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Abstract. The LAC authenticated encryption algorithm was a candi-
date to the CAESAR competition on authenticated encryption, which
follows the design of the ALE authenticated encryption algorithm. In
this paper, we show that the security of LAC depends greatly on the
parameter of the maximum message length and the order of padding the
last message block, by cryptanalysing its variants that differ from the
original LAC only in the above-mentioned two points. For the LAC vari-
ants, we present a structural state recovery attack in the nonce-respecting
scenario, which is independent from the underlying block cipher, which
requires only chosen queries to their encryption and tag generation ora-
cles and can recover an internal state of the initialization phase for one
of some used Public Message Numbers (PMNs) more advantageously
than exhaustive key search; and the recovered internal state can be used
to make an existential forgery attack under this PMN. Besides, slightly
inferior to exhaustive key search, the state recovery attack can apply to
the LAC variant that differs from LAC only in the order of padding the
last message block. Although the state recovery attack does not apply
to the original LAC, it sheds some light on this type of interesting struc-
tures, and shows that an authenticated encryption algorithm with a such
or similar structure may be weakened when it is misused deliberately or
accidentally with the reverse message padding order and a different max-
imum message length, and users should be careful about the two points
when employing such a structure in reality.

Keywords: Authenticated encryption algorithm · LAC · State recovery
attack · Forgery attack

1 Introduction

A (symmetric) authenticated encryption algorithm is an algorithm that trans-
forms an arbitrary-length data stream (below an upper bound generally), called
a message or plaintext, into another data stream of the same length, called a
ciphertext, and generates an authentication tag for the message at the same
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time, under the control of a secret key. We refer the reader to Bellare and Nam-
prempre’s work [1] for an introduction to authenticated encryption.

LAC [9] is a block-cipher-based lightweight authenticated encryption algo-
rithm, which has a similar structure to the ALE [3] authenticated encryption
algorithm. Built on a variant called LBlock-s of the LBlock lightweight block
cipher [8], LAC takes as input an 80-bit user key, a 64-bit public message num-
ber (nonce) and a plaintext as well as associated data, and outputs a ciphertext
of the same length as the plaintext and a 64-bit authentication tag. In 2014,
LAC was submitted to the Competition for Authenticated Encryption: Security,
Applicability, and Robustness (CAESAR) [4], however, Leurent [5] described an
(existential) forgery attack on the full LAC algorithm, by showing that there
exist 16-round differentials [2] with a probability of 2−61.52 in the LBlock-s
cipher, which is slightly larger than the expected bound 2−64. It is worthy to
mention that the full ALE algorithm was shown in 2013 by Wu et al. [7] to suffer
from an (existential) forgery attack based on differential cryptanalysis.

Leurent’s attack on LAC as well as Wu et al.’s attack on ALE is mainly
due to a security weakness of the underlying round-reduced block cipher, specif-
ically the number of rounds is too small to be sufficient; otherwise, the attack
would not work. In this paper, we analyse the security of LAC from a struc-
tural perspective, by focusing on its structure without exploiting any security
weakness of the underlying block cipher, that is, we treat the block cipher as
a sound pseudo-random permutation. We find that the security of LAC (in the
nonce-respecting scenario) depends greatly on the parameter of the maximum
message length and the order of padding the last message block (or equivalently
the order of the two halves of the leaked 48-bit output), by presenting a state
recovery attack on the LAC variants that differ from the original LAC only in
that a different value is used for the parameter of the maximum message length
and that the reverse order for padding the last message block is used. The attack
on the LAC variants requires only chosen queries to their encryption and tag
generation oracles, and can recover an internal state of the initialization phase
for one of some used Public Message Numbers (PMNs) more advantageously
than exhaustive key search. The recovered internal state can be used to make an
existential forgery attack on the LAC variants under this PMN. Besides, slightly
inferior to exhaustive key search, the attack can apply to the LAC variant that
differs from LAC only in the reverse order of padding the last message block.

