(cons(0, nil))

list(nil)

[ ]

To reflect the choice of derivation strategies at every stage of the derivation,
we can introduce a new kind of nodes, or-nodes. For our example, this would
give us the tree shown in Fig. 1, note the •-nodes.

This intuition is made precise in the following definition of a coinductive tree,
which first appeared in [21,23] and was later refined in [15] under the name of a
rewriting tree. Note the use of mgms (rather than mgus) in the last item.

Definition 3 (Coinductive Tree). Let P be a logic program and A be an
atomic formula. The coinductive tree for A is the possibly infinite tree T satis-
fying the following properties.

– A is the root of T
– Each node in T is either an and-node or an or-node
– Each or-node is given by •
– Each and-node is an atom



100 E. Komendantskaya and J. Power

– For every and-node A′ occurring in T , if there exist exactly m > 0 distinct
clauses C1, . . . , Cm in P (a clause Ci has the form Bi ← Bi

1, . . . , B
i
ni

for some
ni), such that A′ = B1θ1 = . . . = Bmθm, for mgms θ1, . . . , θm, then A′ has
exactly m children given by or-nodes, such that, for every i ∈ m, the i-th
or-node has ni children given by and-nodes Bi

1θi, . . . , B
i
ni

θi.

list(cons(0, nil))

nat(0)

[ ]

list(nil)

[ ]

list(nil)

[ ]

list(cons(x, y))

nat(x) list(y)

Fig. 1. Left: a coinductive tree for list(cons(0, nil)) and the extended program
ListNat+. Right: a coinductive tree for list(cons(x, y)) and ListNat+. The •-nodes
mark different clauses applicable to every atom in the tree.

Coinductive trees provide a convenient model for proofs by TM-resolution.
Let us make one final observation on TM-resolution. Generally, given a pro-

gram P and an atom t, one can prove that

t �∗
P [ ] with computed substitution σ iff P � σt.

This simple fact may give an impression that proofs (and corresponding
coinductive trees) for TM-resolution are in some sense fragments of reductions
by SLD-resolution. Compare e.g. the right-hand tree of Fig. 1 before substitution
and a grown left-hand tree obtained after the substitution. In this case, we could
emulate the problem solving aspect of SLD-resolution by using coinductive trees
and allowing to apply substitutions within coinductive trees, as was proposed
in [9,15,22]. Such intuition would hold perfectly for e.g. ListNat, but would not
hold for existential programs: although there is a one step SLD-derivation for
connected(x, y) �GC [ ] (with y �→ x), TM-resolution proof for connected(x, y)
diverges and gives rise to the following infinite coinductive tree:

connected(x, y)

edge(x, z) connected(z, y)

edge(x, z1) connected(z1, y)

...

Not only the proof for GC � connected(x, y) is not in any sense a fragment
of the derivation connected(x, y) �GC [ ], but it also takes larger (i.e. infinite)
signature. Thus, operational semantics of TM-resolution and SLD-resolution can



Category Theoretic Semantics for Theorem Proving in Logic Programming 101

be very different for existential programs: both in aspects of termination and
signature size.

This problem is orthogonal to non-termination. Consider the non-terminating
(but not existential) program Bad:

bad(x) ← bad(x)
For Bad, operational behavior of TM-resolution and SLD-resolution are similar:
derivations with both do not terminate and require finite signature. Once again,
such programs can be analysed using similar coinductive methods in TM- and
SLD-resolution [10,30].

The problems caused by existential variables are known in the literature
on theorem proving and term-rewriting [33]. In TRS [33], existential variables
are not allowed to appear in rewriting rules, and in type inference based on
term rewriting or TM-resolution, the restriction to non-existential programs is
common [11].

So theorem-proving, in contrast to problem-solving, is modelled by term-
matching; term-matching gives rise to coinductive trees; and as explained in the
introduction and, in more detail, later, coinductive trees give rise to laxness. So
in this paper, we use laxness to model coinductive trees, and thereby theorem-
proving in LP, and relate our semantics with Bonchi and Zanasi’s work, which
we believe models primarily problem-solving aspect of logic programming.

Categorical semantics for existential programs, which are known to be chal-
lenging for theorem proving, is the main contribution of Sect. 5 and this paper.

3 Modelling Coinductive Trees for Variable-Free
Logic Programs

In this section, we recall and develop the work of [20] and in particular we restrict
our semantics to variable-free logic programs, i.e. we take V ar = ∅ in Definition 1.
Variable-free logic programs are operationally equivalent to propositional logic
programs, as substitutions play no role in derivations. In this (propositional)
setting, coinductive trees coincide with the and-or derivation trees known in the
LP literature [12].

Proposition 1. For any set At, there is a bijection between the set of variable-
free logic programs over the set of atoms At and the set of PfPf -coalgebra struc-
tures on At, where Pf is the finite powerset functor on Set.

Theorem 1. Let C(PfPf ) denote the cofree comonad on PfPf . Then, for p :
At −→ PfPf (At), the corresponding C(PfPf )-coalgebra p : At −→ C(PfPf )(At)
sends an atom A to the coinductive tree for A.

Proof. Applying the work of [34] to this setting, the cofree comonad is in general
determined as follows: C(PfPf )(At) is the limit of the diagram

. . . −→ At × PfPf (At × PfPf (At)) −→ At × PfPf (At) −→ At.



102 E. Komendantskaya and J. Power

with maps determined by the projection π0 : At × PfPf (At) −→ At, with
applications of the functor At × PfPf (−) to it.

Putting At0 = At and Atn+1 = At × PfPfAtn, and defining the cone

p0 = id : At −→ At(= At0)
pn+1 = 〈id, PfPf (pn) ◦ p〉 : At −→ At × PfPfAtn(= Atn+1)

the limiting property of the diagram determines the coalgebra p : At −→
C(PfPf )(At). The image p(A) of an atom A is given by an element of the limit,
equivalently a map from 1 into the limit, equivalently a cone of the diagram
over 1.

To give the latter is equivalent to giving an element A0 of At, specifi-
cally p0(A) = A, together with an element A1 of At × PfPf (At), specifically
p1(A) = (A, p0(A)) = (A, p(A)), together with an element A2 of At×PfPf (At×
PfPf (At)), etcetera. The definition of the coinductive tree for A is inherently
coinductive, matching the definition of the limit, and with the first step agree-
ing with the definition of p. Thus it follows by coinduction that p(A) can be
identified with the coinductive tree for A.

Example 3. Let At consist of atoms A, B, C and D. Let P denote the logic program

A ← B, C

A ← B, D

D ← A, C

So p(A) = {{B, C}, {B, D}}, p(B) = p(C) = ∅, and p(D) = {{A, C}}.
Then p0(A) = A, which is the root of the coinductive tree for A.
Then p1(A) = (A, p(A)) = (A, {{B, C}, {B, D}}), which consists of the same

information as in the first three levels of the coinductive tree for A, i.e., the root
A, two or-nodes, and below each of the two or-nodes, nodes given by each atom
in each antecedent of each clause with head A in the logic program P : nodes
marked B and C lie below the first or-node, and nodes marked B and D lie below
the second or-node, exactly as p1(A) describes.

Continuing, note that p1(D) = (D, p(D)) = (D, {{A, C}}). So

p2(A) = (A, PfPf (p1)(p(A)))
= (A, PfPf (p1)({{B, C}, {B, D}}))
= (A, {{(B, ∅), (C, ∅)}, {(B, ∅), (D, {{A, C}})}})

which is the same information as that in the first five levels of the coinductive
tree for A: p1(A) provides the first three levels of p2(A) because p2(A) must map
to p1(A) in the cone; in the coinductive tree, there are two and-nodes at level 3,
labelled by A and C. As there are no clauses with head B or C, no or-nodes lie
below the first three of the and-nodes at level 3. However, there is one or-node
lying below D, it branches into and-nodes labelled by A and C, which is exactly
as p2(A) tells us.

For pictures of such trees, see [23].



Category Theoretic Semantics for Theorem Proving in Logic Programming 103

4 Modelling Coinductive Trees for Logic Programs
Without Existential Variables

We now lift the restriction on V ar = ∅ in Definition 1, and consider first-order
terms and atoms in full generality, however, we restrict the definition of clauses
in Definition 1 to those not containing existential variables.

The Lawvere theory LΣ generated by a signature Σ is (up to isomorphism,
as there are several equivalent formulations) the category defined as follows:
ob(LΣ) is the set of natural numbers. For each natural number n, let x1, . . . , xn

be a specified list of distinct variables. Define LΣ(n,m) to be the set of m-
tuples (t1, . . . , tm) of terms generated by the function symbols in Σ and variables
x1, . . . , xn. Define composition in LΣ by substitution.

One can readily check that these constructions satisfy the axioms for a cat-
egory, with LΣ having strictly associative finite products given by the sum of
natural numbers. The terminal object of LΣ is the natural number 0.

Example 4. Consider ListNat. The constants O and nil are maps from 0 to 1 in
LΣ , s is modelled by a map from 1 to 1, and cons is modelled by a map from 2
to 1. The term s(0) is the map from 0 to 1 given by the composite of the maps
modelling s and 0.

Given an arbitrary logic program P with signature Σ, we can extend the
set At of atoms for a variable-free logic program to the functor At : Lop

Σ → Set
that sends a natural number n to the set of all atomic formulae, with vari-
ables among x1, . . . , xn, generated by the function symbols in Σ and by the
predicate symbols in P . A map f : n → m in LΣ is sent to the func-
tion At(f) : At(m) → At(n) that sends an atomic formula A(x1, . . . , xm) to
A(f1(x1, . . . , xn)/x1, . . . , fm(x1, . . . , xn)/xm), i.e., At(f) is defined by substitu-
tion.

As explained in the Introduction and in [20], we cannot model a logic program
by a natural transformation of the form p : At −→ PfPfAt as naturality breaks
down, e.g., in ListNat. So, in [21,23], we relaxed naturality to lax naturality.
In order to define it, we extended At : Lop

Σ → Set to have codomain Poset by
composing At with the inclusion of Set into Poset. Mildly overloading notation,
we denote the composite by At : Lop

Σ → Poset.

Definition 4. Given functors H,K : Lop
Σ −→ Poset, a lax transformation from

H to K is the assignment to each object n of LΣ, of an order-preserving func-
tion αn : Hn −→ Kn such that for each map f : n −→ m in LΣ, one has
(Kf)(αm) ≤ (αn)(Hf), pictured as follows:

Hm
αm� Km

≥

Hn

Hf

�

αn

� Kn

Kf

�



104 E. Komendantskaya and J. Power

Functors and lax transformations, with pointwise composition, form a locally
ordered category denoted by Lax(Lop

Σ , Poset). Such categories and generalisa-
tions have been studied extensively, e.g., in [2,3,16,18].

Definition 5. Define Pf : Poset −→ Poset by letting Pf (P ) be the partial order
given by the set of finite subsets of P , with A ≤ B if for all a ∈ A, there exists
b ∈ B for which a ≤ b in P , with behaviour on maps given by image. Define Pc

similarly but with countability replacing finiteness.

We are not interested in arbitrary posets in modelling logic programming,
only those that arise, albeit inductively, by taking subsets of a set qua discrete
poset. So we gloss over the fact that, for an arbitrary poset P , Definition 5 may
yield factoring, with the underlying set of Pf (P ) being a quotient of the set of
subsets of P . It does not affect the line of development here.

Example 5. Modelling Example 1, ListNat generates a lax transformation of the
form p : At −→ PfPfAt as follows: At(n) is the set of atomic formulae in
ListNat with at most n variables.

For example, At(0) consists of nat(0), nat(nil), list(0),
list(nil), nat(s(0)), nat(s(nil)), list(s(0)), list(s(nil)), nat(cons(0, 0)),
nat(cons(0, nil)), nat(cons(nil, 0)), nat(cons(nil, nil)), etcetera.

Similarly, At(1) includes all atomic formulae containing at most one (specified)
variable x, thus all the elements of At(0) together with nat(x), list(x), nat(s(x)),
list(s(x)), nat(cons(0, x)), nat(cons(x, 0)), nat(cons(x, x)), etcetera.

The function pn : At(n) −→ PfPfAt(n) sends each element of At(n), i.e.,
each atom A(x1, . . . , xn) with variables among x1, . . . , xn, to the set of sets of
atoms in the antecedent of each unifying substituted instance of a clause in P
with head for which a unifying substitution agrees with A(x1, . . . , xn).

Taking n = 0, nat(0) ∈ At(0) is the head of one clause, and there is no
other clause for which a unifying substitution will make its head agree with
nat(0). The clause with head nat(0) has the empty set of atoms as its tail, so
p0(nat(0)) = {∅}.

Taking n = 1, list(cons(x, 0)) ∈ At(1) is the head of one clause given by
a unifying substitution applied to the final clause of ListNat, and accordingly
p1(list(cons(x, 0))) = {{nat(x), list(0)}}.

The family of functions pn satisfy the inequality required to form a lax
transformation precisely because of the allowability of substitution instances
of clauses, as in turn is required to model logic programming. The family does
not satisfy the strict requirement of naturality as explained in the introduction.

Example 6. Attempting to model Example 2 by mimicking the model of ListNat
as a lax transformation of the form p : At −→ PfPfAt in Example 5 fails.

Consider the clause

connected(x, y) ← edge(x, z), connected(z, y)

Modulo possible renaming of variables, the head of the clause, i.e., the atom
connected(x, y), lies in At(2) as it has two variables. However, the tail does not
lie in PfPfAt(2) as the tail has three variables rather than two.



Category Theoretic Semantics for Theorem Proving in Logic Programming 105

We dealt with that inelegantly in [21]: in order to allow p2(connected(x, y))
to model GC in any reasonable sense, we allowed substitutions for z by any term
on x, y on the basis that there is no unifying such, so we had better allow all
possibilities. So, rather than modelling the clause directly, recalling that At(2) ⊆
At(3) ⊆ At(4), etcetera, modulo renaming of variables, we put

p2(connected(x, y)) = {{edge(x, x), connected(x, y)}, {edge(x, y), connected(y, y)}}
p3(connected(x, y)) = {{edge(x, x), connected(x, y)}, {edge(x, y), connected(y, y)},

{edge(x, z), connected(z, y)}}
p4(connected(x, y)) = {{edge(x, x), connected(x, y)}, {edge(x, y), connected(y, y)},

{edge(x, z), connected(z, y)}, {edge(x, w), connected(w, y)}}

etcetera: for p2, as only two variables x and y appear in any element of
PfPfAt(2), we allowed substitution by either x or y for z; for p3, a third vari-
able may appear in an element of PfPfAt(3), allowing an additional possible
substitution; for p4, a fourth variable may appear, etcetera.

Countability arises if a unary symbol s is added to GC, as in that case, for p2,
not only did we allow x and y to be substituted for z, but we also allowed sn(x)
and sn(y) for any n > 0, and to do that, we replaced PfPf by PcPf , allowing
for the countably many possible substitutions.

Those were inelegant decisions, but they allowed us to give some kind of
model of all logic programs.

We now turn to the relationship between the lax transformation p : At −→
PcPfAt modelling a logic program P and p : At −→ C(PcPf )At, the correspond-
ing coalgebra for the cofree comonad C(PcPf ) on PcPf .

We recall the central abstract result of [21], the notion of an “oplax” map of
coalgebras being required to match that of lax transformation. Notation of the
form H-coalg refers to coalgebras for an endofunctor H, while notation of the
form C-Coalg refers to coalgebras for a comonad C. The subscript oplax refers
to oplax maps, and given an endofunctor E on Poset, the notation Lax(Lop

Σ , E)
denotes the endofunctor on Lax(Lop

Σ , Poset) given by post-composition with E;
similarly for a comonad.

Theorem 2. For any locally ordered endofunctor E on Poset, if C(E) is the
cofree comonad on E, then there is a canonical isomorphism

Lax(Lop
Σ , E)-coalgoplax � Lax(Lop

Σ , C(E))-Coalgoplax

Corollary 1. Lax(Lop
Σ , C(PcPf )) is the cofree comonad on Lax(Lop

Σ , PcPf ).

Corollary 1 gives a bijection between lax transformations

p : At −→ PcPfAt

and lax transformations
p : At −→ C(PcPf )At



106 E. Komendantskaya and J. Power

subject to the two conditions required of a coalgebra of a comonad. Subject to
the routine replacement of the outer copy of Pf by Pc in the construction in The-
orem 1, the same construction, if understood pointwise, extends to this setting,
i.e., if one uniformly replaces At by At(n) in the construction of Theorem1, and
replaces the outer copy of Pf by Pc, one obtains a description of C(PcPf )At(n)
together with the construction of pn from pn.

That is fine for ListNat, modelling the coinductive trees generated by ListNat,
the same holding for any logic program without existential variables, but for GC,
as explained in Example 6, p did not model the clause

connected(x, y) ← edge(x, z), connected(z, y)

directly, and so its extension a fortiori could not model the coinductive trees
generated by connected(x, y).

For arbitrary logic programs, p(A(x1, . . . , xn)) was a variant of the coinduc-
tive tree generated by A(x1, . . . , xn) in two key ways:

1. coinductive trees allow new variables to be introduced as one passes down
the tree, e.g., with

connected(x, y) ← edge(x, z), connected(z, y)

appearing directly in it, whereas, extending Example 6, p1(connected(x, y))
does not model such a clause directly, but rather substitutes terms on x and
y for z, continuing inductively as one proceeds.

2. coinductive trees are finitely branching, as one expects in logic programming,
whereas p(A(x1, . . . , xn)) could be infinitely branching, e.g., for GC with an
additional unary operation s.

5 Modelling Coinductive Trees for Arbitrary
Logic Progams

We believe that our work in [21] provides an interesting model of ListNat, in
particular because it agrees with the coinductive trees generated by ListNat.
However, the account in [21] is less interesting when applied to GC, thus in
the full generality of logic programming. Restriction to non-existential examples
such as ListNat is common for implementational reasons [9,10,15,23], so [21]
does allow the modeling of coinductive trees for a natural class of logic programs.
Here we seek to model coinductive trees for logic programs in general, a fortiori
doing so for GC.

In order to model coinductive trees, it follows from Example 6 that the endo-
functor Lax(Lop

Σ , PfPf ) on Lax(Lop
Σ , Poset) that sends At to PfPfAt, needs to

be refined as {{edge(x, z), connected(z, y)}} is not an element of PfPfAt(2) as
it involves three variables x, y and z. Motivated by that example, we refine our
axiomatics in general so that the codomain of pn is a superset of PfPfAt(m)
for every m ≥ n. There are six injections of 2 into 3, inducing six inclusions



Category Theoretic Semantics for Theorem Proving in Logic Programming 107

At(2) ⊆ At(3), so six inclusions PfPfAt(2) ⊆ PfPfAt(3), and one only wants
to count each element of PfPfAt(2) once. So we refine PfPfAt(n) to become
(Σm≥nPfPfAt(m))/ ≡, where ≡ is generated by the injections i : n −→ m. This
can be made precise in abstract category theoretic terms as follows.

For any Lawvere theory L, there is a canonical identity-on-objects functor
from the category Inj of injections i : n −→ m of natural numbers into Lop. So,
in particular, there is a canonical identity on objects functor J : Inj −→ Lop

Σ ,
upon which Σm≥nPfPfAt(m)/ ≡ may be characterised as the colimit (see [26]
or, for the enriched version, [17])

∫ m∈n/Inj

PfPfAtJ(m)

or equivalently, given n ∈ Inj, the colimit of the functor from n/Inj to Poset
that sends an injection j : n −→ m to PfPfAtJ(m).

This construction extends to a functor Pff (At) : Lop
Σ −→ Poset by sending

a map f : n −→ n′ in LΣ to the order-preserving function
∫ m∈n′/Inj

PfPfAtJ(m) −→
∫ m∈n/Inj

PfPfAtJ(m)

determined by the fact that each m ∈ n′/Inj is, up to coherent isomorphism,
uniquely of the form n′ + k, allowing one to apply PfPfAt to the map f + k :
n + k −→ n′ + k = m in LΣ . This is similar to the behaviour of the monad for
local state on maps [29].

It is routine to generalise the construction from At to make it apply to an
arbitrary functor H : Lop

Σ −→ Poset.
In order to make the construction functorial, i.e., in order to make it respect

maps α : H ⇒ K, we need to refine Lax(Lop
Σ , Poset) as the above colimit strictly

respects injections, i.e., for any injection i : n −→ m, we want the diagram

Hn
αn � Kn

Hm

Hi

�

αm

� Km

Ki

�

to commute.
Summarising this discussion yields the following:

Definition 6. Let LaxInj(Lop
Σ , Poset) denote the category with objects given

by functors from Lop
Σ to Poset, maps given by lax transformations that strictly

respect injections, and composition given pointwise.

Proposition 2. cf [29] Let J : Inj −→ Lop
Σ be the canonical inclusion. Define

Pff : LaxInj(Lop
Σ , Poset) −→ LaxInj(Lop

Σ , Poset)



108 E. Komendantskaya and J. Power

by (Pff (H))(n) =
∫ m∈n/Inj

PfPfHJ(m), with, for any map f : n −→ n′ in LΣ,

(Pff (H))(f) :
∫ m∈n′/Inj

PfPfHJ(m) −→
∫ m∈n/Inj

PfPfHJ(m)

determined by the fact that each m ∈ n′/Inj is, up to coherent isomorphism,
uniquely of the form n′ + k, allowing one to apply PfPfH to the map f + k :
n + k −→ n′ + k = m in LΣ.

Given α : H ⇒ K, define Pff (α)(n) by the fact that m ∈ n/Inj is uniquely
of the form n + k, and using

αn+k : H(m) = H(n + k) −→ K(n + k) = K(m)

Then Pff is an endofunctor on LaxInj(Lop
Σ , Poset).

The proof is routine but requires lengthy calculation involving colimits.
Observe that we have not required countability anywhere in the definition of
Pff , using only finiteness as we sought at the end of Sect. 4.

We can now model an arbitrary logic program by a map p : At −→ PffAt
in LaxInj(Lop

Σ , Poset), modelling ListNat as we did in Example 5 but now mod-
elling the clauses of GC directly rather than using the awkward substitution
instances of Example 6.

Example 7. Except for the restriction of Lax(Lop
Σ , Poset) to LaxInj(Lop

Σ , Poset),
ListNat is modelled in exactly the same way here as it was in Example 5, the
reason being that no clause in ListNat has a variable in the tail that does not
already appear in the head. We need only observe that, although p is not strictly
natural in general, it does strictly respect injections. For example, if one views
list(cons(x, 0)) as an element of At(2), its image under p2 agrees with its image
under p1.

Example 8. In contrast to Example 6, using Pff , we can emulate the construc-
tion of Examples 5 and 7 for ListNat to model GC.

Modulo possible renaming of variables, connected(x, y) is an element of
At(2). The function p2 sends it to the element {{edge(x, z), connected(z, y)}}
of (Pff (At))(2). This is possible by taking n = 2 and m = 3 in the formula for
Pff (At) in Proposition 2. In contrast, {{edge(x, z), connected(z, y)}} is not an
element of PfPfAt(2), hence the failure of Example 6.

The behaviour of Pff (At) on maps ensures that the lax transformation p
strictly respects injections. For example, if connected(x, y) is seen as an element
of At(3), the additional variable is treated as a fresh variable w, so does not affect
the image of connected(x, y) under p3.

Theorem 3. The functor Pff : LaxInj(Lop
Σ , Poset) −→ LaxInj(Lop

Σ , Poset)
induces a cofree comonad C(Pff ) on LaxInj(Lop

Σ , Poset). Moreover, given a
logic progam P qua Pff -coalgebra p : At −→ Pff (At), the corresponding C(Pff )-
coalgebra p : At −→ C(Pff )(At) sends an atom A(x1, . . . , xn) ∈ At(n) to the
coinductive tree for A(x1, . . . , xn).



Category Theoretic Semantics for Theorem Proving in Logic Programming 109

Proof. The construction of Theorem 1, subject to mild rephrasing, continues to
work here. Specifically, (C(Pff )At)(n) is given by the same limit as in Theorem 1
but with At replaced by At(n) and with PfPf replaced by Pff : products in the
category LaxInj(Lop

Σ , Poset) are given pointwise, so the use of projections is
the same; [Inj, Poset] is locally finitely presentable and Pff is an accessible
functor, allowing us to extend the construction of the cofree comonad pointwise
to [Inj, Poset]. It is routine, albeit tedious, to verify functoriality of C(Pff ) with
respect to all maps and to verify the universal property. The construction of p is
given pointwise, with it following from its coinductive construction that it yields
the coinductive trees as required.

The lax naturality in respect to general maps f : m −→ n means that
a substitution applied to an atom A(x1, . . . , xn) ∈ At(n), i.e., application of
the function At(f) to A(x1, . . . , xn), followed by application of p, i.e., taking
the coinductive tree for the substituted atom, or application of the function
(C(Pff)At)f) to the coinductive tree for A(x1, . . . , xn) potentially yield different
trees: the former substitutes into A(x1, . . . , xn), then takes its coinductive tree,
while the latter applies a substitution to each node of the coinductive tree for
A(x1, . . . , xn), then prunes to remove redundant branches.

Example 9. Extending Example 8, consider connected(x, y) ∈ At(2). In express-
ing GC as a map p : At −→ PffAt in Example 8, we put

p2(connected(x, y)) = {{edge(x, z), connected(z, y)}}
Accordingly, p2(connected(x, y)) is the coinductive tree for connected(x, y),
thus the infinite tree generated by repeated application of the same clause mod-
ulo renaming of variables.

If we substitute x for y in the coinductive tree, i.e., apply the function
(C(Pff )At)(x, x) to it (see the definition of LΣ at the start of Sect. 4 and observe
that (x, x) is a 2-tuple of terms generated trivially by the variable x), we obtain
the same tree but with y systematically replaced by x. However, if we substi-
tute x for y in connected(x, y), i.e., apply the function At(x, x) to it, we obtain
connected(x, x) ∈ At(1), whose coinductive tree has additional branching as the
first clause of GC, i.e., connected(x, x) ← may also be applied.

In contrast to this, we have strict naturality with respect to injections: for
example, an injection i : 2 −→ 3 yields the function At(i) : At(2) −→ At(3) that,
modulo renaming of variables, sends connected(x, y) ∈ At(2) to itself seen as
an element of At(3), and the coinductive tree for connected(x, y) is accordingly
also sent by (C(Pff )At)(i) to itself seen as an element of (C(Pff )At)(3).

Example 9 illustrates why, although the condition of strict naturality with
respect to injections holds for Pff , it does not hold for Lax(Lop

Σ , PfPf ) in Exam-
ple 6 as we did not model the clause

connected(x, y) ← edge(x, z), connected(z, y)

directly there, but rather modelled all substitution instances into all available
variables.



110 E. Komendantskaya and J. Power

6 Complementing Saturated Semantics

Bonchi and Zanasi’s approach to modelling logic programming in [6] was to
consider PfPf as we did in [21], sending At to PfPfAt, but to ignore the inherent
laxness, replacing Lax(Lop

Σ , Poset) by [ob(LΣ), Set], where ob(LΣ) is the set of
objects of LΣ treated as a discrete category, i.e., as one with only identity maps.

The central mathematical fact that supports saturated semantics is that,
regarding ob(LΣ) as a discrete category, with inclusion functor I : ob(LΣ) −→
LΣ , the functor

[I, Set] : [Lop
Σ , Set] −→ [ob(LΣ)op, Set]

that sends a functor H : Lop
Σ −→ Set to the composite functor HI : ob(LΣ) =

ob(LΣ)op −→ Set has a right adjoint. That adjoint is given by right Kan exten-
sion. It is primarily the fact of the existence of the right adjoint, rather than
its characterisation as a right Kan extension, that enabled Bonchi and Zanasi’s
various constructions, in particular those of saturation and desaturation.

That allows us to mimic Bonchi and Zanasi’s saturation semantics, but start-
ing from Lax(Lop

Σ , Poset) rather than from [ob(LΣ), Set]. We are keen to allow
this as laxness is an inherent fact of the situation, as we have explained through
the course of this paper. Such laxness has been valuable in related semantic
endeavours, such as in Tony Hoare’s pioneering work on the modelling of data
refinement [13,14,18], of which substitution in logic programming can be seen
as an instance.

The argument, which was originally due to Ross Street, cf [32], goes as follows.

Theorem 4. [3] For any finitary 2-monad T on a cocomplete 2-category K,
the inclusion

J : T -Algs −→ T -Algl

of the category of strict T -algebras and strict maps of T -algebras into the category
of strict T -algebras and lax maps of T -algebras has a left adjoint.

Example 10. For any Lawvere theory L, there is a finitary locally ordered monad
T on [ob(L), Posetop] for which [L,Posetop] is isomorphic to T -Algs, with T -Algl

isomorphic to Lax(L,Posetop). The monad T is given by the composite of the
functor

[J, Posetop] : [L,Posetop] −→ [ob(L), Posetop]

where J : ob(L) −→ L is the inclusion, cf Bonchi and Zanasi’s construction [6],
with its left adjoint, which is given by left Kan extension. The fact that the
functor [J, Posetop] also has a right adjoint, given by right Kan extension, implies
that the monad T is finitary.

Corollary 2. For any Lawvere theory L, the inclusion

[Lop, Poset] −→ Lax(Lop, Poset)

has a right adjoint.



Category Theoretic Semantics for Theorem Proving in Logic Programming 111

Proof. Poset is a complete 2-category as it is a complete locally ordered category.
So Posetop is a cocomplete 2-category, and so [ob(L), Posetop] is a cocomplete
2-category. So the conditions of Theorem 4 hold for Example 10, and so the
inclusion

[L,Posetop] −→ Lax(L,Posetop)

has a left adjoint. But [L,Posetop]op is canonically isomorphic to [Lop, Poset],
and Lax(L,Posetop)op is canonically isomorphic to Lax(Lop, Poset), and in gen-
eral, a functor H : A −→ B has a right adjoint if and only if H : Aop −→ Bop

has a left adjoint. The combination of these facts yields the result.

With this result in hand, one can systematically work through Bonchi and
Zanasi’s paper, adapting their constructions for saturation and desaturation,
without discarding the inherent laxness that logic programming, cf data refine-
ment, possesses.

We have stated the results here for arbitrary lax transformations, but they
apply equally to those that strictly respect injections, i.e., a subtle extension of
the above argument shows that the inclusion

[Lop, Poset] −→ LaxInj(Lop, Poset)

has a right adjoint, that right adjoint being a further variant of the right Kan
extension that Bonchi and Zanasi used. The argument for lax naturality from
the Introduction retains its force, so in Bonchi and Zanasi’s sense, this does not
yield compositionality of lax semantics, but it does further refine their analysis
of saturation, eliminating more double counting.

7 Conclusions

For variable-free logic programs, in [20], we used the cofree comonad on PfPf

to model the coinductive trees generated by a logic program. The notion of
coinductive tree had not been isolated at the time of writing of [20], or of [21],
so we did not explicitly explain the relationship in [20], hence our doing so here,
but the result was effectively in [20], just explained in somewhat different terms.

Using lax transformations, we extended the result in [21], albeit again not
stating it explicitly but again explained explicitly here, to arbitrary logic pro-
grams, including existential programs a leading example being GC, as studied
extensively by Sterling and Shapiro [31]. The problem of existential clauses is
well-known in the literature on theorem proving and within communities that
use term-rewriting, TM-resolution or their variants. In TRS [33], existential
variables are not allowed to appear in rewriting rules, and in type inference,
the restriction to non-existential programs is common [11]. In LP, the problem
of handling existential variables when constructing proofs with TM-resolution
marks the boundary between the theorem-proving and problem-solving aspects,
as explained in Sect. 2.

The papers [21,23] also contained a kind of category theoretic semantics
for existential logic programs such as GC, but that semantics was limited,



112 E. Komendantskaya and J. Power

not modelling the coinductive trees generated by TM-resolution for such logic
programs. Here, we have refined lax semantics, refining Lax(Lop

Σ , Poset) to
LaxInj(Lop

Σ , Poset), thus insisting upon strict naturality for injections, and refin-
ing the construction PcPfAt to Pff (At), thus allowing for additional variables
in the tail of a clause in a logic program and not introducing countability, cf the
modelling of local state in [29]. This has allowed us to model coinductive trees
for arbitrary logic programs.

We have further mildly refined Bonchi and Zanasi’s saturation semantics for
logic programming [6], showing how it may be seen to complement rather than
to replace lax semantics.

References

1. Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declarative pro-
gramming languages. Theor. Comput. Sci. 410(46), 4626–4671 (2009)

2. Benabou, J.: Introduction to bicategories. In: Bénabou, J., Davis, R., Dold, A.,
Isbell, J., MacLane, S., Oberst, U., Roos, J.-E. (eds.) Reports of the Midwest
Category Seminar. Lecture Notes in Mathematics, vol. 47, pp. 1–77. Springer,
Heidelberg (1967)

3. Blackwell, R., Kelly, G.M., Power, A.J.: Two-dimensional monad theory. J. Pure
Appl. Algebra 59, 1–41 (1989)

4. Bonchi, F., Montanari, U.: Reactive systems, (semi-)saturated semantics and coal-
gebras on presheaves. Theor. Comput. Sci. 410(41), 4044–4066 (2009)

5. Bruni, R., Montanari, U., Rossi, F.: An interactive semantics of logic programming.
TPLP 1(6), 647–690 (2001)

6. Bonchi, F., Zanasi, F.: Saturated semantics for coalgebraic logic programming. In:
Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 80–94. Springer,
Heidelberg (2013)

7. Bonchi, F., Zanasi, F.: Bialgebraic semantics for logic programming. CoRR
abs/1502.06095 (2015)

8. Comini, M., Levi, G., Meo, M.C.: A theory of observables for logic programs. Inf.
Comput. 169(1), 23–80 (2001)

9. Fu, P., Komendantskaya, E.: A type-theoretic approach to resolution. In: Falaschi,
M., et al. (eds.) LOPSTR 2015. LNCS, vol. 9527, pp. 91–106. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-27436-2 6

10. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Kiselyov, O., King, A., et al. (eds.) FLOPS 2016. LNCS, vol. 9613,
pp. 126–143. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29604-3 9

11. Jones, S.P., Jones, M., Meijer, E.: Type classes: an exploration of the design space.
In: Haskell Workshop (1997)

12. Gupta, G., Costa, V.: Optimal implementation of and-or parallel prolog. In:
PARLE 1992, pp. 71–92 (1994)

13. Jifeng, H., Hoare, C.A.R.: Categorical semantics for programming languages. In:
Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1989. LNCS, vol.
442, pp. 402–417. Springer, Heidelberg (1989)

14. Jifeng, H., Hoare, C.A.R.: Data refinement in a categorical setting. Technical Mono-
graph PRG-90. Oxford University Computing Laboratory, Programming Research
Group, Oxford (1990)

http://dx.doi.org/10.1007/978-3-319-27436-2_6
http://dx.doi.org/10.1007/978-3-319-29604-3_9


Category Theoretic Semantics for Theorem Proving in Logic Programming 113

15. Johann, P., Komendantskaya, E., Komendantskiy, V.: Structural resolution for
logic programming. In: Technical Communications of ICLP 2015 (2015)

16. Kelly, G.M.: Coherence theorems for lax algebras and for distributive laws. In:
Kelly, G.M. (ed.) Category Seminar. Lecture Notes in Mathematics, vol. 420, pp.
281–375. Spriniger, Heidelberg (1974)

17. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Math. Soc.
Lecture Notes Series, vol. 64. Cambridge University Press, Cambridge (1982)

18. Kinoshita, Y., Power, A.J.: Lax naturality through enrichment. J. Pure Appl. Alge-
bra 112, 53–72 (1996)

19. Kinoshita, Y., Power, J.: A fibrational semantics for logic programs. In: Dyckhoff,
R., Herre, H., Schroeder-Heister, P. (eds.) ELP 1996. LNCS (LNAI), vol. 1050, pp.
177–191. Springer, Heidelberg (1996)

20. Komendantskaya, E., McCusker, G., Power, J.: Coalgebraic semantics for parallel
derivation strategies in logic programming. In: Johnson, M., Pavlovic, D. (eds.)
AMAST 2010. LNCS, vol. 6486, pp. 111–127. Springer, Heidelberg (2011)

21. Komendantskaya, E., Power, J.: Coalgebraic semantics for derivations in logic pro-
gramming. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol.
6859, pp. 268–282. Springer, Heidelberg (2011)

22. Komendantskaya, E., Power, J.: Coalgebraic derivations in logic programming. In:
CSL. LIPIcs, pp. 352–366. Schloss Dagstuhl (2011)

23. Komendantskaya, E., Power, J., Schmidt, M.: Coalgebraic logic programming: from
Semantics to Implementation. J. Log. Comput. 26(2), 745–783 (2016)

24. Komendantskaya, E., Schmidt, M., Heras, J.: Exploiting parallelism in coalgebraic
logic programming. Electr. Notes Theor. Comput. Sci. 303, 121–148 (2014)

25. Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
26. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-

ematics. Springer, Heidelberg (1971)
27. Power, A.J.: An algebraic formulation for data refinement. In: Main, M., Melton,

A., Mislove, M., Schmidt, D. (eds.) MFPS 1989. LNCS, vol. 442, pp. 390–401.
Springer, Heidelberg (1989)

28. Plotkin, G., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan, M.
(eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001)

29. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002)

30. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007)

31. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge (1986)
32. Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2, 149–168 (1972)
33. Terese: Term Rewriting Systems. Cambridge University Press (2003)
34. Worrell, J.: Terminal sequences for accessible endofunctors. In: Proceedings of the

CMCS 1999. Electronic Notes in Theoretical Computer Science, vol. 19, pp. 24–38
(1999)



Product Rules and Distributive Laws

Joost Winter(B)

Faculty of Mathematics, Informatics, and Mechanics,
University of Warsaw, Warsaw, Poland

jwinter@mimuw.edu.pl

Abstract. We give a categorical perspective on various product rules,
including Brzozowski’s product rule ((st)a = sat+o(s)ta) and the famil-
iar rule of calculus ((st)a = sat + sta). It is already known that these
product rules can be represented using distributive laws, e.g. via a suit-
able quotient of a GSOS law. In this paper, we cast these product rules
into a general setting where we have two monads S and T , a (possi-
bly copointed) behavioural functor F , a distributive law of T over S,
a distributive law of S over F , and a suitably defined distributive law
TF ⇒ FST . We introduce a coherence axiom giving a sufficient and
necessary condition for such triples of distributive laws to yield a new
distributive law of the composite monad ST over F , allowing us to deter-
minize FST -coalgebras into lifted F coalgebras via a two step process
whenever this axiom holds.

1 Introduction

In [Brz64], Brzozowski introduced a calculus of derivatives for regular expres-
sions, including amongst other rules the product rule

(xy)a = xay + o(x)ya

which can be contrasted with the familiar (Leibniz) product rule from calculus
(here rephrased with a somewhat uncommon nomenclature, to highlight the
correspondences and differences with Brzozowski’s rule)

(xy)a = xay + xya.

In the work of Rutten, starting with [Rut98], a picture started to emerge
in which Brzozowski’s calculus of derivatives was absorbed into the framework
of universal coalgebra. Notably, in [Rut03,Rut05] both product rules were con-
sidered as behavioural differential equations, or coinductive definitions, possess-
ing unique solutions, and defining respectively the convolution product (Brzo-
zowski’s rule) and the shuffle product (Leibniz’ rule) on the final coalgebra.

J. Winter—This work was supported by the Polish National Science Centre (NCN)
grant 2012/07/E/ST6/03026.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 114–135, 2016.
DOI: 10.1007/978-3-319-40370-0 8



Product Rules and Distributive Laws 115

In the work of Bonsangue and Rutten together with the present author,
starting with [WBR11], a coalgebraic presentation of the context-free languages
was given, in which Brzozowski’s derivative rules (excluding the star rule) again
play a crucial role. This work was based on a concretely presented extension of
2 × Pω(−∗)A-coalgebras into 2 × −A-coalgebras, as in the following diagram:

X
ηX� Pω(X∗)

�−� � P(A∗)

2 × Pω(X∗)A

(o, δ)
� 2 × �−�A

�
�

(ô,
δ̂)

2 × Pω(X∗)A

(O,Δ)
�

In [BHKR13], it was shown that the above diagram could be understood
in terms of a distributive law of the monad Pω(−∗) over the cofree copointed
functor on 2 × −A, that is, over (− × (2 × −A), π1) by means of a suitable
quotient of distributive laws. This firmly established the connection between
the work of [WBR11] and the general categorical framework of bialgebras and
distributive laws, considered in e.g. [LPW00,Bar04,Jac06a,Jac06b,Kli11,JSS12],
as well as to the (closely related) generalized powerset construction presented in
[SBBR10,SBBR13].

Moreover, in [BRW12], the approach was generalized from formal languages
to formal power series, thus giving a coalgebraic characterization of the con-
structively algebraic power series.

In [Win14], the author’s Ph.D. thesis, this extension was broken up into a
two step process, as in the diagram,

X
η0

X� X∗ η1
X∗ � Pω(X∗)

�−� � P(A∗)

2 × Pω(X∗)A

(o, δ)
� 2 × �−�A

�
�

(ô, δ̂)

�
(o

� , δ
� )

2 × Pω(X∗)A

(O,Δ)
�

and it was noted that the first extension corresponded directly to the product
rule (combined with the unit rule), whereas the second extension was simply an
instance of ordinary determinization, applied to a coalgebra which is by itself
infinite. This two-step process again easily generalizes from the setting of lan-
guages to the setting of noncommuting power series over commutative semirings;
however, no general categorical presentation of this two-step process was given
in the thesis.

The main aim of this paper is to give such a categorical presentation of
this two-step process. This involves a setting including both distributive laws
between monads λ0 : TS ⇒ ST , distributive laws of a monad over a functor (or
copointed functor) λ2 : SF ⇒ FS, as well as a, suitably defined, distributive
law of type λ1 : TF ⇒ FST (this definition will be given in Sect. 3).

In Sect. 4, we will present our main result, which states that the three laws as
suggested above can be combined to form a new distributive law λ̂ of the composite



116 J. Winter

monad ST over F , if and only if a certain coherence axiom involving the three
laws is satisfied. This construction works regardless whether F is an ordinary or
copointed functor. The proof that satisfaction of the coherence axiom implies the
multiplicative law of the distributive law of the composite monad ST over F was
automatically derived using a Prolog program written for this purpose.

We then show that both the Brzozowski and Leibniz product rules, as well
as the (simpler) pointwise rule defining the Hadamard product, can be cast
into this setting, and that the coherence axiom is satisfied in these cases, and
additionally present a counterexample where the coherence axiom is not satisfied.
We conclude with a presentation of an extension of the generalized powerset
construction to incorporate these two-step extensions.

Related work. All of the aforementioned references can be regarded as related work.
In particular, [Che07] gives a similar coherence condition, for the existence of com-
posite distributive laws in the context of distributive laws between monads. The
relationships between [Che07] and the present paper involve some subtleties, and
in Sect. 6, we will present a more detailed investigation of the relationship.

Additionally, [MMS13,Sch14] also give a compositional approach to distrib-
utive laws, however, in a setting different from our approach, not including the
combination of distributive laws between monads and distributive laws of mon-
ads over functors into new distributive laws. In [Jac06b], a coinductive presen-
tation of the shuffle product using a two-step process is also given, however, the
coinductive definition of the multiplication there is not given using a distributive
law.

2 Preliminaries

2.1 General Preliminaries

We assume familiar the basic notions of category theory (functors, natural trans-
formations, monads, (Eilenberg-Moore) algebras), of (commutative) monoids
and semirings, and of coalgebras for a functor. These can be found in e.g. [Awo10]
or [Mac71] for general categorical notions, and in [Rut00] for the basics of coal-
gebra.

An important endofunctor we will use is the functor K × −A on Set, rep-
resenting automata with output in K over the input alphabet A, often called
Moore automata but in this paper simply K-automata. The transition of coal-
gebras for this functor is represented as a pair (o, δ), called an output-derivative
pair, with δ(x)(a) denoted by xa. A final coalgebra for this functor exists, and
can be given by (K〈〈A〉〉, O,Δ), where K〈〈A〉〉 is the function space A∗ → K,
O(σ) = σ(1) and σa(w) = σ(aw) for all σ ∈ K〈〈A〉〉, a ∈ A, and w ∈ A∗. Here,
and elsewhere in this paper, 1 denotes the empty word.

A copointed endofunctor is a pair (F, ε), where F is a C-endofunctor, and ε
is a natural transformation ε : F ⇒ 1C. A coalgebra for a copointed endofunctor
(F, ε) consists of a coalgebra (X, δ) for the endofunctor F , satisfying the condition
that εX ◦ δ = 1X .



Product Rules and Distributive Laws 117

Of special interest to us are cofree copointed endofunctors, which can be
constructed in any category that has binary products. Given an ordinary endo-
functor F , the cofree copointed endofunctor on F is the pair (Id × F, π1). For
any functor F such that a cofree copointed endofunctor on F exists, there is an
isomorphism between coalgebras for the ordinary endofunctor F , and coalgebras
for the copointed endofunctor (Id × F, π1).