Our attack may apply to other authenticated encryption algorithms with sim-
ilar structures, for example, it may apply to similar variants of ALE [6]. In reality,
particularly in industry, a cryptographic algorithm is sometimes misused delib-
erately or accidentally, due to various practical reasons, say, being slightly modi-
fied for a particular application requirement, being modified with a different block
cipher in place of the underlying block cipher, being confused with big- and little-
endian formats, etc. As a result, although our attack does not apply to the original
LAC, it sheds some light on this type of interesting structures, and shows that
an authenticated encryption algorithm with a such or similar structure may be
weakened when it is misused with the reverse message padding order and a dif-
ferent maximum message length. Thus, users should be very careful about the two
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pointswhen employing such a structure in reality, evenwhen the underlying round-
reduced block cipher has a sufficient number of rounds in the sense of security.

The remainder of the paper is organised as follows. In the next section, we give
the notation and describe the LAC algorithm and the variants for our attacks.
We present our state recovery attack and existential forgery attack on the LAC
variants in Sects. 3 and 4, respectively. Section 5 concludes this paper.

2 Preliminaries

In this section, we give the notation used throughout this paper, and briefly
describe the LAC algorithm and the variants for our attacks.

2.1 Notation

In all descriptions we assume that the bits of a value are numbered from right to
left (or sometimes from top to bottom), starting with 1, with the first bit being
the least significant bit. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) operation of two bit strings of the
same length

|| string concatenation
|X| the number of elements when X is a set, or the bit length when X is

a value
e the base of the natural logarithm (e = 2.71828 · · · )
�X� the smallest integer that is larger than or equal to a value X
O(X) a value that is of the same order as a value X

2.2 The LAC Authenticated Encryption Algorithm

The message encryption and tag generation procedure of LAC [9] consists of
four phases: initialization, processing associated data, message encryption, and
tag generation, as depicted in Fig. 1, where

– PMN is a 64-bit Public Message Number (PMN), serving as a nonce. The
designers require that a PMN should be used (at most) only once under the
same key, that is, LAC works in a nonce-respecting scenario.

– E is a simplified version LBlock-s of the LBlock [8] block cipher, that has a
64-bit block length, an 80-bit user key K and a total of 32 rounds;

– G is a 16-round reduced version of the E block cipher, with the 16 round
subkeys generated from the key schedule KS;

– ̂G is the version of G that not only outputs a normal 64-bit ciphertext but
also outputs the most significant 24 bits of the left half X9 of the output of
the eighth round of the G cipher and the most significant 24 bits of the left
half X17 of the output of the sixteenth round of the G cipher (i.e., the output
of G), (the 48 bits serve as a keystream block);

– 016 is a binary string of 16 zeros;
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Fig. 1. The message encryption and tag generation procedure of LAC

– (AD1, AD2, · · · , ADabn) is an associated data of abn 48-bit blocks;
– (M1,M2, · · · ,Mmbn) is a message of mbn 48-bit blocks;
– (C1, C2, · · · , Cmbn) is the ciphertext for (M1,M2, · · · ,Mmbn); and
– T is the tag for (M1,M2, · · · ,Mmbn).

During the initialization phase, a PMN passes through a cascade of two
applications of the E block cipher with the user key K, and the concatenation
of the outputs of the two applications of the E block cipher constitutes a 128-bit
internal state. Then, the most significant 80 bits of the 128-bit internal state are
used as the key for encrypting a 64-bit zero string with E to produce the initial
data state; and the least significant 80 bits of the 128-bit internal state are to
be used as the initial key state. During the phase of processing associated data,
the key state is updated iteratively, and the data state is updated iteratively by
first applying the G operation with the corresponding key state as the key, and
then XORing with the corresponding block of associated data. During the phase
of encrypting message, the key state is updated likewise, but the data state is
updated iteratively by first applying the ̂G operation with the corresponding key
state as the key, and then XORing with the corresponding message block, and
the 48-bit output leaked from ̂G is XORed with the message block to produce
the corresponding ciphertext block. Finally, the data state is encrypted with E
under the user key K to generate an authentication tag. We refer the reader
to [9] for the specification of LAC.