Given a monad T (we will frequently refer to a monad simply using the
name of its functorial part) and an endofunctor F , a (T, F )-bialgebra is a triple
(X,α, δ) such that (X,α) is an algebra for the monad T and (X, δ) is a F -
coalgebra. If F is a copointed functor (here again, we often refer to the copointed
functor simply using the name of the functor), we additionally require the coal-
gebraic part of a (T, F )-bialgebra to be a coalgebra for the copointed functor.
(We will turn to λ-bialgebras involving a distributive law soon!)

Given a commutative semiring K (in this paper, we will essentially only be
concerned with commutative semirings), a K-semimodule (M, 0,+,×) consists
of a commutative monoid (M, 0,+) and an operation × : K × M → M (called
scalar product) such that, for all k, l ∈ k and m,n ∈ M :

k × (m + n) = (k × m) + (k × n) 1K × m = m
(k + l) × m = (k × m) + (l × m) 0K × m = 0

(kl) × m = k × (l × m) k × 0 = 0

For any commutative semiring K1, the K-semimodules are exactly the alge-
bras for the monad (LinK(−), η, μ), where LinK(X) is the set of finitely sup-
ported functions on X, and, given a function f : X → Y ,

LinK(f) = y �→
∑

x∈f−1(y)

f(x).

The multiplication of the monad, for any X and any f ∈ LinK(LinK(X)), can
be given by

μX(f) = x �→
∑

g∈supp(f)

f(g) · g(x)

and the unit of the monad, for any x ∈ X, by:

ηX(x) = y �→ if x = y then 1 else 0

Given some σ ∈ LinK(X) and some x ∈ X, we furthermore write [σ ⇓ x] for
the application of σ at x.

Given a commutative semiring K, a K-algebra2 (see e.g. [Eil76]) is a tuple
(X, 0, 1,+, ·,×) such that (X, 0, 1,+, ·) is a semiring, (X, 0,+,×) is a K-semimo-
dule, such that for all k ∈ K and x ∈ X:

(k × 1) · x = k × x = x · (k × 1)
1 For a semiring K that is not commutative, one can define two distinct monad

structures on LinK(−), with a different multiplication, one corresponding to left-
K-semimodules, and one corresponding to right K-semimodules. When K is com-
mutative, these two monads are identical.

2 In the literature often called a unital associative algebra.



118 J. Winter

An equivalent, and as it turns out for us more convenient, characterization
is the following: a K-algebra is a tuple (X, 0, 1,+, ·,×) such that (X, 1, ·) is a
monoid, (X, 0,+,×) is a K-semimodule, furthermore satisfying the following
axioms:

x · (y + z) = x · y + x · z

(x + y) · z = x · z + y · z

(k × 1) · x = k × x = x · (k × 1)

(Note that the pair of semiring axioms 0 · x = 0 = x · 0 can be derived from the
pair of axioms on the third line.)

For some semirings K, the categories of K-semimodules and K-algebras cor-
respond to familiar categories. We summarize some of these in the following
table:

K K-semimodules K-algebras
B join-semilattices idempotent semirings
N commutative monoids semirings
Z abelian groups rings

Moreover, it is easily verified that the monad LinB(−) is naturally isomorphic
to the finite powerset monad Pω.

2.2 Distributive Laws Between Monads

We now summarize the definitions and some important facts about distributive
laws between monads, which can be found in e.g. [Bec69,BW85].

Given monads (S, μS , ηS) and (T, μT , ηT ), a distributive law of the monad T
over the monad S is a natural transformation λ : TS ⇒ ST such that the four
diagrams of natural transformations

S ===
ηT S⇒ TS

ST

λ�
����

======Sη T ⇒

TTS ===============
μT S ⇒ TS

TST

Tλ�
����

===
λT⇒ STT ====

SμT

⇒ ST

λ�
����

T ===
TηS

⇒ TS

ST

λ�
����

======η S
T ⇒

TSS ===============
TμS

⇒ TS

STS

λS�
����

===
Sλ⇒ SST ====

μST⇒ ST

λ�
����

commute.



Product Rules and Distributive Laws 119

In the presence of a distributive law of a monad T over another monad S,
we obtain, amongst other things, the following:

1. A monad structure on the composite functor ST , given by:

ηST = ηST ◦ ηT and μST = SμT ◦ μSTT ◦ SλT

2. A lifting of the monad S to a monad Ŝ in the category CT of T -algebras,
with the functorial part of Ŝ given by:

Ŝ(X,α) = (SX,Sα ◦ λX)

3. An isomorphism of categories between the categories of algebras for the
monad ST and algebras for the monad Ŝ. Given an Ŝ-algebra (X,αT , αS),
the corresponding ST -algebra can be given by (X,αS ◦ SαT ), and given
a ST -algebra (X,α), the corresponding Ŝ-algebra can be given by (X,α ◦
ηS

TX , α ◦SηT
X). These constructions are mutually inverse, as shown in [Bec69,

Section 2].

In the case where T = −∗ and S = LinK(−) (where K is a commutative
semiring), there is a distributive law λ : (LinK(−))∗ ⇒ LinK(−∗) of T over S,
given by:

λX

(
n∏

i=1

mi∑
j=1

kij × xij

)
=

m1∑
j1=1

· · ·
mn∑

jn=1

(
n∏

i=1

kiji ×
n∏

i=1

xiji

)

(recall that × is the scalar product, and thus, the kij here are scalars of K!)
Here the product symbol

∏
denotes the operation on the monoid structure, and

the summation symbol
∑

and times × denote the (sum and scalar product) on
the semimodule structure, respectively.

It is well-known, at least3 in the cases of the semirings B, N, and Z (and
probably in the remaining cases as well—nevertheless we give a full proof in the
appendix), that this is a distributive law of −∗ over LinK(−):

Proposition 1. The natural transformation λ as given above is a distributive
law of the monad LinK(−) over the monad −∗.

We let K〈−〉 = LinK(−∗) denote the resulting composite monad. Elements
of K〈X〉 can be identified with noncommuting polynomials in variables from X.
Moreover, the algebras for this monad are precisely the K-algebras: by definition,
a K-algebra is both a monoid and a semimodule additionally satisfying

x · (y + z) = x · y + x · z

(x + y) · z = x · z + y · z

(k × 1) · x = k × x = x · (k × 1)

3 See e.g. [Bec69] for Z and [Jac06a] for N and B.



120 J. Winter

for elements x, y, z and scalars k and an algebra for the monad K〈−〉 is both a
monoid and a semimodule additionally satisfying

n∏
i=1

mi∑
j=1

kij × xij =
m1∑

j1=1

· · ·
mn∑

jn=1

(
n∏

i=1

kiji ×
n∏

i=1

xiji

)

It is easily verified that these two conditions are equivalent.

2.3 Distributive Laws of a Monad over a (Copointed) Endofunctor

We now turn to a brief summary of distributive laws of monads over endofunc-
tors and copointed endofunctors. The material which now follows can all be
found in either [Bar04] or [JSS12]; supplementary presentations can be found in
e.g. [Jac06a,Jac06b,Kli11,LPW00] (in which the notions of distributive laws of
monads over endofunctors and copointed endofunctors were first considered).

Given a monad (T, μ, η) and an endofunctor F on any category C, a distrib-
utive law of the monad T over F is a natural transformation λ : TF ⇒ FT such
that the two diagrams of natural transformations

F ==
ηF⇒ TF

FT

λ�
����

======F
η ⇒ and

TTF ==============
μF ⇒ TF

TFT

Tλ�
����

===
λT⇒ FTT ===

Fμ⇒ FT

λ�
����

commute.
Given a distributive law λ of T over F , a λ-bialgebra is a (T, F )-bialgebra

for which the following diagram commutes:

TX
α� X

δ� FX

TFX

Tδ
� λX � FTX

Fα
�

A distributive law of a monad (T, η, μ) over a copointed endofunctor (F, ε)
is a distributive law of the monad over the (ordinary) endofunctor F , such that
additionally the diagram

TF ==
λ⇒ FT

T

ε�
���� T

=======Tε ⇒

commutes.
For distributive laws of a monad over a copointed endofunctor, bialgebras

can again be defined: the only modification needed here is that we additionally



Product Rules and Distributive Laws 121

require (X, δ) to be a coalgebra for the copointed endofunctor F . Note that
any distributive law λ of a monad T over an ordinary functor F extends to a
distributive law λ′ of T over the cofree copointed functor (Id×F ), such that the
λ-bialgebras and λ′-bialgebras are isomorphic as categories.

In the presence of a distributive law λ of T over F , we obtain, amongst other
things, the following (both for ordinary and copointed endofunctors, see e.g.
[Bar04] for proofs):

1. A lifting of F to a functor F̂ in the category of algebras for the monad T ,
and of T to a functor T̂ the category of F -coalgebras, together with an iso-
morphic correspondence between the categories of λ-bialgebras, F̂ -coalgebras,
and algebras for the monad T̂ .

2. If F has a final coalgebra (Ω,ω), there is a unique algebra ξ for the monad T
on Ω such that (Ω, ξ, ω) is a λ-bialgebra, which moreover is a final λ-bialgebra.

An important instance of a distributive law, considered in e.g. [JSS12], is the
law of the functor K × −A over the monad LinK(−) where K is any semiring4,
given by:

λX

(
n∑

i=1

ki × (oi, a �→ dia)

)
=

(
n∑

i=1

kioi, a �→
n∑

i=1

ki × dia

)

This distributive law can be obtained canonically by means of the strength
operation (see e.g. [JSS12]), using the obvious K-semimodule structure on K
itself. The bialgebras for this distributive law are precisely the structures that are
both K-automata and K-semimodules, such that the output and derivative (with
respect to an arbitrary alphabet symbol) are both linear mappings. A concrete
formulation is the following: a K-linear automaton5 is a tuple (X, 0,+,×, o, δ)
such that (X, 0,+,×) is a K-semimodule, (X, o, δ) is a K-automaton, and o and
δ(−)(a) (for each a ∈ A) are linear mappings.

2.4 The Generalized Powerset Construction

We now turn to a summary of some of the main observations from [SBBR10,
SBBR13] pertaining to the generalized powerset construction (many instances
of which can be found in these two papers as examples). Beyond that, we also
sketch how the ‘generalized powerset construction’ framework can be extended
to distributive laws over (cofree) copointed functors, and highlight some of the
(additional) subtleties that arise in this case.

Given a (possibly copointed) endofunctor F such that a final F -coalgebra
exists, a monad T (on the same category), and a distributive law of T over
F , any FT -coalgebra (X, δ) (if F is copointed, we additionally require that

4 If K is not commutative, we can consider left K-semimodules, but for this paper,
this is not relevant.

5 called linear weighted automata in e.g. [BBB+12].



122 J. Winter

εTX ◦ δ = ηX) can be extended canonically to an F -coalgebra (TX, δ̂), where δ̂
can be specified as:

δ̂ = FμX ◦ λTX ◦ Tδ

In fact, it follows that (TX, μX , δ̂) is a λ-bialgebra (and, hence, that FTX
has the structure of an algebra for the monad T ). If F has a final coalgebra
(Ω,ω), we thus obtain

X
ηX� TX

�−�� Ω

FTX

δ
� F �−� �

� δ̂

FΩ

ω
�

where �−� is a morphism of λ-bialgebras to the unique λ-bialgebra on the final
F -coalgebra. If F is copointed, note that

εTX ◦ δ̂ = εTX ◦ FμX ◦ λTX ◦ Tδ = μX ◦ εTTX ◦ λTX ◦ Tδ

= μX ◦ TεX ◦ Tδ = μX ◦ TηX = 1TX

so that δ̂ is indeed a coalgebra for the copointed functor.
When the functor F is a cofree copointed functor of the form (Id×G, π1), note

that δ has to be of the form (ηX , ζ), where ζ is an (ordinary) GT -coalgebra, and
because δ̂ is a coalgebra for the cofree copointed functor, it has to be of the form
(1TX , ζ�) for some ζ�. Similarly, ω has to be of the form (1Ω , ψ), where (Ω,ψ)
is the final G-coalgebra. Now note that there is a correspondence of commuting
diagrams of the form

X
ηX � TX

�−� � Ω

TX × GTX

(ηX , ζ)
� �−� × G�−� �

�
(1TX

, ζ
� )

Ω × GΩ

(1Ω , ψ)
�

and:

X
ηX� TX

�−�� Ω

GTX

ζ
� G�−� �

�

ζ
�

GΩ

ψ
�

(1)

However, in general we are not guaranteed that the second diagram occurs
as the result of an ordinary distributive law of T over G. Hence, in general,
although we are guaranteed that TX × GTX has the structure of an algebra
for the monad T , we do not have this guarantee of GTX itself (this may in fact
fail, e.g. for GSOS rules that cannot be presented using the simple SOS format).
On the other hand, we are still guaranteed that �−� is a T -algebra morphism,
because this follows from the upper diagram.



Product Rules and Distributive Laws 123

3 Distributive Laws of a Monad over a (Copointed)
Endofunctor into a Composite Monad

In this section, we present a definition of a new (as far as the author is aware)
type of distributive law, which allows us to formulate the ‘two-step’ generalized
powerset construction. We start by giving the general formulation, before turning
to the main examples.

Given two monads (S, μS , ηS), (T, μT , ηT ) such that a distributive law λ0 :
TS ⇒ ST exists, and an endofunctor F , on any category C, a distributive law of
the monad T over F into the composite monad ST is a natural transformation
λ : TF ⇒ FST such that the two diagrams of natural transformations

F ===
ηT F⇒ TF

FST

λ�
����

=======F
η ST ⇒ and

TTF ===================
μT F ⇒ TF

TFST

Tλ�
����

===
λST⇒ FSTST ===

FμST

⇒ FST

λ�
����

commute.
We can again define a suitable notion of a λ-bialgebra for a distributive law

of T over F into the composite monad ST . For such a λ, a λ-bialgebra (X,α, δ)
is a (ST, F )-bialgebra such that the diagram

TX
ηS

TX� STX
α� X

δ� FX

TFX

Tδ
� λX � FSTX

Fα
�

commutes (note that we can here replace α ◦ ηS
TX with αT ).

A distributive law λ of a monad (T, η, μ) over a copointed endofunctor (F, ε)
into a composite monad is a distributive law of the monad over the (ordinary)
endofunctor F into the same composite monad, such that additionally the dia-
gram

TF ==
λ⇒ FST

T

Tε�
����

====
ηS⇒ ST

ε�
���� ST

commutes. Again, the corresponding notion of a λ-bialgebra is obtained by
adding the additional requirement that (X, δ) is a coalgebra for the copointed
functor F .

The following result is unspectacular, but will be useful for us later on:

Lemma 2. Given monads (S, ηS , μS) and (T, ηT , μT ), and a (possibly
copointed) endofunctor F , and a distributive law λ0 : TS ⇒ ST , if a nat-
ural transformation λ : TF ⇒ FT is a distributive law of T over F , then



124 J. Winter

λ̂ = FηST ◦ λ is a distributive law of T over F into the composite monad
ST . If η is pointwise monic and F preserves monos, the converse also holds.

3.1 Product Rules as Distributive Laws

Instantiating S = LinK(−), T = −∗, and F = K × −A, we can model each
of the three product rules as distributive laws of the monad (T, ηT , μT ) over
the copointed functor (Id × F, π1) into the composite monad (ST, ηST , μST ) as
follows:

1. The Brzozowski product rule can be specified as

λX

(
n∏

i=1

(xi, oi, a �→ dia)

)

=

(
n∏

i=1

xi,

n∏
i=1

oi, a �→
n∑

i=1

(
i−1∏
k=1

oi

)
×

(
dia ·

n∏
k=i+1

xi

))

or equivalently inductively as:

λX(1) = (1, 1, a �→ 0)
λX(x, o, a �→ da)w = (xπ0(λX(w)),

oπ1(λX(w)), a �→ daπ0(λX(w)) + oπ2(λX(w))(a))

The latter pair of equations can be more conveniently represented using the
output-derivative notation as:

o(1) = 1 1a = 0
o(xw) = o(x)o(w) (xw)a = xaw + o(x)wa

2. The Leibniz product rule can be given as

λX

(
n∏

i=1

(xi, oi, a �→ dia)

)

=

(
n∏

i=1

xi,

n∏
i=1

oi, a �→
n∑

i=1

((
i−1∏
k=1

xi

)
· dia ·

n∏
k=i+1

xi

))

or inductively and using the output-derivative notation as:

o(1) = 1 1a = 0
o(xw) = o(x)o(w) (xw)a = xaw + xwa

3. Finally, the pointwise (Hadamard) product rule is given as

λX

(
n∏

i=1

(oi, a �→ dia)

)
=

(
n∏

i=1

oi, a �→
n∏

k=1

dia

)



Product Rules and Distributive Laws 125

or inductively and using the output-derivative notation as:

o(1) = 1 1a = 1
o(xw) = o(x)o(w) (xw)a = xawa

In the case of the Brzozowski and Leibniz product rules, it can be verified
that they yield distributive laws using a lengthy verification.

Proposition 3. The Brzozowski and Leibniz product rule both are distributive
laws of −∗ over the copointed endofunctor (Id×F, π1) into the composite monad
K〈−〉.

In the case of the Hadamard product, everything is a bit easier.

Proposition 4. The pointwise product rule is a distributive law of −∗ over the
endofunctor F into the composite monad K〈−〉.
Proof. This follows from the fact that the Hadamard product can be given as a
pointwise distributive law of −∗ over K ×−A obtained using the strength opera-
tion and multiplication over K giving its monoid structure (see e.g. [Jac06b]
for a detailed discussion of distributive laws obtained using strength). By
Lemma 2, this distributive law yields another distributive law into the composite
monad. 
�
We will henceforth refer to the three above distributive laws as λbrz, λlei, and
λhad, respectively.

From the above propositions and the definition of λ-bialgebras for distributive
laws of a monad over a functor into another monad, it follows directly that any
λ-bialgebra for any of the above distributive laws satisfies the corresponding
product rule for arbitrary elements. For example, it is easy to see from the
definitions that the λ-bialgebras for the Brzozowski product rule are precisely
the (T, F )-bialgebras that satisfy the unit and product rule

o(1) = 1 o(xy) = o(x)o(y)
1a = 0 (xy)a = xay + o(x)ya

for arbitrary elements x and y of the bialgebra and alphabet symbols a. Mutatis
mutandis, the same holds for the two other product rules.

4 Composite Distributive Laws

In this section we will introduce a coherence axiom, comparable to but different
from the Yang-Baxter condition presented in [Che07]. The relation with the work
in [Che07] will be discussed in Sect. 6. We consider a setting, where we are given
monads S and T , a (possibly copointed) endofunctor F , on an arbitrary category
C, together with three distributive laws, as follows:

– λ0 : TS ⇒ ST , a distributive law of T over S.



126 J. Winter

– λ1 : TF ⇒ FST , a distributive law of T over F into the composite monad
ST .

– λ2 : SF ⇒ FS, a distributive law of S over F .

For such triples6, we can compose the distributive laws as follows, yielding a
new natural transformation λ̂ : (ST )F ⇒ F (ST ) given by:

STF ==
Sλ1

⇒ SFST ===
λ2ST⇒ FSST ====

FμST⇒ FST

A triple of distributive laws (λ0, λ1, λ2) as above is said to satisfy the coher-
ence axiom whenever the following diagram commutes:

TSF ===
Tλ2

⇒ TFS ====
λ1S⇒ FSTS ====

FSλ0

⇒ FSST

STF

λ0F�
����

===
Sλ1

⇒ SFST ===
λ2ST⇒ FSST =====

FμST⇒ FST

FμST�
���� (2)

As it turns out, the coherence axiom is a sufficient and necessary condition
for λ̂ to be a distributive law:

Theorem 5. Given three distributive laws as above for monads S and T and a
functor (or copointed functor) F , the natural transformation λ̂ is a distributive
law of the composite monad ST over the functor (or copointed functor) F if and
only if the coherence axiom is satisfied.

Perhaps interesting to note, after initially finding myself unable to prove one
of the directions of the above theorem by hand (the initial aim was to prove that
a triple of distributive laws always yields a composite distributive law), I wrote
a Prolog program generating all the possible ways to go from STSTF to STF ,
together with equivalences determined by naturality squares, the multiplicative
laws for the monad, and the various distributive laws (however excluding the
unit laws), as well as all of these equivalences with any functor applied to it.
Using this program, the source of which can be found at

http://www.mimuw.edu.pl/∼jwinter/distlaws.prolog

the following facts were found:

1. There are 784 different ways of going from STSTF to FST , using composi-
tions of arbitrary natural transformations satisfying the regular expression:

(S|T |F )∗(μS |μT |λ0|λ1|λ2)(S|T |F )∗

2. Without the coherence axiom, and using the equivalence relation named
above, these divide up into two different equivalence classes (of sizes 218
and 566, respectively).

6 In some of the literature, monads are called triples, but in this paper it simply means
a list of three elements.

http://www.mimuw.edu.pl/~jwinter/distlaws.prolog


Product Rules and Distributive Laws 127

3. With the coherence axiom added, the two equivalence classes collapse
into one.

After the proof was found automatically, it was, however, easily verified by hand,
and transformed into a (rather large) commuting diagram.

Later, it was found (by hand) that the coherence axiom can also be derived
from the existence of a composite distributive law, turning the theorem into
one giving a sufficient and necessary condition, and indeed a counterexample
(soon to be presented) to the coherence axiom was found. (Note that neither
the theorem, nor the falling apart of the paths into two equivalence classes is by
itself a proof that there are counterexamples to the coherence axiom, but only a
proof that the coherence axiom cannot be derived using one particular method.)

Furthermore, it turns out that each of the distributive laws from Sect. 3.1 sat-
isfies the coherence axiom, when combined with the distributive laws presented
in Sects. 2.2 and 2.3:

Proposition 6. The three distributive laws for the Brzozowski, Leibniz, and
Hadamard product rules satisfy the coherence axiom, when instantiating λ0 with
the distributive law between monads presented in Sect. 2.2, and instantiating λ2

with the distributive law of S over F from Sect. 2.3.

We will henceforth refer to the extensions of the three distributive laws earlier
named as λ̂brz, λ̂lei, and λ̂had, respectively.

We now turn to the counterexample, consisting of a distributive law of T
over F into the composite monad ST , which, together with the same λ2 and λ0

as before, does not satisfy the coherence axiom.

Counterexample 1. Consider the natural transformation given by λ1 : (N ×
−A)∗ ⇒ N × N〈−〉A given by

λ1
X

(
n∏

i=1

(xi, oi, a �→ dia)

)
=

(
n∏

i=1

xi,
n∑

i=1

oi, a �→
n∏

i=1

dia

)

This distributive law can again be given by means of a (pointwise) distributive
law from −∗ over N × −A using the strength operator, this time by considering
the additive monoid structure on N (as opposed to the multiplicative monoid
structure, which yields the Hadamard product).

Now consider

((x, 1, a �→ x) + (x, 1, a �→ x)) · (x, 1, a �→ x)

which is an element of TSF{x}. It now follows that by applying

FμST ◦ FSλ0 ◦ λ1S ◦ Tλ2

we obtain an element (y, o, d) ∈ FST{x} such that o = 3, whereas by applying

FμST ◦ λ2ST ◦ Sλ1 ◦ λ0F



128 J. Winter

we obtain an element (y′, o′, d′) ∈ FST{x} such that o′ = 4. This proves that the
coherence axiom is not satisfied, and hence, by Theorem 5, also that λ̂, although
a natural transformation, is not a distributive law of the composite monad ST
over F .

Proposition 7. Given three distributive laws λ0, λ1, λ2 as above, such that λ̂ is
a distributive law over ST over F , a (ST, F )-bialgebra (X,α, δ) is a λ̂-bialgebra
if and only if (X,αS , δ) is a λ2-bialgebra and (X,αT , δ) is a λ1-bialgebra.

Proof. We will establish the result by establishing the following implications (in
the diagrams, each of the (internal) faces commutes by either one of the assumed
algebras or bialgebras, one of the axioms for monads or distributive laws, a
naturality square, or a functor applied to any of these types of diagrams):

– If (X,α, δ) is a λ̂-bialgebra, then (X,αT , δ) is a λ1-bialgebra. This is estab-
lished by the following diagram:

TX
ηS

TX� STX
α � X

δ � FX

TFX

Tδ
� ηS

TFX� STFX

STδ
� Sλ1

X� SFSTX
λ0

STX� FSSTX
FμS

TX� FSTX

Fα
�

FSTX

ηS
FSTX

�

1FSTX

�

Fη
S
STX

�

λ1
X �

– If (X,α, δ) is a λ̂-bialgebra, then (X,αS , δ) is a λ2-bialgebra. This is estab-
lished by the following diagram:

SX
SηT

� STX
α � X

δ � FX

STFX

STδ
�

FSSTX

SFSTX

Sλ1
X

�
λ
0
STX

�

FSTX

FSηS
TX

�

1FSTX

� FSTX

Fμ S
TX

�

SFX

Sδ

�

λ0
X

�

S
η

T
F

X

�

SFη
ST
X

�

FSX
1FSX

�

F
Sη

S
T
X

�

FSη
T
X

�

FSX

FαS

�

FSα T �



Product Rules and Distributive Laws 129

– If (X,αT , δ) is a λ1-bialgebra and (X,αS , δ) is a λ2-bialgebra, then (X,α, δ)
is a λ̂-bialgebra. This is established by the following diagram:

STX
SαT

� SX
αS

� X
δ � FX

STFX

STδ
�

SFX

Sδ
� λ2

X � FSX

FαS
�

SFSTX

Sλ1
X

� SFSαT
� SFSX

SFαS
�

λ2
SX � FSSX

FSαS
�

FμS
X� FSX

�

F
α S

FSSTX

FSSαT
�

FμS
TX�

λ2
STX �

FSTX

FSαT
�


�
From the preceding proposition, we can now directly conclude that, given

a commutative semiring K, the corresponding λ̂brz-bialgebras are precisely the
structures (X, 0, 1,+, ·,×, o, δ) such that (X, 0, 1,+, ·,×) is a K-algebra, that
(X, 0,+,×, o, δ) is a K-linear automaton, and such that additionally the unit
and product rule are satisfied for arbitrary elements. Again, mutatis mutandis,
the same holds for the Leibniz and pointwise product rules. It may be worthwhile
to note that (in the context of a singleton alphabet A and a field as underlying
semiring) the bialgebras for λ̂lei, are precisely differential algebras (as defined in
e.g. [RR08]) together with output functions that are K-algebra morphisms.

Another corollary of this proposition is that the final λ̂-bialgebra has a struc-
ture compatible with the final λ2-bialgebra, because the final λ̂-bialgebra is a λ2-
bialgebra (by the preceding proposition) compatible with the final F -coalgebra
(as a consequence of [Bar04, Corollary 3.4.19]), and again by [Bar04, Corol-
lary 3.4.19], there is a unique λ2-bialgebra compatible with the final F -coalgebra.
By similar reasoning, the final λ̂-bialgebra also has a structure with the final λ1-
bialgebra. So, the final λ̂-bialgebra can now be seen to naturally extend both the
final λ1-bialgebra and the final λ2-bialgebra, inheriting the coalgebraic structure
from the final F -coalgebra, and with algebraic structure compatible to that of
the final bialgebras for λ1 and λ2.

5 The Generalized Powerset Construction for Composite
Distributive Laws

We can now formulate a two-step version of the generalized powerset construc-
tion, in the setting where we are given three distributive laws λ0, λ1, λ2 as in the
previous section. Here the extensions can be specified as

δ� = FμST
X ◦ λ1

STX ◦ Tδ and δ̂ = FμS
TX ◦ λ2

STX ◦ Sδ�.



130 J. Winter

giving the following diagram if a final F -coalgebra exists:

X
ηT

X� TX
ηS

TX� STX
�−�� Ω

FSTX

δ
� F �−� ��

δ̂

�

δ
�

FΩ

ω
�

We derive the following specification of δ̂ directly in terms of δ:

δ̂ = FμS
TX ◦ λ2

STX ◦ SFμST
X ◦ Sλ1

STX ◦ STδ

Proposition 8. The extension δ̂ obtained by the above two step extension
coincides with the extension obtained in one step using the distributive law
λ̂ : (ST )F ⇒ F (ST ). In other words:

FμS
TX ◦ λ2

STX ◦ SFμST
X ◦ Sλ1

STX ◦ STδ = FμST
X ◦ λ̂STX ◦ STδ

Proof. The following commuting diagram

FSSTSTX
FSSλ0

TX� FSSSTTX
FSμS

TTX� FSSTTX
FSSμT

X� FSSTX

FSTSTX

FμS
TSTX

� FSλ0
TX� FSSTTX

FμS
STTX

� FμS
TTX� FSTTX

FμS
TTX

� FSμT
X� FSTX

FμS
TX

�

establishes that FμS
TX ◦ FSμST

X = FμST
X ◦ FμS

TSTX .
Next, observe that

FμS
TX ◦ λ2

STX ◦ SFμST
X ◦ Sλ1

STX ◦ STδ

= FμS
TX ◦ FSμST

X ◦ λ2
STSTX ◦ Sλ1

STX ◦ STδ (naturality)

= FμST
X ◦ FμS

TSTX ◦ λ2
STSTX ◦ Sλ1

STX ◦ STδ (result of above diagram)

= FμST
X ◦ λ̂STX ◦ STδ

completing the proof. 
�
As a result of this proposition, we can directly conclude that, in the two-step

diagram above, FSTX can again be assigned the structure of an algebra for the
monad ST , and the mappings δ̂ and �−� are ST -algebra morphisms.

Finally note that, if F is a cofree copointed functor (Id × G), the same
considerations as those surrounding the diagrams in (1) again apply.

Remark 9. Note that, when instantiating the above construction with the laws
λ0 from Sect. 2.2, λbrz, and λ2 from 2.3, the resulting composite distributive
law is a law between the monad S〈−〉 and the cofree copointed endofunctor
on K × −A. This law differs from (but is closely related to) the laws obtained
in [WBR13,MPW16], in which a distributive law is defined between a suitably
defined monad on K〈A + −〉 and the endofunctor K × −A (without copoint).
However, the resulting law λ̂ still has the property, that a language is context-
free (resp. a power series is constructively algebraic) iff it is the final coalgebra
semantics of the determinization of a finite K × K〈−〉A-coalgebra.



Product Rules and Distributive Laws 131

6 Comparison to the Coherence Condition from [Che07]

In [Che07], a similar coherence condition to the one from this paper is presented,
providing a way of iterating distributive laws between which a coherence condi-
tion similar to (but simpler than) the one presented in this paper is used. We
will concentrate on the specific case of just three monads with interacting dis-
tributive laws, as the more general iterated cases are less directly relevant to the
present paper. In this case, the main result from [Che07] instantiates as:

Proposition 10. Given monads (S, ηS , μS), (T, ηT , μT ), and (U, ηU , μU ),
together with distributive laws λ0 : UT ⇒ TU , λ1 : US ⇒ SU , and λ2 : TS ⇒
ST , if the diagram

UTS ===
Uλ2

⇒ UST ===
λ1T⇒ SUT

TUS

λ0S�
����

===
Tλ1

⇒ TSU ===
λ2U⇒ STU

Sλ0�
����

(called the coherence condition or Yang-Baxter condition) commutes, the natural
transformations

λ2U ◦ Tλ1 : (TU)S ⇒ S(TU)

and
Sλ0 ◦ λ1T : U(ST ) ⇒ (ST )U

are distributive laws between monads (of the composite monad TU over S, and
of U over the composite monad ST ), respectively). Moreover both of these laws
yield the same composite monad on STU .

A difference between this result and the corresponding result from our paper
is that the result in [Che07] is only presented in one direction, instead of as
an equivalence. Thus, one can wonder if in this case, too, the result can be
turned into an equivalence. In fact, it can be stated in the form of the following
three-way equivalence:

Proposition 11. Given monads S, T , and U and distributive laws λ0, λ1, and
λ2 as in the previous proposition, the following are equivalent:

1. The Yang-Baxter condition holds.
2. λ2U ◦ Tλ1 is a distributive law of the composite monad TU over S.
3. Sλ0 ◦ λ1T is a distributive law of U over the composite monad ST .

As a variant on this result, bridging the gap between it and our result, we
will move to a setting where, rather than three monads, we have two monads,
(S, ηS , μS) and (T, ηT , μT ) and an endofunctor F , together with a distributive
law between monads λ0 : TS ⇒ ST , and two distributive laws of the monad-
over-endofunctor type, λ1 : TF ⇒ FT , and λ2 : SF ⇒ FS. We now obtain the
following result, in much the same manner as before:



132 J. Winter

Proposition 12. Given monads (S, ηS , μS), (T, ηT , μT ), and an endofunctor
F , together with distributive laws λ0 : TS ⇒ ST , λ1 : TF ⇒ FT , and λ2 :
SF ⇒ FS, the following are equivalent:

1. The Yang-Baxter condition holds, as follows:

TSF ===
Tλ2

⇒ TFS ===
λ1S⇒ FTS

STF

λ0F�
����

===
Sλ1

⇒ SFT ===
λ2T⇒ FST

Fλ0�
���� (3)

2. λ2T ◦ Sλ1 is a distributive law of the composite monad ST over F .

(Note that this result is very similar to, but different from, one direction of
[BMSZ15, Proposition 7.1], which is concerned with two monads, an endofunctor,
and one distributve law between these monads, and two Kleisli-type laws, i.e.
laws of the endofunctor over both of the monads.)

In fact, the result can be related to the results from Sect. 4 by means of
Lemma 2 and the following proposition:

Proposition 13. Given monads (S, ηS , μS) and (T, ηT , μT ), an endofunctor F ,
and distributive laws λ0 : TS ⇒ ST , λ1 : TF ⇒ FT , and λ2 : SF ⇒ FS, the
Yang-Baxter condition (3) holds if and only if the law λ̂1 = FηST ◦ λ1 : TF ⇒
FST makes diagram (2) (Sect. 4) commute.

Connecting this result to the three product rules mentioned in this paper, we
recall that the Hadamard product rule can also be given directly as a distributive
law of type TF ⇒ FT (with T = −∗, F = K ×−A) using the strength operator.
This law can be given concretely by

λX

(
n∏

i=1

(oi, a �→ dia)

)
=

(
n∏

i=1

oi, a �→
n∏

k=1

dia

)

with the difference that the right hand side is now regarded as an element of FT ,
instead of an element of FST (with S = LinK(−)). The Leibniz and Brzozowski
product rules, however, do not fit into this simpler scheme, as a direct result of
the occurrence of a summation on the right hand side.

It thus turns out that, while the results from [Che07] are easily modified to a
coalgebraic setting with laws λ0 : TS ⇒ ST , λ1 : TF ⇒ FT , and λ2 : SF ⇒ FS,
the usage of distributive laws into a composite monad (where λ1 is of the form
TF ⇒ FST ) allows us to specify product rules of the type (xy)a = xya+o(x)ya,
where a summation occurs in the right hand side, that are not possible to specify
in a two-step mechanism using the simple variant of the result in [Che07].

Additionally, in the case of distributive laws into composite monads, we
require an octagonal coherence condition, rather than the hexagonal condition
from [Che07].



Product Rules and Distributive Laws 133

7 Further Directions

One interesting direction for future work consists of making a further general-
ization from copointed functors to comonads. Another possible direction, owing
inspiration to [Wor09] (where it is shown that K-algebras are precisely the
monoids in the monoidal category of K-semimodules), consists of investigat-
ing whether we can reverse the order of the two-step process in the concrete
setting of product rules, going from X via LinK(X) to K〈X〉 instead of via X∗.
Finally, it may be very worthwhile to further develop the Prolog-program, devel-
oped here in an ad hoc manner to prove a part of Theorem 5, into a more general
tool able to (at least in certain contexts) prove commutativity of diagrams.

Acknowledgements. For various discussions, comments, and criticism (hopefully in
all cases taken as constructively as possible), I would like to thank Henning Basold,
Marcello Bonsangue, Helle Hvid Hansen, Bart Jacobs, Bartek Klin, Jurriaan Rot, Jan
Rutten, and Alexandra Silva, as well as to Charles Paperman for suggesting automation
of the proofs (which in the end was carried out for only a part of just one of the
propositions). Additionally I would like to thank the anonymous referees (as well as the
anonymous refees of the earlier, rejected, submission) for a large amount of corrections
and constructive comments.

References

[Awo10] Awodey, S.: Category Theory. Oxford University Press, Oxford (2010)
[Bar04] Bartels, F.: On generalized coinduction and probabilistic specification for-

mats. Ph.D. thesis, Vrije Universiteit Amsterdam (2004)
[BBB+12] Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J., Silva, A.: A coalge-

braic perspective on linear weighted automata. Inf. Comput. 211, 77–105
(2012)

[Bec69] Beck, J.: Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and
Categorical Homology Theory, pp. 119–140. Springer, Heidelberg (1969)

[BHKR13] Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting distributive
laws. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp.
95–109. Springer, Heidelberg (2013)

[BMSZ15] Bonchi, F., Milius, S., Silva, A., Zanasi, F.: Killing epsilons with a dag-
ger: a coalgebraic study of systems with algebraic label structure. Theoret.
Comput. Sci. 604, 102–126 (2015). doi:10.1016/j.tcs.2015.03.024

[BRW12] Bonsangue, M.M., Rutten, J., Winter, J.: Defining context-free power series
coalgebraically. In: Pattinson and Schröder [PS12], pp. 20–39

[Brz64] Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11, 481–494
(1964)

[BW85] Barr, M., Wells, C.: Toposes, Triples, and Theories. Grundlehren der math-
ematischen Wissenschaften. Springer, New York (1985)

[Che07] Cheng, E.: Iterated distributive laws (2007). http://arxiv.org/pdf/0710.
1120v1.pdf

[Eil76] Eilenberg, S.: Automata, Languages, and Machines. Academic Press Inc.,
Orlando (1976)

http://dx.doi.org/10.1016/j.tcs.2015.03.024
http://arxiv.org/pdf/0710.1120v1.pdf
http://arxiv.org/pdf/0710.1120v1.pdf


134 J. Winter

[Jac06a] Jacobs, B.: A bialgebraic review of deterministic automata, regular expres-
sions and languages. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J.
(eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 375–404.
Springer, Heidelberg (2006)

[Jac06b] Jacobs, B.: Distributive laws for the coinductive solution of recursive equa-
tions. Inf. Comput. 204(4), 561–587 (2006)

[JSS12] Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. In:
Pattinson and Schröder [PS12], pp. 109–129

[Kli11] Klin, B.: Bialgebras for structural operational semantics: an introduction.
Theoret. Comput. Sci. 412(38), 5043–5069 (2011)

[LPW00] Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors,
pointed and co-pointed endofunctors, monads and comonads. Electr. Notes
Theor. Comput. Sci. 33, 230–260 (2000)

[Mac71] MacLane, S.: Categories for the Working Mathematician. Springer, New
York (1971)

[MMS13] Milius, S., Moss, L.S., Schwencke, D.: Abstract GSOS rules and a modu-
lar treatment of recursive definitions. Logical Methods Comput. Sci. 9(3)
(2013)

[MPW16] Milius, S., Pattinson, D., Wißmann, T.: A new foundation for finitary core-
cursion. CoRR, abs/1601.01532 (2016)

[PS12] Pattinson, D., Schröder, L. (eds.): CMCS 2012. LNCS, vol. 7399. Springer,
Heidelberg (2012)

[RR08] Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and
operators. In: Proceedings of the Twenty-First International Symposium
on Symbolic and Algebraic Computation, ISSAC 2008, pp. 261–268. ACM,
New York (2008)

[Rut98] Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra).
In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 194–218. Springer, Heidelberg (1998)

[Rut00] Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci.
249(1), 3–80 (2000)

[Rut03] Rutten, J.: Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theoret. Comput. Sci. 308(1–3), 1–53
(2003)

[Rut05] Rutten, J.: A coinductive calculus of streams. Math. Struct. Comput. Sci.
15(1), 93–147 (2005)

[SBBR10] Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.: Generalizing the pow-
erset construction, coalgebraically. In: Lodaya, K., Mahajan, M. (eds.)
FSTTCS. LIPIcs, vol. 8, pp. 272–283. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik (2010)

[SBBR13] Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing determiniza-
tion from automata to coalgebras. Logical Methods Comput. Sci. 9(1)
(2013)

[Sch14] Schwencke, D.: Compositional and effectful recursive specification formats.
Ph.D. thesis, Technische Universität Braunschweig (2014)

[WBR11] Winter, J., Bonsangue, M.M., Rutten, J.: Context-free languages, coalge-
braically. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS,
vol. 6859, pp. 359–376. Springer, Heidelberg (2011)

[WBR13] Winter, J., Bonsangue, M.M., Rutten, Jan J. M. M : Coalgebraic character-
izations of context-free languages. Logical Methods Comput. Sci. 9(3:14)
(2013)



Product Rules and Distributive Laws 135

[Win14] Winter, J.: Coalgebraic characterizations of automata-theoretic classes.
Ph.D. thesis, Radboud Universiteit Nijmegen (2014)

[Wor09] Worthington, J.: Automata, representations, and proofs. Ph.D. thesis, Cor-
nell University (2009)



On the Logic of Generalised Metric Spaces

Octavian Babus(B) and Alexander Kurz(B)

University of Leicester, Leicester, UK
octavianbabus@yahoo.com, ak155@le.ac.uk

Abstract. The aim of the paper is to work towards a generalisation of
coalgebraic logic enriched over a commutative quantale. Previous work
has shown how to dualise the coalgebra type functor T : Ω-Cat ��Ω-Cat
in order to obtain the modal operators and axioms describing transitions
of type T . Here we give a logical description of the dual of Ω-Cat.

1 Introduction

Recently, following on work of Rutten [18] and Worrell [24], the interest in coal-
gebras enriched over posets or, more generally, enriched over a commutative
quantale has attracted some attention. In particular, the question of a coalge-
braic logic in this setting has been asked [2].

In the non-enriched situation we start with a functor T : Set �� Set and ask
for a logic that allows us to completely describe T -coalgebras up to bisimilarity.
More specifically, we would like to ensure strong expressivity in the sense that
for any property p ⊆ X of any T -coalgebra (X, ξ) there is a formula φ such that
p coincides with the semantics [[φ]](X,ξ) of φ on (X, ξ). Moreover, we would like
to have completeness in the sense that if [[φ]](X,ξ) ⊆ [[φ]](X,ξ) then φ ≤ ψ in the
initial algebra of formulas.

To achieve the above, the first step is to let LA = [T ([A, 2]), 2] in

Setop

Lop

�� ��

[−,2]

�
Set

T

��

��

[−,2]

and to declare the initial L-algebra, if it exists, as the “Lindenbaum-algebra” of
T . This terminology is justified in sofar as the adjoint transpose

δ : L([−, 2]) �� [T−, 2]

of the iso L �� [T ([−, 2]), 2] allows us to define the semantics [[]](X,ξ) wrt a
coalgebra (X, ξ) as the unique arrow from the initial L-algebra ι : LI �� I
as in

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 136–155, 2016.
DOI: 10.1007/978-3-319-40370-0 9



On the Logic of Generalised Metric Spaces 137

LI

L[[]](X,ξ)

��

ι �� I

[[]](X,ξ)

��

L([X, 2])
δX

�� [TX, 2]
[ξ,2]

�� [X, 2]

But the reason why, at this stage, we cannot truly speak of ι : LI �� I as a
Lindenbaum algebra is that it lives in Setop and is not (yet) an algebra over Set
with elements and operations in the usual sense.

The second step, then, consists in using the well-known fact that [−, 2] :
Setop �� Set is monadic and, therefore, Setop is equivalent to a category of
algebras defined by operations and equations. In particular, we know that Setop

is equivalent to the category of complete atomic Boolean algebras, which now
allows us to consider (L, ι) as the Lindenbaum algebra of infinitary T -logic.

The aim of the paper is to carry out these steps in the case where we replace
Set by the category Ω-Cat of categories enriched over Ω for a commutative
quantale Ω. It is based on the Ω-generalisations of the downset monad D and
the upset monad U . We will define algebras for operations ΣDU and equations
EDU and will argue via (3), Theorems 16, 22, and 49 that 〈ΣDU , EDU 〉-algebras
complete the table

Setop complete atomic Boolean algebras
Ω-Catop 〈ΣDU , EDU 〉-algebras

Importantly, this includes an equation for generalised distributivity, Axiom (13),
and will allow us to derive a logic for Ω-Cat very much in the same way as we
can say that Boolean logic is the logic of Set.

Related Work. The results in Sect. 3 generalize the results in [13] by Mar-
molejo, Rosebrugh, and Wood to arbitrary commutative quantales Ω but the
proofs remain the same as they work in any 3-category where 3-cells form a
poset. Theorem 16 is also a special case of a theorem of Stubbe [19].

Section 4 generalises the well-known dual adjunction

Preop
��
CDL		

between preorders and completely distributive lattices to categories enriched
over a commutative quantale. This is similar in spirit to the work in Hofmann
[5], where a generalisation from preorders to topological spaces and to approach
spaces can be found.

The category of distributive complete Ω-lattices of Lai and Zhang [9] coin-
cides with what we denote CCD in Definition 18. Compared to their work, we
add the argument of how to obtain CCD from the monad [[−, Ω], Ω] and we show
that the CCD is isomorphic to the category of (ordinary, set-based) 〈ΣDU , EDU 〉-
algebras.



138 O. Babus and A. Kurz

In Pu and Zhang [14] it is shown, amongst other things, that the category
of anti-symmetric CCD’s is monadic over Set, but the proof proceeds by Beck’s
monadicity theorem whereas we give the operations and equations 〈ΣDU , EDU 〉
explicitly.

The double powerset monad DU is investigated in detail, in the case Ω = 2,
by Vickers in [20–23].

2 Preliminaries and Related Work

We are interested in categories enriched over commutative quantales [15].

Definition 1. By a quantale Ω = ((Ω,≤), e,⊗) we understand a complete lat-
tice with a binary operation ⊗ : Ω × Ω �� Ω with unit e, such that ⊗ preserves
colimits in both arguments. We call a quantale commutative if the operation ⊗
is commutative.

Since ⊗ preserves joins, a commutative quantale Ω can be considered as a sym-
metric monoidal closed category and one can enrich over Ω, see [7]. A category
enriched over Ω is also called a Ω-category and the 2-category of Ω-categories,
Ω-functors and Ω-natural transformations is denoted by Ω-Cat. The interpreta-
tion of such enriched categories as metric spaces is due to [10] and recalled in
the following examples:

Example 2. 1. Ω = 2 = ((2,≤), 1,∧). Categories enriched over 2 are preorders
and the corresponding functors are monotone maps. The closed structure is
implication.

2. Ω = (([0,∞],≥R), 0,+), the non-negative reals with infinity and the opposite
of the natural order. That the top element is 0 formalises the idea that the
elements of Ω measure distance from ‘truth’. A Ω-category is called a gener-
alised metric space. The corresponding functors are non-expansive maps. The
closed structure is given by

[0,∞](r, s) = s−. r = if s ≤R r then 0 else s − r

Examples inlcude:
(a) [0,∞] itself.
(b) The real numbers (R,≤R) with the metric given by R(a, b) = if a ≤R

b then 0 else a − b
(c) Any metric space.

3. Ω = (([0, 1],≤R), 1, ·) where x · y is the usual multiplication. Then

x ⇒ y = if x ≤ y then 1 else
y

x

The exponential map x �→ exp(−x) induces an isomorphism from the Ω of
the previous item, so that we can think of both representing two views of
the same mathematics, one in terms of distances and the other in terms of
truth-values.



On the Logic of Generalised Metric Spaces 139

4. Ω = (([0, 1],≥R), 0,max). This is example is in the same spirit as above,
but this time Ω-categories are generalised ultrametric spaces [17]. The closed
structure is given by

[0, 1](x, y) = if x ≥R y then 0 else y

Examples include:
(a) [0, 1] itself, as well as [0, 1]op with 1 and min.
(b) Let A∞ be the finite and infinite words over A. Define A∞(v, w) = 0 if v

is a prefix of w and A∞(v, w) = 2−n otherwise where n ∈ N is the largest
number such that vn = wn (where vn is the prefix of v consisting of n
letters from A).

Whenever we talk about limits or colimits in a Ω-category we understand a
weighted limit or weighted colimit and we will use the same notations as in
[7, Chapter 3].

Note that every Ω-category X is equipped with a preorder x ≤ y ⇔
X(x, y) ≥ e.
We call a Ω-category X anti-symmetric if x ≤ y and y ≤ x implies x = y. In
the examples above, this order coincides with the expected one. For example, in
Example 2b the induced order on R is the natural one and in Example 3b it is
the prefix order.

Proposition 3. 1. The order x ≤ y ⇔ Ω(x, y) ≥ e is the order of Ω.
2. [X,Ω] is anti-symmetric for any Ω-category X.
3. [X,Y ] is anti-symmetric iff Y is anti-symmetric.

We already said that Ω-categories form a category Ω-Cat of small Ω-categories.
Ω-Cat is Ω-Cat enriched, with the distance between two Ω-functors f, g : A ��B
given by Ω-Cat(A,B)(f, g) = [A,B](f, g) =

∧
a∈A B(fa, ga). Hence Ω-Cat

is an object of (Ω-Cat)-Cat. The category (Ω-Cat)-Cat of Ω-Cat-categories,
Ω-Cat-functors, and Ω-Cat-natural transformations is a 3-category in which
natural transformations α, β : F �� G : A �� B are pre-ordered since
(Ω-Cat)-Cat(A,B)(F,G) is a Ω-category.

The reason to insist on pre-ordered natural transformations is that we can
make use of the following notion due to [8] and reformulated by [12].

Definition 4. By a KZ-doctrine M on Ω-Cat we understand a monad (M,η, μ)
such that we have the adjunctions Mη � μ � ηM. Dually a co-KZ-doctrine is a
monad where ηM � μ � Mη.

The following proposition is Kock’s definition of a KZ-doctrine simplified to the
pre-ordered setting, see [8].

Proposition 5. (M,η, μ) is a KZ-doctrine if and only if there exists a natural
transformation δ : Mη �� ηM and μ ◦ ηM = μ ◦ Mη = id. Dually (M,η, μ) is
a co-KZ-doctrine if there exists a natural transformation λ : ηM �� Mη and if
μ ◦ ηM = μ ◦ Mη = id.



140 O. Babus and A. Kurz

If one has two monads for their composite to be again a monad one needs to
have a distributive law between them, as in [1].

Definition 6. A distributive law between two monads D and U is a natural
transformation r : UD ⇒ DU subject to the commutativity of

U
Ud



�������
dU

��������� UDD
Uμ

��

rD �� DUD Dr �� DDU
μU

��

UD r
�� DU UD r

�� DU

D
uD

��������� Du

�������
UUD

νD
��

Ur
�� UDU

rU
�� DUU

Dν

��
(1)

Definition 7. Let D = (D, η, μ) be a monad. By a D-algebra A we understand
a pair A = (A,α), where A is category and α : DA �� A is a functor such that

DDA
μA ��

Dα

��

DA

α

��

A
ηA ��

idA

���������������� DA

α

��

DA α
�� A A

(2)

The next proposition is due to [8].

Proposition 8. Let M = (M,η, μ) be any KZ-doctrine, then A = (A,α) is an
M -algebra if and only if the structure map α is a left adjoint of ηM .

The following two propositions are stated in the case Ω = 2 in [13] and their
proof transfers unchanged to our setting (because Ω is anti-symmetric).

Proposition 9. If at least one of the monads D or U is either a KZ or a
co-KZ-doctrines then there is at most one distributive law r : UD �� DU.

Proposition 10. For monads D,U and a natural transformation r : UD ��DU

1. if (D, d, μ) is KZ and (U, u, ν) is either KZ or co-KZ then r : UD �� DU
is a distributive law if it satisfies r ◦ Ud = dU and r ◦ uD ≤ Du;

2. if (U, u, ν) is co-KZ and (D, d, μ) is either KZ or co-KZ then r : UD ��DU
is a distributive law if it satisfies r ◦ uD = Du and r ◦ Ud ≤ dU.

3 Monads and algebras

Ω being a symmetric monoidal closed category, we have the contravariant adjunc-
tion where U = [−, Ω] : Ω-Cat �� Ω-Catop is a left adjoint to D = [−, Ω] :
Ω-Catop �� Ω-Cat. We want to study the algebras for the monad M = DU
generated by it. For that we will prove that this monad is equivalent to the
composite monad DU where D,U : Ω-Cat �� Ω-Cat are the Ω-Cat analogues



On the Logic of Generalised Metric Spaces 141

of the downset and the upset monad as defined in Sect. 3.1. From there we will
obtain two different sets of operations, one for each monad, and a distributive law
between them. In the end we will give a categorical description for the category
of algebras.

As Ω is symmetric monoidal closed, we have from [7, Chapter 1.5]

Proposition 11. [−, Ω] : Ω-Cat �� Ω-Catop is left adjoint to [−, Ω] :
Ω-Catop �� Ω-Cat.

As explained in the introduction, we want to consider Ω-Catop as the category
of algebras of a ‘Ω-Cat-logic’. Since [−, Ω] : Ω-Catop �� Ω-Cat need not be
monadic itself, we are going to study instead its monadic closure. That is, we let
M = DU and work with the category Ω-CatM of algebras for the monad M . We
show that there is an adjunction relating them to Ω-Catop, as in the following
picture, which will guide us through this section.

Ω-Catop
K

��

[−,Ω]

��

Ω-CatM
AT

⊥��

Ω-Cat

[−,Ω]

��

� (3)

3.1 Doctrines

The aim of this subsection is to describe two monads D,U : Ω-Cat �� Ω-Cat
such that DU = DU . Furthermore, D will be a KZ-doctrine, and U will be
a co-KZ-doctrine, which in turn will help us to describe the distributive law
relating them.

Recall that for any category X, one has two Yoneda embeddings dX :
X �� [Xop, Ω] given by x �→ X(−, x) and uX : X �� [X,Ω]op given by
x �→ X(x,−).

On objects, D maps X to [Xop, Ω] and on arrows it constructs the left Kan
extension along Yoneda, while U maps an object X to [X,Ω]op and an arrow
to the right Kan extension along Yoneda. Thus for any f : X �� Y in Ω-Cat,
let Df be defined as LandXdY ◦ f = LandXY (−, f) and Uf = RandXuY ◦ f =
RandXY (f,−) as in

DX
Df=

LandX(dY ◦f)
�� DY UX

Uf=

RanuX(uY ◦f)
�� UY

X

dX

��

f
�� Y

dY

��

X

uX

��

f
�� Y

uY

��

(4)

Writing down the formula for left and right Kan extensions, see [7, Chapter 4.2],
we obtain for ϕ : Xop �� V and ψ : X �� Ω



142 O. Babus and A. Kurz

Df(ϕ) = LandX(dY ◦ f)(ϕ) =
∫ x∈X

[Xop, Ω](X(−, x), ϕ) ⊗ Y (−, f(x))

=
∫ x∈X

ϕ(x) ⊗ Y (−, f(x)) = ϕ ∗ (dY ◦ f),

and

Uf(ψ) =
∫

x∈X

UX(ψ,X(x,−)) � Y (f(x),−)

=
∫

x∈X

ψ(x) � Y (f(x),−).

But considering that we calculate this end in [Y,Ω]op, in [Y,Ω] it becomes

Uf(ψ) =
∫ x∈X

ψ(x) ⊗ Y (f(x),−) = ψ ∗ (uY ◦ f)

Because Dd and uU are, respectively, left and right Kan extensions, their uni-
versal properties yield

Proposition 12. There exist natural transformations λ : Dd �� dD and δ :
uU �� Uu.

We want D to be a KZ-doctrine, so the multiplication μ : DD �� D has to be
a left adjoint of dD. As dD preserves all limits and the right Kan extension of
idD along dD exists, using [7, Theorem 4.81], we know that the left adjoint of
dD exists and is expressed by RandD idD. Dually, the right adjoint of uU exists
and is expressed by LanuU idU .

DD μ=

RandD id
�� D UU ν=

LanuU idU
�� U

D
dD

��

idD

��������������� U
uU

��

idU

����������������

(5)

μG =
∫

ϕ∈DX

DDX(G,DX(−, ϕ)) � ϕ νF =
∫

ψ∈UX

[UX,Ω](G, uU(ψ)) � ψ

(6)
Furthermore as dD and uU are fully faithful, one has μ◦dD = idD and ν ◦uU =
idU . Following Proposition 5 to show that D is a KZ-doctrine we just have to
prove that μ ◦ Dd = id as well. For that we know that μ is a left adjoint so
it preserves left Kan extensions, so μX ◦ DdX = μX ◦ LandX(dDX ◦ dX) =
LandX(μX ◦ DdX ◦ dX) = LandX(idDX ◦ d) = LandXdX = idDX

DX
DdX �� DDX

μ
�� DX

X

dX

��

dX
�� DX

dDX

��

idDX

�����������
(7)



On the Logic of Generalised Metric Spaces 143

Similarly, ν ◦ Uu = idU , so U is a co-KZ-doctrine. Thus we have proved

Proposition 13. (D, d, μ) is a KZ-doctrine and (U , u, ν) is a co-KZ doctrine.

3.2 Distributive Laws and Equivalence of DU with [[−, Ω], Ω]

In the previous section we constructed two monads, but in order for their com-
posite to be a monad, one needs a distributive law between them.
Verifying that a natural transformation is indeed a distributive law may not be
easy, but, thanks to [13], for KZ-doctrines, we just have to check the conditions
of Proposition 10. To construct D and U , we have used Kan extensions, thus
it make sense that a distributive law between them is a Kan extension as well.
Looking at the diamond above and as both uD and Ud are fully faithful, a Kan
extension along any of them would make that triangle commute, so intuitively,
it should make no difference from which triangle one starts. So if one calculates
all four Kan extensions one obtains

1. rr
D = RanuD Du = UD(Du,−)

2. rl
U = LanUd dU = UD(Ud,−)

3. rl
D = LanuD Du = UD(dD ◦ d,−) ∗ dU ◦ u

4. rr
U = RanUddU = {UD(−,Ud), dU}

Now as for any X and any ϕ ∈ DX and any ψ ∈ UX one has DuX(ϕ)(ψ) =
UdX(ϕ)(ψ) it follows RanuD Du = LanUd dU .

Proposition 14. The natural transformation r = RanuD Du = LanUd dU :
UD �� DU is a distributive law between D and U .

In a similar way one has a distributive law l = RanDu uD = LandU Ud :
DU �� UD, given by l = DU(−,Du).

Proposition 15. With the notations from above we have l � r.

Next, we state that the monad DU is equivalent to the double dualisation monad
DU , a result due to [13] and generalised in [19].

Theorem 16. For a commutative quantale Ω, the composite monad DU is
equivalent to the monad generated by the adjunction [−, Ω] � [−, Ω] :
Ω-Cat �� Ω-Catop.

3.3 CCD: complete and completely distributive algebras

In this section we discuss the algebras of the two monads defined above. As D
is a KZ-doctrine, following [8], a D-algebra A is a tuple A = (A,α) such that
α : DA ��A is a left adjoint to dA, and since U is a co-KZ-doctrine a U-algebra
B is a tuple B = (B, β) such that β : UB �� B is a right adjoint to uB .



144 O. Babus and A. Kurz

Proposition 17. The carrier A of a D-algebra A = (A,αA) is co-complete,
and the carrier C of an U-algebra C = (C, βC) is complete. Moreover, f :
(A,αA) �� (B,αB) is D-morphism if and only if f preserves all weighted col-
imits, and it is a U-morphism if and only if it preserves all weighted limits.

The following transfers the notion of complete distributivity of [4] from 2 to a
commutative quantale Ω.

Definition 18. A D algebra (A,α) is called ccd if the structure map α has a left
adjoint. We denote with CCD the subcategory of D-alg such that the objects are
ccd and the arrows preserves weighted limits and colimits. Dually, a U-algebra
for which the structure map has a right adjoint is called opccd.

Example 19. In the case Ω = 2, a poset A equipped with a D-algebra structure
α is a join semi-lattice. Moreover, A is ccd in the sense of the definition above
iff it is completely distributive in the usual order-theoretic sense.

Definition 20. A DU-algebra is a U-algebra (A, β) which has a D-structure
α : DA �� A such that α is a U-homomorphism, i.e. the following diagram
commutes.

UDA
rA ��

Uα
����������� DUA Dβ

�� DA

α

��

UA
β

�� A

(8)

For any two DU -algebras (A,αA, βA) and (B,αB , βB) a DU -morphism from A
to B is a map f : A �� B such that it is simultaneously D and U morphism.

Lemma 21. The carrier A of a ccd-algebra (A,α) is complete and cocomplete.

The following result is due to [13].

Theorem 22. DU-alg ∼= CCD, and UD-alg ∼= opCCD.

Whereas naturally occurring metric spaces, such as Euclidean spaces, are typi-
cally not ccd, the spaces of many-valued predicates over metric spaces are ccd:

Example 23. For any X in Ω-Cat,

1. (DX,μX) is ccd.
2. (UX, νX) is opccd.

4 The comparison functor Ω-Catop → DU-alg

Following [11], let the comparison functor K : Ω-Catop �� DU-alg be given by
KX = (X,DεX), for the adjunction U � D. As Ω-Catop is cocomplete, K has
a left adjoint. In order to describe it we first define the concept of atoms, also
known as tiny or small projective objects, see [6] and [7, Chapter 5.5].



On the Logic of Generalised Metric Spaces 145

4.1 The Left Adjoint of the Comparison Functor

Definition 24. An atom in a category C is an object C such that C(C,−) pre-
serves all colimits. At(C) is the full subcategory of C whose objects are atoms.

Before we continue let us give some example of atoms.

Example 25.

1. In posets atoms are known as completely prime elements. In a completely
distributive lattice being an atom is equivalent to being completely join irre-
ducible.

2. The category [0,∞] seen as a generalized metric space has only one atom 0.
3. Let [Xop, Ω] be a functor category, then using Yoneda and the definition

of a colimit in a functor category, see [7, Chapter 3.3], one has that any
representable is an atom. Moreover, see [7, Chapter 5.5], one has that
[Xop, Ω] ∼= [At(X)op, Ω]. In general one has X ⊆ At([Xop, Ω]).

We define a functor AT : DU-alg ��Ω-Catop on objects by AT(A,α) = (At(A))op.
In order to define AT on maps we need some additional lemmas.

First note that for any H : A �� B in DU-alg, since A is complete and H
preserves all limits, there exists a left adjoint L : B �� A in Ω-Cat.

Lemma 26. For all A,B ∈ A and H : A �� B with left adjoint L, there exists
f : At(B) �� At(A) such that L ◦ iB = iA ◦ f , where iA : At(A) �� A and
iB : At(B) �� B are the atom-inclusion maps.

We can now define AT(H) = fop with f as in the lemma. This defines a functor
because composition of adjoints is again an adjoint. We are ready to prove

Theorem 27. For any X ∈ Ω-Cat and A ∈ DU-alg, we have a natural isomor-
phism of categories Ω-Cat(Xop,At(A))op ∼= DU-alg(A, [X,Ω]). Moreover this is
isomorphism also an isomorphism of Ω-categories.

Proof. We sketch the construction of the isomorphism.
We have to define the functors

φXA : Ω-Cat(Xop,At(A))op �� DU-alg(A, [X,Ω]),

ψXA : DU-alg(A, [X,Ω]) �� Ω-Cat(Xop,At(A))op

and show that they are inverse to each other. First define φXA on objects. For
all h : Xop �� At(A) let

φXA(h) = A(h−,−) : A �� [X,Ω].

Now define ψXA on objects. Let H : A �� [X,Ω] and let L : [X,Ω] �� A be
its left adjoint, and also let uX : Xop �� [X,Ω], x �→ X(x,−) the Yoneda
embedding.



146 O. Babus and A. Kurz

A
H

�� [X,Ω]
L

⊥��

At(A)

iA

��

Xop
L◦uX

��

uX

��

(9)

Since L ◦ uX(x) is an atom for all x in X, we let ψXA(H) = L ◦ uX. In order
to define φXA and ψXA on arrows, one uses the concept of conjugate natural
transformation [11, Chapter 4.7].

Theorem 28. The functor AT : DU-alg �� Ω-Catop is a left adjoint to the
functor K : Ω-Catop �� DU-alg.

Proof. Let X ∈ Ω-Cat and A ∈ DU-alg. We have to show that Ω-Catop(AT(A),
X) ∼= DU-alg(A,KX) which is equivalent to Ω-Cat(X,At(A)op) ∼=
DU-alg(A, [X,Ω]), and as Ω-Cat(X,At(A)op) ∼= Ω-Cat(Xop,At(A))op, see [7,
2.28], we have to prove that there is a natural isomorphism between

Ω-Cat(Xop,At(A))op ∼= DU-alg(A, [X,Ω]),

which is Theorem 27.
After having constructed a left adjoint AT of K, we next ask when Ω-Catop is

a full reflective subcategory of DU-alg, that is, we ask when K is fully faithful.
We also want to characterise the image of K and describe the subcategories of
Ω-Catop and DU-alg on which the adjunction restricts to an equivalence.

4.2 A Fully Faithfulness of the Comparison and Its Image

In the case of Ω = 2 the comparison K is fully faithful, but this is not true for
all commutative quantales Ω. In this subsection, we give necessary and sufficient
conditions for K to be fully faithful and describe its image.

Using Proposition 3 we notice that K is faithful on Ω-Catop(X,Y ) if and only
if X is anti-symmetric. Indeed, if X is not anti-symmetric let g1, g2 : Y �� X be
two distinct equivalent maps. Then as Ω is we have that Kg1 = Kg2.

For K to be full we need that for any two categories X,Y ∈ Ω-Cat and
every map H : KX �� KY there exists a map h : Y �� X such that Kh = H.
Using the adjunction, we have K ◦ AT(H) = H so if one can make sure that
At(KX) ∼= X and At(KY ) ∼= Y then the functor K will be full. For that we
need the following definition [6,10].

Definition 29. We say that X ∈ Ω-Cat is Cauchy complete if X �
At([X,Ω])op. We denote by Ω-Catcc the full subcategory of Ω-Cat spanned by
the antisymmetric Cauchy complete categories.



On the Logic of Generalised Metric Spaces 147

Remark 30. 1. Let Ω = [0,∞] and let Q and R be the rational and real
numbers, respectively, with the usual Euclidean metric. Then the map in
H : [Q,Ω] �� [R,Ω] given by H(f)(r) = limn f(qn) where (qn) is a Cauchy
sequence with limit r, is in DU-alg and cannot be restricted to a map
At(H) : R �� Q. So K is not full in general.

2. Any poset is Cauchy complete, see [16].
3. As shown in [10], a generalised metric space X is isomorphic to At([Xop, Ω])

if it is Cauchy complete in the usual sense of metric spaces.

Theorem 31. The comparison functor for the adjunction [−, Ω] � [−, Ω] :
Ω-Cat �� Ω-Catccop is full and faithful.

This result is conceptually important to us. When we started out from the basic
picture (3), we were guided by the example Ω = 2, in which Ω-Catcc = Ω-Cat.
Therefore we could as well have chosen Ω-Catccop instead of Ω-Catop in (3). From
this point of view, the theorem confirms that we are free to consider K in (3) to
by fully faithful.

To characterise the image of K, we use the description of full reflective sub-
categories by orthogonality, see [3, Chapter 5.4]. First we need again some defi-
nitions.

Definition 32. A functor F : A �� C is called dense if c = C(F−, c) ∗ F for
all c ∈ C.

For more equivalent descriptions of dense functors see [7, Chapter 5].

Definition 33. A category A is called atomic if the atom-inclusion functor iA :
At(A) �� A is dense.

Let us give some example of atomic categories.

Example 34. 1. Any finite distributive lattice is atomic.
2. Any presheaf category is atomic as every functor is a colimit of representables.
3. The category [0,∞] is atomic if seen as a generalised metric space but not if

seen as a poset.

We will need the following property of dense functors.

Lemma 35. If A is cocomplete and the atom-inclusion functor iA : At(A) ��A
is dense then A ∼= [At(A)op, Ω].

Proof. Let A ∈ A such that i : At(A) ��A is dense. According to [7, Theorem 5.1]
if i is dense then ĩ : A �� [At(A)op, Ω], defined by ĩa = A(i−, a), is fully faithful.
So we just have to show that it is essentially surjective. Let H : At(A)op �� Ω,
as A is cocomplete H ∗ i exists, then ĩ(H ∗ i) ∼= H ∗ ĩi ∼= H ∗ dAt(A) ∼= H thus ĩ
is essentially surjective and so A ∼= [At(A)op, Ω].

Theorem 36. An algebra A in DU-alg is isomorphic to an algebra in the image
of K if and only if it is atomic.



148 O. Babus and A. Kurz

Proof. We shall use orthogonality [3, Chapter 5.4]. First let us take X in Ω-Catop

and show that it is atomic. Let us denote by θ : id �� KAT the unit of the
adjunction AT � K. From orthogonality we obtain that for every B ∈ DU-alg
and any f : B �� X we have a unique factorisation through θB , so let us take
B = X and f = idX . There exists g : [Atop(X), Ω] �� X such that g preserves
limits and colimits and such that g ◦ θX = idX . Thus, for every x ∈ X one has

g(θX(x)) = x.

Now θX(x) = X(−, x) : Atop(X) �� Ω and as every presheaf is a colimit of
representables one has

X(−, x) = X(−, x) ∗ dAt(X).

Thus one also has

x = g(X(−, x)) = g(X(−, x) ∗ dAt(X))

= g(

∫ x′∈At(X)

X(x′, x) ⊗ At(X)(−, x′)) =
∫ x′∈At(X)

X(x′, x) ⊗ g(At(X)(−, x′)))

=

∫ x′∈At(X)

X(x′, x) ⊗ g(X(−, x′))) =
∫ x′∈At(X)

X(x′, x) ⊗ x′))

= X(iX−, x) ∗ iX

So, in conclusion, X is atomic as iX : At(X) ��X is dense. The converse follows
from Lemma 35 because X ∼= [Atop(X), Ω] = D(At(X)) which is ccd.

Remark 37. In the case Ω = 2, we have opCCD = CCD (since the dual of a
completely distributive lattice is a completely distributive lattice). But this is not
true for general Ω. Using results from [4] and reproving them for the enriched case
we can show that the categories of DU-algebras and UD-algebras are isomorphic
if Ω ∼= Ωop in Ω-Cat.

5 Algebras for Operations and Equations

We will show that the categories of algebras for the monads D,U , and DU are
isomorphic to categories of algebras given by operations and equations over Set.

5.1 Syntactic D-algebras and U-algebras

Definition 38. By a 〈ΣD, ED〉-algebra we understand a set A together with a
family of unary operations (v � )v∈Ω : A �� A indexed by Ω, and a family of
operations

⊔
K : AK ��A, where K ranges over all sets, satisfying the following

7 axioms. Dually the notions of a 〈ΣU , EU 〉-algebra is given by a set B together
with a family of unary operations (v � )v∈Ω : B �� B and for each set K an
operation

�
K : BK �� B satisfying the following 7 axioms.



On the Logic of Generalised Metric Spaces 149

1. e � − = idA e � = idA

2. For all a ∈ A, b ∈ B and v, w ∈ Ω

v � (w � a) = (v ⊗ w) � a v � (w � b) = (v ⊗ w) � b

3. For all v ∈ Ω and ak ∈ [K,A], bk ∈ [K,B]

v �
⊔

K ak =
⊔

K(v � ak) v �
�

K bk =
�

K(v � bk)

4. For all a ∈ A, b ∈ B and vk ∈ [K,Ω]

(
∫ K

vk) � a =
⊔

K(vK � a) (
∫ K

vk) � b =
�

K(vK � b)

5. For a set K and function J : K �� Set let us denote with J̄ =
∐

k∈K Jk. For
each k ∈ K let ak : J(k) �� A and let a : J̄ �� A be the map induced by the
coproduct. For each k ∈ K let bk : J(k) �� B and let b : J̄ �� B be the map
induced by the coproduct.

⊔
K(

⊔
Jk ak) =

⊔
J̄ a

�
K(

�
Jk bk) =

�
J̄ b

6. Let Δ be the diagonal functor then for any set K and for all a ∈ A and b ∈ B
we have

⊔
K Δa = a

�
K Δb = b

7. For any two sets J,K and any bijective function f : J �� K one has

⊔
J ◦Af =

⊔
K

�
J ◦Af =

�
K

Before we continue let us fix some notations and give some examples. If the set
K is 2 then we put

⊔
K = � and

�
K = � and use infix notation. For any set

K by an element aK of AK we understand any function aK : K �� A. If K is
finite aK can be represented as a tuple aK = (a1, a2, ..., ak) where k = |K|.
Example 39. 1. For any quantale Ω, the Ω-category Ω is a 〈ΣD, ED〉-algebra,

with
⊔

given by
∨

and v � − given by v ⊗ −. The fact that this satisfies all
the axioms is trivial. In a similar way Ω is also a 〈ΣU , EU 〉-algebra with

�

given by
∧

and v � − given by Ω(v,−).
2. Any cocomplete Ω-category A is a 〈ΣD, ED〉-algebra. For any v ∈ Ω and

a ∈ A we define v � a as the colimit of a weighted by v. And for every set K
and any aK ∈ AK we define

⊔
K aK as the colimit of aK weighted by constant

Ω-functor eK : K �� Ω given by eK(k) = e for all k ∈ K. That is equivalent
to saying that

⊔
K is a coend.

3. Any complete Ω-category A is a 〈ΣU , EU 〉–algebra
4. For any quantale Ω and any Ω-category X the functor category [X,Ω] is a

〈ΣD, ED〉-algebra and the functor category [X,Ω]op is a 〈ΣU , EU 〉-algebra.
If Ω ∼= Ωop then any functor category is both a 〈ΣD, ED〉 and a 〈ΣU , EU 〉-
algebra.



150 O. Babus and A. Kurz

As any 〈ΣD, ED〉-algebra A has a preorder structure on it, given by a ≤ b ⇔
a � b = b. We now show that A also carries a Ω-category structure.

Proposition 40. Any 〈ΣD, ED〉-algebra A has a Ω-category structure given by

A(a, b) =
∨

{v ∈ Ω | (v � a) ≤ b}, (10)

for all a, b ∈ A. Also any 〈ΣU , EU 〉-algebra B has a Ω-category structure given
by

B(b, b′) =
∨

{v ∈ Ω | b ≤ (v � b′)}, (11)

for all b, b′ ∈ B.

One could ask why we do not define A(a, b) as that v ∈ Ω such that v�a = b, and
the answer is because � is not injective in general. For example, take Ω = [0,∞]
and note that w �∞ = ∞ for all w ∈ Ω, thus there is no unique w ∈ Ω to define
[0,∞](∞,∞).

Example 41. Let us look at Ω = (([0,∞] ≥), 0,+). Define v � a = v + a and⊔
K(v1, ..., vk) = infR(v1, ..vk), thus Ω is a 〈ΣD, ED〉-algebra. Let us check that

the Ω-category structure given by Proposition 40 is the usual one. Let a, b ∈
[0,∞], then one has

{v ∈ Ω | v + a ≥R b} = {v ∈ Ω | v ≥R b − a}
Now obviously [0,∞](a, b) = b−. a = inf{v ∈ Ω | v ≥R b − a} =

∨{v ∈ Ω | v ≥R

b − a}. Also let us note that
∧{v ∈ Ω | v ≥R b − a} = ∞.

One has two equivalent definitions of a semi-lattice, one using operations and
equations, and one saying that a semi-lattice is a complete/cocomplete poset.
The Ω-Cat analogue is as follows.

Theorem 42. Let A be a 〈ΣD, ED〉-algebra and B a 〈ΣU , EU 〉-algebra.
1. For any v ∈ Ω and a, b ∈ A we have A(v � a, b) = Ω(v,A(a, b)). Thus v � a is

the colimit of a weighted by v.
2. The operation

⊔
K is a coend, in the sense that for any set K one has

A(
⊔

K ak, b) =
∫

k∈K
A(ak, b).

3. For any v ∈ Ω and a, b ∈ B we have B(a, v � b) = Ω(v,A(a, b)). Thus v � b
is the limit of b weighted by v.

4. The operation
�

K is an end, in the sense that for any set K one has
B(a,

�
K bk) =

∫
k∈K

B(a, bk).

Thus any 〈ΣD, ED〉-algebra is co-complete as a Ω-category, and any 〈ΣU , EU 〉-
algebra is complete as a Ω-category.

Definition 43. If (A, (v �A )v∈Ω ,
⊔A

K) and (B, (v �B )v∈Ω ,
⊔B

K) are 〈ΣD, ED〉-
algebras, a map f : A �� B is a morphism if f preserves all operations, that is
if the following diagrams commute.



On the Logic of Generalised Metric Spaces 151

A
v�A

��

f

��

A

f

��

AK

⊔A
K ��

fK

��

A

f

��

B
v�B

�� B BK
⊔B

K

�� B

(12)

Theorem 44. The category 〈ΣD, ED〉-alg of 〈ΣD, ED〉-algebras and their mor-
phisms is isomorphic to the category of D-algebras, and the category of 〈ΣU , EU 〉-
algebras and their morphisms is isomorphic to the category of U-algebras.

5.2 Syntactic DU-algebras

In order to make the definition of a 〈ΣDU , EDU 〉-algebra more readable we need
some preliminary results. First let us recall the following known fact about lat-
tices.

Lemma 45. Let (A, (v � −)(v∈Ω), (
⊔

K)K) be a 〈ΣD, ED〉-algebra and (A, (v �
−)(v∈Ω), (

�
K)K) be a 〈ΣU , EU 〉-algebra. In particular A is a meet-semi lattice

and join semi-lattice, so the order given by these is compatible if and only if we
have the following two absorption axioms:

1. a � (a � b) = a for all a, b ∈ A
2. a � (a � b) = a for all a, b ∈ A

Proposition 46. Let A be simultaneously a 〈ΣD, ED〉 and a 〈ΣU , EU 〉-algebra,
which satisfies the absorbtion rules defined in the previous lemma, then the Ω-
category structures given by A being a 〈ΣD, ED〉-algebra and a 〈ΣU , EU 〉-algebra
are compatible, that is for all a, b ∈ A we have

∨{v ∈ Ω | v � a ≤
 b} =
∨{v ∈

Ω | a ≤� v � b}
Now we can formulate the following definition.

Definition 47. By a 〈ΣDU , EDU 〉-algebra we understand, a set A together with
two unary family of operations (v � −)(v∈Ω) : A �� A and (v � −)(v∈Ω) :
A �� A, and for each set K two K-arity operations

⊔
K : AK �� A and�

K : AK �� A, such that (A, (v � −)(v∈Ω), (
⊔

K)K) is a 〈ΣD, ED〉-algebra and
(A, (v � −)(v∈Ω), (

�
K)K) is a 〈ΣU , EU 〉-algebra satisfying the following equa-

tions:

1. a � (a � b) = a for all a, b ∈ A
2. a � (a � b) = a for all a, b ∈ A
3. for any v ∈ Ω and any a, b ∈ A one has (v � a) ≤ b ⇔ a ≤ (v � b)
4. for any set K and any functions ϕ : K �� Ω and G : K × A �� Ω

�

K

ϕ(k) � (
⊔
A

G(k)(a) � a) =
⊔
A

{ϕ, ↓G(−, a)} � a, (13)



152 O. Babus and A. Kurz

where {ϕ, ↓G(−, a)} is a limit computed in Ω with ↓G(k) : Aop �� Ω given
by ↓G(k) = LaniG =

∫ b∈A
A(−, i(b)) ⊗ G(k)(b) for i : |A| �� Aop the object

inclusion functor.

Remark 48. 1. As we will see below a 〈ΣDU , EDU 〉-algebra A can be translated
into a DU-algebras (A,α, β). Under this translation, Axiom (13) becomes

{ϕ,α ◦ ↓G} = α({ϕ, ↓G})

stating that α preserves limits.
2. In the case that ϕ and G are crisp, that is, they take values in {⊥, e} ⊆ Ω,

we can identify K with the extension of ϕ and G(k) with subsets of A so that
Axiom (13) becomes

�
{
⊔

G(k) | k ∈ K} =
⊔ ⋂

{↓ G(k) | k ∈ K}

Note that this coincides with the specialisation of Axiom (13) to the case
Ω = 2. It expresses that joins perserve meets. As observed in [4] this is equiv-
alent (under the axiom of choice) to the usual distributive law using choice
functions. Choice functions allow us to replace the intersection

⋂{↓ G(k) |
k ∈ K}, which is a meet in DA, by a collection of meets in A. Moreover, in
case that K and the G(k) are finite, the join

⊔ ⋂{↓ G(k) | k ∈ K} can be
replaced by a join indexed over finitely many choice functions, even if A is
infinite. Under what circumstances the distributive law (13) can be restricted
to a finite one is a question we do not pursue in this paper.

Now let us show that 〈ΣDU , EDU 〉 algebras are indeed DU-algebras.

Theorem 49. The category of 〈ΣDU , EDU 〉-algebras is isomorphic to the cate-
gory of DU-algebras.

Proof. Let (A, v�−,
⊔

K , v�−,
�

K) be a 〈ΣDU , EDU 〉 algebra. By Propositions 40
and 46, A has a Ω-category structure. Define α : DA �� A and β : UA �� A, by
α(ϕ) =

⊔
|A| ϕ(a) � a and β(ψ) =

�
|A| ψ(a) � a. Using all axioms of Definition

38 and Theorem 42 one shows that α is a D-algebra and β is a U-algebra.
Moreover, A is complete and cocomplete. Axiom (13) implies that α preserves
all limits, hence has a left adjoint and thus is ccd. By Theorem 22, (A,α, β) is a
DU-algebra.

For the converse, define �, �,
⊔

, and
�

as the respective (co)limits and show
that ccd implies Axiom (13).

5.3 Ω-Cat-logic

For any (commutative) quantale Ω, we have a propositional Ω-logic given by
〈ΣDU , EDU 〉. The language is given by

L : p | v � − | v � − |
⊔

|
�

,



On the Logic of Generalised Metric Spaces 153

where p are atomic propositions; v � − and v � − are unary operations;
⊔

and�
are K-ary operations for each set K. These operations satisfy the equations

listed in Definitions 38 and 47.

The semantics of these operations wrt a Ω-category X is as follows. If FP is
the free algebra1 over atomic propositions p ∈ P , then any interpretation of
the atomic propositions as many-valued upsets X �� Ω induces a morphism
[[−]] : FP

�� [X,Ω], which is nothing but a many-valued relation (bimodule)

� : X ⊗ FP
�� Ω.

The values of Ω measure how well a state x ∈ X satisfies a specification φ ∈ FP .
We say “x satisfies φ up to r” if (x � φ) = r and “x satisfies φ” if r is top. The
operations

⊔
and

�
are join and meet and we have

[[v � φ]] = (x �→ v ⊗ [[φ]](x)) [[v � φ]] = (x �→ [v, [[φ]](x)]).

Reasoning in the Ω-valued setting, we are interested in judgements

φ �r ψ

which are interpreted as FP (φ, ψ) ≥ r, the latter being equivalent to

[x � φ, x � ψ] ≥ r

for all Ω-categories X and all x ∈ X.

Example 50. 1. In the case of Ω = 2 the operations � and � are redundant
and we obtain the equational theory of complete and completely distributive
lattices. �0 is redundant and φ �1 ψ means (x � φ) ⇒ (x � ψ) for all X and
x ∈ X.

2. In the case of Ω = [0,∞], we write inf for
⊔

and sup for
�

(note the reversal
of the order to reflect that distance 0 is top and ∞ is bottom). If x satsifies
φ, then x satsifies v � φ up to v. If x satisfies φ up to v, then x satisfies v � φ.
That [X,Ω] is atomic means that arbitrary predicates can be built from
“singletons”, v �− and

⊔
. A judgement φ �r ψ means (x � ψ)− (x � φ) ≤R r

for all X and x ∈ X.

6 Conclusions

We have shown in Theorem 49 that for any commutative quantale Ω the category
Ω-Cat of Ω-categories, or, in other words, the category of Ω-valued generalised
metric spaces, is isomorphic to a category of algebras for operations and equation
in the usual sense, if we admit operations of infinite unbounded arity.

Moreover, due to the duality underlying our approach, these operations have
a logical interpretation and the equations can be seen as logical axioms.
1 Here we make use of the fact that due to complete distributivity free algebras exist,
even though the signature has operations of unbounded arity.



154 O. Babus and A. Kurz

The value of Theorem 49 resides not only in its statement but even more so in
how we proved it: We didn’t guess 〈ΣDU , EDU 〉 and then proved the theorem,
but we derived 〈ΣDU , EDU 〉 in a systematic fashion from the functor [−, Ω]. We
started from the aim to derive the logic of Ω-valued predicates, that is, the logic
given implicitely by the structure of the categories [X,Ω]. To extract this logical
structure, we considered [X,Ω] as algebras for the monad induced by [−, Ω]. We
then employed a result linking that monad to the ‘semi-lattice’ monads D and
U . The algebraic structure of these monads computes limits and colimits and an
equational description of these was given as 〈ΣDU , EDU 〉.

It lies in the nature of this method that the logic 〈ΣDU , EDU 〉 we derived from
Ω is not purely syntactic but still depends on Ω. The operations are infinitary
and the laws contain side conditions depending on Ω. We can think of Ω as
an oracle that we need to consult in our reasoning. Restricting to particular,
syntactically given Ω and then describing 〈ΣDU , EDU 〉 fully syntactically, so that
consulting the oracle can be replaced by asking an automated theorem prover,
is a task of future research.

In future work, finitary versions of the 〈ΣDU , EDU 〉 will be investigated.
Extension with tensor and implication will also be of interest. These should
be linked with the theory of MV-algebras. Properties of 〈ΣDU , EDU 〉 and their
finitary versions should be linked with properties of Ω. Moerover, it needs to
be investigated how to integrate the propositional Ω-logics with the modalities
arising from coalgebraic type functors.

Acknowledgement. The second author acknowledges the influence of J. Velebil
through a long-standing collaboration on enriched coalgebraic logic and his deep
insights into the subject. In particular, our derscription of Ω-Catop by operations and
equations confirms his suggestion that the propositional logic of Ω-Cat should have
operations corresponding the the categorical (co)limits of tensor and cotensor.

References

1. Beck, J.: Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and Cat-
egorical Homology Theory. Lecture Notes in Mathematics, vol. 80, pp. 119–140.
Springer, Berlin (1969)

2. B́ılková, M., Kurz, A., Petrisan, D., Velebil, J.: Relation lifting, with an application
to the many-valued cover modality. Log. Methods Comput. Sci. 9(4) (2013)

3. Borceaux, F.: Handbook of Categorical Algebra 1, vol. 1. Cambridge University
Press, Cambridge (1994)

4. Fawcett, B.W., Wood, R.J.: Constructive complete distributivity I. In: Mathemat-
ical Proceedings of the Cambridge Philosophical Society (1990)

5. Hofmann, D.: Duality for distributive space (2010). arXiv:1009.3892v1
6. Kelly, G.M., Schmitt, V.: Notes on enriched categories with colimits of some class.

Theor. Appl. Categ. 14, 399–423 (2005)
7. Kelly, M.: Basic Concepts of Enriched Category Theory
8. Kock, A.: Monads for which structures are adjoint to units. J. Pure Appl. Algebra

104(1), 41–59 (1995)
9. Lai, H., Zhang, D.: Many-Valued Complete Distributivity (2006)

http://arxiv.org/abs/1009.3892v1


On the Logic of Generalised Metric Spaces 155

10. Lawvere, F.: Metric spaces, generalized logic and closed categories. Rendiconti
del Seminario Matematico e Fisico di Milano, XLIII. Republished in Reprints in
Theory Appl. Categ. (1973)

11. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics. Springer, New York (1971)

12. Marmolejo, F.: Doctrines whose structure forms a fully faithful adjoint string.
Theor. Appl. Categ. 3, 24–44 (1997)

13. Marmolejo, F., Rosebrugh, R., Wood, R.J.: A basic distributive law. J. Pure Appl.
Algebra 168(2), 209–226 (2002)

14. Pu, Q., Zhang, D.: Categories enriched over a quantaloid: algebras. Theor. Appl.
Categ. 30, 751–774 (2015)

15. Rosenthal, K.I.: Quantales and Their Applications. Pitman Research Notes in
Mathematics Series, vol. 234. Longman Scientific & Technical, Harlow (1990)

16. Rosolini, G.: A note on cauchy completeness for preorders
17. Rutten, J.J.M.M.: Elements of generalized ultrametric domain theory. Theoret.

Comput. Sci. 170(1–2), 349–381 (1996)
18. Rutten, J.J.M.M.: Relators and metric bisimulations (extended abstract). In:

CMCS 1998, vol. 11 (1998)
19. Stubbe, I.: The double power monad is the composite power monad. Technical

report, LMPA, Université du Littoral-Côte d’Opale (2013)
20. Vickers, S.: The double powerlocale and exponentiation: a case study in geometric

reasoning. Theor. Appl. Categ. 12, 372–422 (2004)
21. Vickers, S.: Localic completion of generalized metric spaces I. Theor. Appl. Categ.

14, 328–356 (2005)
22. Vickers, S.: Localic completion of generalized metric spaces II: powerlocales. J.

Log. Anal. 1(11), 1–48 (2009)
23. Vickers, S., Townsend, C.: A universal characterization of the double powerlocale.