Denote the bit length of a message by msl. The message padding of LAC
will append the smallest number u of zeros such that (u+msl +40) mod 48 = 0
and then append the message length msl on the subsequent 40 bits (the length
of a message is limited to be at most 240 bits long). Accordingly, the 40 + u bits
of the last one or two ciphertext blocks that correspond to the u bit positions
of the appended u zeros and the 40 bit positions for message length msl will be
truncated. In particular, when the last message block is full, LAC will make an
additional 48-bit message block of the form 08||msl, and the resulting ciphertext
block will be discarded without transmission.

More specifically, suppose m is the last message block of a message, then
the padding is of the form m|| 0 · · · 0

︸ ︷︷ ︸

u

||msl, such that (u + |m| + 40) mod 48 = 0.
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Suppose the 64-bit output of the last ̂G operation is X17||X16 and its 48-bit out-
put is X9[9 ∼ 32]||X17[9 ∼ 32], where X9,X16,X17 are 32-bit blocks, X9[9 ∼ 32]
represents bits (9, 10, · · · , 32) of X9, and so on. If |m| ≤ 8, then the last cipher-
text block before truncation is (X9[9 ∼ 32]||X17[9 ∼ 32])⊕ (m|| 0 · · · 0

︸ ︷︷ ︸

u

|msl), and

the bits corresponding to (0 · · · 0
︸ ︷︷ ︸

u

|msl) will be truncated before transmission.

Padding is similar if the bit length of the associated data is not a multiple of 48.

2.3 Variants of LAC

Denote by mml the bit number of the maximum message length. (CAESAR
requires that a maximum message length must not be smaller than 65536
bytes [4]). Now we define some variants of LAC as follows:

• 24 ≤ mml ≤ 31 is used. Thus, the resulting message padding is to append
the smallest number u of zeros such that (u + msl + mml) mod 48 = 0 and
the message length msl on the subsequent mml bits. (mml = 40 for LAC.)

• For the last block m of a message of msl bits long, the padding is of the form
msl|| 0 · · · 0

︸ ︷︷ ︸

u

||m, such that (u + msl + mml) mod 48 = 01. This is the reverse

order of the original LAC.
• All the other specifications of the variants are exactly the same as LAC,

(including that when the last message block is full, the variants will make
an additional 48-bit message block and the resulting ciphertext block will be
discarded without transmission).

The first two points may be easily made in reality, due to various reasons, for
example, the first point may be deliberate to meet the different message length
of a particular application, and the second point may be accidental due to a
confusion with endianness, particularly when employing a different cipher.

We note that for our attacks, there are some trivial equivalents to the above
variants, for example, a variant assuming that there is no message padding if the
last message block is full — a popular manner for message padding for message
authentication schemes, and another variant assuming that the last ciphertext
block for the padded message block will be transmitted without truncation.

We denote by ̂LAC the variants of LAC, as well as their equivalents with
respect to our attacks. To make it easier to describe our attacks, we define four
64-bit (secret) parameters A,B,X, Y to represent the values at the four internal
states marked in Fig. 1, that is, A is the output of the first E operation; B is the
output of the second E operation; X is the output of the last ̂G operation; and
Y is the input to the last E operation.
1 An equivalent of this point under our attack is that the position of the most sig-

nificant 24 bits of the output of the eighth round of the ̂G operation is exchanged
with the position of the most significant 24 bits of the output of the sixteenth
round of the ̂G operation, (without reversing the message padding order), that is
(X17[9 ∼ 32]||X9[9 ∼ 32]).
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3 State Recovery Attack on ̂LAC

In this section, we present a state recovery attack on ̂LAC in a nonce-respecting
scenario (under the same key). The attack requires only chosen queries to the
encryption and tag generation oracle of ̂LAC, and it can recover the 128-bit
internal state immediately after the first two E operations for one of some used
PMNs, more advantageously than exhaustive key search.