Theoret. Comput. Sci. 316, 297–321 (2004)
24. Worrell, J.: Coinduction for recursive data types: partial order, metric spaces and

omega-categories. In: CMCS 2000, vol. 33 of ENTCS (2000)



A Complete Logic for Behavioural Equivalence
in Coalgebras of Finitary Set Functors

David Sprunger(B)

Indiana University, Bloomington, USA
dasprung@indiana.edu

Abstract. This paper presents a sound and complete sequent-style
deduction system for determining behavioural equivalence in coalgebras
of finitary set functors preserving weak pullbacks. We select finitary set
functors because they are quotients of polynomial functors: the polyno-
mial functor provides a ready-made signature and the quotient provides
necessary additional axioms. We also show that certain operations on
functors can be expressed with uniform changes to the presentations
of the input functors, making this system compositional for a range of
widely-studied classes of functors, such as the Kripke polynomial func-
tors. Our system has roots in the FLR0 proof system of Moschovakis
et al., particularly as used by Moss, Wennstrom, and Whitney for non-
wellfounded sets. Similarities can also be drawn to expression calculi in
the style of Bonsangue, Rutten, and Silva.

1 Introduction

In this paper, we propose a logic for detecting bisimilar states in coalgebras
of finitary Set-endofunctors. We focus on finitary functors because they have
presentations whereby they can be represented as the quotient of a signature
functor by a collection of equations.1 The signature provides a syntax in which
the coalgebras can be expressed, and the equations add the axioms necessary to
distinguish reasoning among functors of similar syntax.

In particular, we will consider specifications on sets of variables in the signa-
ture of finitary functors. These are total assignments of variables to terms which
serve as definitions, and may be considered a recasting of the longstanding tra-
dition of systems of simultaneous equations going back to Kahn, Manna and
Vuillemin, and Lawvere. We show every coalgebra of a finitary functor has at
least one corresponding specification.

Our system is comparable to FLR0, as considered by Moss in [2] and Moss et al.
in [3]. FLR0 has distinctive terms of the form xi where {x1 = A1, . . . , xn = An}.
This where operator binds variables, but also allows terms to carry their context.
1 Finitary functors in finitely presentable categories outside of Set may also have

finitary presentations, see [1].

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 156–173, 2016.
DOI: 10.1007/978-3-319-40370-0 10



A Complete Logic for Behavioural Equivalence in Coalgebras 157

As a consequence, many of the FLR0 rules concern moving a definition in and
out of a subscope or evolving the term before the where clause. We avoid these
issues by fixing a specification sending xi to Ai, roughly, and considering terms
with this context backgrounded. Additionally, FLR0 and the full FLR language
are intended as general languages of recursion with semantics of various flavors.
The application here to coalgebras distinguishes our version somewhat.

We might also compare this work to that of Bonsangue et al. in [4,5] or Milius’
related work in the setting of vector spaces [6], where a μ operator provides a
similar variable binding. The work of Bonsangue et al. feature an inductive class
of functors, the so-called Kripke polynomial functors, and a syntax of expressions
based on the inductive class. They build a sound and complete axiomatization
for these expressions which is compositional, meaning the laws involved are built
in parallel with the definition of the functor and the expressions. We show that
the presentations involved in our setting enjoy similar compositional properties.

In Chap. 5 of Silva’s PhD thesis [7] and the related paper [8], she gives an
extension of this μ calculus to finitary functors, demonstrating that the expres-
sions of this calculus exactly coincide with the behaviours of locally finite coalge-
bras. However, at the end of this work, questions regarding axiomatization and
uniform proofs of soundness and completeness for the system are left open.

We are able to prove soundness and completeness for our logic for the finitary
functors which preserve weak pullbacks, a common condition with numerous
pleasant coalgebraic consequences including that bisimilarity and behavioural
equivalence coincide, see Rutten [9]. In particular, polynomial functors and the
finite powerset functor preserve weak pullbacks, so the functors in our setting
properly include those of Bonsangue et al. and Moss et al.

Outline. In Sect. 2, we briefly recall some background on coalgebras, signatures,
and finitary functors. This section introduces the interplay between coalgebras
of a finitary functor and coalgebras of its related signature functor that are of
central importance to later sections. In Sect. 3, we introduce bisimulation up-
to-presentation, a novel up-to technique which permits expressing bisimulations
for finitary functors in terms of bisimulations for their signatures. In Sect. 4, we
present a formal proof system capturing the notion of bisimulation-up-to. We
show this system is sound and complete in the sense that it detects the bisimi-
larity of states in coalgebras for finitary functors preserving weak pullbacks. In
Sect. 5, we note that signatures for previously studied inductive classes of these
functors–including the Kripke polynomial functors–can be constructed compo-
sitionally. This allows the proof system developed in Sect. 4 to be constructed
compositionally as well.

2 Background

In this section, we recall definitions and basic results about coalgebras, finitary
signatures, finitary functors, and introduce the notion of a specification. Our
setting is the category Set, and all functors are assumed to be Set-endofunctors.
Additionally, we will often assume functors preserve weak pullbacks, but make
a special note when this assumption is needed.



158 D. Sprunger

2.1 Coalgebras

Given a Set-endofunctor F , an F -coalgebra is a set X together with a map
f : X → FX. The set is often called the carrier of the coalgebra, while f gives
its structure or dynamics.

A coalgebra morphism from an F -coalgebra (X, f) to another F -coalgebra
(Y, g) is a map ϕ : X → Y such that the following diagram commutes:

X FX

Y FY

f

ϕ Fϕ

g

F -coalgebras together with coalgebra morphisms between them form a cat-
egory, often denoted CoalgF . Of particular interest are the F where CoalgF

has a final object. This final coalgebra has a natural interpretation as a semantic
object: since there is a unique coalgebra morphism from any F -coalgebra into
it, points in coalgebras which have the same image in the final coalgebra can be
considered (behaviourally) equivalent to one another.

A related notion is that of an (Aczel-Mendler) F -bisimulation on a coalgebra.
An F -bisimulation is a relation R ⊆ X × X such that there is an F -coalgebra
structure on R, ρ, such that the following diagram holds:2

X R X

FX FR FX

f

π1 π2

ρ f

Fπ1 Fπ2

Roughly speaking, a relation is a bisimulation if two points in a coalgebra
being related implies their structures are also related. This gives a different
notion of equivalence, which is known to coincide with the behavioural equiva-
lence for weak pullback preserving functors. For more details, we refer the reader
to Rutten [9].

2.2 Finitary Signatures and Functors

A finitary signature is a set Σ with a map ar : Σ → ω. In the sequel, we often
abbreviate “finitary signature” to “signature” and refer to the signature as Σ
instead of (Σ, ar) when there is no risk of confusion. The elements of Σ are
the symbols of the signature, and each symbol f ∈ Σ has the arity ar(f). The
collection of all symbols with arity n is denoted Σn.

Each finitary signature has an associated signature functor, HΣ , given by∐
n Σn×Xn. We denote a typical element of HΣX by f(x1, . . . , xar(f)) if xi ∈ X

or f(x) if x : ar(f) → X. HΣX is often referred to as the set of all “flat terms”
using symbols from Σ with variables from X.

2 Throughout this paper we will write πi for the more cumbersome πi|R.



A Complete Logic for Behavioural Equivalence in Coalgebras 159

F is a finitary functor if there is a finitary signature Σ together with a
(pointwise) epic natural transformation ε : HΣ � F .3 If F is a finitary functor,
we say (Σ, ε) is a presentation of F . Finitary functors have a number of alternate
characterizations, including functors which preserve ω-filtered colimits [1].

Example 1. For each set A, the constant functor FX = A is finitary with signa-
ture Σ = Σ0 = A and the transformation ε with components εX : a() �→ a.

Example 2. The identity functor is finitary with signature Σ = Σ1 = {∗} and
the transformation ε with components εX : ∗(x) �→ x.

Example 3. The finite powerset functor Pω is finitary with signature Σn = {σn}
and the transformation εX : σn(x1, . . . , xn) �→ {x1, . . . , xn}. Note that unlike the
previous two transformations, this ε is not an isomorphism.

Example 4. The 3 powerset functor P3, which assigns each set to the set of its
subsets of cardinality < 3, is finitary with signature Σn = {σn} for 0 ≤ n < 3
and the same ε as in Pω, restricted to the smaller set of terms.

Example 5. The functor ZX = {0, 1} × X × X is finitary with signature Σ =
Σ2 = {0 : zip, 1 : zip} and transformation given by

εX(i : zip(x1, x2)) = (i, x1, x2).

We call this the “zip functor” in the sequel, though this is not standard termi-
nology.

A specification in the signature Σ is an HΣ-coalgebra, a set X together with
a function d : X → HΣX. Elements of X are called variables, and d gives
their definition. Every specification in the signature of a finitary functor F gives
rise to an F -coalgebra: given d : X → HΣX postcomposing with εX yields
εX ◦ d : X → FX.

A single F -coalgebra (X, f) will correspond to potentially many specifications
in its signature. For each section s of εX , the composition s ◦ f : X → HΣX
is a specification in Σ. The F -coalgebra related to each of these specifications
will be, not surprisingly, (X, f). Note at least one section of εX is guaranteed
to exist since Set has split epis.

At a broad level, this paper could be seen as an attempt to use the quo-
tient relationship ε : HΣ � F between the functors HΣ and F to understand
the relationships between HΣ- and F -coalgebras and particularly the relation-
ships between HΣ- and F -bisimulations. Rather than constantly clarifying which
functor we are considering, we hereafter reserve “specification” to mean an HΣ-
coalgebra, and the undecorated “coalgebra” to mean F -coalgebra.

Since we can readily recast specifications and coalgebras for finitary Set
functors, we translate standard notions from coalgebras to specifications. For
3 That is, we are assuming each component εX is epic. For natural transformations

between functors into Set, pointwise epic and epic in the functor category coincide.
[10, p. 91].



160 D. Sprunger

example, R is an F -bisimulation on the specification (X, d) when it is an F -
bisimulation on the coalgebra (X, εX ◦ d), the standard semantics for a variable
in a specification is its image in a given final F -coalgebra, and two variables
are behaviourally equivalent when they have the same standard semantics. Note
that though the standard semantics of a variable depends on the final coalge-
bra under consideration, whether two variables are behaviourally equivalent is
independent of this choice.

We write �(X,d) x = y when x and y are behaviourally equivalent states in
the specification. When the specification is clear from context, we write � x = y.
(This notation will be relevant mostly in Sect. 4.)

Example 6. We can give a specification for the zip functor with X = {x, y, z, w}
and

d(x) = 0 : zip(y, z) d(y) = 1 : zip(x,w)
d(z) = 1 : zip(z, w) d(w) = 0 : zip(w, z)

As shown by Kupke and Rutten in [11] and Grabmayer et al. in [12], a final
coalgebra for this functor is the set of streams in {0, 1}.4 With this final coalgebra
in mind the standard semantics for x is the Thue-Morse sequence.

Example 7. Another zip specification for Y = {x, y, z, w, u, v, q} is given by

d(x) = 0 : zip(y, z) d(y) = 1 : zip(x, v) d(v) = 0 : zip(w, u)
d(w) = 0 : zip(w, z) d(z) = 1 : zip(z, w) d(u) = 1 : zip(u, v)

d(q) = 0 : zip(y, u)

In this specification, the states x and q are behaviourally equivalent. Our goal
is to give a uniform account for detecting this behavioural equivalence.

Note also x in this example and x in Example 6 are behaviourally equivalent.
We could consider the problem of showing the equivalence of two variables in two
separate specifications, but by taking the disjoint union of the two specifications
and determining equivalence within this single joint specification we get the same
effect.

3 Bisimulation Up to Presentation

In this section, we introduce the notion of bisimulation up to presentation.
Roughly, bisimulations up to presentation are HΣ-bisimulations relaxed up to
the kernel of ε in such a way that they correspond nicely to F -bisimulations. This
allows us to detect F -bisimulations using the more syntactic HΣ-bisimulations
and so-called ε laws. We also give an alternate characterization of bisimulation
up to presentation and several related sufficient criteria to conclude that a rela-
tion is a subset of the bisimilarity relation.
4 Kupke and Rutten actually considered a slight variation on CoalgZ which has the

same final coalgebra but a slightly different final map.



A Complete Logic for Behavioural Equivalence in Coalgebras 161

Since bisimulation up to presentation provides an alternate criterion which
suffices for detecting bisimulations, we have intentionally named this type of
relation in the style of enhanced coalgebraic bisimulations studied recently by
Rot et al. [13] with veins of research going back to Milner, Park, Sangiorgi, and
others. We are also struck by the similarities between the results in Sect. 3.2
and the flavor of standard up-to results. However, we are unaware of a formal
connection between these bodies of work since our setting relates bisimulations
of two related functors, and the standard literature deals with bisimulations of
a single functor. We would be very glad to learn of a connection, though.

Recall the standard (Aczel-Mendler) bisimulation diagram for an HΣ-
bisimulation on X:

X R X

HΣX HΣR HΣX

d

π1 π2

ρ d

HΣπ1 HΣπ2

We say R ⊆ X × X is a bisimulation up to the presentation (Σ, ε) if there is
a ρ : R → HΣR such that εX ◦ d ◦ πi = εX ◦ HΣπi ◦ ρ for i ∈ {1, 2}. That is, ρ
nearly gives R a HΣ-coalgebra structure except that the paths in the diagram
above are coequalized by εX instead of commuting outright.

R X HΣX

HΣR HΣX FX

ρ

πi d

εX

HΣπi
εX

Theorem 1. For all specifications (X, d) for a finitary set functor with presen-
tation (Σ, ε), a relation R ⊆ X × X is an F -bisimulation if and only if it is a
bisimulation up to the presentation (Σ, ε).

Proof. (⇐) Let ρ give R the structure of a bisimulation up to the presentation
(Σ, ε). Then εR ◦ ρ gives R an F -coalgebra structure such that

X R X

FX FR FX

εX◦d

π1 π2

εR◦ρ εX◦d

Fπ1 Fπ2

commutes, so R is an F -bisimulation.
(⇒) Given an F -bisimulation structure φ on R, we claim s ◦ φ gives a bisim-

ulation up to presentation structure to R where s is any section of εR. To see
this, note εX ◦ HΣπi ◦ s ◦ φ = Fπi ◦ εR ◦ s ◦ φ = Fπi ◦ φ = εX ◦ d ◦ πi

We note that this statement is not that the F -bisimulation structures are
in 1-1 correspondence with the bisimulation up to presentation structures, but
that the carriers are in a 1-1 correspondence. Much like the correspondence



162 D. Sprunger

between coalgebras and specifications, there is a possibly distinct bisimulation
up to presentation structure for each section of εR.

Corollary 1. The biggest F -bisimulation on a coalgebra is the biggest bisimu-
lation up to the presentation (Σ, ε) on that coalgebra.

We denote bisimilarity, the biggest F -bisimulation on a coalgebra, by ∼. The
bisimilarity relation is known to be an equivalence relation on all coalgebras for
all Set functors preserving weak pullbacks, see e.g. Rutten [9].

3.1 An Explicit Characterization

We defined a bisimulation up to presentation using a variation of the Aczel-
Mendler diagram, but there is a more concrete characterization for bisimulations
up to presentation which we describe in this section.

For flat terms α, β ∈ HΣX we write α =ε β to mean εX(α) = εX(β). If
α =ε β we say this is an εlaw, or that α may be rewritten to β using ε laws.
Note the =ε relation on HΣX is an equivalence relation.

Definition 1 (c(R)). The flat contextual closure of a relation R ⊆ X ×X is the
relation c(R) ⊆ HΣX × HΣX defined by f(x1, . . . xar(f)) c(R) f(y1, . . . , yar(f))
if and only if xi R yi for all 1 ≤ i ≤ ar(f).

We denote the pointwise composition of relations R and S by R •S. That is,
x(R • S)z iff there exists a y such that xRy and ySz.

Definition 2 (∼R). Given a relation R on X, we define ∼R to be =ε

• c(R) • =ε, a relation on HΣX.

Since ∼R also depends on the transformation ε it would be more proper to
denote it ∼R,ε, but since ε is standard for each functor we elide it from the
notation.

Here we also emphasize the distinction between two very similar symbols: ∼
denotes bisimilarity on X, and has no direct relationship with the symbol ∼R

just defined.

Theorem 2. Given a finitary functor F and a specification (X, d) in that func-
tor’s signature, R ⊆ X ×X is a bisimulation up to the presentation (Σ, ε) if and
only if xRy implies d(x) ∼R d(y). More explicitly, for each (x, y) ∈ R, there is
an f ∈ Σn and (x1, y1), . . . , (xn, yn) ∈ R such that:

1. d(x) =ε f(x1, . . . , xn)
2. d(y) =ε f(y1, . . . , yn)

Proof. (⇒) Suppose we have ρ : R → HΣR such that εX ◦d◦πi = εX ◦HΣπi ◦ρ.
Let (x, y) ∈ R and write ρ(x, y) = f((x1, y1), . . . , (xn, yn)) where f ∈ Σ and
(xi, yi) ∈ R. Then (HΣπ1 ◦ ρ)(x, y) = f(x1, . . . , xn), so by the hypothesis on ρ,
d(x) =ε f(x1, . . . , xn), as desired. Similarly considering (HΣπ2 ◦ ρ)(x, y) yields
item 2.



A Complete Logic for Behavioural Equivalence in Coalgebras 163

(⇐) Suppose we have a relation satisfying the latter condition, and define
ρ : R → HΣR by ρ(x, y) = f((x1, y1), . . . , (xn, yn)). Then by item 1, εX ◦d◦π1 =
εX ◦ HΣπ1 ◦ ρ, and similarly for item 2.

Theorem 2 gives an explicit characterization for bisimulations up to presen-
tation. To check that a relation is a bisimulation up to presentation, for each
pair (x, y) in the relation we need to rewrite d(x) and d(y) using ε laws so that
they have the same symbol and all corresponding variables are related.

We can now show x and q from Example 7 are related by a bisimulation up to
presentation.

Example 8. Recall that the zip functor has function symbols Σ = Σ2 = {0 :
zip, 1 : zip} with no nontrivial ε laws. Then for the specification

d(x) = 0 : zip(y, z) d(y) = 1 : zip(x, v) d(v) = 0 : zip(w, u)
d(w) = 0 : zip(w, z) d(z) = 1 : zip(z, w) d(u) = 1 : zip(u, v)

d(q) = 0 : zip(y, u)

we propose R = {(x, q), (z, u), (w, v)}∪ΔX as a bisimulation up to presentation.
The diagonal part clearly satisfies the required properties. Then

– 0 : zip(y, z) ∼R 0 : zip(y, u) since yRy and zRu.
– 1 : zip(z, w) ∼R 1 : zip(u, v) since zRu and wRv.
– 0 : zip(w, z) ∼R 0 : zip(w, u) since wRw and zRu.

Since the zip functor has no nontrivial ε laws this is just an ordinary HΣ

bisimulation. Matters are more complicated for non-polynomial functors.

Example 9. Recall that the functor P3 from Example 4 has a presentation with
three function symbols, {σi}i<3, each with arity i and ε laws of the forms
σ2(x, y) =ε σ2(y, x) and σ2(x, x) =ε σ1(x).

An example specification in this signature for X = {x, y, z} might be

d(x) = σ2(x, y) d(y) = σ1(z) d(z) = σ2(z, z)

All of these are behaviourally equivalent, so they should be related by a bisimu-
lation up to presentation. We propose R = {(x, y), (y, z), (x, z), (z, z)}. For this
we need to check four things:

– σ2(x, y) ∼R σ1(z): we use σ1(z) =ε σ2(z, z) to rewrite the RHS and note xRz
and yRz.

– σ1(z) ∼R σ2(z, z): uses the same rewrite and zRz twice.
– σ2(x, y) ∼R σ2(z, z): immediate from xRz and yRz.
– σ2(z, z) ∼R σ2(z, z): immediate from zRz.

Therefore all three of these variables are related by a bisimulation up to
presentation.



164 D. Sprunger

3.2 Enhanced Bisimulation Up to Presentation

In Example 8, we showed two variables in a specification were related by a bisim-
ulation up to presentation, but in the course of this proof we added in the diago-
nal relation to make the bisimulation hypothesis go through. This is reminiscent
of other combination bisimulation up to techniques, such as those studied by
Rot et al. in [13]. In this section, we provide several enhancements to the bisim-
ulation up to presentation technique which will be useful in the sequel.

First we note bisimulation up to presentation interacts well with union of
bisimulations.

Lemma 1. Suppose (X, d) is a specification for a finitary functor presented by
(Σ, ε). Let S be any bisimulation on X, T be a relation containing S, and R be
a relation on X such that xRy implies d(x) ∼T d(y). Then R ∪ S also has the
property that (x, y) ∈ R ∪ S implies d(x) ∼T d(y).

Proof. Since S is a bisimulation on X, it is also a bisimulation up to presentation
by Theorem 1. Then by Theorem 2, xSy implies d(x) ∼S d(y). Since S ⊆ T ,
we have c(S) ⊆ c(T ) and therefore ∼S ⊆ ∼T . Hence xSy implies d(x) ∼T d(y).
Combining this with the hypothesis on R, we have the desired result.

Corollary 2. Recall that ∼ is the biggest F -bisimulation on X. If R is a relation
on a specification such that any of the following hold:

– xRy → d(x) ∼R∪ΔX
d(y)

– xRy → d(x) ∼R∪∼ d(y)

then R ⊆ ∼.

Proof. Both ΔX and ∼ are bisimulations so by Lemma 1, taking T = R ∪ B
where B ∈ {ΔX ,∼}, we get a relation T such that xTy → d(x) ∼T d(y). Then
T is a bisimulation up to presentation by Theorem 2, so R ⊆ T ⊆ ∼.

Bisimulation up to presentation also behaves well with respect to symmetric
closures:

Lemma 2. Suppose (X, d) is a specification for a finitary functor presented by
(Σ, ε). Let T be any symmetric relation and R be any relation on X such that
xRy implies d(x) ∼T d(y). Then s(R), the symmetric closure of R, also has the
property x s(R) y implies d(x) ∼T d(y).

Proof. It is easy to check that T symmetric implies c(T ) symmetric, which in
turn implies ∼T symmetric. Then if x s(R) y, either xRy or yRx by definition
of s(R). The hypothesis on R yields d(x) ∼T d(y) or d(y) ∼T d(x), respectively.
Then ∼T symmetric allows us to conclude that in either case d(x) ∼T d(y), as
desired.



A Complete Logic for Behavioural Equivalence in Coalgebras 165

Corollary 3. If R is a relation such that xRy → d(x) ∼s(R) d(y), then R ⊆ ∼.

Bisimulation up to presentation for functors preserving weak pullbacks also
plays well with equivalence closures. Preservation of weak pullbacks is a critical
assumption here. We recall the following definition and theorem from [14, p. 14],
slightly recast to use our notation:

Definition 3. A presentation is dominated if for every ε law f(x) =ε g(y)
where f ∈ Σn, g ∈ Σm, x : n → X, y : m → X, there is a symbol h ∈ Σk and
functions u : k → n and v : k → m such that h(u) =ε f(idn), h(v) =ε g(idm),
and x ◦ u = y ◦ v.

To give some intuition for dominated presentations, consider the presentation
for Pω from Example 3. We could say the symbol σ4 dominates the symbol σ2

since there is a u : 4 → 2, namely u(i) =  i
2�, such that σ4(u) = σ4(0, 0, 1, 1) =ε

σ2(0, 1) = σ2(id2). Then any time we have a term using σ2, we could replace
σ2 with σ4, following the substitution scheme hinted at by u, and remain in the
same component of the kernel of ε. So, for example, this domination would imply
σ2(x, y) =ε σ4(x, x, y, y).

Note σ3 is also dominated by σ4, for example by σ3(0, 1, 2) = σ4(0, 2, 1, 1).
This would allow us to rewrite σ3(x, y, x) =ε σ4(x, x, y, y). Combining with the
previous paragraph would allow us to derive σ3(x, y, x) = σ2(x, y) via rewrites
to σ4. We can then say that σ3(x, y, x) =ε σ2(x, y) is a consequence of the joint
domination of σ2 and σ3 by σ4.5

The verbiage for all this notation then is that a presentation is dominated
means for every ε law f(x) =ε g(y) there is a dominating symbol h with two
variable substitutions u and v such that the ε law is a consequence of the joint
domination of f and g by h via the substitutions u and v. We will be relying on
facts about dominated presentations only in the proof of Lemma 3.

Theorem 3 (Adámek, Gumm, Trnková). A finitary functor weakly pre-
serves pullbacks if and only if it has a dominated presentation.

As a result of this theorem, for the next lemmas we can assume our presen-
tation is dominated without loss of generality.

Lemma 3. Suppose T is an equivalence relation and (Σ, ε) is a dominated pre-
sentation. Then ∼T is an equivalence relation.

Proof. Reflexivity and symmetry are straightforward. T is reflexive and symmet-
ric, therefore c(T ) is reflexive and symmetric, and so =ε • c(T ) • =ε is reflexive
and symmetric.

5 Obviously, the joint domination is not unique in the case of Pω. σ2 and σ3 are jointly
dominated by σi for all i ≥ 3 and even for each dominating symbol there may be
many different substitutions which yield the desired equation as a consequence of
the joint domination.



166 D. Sprunger

Transitivity requires the dominated presentation. Suppose α ∼T β ∼T γ.
Then we can write

α =ε α′ c(T ) β′ =ε β =ε β′′ c(T ) γ′ =ε γ

Let β′ = f(x) and β′′ = g(y). Then the above relations become:

α =ε f(x′) c(T ) f(x) =ε g(y) c(T ) g(y′) =ε γ

Since we have a dominated presentation, we get h, u, and v such that h(u) =ε

f(idn), h(v) =ε g(idm) and x ◦ u = y ◦ v. The first two statements imply
f(x′) =ε h(x′ ◦ u) and g(y′) =ε h(y′ ◦ v).

We also know x′(i) T x(i) for all i ∈ [1, n] and y(i) T y′(i) for i ∈ [1,m].
Therefore, (x′ ◦u)(i) T (x◦u)(i) = (y ◦v)(i) T (y′ ◦v)(i) for i ∈ [1, k], where the
middle equality is by the last condition guaranteed by the dominated presenta-
tion. Then since T is transitive we know (x′ ◦ u)(i) T (y′ ◦ v)(i) for i ∈ [1, k].

Therefore we have produced terms such that

α =ε h(x′ ◦ u) c(T ) h(y′ ◦ v) =ε γ

and so ∼T is transitive and hence is an equivalence relation.

Lemma 4. Suppose (X, d) is a specification for a finitary functor preserving
weak pullbacks with the dominated presentation (Σ, ε). Let T be any equivalence
relation on X and R be any relation on X such that xRy implies d(x) ∼T

d(y). Then e(R), the equivalence closure of R, has the property x e(R) y implies
d(x) ∼T d(y).

Proof. By Lemmas 1 and 2, we know immediately that x sr(R) y implies
d(x) ∼T d(y), where sr(R) is the symmetric reflexive closure of R. Hence
we only have to consider (x, y) ∈ e(R) � sr(R). Therefore, suppose we have
x sr(R) z sr(R) y. Then by the noted property of sr(R) we get d(x) ∼T d(z) ∼T

d(y). By the previous Lemma, since T is an equivalence relation and we have a
dominated presentation, ∼T is an equivalence relation and hence d(x) ∼T d(y).

Corollary 4. Suppose F preserves weak pullbacks and its presentation (Σ, ε)
is dominated. If R is a relation such that xRy implies d(x) ∼e(R) d(y), then
R ⊆ ∼.

The following corollary follows directly from the results above, but is of crit-
ical importance to our proof of soundness.

Corollary 5. Suppose F preserves weak pullbacks and its presentation (Σ, ε) is
dominated. If R is a relation such that xRy implies d(x) ∼e(R∪∼) d(y), then
R ⊆ ∼.

4 A Proof System for Bisimulation Up to Presentation

In this section, we outline a formal proof system to capture the notion of
bisimulation up to presentation. For this whole section, we assume F pre-
serves weak pullbacks. We then prove this system to be sound and complete.



A Complete Logic for Behavioural Equivalence in Coalgebras 167

Our system has judgements of the form R � σ = τ where R ⊆ X × X and
(σ, τ) ∈ X × X + HΣX × HΣX. The inference rules are as follows:

R � σ = σ
r R � τ = σ

R � σ = τ
s

α =ε β

R � α = β
ε

R � σ = τ R � τ = ρ

R � σ = ρ
t

{ϕ} ∪ R � ϕ
a

R � x1 = y1 . . . R � xar(f) = yar(f)

R � f(x1, . . . , xar(f)) = f(y1, . . . , yar(f))
c

R � ϕ ∀(x, y) ∈ R.R � d(x) = d(y)
� ϕ

b

As usual, we say R � ϕ when there is a proof tree using the above rules with
the judgement R � ϕ as the root. The notation � ϕ is shorthand for ∅ � ϕ.
Recall that � x = y means that x and y are behaviourally equivalent (have the
same image in the final coalgebra).

We should point out that R on the left side of the turnstile does not have the
usual force of a full assumption. Rather, this R should be thought of as tracking
unverified bisimulation hypotheses. In most rules this unverified bisimulation
remains on both sides, except the axioms and the b rule, which essentially dis-
charges a verified bisimulation from the left hand side. This b rule is probably
the least intuitive, but is really just the coinductive proof principle. We also note
its similarity to the Recursion Inference Rule from FLR0, which was in mind as
the system was constructed. [15]

Before we prove soundness and completeness, we give two example proofs
using the system. This first example is based on Example 4.2 in Moss et al. [3].

Example 10. Consider the specification on X = {x, y, r, s} for P3 defined by

d(x) = σ2(x, y) d(y) = σ0 d(r) = σ2(r, s) d(s) = σ0

Let R = {(x, r), (y, s)}. The proof tree below witnesses � x = r.

R � x = r
a

R � x = r
a

R � y = s
a

R � σ2(x, y) = σ2(r, s)
c

R � σ0 = σ0
c

� x = r
b

The next example is adapted from Example 9 in this paper and showcases
how some rules allow for shorter proofs.

Example 11. Consider the specification on X = {x, y} for P3 defined by

d(x) = σ2(x, y) d(y) = σ1(x)



168 D. Sprunger

Let R = {(x, y)}. The proof tree below witnesses � x = y.

R � x = y
a

R � x = x
r

R � x = y
a

R � y = x
s

R � σ2(x, y) = σ2(x, x)
c

R � σ2(x, x) = σ1(x)
ε

R � σ2(x, y) = σ1(x)
t

� x = y
b

Note that R contains a single pair though an unenhanced bisimulation proof
would require three: the r rule allows us to omit (x, x), and the s rule elides the
mirror-image proof that d(y) = d(x) thereby allowing us to omit (y, x).

4.1 Soundness

To help with our soundness proof, we define a new relational closure which we call
the presentational closure of a relation R ⊆ X×X on the carrier of a specification
(X, d). Recall from Sect. 3 that ∼R is defined to be =ε • c(R) • =ε. That is,
α ∼R β if we can rewrite α and β using ε laws so they have the same function
symbol and all corresponding variables are related by R. The presentational
closure of R, denoted pr(R), is defined to be pr(R) � e(R ∪ ∼)+ ∼e(R∪∼), a
relation on X + HΣX.

We note that e(R ∪ ∼) is an equivalence relation on X, and ∼e(R∪∼) is an
equivalence relation on HΣX as a consequence. Since X and HΣX are disjoint,
pr(R) is also an equivalence relation.

Proposition 1. If R � ϕ, then ϕ ∈ pr(R).

Proof. By induction on the proof tree. The base cases are r, ε, and a. We know
pr(R) is an equivalence relation, hence r. The relation e(R ∪ ∼) is reflexive,
hence ∼e(R∪∼) contains the relation =ε, hence ε. All pairs in R are included in
e(R ∪ ∼), hence a.

The induction steps are s, t, c, and b. s and t follow easily from the fact that
pr(R) is an equivalence relation.

Suppose for all 1 ≤ i ≤ ar(f), we know (xi, yi) ∈ pr(R) and hence (xi, yi) ∈
e(R ∪ ∼). By definition of the flat contextual closure, f(x1, . . . , xar(f))
c(e(R ∪ ∼)) f(y1, . . . , yar(f)). Since =ε is a reflexive relation, pr(R) contains
c(R) and hence these two terms are related by pr(R). Therefore the induction
holds across the c rule.

Finally we consider the b rule, which allows one to discharge bisimula-
tions from the left hand side. The induction hypothesis gives ϕ ∈ pr(R)
and (d(x), d(y)) ∈ pr(R) for each (x, y) ∈ R. Since d(x), d(y) ∈ HΣX we
know d(x) ∼e(R∪∼) d(y). Then by Corollary 5, we know R ⊆ ∼. Therefore,
pr(R) = e(R ∪ ∼)+ ∼e(R∪∼)= e(∼)+ ∼e(∼)= pr(∅). Then ϕ ∈ pr(∅) since
ϕ ∈ pr(R).

Corollary 6 (Soundness). If � x = y, then � x = y.



A Complete Logic for Behavioural Equivalence in Coalgebras 169

Proof. If � x = y, then (x, y) ∈ e(∼ ∪ ∅) by the previous proposition. However,
clearly e(∼∪∅) = e(∼) = ∼, so x ∼ y. A standard fact about functors preserving
weak pullbacks is that two states in a coalgebra are bisimilar if and only if they
are behaviourally equivalent [9], so x ∼ y implies � x = y.

4.2 Completeness

Lemma 5. If α ∼R β, then R � α = β.

Proof. α ∼R β means there are f ∈ Σn and (x1, y1), . . . , (xn, yn) ∈ R such that

α =ε f(x1, . . . , xn) c(R) f(y1, . . . , yn) =ε β.

then

R � α = f(x1, . . . , xn)
ε

R � x1 = y1
a · · · R � xn = yn

a

R � f(x1, . . . , xn) = f(y1, . . . , yn)
c

R � α = f(y1, . . . , yn)
t

R � f(y1, . . . , yn) = β
ε

R � α = β
t

is a witness for R � α = β.

Corollary 7 (Completeness). If � x = y, then � x = y.

Proof. Recall that � x = y iff x ∼ y. Since x and y are bisimilar, they are
related by a bisimulation up to presentation, which we call R. By Theorem 2,
uRv → d(u) ∼R d(v). Syllogizing with the previous lemma yields uRv → (R �
d(u) = d(v)). Trivially, R � x = y by the a rule. Therefore, � x = y by the b
rule.

5 Compositionality of Presentations

Bisimulations up to presentation give a uniform way to reason about behav-
ioural equivalence of variables in specifications for finitary functors, but there
is a potential disadvantage. Certain inductive classes of functors have sound,
complete, and compositional proof systems. That is, the rules for reasoning
about coalgebras of a functor are built inductively in a manner corresponding
to the definition of the functor. The prime example of this situation is that of
the polynomial functors and the Kripke polynomial functors.

A functor is called polynomial if it is generated by the following BNF gram-
mar:

P :: = A | Id | P + P | P × P | PB



170 D. Sprunger

where A is the constant functor having value A ∈ Set and B is a finite set. The
Kripke polynomial class of functors adds the finite powerset functor:

K:: = A | Id | Pω(K)| K + K | K × K | KB

Bonsangue et al. build a sound, complete and compositional expression cal-
culus to represent coalgebras of Kripke polynomial functors in [5]. We show
presentations are similarly compositional, in that both the signature and the ε
transformation can be built inductively to parallel the construction of the func-
tor. For the following three constructions, suppose F and G are finitary functors
with presentations (Σ, ε) and (Σ′, ε′).

5.1 Products

Let J = F × G. Then we claim J has a presentation (Σ′′, ε′′) where Σ′′ has
all pairs of symbols, Σ′′

n = {(f, g) : f ∈ Σ, g ∈ Σ′, ar(f) + ar(g) = n}, and
ε′′ : HΣ′′ → J has components

ε′′
X : (f, g)(x1, . . . , xn) �→ (εX(f(x1, . . . , xar(f))), ε′

X(g(xar(f)+1, . . . , xn))).

Then ε′′ is an epic natural transformation as a consequence of ε and ε′ being
epic natural transformations.

We single out this particular presentation because it allows us to state
the ε′′ laws in terms of ε and ε′ laws. By definition ε′′((f, g)(x1, . . . , xn)) =
ε′′((f ′, g′)(y1, . . . ym)) means

ε(f(x1, . . . , xar(f))) = ε(f ′(y1, . . . , yar(f ′))) and
ε′(g(xar(f)+1, . . . , xn)) = ε′(g′(yar(f ′)+1, . . . , ym)).

Therefore, ε′′ laws in this presentation are pairs of ε and ε′ laws.
We note here that we could represent finite powers with a similar construc-

tion. If B is a finite set, a signature for FB has symbols |B| tuples of symbols
from Σ with arity the sum of the arities through the tuple. Then the ε′′ laws are
|B| tuples of ε laws.

5.2 Coproducts

Let J = F + G. We write S + T = {inls : s ∈ S} ∪ {inrt : t ∈ T}. Then J has a
presentation (Σ′′, ε′′) where Σ′′

n = Σn +Σ′
n and ε′′ has components ε′′

X such that{
ε′′
X(inlf(x)) = inlεX(f(x))

ε′′
X(inrg(x)) = inrε′

X(g(x))
. Since ε and ε′ are epic natural transformations,

ε′′ is also an epic natural transformation.
Again, we can state the ε′′ laws in terms of the ε and ε′ laws. By definition,

ε′′α = ε′′β means α and β are both labelled inl or are both labelled inr. In the
former case, we have inlε(f(x)) = inlε(g(y)), which is an inl-labelled instance of
an ε-law. Similarly, the latter case gives an inr-labelled instance of an ε′-law.



A Complete Logic for Behavioural Equivalence in Coalgebras 171

5.3 Compositions

Let J = G ◦ F . Then J has a presentation with symbols from the set
Σ′′ = {(σ′, (σ1, . . . , σar(σ′))) : σ′ ∈ Σ′ and σi ∈ Σ}. For each symbol
σ′′ ∈ Σ′′ define wσ′′(i) =

∑i
j=1 ar(σi) for 0 ≤ i ≤ ar(σ′) and define σ′′

to have arity wσ′′ = wσ′′(ar(σ′)). Given an ar(σ′′) tuple from X, we let
xi = (xwσ′′ (i−1)+1, . . . , xwσ′′ (i)) for 1 ≤ i ≤ ar(σ′), the slice of the variables
corresponding to σi. The natural transformation ε′′ has components given by

ε′′ : σ′′(x1, . . . , xar(σ′′)) �→ ε′(σ′(ε(σ1(x1)), . . . , ε(σar(σ′)(xar(σ′′))))).

This is an epic natural transformation and the ε′′ laws can be stated again
in terms of the ε and ε′ laws.

5.4 Kripke Polynomial Functors and Other Polynomial-Like
Classes of Functors

We have presentations for constant functors (Example 1), the identity functor
(Example 2) and the finite power set functor (Example 3), which means the above
constructions give a compositional presentation for each of the Kripke polyno-
mial functors. Due to the previous section, we know bisimulation up to those
presentations is a sound and complete proof system.

Example 12. Consider the functor F = A × IdB where B is finite. Following the
constructions above, F has a presentation with function symbols Σ = Σ|B| =
{(a, β) : a ∈ A, β : B → {∗}} and equations ε((a, β)(x)) = ε((a′, β′)(x′)) iff
a = a′ and x = x′. Since there is only one function β : B → {∗}, we might as
well omit that part of the function symbol and abbreviate (a, β) by just a, still
with arity |B|.

Suppose we had a specification in this signature, like

d(x) = a(
|B|︷ ︸︸ ︷

x, . . . , x) d(y) = a(
|B|︷ ︸︸ ︷

z, . . . , z) d(z) = a(
|B|︷ ︸︸ ︷

y, . . . , y)

The complete relation on {x, y, z} is a bisimulation up to presentation for this
specification, since for each pair of variables, all corresponding variable pairs in
the definitions are in the relation. Hence we can conclude these variables all have
the same image in the final coalgebra.

The constructions above generalize previous results about inductive classes
of functors since they assure us a compositional proof system exists for any
inductive class using any of those formation rules.

6 Conclusion and Future Directions

In this paper, we presented a sequent-style deduction system for reasoning about
behavioural equivalence of points in coalgebras and specifications of finitary



172 D. Sprunger

functors in Set. This system was based on a relaxed version of HΣ-bisimulations
which nicely coincide with F -bisimulations called bisimulations up to presenta-
tion. We demonstrated this proof system was sound and complete for finitary
functors preserving weak pullbacks. We also demonstrated that three common
operations on functors have uniform effects on both the signature and equations
in a presentation.

One restriction in our setting we would like to remove is the totality restric-
tion. Since our specifications are defined with a (total) function, there is exactly
one related coalgebra and each variable has exactly one interpretation in a final
coalgebra. This makes strong soundness and completeness results decidedly less
satisfying—either the assumptions are true or false of the single model of the
specification. By removing the totality restriction, we could get more meaningful
strong soundness and completeness.

Another more practical advantage of partial specifications is the ability to
detect equality even in circumstances where values of certain variables are not
known or are irrelevant. For example, from

d(x) = 1 : zip(y, z) d(y) = 1 : zip(x, z)

we would like to be able to conclude � x = y even if the value of z is not specified.
We implicitly used the fact that finitary functors have flat presentations.

That is, each point in FX is an image of a point in HΣX and all equations
necessary for the presentation are between flat terms. Flat signatures are not
always the most natural though, sometimes one would like to use zip terms like
0 : zip(1 : x, zip(y, y)), where we have three function symbols: Σ1 = {0 :, 1 :} and
Σ2 = {zip}. Then some non-flat equations are necessary to capture all the truths
of the system. How many more modifications are necessary to deal successfully
with specifications in X → TΣX instead of X → HΣX?

We are also interested in contexts beyond Set, particularly Vect. Milius [6]
extended the expression calculi of Bonsangue et al. [4,5] to vector space coal-
gebras of the functor FX = R × X, providing a sound and complete system
for reasoning about stream circuits. We have some hope that by combining our
approach with the general definition of signature from Kelly and Power [16] we
might be able to devise a system usable in more categories than Set.

There are also a couple of generic questions suggested by this work. Here we
utilized the quotient relationship ε : HΣ � F to relate HΣ- and F -bisimulations.
Do other relationships between functors yield interesting interplay between their
coalgebras? Additionally, many of the results here suggest a connection to bisim-
ulation up to literature. How does bisimulation up to presentation fit into the
theory of enhanced bisimulations?

Acknowledgements. I owe thanks to Alexandra Silva for helpful conversations at
WoLLIC at the start of this project and to Larry Moss for his expertise and encour-
agement throughout. Thanks also to the anonymous referees for their careful reading
and thoughtful comments.



A Complete Logic for Behavioural Equivalence in Coalgebras 173

References

1. Adámek, J., Milius, S., Moss, L.S.: On finitary functors and their presentations.
In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 51–70.
Springer, Heidelberg (2012)

2. Moss, L.S.: Recursion and corecursion have the same equational logic. Theoret.
Comput. Sci. 294(1), 233–267 (2003)

3. Moss, L.S., Wennstrom, E., Whitney, G.T.: A complete logical system for the
equality of recursive terms for sets. In: Constable, R.L., Silva, A. (eds.) Logic and
Program Semantics, Kozen Festschrift. LNCS, vol. 7230, pp. 180–203. Springer,
Heidelberg (2012)

4. Bonsangue, M., Rutten, J., Silva, A.: A Kleene theorem for polynomial coalgebras.
In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 122–136. Springer,
Heidelberg (2009)

5. Bonsangue, M., Rutten, J., Silva, A.: An algebra for Kripke polynomial coalgebras.
In: 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, pp.
49–58. IEEE (2009)

6. Milius, S.: A sound and complete calculus for finite stream circuits. In: 2010 25th
Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 421–430.
IEEE (2010)

7. Silva, A.M.: Kleene coalgebra. PhD thesis, CWI (2010)
8. Silva, A.M.: Marcello Maria Bonsangue, and Jan JMM Rutten. Kleene coalgebras.

CWI. Software Engineering [SEN] (2010)
9. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci.

249(1), 3–80 (2000)
10. Mac Lane, S.: Categories for the Working Mathematician, vol. 5. Science & Busi-

ness Media, Berlin (1978)
11. Kupke, C., Rutten, J.J.M.M.: On the final coalgebra of automatic sequences (2011)
12. Grabmayer, C., Endrullis, J., Hendriks, D., Klop, J.W. Moss, L.S.: Auto-

matic sequences and zip-specifications. In: Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science, pp. 335–344. IEEE Com-
puter Society (2012)

13. Rot, J., Bonchi, F., Bonsangue, M., Pous, D., Rutten, J.J.M.M., Silva, A.:
Enhanced coalgebraic bisimulation. Math. Struct. Comput. Sci. (to appear, 2014)

14. Adámek, J., Gumm, H.P., Trnková, V.: Presentation of set functors: a coalgebraic
perspective. J. Logic Comput. 20(5), 991–1015 (2010)

15. Hurkens, A.J.C., McArthur, M., Moschovakis, Y.N., Moss, L.S., Whitney, G.T.:
The logic of recursive equations. J. Symbolic Logic 63(02), 451–478 (1998)

16. Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and presen-
tations of finitary enriched monads. J. Pure Appl. Algebra 89(1), 163–179 (1993)



Coalgebraic Completeness-via-Canonicity

Principles and Applications

Fredrik Dahlqvist(B)

University College London, London, UK
f.p.h.dahlqvist@gmail.com

Abstract. We present the technique of completeness-via-canonicity in a
coalgebraic setting and apply it to both positive and boolean coalgebraic
logics with relational semantics.

1 Introduction

Coalgebraic logic has been very successful at unifying the multitude of modal
logics used to describe and specify state-based systems, both semantically and
syntactically (see e.g. [CKP+09,KP11]). One of the great insights of coalge-
braic logics is that there exists a close correspondence between the coalgebraic
semantics and rank 1 axiomatizations, i.e. axioms with nesting depth of modal
operators uniformly equal to 1. For a Set-endofunctor T the class of all T -
coalgebras can be characterised logically in rank 1 (see [Sch06]). Conversely,
given a modal logic axiomatized in rank 1, there exist a Set-endofunctor T such
that the logic is strongly complete with respect to the class of all T -coalgebras
(see [SP10]).

However, one is often interested in providing a sound and complete semantics
to modal logics which are known to include axioms of rank greater than one. Most
temporal logics for example (see [Gol92]) contain such axioms. Alternatively, one
may have a rank 1 axiomatization of the class of T -coalgebras for a functor T of
particular interest, and be interested in logically carving out important proper
sub-classes of T -coalgebras, which may very well require axioms with nested
modalities, for example the axiomatization of transitive Kripke frames by the
axiom ♦♦p → ♦p.

Very little is known about the question of completeness for coalgebraic logics
with axioms of arbitrary rank. To our knowledge, the only results in this direction
are the work of Pattinson and Schröder in [PS08] as well as our previous work
in [DP13] which dealt with the ∇ formalism of coalgebraic logic and [DP15a]
which focused on a coalgebraic account of distributive substructural logics. In
what follows we will present the general principles of coalgebraic completeness-
via-canonicity, a method for proving strong completeness of coalgebraic logics
with axioms of arbitrary rank, in as much abstraction and generality as possi-
ble. To this end we will use the abstract presentation of coalgebraic logic (see

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 174–194, 2016.
DOI: 10.1007/978-3-319-40370-0 11



Coalgebraic Completeness-via-Canonicity 175

e.g. [KKP04,KKP05,KP11,JS10]) which can be summarized by the following
fundamental diagram:

C

F

��
L

��
⊥ Dop

G

��

T op

��
(1)

where C is the category in which ‘modal formulas’ are built from the functor L
and interpreted in T -coalgebras over ‘carriers’ in D . We must however be careful:
in this abstract formulation coalgebraic logic is extremely general indeed, and
the notion of canonical extension (and thus of canonicity) does not in general
make sense in the base category C on which the logic is defined. We therefore
need to restrict our attention to base categories whose objects have a notion
of canonical extension. This presents us with a conceptual restriction which
in practice is harmless since all examples of coalgebraic logics are based on
a category with a good notion of canonical extension, viz. the categories BA
of boolean algebras, DL or distributive lattice, or MSL of meet semilattices
(see [JS10] for an example of meet semilattice-based coalgebraic logic, and see
[GP14] for a discussion of canonical extensions in MSL). A second restriction
comes from the fact that canonicity must spontaneously appear from the diagram
above, in the sense that for any C -object A, the canonical extension of A must be
representable as GFA. This condition is more restrictive. In the case of boolean
logics, this poses no problem: if we take D = Set and the usual adjunction F =
Uf � P = G between the ultrafilter and powerset functors then PUfA is indeed
the canonical extension of A. However, in the case of positive coalgebraic logics
this requirement precludes the use of Set-based models for positive coalgebraic
logics, and we have to take F = Pf : DL → Posop the prime filter functor and
G = U : Posop → DL the upsets functor to represent the canonical extension of a
distributive lattice A as UPfA. The situation for MSL-based logics is much more
involved. The canonical extension of general semilattices is described in [GP14],
however no adjunction F � G between MSL and a category Dop emerges as a
‘natural’ way of building it. A duality theory for distributive meet-semilattices
is given in [BJ11]. It consists in building a distributive lattice D(A) from a
distributive semilattice A and then applying the usual functor Pf. It follows
from the construction of [BJ11] that F = Pf ◦ D � U ◦ U = G (where U is
the obvious forgetful functor), but we have not investigated if GFA is then the
canonical extension of A as described in [GP14]. We will therefore restrict our
attention to logics based on the category DL of which boolean logics (based on
BA) are a special case.

Having established the scope of logics which coalgebraic completeness-via-
cano-nicity can hope to tackle a priori, we must make the following remark
about what can be achieved in practice. Questions of canonicity are very hard;
in general it is undecidable whether a given formula is canonical, and establishing
that a particular class of formulas is canonical is almost always highly non-trivial.
What we will present in this paper is a general coalgebraic template which avoids



176 F. Dahlqvist

these hard questions altogether, a conceptual roadmap of how the technique of
completeness-via-canonicity works in coalgebraic logic. To actually prove com-
pleteness of a particular coalgebraic logic with a particular coalgebraic semantic
means implementing the technique, at which point the hard work begins.

So why choose the technique of completeness-via-canonicity to prove com-
pleteness if implementing it is so difficult? First of all, much of the implemen-
tation has been done for many well-known logics and as we will show, we now
have a complete theory for all positive or boolean logics with a relational seman-
tics. Secondly, because of all the methods for proving completeness in modal
logic, it is probably the best suited to being generalized to coalgebraic logic
since it has a very clean and abstract algebraic formulation which connects in a
very generic fashion to the coalgebraic semantics via the well-established coalge-
braic Jónsson-Tarski theorem (see [KKP05,KR12,SP09]). Moreover, we believe
that generalising completeness-via-canonicity to coalgebraic logics also greatly
clarifies the technique itself. The connection between the syntactic/algebraic
part of the method on one side, viz. canonical extensions and canonical equa-
tions, and the semantics/coalgebraic part of the method on the other side, viz.
the construction of ‘canonical models’, is greatly clarified by the abstracting
power of coalgebraic logics and its semantics. Another advantage of coalgebraic
completeness-via-canonicity is that it applies equally well to positive coalgebraic
logics (see [KKV12]). In fact, since the traditional boolean setting is a special
case of the more general setting of positive coalgebraic logics, we will formu-
late most results in terms positive coalgebraic logics. A final advantage of the
technique its modularity : we can combine strongly complete logics to create
new strongly complete logics in a completely mechanical way (in the spirit of
[CP07,DP11]). This work is in many ways a continuation and generalisation of
the author’s previous work with his PhD supervisor Dirk Pattinson [DP13]. The
paper will be structured as follows. We start by presenting coalgebraic logics
in its ‘abstract’ flavour. In Sect. 3 we describe the semantics/coalgebraic side of
completeness-via-canonicity, whilst Sect. 4 will deal with the syntactic/algebraic
side of the technique. Section 5 will show how and when the algebraic and
coalgebraic halves of the method can be combined, and strong completeness
proved. We will use the example of (positive) modal logic to illustrate every
important concept, and conclude with an application to ‘positive separation
logics’.

2 Preliminaries

Coalgebraic logics require seven mathematical entities, six of which we intro-
duced in the fundamental diagram (1). These six entities are:

(1) a ‘minimal reasoning structure’ in the form of a category C whose
objects are endowed with the fundamental logical operations we wish
to take for granted. Due to the algebraic nature of C -objects, we will
assume throughout that there exist a free-forgetful adjunction F � U



Coalgebraic Completeness-via-Canonicity 177

between Set and C (note the sans-serif font for the free functor). We
will take C to be DL,BDL or BA, the categories of distributive lat-
tices, bounded distributive lattices or boolean algebras with the obvious
morphisms.

(2) a ‘minimal modelling structure’ in the form of a category D whose
objects have the structure we wish the carriers of models to have. In
our examples we will take D to be either Pos or Set, the category of
posets and monotone functions or sets and functions.

(3)-(4) two functors F : C → Dop and G : Dop → C forming a dual adjunction
F � G relating the world of syntax to the world of semantics. In the
examples we will take F = Pf : DL → Posop the functor sending a
distributive lattice to the poset of its prime filters and DL-morphisms
to their inverse images, and G = U : Posop → DL the functor sending
a poset to the distributive lattice of its upsets and monotone maps to
their inverse images. An important special case of the adjunction Pf � U
is its restriction Uf � P to boolean algebras and sets: since prime filters
are maximal in boolean algebras – i.e. ultrafilters (hence the ultrafilter
functor Uf), their posets are trivial and thus simply form sets; upsets of
trivial posets are simply subsets (hence the powerset functor P).

(5) a syntax building functor L : C → C which specifies how to build ‘modal
algebras’, and in particular how to build modal formulas.

(6) a model building functor T : D → D which specifies the kind of transition
structure we want our models to have.

Languages, Logics and Free Algebras. As will be illustrated in the examples,
L can specify much more than a grammar, it can also enforce axioms. What is
included in L is a matter of convenience, but as we shall see, including some
axioms – specifically distribution laws – is a good idea. The distinction between
language and logic therefore becomes blurred, and indeed may not be terribly
useful in this presentation of coalgebraic logics. The relevant notion is that of a
free L-algebra. For our purpose it will be enough to say that the free L-algebra
over a C -object A, written as FLA, is the initial L(−) + A algebra. We will
assume throughout that these algebras exist, i.e. that L is a varietor, and focus
on a particular choice of objects in C , namely those which are themselves free
objects (recall that we assume a free-forgetful adjunction between Set and C ).
For example, if C = DL and V is a set of propositional variables, we will
consider the free L-algebra over the free distributive lattice over V , i.e. we will
consider L-algebras of the type FLFV . These are the entities which play the
role of language since their carriers contain terms freely built from propositional
variables, modulo the axioms of C and those encoded in L. In particular, it is
the elements of these algebras which we will want to interpret.

Coalgebraic Semantics. Terms in a free L-algebra are interpreted as ‘pred-
icates’ on the carriers of T -coalgebras. The exact meaning of the word ‘predi-
cate’ is specified by the functor G which maps the carrier of a T -coalgebra to
a C -structure whose elements are by definition the predicates. An interpreta-
tion is thus a map from terms over V , viz. elements FLFV , to predicates on



178 F. Dahlqvist

X, viz. elements of GX. We produce such an map by equipping GX with an
L(−)+FV -algebra structure and using the initiality of FLFV amongst L(−)+FV -
algebras. By definition of the coproduct, to define a morphism LGX+FV → GX
we need:

1. a morphism of the type FV → GX, and
2. a morphism of the type LGX → GX

By adjunction any morphism of the type FV → GX is equivalent to a map
V → UGX interpreting each propositional variable as a predicate, i.e. a valua-
tion v : V → UGX. The second morphism deals with modal terms whose inter-
pretation should depend on the transition structure γ : X → TX. To encode this
dependency we make the second morphism factor through Gγ : GTX → GX.
What we therefore need is a morphism δX : LGX → GTX for any D-object X.
Moreover, if β : Y → TY is another T -coalgebra and f : Y → X is a T -coalgebra
morphism, it is not hard to check that the unicity of catamorphisms enforces
Gβ ◦ GTf ◦ δX = Gβ ◦ δY ◦ LGf . In fact we assume the somewhat stronger con-
dition that the maps δX in fact define a natural transformation δ : LG → GT .
This natural transformation will be called the semantic transformation and is
the final necessary ingredient of coalgebraic logics. Given a semantics transfor-
mation and a valuation we define the interpretation of ‘formulas’ of FLFV in
γ : X → TX as the catamorphism �−�(γ,v) given by:

LFLFV + FV

��

L�−�(γ,v)+IdFV

���������� LGX + FV
δX+IdFV��

GTX + FV
Gγ+v̂��

FLFV
�−�(γ,v) �������������� GX

Modularity. Coalgebraic logics defined on a common minimal reasoning struc-
ture can be freely combined to form new logics combining the modalities of their
constituents in a process called the fusion of modal logics (see [CP07,DP11]).
Formally, if L1, L2 : C → C are two syntax constructors, then the fusion of
FL1FV and FL2FV is the language defined by the (point-wise) coproduct of
these functors, i.e. FL1+L2FV . Assuming that free Li-algebras are interpreted in
Ti-coalgebras via a semantics transformation δi for i = 1, 2, we can combine the
semantics in a dual way to the syntax by interpreting free L1 + L2-algebras in
T1 × T2-coalgebras via the semantics transformation Gπ1 ◦ δ1 + Gπ2 ◦ δ2 where
π1, π2 are the usual projections from a product.

Example 1 ((Positive) Modal Logic). Standard Modal Logic, henceforth ML, is
boolean and we therefore choose BA as our minimal reasoning structure. The
syntax building functor is LML : BA → BA defined by:

LMLA = F{♦a | a ∈ UA}/{♦(a ∨ b) = ♦a ∨ ♦b,♦⊥ = ⊥}
i.e. LML builds the free boolean algebra over the formal expressions ♦a with
a ∈ A, and then quotients this object by the fully invariant equivalence relation



Coalgebraic Completeness-via-Canonicity 179

(in BA!) generated by the distribution laws above. We will show how LMLA
can be defined categorically in Sect. 4. An LML-algebra is a boolean algebra with
operator, i.e. a boolean algebra together with a unary operation which distributes
over joins. Given a set V of propositional variables, the object representing the
language of ML will be FLMLFV , the colimit of the diagram

2
c0 �� LML2 + FV

c1=LML(c0)+IdFV �� LML(LML2 + FV ) + FV . . .

where 2 = {⊥,	} is the initial object in BA. The LML-algebra FLMLFV thus
contains all terms which can be built from elements of V,	,⊥,¬, ∨,∧ and ♦
modulo the axioms of BA and the distribution laws encoded in LML. For the
semantics we take T = P, the covariant powerset functor on Set, and the trans-
formation δ : LP → PP given at any set X and generator ♦U ∈ LMLPX by:

δML
X (♦U) = {V ⊆ X | U ∩ V = ∅}

It is clear that δX(♦(U1 ∪ U2)) = δX(♦U1 ∪ ♦U2) and δX(♦∅) = δX(∅), and δX

is thus well-defined. P and δ give the standard Kripke semantics of ML, the only
difference being that here we interpret equivalence classes of formulas.

Mutantis mutandis we can perform the exact same construction for positive
ML. The minimal reasoning structure becomes either DL or BDL depending on
whether we want 	 and ⊥ or not, and due to the lack of negation one needs to
introduce the dual operator � explicitly. The functor becomes LML : DL → DL

LMLA = F{♦a,�a | a ∈ UA}/{♦(a ∨ b) = ♦a ∨ ♦b,�(a ∧ b) = �a ∧ �b}
In the case of BDL one also adds ♦⊥ = ⊥ and �	 = 	 to the equations
defining the quotient. The construction of the language FLMLFV is exactly the
same as in the boolean case, with the caveat that the initial object in DL is the
empty distributive lattice ∅. On the semantics side we need to find an equivalent
of the covariant powerset for Pos. This is not entirely straightforward, but as
was persuasively argued in Example 5.3 of [VK11] and in [BKV13], the Pos
equivalent of P is the convex powerset functor Pc : Pos → Pos sending a poset
to the set of its convex subsets ordered by the Egli-Milner order. Since we are
not yet enforcing any relation between ♦ and �, we interpret positive ML in
TML-coalgebras for the functor TML = Pc × Pc (one copy of Pc per modality).
The semantics transformation δML : LMLU → U(Pc × Pc) is then defined as:

δML
X (♦U) = {(V1, V2) | U ∩ V1 = ∅} δML

X (�U) = {(V1, V2) | V2 ⊆ U}

and it is not hard to check that δX is well-defined, although interestingly this
relies heavily on the definition of the Egli-Milner order, confirming the choice of
Pc as the ‘correct’ generalization of P.

3 Strong Completeness and Jónsson-Tarski Extensions

We have seen how important the ‘predicate’ functor G : Dop → C is to define
the coalgebraic semantics but have so far ignored its left-adjoint F : C → Dop.



180 F. Dahlqvist

The intuition behind F is that it sends a reasoning structure to ‘states’ on this
structure, where a ‘state’ is a collection of elements structured in such a way that
it may be understood as a consistent set of logical terms which can simultane-
ously hold at some point in a model. A coarse description of the semantic half of
completeness-via-canonicity, which we present in this section, is that it consists
in equipping a (po)set of such states with the target coalgebraic structure, i.e. in
building models on collections of algebraic terms. Formally, starting from a C -
object A with an L-algebra structure, we want to place a T -coalgebra structure
on its set of ‘states’ FA. When A is of the shape FLFV , such a T -coalgebra is
often referred to as a ‘canonical’ model, although it is usually far from canonical.
In fact such a model almost always requires a non-constructive principle such as
the axiom of choice or the Prime Ideal Theorem (henceforth PIT). In this sense
‘canonical’ models are deeply non-canonical, which is why we will settle for an
alternative terminology.

The Coalgebraic Jónsson-Tarski Theorem. To formulate this important
result we need the following natural transformation: by using the adjunction
F � G, we can associate with each semantics transformation δ : LG → GT its
adjoint semantic transformation δ̂ : TF → FL given by δ̂ = FLη ◦ FδF ◦ εTF

where η, ε are the unit and counit of F � G.

Theorem 1 (Coalgebraic Jónsson-Tarski Theorem). Consider the funda-
mental situation of diagram (1) and let δ : LG → GT be a semantic transfor-
mation. For any AlgC (L)-object (A,α), if δ̂A has a right-inverse ζA then the
morphism ηA : A → GFA lifts to an L-algebra morphism.

Proof [KKP05]. We show that the following diagram commutes

LA
α ��

LηA
��

ηLA

���������������������� A
ηA

��
LGFA

δF A

�� GTFA
GζA

�� GFLA
GFα

�� GFA

(2)

The right-hand-side trapezium commutes by naturality of η, so we need only
show that the left-hand-side triangle commute.

ηLA = GζA ◦ Gδ̂A ◦ ηLA ζA right-inverse

= GζA ◦ GεTFA ◦ GF (δFA ◦ LηA) ◦ ηLA Definition of δ̂

= GζA ◦ GεTFA ◦ ηGTFA ◦ δFA ◦ LηA Naturality of η

= GζA ◦ δFA ◦ LηA F � G

Jónsson-Tarski Extensions. For C = DL, F = Pf and G = U if we assume
the PIT or the axiom of choice (the latter being strictly stronger than the for-
mer), then the unit of Pf � U is a monomorphism, i.e. ηA is injective at every
stage A. This means that in the conditions of Theorem 1, GFA is an extension
of A as an L-algebra. We call such an extension a Jónsson-Tarski extension of



Coalgebraic Completeness-via-Canonicity 181

(A,α) and denote it by αζ : LGFA → GFA. As this notation implies, we use the
terminology an extension, rather than the extension because in general, differ-
ent right-inverses ζA will lead to different extensions, although we will encounter
nice situations in the last section when there exists a unique Jónsson-Tarski
extension. We will however refer to the Jónsson-Tarski extension when a par-
ticular choice of right-inverse ζA has been made and no ambiguity is possible.
Note that ζA ◦ Pfα : PfA → TPfA is a T -coalgebra – i.e. a model – on ‘states’.
When A is of the shape FLFV this coalgebra is commonly known as a ‘canoni-
cal model’, although in practice the construction of right inverses to the adjoint
semantic transformation also requires the PIT or the AC, which makes these
models deeply non-canonical. It follows from the unicity of catamorphisms that
if δ̂FLFV has a right-inverse ζFLFV then the interpretation map in

PfFLFV → PfLFLFV
ζFLFV−−−−→ TPfFLFV

is given by Diagram (2), in other words �−�PfFLFV = ηFLFV . Modal logicians refer
to this as the truth lemma: a formula a holds at a prime filter w in a ‘canonical
model’ iff a ∈ w, by definition of η.

The Case of Boolean Coalgebraic Logics. In practice, when C = DL,
right-inverses to adjoint semantic transformations must be built explicitly, and
in fact this is also done in the construction of the standard ‘canonical’ model of
ML. However, when the minimal reasoning structure is BA the criterion for the
existence of Jónsson-Tarski extensions can be simplified somewhat, at the cost
of being even less constructive. Assuming the axiom of choice all epimorphisms
in Set are split, i.e. all surjections have a right inverse. For boolean coalgebraic
logics, it is therefore sufficient to require that δ̂ be a pointwise epimorphism, and
useful criteria for this to happen have been developed in [Dah15,KR12,SP09].

Strong Completeness. The main application of Jónsson-Tarski extensions is
to prove strong completeness. Let us first define precisely what we mean by
strong completeness. Let C be DL,BDL or BA, let V be a set of propositional
variables, let q : FLFV � L be a regular epi, and let Φ, Ψ ⊆ L be two families
of ‘formulas’ such that Φ � Ψ , i.e. such that no finite set Φ0 of elements of Φ
and no finite set Ψ0 of elements of Ψ can be found such that

∧
Φ0 ≤ ∨

Ψ0. The
statement that L is strongly complete w.r.t. to a class T of T -coalgebras means
that for any such choice of Φ, Ψ there exists a T -coalgebra γ : X → TX in T, a
valuation v : FV → GX, and a point x ∈ X such that x ∈ �a�(γ,v) for all a ∈ Φ
and x /∈ �b�(γ,v) for all b ∈ Ψ .

Theorem 2 (Strong Completeness). If the adjoint semantic transformation
δ̂ has a right-inverse ζFLFV at FLFV , then FLFV is strongly complete w.r.t. to
the class CoalgD(T ) of T -coalgebras.

Proof. Let Φ, Ψ ⊆ FLFV and Φ � Ψ . Then the filter 〈Φ〉↑ generated by Φ and the
ideal 〈Ψ〉↓ generated by Ψ obey 〈Φ〉↑ ∩〈Ψ〉↓ = ∅. By the PIT there exists a prime
filter wΦ extending 〈Φ〉↑ such that wΦ ∩ 〈Ψ〉↓ = ∅. By Theorem 1, the L-algebra



182 F. Dahlqvist

FLFV has a Jónsson-Tarski extension which provides an interpretation of FLFV

in the T -coalgebra PfFLFV → PfLFLFV
ζFLFV−−−−→ TPfFLFV , which coincides with

ηFLFV . In this interpretation wΦ ∈ �a� for all a ∈ Φ and wΦ /∈ �b� for all b ∈ Ψ .

Jónsson-Tarski extensions, and thus strong completeness, are modular:

Theorem 3 [DP15b]. Let Li : C → C , Ti : D → D , δi : LiG → GTi, i = 1, 2.
For any AlgC (L1 +L2)-object (A,α), if δ̂i

A has a right-inverse ζi
A, i = 1, 2, then

ηA : A → GFA lifts to an L1 + L2-algebra morphism.

In a nutshell, the purpose of coalgebraic completeness-via-canonicity is to deter-
mine how and when Theorem 2 resists to quotienting FLFV .

Example 2. The PIT-based technique of [DP15a] becomes particularly simple
for unary operators and shows that the adjoint transformation δ̂ML : TMLPf →
PfLML of the semantic transformation defined in Example 1 has right-inverses
ζML
A : PfLMLA → TMLPfA at every A in DL given by:

ζML
A (F ) = ({F1 | a ∈ F1 ⇒ ♦a ∈ F}, {F2 | �a ∈ F ⇒ a ∈ F2})

The (positive) language for ML defined by the functor LML is thus strongly
complete w.r.t. Pc × Pc-coalgebras. We will show later that quotienting this
language by the axioms relating ♦ and � defines a variety closed under Jónsson-
Tarski extension. Strong completeness with respect to Pc-coalgebras interpreting
both modalities by the same relation will then follow (modulo two lemmas).

4 Canonical Equations and Canonical
Extensions of L-algebras

In the previous section we have shown how to construct coalgebraic models
whose carriers are the ‘states’ FA of an L-algebra A in a way that provides
an L-algebra embedding of A into GFA. When C = DL (or BDL or BA) and
F � G is the adjunction Pf � U , objects of the form GFA are very well-known to
algebraists studying boolean algebras and distributive lattices, and are known as
canonical extensions and denoted Aσ. Motivated by the algebraic semantics of
modal logic, this notion was extended to boolean algebra with operators (BAOs)
[JT51] and distributive lattice expansions (DLEs) [GJ94,GJ04]. One of the key
areas of research in this domain is to find conditions under which the validity of
an equation in an BAO or a DLE can be transferred to its canonical extension,
i.e. conditions under which A |= s = t implies Aσ |= s = t. Such equations are
called canonical. In this section we will review the basic facts about canonical
equations and about a topological technique for establishing the canonicity of
equations. As a by-product of this theory we will give a theoretically partial but
practically complete answer to the following question:

For which functors L : DL → DL does the canonical extension construction in
DL lift to AlgDL(L)?



Coalgebraic Completeness-via-Canonicity 183

Canonical Extensions of DLs. For any A in DL, UPfA is known as the
canonical extension of A and denoted Aσ. It can be characterised uniquely up to
isomorphism through purely algebraic properties, namely that A is dense and
compact in Aσ. In this sense the adjective ‘canonical’ is fully justified, in contrast
with its usage in the expression ‘canonical model’. For our purpose however,
defining the canonical extension of A as UPfA will be sufficient. The canonical
extension Aσ of a distributive lattice A is always completely distributive (see
[GJ04]). The following terminology will be important: Aσ is a completion of A
and all joins of elements of A therefore exist in Aσ, such elements are called open
and their set is denoted by O(A). Dually, meets in Aσ of elements of A will be
called closed and their set denoted K(A). Elements of A = K(A) ∩ O(A) are
therefore called clopens.

Canonical Extension of DLEs. It was shown in [JT51] that if A is a BA with
a map f : UA → UA preserving joins then Aσ = PUfA can be equipped with
a map fσ : UAσ → UAσ which extends f and preserves all non-empty joins.
This construction was later extended to DLs with n-ary maps and no particular
preservation properties in [GJ94,GJ04]. Formally, given a signature Σ with arity
map ar : Σ → N, define the syntax building functor LΣ : DL → DL by:

LΣA = F

(∐
s∈Σ

UAar(s)

)
(3)

An LΣ-algebra is a distributive lattice with n-ary maps defined by the signature,
i.e. a Distributive Lattice Expansion, or DLE for short. We now sketch the theory
of their canonical extensions. Each map f : UAn → UA can be extended to a
map (UAσ)n → UAσ in two canonical ways:

fσ(x) =
∨

{
∧

f [d, u] | K(A)n � d ≤ x ≤ u ∈ O(A)n}
fπ(x) =

∧
{
∨

f [d, u] | K(A)n � d ≤ x ≤ u ∈ O(A)n}

where f [d, u] = {f(a) | a ∈ An, d ≤ a ≤ u}. In many important cases, the two
extensions (viz. fσ and fπ) agree, in which case f is said to be smooth. We define
the canonical extension of an LΣ-algebra A as the LΣ-algebra Aσ defined by
(Aσ, (fσ

s : (UAσ)ar(s) → UAσ)s∈Σ). This gives us a first class of functors L which
answers the question above: for any finitary signature Σ, the DL-endofunctor
LΣ defined by Eq. (3) lifts canonical extensions from DL to AlgDL(LΣ).

Topological Methods where introduced in [GJ04,Ven06] to study the canon-
ical extension of maps. These methods are useful because they (a) uniquely
characterize canonical extensions, (b) reflect interesting algebraic properties of
maps (e.g. the preservation of meets) and, crucially (c) provide a very effective
way of studying the composition of canonical extensions which is essential to
establishing canonicity. We need six topologies on Aσ. First, we define σ↑, σ↓

and σ as the topologies defined by the bases {↑ p | p ∈ K},{↓ u | u ∈ O} and
{↑ p ∩ ↓ u,K � p, u ∈ O}. The next set of topologies is well-known to domain



184 F. Dahlqvist

theorists: a Scott open in Aσ is a subset U ⊆ Aσ such that (1) U is an upset
and (2) for any up-directed set D such that

∨
D ∈ U , D ∩U = ∅. The collection

of Scott opens forms a topology called the Scott topology, which we denote γ↑.
The dual topology will be denoted by γ↓, and their join by γ. Since for every
x ∈ Aσ, x =

∨ ↓ x ∩ K =
∧ ↑ x ∩ O, it is easy to see that γ↑ ⊆ σ↑, γ↓ ⊆ σ↓,

and γ ⊆ σ. We denote the product of topologies by ×, and the n-fold product
by (−)n.

Proposition 1 [GJ04]. For any DL A and map f : UAn → UA,

1. fσ is the largest (σn, γ↑)-continuous extension of f ,
2. fπ is the smallest (σn, γ↓)-continuous extension of f
3. f is smooth iff it has a unique (σn, γ)-continuous extension.

The following result which relates algebraic and topological properties, is a
straightforward generalization of results from [GH01,GJ94,GJ04,Ven06].

Proposition 2. Let A be a distributive lattice, and let f : UAn → UA be a map.
For any (n − 1)-tuple a = (ai)1≤i≤n−1, we denote by fk

a : UA → UA the map
defined by x �→ f(a1, . . . , ak−1, x, ak, . . . , an−1).

1. If fk
a preserves binary joins, (fσ)k

a preserves all non-empty joins.
2. If fk

a preserves binary meets, (fσ)k
a preserves all non-empty meets.

3. If fk
a anti-preserves binary joins, (fσ)k

a anti-preserves all non-empty joins.
4. If fk

a anti-preserves binary meets, (fσ)k
a anti-preserves all non-empty meets.

5. If (fσ)k
a preserves all non-empty joins, it is (σ↓, σ↓)-continuous.

6. If (fσ)k
a preserves all non-empty meets, it is (σ↑, σ↑)-continuous.

7. If (fσ)k
a anti-preserves all non-empty joins, it is (σ↓, σ↑)-continuous.

8. If (fσ)k
a anti-preserves all non-empty meets, it is (σ↑, σ↓)-continuous.

9. In each case fk
a is is smooth.

Function composition and canonical extension interact in a non-trivial way, but
the following consequence of Proposition 1 greatly clarifies their interaction. This
result is our main tool for proving canonicity.

Theorem 4 (Principle of Matching Topologies, [GH01,Ven06]). Let A be
a DL, and f : UAn → UA and gi : UAmi → UA, 1 ≤ i ≤ n be arbitrary maps.
Assume that there exist topologies τi on A, 1 ≤ i ≤ n such that each gσ

i is
(σmi , τi)-continuous. If fσ is

1. (τ1 × . . . × τn, γ↑)-continuous, then fσ(gσ
1 , . . . , gσ

n) ≤ (f(g1, . . . , gn))σ,
2. (τ1 × . . . × τn, γ↓)-continuous, then fσ(gσ

1 , . . . , gσ
n) ≥ (f(g1, . . . , gn))σ,

3. (τ1 × . . . × τn, γ)-continuous, then fσ(gσ
1 , . . . , gσ

n) = (f(g1, . . . , gn))σ.

Monotone (i.e. isotone or antitone) maps have a nice property which com-
plements the Principle of Matching Topologies very effectively. The proof of
this property can already be found for isotone maps in [Rib52], and general-
izes tediously but straightforwardly to monotone maps (i.e. either isotone or
antitone).



Coalgebraic Completeness-via-Canonicity 185

Proposition 3. Let gi : (UA)ni → UA, 1 ≤ i ≤ m and f : (UA)m → UA be
monotone maps, then (f(g1, . . . , gm))σ ≤ fσ(gσ

1 , . . . , gσ
m).

Canonicity. Before we consider the canonical extension of more general L-
algebras, we need to talk about canonicity. Let us fix a signature Σ. Recall that
an equation s = t in the language of LΣ-algebras (i.e. DLEs with signature Σ)
is canonical if it has the property that Aσ |= s = t whenever A |= s = t. To
say anything about the canonicity of equations, we therefore need to compare
interpretations in A with those in Aσ. It is natural to try to use the extension
(·)σ to mediate between these interpretations, but (·)σ is defined on maps, not
on terms. Moreover, not every valuation on Aσ originates from valuation on
A. We therefore want to recast the problem in such a way that (1) terms are
viewed as maps, and (2) we do not need to worry about valuations. The solution
is to adopt the language of term functions (as first suggested in [Jón94]). Let
Σ be a signature and t be a term in the language FLΣ

FV , there exist a finite
set V0 = {p1, . . . , pn} ⊆ V containing the propositional variables of t. For any
LΣ-algebra A, we can put an LΣ(−)+FV0-algebra structure on the distributive
lattice An of n-ary maps on A (with pointwise meets and joins) as follows:

– Define v : V0 → UAn, pi �→ πi, the ith projection (UA)n → UA.
– For each f ∈ Σ, we overload and define f : (UAn)ar(f) → UAn by

(g1, . . . , gar(f)) �→ f ◦ 〈g1, . . . , gar(f)〉, where 〈〉 denotes the product.

By taking the adjoint transpose of these maps (i.e. freely extending) we equip
An with the desired algebraic structure. We can now interpret a term t as the
term function tA : UAn → UA given by the catamorphism (·)A:

LΣFLΣ
FV0 + FV0

LΣ(·)A+IdFV0 ��������

��

LΣAn + FV0
∑

f∈Σ f̂+v̂��
FLΣ

FV0
(·)A

������������ An

For any two terms s, t ∈ FLΣ
FV we can take V0 to be the set of propositional

variables required to build both s and t and thus get a common catamorphism
(·)A interpreting both terms as maps (UA)n → UA. It is then well-known and
easy to check that A |= s = t iff sA = tA. Following [Jón94], we say that t ∈
FLΣ

FV is stable if (tA)σ = tA
σ

, that t is expanding if (tA)σ ≤ tA
σ

, and that t
is contracting if (tA)σ ≥ tA

σ

, for any A. The inequality between maps is taken
pointwise. The following proposition illustrates the usefulness of these notions:

Proposition 4 [Jón94]. If s, t ∈ FLΣ
FV are stable then s = t is canonical. If s

is contracting and t is expanding, then s ≤ t is canonical.

In practice, we use the Principle of Matching Topologies (Theorem 4) to deter-
mine when a term is stable, expanding or contracting, and thus when equations
or inequations are canonical.



186 F. Dahlqvist

Canonical Extension of L-Algebras. We now show that LML defined in
Example 1 belongs to a general class of functors of the form LΣ/{E} for which
the canonical extension construction always lifts to AlgDL(L). To categorically
formalize functors of the type LΣ/{E} for a set E of equations, we need to
capture the notion of fully invariant equivalence relation generated by a set
of equations. We will only sketch the construction which can be performed in
great generality in any well-powered cocomplete regular category (see [Dah15],
Chap. 1). Consider a set E of equations in FLΣ

FV (e.g. E = {♦(a ∨ b) = ♦a ∨
♦b,♦⊥ = ⊥}), it is equivalent to a pair of jointly monic functions e1, e2 : E ⇒
UL where L is the distributive lattice underlying the LΣ-algebra FLΣ

FV . By
adjunction we can re-write this as a pair of morphisms ê1, ê2 : FE ⇒ L where
FE is the ‘free DL of equations’. Consider the coequalizer FE ⇒ L q

� Q of
ê1, ê2 and all the terms s, t ∈ L such that q(s) = q(t). They form an equivalence
relation in DL (the kernel pair of q) containing E, but not a fully invariant
one (e.g. ♦(c ∨ d) = ♦c ∨ ♦d for c = a, d = b does not in general belong to
this relation). To capture substitution instances we must consider a ‘bigger’
coequalizer, namely

∐
f∈hom(L,L)

FE

∐

f∈hom(L,L)
LΣf◦φ−1◦ê1

��
∐

f∈hom(L,L)
LΣf◦φ−1◦ê2

�� LΣL qL �� �� LL := LΣ/{E}(L) (4)

where φ : LΣL → L is the iso structure map of the free LΣ-algebra. The pairs of
terms s, t such that q(s) = q(t) now form a fully invariant equivalence relation
in DL. We nearly have a rigorous definition of functors of the shape LΣ/{E},
the final step is to notice that (4) can to some extent be made parametric in the
choice of the middle object. We define for any A the coequalizer qA:

∐
f∈hom(L,A)

FE

∐

f∈hom(L,A)
LΣf◦φ−1◦ê1

��
∐

f∈hom(L,A)
LΣf◦φ−1◦ê2

�� LΣA
qA �� �� LA := LΣ/{E}(A) (5)

It is easy to see that (5) defines a functor: for any f : A → B, amongst the
morphisms L → LΣB are all the ones which factor through LΣA via LΣf , and
thus LB is a co-cone for the diagram defining LA and so there must exist a
unique Lf : LA → LB. For the same reason LL is initial amongst all objects of
the form LA with A in DL. Any L-algebra α : LA → A defines an LΣ-algebra,
i.e. a Σ-DLE, α ◦ qA : LΣA → LA → A which will call the associated Σ-DLE.

Theorem 5 (Canonical Extension Lifting). Let Σ be a finitary signature,
let E be a set of equations between terms in FLΣ

FV of modal depth at most one
and let L : DL → DL be defined by LA = LΣ/{E}(A) as in (5). If for any
L-algebra α : LA → A, the n-ary maps of the associated Σ-DLE are monotone,
then the canonical extension construction lifts from DL to AlgDL(L).



Coalgebraic Completeness-via-Canonicity 187

Proof. For any α : LA → A, the map φ = α ◦ qA : LΣA → LA → A defines an
LΣ-algebra, and we know how to build the canonical extension of LΣ-algebras.
Let φσ : LΣAσ → Aσ be this canonical extension and let us define ασ : LAσ →
Aσ by ασ(x) = φσ(y) for y ∈ q−1

Aσ (x). We need to show that ασ is well-defined, i.e.
that if qAσ (y) = qAσ (y′) = x then φσ(y) = φσ(y′). Note that if it is the case, then
it is immediate to check that ασ is a DL-morphism. If qAσ (y) = qAσ (y′) then
there must exist a z ∈ FE and f ∈ hom(L, LΣAσ) such that y = f ◦ ê1(z), y′ =
f ◦ ê1(z). But we know that φ(g ◦ ê1(z)) = φ(g ◦ ê2(z)) for any g ∈ hom(L, LΣA)
by definition of φ. This means that (A,φ) |= ê1(z) = ê1(z), and therefore if
the equation is canonical we are done, for then (Aσ, φσ) |= ê1(z) = ê2(z), i.e.
φσ(g ◦ ê1(z)) = φσ(g ◦ ê2(z)) for any g ∈ hom(L, LΣAσ), and thus for g = f .

The result thus amounts to showing that equations involving terms of modal
depth at most one are canonical, and this will follow immediately from Proposi-
tion 4 if we can show that terms of modal depth at most one are stable. Let A be
in DL and t ∈ FLΣ

FV be a term of modal depth 0 built from propositional vari-
ables in V0 = {p1, . . . , pn}. By distributivity, we can assume t =

∨l
i=1

∧mi

j=1 pk(i,j)

where k picks for each (i, j) the index of a variable in V . By definition

tA = ∨A ◦ 〈∧A ◦ 〈πk(1,1), . . . , πk(1,m1)〉, . . . ,∧A ◦ 〈πk(l,1), . . . , πk(l,ml)〉〉
where ∨A : (UA)l → UA is the l-ary join in A, and similarly for every ∧A.
Each πσ

i : (UAσ)n → UAσ is (σn, σ)-continuous by definition of σn. Moreover,
∨Aσ

and ∧Aσ

preserve meets and joins in every argument by distributivity, and
are thus (σl, σ)- and (σmi , σ)−continuous respectively by Proposition 2. It fol-
lows that tA

σ

= (tA)σ by the Principle of Matching Topologies. Assume now
that t is of modal depth 1, i.e. t =

∨n
i=1

∧mi

j=1 fij(aij1, . . . , aijar(fij)), where each
aijk is of modal depth 0. Since every extension fij is assumed to be monotone,
Proposition 3 implies that (tA)σ ≤ tA

σ

. So we need only show the reverse inequal-
ity. We have established above that each aAσ

ijk is (σn, σ)-continuous, and by Propo-
sition 1 fAσ

ij is (σar(fij), γ↑)-continuous. Finally since ∨Aσ

and ∧Aσ

preserve all
joins they preserve up-directed ones and are thus ((γ↑)k, γ↑)-continuous. The
result then follows from the Principle of Matching Topologies. A completely
analogous proof can be shown to hold in boolean algebras by using the de Mor-
gan laws and the antitone preservation properties of Proposition 2.

Remark. Not all sets E of equations satisfying the conditions of Theorem 5
make sense, take for example Σ = {♦} and E = {a = b,♦(c∨d) = ♦c∨♦d} with
a, b, c, d ∈ V all distinct. The equation a = b is canonical: choose V0 = {a, b, c, d},
then aA is simply the projection πA

1 : A4 → A and bA is simply πA
2 : A4 → A for

any LΣ-algebra A. It is easy to check from the definition that (πA
1 )σ = (π1)Aσ

,
and similarly for πA

2 , so the terms are stable, and the equation canonical. But it
is vacuously canonical: πA

1 and πA
2 are not equal.

Remark. As was mentioned earlier, [Sch06] shows that for a Set-endofunctor
T , the class of all T -coalgebras can be characterized by axioms of modal depth
one. From the point of view of coalgebraic logic, the only restrictive requirement
of Theorem 5 is therefore that the expansions defined by such an axiomatization



188 F. Dahlqvist

should be monotone. This however covers most coalgebraic logics, for example
graded modal logic, probability logic, conditional logic, etc.

Example 3. It is clear from the definition of LML in Example 1 that LML satisfies
the conditions of Theorem 5, i.e. canonical extensions lift to AlgDL(LML). In
order to axiomatize the duality between ♦ and � in positive ML, one must
enforce Dunn’s Interaction Axioms on LML-algebras [Dun95]:

♦a ∧ �b ≤ ♦(a ∧ b), �(a ∨ b) ≤ �a ∨ ♦b

It follows from the proof of Theorem 5 that these inequations are also canonical.

5 Jónsson-Tarski vs Canonical Extensions.

Combining the results of Sects. 2 and 3, we know that for logics defined by an
endofunctor L : C → C satisfying the conditions of Theorem 5 and a semantic
transformation δ : LG → GT satisfying the conditions of Theorem 1, any L-
algebra α : LA → A has two extensions with a common carrier: the Jónsson-
Tarski extension αζ and the canonical extension ασ. There is no reason a priori
for them to be isomorphic L-algebras, but it turns out that this is frequently
the case in practice. It is in these instances that coalgebraic completeness-via-
canonicity applies. For now though the situation is the following:

LGFA

αζ

		

δF A��

LA

α

��

LηA




LηA

�� LAσ

ασ

��

GTFA
GζA��

GFLA
GFα��

GFA A
ηA

 ηA �� Aσ

(6)

The left-hand side of Diagram (6) deals with the model-building part of coal-
gebraic completeness-via-canonicity, whilst the right-hand side of Diagram (6)
deals with the algebraic part the method.

Theorem 6 (Coalgebraic Completeness-via-Canonicity). Let L : DL →
DL satisfy the conditions of Theorem5 and δ : LU → UT the conditions of
Theorem1. If q : FLFV � L is the quotient in AlgDL(L) of a fully invari-
ant equivalence relation defining a variety closed under canonical extensions,
and if the Jónsson-Tarski and canonical extensions coincide, then L is strongly
complete w.r.t. the class of T -coalgebras validating all equations s = t s.th.
q(s) = q(t).

Proof. For any Φ, Ψ ⊆ L such that Φ � Ψ we can find a point in the coalgebra
γ : PfL → TPfA satisfying every formula in Φ and none of Ψ exactly as in



Coalgebraic Completeness-via-Canonicity 189

Theorem 2, but we must also check that this T -coalgebra validates all the equa-
tions s = t where s, t ∈ FLFV and q(s) = q(t). If q(s) = q(t), then (L, α) |= s = t
by construction of L. Since L belongs to the variety it defines (in fact it is its
initial object), and since this variety is assumed to be closed under canonical
extensions, it follows that (Lσ, ασ) |= s = t. Finally, since the Jónsson-Tarski
and canonical extensions coincide we have (UPfL, αζ) |= s = t which means that
�s�(γ,v)= �t�(γ,v) for any valuation v : FV → UPfL.

Remark. If E is a set of equations between terms of FLFV , then the quotient
q : FLFV � L defined from E in the fashion of Diagram (4) is usually called the
Lindenbaum-Tarski algebra of the logic defined by L and E.

Remark. We choose to require that a variety defined by a regular quotient of
the free L-algebra should be canonical, i.e. closed under canonical extensions.
This is strictly more general than requiring that a variety be defined by canonical
equations (in which case it is also canonical). Indeed, as was shown in [HV05],
there exist canonical varieties of BAOs with no canonical axiomatization.

Remark. In fact we could require less than a full isomorphism of L-algebras,
what is really needed is the implication (Aσ, ασ) |= s = t ⇒ (UPfA,αζ) |= s = t.

We now give a useful criterion for the Jónsson-Tarski and canonical extensions
to be equal. Consider for a finitary signature Σ a set E of equations of the shape

{f(a1, . . . , ai−1,
�f,i

X, ai+1, . . . , an) =
�f,i

b∈X

f(a1, . . . , ai−1, b, ai+1, . . . , an) | (7)

f ∈ Σ, 1 ≤ i ≤ ar(f),
�f,i

,
�f,i

∈ {
∧

,
∨

}, X ∈ Pf (FLΣFV )}

and let L : DL → DL be defined as LA = LΣ/{E}(A) as in Eq. (5). It is easy
to see that for any α : LA → A, the associated Σ-DLE has n-ary expansions
which (anti)-preserve meets or joins in each argument.