3.1 Attack Procedure

The attack procedure is made up of three phases, to be described in Sub-
sects. 3.1.1, 3.1.2 and 3.1.3. Observe that for a message of msl bits long such
that msl mod 48 = 48 − mml, the last-block message-ciphertext pair reveals
(48−mml) bits of the 64-bit output of the last ̂G operation, by the specification
of ̂LAC.

3.1.1 Phase I
This phase works in a chosen-message and known-nonce scenario with fixed
associated data, which is illustrated in Fig. 2.

(a) Choose an arbitrary message M of msl bits long such that msl mod 48 =
48−mml, and represent it as (M1,M2, · · · ,Mmbn), where the first mbn− 1
blocks are 48 bits long each, and mbn = �msl

48 � < 2mml

48 . Query the ̂LAC
encryption and tag generation oracle with the message M and associated
data (AD1, AD2, · · · , ADabn) of abn 48-bit blocks long for 2φ times (abn ≥
0, and the last one or two blocks are padded ones), where φ meets the
following Condition (1), and φ and mbn meet the following Condition (2):

2φ+mml−64 � 1 − e−22φ−64
; (1)

22φ+2×mml−48×mbn+32 � 1 − e−22φ−64
. (2)

For the i-th query (i = 1, 2, · · · , 2φ), we denote by:
– PMNi the PMN used;
– C(i) = (C(i)

1 , C
(i)
2 , · · · , C

(i)
mbn) the ciphertext, where the first mbn−1 blocks

are 48 bits long each, and the last block C
(i)
mbn is msl mod 48 = 48−mml

bits long;
– Ti the tag; and
– Ai, Bi,Xi, Yi respectively for the four parameters A,B,C,D defined in

Sect. 2.3.
Observe that

Xi[41 ∼ (88 − mml)] = (Mmbn ⊕ C
(i)
mbn)[1 ∼ (48 − mml)],

Yi = Xi ⊕ (016+mml||Mmbn).
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Fig. 2. Phase I of the state recovery attack on ̂LAC

(b) For each permutation (PMNi, PMNj) of two PMNs PMNi and PMNj ,2

(1 ≤ i, j ≤ 2φ, j 	= i), check whether PMNi = Yj partially by checking
whether

PMNi[41 ∼ (88 − mml)]
= Yj [41 ∼ (88 − mml)] (3)

(= Xj [41 ∼ (88 − mml)] ⊕ (016+mml||Mmbn)[41 ∼ (88 − mml)])

(= (Mmbn ⊕ C
(j)
mbn)[1 ∼ (48 − mml)] ⊕

(016+mml||Mmbn)[41 ∼ (88 − mml)]),

which can be done efficiently by storing PMNj in a table indexed by Yj [41 ∼
(88 − mml)]. Keep only the qualified permutations (PMNi, PMNj), and
we denote by PMNi(j,l) the qualified PMNs PMNi for PMNj , where l
is the number of qualified PMNs PMNi. Thus, we have PMNi(j,l) [41 ∼
(88 − mml)] = Yj [41 ∼ (88 − mml)]. Furthermore, we have:

if PMNi(j,l) = Yj , then Ai(j,l) = Tj .

3.1.2 Phase II
This phase works in a chosen-message and chosen-nonce scenario with arbitrary
associated data, which is illustrated in Fig. 3.

2 Note that (PMNi, PMNj) is a permutation, rather than a combination. Thus,
(PMNi, PMNj) and (PMNj , PMNi) are different.
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Fig. 3. Phase II of the state recovery attack on ̂LAC

(a) Let S = {Tj such that |PMNi(j,l) | > 0, j = 1, 2, · · · , 2φ}, and |S| = 2β .