Theorem 7. Let E be as in Eq. (7) and LA = LΣ/{E}(A). Let E∞ denote the
set equations defined as (7) but with Pf (FLΣ

FV ) replaced by P(FLΣ
FV ). If at

every A in DL the adjoint transformation δ̂ of δ : LU → UT has a right-inverse
ζA and δPfA ◦ qA coequalizes the pair of morphisms defined by plugging E∞ in
(5), then the Jónsson-Tarski and canonical extensions coincide.

Proof. Let (A,α) be an L-algebra. Note first that L is of the shape required by
Theorem 5: E is a set of equations of modal depth at most one, and if the n-ary
expansions of the Σ-DLE associated with (A,α) (anti)-preserve meets or joins
in each argument, they are in particular monotone in each argument.

The structure map of the Jónsson-Tarski extension of (A,α) is denoted by
αζ and that of the canonical extension by ασ. The situation can be summarised



190 F. Dahlqvist

in the following diagram whose innermost and outermost triangles commute:

LΣAσ

αζ◦qAσ

�������������������

(α◦qA)σ

�������������������

qAσ �� LAσ

ασ

��

αζ

��
Aσ

We need to show αζ = ασ. It follows from the definition of E and Proposition 2
that the n-ary expansions of the Σ-DLE associated with (A,α) are smooth, and
therefore have unique (σn, γ)-continuous extensions given by (α◦qA)σ, moreover
ασ is defined in such a way that ασ ◦ qAσ = (α ◦ qA)σ (see Theorem 5).

By definition αζ = UPfα◦UζA◦δPfA. Since δPfA◦qAσ is assumed to coequalize
the maps defined by E∞ in the way of Diagram (5), so does αζ◦qAσ , and it follows
that that the n-ary expansions of the Σ-DLE associated with αζ satisfy one of
the conditions 5,6,7,8 of Proposition 2, and are in particular (σn, γ)-continuous.
They therefore define the same LΣ-algebra structure on Aσ as (α ◦ qA)σ. It
follows that αζ ◦ qAσ = ασ ◦ qAσ , i.e. that αζ = ασ since qAσ is (regular) epi.

Example 4. As was shown in Example 2, LML-algebras have Jónsson-Tarski
extensions. Moreover, it is not difficult to see directly from the definition of δML

that for any A in DL its composition with the quotient qA : L{♦,�}A � LMLA
determines two unary maps on A preserving respectively all non-empty joins
and all non-empty meets, i.e. δML meets the criterion of Theorem 7.

Moreover as was shown in Example 3, LML-algebras also have canonical
extensions, and it is clear from the definition that the equations defining LML

are of the general shape of (7). It follows that LML satisfies the conditions of
Theorems 7 and coalgebraic completeness-via-canonicity, i.e. Theorem 6, can
therefore be used. Consider for example Dunn’s Interaction axioms:

I = {♦a ∧ �b ≤ ♦(a ∧ b),�(a ∨ b) ≤ �a ∨ ♦b}
Since they are canonical (see Example 3), it follows from Theorem 6 that the
quotient of FLMLFV under the fully invariant equivalence relation in DL defined
by I, is strongly complete w.r.t. to Pc×Pc-coalgebras validating I. We will denote
this logic K+. These axioms do not collapse the relations interpreting ♦ and � as
might be expected and as is the case in standard Kripke frames (see [Dun95] and
6.1 of [GNV05] for a discussion on models with one or two relations). However,
we can always find such a model if we accept to have a relation closed upward and
downward. The following lemma is very useful in practice and greatly clarifies
correspondence theory for positive ML (see [CJ97]). We denote by ↓ γ (resp.
↑ γ) the pointwise downward (resp. upward) closure of a map γ : W → PcW .

Lemma 1. Let γ♦ × γ� : W → Pc(W ) ×Pc(W ), w ∈ W and a ∈ FLMLFV . then
(w, γ♦ × γ�, v) |= a iff (w, ↓ γ♦× ↑ γ�, v) |= a for any valuation v.

Proof. Immediate from the fact that denotations are upsets.



Coalgebraic Completeness-via-Canonicity 191

Lemma 2. Let γ♦ × γ� : W → Pc(W ) × Pc(W ) be a coalgebra validating the
Interaction axioms, and let w ∈ W and a ∈ FLMLFV , then (w, γ♦ × γ�, v) |= a
iff (w, (γ♦ ∩ γ�) × (γ♦ ∩ γ�), v) |= a for any valuation v.

Proof. By induction on a, the interesting cases being a = ♦b and a = �b. We
show the ♦b case, the other is dual. From Lemma 1, we can assume w.l.o.g. that
γ� is upward-closed. We fix a valuation v : V → U(W ) and show the non-trivial
direction: assume (w, γ♦ × γ�, v) |= ♦b. Since ♦c ∧ �d ≤ ♦(c ∧ d) is valid, it
must hold at w for any valuation. Consider for instance the following valuation:
let q be a free variable, i.e. not occurring in b, and let us define v′(p) = v(p)
on V \ {q} and v′(q) = γ�(w), which is an upset. The denotations of b under v
and v′ are equal. By construction we have (w, γ♦ × γ�, v′) |= ♦b ∧ �q, and thus
(w, γ♦ × γ�, v′) |= ♦(b ∧ q), and therefore there exist x ∈ γ♦(w) ∩ γ�(w) ∩ �b�v′

but since �b�v′ = �b�v this means that there exists x ∈ γ♦(w) ∩ γ�(w) ∩ �b�v, i.e.
(w, (γ♦ ∩ γ�) × (γ♦ ∩ γ�), v) |= ♦b as desired.

The choice of which type of model to consider, viz. models with one or two rela-
tions, will in fine depend on what the models represent. In the next example we
will present models where states are memory resources and accessibility relations
correspond to the action of programs. A single relation then interprets each pair
of existential and universal modalities, and I is then trivially satisfied.

Example 5 (Modal separation logics). We conclude with a more elaborate family
of examples. In [DP15a] we introduced the functor LSL : DL → DL defined by

LSLA =F{I, a ∗ b, a −∗b, a ∗−b | a, b ∈ UA}/

{(a ∨ b) ∗ c = (a ∗ c) ∨ (b ∗ c), a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c)
a −∗(b ∧ c) = (a −∗b) ∧ (a −∗c), (a ∨ b) −∗c = (a −∗c) ∧ (b −∗c)
(a ∧ b) ∗−c = (a ∗−c) ∧ (a ∗−c), a ∗−(b ∨ c) = (a ∗−b) ∧ (a ∗−c)}

We interpret LSL-formulas in T SL-coalgebras for T SL : Pos → Pos defined by:

T SLW = 2 × Pc(W × W ) × Pc(W op × W ) × Pc(W × W op)

via the semantic transformation δSL : LSLU → UT SL defined on generators at
each poset W by δSLW (I) = {t ∈ T SLW | π1(t) = 0} and

δSLW (U ∗ V ) = {t ∈ T SLW | ∃(x, y) ∈ π2(t), x ∈ U, y ∈ V }
δSLW (U −∗V ) = {t ∈ T SLW | ∀(x, y) ∈ π3(t), x ∈ U ⇒ y ∈ V }

δSLW (U ∗−V ) = {t ∈ T SLW | ∀(x, y) ∈ π4(t), y ∈ V ⇒ x ∈ U}

The intended interpretation of this language is that worlds represent resources
which can be split and w |= p∗q means that the resource w can be split into two
resource s, t such that s |= p and t |= q. The operations −∗ and ∗− are left and
right residuals to ∗, and I acts as a unit. This is encoded by the (in)equations:



192 F. Dahlqvist

FC1 a ∗ 1 = a, 1 ∗ a = a
FC2 1 ≤ a −∗a, 1 ≤ a ∗−a
FC3 a ∗ (b −∗c) ≤ (a ∗ b) −∗c

FC4 (c ∗−b) ∗ a ≤ c ∗−(a ∗ b)
FC5 (a −∗b) ∗ b ≤ a
FC6 b ∗ (b ∗−a) ≤ a

The logic defined by LSL and these (in)equalities is known as separation logic or
the logic of bunched implication or the distributive Lambek calculus depending
on the context, and we shall denote it as SL. These (in)equations are canoni-
cal (residuated maps and their residuals are very well-behaved under canonical
extension, even in posets see [Mor14]). As was shown in [DP15a], the adjoint
transformation δ̂SL has right-inverses at every A in DL, and LSL-algebras there-
fore have Jónsson-Tarski extensions. Moreover, as can be seen from the defi-
nition of δSL the criterion of (anti)-preservation of arbitrary joins or meets of
Theorem 7 is also satisfied. Finally, the equations defining LSL satisfy the con-
ditions of Theorem 5 and canonical extensions thus lift to AlgDL(LSL). All the
conditions of Theorem 7 are thus satisfied, and we can use Theorem 6 on the
regular quotient defined by FC1-FC6. The logic SL is thus strongly complete
w.r.t. the T SL-coalgebras validating these axioms, viz. T SL-coalgebras such that

(x, y) ∈ γ∗(w) iff (x,w) ∈ γ−∗(y) iff (w, y) ∈ γ∗−(x) (8)

and for every w ∈ W there exists (w, x), (y, w) ∈ γ∗(w) with x, y |= I. A typical
example of such coalgebra is given by memory states represented by the set H of
heaps, i.e. partial maps f : N+ ⇀f N with finite domain. These are ordered by
f ≤ g if g � domf = f , the empty heap is the unit and γ∗ : H → Pc(H ×H), f �→
{(g, h) | domg ∩ domh = ∅, g, h ≤ f} interprets the separation conjunction ∗
and its residuals via (8). In this context, it is reasonable to combine modal
logics for program specification with separation logic to describe heaps evolving
under the action of programs. Various fragments of PDL (see [Gol92]) are good
candidates. For example, consider the simple program syntax α:: = π | α;α with
π ∈ Π a set of atomic programs. By Theorem 3, the results for SL and K+, and
Lemma 2, it follows that the fusion

⊕
Π∗ K+ ⊕SL is strongly complete w.r.t. to∏

Π∗ Pc(−) × 2×Pc((−) × (−))-coalgebras. If we want to encode the sequential
composition of the grammar in the interpretation we need the axioms

Comp = {〈α1;α2〉a = 〈α1〉〈α2〉a, [α1;α2]a = [α1][α2]a | α1, α2 ∈ Π∗}
It is easy to check from Theorem 4 that these axioms are canonical. They

are valid in a model with a single relation Rα interpreting each pair 〈α〉, [α] if
R↓

α1
◦R↓

α2
= R↓

α1;α2
and R↑

α1
◦R↑

α2
= R↑

α1;α2
, where R↓

α and R↑
α are the downward

and upward closure of Rα respectively. Theorem 6 gives us strong completeness
of

⊕
Π∗ K+/{Comp} with respect to such coalgebras, and modularity then gives

us strong completeness of
⊕

Π∗ K+/{Comp} ⊕SL. Note how the use of positive
logics allows us to talk about existential access to all resources smaller than
certain upper bounds, and universal access to resources larger than certain lower
bounds. More interestingly perhaps, we could consider α:: = π | α;α | α ‖ α with
a parallel composition operation and interaction axioms of the shape

〈α1 ‖ α2〉a = 〈α1〉a ∗ 〈α2〉a



Coalgebraic Completeness-via-Canonicity 193

This time, strong completeness will not simply transfer by modularity since we
are making the languages interact, however since such equations are canonical,
we can still apply completeness-via-canonicity, only this time to the entire logic.

6 Conclusion

We have described the key steps of the coalgebraic version of completeness-
via-canonicity, and in particular the key role played by the Jónsson-Tarski and
canonical extensions. We have sketched an implementation of the method for
all positive or boolean logics with modalities satisfying a set of equations in the
shape of (7) and a relational semantics. Much work remains to be done. We have
a complete implementation for boolean graded logics, but not yet in the positive
case, and no implementation at all for probability logic. For this we would like
to explore whether the method can be applied to MSL-based logics, since an
expressive logics for Markov chains can be formulated over MSL [JS10].

References

[BJ11] Bezhanishvili, G., Jansana, R.: Priestley style duality for distributive meet-
semilattices. Stud. Logica 98(1–2), 83–122 (2011)

[BKV13] Balan, A., Kurz, A., Velebil, J.: Positive fragments of coalgebraic logics.
In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 51–65.
Springer, Heidelberg (2013)

[CJ97] Celani, S., Jansana, R.: A new semantics for positive modal logic. Notre
Dame J. Formal Logic 38(1), 1–18 (1997)

[CKP+09] Ĉırstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics
are coalgebraic. Comput. J. (2009)

[CP07] Ĉırstea, C., Pattinson, D.: Modular construction of complete coalgebraic
logics. Theor. Comput. Sci. 388(1–3), 83–108 (2007)

[Dah15] Dahlqvist, F.: Completeness-via-canonicity for coalgebraic logics, Ph.D.
thesis, Imperial College London (2015)

[DP11] Dahlqvist, F., Pattinson, D.: On the fusion of coalgebraic logics. In: Cor-
radini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp.
161–175. Springer, Heidelberg (2011)

[DP13] Dahlqvist, F., Pattinson, D.: Some Sahlqvist completeness results for coal-
gebraic logics. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS,
vol. 7794, pp. 193–208. Springer, Heidelberg (2013)

[DP15a] Dahlqvist, F., Pym, D.: Completeness via canonicity for distributive sub-
structural logics: a coalgebraic perspective. In: Kahl, W., Winter, M.,
Oliveira, J. (eds.) RAMiCS 2015. LNCS, vol. 9348, pp. 119–135. Springer,
Heidelberg (2015)

[DP15b] Dahlqvist, F., Pym, D.: Completeness-via-canonicity for distributive sub-
structural logics, a coalgebraic perspective, Technical report RN/15/04,
UCL (2015)

[Dun95] Dunn, J.M.: Positive modal logic. Stud. Logica 55(2), 301–317 (1995)
[GH01] Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238(1),

345–371 (2001)



194 F. Dahlqvist

[GJ94] Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators.
Math. Japon. 40(2), 207–215 (1994)

[GJ04] Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Math.
Scand. 94, 13–45 (2004)

[GNV05] Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distribu-
tive modal logic. Ann. Pure Appl. Logic 131(1–3), 65–102 (2005)

[Gol92] Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes. Cen-
ter for the Study of Language and Information, Stanford (1992)

[GP14] Gouveia, M.J., Priestley, H.A.: Canonical extensions and profinite comple-
tions of semilattices and lattices. Order 31(2), 189–216 (2014)

[HV05] Hodkinson, I., Venema, Y.: Canonical varieties with no canonical axioma-
tisation. Trans. AMS 357(11), 4579–4605 (2005)

[Jón94] Jónsson, B.: On the canonicity of Sahlqvist identities. Stud. Logica 53(4),
473–492 (1994)

[JS10] Jacobs, B., Sokolova, A.: Exemplaric expressivity of modal logics. J. Log.
Comput. 20, 1041–1068 (2010)

[JT51] Jónsson, B., Tarski, A.: Boolean algebras with operators. Part 1. Amer. J.
Math. 33, 891–937 (1951)

[KKP04] Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic
logics. Electr. Notes in Th. Comp. Sc. 106, 219–241 (2004). CMCS

[KKP05] Kupke, C., Kurz, A., Pattinson, D.: Ultrafilter Extensions for coalgebras. In:
Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO
2005. LNCS, vol. 3629, pp. 263–277. Springer, Heidelberg (2005)

[KKV12] Kapulkin, K., Kurz, A., Velebil, J.: Expressiveness of positive coalgebraic
logic. AiML 9, 368–385 (2012)

[KP11] Kupke, C., Pattinson, D.: Coalgebraic semantics of modal logics: an
overview. Th. Comp. Sc. 412(38), 5070–5094 (2011). CMCS 2010

[KR12] Kurz, A., Rosický, J.: Strongly complete logics for coalgebras. Logical Meth-
ods Comput. Sci. 8(3), 1–32 (2012)

[Mor14] Morton, W.: Canonical extensions of posets. Algebra Univers. 72(2), 167–
200 (2014)

[PS08] Pattinson, D., Schröder, L.: Beyond rank 1: algebraic semantics and finite
models for coalgebraic logics. In: Amadio, R.M. (ed.) FOSSACS 2008.
LNCS, vol. 4962, pp. 66–80. Springer, Heidelberg (2008)

[Rib52] Ribeiro, H.: A remark on boolean algebras with operators. Amer. J. Math.
74, 162–167 (1952)

[Sch06] Schröder, L.: A finite model construction for coalgebraic modal logic. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp.
157–171. Springer, Heidelberg (2006)

[SP09] Schröder, L., Pattinson, D.: Strong completeness of coalgebraic modal log-
ics. STACS, Dagstuhl Seminar Proceedings, vol. 09001, pp. 673–684 (2009)

[SP10] Schröder, L., Pattinson, D.: Rank-1 logics are coalgebraic. J. Log. Comput.
20(5), 1113–1147 (2010)

[Ven06] Venema, Y.: Algebras and coalgebras. In: van Benthem, J., Blackburn, P.,
Wolter, F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam (2006)

[VK11] Velebil, J., Kurz, A.: Equational presentations of functors and monads.
Math. Struct. in Comp. Sc. 21(2), 363–381 (2011)



Relational Lattices via Duality

Luigi Santocanale(B)

LIF, CNRS UMR 7279, Aix-Marseille Université, Marseille, France
luigi.santocanale@lif.univ-mrs.fr

Abstract. The natural join and the inner union combine in different
ways tables of a relational database. Tropashko [18] observed that these
two operations are the meet and join in a class of lattices—called the
relational lattices—and proposed lattice theory as an alternative alge-
braic approach to databases. Aiming at query optimization, Litak et al.
[12] initiated the study of the equational theory of these lattices. We
carry on with this project, making use of the duality theory developed
in [16]. The contributions of this paper are as follows. Let A be a set
of column’s names and D be a set of cell values; we characterize the
dual space of the relational lattice R(D,A) by means of a generalized
ultrametric space, whose elements are the functions from A to D, with
the P (A)-valued distance being the Hamming one but lifted to subsets
of A. We use the dual space to present an equational axiomatization of
these lattices that reflects the combinatorial properties of these gener-
alized ultrametric spaces: symmetry and pairwise completeness. Finally,
we argue that these equations correspond to combinatorial properties
of the dual spaces of lattices, in a technical sense analogous of corre-
spondence theory in modal logic. In particular, this leads to an exact
characterization of the finite lattices satisfying these equations.

1 Introduction

Tropashko [18] has recently observed that the natural join and the inner union ,
two fundamental operations of the relational algebra initiated by Codd [2]—the
algebra by which we construct queries—can be considered as the meet and join
operations in a class of lattices, known by now as the class of relational lattices.
Elements of the relational lattice R(D,A) are the relations whose variables are
listed by a subset of a total set A of attributes, and whose tuples’ entries are
taken from a set D. Roughly speaking, we can consider a relation as a table of
a database, its variables as the columns’ names, its tuples being the rows.

Let us illustrate these operations with examples. The natural join takes two
tables and constructs a new one whose columns are indexed by the union of the
headers, and whose rows are the glueings of the rows along identical values in
common columns. As we emphasize in this paper the lattice theoretic aspects of
the natural join operation, we shall depart from the standard practice of denoting
it by the symbol �� and use instead the meet symbol ∧.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 195–215, 2016.
DOI: 10.1007/978-3-319-40370-0 12



196 L. Santocanale

Author Area

Santocanale Logic

Santocanale CS

∧
Area Reviewer

CS Turing

Logic Gödel

=
Author Area Reviewer

Santocanale Logic Gödel

Santocanale CS Turing

The inner union restricts two tables to the common columns and lists all the
possible rows. The following example suggests how to construct, using this oper-
ation, a table of users given two (or more) tables of people having different roles.

Authors

Name Surname Conf

Luigi Santocanale CMCS

∨
Reviewers

Name Surname Area

Alan Turing CS

Kurt Gödel Logic

=

Users

Name Surname

Luigi Santocanale

Alan Turing

Kurt Gödel

Considering the lattice signature as a subsignature of the relational algebra,
Litak, Mikulás and Hidders [12] proposed to study the equational theory of the
relational lattices. The capability to recognize when two queries are equivalent—
that is, a solution to the word problem of such a theory—is of course an impor-
tant step towards query optimization.

Spight and Tropashko [17] exhibited equational principles in a signature
strictly larger than the one of lattice theory. A main contribution of Litak et al.
[12]—a work to which we are indebted in many respects—was to show that the
quasiequational theory of relational lattices with the header constant is unde-
cidable. The authors also proposed a base of equations for the theory in the
signature extended with the header constant, and exhibited two non-trivial pure
lattice equations holding on relational lattices. It was argued there that the lat-
tice R(D,A) arises via a closure operator on the powerset P (A � DA) and, at
the same time, as the Grothendieck construction for the functor P (D(−)), from
P (A)op to SL∨ (the category of complete lattices and join-preserving mappings),
sending X ⊆ A to DX and then DX covariantly to P (DX).

The focus of this paper is on the pure lattice signature. We tackle the study
of the equational theory of relational lattices in a coalgebraic fashion, that is, by
using the duality theory developed in [16] for finite lattices and here partially
extended to infinite lattices. Let us recall some key ideas from the theory, which
in turn relies on Nation’s representation Theorem [14, Sect. 2]. For a complete
lattice L, a join-cover of x ∈ L is a subset Y ⊆ L such that x ≤ ∨

Y . A
lattice is pluperfect if it is a complete spatial lattice and every join-cover of a
completely join-irreducible element refines to a minimal one—see Sect. 2 for a
complete definition. Every finite lattice is pluperfect; moreover, relational lattices
are pluperfect, even when they are infinite. This property, i.e. pluperfectness,
allows to define the dual structure of a lattice L, named the OD-graph in [14].
This is the triple 〈J (L),≤,�m〉 with J (L) the set of completely join-irreducible
elements, ≤ the restriction of the order to J (L), and the relation j �m C holds
when j ∈ J (L), C ⊆ J (L), and C is a minimal join-cover of j. The original
lattice L can be recovered up to isomorphism from its OD-graph as the lattice
of closed downsets of J (L)—where a downset X ⊆ J (L) is closed if j �m C ⊆ X
implies j ∈ X.



Relational Lattices via Duality 197

We characterize the OD-graph of the lattice R(D,A) as follows. Firstly
recall from [12] that we can identify completely join-irreducible elements of
R(D,A) with elements of the disjoint sum A � DA. The order on completely
join-irreducible elements is trivial, i.e. it is the equality. All the elements of A
are join-prime, whence the only minimal join-cover of some a ∈ A is the sin-
gleton {a}. The minimal join-covers of elements in DA are described via an
ultrametric distance valued in the join-semilattice P (A); this is, morally, the
Hamming distance, δ(f, g) = {x ∈ A | f(x) 
= g(x)}. Whenever f, g ∈ DA we
have f �m δ(f, g) ∪ {g} and these are all the minimal join-covers of f .

As in correspondence theory for modal logic, the combinatorial structure of
the dual spaces is an important source for discovering axioms/equations that
uniformly hold in a class of models. For relational lattices, most of these com-
binatorial properties stem from the structure of the ultrametric space (DA, δ).
When we firstly attempted to show that equations (RL1) and (RL2) from [12]
hold in relational lattices using duality, we realized that the properties necessary
to enforce these equations were the following:

P1. Every non-trivial minimal join-cover contains at most one join-irreducible
element which is not join-prime.

Moreover, the generalized ultrametric space (DA, δ) is

P2. symmetric, i.e. δ(f, g) = δ(g, f), for each f, g ∈ DA,
P3. pairwise complete : if δ(f, g) ⊆ X ∪Y , then δ(f, h) ⊆ X and δ(h, g) ⊆ Y for

some h ∈ DA.

Various notions of completeness for generalized ultrametric spaces are dis-
cussed in [1]. At first we called pairwise completeness the Beck-Chevalley-
Malcev property of (DA, δ). Indeed, it is equivalent to saying that the functor
P (D(−)) : P (A)op −−→ SL∨ mentioned above sends a pullback square (i.e., a
square of inclusions with objects X ∩Y,X, Y, Z) to a square satisfying the Beck-
Chevalley condition. As the property implies that a collection of congruences of
join-semilattices commute, it is also a sort of Malcev condition.

We show with Theorem 4 that property P1 of an OD-graph is definable by
an equation that we name (Unjp). We investigate the deductive strength of this
equation and show in particular that (RL2) is derivable from (Unjp), but not
the converse.

In presence of P1, symmetry and pairwise completeness can also be under-
stood as properties of an OD-graph. Symmetry is the following property: if
k0 �m C ∪ {k1} with k1 not join-prime, then k1 �m C ∪ {k0}. Pairwise complete-
ness can be read as follows: if k0 �m C0 ∪ C1 ∪ {k2} with k2 not join-prime and
C0, C1, {k2} pairwise disjoint, then k0 �m C0 ∪{k1} and k1 �m C1 ∪{k2} for some
completely join-irreducible element k1.

We exhibit in Sect. 6 three equations valid on relational lattices and charac-
terize, via a set of properties of their OD-graphs, the pluperfect lattices satisfying
(Unjp) and these equations. We propose these four equations as an axiomatiza-
tion of the theory of relational lattices that we call [[AxRel]]. The main result of



198 L. Santocanale

this paper, Theorem 7, sounds as follows. If we restrict to finite lattices that are
atomistic—that is, lattices in which any element is the join of the atoms below
it, so the order on join-irreducible elements in the dual space is trivial—then a
lattice satisfies [[AxRel]] if and only if its OD-graph is symmetric and pairwise
complete, in the sense just explained.

We can build lattices similar to the relational lattices from P (A)-valued ultra-
metric spaces. It is tempting to look for further equations so to represent the
OD-graph of finite atomistic lattices satisfying these equations as P (A)-valued
ultrametric space. Unfortunately this is not possible, since a key property of the
OD-graph of lattices of ultrametric spaces—the ones ensuring that the distance
function is well defined—is not definable by lattice equations. Yet Theorem 7
also exhibits a deep connection between the OD-graph of finite atomistic lattices
satisfying [[AxRel]] and the frames of the commutator logic [S5]A, see [10]. Con-
sidering the complexity of the theory of combination of modal logics, Theorem 7
can be used to foresee and shape future researches. For example, we shall discuss
in Sect. 7 how to derive undecidability results from the correspondent ones in
multidimensional modal logic. In particular, a refinement of the main result of
Litak et al. [12, Corollary 4.8] can be derived.

The paper is structured as follows. We introduce in Sect. 2 the notation as
well as the least lattice theoretic tools that shall allow the reader to go through
the paper. In Sect. 3 we describe the relational lattices, present some known
results in the literature, and give a personal twist to these results. In particular,
we shall introduce semidirect products of lattices, ultrametric spaces as a tool for
studying relational lattices, emphasize the role of the Beck-Chevalley property
in the theory. In Sect. 4 we characterize the OD-graphs of relational lattices. In
Sect. 5 we present our results on the equation (Unjp). In Sect. 6, we describe our
results relating equations valid on relational lattices to symmetry and pairwise
completeness. In the last Section we discuss the results presented as well as
ongoing researches, by the author and by other researchers, trace a road-map
for future work.

2 Some Elementary Lattice Theory

A lattice is a poset L such that every finite non-empty subset X ⊆ L admits
a smallest upper bound

∨
X and a greatest lower bound

∧
X. We assume a

minimal knowledge of lattice theory—otherwise, we invite the reader to consult
a standard monograph on the subject, such as [3] or [5]. The technical tools
that we use may be found in the monograph [4], that we also invite to explore.
A lattice can also be understood as a structure A for the functional signature
(∨,∧), such that the interpretations of these two binary function symbols both
give A the structure of an idempotent commutative semigroup, the two semi-
group structures being tied up by the absorption laws x ∧ (y ∨ x) = x and
x ∨ (y ∧ x) = x. Once a lattice is presented as such structure, the order is
recovered by stating that x ≤ y holds if and only if x ∧ y = x.

A lattice L is complete if any subset X ⊆ L admits a smallest upper bound∨
X. It can be shown that this condition implies that any subset X ⊆ L admits



Relational Lattices via Duality 199

a greatest lower bound
∧

X. A complete lattice is bounded, since ⊥ :=
∨ ∅ and

� :=
∧ ∅ are respectively the least and greatest elements of the lattice.

A closure operator on a complete lattice L is an order-preserving function
j : L −−→ L such that x ≤ j(x) and j2(x) = j(x), for each x ∈ L. We shall
use Clop(L) to denote the poset of closure operators on L, under the pointwise
ordering. It can be shown that Clop(L) is itself a complete lattice. If j ∈ Clop(L),
then the set L/j of fixed points of j is itself a complete lattice, with

∧
L/j X =∧

L X and
∨

L/j X = j(
∨

L X). For the correspondence between closure operators
and congruences in the category of complete join-semilattices, see [9].

Let L be a complete lattice. An element j ∈ L is said to be completely join-
irreducible if j =

∨
X implies j ∈ X, for each X ⊆ L; the set of completely

join-irreducible element of L is denoted here J (L). A complete lattice is spatial
if every element is the join of the completely join-irreducible elements below it.
An element j ∈ J (L) is said to be join-prime if j ≤ ∨

X implies j ≤ x for some
x ∈ X, for each finite subset X of L. We say that j ∈ J (L) is non-join-prime
if it is not join-prime. An atom of a lattice L is an element of L such that ⊥ is
the only element strictly below it. A spatial lattice is atomistic if every element
of J (L) is an atom.

For j ∈ J (L), a join-cover of j is a subset X ⊆ L such that j ≤ ∨
X.

For X,Y ⊆ L, we say that X refines Y , and write X � Y , if for all x ∈ X
there exists y ∈ Y such that x ≤ y. A join-cover X of j is said to be minimal
if j ≤ ∨

Y and Y � X implies X ⊆ Y ; we write j �m X if X is a minimal
join-cover of j. In a spatial lattice, if j �m X, then X ⊆ J (L). If j �m X, then
we say that X is a non-trivial minimal join-cover of j if X 
= {j}. It is common
to use the word perfect for a lattice which is both spatial and dually spatial. We
need here something different:
Definition 1. A complete lattice is pluperfect if it is spatial and for each j ∈
J (L) and X ⊆ L, if j ≤ ∨

X, then Y � X for some Y such that j �m Y . The
OD-graph of a pluperfect lattice L is the structure 〈J (L),≤,�m〉.
That is, in a pluperfect lattice every cover refines to a minimal one. Notice that
every finite lattice is pluperfect. If L is a pluperfect lattice, then we say that X ⊆
J (L) is closed if it is a downset and j �m C ⊆ X implies j ∈ X. As from standard
theory, the mapping X �→ ⋂{Y ⊆ J (L) | X ⊆ Y, Y is closed} defines a closure
operator whose fixed points are exactly the closed subsets of J (L). The interest of
considering pluperfect lattices stems from the following representation Theorem.

Theorem 1 (Nation [14]). Let L be a pluperfect lattice and let L(J (L),≤,�m)
be the lattice of closed subsets of J (L). The mapping l �→ {j ∈ J (L) | j ≤ l} is
a lattice isomorphism from L to L(J (L),≤,�m).

It was shown in [16] how to extend this representation theorem to a duality
between the category of finite lattices and the category of OD-graphs. The fol-
lowing Lemma shall be repeatedly used in the proofs of our statements.

Lemma 1. Let L be a pluperfect lattice, let j �m C and k ∈ C. If j ≤ ∨
D with

D � {∨(C \ {k}), k}, then k ∈ D. In particular, if k′ < k, then {∨ C \ {k}, k′}
is not a cover of j.



200 L. Santocanale

3 The Relational Lattices R(D,A)

In this Section we define relational lattices, recall some known facts, and develop
then some tools to be used later, semidirect products of lattices, generalized
ultrametric spaces, a precise connection to the theory of combination of modal
logics (as well as multidimensional modal logic and relational algebras).

Let A be a collection of attributes (or column names) and let D be a set of
cell values. A relation (or, more informally, a table) on A and D is a pair (X,T )
where X ⊆ A and T ⊆ DX ; X is the header of the table while T is the collection
of rows. Elements of the relational lattice R(D,A) are relations on A and D.

Before we define the natural join, the inner union operations, and the order
on R(D,A), let us recall a few key operations. If X ⊆ Y ⊆ A and f ∈ DY ,
then we shall use f�X ∈ DX for the restriction of f to X; if T ⊆ DY , then T��X

shall denote projection to X, that is, the direct image of T along restriction,
T��X := {f�X | f ∈ T}; if T ⊆ DX , then iY (T ) shall denote cylindrification to Y ,
that is, the inverse image of restriction, iY (T ) := {f ∈ DY | f�X ∈ T}. Recall
that iY is right adjoint to ��X . With this in mind, the natural join and the inner
union of tables are respectively described by the following formulas:

(X1, T1) ∧ (X2, T2) := (X1 ∪ X2, T )
where T = {f | f�Xi

∈ Ti, i = 1, 2} = iX1∪X2(T1) ∩ iX1∪X2(T2) ,

(X1, T1) ∨ (X2, T2) := (X1 ∩ X2, T )
where T = {f | ∃i ∈ {1, 2},∃g ∈ Ti s.t. g�X1∩X2

= f}
= T1��X1∩X2 ∪T2��X1∩X2.

The order is then given by

(X1, T1) ≤ (X2, T2) iff X2 ⊆ X1 and T1��X2⊆ T2 .

It was observed in [12] that R(D,A) arises—as a category with at most one
arrow between two objects—via the Grothendieck construction for the functor
sending X ⊆ A contravariantly to DX and then DX covariantly to P (DX). Let
us record the following important property:

Lemma 2. The image of a pullback square by the functor P (D(−)) : P (A)op −−→
SL∨ satisfies the Beck-Chevalley property.

The above statement means that if we
apply the functor to inclusions of the form
X1 ∩ X2 ⊆ Xi ⊆ X3, i = 1, 2, then the two
possible diagonals in the diagram on the
right, ��X2 ◦ iX3 and iX2 ◦��X1∩X2 , are equal.
The Beck-Chevalley property is a conse-
quence of the glueing property of functions:



Relational Lattices via Duality 201

if f ∈ DX2 , g ∈ DX1 and f�X1∩X2
= g�X1∩X2

, then there exists h ∈ DX3 such
that h�X2

= f and h�X1
= g.

We can recast the previous category-theoretic observations in an algebraic
framework. An action of a complete lattice L over a complete lattice M is a
monotonic mapping 〈 〉 : L −−→ Clop(M), thus sending X ∈ L to a closure
operator 〈X〉 on M . Given such an action, if we define j(X,T ) := (X, 〈X〉T ),
then j(X,T ) is a closure operator on the product L × M . In particular, the set
of j-fixed points, L �j M := {(X,T ) ∈ L × M | 〈X〉T = T}, is itself a complete
lattice, where the meet coincides with the one from L×M , while the join is given
by the formula (X1, T1)∨L�jM (X2, T2) := (X1∨X2, 〈X1∨X2〉(T1∨T2)). We call
L�j M the semidirect product of L and M via j. The naming is chosen here after
the semidirect product of groups, which is a similar instance of the Grothendieck
construction. Given such an action, the correspondence X �→ M/〈X〉 gives rise
to a covariant functor from L to the category SL∨, so that it makes sense to ask
when the Beck-Chevalley property holds, as in Lemma 2. This happens—and
then we say that an action 〈 〉 satisfies the Beck-Chevalley property—exactly
when

〈X1 ∨ X2〉T = 〈X1〉〈X2〉T , for each X1,X2 ∈ L and T ∈ M. (1)

Notice that the identity 〈X1〉〈X2〉T = 〈X2〉〈X1〉T is a consequence of (1). As
these closure operators correspond to congruences of complete join-semilattices,
we also think of the Beck-Chevalley property as a form of Malcev property,
stating that a collection of congruences (thought as binary relations) pairwise
commute (w.r.t composition of relations).

Relational lattices from ultrametric spaces. Let us come back to the lattice
R(D,A). Define on the set DA the following P (A)-valued ultrametric distance:

δ(f, g) := {x ∈ A | f(x) 
= g(x)} .

Thus δ(f, f) ⊆ ∅ and δ(f, g) ⊆ δ(f, h) ∪ δ(h, g) for any f, g, h ∈ DA, making
(DA, δ) into a generalized metric space in the sense of [11].1 With respect to the
latter work—where axioms for the distance are those of a category enriched over
(P (A)op, ∅,∪)—for f, g ∈ DA we also have that δ(f, g) = ∅ implies f = g and
symmetry, δ(f, g) = δ(g, f). We can define then an action of P (A) on P (DA):

〈X〉T = {f ∈ DA | ∃g ∈ T s.t. δ(f, g) ⊆ X} . (2)

We can now restate (and refine) Lemma 2.1 from [12]—which constructs the
lattice R(D,A) via a closure operator on P (A + DA)—as follows:

Theorem 2. The correspondence sending (X,T ) to (A \ X, iA(T )) is an iso-
morphism bewteen the relational lattice R(D,A) and P (A) �j P (DA).
1 This is a lifting of the Hamming distance to subsets. Yet, in view of [15] and of their

work on generalized ultrametric spaces, such a distance might reasonably tributed
to Priess-Crampe and Ribenboim.



202 L. Santocanale

The action defined in (2) satisfies the identity (1). As a matter of fact, (1) is
equivalent to pairwise completeness of (DA, δ) as an ultrametric space, see [1],
namely the following property:

if δ(f, g) ⊆ X1 ∪ X2,

then there exists h such that δ(f, h) ⊆ X1 and δ(h, g) ⊆ X2 . (3)

It is easily verified that (3) is yet another spelling of the glueing property of
functions.

Observe that, given any generalized ultrametric space (F, δ) whose distance
takes values in P (A), Eq. (2)—with DA replaced by F—defines an action of
P (A) on P (F ). The lattice P (A) �j P (F ) shall have similar properties to those
of the lattices R(D,A) and will be useful when studying the variety generated
by the relational lattices. As an example, we construct typed relational lattices,
i.e. lattices of relations where each column has a fixed type. To this goal, fix a
surjective mapping π : D −−→ A. For each a ∈ A, we think of the set Da = π−1(a)
as the type of the attribute a. Let S(π) be the set of sections of π, that is, s ∈ S(π)
if and only if s(a) ∈ Da, for each a ∈ A. Notice that (S(π), δ) is a pairwise
complete sub-metric space of (DA, δ). The lattice R(π) := P (A) �j P (S(π)) is
the typed relational lattice. It can be shown that relational lattices and typed
relational lattices generate the same variety.

Relational lattices from multidimensional modal logics. In order to illustrate and
stress the value of identity (1), i.e. of the Beck-Chevalley-Malcev property, we
derive next a useful formula for computing the join of two tables under the
P (A) �j P (DA) representation.

(X1, T1) ∨ (X2, T2) = (X1 ∪ X2, 〈X1 ∪ X2〉(T1 ∪ T2))
= (X1 ∪ X2, 〈X1 ∪ X2〉T1 ∪ 〈X1 ∪ X2〉T2)

since the modal operators 〈X〉 are normal, in the usual sense of modal logic,

= (X1 ∪ X2, 〈X2〉〈X1〉T1 ∪ 〈X1〉〈X2〉T2) by (1)
= (X1 ∪ X2, 〈X2〉T1 ∪ 〈X1〉T2)

since 〈X1〉T1 = T1 and 〈X2〉T2 = T2.

Theorem 2 suggests that a possible way to study the equational theory of the
lattices R(D,A) is to interpret the lattice operations in a two sorted modal logic,
where the modal operators are indexed by the first sort and act on the second.
It is easily recongnized that each modal operator satisfies the S5 axioms, while
Eq. (1) implies that, when A is finite, each modal operator 〈X〉 is determined by
the modal operators of the form 〈a〉 with a an atom below X. That is, the kind
of modal logic we need to interpret the lattice theory is the commutator logic
[S5]n = [S5, . . . ,S5︸ ︷︷ ︸

n-times

], with n = cardA, see [10, Definition 18].



Relational Lattices via Duality 203

4 Minimal Join-Covers in R(D,A)

The lattices R(D,A) are pluperfect, even when A or D is an infinite set. The
completely join-irreducible elements were characterized in [12] together with
the meet-irreducible elements and the canonical context (see [3, Chapter 3] for
the definition of canonical context). If we stick to the representation given in
Theorem 2, the completely join-irreducible elements are of the form â = ({a}, ∅)
and f̂ = (∅, {f}). We can think of â as an empty named column, while f̂ is
an everywhere defined row. They are all atoms, so that, in particular, we shall
not be concerned with the restriction of the order to J (R(D,A)) (since this
order coincides with the equality). In order to characterize the OD-graph of the
lattice R(D,A), we only need to characterize the minimal join-covers. Taking
into account that if an element j ∈ J (L) is join-prime, then it has just one
minimal join-cover, the singleton {j}, the following Theorem achieves this goal.

Theorem 3. The lattices R(D,A) are atomistic pluperfect lattices. As a matter
of fact, every element â, a ∈ A, is join-prime; for f ∈ DA, the minimal join-
covers of f̂ are of the form

f̂ ≤ ∨
a∈δ(f,g) â ∨ ĝ , for g ∈ DA.

The proof of this statement is almost straightforward, given the characterization
of R(D,A) as the semidirect product P (A) �j P (DA) and the definition of the
closure operators given with Eq. (2). For this reason, we skip it.

In particular, every minimal join-cover contains at most one non-join-prime
element. In view of Theorem 1, we obtain a more precise description of the closure
operator described in [12, Lemma 2.1] that gives rise to relational lattices.

Corollary 1. The relational lattice R(D,A) is isomorphic to the lattice of closed
subsets of A�DA, where a subset X is closed if δ(f, g)∪{g} ⊆ X implies f ∈ X.

In order to ease the reading, we shall use in the rest of this paper the same
notation for a completely join-irreducible element of R(D,A) and an element of
A � DA. This is consistent with the above Corollary, as under the isomorphism
we have â = {a} and f̂ = {f}. Thus a shall stand for â, and f for f̂ .

In a spatial lattice L (thus in a relational lattice), an inequation s ≤ t holds
if and only if j ≤ s implies j ≤ t, for each j ∈ J (L)—thus we shall often
consider inequations of the form j ≤ s with j ∈ J (L). When L = R(D,A), the
characterization of minimal join-cover leads to the following principle that we
shall repeatedly use:

f ≤ x1 ∨ . . . ∨ xn iff δ(f, g) ∪ {g} � {x1, . . . , xn}, for some g ∈ DA. (4)

5 Uniqueness of non-join-prime Elements

For an inclusion we mean a pair (s, t) of terms (in the signature of lattice theory)
such that the equation t ∨ s = s (i.e. the inequality t ≤ s) is derivable from the



204 L. Santocanale

usual axioms of lattices. Thus, the equality s = t reduces to the inequality s ≤ t.
We write s ≤ t for a lattice inclusion and say it holds in a lattice if the identity
s = t holds in that lattice. Next, let us set

d�(u) := u0 ∧ (u1 ∨ u2) , dρ(u) := (u0 ∧ u1) ∨ (u0 ∧ u2) ,

so d�(u) ≤ dρ(u) is (an inclusion equivalent to) the usual distributive law.
Consider the following inclusion:

x ∧ (d�(y) ∨ d�(z ) ∨ w) (Unjp)
≤ (x ∧ (dρ(y) ∨ d�(z ) ∨ w)) ∨ (x ∧ (d�(y) ∨ dρ(z ) ∨ w)) .

Theorem 4. The inclusion (Unjp) holds on relational lattices. As a matter of
fact, (Unjp) holds in a pluperfect lattice if and only if every minimal join-cover
contains at most one non-join-prime element.

Proof. Let us prove the first statement. To this goal, it will be enough to argue
that any join-irreducible element below the left-hand side of the inclusion is
below its right-hand side. Let k be such a join-irreducible element. It is not
difficult to see that if k is join-prime, then k is also below the right-hand side
of the inclusion. Suppose then that k is non-join-prime, whence k = f for some
f ∈ DA. From f ≤ d�(y)∨d�(z )∨w and (4), it follows that there exists g ∈ DA

such that δ(f, g) ∪ {g} � {d�(y), d�(z ), w}. In particular, {g} � {d�(y), w} or
{g} � {d�(z ), w}. We firstly suppose that the last case holds. If a ∈ δ(f, g)
and a ≤ d�(y) = y0 ∧ (y1 ∨ y2), then a ≤ (y0 ∧ y1) ∨ (y0 ∧ y2) = dρ(y), since
a is join-prime. It follows that δ(f, g) ∪ {g} � {dρ(y), d�(z ), w}, whence f ≤
x ∧ (d�(y) ∨ d�(z ) ∨ w). If {g} � {d�(y), w}, then we conclude similarly that
f ≤ x ∧ (d�(y) ∨ dρ(z ) ∨ w). Whence k is below the right-hand side of this
inclusion, and the inclusion holds since k was arbitrary.

We leave the reader to generalize the argument above so to prove that if a
pluperfect lattice is such that every minimal join-cover has at most one non-
join-prime element, then (Unjp) holds. For the converse we argue as follows.

Let L be a pluperfect lattice, let kx ∈ J (L), Cx ⊆ J (L) with kx �m Cx,
and suppose that ky, kz ∈ Cx are distinct and non-join-prime. For u ∈ {y, z},
since ku is non-join-prime, there is a non-trivial minimal join-cover ku �m Cu; as
every non-trivial minimal join-cover has at least two elements, let Cu,1, Cu,2 be
a partition of Cu such that Cu,i 
= ∅ for each i = 1, 2.

We construct a valuation which fails (Unjp). Let x := kx, y0 := ky, z0 := kz,
w :=

∨
(Cx \ {ky, kz}) and, for u ∈ {y, z} and i = 1, 2, let ui :=

∨
Cu,i. The left-

hand side of the (Unjp) evaluates to kx. Assume, by the way of contradiction,
that (Unjp) holds, so kx is below the right-hand side of the inclusion. Since the
only minimal join-cover D of kx such that D � {kx} is {kx}, either kx ≤ dρ(y)∨
d�(z ) ∨ w or kx ≤ d�(y) ∨ dρ(z ) ∨ w; let us assume that the first case holds. We
have then kx ≤ dρ(y)∨kz ∨∨

(Cx \{ky, kz}) = dρ(y)∨∨
(Cx\{ky}). Considering

that dρ(y) ≤ ky, Lemma 1 implies that ky = dρ(y) = (y0 ∧ y1) ∨ (y0 ∧ y2). Since



Relational Lattices via Duality 205

ky is join-irreducible ky = y0 ∧ yi for some i ∈ {1, 2}. Yet this is not possible,
as such relation implies that Cy,i is a join-cover of ky; considering that Cy,i is
a proper subset of the minimal join-cover Cy, this contradicts the minimality of
Cy. If kx ≤ d�(y) ∨ dρ(z ) ∨ w, then we get to a similar contradiction. Whence,
kx is not below the right-hand side of (Unjp), which therefore fails. ��

It is worth noticing that the statement “every minimal join-cover contains
exactly one non-join-prime element” is not definable by equations: for A = D =
{0, 1}, there is a sublattice of R(D,A) which fails this property.

While Theorem 4 gives a semantic characterization of (Unjp), we might also
wish to measure its power at the syntactic level. Theorem 5 and Corollary 2
illustrate the deductive strength of (Unjp), by pinpointing an infinite set of its
consequences.

Theorem 5. If s� = sρ and t� = tρ are equations valid on distributive lattices,
then the equation

(x ∧ (s� ∨ t� ∨ w)) ∨ (x ∧ (sρ ∨ tρ ∨ w))
= (x ∧ (sρ ∨ t� ∨ w)) ∨ (x ∧ (s� ∨ tρ ∨ w))

is derivable from (Unjp) and general lattice axioms.

Proof. For a lattice term s, let dnf(s) be its disjunctive normal form. Recall that
we can obtain dnf(s) from s by means of a sequence s = s0, . . . , sn = dnf(s)
where, for each i = 0, . . . , n − 1, si+1 is obtained from si by one application of
the distributive law at the toplevel of the term, and by general lattice axioms.
Thus, for two lattice terms s1, s2, let s1i , i = 0, . . . , n, and s2j , j = 0, . . . ,m be
the sequences leading to the respective normal forms.

For i = 0, . . . , n and j = 0, . . . , m, let now ti,j = x ∧ (s1i ∨ s2j ∨ w). Using
(Unjp) and general lattice axioms, we can compute as follows:

t0,0 = t1,0 ∨ t0,1 = t2,0 ∨ t1,1 ∨ t0,2 = . . .

=
∨

j=0,...,m

tn,j ∨
∨

i=0,...,n

ti,m
?= tn,0 ∨ t0,m ,

where only the last equality needs to be justified. Notice that the relation sk
i+1 ≤

sk
i holds in every lattice. Whence we have sk

i′ ≤ sk
i when i < i′, and both

tn,j ≤ tn,0 and ti,m ≤ ti,0. It follows that the indexed join at the last line
evaluates to tn,0 ∨ t0,m. We have derived, up to now, the identity

x ∧ (s1 ∨ s2 ∨ w) = (x ∧ (dnf(s1) ∨ s2 ∨ w)) ∨ (x ∧ (s1 ∨ dnf(s2) ∨ w))

for every pair of lattice terms s1 and s2.
Let us call co-clause a conjunction of variables. By using lattice axioms only,

we can suppose that, within dnf(t), there are no repeated literals in co-clauses
and that no co-clause subsumes another. Under this assumption, we have that
an identity s� = sρ holds in all distributive lattices if and only if dnf(s�) is equal



206 L. Santocanale

to dnf(sρ). Whence, to derive the statement of the Theorem, we can compute
as follows:

(x ∧ (s� ∨ tρ ∨ w)) ∨ (x ∧ (sρ ∨ t� ∨ w))
= (x ∧ (dnf(s�) ∨ tρ ∨ w)) ∨ (x ∧ (s� ∨ dnf(tρ) ∨ w))

∨ (x ∧ (dnf(sρ) ∨ t� ∨ w)) ∨ (x ∧ (sρ ∨ dnf(t�) ∨ w))
= (x ∧ (dnf(sρ) ∨ tρ) ∨ w) ∨ (x ∧ (s� ∨ dnf(t�) ∨ w))

∨ (x ∧ (dnf(s�) ∨ t� ∨ w)) ∨ (x ∧ (sρ ∨ dnf(tρ) ∨ w))
= (x ∧ (dnf(s�) ∨ t� ∨ w)) ∨ (x ∧ (s� ∨ dnf(t�) ∨ w))

∨ (x ∧ (dnf(sρ) ∨ tρ ∨ w)) ∨ (x ∧ (sρ ∨ dnf(tρ) ∨ w))
—where we have permuted the order of the four joinands

= (x ∧ (s� ∨ t� ∨ w)) ∨ (x ∧ (sρ ∨ tρ ∨ w)) . ��

In [12] two equations were shown to hold on relational lattices. One of them
is (RL2) that we describe next. Set

do
�(u) := (u0 ∨ u1) ∧ (u0 ∨ u2) , do

ρ(u) := u0 ∨ (u1 ∧ u2) ,

the equation is

x ∧ (do
�(y) ∨ do

�(z )) ≤ (x ∧ (do
ρ(y) ∨ do

�(z ))) ∨ (x ∧ (do
�(y) ∨ do

ρ(z ))) (RL2)

Corollary 2. If s� = sρ and t� = tρ are equations valid on distributive lattices,
then the inequation

(x ∧ (s� ∨ t� ∨ w)) ≤ (x ∧ (sρ ∨ t� ∨ w)) ∨ (x ∧ (s� ∨ tρ ∨ w)) (5)

is derivable from (Unjp). In particular (RL2) is derivable from (Unjp).

The Corollary follows from the Theorem and from the fact that x ≤ x ∨ y. In
order to derive (RL2) from (5) (if we do not include the bottom constant ⊥ as
part of the signature of lattice theory), we instantiate s� := do

�(y), sρ := do
ρ(y),

t� := do
�(z ), tρ := do

ρ(z ), and w := do
ρ(z ).

It can be shown that (Unjp) is not derivable from (RL2)—mainly due to
the role of the variable w in the (Unjp). The construction of a lattice L satis-
fying (RL2) but failing (Unjp) proceeds via the construction of its OD-graph
〈J(L),≤,�m〉. Due to the consistent number of variables in the two equations,
an automated tool such as Mace4 [13] could not help finding a countermodel.
Similarly, automated tools such as Prover9 and Waldmeister [6,13] were of no
help to show that (RL2) is a consequence of (Unjp).

Natural questions—e.g. decidability—may be raised concerning the equa-
tional theory of (Unjp). Since we can give an easy semantic proof that an equa-
tion of the form (5) holds on finite lattices (or pluperfect) satisfying (Unjp), a
reasonable conjecture is that this theory has some sort of finite model property.



Relational Lattices via Duality 207

Yet, proving this might not be immediate, since the variety of lattices satisfying
(Unjp) is not locally finite (i.e., not every finitely generated lattice satisfying
(Unjp) is finite). The construction used in [16, Proposition 7.5] may be used
to argue that the lattice freely generated in this variety by three generators is
infinite.

6 Symmetry and pairwise completeness

Due to its syntactic shape (Unjp) falls in a class of inclusions described in [16,
Section 8] that admit a correspondent property in the OD-graph. Here, the mean-
ing of the word correspondent is analogous to its use in modal logic, where some
formulas might be uniformly valid in a frame if and only if the frame satisfies
a correspondent first order property. Thus Theorem 4 is not completely unex-
pected. A more surprising result comes from considering the three equations
below, that fall outside the syntactic fragment described in [16]; a strengthen-
ing of Lemma 1 (Lemma 4 to follow) allows to characterize the OD-graphs of
pluperfect lattices satisfying (Unjp) and these equations, see Theorem 8.

x ∧ (y ∨ z) ≤ (SymPC)
(x ∧ (y ∨ (z ∧ (x ∨ y)))) ∨ (x ∧ (z ∨ (y ∧ (x ∨ z))))

x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x)) ≤ (x ∧ y) ∨ (x ∧ z) (VarRL1)
x ∧ ((x ∧ y) ∨ d�(z )) ≤ (x ∧ ((x ∧ y) ∨ dρ(z ))) ∨ (x ∧ d�(z ))

(RMod)

Let us first illustrate the way in which these equations hold in relational lattices.
In particular, the proof shall illustrate the crucial role played by symmetry and
pairwise completeness—i.e., condition (3)—of the ultrametric space (DA, δ).

Theorem 6. The inclusions (SymPC), (VarRL1), (RMod) hold in relational
lattices.

Proof. (SymPC). Let k be a join-irreducible element below x∧(y∨z). If k is join-
prime, then k is also below (x∧y)∨(x∧z), whence it is below the right-hand side
of this inclusion. Therefore, let k be non-join-prime, so k = f for some f ∈ DA;
by (4), let g ∈ DA be such that δ(f, g) ∪ {g} � {y, z}. Let us suppose first that
g ≤ z. Since δ(f, g) � {y, z}, using pairwise completeness we can find h such that
δ(f, h) � {y} and δ(h, g) � {z}. It follows that h ≤ ∨

δ(h, g)∨g ≤ z; moreover,
since f ≤ x, δ(h, f) = δ(f, h), and δ(f, h) � {y}, then h ≤ δ(h, f) ∨ f ≤ x ∨ y.
Consequently, we have h ≤ z ∧ (x ∨ y) and, considering that δ(f, h) � {y},
we have f ≤ x ∧ (y ∨ (z ∧ (x ∨ y))). If g ≤ y, then we similarly deduce that
f ≤ x ∧ (z ∨ (y ∧ (x ∨ z))). In both cases, f is below the right-hand side of this
inclusion.

(VarRL1). Let k be below the left-hand side of this inclusion. If k is join-
prime, then it is below the right-hand side of this inclusion as well. Otherwise
k = f is non-join-prime and δ(f, g)∪{g} � {y∧z, y∧x, z ∧x} for some g ∈ DA.



208 L. Santocanale

Since g ≤ r for some r ∈ {y ∧ z, y ∧ x, z ∧ x}, we consider three cases; by
pairwise completeness we can also assume that g is the only element of δ(f, g) ∪
{g} below r—since if δ(f, g′) � {y ∧ z, y ∧ x, z ∧ x} \ {r} and δ(g′, g) � {r},
then g′ ≤ r. Also, the last two cases, g ≤ y ∧ x and g ≤ z ∧ x, are symmetric in
y and z, so that we consider among them the second-to-last only.

Suppose firstly that g ≤ y∧z. Then, from δ(g, f) = δ(f, g) � {x∧y, x∧z} �
{x} and f ≤ x, we deduce g ≤ x; whence g ≤ x ∧ y and f ≤ (x ∧ z) ∨ (x ∧ y).

Suppose next that g ≤ x ∧ y. By pairwise completeness, let h be such that
δ(f, h) � {x∧z} and δ(h, g) � {y∧z}. We deduce then h ≤ y from δ(h, g) � {y}
and g ≤ y, and h ≤ x, from δ(h, f) = δ(f, h) � {x} and f ≤ x. Thus h ≤ x ∧ y
and f ≤ (x ∧ z) ∨ (x ∧ y).

(RMod). Let k be a join-irreducible below the left-hand side of this inclusion.
If k is join-prime, then k is below x∧ ((x∧ y)∨dρ(z )). Otherwise k = f and, for
some g ∈ DA, δ(f, g) ∪ {g} � {x ∧ y, d�(z )}. If g ≤ x ∧ y, then all the elements
that are not below x ∧ y are below d�(z ) and join-prime, whence they are below
dρ(z ). It follows that f ≤ x ∧ ((x ∧ y) ∨ dρ(z )). Otherwise g ≤ d�(z ) and, by
pairwise completeness, we can also assume that g is the only element below d�(z ),
so δ(f, g) � {x ∧ y}. It follows then that δ(g, f) ∪ {f} = δ(f, g) ∪ {f} � {x},
g ≤ x, whence g ≤ x ∧ d�(z ). Consequently, f ≤ (x ∧ y) ∨ (x ∧ d�(z )) ≤
(x ∧ ((x ∧ y) ∨ dρ(z ))) ∨ (x ∧ d�(z )). ��

In [12] a second inclusion was shown to hold on relational lattices:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x))) ≤ (x ∧ y) ∨ (x ∧ z) (RL1)

The same kind of tools used in the proof of Theorem 6 can be used to argue
that this inclusion holds on relational lattices. The reader will have noticed the
similarity of (VarRL1) with (RL1). As a matter of fact, (VarRL1) was suggested
when trying to derive (RL1) from (Unjp) and the other equations as in the
following Proposition.

Proposition 1. (RL1) is a consequence of (Unjp), (RMod) and (VarRL1).

Proof. Using (Unjp) and considering that y ∧ z ≤ z ∧ (y ∨ x), we have:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x)))
= (x ∧ ((y ∧ x) ∨ (z ∧ (y ∨ x)))) ∨ (x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ x)))) .

Using now (RMod) and considering that x ∧ z ≤ y ∨ x, we compute as follows:

x ∧ ((y ∧ x) ∨ (z ∧ (y ∨ x)))
= (x ∧ ((y ∧ x) ∨ (z ∧ y) ∨ (z ∧ x))) ∨ (x ∧ z ∧ (y ∨ x))
= (x ∧ ((y ∧ x) ∨ (z ∧ y) ∨ (z ∧ x))) ∨ (x ∧ z)
= x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x)) .



Relational Lattices via Duality 209

Considering the symmetric role of y and z, we obtain:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x))) = x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x))
= (x ∧ y) ∨ (x ∧ z) , by(VarRL1). ��

We present now what we consider our strongest result in the study of the
equational theory of relational lattices. To this end, let us denote by [[AxRel]] the
(set composed of the) four equations (Unjp), (VarRL1), (RMod) and (SymPC).
Also, given that we restrict to lattices satisfying (Unjp), and considering the
characterization given with Theorem 4, it is convenient to introduce the notation
k0 �C

m k1 for the statement k0, k1 ∈ J(L), k1 is non-join-prime, k1 
∈ C, and
k0 �m C ∪ {k1}.

Theorem 7. Let L be a finite atomistic lattice. Then L |= [[AxRel]] if and
only if every nontrivial minimal join-cover contains exactly one non-join-prime
element and, moreover, the following properties hold in the OD-graph:

• If k0 �C
m k1, then k1 �C

m k0. (6)

• If k0 �C0�C1
m k2, then k0 �C0

m k1 and k1 �C1
m k2, for some k1 ∈ J (L).

Given Theorem 7, it becomes tempting to look for a representation Theorem.
Given a pluperfect atomistic lattice satisfying the above four equations, we would
like to define an ultrametric space on the set of non-join-prime elements with
distance valued on the powerset of the join-prime ones, and then argue that
the lattice constructed via the standard action, defined in (2), is isomorphic to
the given lattice. Unfortunately, this idea does not work, since if we try to set
δ(k0, k1) = C whenever k0 �C

m k1, this might be ill defined since the implication
“k0 �C

m k1 and k0 �D
m k1 implies C = D” might fail. Moreover, there is no

equation nor quasiequation enforcing this, as an immediate consequence of the
next Proposition.

Proposition 2. There is an atomistic sublattice of R({0, 1}, {0, 1}) which does
not arise from an ultrametric space.

Theorem 7 is a consequence of a more general Theorem, to be stated next,
characterizing the OD-graphs of pluperfect lattices in the variety axiomatized
by [[AxRel]]. While the conditions stated next may appear quite complex,
they are the ones to retain if we aim at studying further the theories of rela-
tional lattices by duality—e.g., a sublattice of a relational lattice need not be
atomistic.

Theorem 8. A pluperfect lattice belongs to the variety axiomatized by [[AxRel]]
if and only if every minimal join-cover contains at most one non-join-prime
element and, moreover, the following properties hold in its OD-graph:



210 L. Santocanale

• If k0 �m C, then there exists at most one c ∈ C with c ≤ k0. (π-VarRL1)

• If k0 �C
m k1, then no element of C is below k0. (π-RMod)

• if k �m C0 � C1 with C0, C1 non-empty, then for some k′ ∈ J (L),

either k �m {k′} � C1, k′ �m C0, and k′ ≤
∨

C1 ∨ k,

or k �m C0 � {k′}, k′ �m C1, and k′ ≤
∨

C0 ∨ k. (π-StrongSymPC)

Let us notice that the conditions

• If k0 �C0�C1
m k2 then, for some k1 ∈ J (L),

k0 �C0
m k1, k1 �C1

m k2, and k1 ≤
∨

C0 ∨ k0. (π-SymPC)

• If k0 �C
m k1, then k1 ≤

∨
C ∨ k0 (π-Sym)

follow from the above properties. On atomistic pluperfect lattices the last con-
dition is equivalent to (6).

Lemma 3. If L is a pluperfect lattice with L |= (Unjp) and whose OD-graph
satisfies (π-StrongSymPC) and (π-RMod), then (π-SymPC) holds as well.

Proof. Let k1 �m C0 � C1 � {k2} with k2 ∈ J (L) and non-join-prime, and use
(π-StrongSymPC) to find k1 such that either (i) k0 �m {k1} � C1 � {k2} and
k1 ≤ k0 ∨ ∨

C1 ∨ k2, or (ii) k0 �m C0 � {k1} and k1 ≤ k0 ∨ ∨
C0. Let us argue,

by contradiction, that (i) cannot arise. By (Unjp), k1 is join-prime, whence the
relation k1 ≤ k0 ∨ ∨

C1 yields k1 ≤ k0. This, however, contradicts (π-RMod). ��
We close this section by proving Theorem 8. To this end, we need a general-

ization of Lemma 1. As the refinement relation is an extension to subsets of the
order relation, the relation ��m, defined next, can be considered as an extension
to subsets of the minimal join-covering relation.

Definition 2. Let L be a pluperfect lattice and let X,Y ⊆ J (L) be antichains.
Put X��mY if X � {∨

Y } and y ∈ Cxy
for some xy ∈ X, for each y ∈ Y and

whenever {Cx | x ∈ X} is a family of coverings of the form x �m Cx � Y .

Lemma 4. Let L be a pluperfect lattice and let j �m C0 � C1. Suppose that∨
X ≤ ∨

C0 and j ≤ ∨
X ∨∨

C1. Then there exists a minimal join-cover of the
form j �m D0 � C1 with D0 � X and D0��mC0.

While the proof that a pluperfect lattice whose OD-graphs satisfies those
properties essentially mimics the proof of Theorem 6, we prove instead the con-
verse direction through a series of Lemmas.

Lemma 5. If (VarRL1) holds on a pluperfect lattice, then its OD-graph satisfies
(π-VarRL1).



Relational Lattices via Duality 211

Proof. Suppose C = {k1} � {k2} � D with k0 �m C and k1, k2 ≤ k0. Let x := k0,
y := k1 ∨ ∨

D, z := k2 ∨ ∨
D. Then k1 ≤ x ∧ y, k2 ≤ x ∧ z and

∨
D ≤ y ∧ z,

whence the left-hand side of (VarRL1) evaluates to k0, which is therefore below
the right-hand side of this inclusion. It follows that either k0 ≤ y, or k0 ≤ z, in
both cases contradicting the fact that C is a minimal join-cover. ��

The inclusion

x ∧ (y ∨ d�(z )) ≤ (x ∧ (y ∨ dρ(z ))) ∨ (xland(y ∨ (d�(z ) ∧ (y ∨ x))) , (Sym)

is derivable from (Unjp), (SymPC) and (RMod). It can also be shown that
(RMod) is a consequence of (Sym).

Lemma 6. If (Sym) holds in a pluperfect lattice, then its OD-graph satisfies
(π-Sym).

Proof. Suppose that the inclusion holds and let k0 �C
m k1. Since k1 is non-join-

prime, there exists a minimal join-cover k1 �m D which we can partition into
two non empty subsets D1 and D2. Let now x := k0, y :=

∨
C, z0 := k1,

z1 =
∨

D1, z2 =
∨

D2. Then, the left-hand side of the inclusion evaluates to k0,
which therefore is below the right-hand side. Considering that x is k0 and that
the unique minimal join-cover of k0 whose elements are all below k0 is {k0}, it
follows that either k0 ≤ y ∨ dρ(z ) or k0 ≤ y ∨ (d�(z ) ∧ (y ∨ x)).

Argue that dρ(z ) < d�(z ), since k1 is join-irreducible, whence by Lemma 1,
{y, dρ(z )} is not a cover of k0, excluding the first case. Therefore {y, d�(z )∧ (y ∨
x)} is a cover of k0, whence, by Lemma 1, k1 = d�(z ) ∧ (y ∨ x), showing that
k1 ≤ y ∨ x =

∨
C ∨ k0 and proving the statement. ��

Lemma 7. If L is a pluperfect lattice such that L |= [[AxRel]], then (π-RMod)
holds in its OD-graph.

Proof. Let k0 �C
m k1 and put C = C0 � C1 with C0 � {k0} and c 
≤ k0 for each

element c ∈ C1. As (Sym) whence (π-Sym) hold, we have k1 ≤ ∨
C1 ∨∨

C0 ∨k0.
We consider next equation (RMod). Put x := k0, y :=

∨
C0, z0 :=

∨
C1 ∨k1,

z1 :=
∨

C1∨
∨

C0, z2 := k0. From k1 ≤ ∨
C1∨

∨
C0∨k0, we get z0∧(z1∨z2) = z0.

Whence, the left-hand side of (RMod) evaluates to k0 so k0 is below the right-
hand side of (RMod). Considering that {k0} is the unique minimal join-cover of
k0 whose elements are all below k0, it follows that either k0 ≤ z0 ∧ (z1 ∨ z2) or
k0 ≤ y ∨ (z0 ∧ z1) ∨ (z0 ∧ z2).

As k0 
≤ ∨
C1 ∨ k1 = z0, it follows that k0 ≤ y ∨ (z0 ∧ z1) ∨ (z0 ∧ z2). We

can use then Lemma 4 to deduce that k0 has a minimal join-cover of the form
k0 �m C0 � D, with D � {z0 ∧ z1, z0 ∧ z2} � {z1, z2}. If all the elements of D
are below z1 =

∨
C0 ∨ ∨

C1, then

k0 ≤
∨

C0 ∨
∨

D ≤
∨

C0 ∨
∨

C1 ,

contradicting the minimality of k0 �m C0 � C1 � {k1}. Therefore, at least one
element of D is below z2 = k0. If C0 
= ∅, then in the minimal join-cover C0 � D



212 L. Santocanale

there are at least two elements that are below k0. This however contradicts
(π-VarRL1), whence (VarRL1). We have, therefore, C0 = ∅. ��
Lemma 8. If L is a pluperfect lattice with L |= [[AxRel]], then (π-
StrongSymPC) holds in is OD-graph.

Proof. By Lemmas 5 and 7, (π-RMod) and (π-VarRL1) hold in the OD-graph.
Let x := k0, y :=

∨
C0, z :=

∨
C1. Then the left-hand side of (SymPC)

evaluates to k0 which is therefore below the right-hand side. Thus, by Lemma 4,
there is a minimal join-cover of the form k0 �m D0 �D1 with either (i) D0��mC0,
D0 � {y ∧ (x ∨ z)}, and D1 = C1, or (ii) D0 = C0, D1��mC1, and D1 �
{z ∧ (x ∨ y)}.

W.l.o.g. we can suppose that (i) holds. From D0 � {y∧ (x∨z)} � {x∨z} =
{k0 ∨ ∨

C1}, we can argue as follows. We notice first that if an element of D0

is join-prime, then it is either below k0 or below some c ∈ C1; since D0 � C1 is
an antichain, this element is below k0. Therefore, if all the elements of D0 are
join-prime, then, by (π-VarRL1), D0 = {k′}. Otherwise, there exists a non-join-
prime element k′ in D0 and, by (Unjp), this is the only non-join-prime in D0.
Write D0 = {k′} � E, then every element of E is join-prime and, as seen before,
we need to have E � {k0}. Then (π-RMod) enforces E0 = ∅ and D0 = {k′}. In
both cases, the relation {k′} = D0��mC0 yields k′ �m C0. ��

Finally, in order to understand the structure of finite lattices in the variety
of axiomatized by [[AxRel]], let Jp(L) denote the set of join-prime elements of
L and consider the following property:

• If k0 �m C and C ⊆ Jp(L), then c0 ≤ k0 for some c0 ∈ C (π-JP)

The next Lemma ensures the existence of a non-join-prime element in a cover in
finite atomistic lattices, as stated in Theorem 7.

Lemma 9. If a finite lattice L satisfies [[AxRel]], then (π-JP) holds in its OD-
graph. In particular, if L is atomistic, then k0 �mC implies that k1 ∈ C for some
non-join-prime k1.

It can be shown that the finiteness assumption in Lemma 9 is necessary.

7 Conclusions and Further Directions

Some undecidable problems. Our main result, Theorem 7, characterizes the
OD-graphs of finite atomistic lattices satisfying [[AxRel]] as structures similar
to frames for the commutator logic [S5]n, the multimodal logic with n distinct
pairwise commuting S5 modal operators, see [10]. We exemplify next how to
take advantage of such similarity and of the existing theory on combination of
modal logics, to deduce undecidability results. As this is not the main goal of
the paper, we delay a full exposition of these ideas to an upcoming set of notes.



Relational Lattices via Duality 213

An [S5]n frame is a structure F = (F,R1, . . . , Rn) where each Ri is an equiva-
lence relation on F and, moreover, the confluence property holds: if i 
= j, xRiy
and xRjz, then yRjw and zRiw for some w ∈ F . A particular class of [S5]n

frames are the universal S5n-products, those of the form U = (F,R1, . . . , Rn)
with F = X1 × . . .×Xn and (x1, . . . , xn)Ri(y1, . . . , yn) if and only if xj = yj for
each j 
= i.

For a frame F = (W,R1, . . . , Rn) and X ⊆ {1, . . . , n}, let us say that Y ⊆ W
is X-closed if w0 ∈ Y , whenever there is a path w0Ri0w1 . . . wk−1Rikwk with
{i0, . . . , ik} ⊆ X and wk ∈ Y . Then X-closed subsets are closed under intersec-
tions, so subsets of {1, . . . , n} give rise to closure operators 〈X〉 and to an action
as defined in Sect. 3. Let L(F) = P ({1, . . . , n}) �j P (W ) and notice that L(F)
is atomistic. A frame F is initial if there is f0 ∈ F such every other f ∈ F
is reachable from f0; it is full if, for each i = 1, . . . , n, Ri is not included
in the identity. If F is initial and full, then L(F) is subdirectly irreducible.
A p-morphism is defined as usual in modal logic. The key observation leading to
undecidability is the following statement.

Theorem 9. There is a surjective p-morphism from a universal S5n-product
frame U to a full initial frame F if and only if L(F) embeds in a relational lattice.

Proof (Sketch). The construction L is extended to a contravariant functor, so if
ψ : U −−→ F is a p-morpshim, then we have an embedding L(ψ) of L(F) into L(U).
We can assume that all the components X1, . . . , Xn of U are equal, so Xi = X
for each i = 1, . . . , n; if this is the case, then L(U) is isomorphic to the relational
lattice R({1, . . . , n},X).

The converse direction is subtler. Let χ : L(F) −−→ R(A,D) be a lattice
embedding; since L(F) is subdirectly-irreducible, we can suppose that χ preserves
bounds; its left adjoint μ : R(A,D) −−→ L(F) is then surjective. Since both L(F)
and R(D,A) are generated (under possibly infinite joins) by their atoms, each
atom x ∈ L(F) has a preimage y ∈ R(D,A) which is an atom. Consider now S0 =
{f ∈ DA | μ(f) is a non-join-prime atom} and make it into a P ({1, . . . , n})-
valued ultrametric space by letting δS0(f, g) = μ(δ(f, g)) ⊆ {1, . . . , n}—we use
here the fact that μ sends join-prime elements to join-prime elements. S0 is
shown to be a pairwise complete ultrametric space over {1, . . . , n}. We prove
that pairwise complete ultrametric spaces over a finite set B are in bijection
with universal S5n-product frames, with n = card B. Then the restriction of μ
to S0 is a surjective p-morphism from S0 to (a frame isomorphic to) F. ��
In view of the following statement, which relies on [8] and can be inferred from
[7]: “for n ≥ 3, it is undecidable whether, given a finite full initial frame F, there
is a surjective p-morphism from a universal S5n-product U to F”, we deduce
the following undecidability results, which partially answer Problem 4.10 in [12].

Corollary 3. It is undecidable whether a finite subdirectly irreducible atomistic
lattice embeds into a relational lattice. Consequently, the quasiequational theory
of relational lattices in the pure lattice signature is also undecidable.



214 L. Santocanale

Comparison with Litak et al. [12]. We have presented our first contribution
to the study of the equational theory of relational lattices. In [12] two equations
in the larger signature with the header constant are presented as a base for the
equational theory of relational lattices. As mentioned there, the four equations
of [[AxRel]] are derivable from these two equations. Therefore, we can also think
of the present work as a contribution towards assessing or disproving complete-
ness of these two axiomatizations. Yet, we wish to mention here and emphasize
some of our original motivations. Lattice theoretic equations are quite difficult
to grasp, in particular if considered on the purely syntactic side, as done for
example in [12]. Duality theory attaches a meaning to equations via the com-
binatorial properties of the dual spaces. This process is nowadays customary in
modal and intuitionistic logic and gives rise to a well defined area of research,
correspondence theory. Our aim was to attach meaning to the equations of rela-
tional lattices. The answer we provide is, at the present state of research, via the
relevant combinatorial properties, symmetry and pairwise completeness. From
this perspective, the results presented in Sect. 6 undoubtedly need further under-
standing. In particular it is worth trying to modularize them, so as to discover
equations exactly corresponding to symmetry or, respectively, to pairwise com-
pleteness; alternatively, argue that these equations do not exist. Finally, the
present work opens new directions and challenges for the duality theory devel-
oped in [16]—of which, we hope we have illustrated the fruitfulness—including
a better understanding of how to generalize it to the infinite case, new mecha-
nisms by which to devise correspondence results, natural conjectures concerning
equations having correspondents in finite lattices.

References

1. Ackerman, N.: Completeness in generalized ultrametric spaces. P-Adic Numbers
Ultrametr. Anal. Appl. 5(2), 89–105 (2013)

2. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

3. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, New York (2002)

4. Freese, R., Ježek, J., Nation, J.: Free Lattices. American Mathematical Society,
Providence, RI (1995)

5. Grätzer, G.: General Lattice Theory. Birkhäuser, Basel, new appendices by the
author with Davey, B.A., Freese, R., Ganter, B., Greferath, M., Jipsen, P., Priestley,
H.A., Rose, H., Schmidt, E.T., Schmidt, S.E., Wehrung, F., Wille, R. (1998)

6. Hillenbrand, T., Löchner, B.: Waldmeister (1996–2008). http://www.waldmeister.
org/

7. Hirsch, R., Hodkinson, I., Kurucz, A.: On modal logics between K × K × K and
S5 × S5 × S5. J. Symbol. Log. 67, 221–234 (2002)

8. Hirsch, R., Hodkinson, I.: Representability is not decidable for finite relation alge-
bras. Trans. Amer. Math. Soc. 353, 1403–1425 (2001)

9. Joyal, A., Tierney, M.: An extension of the Galois theory of Grothendieck. Mem.
Amer. Math. Soc. 51(309) (1984)

http://www.waldmeister.org/
http://www.waldmeister.org/


Relational Lattices via Duality 215

10. Kurucz, A.: Combining modal logics. In: Patrick Blackburn, J.V.B., Wolter, F.
(eds.) Handbook of Modal Logic Studies in Logic and Practical Reasoning, vol. 3,
pp. 869–924. Elsevier, New York (2007)

11. Lawvere, F.W.: Metric spaces, generalized logic and closed categories. Rendiconti
del Seminario Matematico e Fisico di Milano XLIII, 135–166 (1973)

12. Litak, T., Mikulás, S., Hidders, J.: Relational lattices: from databases to universal
algebra. JLAMP (2015, to appear) doi:10.1016/j.jlamp.2015.11.008

13. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/∼mccune/
prover9/

14. Nation, J.B.: An approach to lattice varieties of finite height. Algebra Univers.
27(4), 521–543 (1990)

15. Priess-Crampe, S., Ribemboim, P.: Equivalence relations and spherically complete
ultrametric spaces. C. R. Acad. Sci. Paris 320(1), 1187–1192 (1995)

16. Santocanale, L.: A duality for finite lattices, September 2009, preprint. http://hal.
archives-ouvertes.fr/hal-00432113

17. Spight, M., Tropashko, V.: Relational lattice axioms (2008, preprint). http://arxiv.
org/abs/0807.3795

18. Tropashko, V.: Relational algebra as non-distributive lattice (2006, preprint).
http://arxiv.org/abs/cs/0501053

http://dx.doi.org/10.1016/j.jlamp.2015.11.008
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
http://hal.archives-ouvertes.fr/hal-00432113
http://hal.archives-ouvertes.fr/hal-00432113
http://arxiv.org/abs/0807.3795
http://arxiv.org/abs/0807.3795
http://arxiv.org/abs/cs/0501053


On Local Characterization of Global
Timed Bisimulation for Abstract

Continuous-Time Systems

Ievgen Ivanov(B)

Taras Shevchenko National University of Kyiv,
Volodymyrska St, 60, Kyiv 01601, Ukraine

ivanov.eugen@gmail.com

Abstract. We consider two notions of timed bisimulation on states of
continuous-time dynamical systems: global and local timed bisimulation.
By analogy with the notion of a bisimulation relation on states of a
labeled transition system which requires the existence of matching tran-
sitions starting from states in such a relation, local timed bisimulation
requires the existence of sufficiently short (locally defined) matching tra-
jectories. Global timed bisimulation requires the existence of arbitrarily
long matching trajectories. For continuous-time systems the notion of
a global bisimulation is stronger than the notion of a local bisimula-
tion and its definition has a non-local character. In this paper we give
a local characterization of global timed bisimulation. More specifically,
we consider a large class of abstract dynamical systems called Nonde-
terministic Complete Markovian Systems (NCMS) which covers various
concrete continuous and discrete-continuous (hybrid) dynamical models
and introduce the notion of an f+-timed bisimulation, where f+ is a so
called extensibility measure. This notion has a local character. We prove
that it is equivalent to global timed bisimulation on states of a NCMS. In
this way we give a local characterization of the notion of a global timed
bisimulation.

Keywords: Bisimulation · Cyber-physical system · Dynamical system ·
Continuous time · Local characterization

1 Introduction

The focus of this paper is the notion of bisimulation [1–4] in the domain of
continuous-time dynamical systems. A general overview of the history of bisim-
ulation, bisimilarity, coinductive definitions and their relevance to computer sci-
ence, logic and other fields can be found in [4].

Recall that in the simplest case of labeled transition systems (LTS) [4] bisim-
ulation and bisimilarity can be defined as follows:

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 216–234, 2016.
DOI: 10.1007/978-3-319-40370-0 13



On Local Characterization of Global Timed Bisimulation 217

A binary relation R on states of an LTS is a bisimulation, if (q1, q2) ∈ R
implies that for each state q′

1 and a label a such that q1 →a q′
1 there exists a

state q′
2 such that q2 →a q′

2 and (q′
1, q

′
2) ∈ R, and, conversely, for each state q′

2

and a label a such that q2 →a q′
2 there exists a state q′

1 such that q1 →a q′
1 and

(q′
1, q

′
2) ∈ R.

Bisimilarity is the union of all bisimulations.
Associated with these notions is the bisimulation proof method [4,5], which,

in particular, can be used to show behavioral equivalence of processes.
As was pointed out in [4], the features of the definition of bisimulation which

make the bisimulation proof method practically interesting are:

– locality of the checks in the sense that only immediate transitions from states
of a pair (q1, q2) ∈ R need to be examined to verify the conditions of the
definition;

– the lack of hierarchy on the pairs of the bisimulation (i.e. checks can be done
in any order).

Many modifications and extensions of the mentioned definitions were pro-
posed in different contexts [4].

In this paper we are interested in the notions of bsimulation for continuous-
time models which are useful for modeling cyber-physical systems [6–9] and
giving semantics to related specification and programming languages [10–14]. In
this context various definitions of bisimulation relations were proposed [15–21].
A survey and comparison of different approaches can be found in [21,22].

Most of such approaches consider dynamical system models with an explicit
notion of a global (continuous) time with respect to which the system’s global
state evolves and define some notion of bisimulation on states of such systems.

Such definitions of bisimulation for continuous-time systems can be classified
in different ways.

Generally, on one hand there are reduction-like approaches which associate
a model which has a pre-existing notion of bisimulation (e.g. LTS) with a
continuous-time model and consider bisimulation relations for the associated
model (in the sense of the pre-existing definition) to be bisimulation relations
for the continuous-time model. Approaches of this kind were used for timed
automata and several classes of hybrid systems [15] for abstracting infinite-state
systems by finite systems and establishing decidability results [15], for abstract-
ing continuous-time linear control systems [16], etc.

On the other hand, there are approaches which define new notions of
bisimulation specifically for the considered classes of continuous-time systems.
Approaches of this kind were proposed in [18] for continuous-time linear con-
trol systems with disturbances and certain kinds of nonlinear systems, in [19]
for dynamical systems in the sense of J.C. Willems behavioral approach [23], in
[24,25] for dynamical systems on manifolds and control and hybrid systems, in
[26] for general flow systems.

The way in which a particular definition of bisimulation for continuous-time
systems takes into account timing information gives another classification of such
definitions.



218 I. Ivanov

On one hand, there were proposed time-abstracting bisimulations [27], bisim-
ulations of time-abstract transition systems [16], reachability bisimulation [26]
for continuous-time systems which do not take into account the times required
by a system to reach a particular state.

On the other hand, timed bisimulation definitions require matching of states
along trajectories (executions) of a system starting from states related by bisim-
ulation at exactly same time moments, e.g. [18,26]. Intermediate approaches
which take into account time information, but do not require exact matching
along trajectories starting from states related by a bisimulation were also pro-
posed, e.g. progress bisimulation [26].

The mentioned approaches to formalization of dynamical systems and the
associated notions of bisimulation and proof methods are quite heterogeneous
and currently lack a uniform treatment (e.g. in terms of coalgebras).

However, comparing various definitions of bisimulation for continuous-time
dynamical/control/hybrid systems to the definition of a bisimulation on the
states of a LTS, an important aspect of these definitions becomes visible:
although these definitions do not impose a hierarchy on the pairs (similarly
to bisimulations for LTS [4]), timed bisimulation definitions are non-local in
the sense that checking that a pair of states is in a bisimulation relation involves
checking some “far future”/global properties of the trajectories of a system start-
ing in these states (relative to the time moment when these trajectories start).

In particular, this is true for the bisimulation definitions proposed for abstract
types of continuous-time systems, e.g. in [26] the following notion of a timed
simulation was introduced for highly abstract general flow systems:

If Φ1, Φ2 are general flow systems over value spaces X1,X2 with the same
time line, a binary relation R between X1,X2 is a timed simulation of Φ1 by Φ2,
if dom(Φ1) ⊆ dom(R) and for all x1, x

′
1 ∈ X1, x2 ∈ X2 such that (x1, x2) ∈ R

and for all times t > 0, if there is a path γ1 ∈ Φ1(x1) such that x′
1 = γ1(t), then

there is x′
2 ∈ X2 and γ2 ∈ Φ2(x2) such that x′

2 = γ2(t), dom(γ2) = dom(γ1),
and (γ1(s), γ2(s)) ∈ R for all s ∈ dom(γ2) ∩ [0, t]. A relation R is a timed
bisimulation between Φ1, Φ2, if both R and R−1 are timed simulations (details
about the notions used in this definition are given in [26]).

In principle, we agree with definitions of this kind (on both abstract and con-
crete levels), but consider their non-local character undesirable for applications
based on the bisimulation proof method.

Our aim in this paper is to give a necessary and sufficient condition (crite-
rion) of a local (in time) character for checking that a given relation satisfies a
timed bisimulation definition of this kind. The novelty of the main result is that
local characterization of global timed bisimulation for continuous-time systems
is possible in the very general case and can be given in a uniform way (using
the notion of a so called f+-bisimulation defined below). Local characterization
also makes the notion of bisimulation for systems with continuous-time evolution
close in spirit to the classical notion of bisimulation for LTS (which are most
often used for representing systems with discrete-time evolution) and allows one
to use a wide variety of well-known methods of local analysis (in local in time or



On Local Characterization of Global Timed Bisimulation 219

in state space) of the behavior of systems defined by differential equations, inclu-
sions, certain hybrid (discrete-continuous) formalisms, etc. (e.g. linearization,
various series expansions, approximations, singularity analysis, etc.) for proving
that a given relation is a bisimulation. Such methods are difficult or impossible to
apply if one tries to prove that a relation is a global timed bisimulation directly
by the definition (since this definition is given in terms of long-term behaviors
of a system instead of short-term behaviors). We also suppose that this result
will be useful for further development of uniform treatment of continuous time
dynamical system models and proof principles related to them using coalgebraic
approach (e.g. definition of bisimulation on continuous-time systems in terms of
coalgebras).

Note that as we have mentioned above, many different definitions of bisim-
ulation for continuous-time systems can be found in the literature. However,
arguably, once a local characterization is obtained for some reasonable formal-
ization X of bisimulation, it may be translated to other formalizations of bisimu-
lation at least when they agree with X (e.g. bisimulation for general flow systems
in the sense of Davoren and Tabuada [26]). In this paper we do not include a
detailed comparison of different approaches to the definition of bisimulation for
continuous-time systems and local characterization and its limits in each of such
cases, but this remains a topic of further investigation.

To obtain the main result we will consider dynamical systems on a high level
of abstraction comparable to the level of the mentioned general flow systems, but
use a particular formalization of such systems called Nondeterministic Complete
Markovian Systems (NCMS).

This formalization was proposed in [28–32] and inspired by the notion of a
solution system from O. Hájek’s Theory of processes [33,34]. In this formalization
the global non-negative real time scale is assumed and continuous-time systems
are modeled as sets of trajectories considered as functions on real time intervals
which take values in an arbitrary fixed set of states. These sets must satisfy
certain weak assumptions (more details are given in Sect. 2) [29]:

– be closed under proper restrictions onto intervals;
– satisfy the Markovian property which means that if two trajectories meet

at one time in one state, their concatenation is a trajectory (note that this
Markovian property is not formally related to the probability theory and sto-
chastic processes);

– satisfy the completeness property in the following sense: a non-empty chain
of trajectories in the sense of a subtrajectory relation has a supremum in the
set of trajectories.

One interpretation of the Markovian property is that at any time moment the
set of possible future evolutions of a system depends only on its current state and
time and does not depend on the path by which the system reached the current
state (which is also true for LTS). The definition of Hájek’s solution system
is rather similar, but lacks an equivalent of the completeness requirement of
NCMS. But for us completeness is necessary to be able to establish reductions
of global-in-time properties of systems to local-in-time properties.



220 I. Ivanov

NCMS are also close to the notion of a TCTL structure in the sense of Alur
et al. [35], but the definition of the latter TCTL structures lack an equivalent of
the completeness assumption. Only with it Markovian property is sufficient for
establishing local characterization of bisimulation (informally, Markovian prop-
erty of NCMS allows joining a finite sequence of trajectories; with completeness
it allows joining an infinite sequence of trajectories).

The main reasons we use NCMS are:

– NCMS do not impose restrictions on the structure of the set of states and
impose weak restrictions on the system behavior, support nondeterminism
and partial trajectories. These features make NCMS promising for computer
science and cyber-physical systems applications like semantics of real-time
and embedded systems specification languages [30]. In contrast, well-known
concrete dynamical system models (classical dynamical systems, switched
systems [36], hybrid automata [37,38]) impose restrictions on the struc-
ture of the state space (e.g. assuming that it is a vector space, a mani-
fold, or a related structure) and stronger restrictions on the behavior of a
system.