Query the ̂LAC encryption and tag generation oracle with an arbitrary
associated data for any PMN PMN = Tj ∈ S in a chosen-nonce scenario.
For PMN = Tj , we denote
– the PMN by ̂PMN j(= Tj);

– the associated data by (̂AD
(j)

1 , ̂AD
(j)

2 , · · · , ̂AD
(j)
̂abnj

), that is ̂abnj 48-bit

blocks long, (̂abnj ≥ 0, ̂abnj can be different one another, and the last
one or two blocks are padded ones);

– by ̂M (j) = (̂M
(j)
1 , ̂M

(j)
2 , · · · , ̂M

(j)
̂mbnj

) the message of ̂mslj bits long such

that ̂mslj mod 48 = 48 − mml, where ̂mbnj = �̂mslj
48 � < 2mml

48 , the first
̂mbnj−1 blocks are 48 bits long each, ( ̂mbnj can be different one another);

– the ciphertext by ̂C(j) = ( ̂C
(j)
1 , ̂C

(j)
2 , · · · , ̂C

(j)
̂mbnj

), where the first ̂mbnj −1

blocks are 48 bits long each, and the last block ̂C
(j)
̂mbnj

is ̂mslj mod 48 =
48 − mml bits long;
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– the tag by ̂Tj ; and
– ̂Aj , ̂Bj , ̂Xj , ̂Yj respectively for the four parameters A,B,C,D defined in

Sect. 2.3.
Note that if ̂PMN j(= Tj) happens to appear in Step I-(a) we can reuse
the corresponding associated data, message, ciphertext and tag, (without
querying for ̂PMN j here).

(b) For each permutation ( ̂PMNp, ̂PMNq) of two PMNs ̂PMNp and ̂PMNq,3

(1 ≤ p 	= q ≤ 2β), check whether ̂PMNp = ̂Yq partially by checking whether

̂PMNp[41 ∼ (88 − mml)]

= ̂Yq[41 ∼ (88 − mml)]

(= ̂Xq[41 ∼ (88 − mml)] ⊕ (016+mml||̂M (q)
̂mbnq

)[41 ∼ (88 − mml)])

(= (̂M
(q)
̂mbnq

⊕ ̂C
(q)
̂mbnq

)[1 ∼ (48 − mml)] ⊕
(016+mml||̂M (q)

̂mbnq

)[41 ∼ (88 − mml)]),

which can be similarly done efficiently by storing ̂PMNp in a table indexed
by ̂Yp[41 ∼ (88 − mml)]. Keep only the qualified permutations ( ̂PMNp,
̂PMNq). In particular, for ̂PMN j(= Tj), we denote by ̂PMNq(j,r)(= Tq(j,r))

the qualified PMNs, where r is the number of qualified PMNs for ̂PMN j .
Thus, we have

̂PMN j [41 ∼ (88 − mml)]

= ̂Yq(j,r) [41 ∼ (88 − mml)] (4)

(= ̂Xq(j,r) [41 ∼ (88 − mml)] ⊕ (016+mml||̂M (q(j,r))

̂mbnq(j,r)

)[41 ∼ (88 − mml)])

(= (̂M
(q(j,r))

̂mbnq(j,r)

⊕ ̂C
(q(j,r))

̂mbnq(j,r)

)[1 ∼ (48 − mml)] ⊕

(016+mml||̂M (q(j,r))

̂mbnq(j,r)

)[41 ∼ (88 − mml)]),

and if ̂PMN j = ̂Yq(j,r) , then ̂Aj = ̂Tq(j,r) .