– Concrete continuous-time models (e.g. described by differential equations,
switched systems, etc.) can be represented by NCMS [28], similarly to rep-
resenting different kinds of systems by Hájek’s solution systems [33,34]. Some
examples of such representations are given in Subsect. 2.2 below.

– The model of NCMS allows one to reduce some types of global analysis of
system behavior to local analysis of system behavior, e.g. prove global prop-
erties by checking that certain conditions hold in a neighborhood of each time
moment [29]. This is described in more detail in Subsect. 2.3.

In this paper we will define the notion of a labeled NCMS which can be
considered as a continuous-time analog of LTS and the notion of a global timed
bisimulation on the states of a labeled NCMS. We will also define an obvious
local version of this notion of a global timed bisimulation which we will call a local
timed bisimulation. Both notions turn out to be inequivalent in the case of NCMS
(local timed bisimulation is strictly weaker than global timed bisimulation). Then
we will strengthen the local definition of bisimulation using so-called extensibility
measures [29] and call the obtained notion a f+-timed bisimulation. This notion
will have a local character. Then we will show the equivalence of f+-timed
bisimulation and global timed bisimulation, obtaining a local characterization of
global timed bisimulation.

The paper is organized in the following way. To make the paper self-
contained, we give all necessary preliminaries about NCMS in Sect. 2. The reader
may skip this section or most of it, but consult it whenever necessary. In Sect. 3
we introduce the notion of a labeled NCMS. In Sect. 4 we introduce global and
local timed simulations and bisimulations on states of labeled NCMS. In Sect. 5
we formulate and discuss the main result, i.e. the local characterization of global
timed bisimulation on states of a labeled NCMS. In Sect. 6 we give an outline of
the proof of the main result. In Sect. 7 we give conclusions.



On Local Characterization of Global Timed Bisimulation 221

2 Preliminaries

2.1 Notation

We will use the following notation: N = {1, 2, 3, ...} is the set of natural numbers;
R is the set of real numbers; R+ is the set of nonnegative real numbers; f : A → B
is a total function from a set A to a set B; f : A→̃B is a partial function from
a set A to a set B, 2A is the power set of a set A; f |A is the restriction of a
function f to a set A; BA is the set of all total functions from a set A to a set
B; AB is the set of all partial function from a set A to a set B.

For any function f : A→̃B we will use the symbol f(x) ↓ (f(x) ↑) to denote
that f(x) is defined, or, respectively, is undefined on the argument x.

We will not distinguish the notions of a function and a functional binary
relation. When we write that a function f : A→̃B is total or surjective, we
mean that f is total on the set A specifically (f(x) is defined for all x ∈ A), or,
respectively, is onto B (for each y ∈ B there exists x ∈ A such that y = f(x)).

For any f : A→̃B denote dom(f) = {x | f(x) ↓}, i.e. the domain of f (note
that in some fields like the category theory the domain of a partial function is
defined differently).

For any binary relation R denote R−1 = {(y, x) | (x, y) ∈ R} (the inverse
relation).

For any partial functions f, g the notation f(x) ∼= g(x) will mean the strong
equality: f(x) ↓ if and only if g(x) ↓, and f(x) ↓ implies f(x) = g(x).

Denote by f ◦ g the functional composition: (f ◦ g)(x) ∼= f(g(x)).
Denote by T the non-negative real time scale [0,+∞). We will assume that

T is equipped with a topology induced by the standard topology on R.
We will use the symbols ¬, ∨, ∧, ⇒, ⇔ to denote the logical operations of

negation, disjunction, conjunction, implication, and equivalence respectively.

2.2 Nondeterministic Complete Markovian Systems

The notion of a Nondeterminisitc Complete Markovian System (NCMS) was
introduced in [28] for studying the existence of global trajectories of dynamical
systems. It is close to the notion of a solution system by Hájek [33].

Let us denote by T the set of all intervals in T (connected subsets) which
have the cardinality greater than one.

Let Q be a set (a state space) and Tr be some set of functions of the form
s : A → Q, where A ∈ T. We will call the elements of Tr (partial) trajectories.

Definition 1 [28,32]. A set of trajectories Tr is closed under proper restrictions
(CPR), if s|A ∈ Tr for each s ∈ Tr and A ∈ T such that A ⊆ dom(s).

Let us introduce the following notation: if f, g are partial functions, f � g
means that the graph of f is a subset of the graph of g, and f � g means that
the graph of f is a proper subset of g.



222 I. Ivanov

Definition 2. Let s1, s2 ∈ Tr be trajectories. Then:

(1) s1 is called a subtrajectory of s2, if s1 � s2;
(2) s1 is called a proper subtrajectory of s2 ∈ Tr, if s1 � s2;
(3) s1, s2 are called incomparable, if neither s1 � s2, nor s2 � s1.

The pair (Tr,�) is a possibly empty partially ordered set.

Definition 3 [28,32]. A CPR set of trajectories Tr is

(1) Markovian (Fig. 2), if for each s1, s2 ∈ Tr and t0 ∈ T such that t0 =
sup dom(s1) = inf dom(s2), s1(t0) ↓, s2(t0) ↓, and s1(t0) = s2(t0), the fol-
lowing function s belongs to Tr: s(t) = s1(t), if t ∈ dom(s1) and s(t) = s2(t),
if t ∈ dom(s2).

(2) complete, if each non-empty chain in (Tr,�) has a supremum.

Fig. 1. Markovian property of NCMS. If one (partial) trajectory ends and another
begins in a state q at time t, then their concatenation is a (partial) trajectory.

Fig. 2. Illustration of the completeness property of NCMS. The limit s of a �-chain
of trajectories (illustrated here as curve fragments bounded by dashed ellipses) of a
NCMS is itself a trajectory of this NCMS. The graph of s is the union of graphs of
elements of the chain.

Definition 4 [28,32]. A nondeterministic complete Markovian system (NCMS)
is a triple (T,Q, Tr), where Q is a set (state space) and Tr (trajectories) is a
set of functions s : T→̃Q such that dom(s) ∈ T, which is CPR, complete, and
Markovian.



On Local Characterization of Global Timed Bisimulation 223

The notion of an LR representation [28,29,32] given below can be used to
obtain an overview of the class of all NCMS.

Definition 5 [28,32]. Let s1, s2 : T→̃Q. Then s1 and s2 coincide:

(1) on a set A ⊆ T , if s1|A = s2|A and A ⊆ dom(s1) ∩ dom(s2) (this is denoted
as s1

.=A s2);
(2) in a left neighborhood of t ∈ T , if t > 0 and there exists t′ ∈ [0, t) such that

s1
.=(t′,t] s2 (this is denoted as s1

.=t− s2);
(3) in a right neighborhood of t ∈ T , if there exists t′ > t, such that s1

.=[t,t′) s2
(this is denoted as s1

.=t+ s2).

Let Q be a set and ST (Q) be the set of pairs all (s, t), where s : A → Q for
some A ∈ T and t ∈ A.

Definition 6 [28,32]. A predicate p : ST (Q) → Bool is

(1) left-local, if p(s1, t) ⇔ p(s2, t) whenever {(s1, t), (s2, t)} ⊆ ST (Q) and
s1

.=t− s2 hold, and, moreover, p(s, t) holds whenever t is the least element
of dom(s);

(2) right-local, if p(s1, t) ⇔ p(s2, t) whenever {(s1, t), (s2, t)} ⊆ ST (Q) and
s1

.=t+ s2 hold, and, moreover, p(s, t) holds whenever t is the greatest ele-
ment of dom(s).

Let LR(Q) denote the set of all pairs (l, r), where l : ST (Q) → Bool is a
left-local predicate and r : ST (Q) → Bool is a right-local predicate.

Definition 7 [32]. A pair (l, r) ∈ LR(Q) is called a LR representation of a
NCMS Σ = (T,Q, Tr), if

Tr = {s : A → Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

The following theorem shows that a NCMS can be represented using predi-
cate pairs.

Theorem 1 [32].

(1) Each pair (l, r) ∈ LR(Q) is a LR representation of a NCMS with the set of
states Q.

(2) Each NCMS has a LR representation.

Consider some examples of representation of sets of trajectories of well-known
continuous and discrete-continuous dynamical models in the form of NCMS.

1. Ordinary differential equations. Let d ∈ N and f : R × R
d → R

d be a
continuous function. Let Tr be the set of all Rd-valued functions such that
dom(s) ∈ T (i.e. s is defined on a non-degenerate real interval) such that s is
differentiable on the interior of dom(s) and
– d

dts(t) = f(t, s(t)) holds for each t in the interior of dom(s);
– ∂+s(t) = f(t, s(t)), if t is the least element of dom(s);
– ∂−s(t) = f(t, s(t)), if t is the greatest element of dom(s),



224 I. Ivanov

where ∂−s(t) denotes the left derivative at t, and ∂+s(t) denotes the right
derivative at t. Then (T,Rd, T r) is a NCMS.
Indeed, consider predicates l, r : ST (Rd) → Bool defined as follows:
– l(s, t) if and only if either min dom(s) ↓= t, or t > inf dom(s) and

∂−s(t) ↓= f(t, s(t));
– r(s, t) if and only if either max dom(s) ↓= t, or t < sup dom(s) and

∂+s(t) ↓= f(t, s(t)).
Obviously, l(s, t) is left-local and r(s, t) is right-local. Moreover, l(s, t)∧r(s, t)
holds for all t ∈ dom(s) if and only if s ∈ Tr. Then Theorem 1 implies
that (T,Rd, T r) is a NCMS. Note that for this result we do not need any
assumptions about global existence or uniqueness of solutions of differential
equations, because NCMS support partiality and nondeterminism.

2. Differential inclusions. Consider a differential inclusion ẋ(t) = F (t, x(t)),
where F : R×R

d → 2R
d

is a set-valued mapping. Let us introduce an auxiliary

variable y and rewrite the inclusion as

{
ẋ(t) = y(t);
y(t) ∈ F (t, x(t)).

Let Q = R
d × R

d and Tr be the set of all Q-valued functions s such that
dom(s) ∈ T and there exist functions x : dom(s) → R

d and y : dom(s) → R
d

such that s(t) = (x(t), y(t)) and y(t) ∈ F (t, x(t)) for all t ∈ dom(s) and x is
absolutely continuous on each compact segment [a, b] ⊆ dom(s) and satisfies
ẋ(t) = y(t) almost everywhere (a.e.) on dom(s) in the sense of Lebesgue’s
measure. Then (T,Q, Tr) is a NCMS. Indeed, consider l, r : ST (Q) → Bool:
– l(s, t) if and only if either min dom(s) ↓= t, there exists t′ ∈ [0, t), an

absolutely continuous function x : [t′, t] → R
d, and a function y : [t′, t] →

R
d such that [t′, t] ⊆ dom(s), s(τ) = (x(τ), y(τ)) and y(τ) ∈ F (τ, x(τ))

for all τ ∈ [t′, t] and d
dτ x(τ) = y(τ) a.e. on [t′, t].

– r(s, t) if and only if either max dom(s) ↓= t, or there exists t′ > t, an
absolutely continuous function x : [t, t′] → R

d, and a function y : [t, t′] →
R

d such that [t, t′] ⊆ dom(s), s(τ) = (x(τ), y(τ)) and y(τ) ∈ F (τ, x(τ))
for all τ ∈ [t, t′] and d

dτ x(τ) = y(τ) a.e. on [t, t′].
Obviously, l(s, t) is left-local and r(s, t) is right-local. Moreover, it is easy to
check that l(s, t) ∧ r(s, t) holds for all t ∈ dom(s) if and only if s ∈ Tr. Then
(T,Q, Tr) is a NCMS by Theorem 1.

3. Switched dynamical systems. Let d ≥ 1 be a natural number, I be a
finite non-empty set (modes of a switched system), and fi : T × R

d → R
d,

i ∈ I be an indexed family of vector fields (behaviors in each mode). Let I
be the set of all functions σ : T → I (switching signals) which are piecewise-
constant on each compact segment [a, b] ⊂ T . Assume that for each i ∈ I, fi

is continuous and bounded on T × R
d and there exists a number L > 0 such

that ||fi(t, x1) − fi(t, x2)|| ≤ L||x1 − x2|| for all x1, x2 ∈ R
d, t ∈ T , and i ∈ I

(Lipschitz-continuity). Consider a (nonlinear) switched system

ẋ(t) = fσ(t)(t, x(t)), t ≥ 0, σ ∈ I.

Note that by Caratheodory existence theorem, for each x0 ∈ R
d, t0 ∈ T ,

σ ∈ I the initial value problem d
dtx(t) = fσ(t)(t, x(t)), x(t0) = x0 has a unique



On Local Characterization of Global Timed Bisimulation 225

Caratheodory solution t �→ x(t; t0;x0;σ) defined for all t ∈ [t0,+∞) such that
x(t0; t0;x0;σ) = x0 (i.e. a function that is absolutely continuous on each com-
pact segment in [t0,+∞) and satisfies d

dtx(t; t0;x0;σ) = fσ(t)(t, x(t; t0;x0;σ))
a.e. on [t0,+∞)).
Let Q = R

d × I and Tr be the set of all Q-valued functions s such that
dom(s) ∈ T (i.e. dom(s) is a non-degenerate real interval) and there exist
t0 ∈ T , x0 ∈ R

d, σ : dom(s) → I that is piecewise constant on each compact
segment in dom(s), and x : dom(s) → R

d that is absolutely continuous on
each compact segment in dom(s) such that d

dtx(t) = fσ(t)(t, x(t)) almost
everywhere (a.e.) on dom(s) in the sense of Lebesgue’s measure and s(t) =
(x(t), σ(t)) for t ∈ dom(s). Then (T,Q, Tr) is a NCMS.
Indeed, consider predicates l, r : ST (Rd) → Bool defined as follows:
– l(s, t) if and only if either min dom(s) ↓= t, there exists t′ ∈ [0, t), an

absolutely continuous function x : [t′, t] → R
d, and a piecewise-constant

function σ : [t′, t] → I such that [t′, t] ⊆ dom(s), s(τ) = (x(τ), σ(τ)) for
all τ ∈ [t′, t] and d

dτ x(τ) = fσ(τ)(τ, x(τ)) a.e. on [t′, t].
– r(s, t) if and only if either max dom(s) ↓= t, or there exists t′ > t, an

absolutely continuous function x : [t, t′] → R
d, and a piecewise-constant

function σ : [t, t′] → I such that [t, t′] ⊆ dom(s), s(τ) = (x(τ), σ(τ)) for
all τ ∈ [t, t′], and d

dτ x(τ) = fσ(τ)(τ, x(τ)) a.e. on [t, t′].
Obviously, l(s, t) is left-local and r(s, t) is right-local. Moreover, it is easy to
check that l(s, t) ∧ r(s, t) holds for all t ∈ dom(s) if and only if s ∈ Tr. Then
(T,Q, Tr) is a NCMS by Theorem 1.

Sets of trajectories of some more general switched/hybrid systems (possibly
with state-dependent switching) can be represented as NCMS analogously.

2.3 Global Trajectories of NCMS

The problem of the existence of trajectories of NCMS defined on the whole time
domain (global trajectories) was considered in [28,29,32]. In [28,32] a method
for proving the existence of a global trajectory in a NCMS was proposed. This
method reduces the problem of proving the existence of a global trajectory to the
problem of proving the existence of certain locally defined trajectories and can
be informally described as follows: (1) guess a “region” (a subset of trajectories)
which presumably contains a global trajectory and has a convenient representa-
tion in the form of (another) NCMS; (2) prove that this region indeed contains
a global trajectory by finding certain locally defined trajectories independently
in a neighborhood of each time moment.

Below we briefly state the results which form the basis of this method (Lemma
1 and Theorem 2 given below) which we will use in this paper.

Let Σ = (T,Q, Tr) be a fixed NCMS.

Definition 8 [29]. Σ satisfies

(1) local forward extensibility (LFE) property, if for each s ∈ Tr of the form
s : [a, b] → Q (a < b) there exists a trajectory s′ : [a, b′] → Q such that
s′ ∈ Tr, s � s′ and b′ > b.



226 I. Ivanov

(2) global forward extensibility (GFE) property, if for each trajectory s of the
form s : [a, b] → Q there is a trajectory s′ : [a,+∞) → Q such that s � s′.

Definition 9 [29]. A right dead-end path (in Σ) is a trajectory s : [a, b) → Q
(a, b ∈ T , a < b) such that there is no s′ : [a, b] → Q, s′ ∈ Tr such that s � s′.

Definition 10 [29]. An escape from a right dead-end path s : [a, b) → Q (in Σ)
is a trajectory s′ : [c, d) → Q (d ∈ T ∪ {+∞}) or s′ : [c, d] → Q (d ∈ T ) such
that c ∈ (a, b), d > b, and s(c) = s′(c). An escape s′ is infinite, if d = +∞.

Definition 11 [29]. A right dead-end path s : [a, b) → Q in Σ is called strongly
escapable, if there exists an infinite escape from s.

Definition 12 [29].

(1) A right extensibility measure is a function f+ : R × R→̃R such that A =
{(x, y) ∈ T × T | x ≤ y} ⊆ dom(f+), f(x, y) ≥ 0 for all (x, y) ∈ A, f+|A is
strictly decreasing in the first argument and strictly increasing in the second
argument, and for each x ≥ 0, f+(x, x) = x and limy→+∞ f+(x, y) = +∞.

(2) A right extensibility measure f+ is called normal, if f+ is continuous on
{(x, y) ∈ T × T | x ≤ y} and there exists a function α of class K∞ (i.e.
the function α : [0,+∞) → [0,+∞) is continuous, strictly increasing, and
α(0) = 0, limx→+∞ α(x) = +∞) such that α(y) < y for all y > 0 and the
function y �→ f+(α(y), y) is of class K∞.

An example of a right extensibility measure is f+
n (x, y) = y + (y − x)n for

any n ∈ N. Let f+ be a right extensibility measure.

Definition 13 [29]. A right dead-end path s : [a, b) → Q is called f+-escapable
(Fig. 3), if there exists an escape s′ : [c, d] → Q from s such that d ≥ f+(c, b).

Lemma 1 [29]. Σ satisfies GFE if and only if Σ satisfies LFE and each right
dead-end path is strongly escapable.

Theorem 2 ([29], About right dead-end path). Assume that f+ is a normal
right extensibility measure and Σ satisfies LFE. Then each right dead-end path
is strongly escapable if and only if each right dead-end path is f+-escapable.

3 Traces on Sets of Trajectories and Labeled NCMS

In the case of labeled transition systems (LTS), labels are some data associated
with transitions and traces are sequences of labels along executions of an LTS.
We would like to define an analogous notion of a trace for NCMS. The informal
idea behind the definition of a trace proposed below is that for continuous-time
systems the role of “transitions” play “infinitesimally short trajectories” and
“labels” are certain values associated with such trajectories. Thus a trace defines
some quantity that evolves in time along a trajectory. This idea of co-evolution
of trace and trajectory is formalized in Definition 14 below. Theorem 3 given
below shows that this definition implies that at each time moment the value
of a trace depends only on the values of the trajectory in vicinity of this time
moment supporting the informal ideas of “transitions” and “labels” for NCMS.



On Local Characterization of Global Timed Bisimulation 227

Fig. 3. An f+-escapable right dead-end path s : [a, b) → Q (curve) and a corresponding
escape s′ : [c, d] → Q (a horizonal segment) such that d ≥ f+(c, b).

Definition 14 (Trace). Let Tr be a CPR set of trajectories. A function λ on
Tr is called a trace on Tr, if the following conditions hold:

(1) (Preservation of domain) For each s ∈ Tr, λ(s) is a function defined on
dom(s).

(2) (Monotonicity) If s1, s2 ∈ Tr and s1 � s2, then λ(s1) � λ(s2).

We will define a labeled NCMS as a NCMS with a trace on its trajectories.

Definition 15 (Labeled NCMS). A labeled NCMS is a pair (Σ,λ), where
Σ = (T,Q, Tr) is a NCMS and λ is trace on Tr.

The most important properties of traces are formulated below.

Lemma 2 (Image of trace). The image of a trace on a CPR set of trajectories
is a CPR set of trajectories.

Lemma 3 (Chain-continuity of a trace). Let Tr be a CPR set of trajectories
and λ be a trace on Tr. Then λ is chain-continuous in the following sense: for
any non-empty chain C in the poset (Tr,�) which has the least upper bound
s∗ ∈ Tr the set {λ(s) | s ∈ C} has the least upper bound λ(s∗) in the poset
({λ(s) | s ∈ Tr},�).

The following theorem gives a convenient criterion for checking if a function
is a trace.

Theorem 3 (Criterion of a trace). Let Tr be a CPR set of trajectories, Y
be a set, λ : Tr → (T→̃Y ) be a total function. Then λ is a trace on Tr if and
only if the following conditions hold:

(1) dom(λ(s)) = dom(s) for all s ∈ Tr;
(2) if s1, s2 ∈ Tr, t0 ∈ T , s1

.=t0+ s2, then λ(s1)(t0) = λ(s2)(t0);
(3) if s1, s2 ∈ Tr, t0 ∈ T , s1

.=t0− s2, then λ(s1)(t0) = λ(s2)(t0).

The following lemma gives an obvious example of a trace: pointwise applica-
tion of a total function on the set of states to a trajectory (projection).



228 I. Ivanov

Lemma 4. Assume that Tr is a CPR set of trajectories from T to a set Q, Y
is a set, f : Q → Y is a total function, and λ : Tr → (T→̃Y ) is such that
λ(s) = f ◦ s for all s ∈ Tr. Then λ is a trace on Tr.

Proof. Follows immediately from Theorem 3. ��
However, generally, the value of a trace at time t may depend not only on

the value of a trajectory at t, but on the values of a trajectory in an arbi-
trarily small neighborhood of t. An example of this kind based on differenti-
ation is given below (informally, this trace measures the speed of change of a
trajectory).

Example 1. Assume that n ∈ N, Tr ⊂ T→̃R
n is a CPR set of trajectories and

each s ∈ Tr is differentiable on dom(s) ∈ T, i.e. s is differentiable at each point of
the interior of dom(s), s has the right derivative at the least element of dom(s),
if this element exists, and s has the left derivative at the greatest element of
dom(s), if this element exists.

Let λ : Tr → (T→̃R
n) be a function such that for each s ∈ Tr:

– λ(s)(t) = d
dts(t), if t is in the interior of dom(s);

– λ(s)(t) is the right derivative of s at t, if t is the least element of dom(s);
– λ(s)(t) is the left derivative of s at t, if t is the greatest element of dom(s).

Using Theorem 3 it is easy to check that λ is a trace on Tr. ��

4 Timed Simulation and Bisimulation on NCMS

For any partial function s on T such that dom(s) ∈ T, any t0 ∈ T , and any
element q we will write

q
s�, if dom(s) has the least element a such that s(a) = q;

q
s�t0 , if t0 is the least element of dom(s) and s(t0) = q.

Let (Σ,λ) be a fixed labeled NCMS, where Σ = (T,Q, Tr).

Definition 16. Let s1, s2 : T→̃Q and R ⊆ Q × Q be a binary relation.
Then the functions s1 and s2 are:

(1) pointwise in R, if dom(s1) = dom(s2) and (s1(t), s2(t)) ∈ R for t ∈ dom(s1);
(2) pointwise in R on a set A ⊆ T , if A ⊆ dom(s1)∩dom(s2) and (s1(t), s2(t)) ∈

R for all t ∈ A;
(3) pointwise in R in a right neighborhood of t ∈ T , if there exists t′ > t, such

that s1, s2 are pointwise in R on [t, t′);
(4) pointwise in R in a deleted left neighborhood of t ∈ T , if t > 0 and there is

t′ ∈ [0, t) such that s1, s2 are pointwise in R on (t′, t).

Definition 17 (Global timed simulation). A relation R ⊆ Q×Q is a global
timed simulation on (Σ,λ), if for each (q1, q2) ∈ R and s1 ∈ Tr such that
q1

s1� there is s2 ∈ Tr such that q2
s2�, λ(s1) = λ(s2), and s1, s2 are pointwise

in R.



On Local Characterization of Global Timed Bisimulation 229

Definition 18 (Local timed simulation). A relation R ⊆ Q × Q is a local
timed simulation on (Σ,λ), if for each (q1, q2) ∈ R, s1 ∈ Tr, and t0 ∈ T such
that q1

s1�t0 there exists s2 ∈ Tr such that q2
s2�t0 , λ(s1)

.=t0+ λ(s2), and s1, s2
are pointwise in R in a right neighborhood of t0.

Definition 19 (Timed bisimulation). A relation R ⊆ Q × Q is a

(1) local timed bisimulation on (Σ,λ), if both R and R−1 are local timed simu-
lations on (Σ,λ);

(2) global timed bisimulation on (Σ,λ), if both R and R−1 are global timed sim-
ulations on (Σ,λ).

Lemma 5. If R is a global timed simulation on (Σ,λ), then R is a local timed
simulation on (Σ,λ).

Lemma 6. There exists a labeled NCMS (Σ′, λ′) and a local timed bisimulation
R0 on (Σ′, λ′) such that R0 is not a global timed simulation on (Σ′, λ′).

Theorem 4 (About global and local timed bisimulation)

(1) If R is a global timed bisimulation on (Σ,λ), then R is a local timed bisim-
ulation on (Σ,λ).

(2) There is a labeled NCMS (Σ′, λ′) and a local timed bisimulation R0 on
(Σ′, λ′) such that R0 is not a global timed bisimulation on (Σ′, λ′).

Proof. Follows immediately from Lemmas 5, 6, and Definition 19. ��

5 Main Result

As before, let (Σ,λ) be a fixed labeled NCMS, where Σ = (T,Q, Tr). Let f+ be
a fixed right extensibility measure.

Definition 20 (f+-timed simulation). A relation R ⊆ Q × Q is a f+-timed
simulation on (Σ,λ), if R is a local timed simulation on (Σ,λ) and for each
s1, s2 ∈ Tr and t0 ∈ dom(s1) which satisfy the following conditions:

– s1, s2 are pointwise in R in a deleted left neighborhood of t0,
– λ(s1)=̇[t′

0,t0)λ(s2) for some t′0 < t0,
there exist s′

2 ∈ Tr, t1 ∈ dom(s2) ∩ dom(s′
2), and t2 ∈ T such that

(1) t1 < t0 and s2(t1) = s′
2(t1);

(2) either t2 ≥ f+(t1, t0), or t2 is the maximal element of dom(s1);
(3) λ(s1)

.=[t1,t2] λ(s′
2);

(4) s1 and s′
2 are pointwise in R on [t1, t2].

Definition 21 (f+-timed bisimulation). A relation R ⊆ Q×Q is a f+-timed
bisimulation on (Σ,λ), if both R and R−1 are f+-timed simulations on (Σ,λ).

The main result of this paper is the following theorem:



230 I. Ivanov

Theorem 5 (Local characterization of global timed bisimulation). Let
f+ be a normal right extensibility measure. A relation R ⊆ Q × Q is a global
timed bisimulation on (Σ,λ) if and only if R is a f+-timed bisimulation on
(Σ,λ).

This theorem holds for any normal right extensibility measure, for example,
f+
1 (x, y) = y + (y − x) = 2y − x. The difference between the definition of the

f+-timed simulation and global timed simulation is that the latter definition
is non-local, i.e. it requires proving the existence of arbitrarily long trajectories
(s2) for proving that R is a simulation which may be hard, if the dynamics of a
system is defined by nonlinear differential equations or in other implicit way. The
former definition is local in that for proving that R is a simulation one can show
the existence of s′

2 that satisfies (1)–(4) on an arbitrarily short interval [t1, t2]
(the condition (2) imposes a lower bound on its length, but e.g. for f+ = f+

1

this lower bound can be made arbitrarily small by choosing t1 close to t0).
Arguably, the characterization of global timed bisimulation provided by The-

orem 5 is non-constructive, because it does not tell how to check the existence of
s′
2 ∈ Tr, t1 ∈ dom(s2)∩dom(s′

2), and t2 ∈ T in Definition 20 (their existence for
any s1, s2, t0 that satisfy assumptions of this definition is required for proving
that a relation is a global timed bisimulation). But this lack of constructivity is,
arguably, a consequence of generality of our model of a system (NCMS). So the
role of the local characterization provided by Theorem 5 is logical (to give an
alternative view of bisimulation in the general case useful e.g. for proving new
theorems about bisimulations) instead of being an executable algorithm.

The question of whether Theorem 5 can be a basis of algorithms for checking
properties related to bisimulations and bisimilarity for special types dynamical
systems (e.g. described by linear systems, etc.) requires separate investigation.

An informal description of how Theorem 5 can be applied is given below.
Let S be a system that travels through the state space Q = R

n in accordance
with a known law of motion L – an ordinary differential equation with input
control. The trace of a trajectory is a pointwise application of some output
function to the trajectory (in accordance with Lemma 4). Q contains a (possibly
infinite) subset O of isolated point obstacles. If S hits an obstacle, its trajectory
ends without possibility of continuation. Trajectories which neither hit nor tend
to obstacles can be continued indefinitely.

Suppose that we want to prove that under certain assumptions R = (Q\O)×
(Q\O) is a global timed bisimulation.

Proof using Definition 17 involves reasoning about the whole set O. Under
assumptions that are close to functional output-controllability of the system one
can prove that R is a local bisimulation without reasoning about obstacles at all
(see Definition 18). However, this approach is not directly applicable to the case
of global timed bisimulation.

For proving that R is a global timed bisimulation one can use f+-timed
bisimulation which is equivalent to it. In this case one needs to inspect system
behavior near each obstacle individually, forgetting about others: take f+(x, y) =
2y − x and consider Definition 20. The main case is when s2 tends to a some



On Local Characterization of Global Timed Bisimulation 231

obstacle X as t → t0 and s1 avoids all obstacles. Definition 20 requires the
existence of a control maneuver s′

2 that preserves the trace of s2, but not for
long after t0 (t2 − t0 ≥ t0 − t1 is sufficient). By choosing t1 such that t0 − t1 is
sufficiently small (informally, “last minute collision avoidance”) and taking into
account continuity of trajectories of S, proving its existence using L does not
require reasoning about obstacles from O other than X.

6 Outline of the Proof of the Main Result

The idea of the proof is to define a family of auxiliary NCMS {Σs0,R(Σ,λ) |
s0 ∈ Tr} depending on R such that all its members satisfy GFE whenever R is a
f+-timed simulation and show that if they satisfy GFE, then R is a global timed
simulation on (Σ,λ). The converse part of the theorem can be proved directly.

We formulate the main steps (milestones) of the proof as a series of lemmas
given below (Lemmas 7–13). We assume that their statements are self-describing.

Lemma 7. Let f+ be a normal right extensibility measure and R ⊆ Q × Q be a
global timed simulation on (Σ,λ). Then R is a f+-timed simulation on (Σ,λ).

For each s0 ∈ Tr and a relation R ⊆ Q × Q let us denote:

– Tr0s0,R(Σ,λ) is the set of all functions s : T→̃Q such that dom(s) ∈ T and the
following conditions hold:

• s|dom(s0) ∈ Tr,
• λ(s|dom(s0)) � λ(s0),
• s0, s are pointwise in R on dom(s0) ∩ dom(s).

– Trs0,R(Σ,λ) = {s : T→̃Q | dom(s) ∈ T ∧ ∃ŝ ∈ Tr0s0,R(Σ,λ) s � ŝ}.
– Σs0,R(Σ,λ) = (T,Q, Trs0,R(Σ,λ)).

Lemma 8. If s0 ∈ Tr and R ⊆ Q × Q, then Σs0,R(Σ,λ) is a NCMS.

Lemma 9. Let s0 ∈ Tr and R be a local timed simulation on (Σ,λ). Then
Σs0,R(Σ,λ) is a NCMS which satisfies LFE.

Lemma 10. Let f+ be a normal right extensibility measure, s0 ∈ Tr, and R be
a f+-timed simulation on (Σ,λ). Assume that s∗ is a right dead-end path in the
NCMS Σs0,R(Σ,λ). Then s∗ is f+-escapable.

Lemma 11. Let f+ be a normal right extensibility measure, s0 ∈ Tr, and R be
a f+-timed simulation on (Σ,λ). Then Σs0,R(Σ,λ) satisfies GFE.

Proof. R is a f+-timed simulation on (Σ,λ), so R is a local timed simulation
on (Σ,λ). Then Σs0,R(Σ,λ) is a NCMS which satisfies LFE by Lemma 9. By
Lemma 10 each right dead-end path in Σs0,R(Σ,λ) is f+-escapable. By Theo-
rem 2 each right dead-end path in Σs0,R(Σ,λ) is strongly escapable. Then by
Lemma 1 Σs0,R(Σ,λ) satisfies GFE. ��



232 I. Ivanov

Lemma 12. Let R ⊆ Q×Q be a local timed simulation on (Σ,λ). Assume that
for each s0 ∈ Tr, Σs0,R(Σ,λ) is a NCMS which satisfies GFE. Then R is a
global timed simulation on (Σ,λ).

Lemma 13. Let f+ be a normal right extensibility measure and R ⊆ Q × Q be
a f+-timed simulation on (Σ,λ). Then R is a global timed simulation on (Σ,λ).

Proof. By Lemma 11, for each s0 ∈ Tr, Σs0,R(Σ,λ) is a NCMS which satisfies
GFE. Because R is a f+-timed simulation on (Σ,λ), R is a local timed simulation
on (Σ,λ). Then by Lemma 12, R is a global timed simulation on (Σ,λ). ��
Proof. (Proof of Theorem 5). The “If” part follows from Lemma 13 and the “Only
if” part follows from Lemma 7. ��

7 Conclusions and Future Work

We have obtained a necessary and sufficient condition (criterion) of a local char-
acter for checking that a given relation satisfies the definition of a global timed
bisimulation for NCMS.

The obtained results can be useful for applying bisimulation proof method
to various continuous-time models for establishing equivalence and constructing
abstractions of such systems and for further development of uniform treatment of
continuous time dynamical system models and proof principles related to them
using coalgebraic approach. We plan to develop bisimulation proof method on
the basis of the results obtained in this paper and apply it to cyber-physical
system verification problems in the forthcoming papers.

References

1. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

2. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg
(1981)

3. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

4. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-
gram. Lang. Syst. 31(4), 15:1–15:41 (2009)

5. Sangiorgi, D.: On the bisimulation proof method. Mathematical. Struct. Comput.
Sci. 8(5), 447–479 (1998)

6. Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In:
2011 International Conference on Wireless Communications and Signal Processing
(WCSP), pp. 1–6. IEEE (2011)

7. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12, 161–166
(2011)

8. Lee, E., Seshia, S.: Introduction to Embedded Systems: A Cyber-physical Systems
Approach. Lulu.com, Berkeley (2013)



On Local Characterization of Global Timed Bisimulation 233

9. Sifakis, J.: Rigorous design of cyber-physical systems. In: 2012 International Con-
ference on Embedded Computer Systems (SAMOS), p. 319. IEEE (2012)

10. Bouissou, O., Chapoutot, A.: An operational semantics for Simulink’s simulation
engine. In: Proceedings of 13th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, Tools and Theory for Embedded Systems, pp. 129–138.
ACM (2012)

11. Simulink - Simulation and Model-Based Design. http://www.mathworks.com/
products/simulink

12. SCADE Suite. http://www.esterel-technologies.com/products/scade-suite
13. Campbell, S., Chancelier, J.P., Nikoukhah, R.: Modeling and Simulation in

Scilab/Scicos with ScicosLab 4.4. Springer, New York (2005)
14. Feiler, P., Gluch, D., Hudak, J.: The architecture analysis and design language

(AADL): an introduction. Technical report CMU/SEI-2006-TN-011, Carnegie-
Mellon University (2006)

15. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

16. Pappas, G.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)
17. van der Schaft, A.: Equivalence of dynamical systems by bisimulation. IEEE Trans.

Autom. Control 49(12), 2160–2172 (2004)
18. van der Schaft, A.: Equivalence of hybrid dynamical systems. In: Proceedings of

16th International Symposium on Mathematical Theory of Networks and Systems,
Leuven, Belgium, 5–9 July 2004

19. Julius, A., van der Schaft, A.: Bisimulation as congruence in the behavioral set-
ting. In: Proceedings of 44th IEEE Conference on Decision and Control and the
European Control Conference 2005, Seville, Spain, 12–15 December 2005

20. Pola, G., van der Schaft, A., Di Benedetto, M.: Equivalence of switching linear
systems by bisimulation. Int. J. Control 79(1), 74–92 (2006)

21. Schmuck, A., Raisch, J.: Simulation and bisimulation over multiple time scales in
a behavioral setting (2014). CoRR abs/1402.3484

22. Cuijpers, P.J.L., Reniers, M.A.: Lost in translation: hybrid-time flows vs. real-time
transitions. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp.
116–129. Springer, Heidelberg (2008)

23. Polderman, J., Willems, J.: Introduction to Mathematical Systems Theory: A
Behavioral Approach. Springer, Berlin (1997)

24. Haghverdi, E., Tabuada, P., Pappas, G.: Unifying bisimulation relations for discrete
and continuous systems. In: Proceedings of International Symposium MTNS2002,
South (2002)

25. Haghverdi, E., Tabuada, P., Pappas, G.: Bisimulation relations for dynamical, con-
trol, and hybrid systems. Theoret. Comput. Sci. 342(2–3), 229–261 (2005)

26. Davoren, J.M., Tabuada, P.: On simulations and bisimulations of general flow
systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 145–158. Springer, Heidelberg (2007)

27. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Form. Methods Syst. Des. 18(1), 25–68 (2001)

28. Ivanov, I.: A criterion for existence of global-in-time trajectories of non-
deterministic Markovian systems. Commun. Comput. Inf. Sci. (CCIS) 347, 111–
130 (2012)

29. Ivanov, I.: On representations of abstract systems with partial inputs and outputs.
In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol.
8402, pp. 104–123. Springer, Heidelberg (2014)

http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.esterel-technologies.com/products/scade-suite


234 I. Ivanov

30. Ivanov, I., Nikitchenko, M., Abraham, U.: On a decidable formal theory for abstract
continuous-time dynamical systems. Commun. Comput. Inf. Sci. (CCIS) 469, 78–
99 (2014)

31. Ivanov, I.: An abstract block formalism for engineering systems. In: CEUR Work-
shop Proceedings, ICTERI, vol. 1000, pp. 448–463. CEUR-WS.org (2013)

32. Ivanov, I.: On existence of total input-output pairs of abstract time systems. Com-
mun. Comput. Inf. Sci. (CCIS) 412, 308–331 (2013)

33. Hájek, O.: Theory of processes, I. Czechoslovak Math. J. 17, 159–199 (1967)
34. Hájek, O.: Theory of processes, II. Czechoslovak Math. J. 17(3), 372–398 (1967)
35. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real-time. Inf. Com-

put. 104, 2–34 (1993)
36. Liberzon, D.: Switching in Systems and Control (Systems and Control: Foundations

and Applications). Birkhauser Boston Inc., Boston (2003)
37. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.H., Nicollin, X.,

Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoret. Comput. Sci. 138(1), 3–34 (1995)

38. Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control
Syst. 29(2), 28–93 (2009)



Author Index

Abel, Andreas 5
Adámek, Jiří 1

Babus, Octavian 136
Bonchi, Filippo 11
Bonsangue, Marcello 73

Dahlqvist, Fredrik 174

Gumm, H. Peter 33

Ivanov, Ievgen 216

Jacobs, Bart 53

Komendantskaya, Ekaterina 94
Kurz, Alexander 136

Power, John 94

Rot, Jurriaan 73

Salamanca, Julian 73
Santocanale, Luigi 195
Sobocinski, Pawel 11
Sprunger, David 156

Winter, Joost 114

Zanasi, Fabio 11
Zarrad, Mehdi 33


	Preface
	Organization
	Contents
	Fixed Points of Functors - A Short Abstract
	1 Initial Algebras
	2 Terminal Coalgebras
	3 Rational Fixed Point
	References

	Compositional Coinduction with Sized Types
	References

	Lawvere Categories as Composed PROPs
	1 Introduction
	2 PROPs
	3 PROP Composition
	4 Lawvere Categories as Composed PROPs
	References

	Transitivity and Difunctionality of Bisimulations
	1 Introduction
	2 Basic Notions
	2.1 Categorical Notions
	2.2 F-coalgebras 

	3 Observational Equivalence and Bisimilarity
	3.1 Nabla and Simple Coalgebras
	3.2 Restricting Bisimulations

	4 Relationships Between Bisimilarity and Observational Equivalence
	4.1 Weak Preservation of Kernel Pairs
	4.2 Transitivity of 
	4.3 Difunctionality of 
	4.4 Relation Liftings

	5 Conclusion and Further Work
	References

	Affine Monads and Side-Effect-Freeness
	1 Introduction
	2 Preliminaries
	3 Affine and Strongly Affine Monads
	4 Affine Parts of Monads, and Causal Maps
	5 Predicates and Instruments
	6 Commutativity
	7 Conclusions
	References

	Duality of Equations and Coequations via Contravariant Adjunctions
	1 Introduction
	2 Preliminaries
	3 Equations and Coequations
	4 Lifting Contravariant Adjunctions
	5 Duality Between Equations and Coequations
	5.1 Equations for Coalgebras

	6 Lifting Contravariant Adjunctions to Eilenberg-Moore Categories
	6.1 Defining a Monad from a Comonad
	6.2 Defining a Comonad from a Monad

	7 Applications
	7.1 Equations and Coequations for Dynamical Systems
	7.2 Equations and Coequations for Automata

	8 Conclusions
	References

	Category Theoretic Semantics for Theorem Proving in Logic Programming: Embracing the Laxness
	1 Introduction
	2 Background: Theorem Proving in LP
	3 Modelling Coinductive Trees for Variable-Free Logic Programs
	4 Modelling Coinductive Trees for Logic Programs Without Existential Variables
	5 Modelling Coinductive Trees for Arbitrary Logic Progams
	6 Complementing Saturated Semantics
	7 Conclusions
	References

	Product Rules and Distributive Laws
	1 Introduction
	2 Preliminaries
	2.1 General Preliminaries
	2.2 Distributive Laws Between Monads
	2.3 Distributive Laws of a Monad over a (Copointed) Endofunctor
	2.4 The Generalized Powerset Construction

	3 Distributive Laws of a Monad over a (Copointed) Endofunctor into a Composite Monad
	3.1 Product Rules as Distributive Laws

	4 Composite Distributive Laws
	5 The Generalized Powerset Construction for Composite Distributive Laws
	6 Comparison to the Coherence Condition from [Che07]
	7 Further Directions
	References

	On the Logic of Generalised Metric Spaces
	1 Introduction
	2 Preliminaries and Related Work
	3 Monads and algebras 
	3.1 Doctrines
	3.2 Distributive Laws and Equivalence of DU with [[-,],]
	3.3 CCD: complete and completely distributive algebras

	4 The comparison functor -CatopDU-alg 
	4.1 The Left Adjoint of the Comparison Functor
	4.2 A Fully Faithfulness of the Comparison and Its Image

	5 Algebras for Operations and Equations
	5.1 Syntactic D-algebras and U-algebras
	5.2 Syntactic DU-algebras 
	5.3 -Cat-logic 

	6 Conclusions
	References

	A Complete Logic for Behavioural Equivalence in Coalgebras of Finitary Set Functors
	1 Introduction
	2 Background
	2.1 Coalgebras
	2.2 Finitary Signatures and Functors

	3 Bisimulation Up to Presentation
	3.1 An Explicit Characterization
	3.2 Enhanced Bisimulation Up to Presentation

	4 A Proof System for Bisimulation Up to Presentation
	4.1 Soundness
	4.2 Completeness

	5 Compositionality of Presentations
	5.1 Products
	5.2 Coproducts
	5.3 Compositions
	5.4 Kripke Polynomial Functors and Other Polynomial-Like Classes of Functors

	6 Conclusion and Future Directions
	References

	Coalgebraic Completeness-via-Canonicity
	1 Introduction
	2 Preliminaries
	3 Strong Completeness and Jónsson-Tarski Extensions
	4 Canonical Equations and Canonical Extensions of L-algebras
	5 Jónsson-Tarski vs Canonical Extensions.
	6 Conclusion
	References

	Relational Lattices via Duality
	1 Introduction
	2 Some Elementary Lattice Theory
	3 The Relational Lattices R(D,A)
	4 Minimal Join-Covers in R(D,A)
	5 Uniqueness of non-join-prime Elements
	6 Symmetry and pairwise completeness
	7 Conclusions and Further Directions
	References

	On Local Characterization of Global Timed Bisimulation for Abstract Continuous-Time Systems
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Nondeterministic Complete Markovian Systems
	2.3 Global Trajectories of NCMS

	3 Traces on Sets of Trajectories and Labeled NCMS
	4 Timed Simulation and Bisimulation on NCMS
	5 Main Result
	6 Outline of the Proof of the Main Result
	7 Conclusions and Future Work
	References

	Author Index