(c) For any ( ̂PMN j(= Tj), ̂PMNq(j,r)(= Tq(j,r))), treat the corresponding value
(Tj || ̂Tq(j,r)) as the 128-bit secret state immediately after the first two E

operations of ̂LAC, then compute the resulting ciphertext for message M =
(M1,M2, · · · ,Mmbn) under the associated data (AD1, AD2, · · · , ADabn),
and finally check whether the mbn ciphertext blocks respectively match the

3 Likewise, ( ̂PMNp, ̂PMNq) is a permutation, so ( ̂PMNp, ̂PMNq) and ( ̂PMNq,
̂PMNp) are different.
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mbn ciphertext blocks of some C(i(j,l)) such that (PMNi(j,l) , PMNj) is a
qualified permutation in Phase I. Record the qualified triples (PMNi(j,l) ,

̂PMN j , ̂PMNq(j,r)) only.

3.1.3 Phase III
For a recorded (PMNi(j,l) ,

̂PMN j , ̂PMNq(j,r)) in Step II-(c), output (Tj || ̂Tq(j,r))
as the 128-bit secret state just after the first two E operations under PMN =
PMNi(j,l) . As a consequence, we can generate all subsequent internal states
except the last EK operation under PMN = PMNi(j,l) .

3.2 Complexity Analysis

In Step I-(b), for every PMN PMNj , it is expected that there are 2φ−1
264 ≈ 2φ−64

qualified PMNs PMNi such that PMNi = Yj , and there are 2φ−1
248−mml ≈

2φ+mml−48 qualified PMNs PMNj such that Eq. (3) holds, that is l ≈ 2φ+mml−48

on average; and the 2φ−64 qualified PMNs PMNi must be among the 2φ+mml−48

qualified PMNs PMNi(j,l) . Since φ ≥ 24 (from Condition (1)) generally, it is
expected that β = φ in Phase II. The probability that there exists a qualified per-
mutation (PMNi, PMNj) such that PMNi = Yj holds is 1−(1− 1

264 )2
φ×(2φ−1) ≈

1 − e−22φ−64
.

In Step II-(b), the expected number of distinct ̂PMNp is 2β ; for every
̂PMNp, it is expected that there are approximately 2β−1

264 ≈ 2β−64 qualified
PMNs ̂PMNq such that ̂PMNp = ̂Yq; and for every ̂PMN j(= Tj), it is
expected that there are approximately 2β−1

248−mml ≈ 2β+mml−48 qualified PMNs
̂PMNq(j,r)(= Tq(j,r)) such that Eq. (4) holds, that is r ≈ 2β+mml−48 on average;

and the 2β−64 qualified PMNs ̂PMNq must be among the 2β+mml−48 qual-
ified PMNs ̂PMNq(j,r) . Hence, the expected number of the set {( ̂PMN j(=

Tj), ̂PMN q(j,r)(= Tq(j,r)))|j = 1, 2, · · · , 2β} is 2β × 2β+mml−48 = 22β+mml−48.

In Step II-(c), for a permutation ( ̂PMN j , ̂PMNq(j,r)), the resulting cipher-
text matches the ciphertext of some C(i(j,l)) such that (PMNi(j,l) , PMNj) is a
qualified permutation in Phase I is expected to be approximately 2φ+mml−48 ×
(2−48)mbn = 2φ+mml−48×(mbn+1). Hence, the expected number of the recorded
(PMNi(j,l) ,

̂PMN j , ̂PMNq(j,r)) is

22β+mml−48 × 2φ+mml−48×(mbn+1) = 23φ+2×mml−48×(mbn+2).

On the other hand, a permutation (PMNi(j,l) ,
̂PMN j , ̂PMNq(j,r)) such that

both PMNi(j,l) = Yj and ̂PMN j = ̂Yq(j,r) hold is expected to be correct,
and thus can pass the filtering condition with probability one. For a permu-
tation (PMNi(j,l) , PMNj) such that PMNi(j,l) = Yj holds, the probability that

there is a qualified permutation ( ̂PMN j(= Tj), ̂PMN q(j,r)(= Tq(j,r))) such that
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̂PMN j = ̂Yq(j,r) holds is 1 − (1 − 1
264 )2

β−1 ≈ 2β−64, as β = φ < 64. Hence,

the probability that there is a permutation (PMNi(j,l) ,
̂PMN j , ̂PMNq(j,r)) such

that both PMNi(j,l) = Yj and ̂PMN j = ̂Yq(j,r) hold is (1 − e−22φ−64
) × 2β−64 =

(1 − e−22φ−64
) × 2φ−64.

Step I-(a) requires 2φ queries and a memory of approximately 2φ × (mbn ×
48
8 + 8 × 2 + 3 × 2) = 2φ × (6 × mbn + 22) bytes, and Step I-(b) has a com-
putational complexity of approximately 2φ × 2φ+mml−48 = 22φ+mml−48 memory
accesses to retrieve (PMNi(j,l) , PMNj). Step II-(a) requires 2β queries and a

memory of
∑2β

i=1(̂abni × 48
8 + 2 × ̂mbni × 48

8 + 8 × 2 + 3 × 2) bytes (it can be
reduced by using the same set of associated data and message), and Step II-(b)
has a computational complexity of approximately 22β+mml−48 memory accesses
to retrieve ( ̂PMN j , ̂PMNq(j,r)). Step II-(c) has a computational complexity of

approximately 22β+mml−48 = 22φ+mml−48 computations of ̂LAC.
The attack is valid if:

1. the expected number of correct (PMNi(j,l) ,
̂PMN j , ̂PMNq(j,r)) recorded in

Step II-(c) (that meets both PMNi(j,l) = Yj and ̂PMN j = ̂Yq(j,r)) is much

more than the expected number of wrong (PMNi(j,l) ,
̂PMN j , ̂PMNq(j,r))

recorded in Step II-(c), that is

23φ+2×mml−48×(mbn+2) � (1 − e−22φ−64
) × 2φ−64,

which corresponds to Condition (2); and
2. the expected computational complexity for the attack to recover an inter-

nal state is less than the computational complexity of a generic attack (e.g.
exhaustive key search) recovering an internal state, that is

22φ+mml−48

(1 − e−22φ−64) × 2φ−64
� 280,

which corresponds to Condition (1).

A simple analysis of Conditions (1) and (2) reveals that there is a solution for
φ and mbn when (24 ≤)mml ≤ 31. Therefore, working in the nonce-respecting
scenario, the state recovery attack requires 2φ+1 queries on the ̂LAC encryption
and tag generation oracle and a memory of O(2φ+1) bytes, and has a compu-
tational complexity of approximately 22φ+mml−48 computations of ̂LAC, with a
success probability of (1 − e−22φ−64

) × 2φ−64. In particular, when mml = 30, we
can set φ = 32 and mbn ≥ 4, and the attack requires 233 queries and a memory
of O(233) bytes, and has a computational complexity of approximately 246 com-
putations of ̂LAC, with a success probability of about 2−32.7. When mml = 24,
we can set φ = 32 and mbn ≥ 2, and the attack requires 233 queries and a mem-
ory of O(233) bytes, and has a computational complexity of approximately 240
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computations of ̂LAC, with a success probability of about 2−32.7. Obviously, the
memory can be reused if we want to repeat the attack with many times, e.g. for
different keys.

Note that the attack can apply to the case with mml = 40 for the original
LAC, but it is slightly inferior to exhaustive key search, for example, when we
set φ = 32 and mbn ≥ 4, the attack requires 233 queries and a memory of O(233)
bytes, and has a computational complexity of approximately 256 computations,
with a success probability of about 2−32.7.

4 Existential Forgery Attack on ̂LAC

Once a concerned 128-bit internal state is recovered by the above state recovery
attack, we can make an existential forgery attack on ̂LAC without any further
queries, under the PMN corresponding to the recovered internal state.

For a permutation (PMNi(j,l) ,
̂PMN j(= Tj), ̂PMN q(j,r)(= Tq(j,r))) out-

putted in the above state recovery attack, the corresponding 128-bit secret state
just after the first two E operations is (Tj || ̂Tq(j,r)). We can choose a message
(˜M1, ˜M2, · · · , ˜M

˜mbn
) of ˜mbn(≥ 3) 48-bit blocks long, and then produce its

ciphertext ( ˜C1, ˜C2, · · · , ˜C
˜mbn

) and tag ˜T under PMN = PMNi(j,l) , for example,
in the following way as illustrated in Fig. 4:

1. Compute the first ( ˜mbn − 3) ciphertext blocks ( ˜C1, ˜C2, · · · , ˜C
˜mbn−3

) for the

first ( ˜mbn−3) message blocks (˜M1, ˜M2, · · · , ˜M
˜mbn−3

) until immediately after

the output of the last third ̂G operation.
2. Let ˜Y = PMNi(j,l) (or Tj). Choose and pad the last message block to form

˜M
˜mbn

, then compute ˜X = (016||˜M
˜mbn

) ⊕ ˜Y , decrypt ˜X through the last ̂G
operation, and we denote the resulting value by ˜Z (that is the input to the
last ̂G operation), finally compute the last ciphertext block ˜C

˜mbn
.

3. For t = 1, 2, · · · , 216, choose randomly at uniform the last second message
block ˜M

(t)
˜mbn−1

, and do as follows:

(a) Decrypt (016||˜M (t)
˜mbn−1

) ⊕ ˜Z through the last second ̂G operation, and
check whether the most significant 16 bits of the resulting value corre-
spond to the most significant 16 bits of the 64-bit output of the last third
̂G operation that is generated in Step 1. If yes, go to the next sub-step;
otherwise, repeat Step 3 with a different t.

(b) Compute the last third message block ˜M
˜mbn−2

from the output of the

last third ̂G operation and the input to the last second ̂G operation, and
compute the last second and third ciphertext blocks ˜C

˜mbn−1
and ˜C

˜mbn−2
.

The corresponding tag ˜T = Tj (respectively ̂Tq(j,r)).

Observe that ˜Y can be that value corresponding to a different permutation
outputted in the above state recovery attack, and ˜T will be the corresponding
value as well.
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The attack has a computational complexity of 216 computations of the ̂G
operation to obtain a forgery for a message under PMN = PMNi(j,l) , with a
success probability of (1 − 2−16)2

16 ≈ 63%, (a larger success probability can be
achieved by using a larger t). Once made, the forgery can replace the original
ciphertext-tag pair under PMN = PMNi(j,l) during online communications,

and thus will pass the decryption and tag verification phase of ̂LAC, in the nonce-
respecting scenario that does not allow to use a nonce twice in the decryption
and tag verification phase.

EKPMNi(j,l)

80 bits

E0

80 bits KS

G ⊕
˜AD1

· · ·

· · ·

KS

G ⊕
˜AD

ãbn

KS

̂G ⊕

˜M1
⊕
˜C1

· · ·

· · ·

KS

⊕

˜M
m̃bn−2

⊕

˜C
m̃bn−2

̂G

EK

Tj ̂Tq(j,r)

(Tj ||̂Tq(j,r)) = known KS

⊕

˜M
m̃bn

⊕

˜C
m̃bn

̂G EK

˜Y = PMNi(j,l) (or Tj)

˜T = Tj (resp. ̂Tq(j,r))
˜X

KS

⊕

˜M
(t)

m̃bn−1

⊕

˜C
m̃bn−1

̂G
˜Z

Fig. 4. Existential forgery attack on ̂LAC

Note that the forgery attack that includes the phases of the state recovery
attack as a step is meaningless if a forgery is the sole attack goal, because it is
slower than a generic attack on a 64-bit tag size. It is a side result of the state
recovery attack presented in Sect. 3.

5 Concluding Remarks

In this paper, we have shown that the security of the LAC authenticated encryp-
tion algorithm depends greatly on the parameter of the maximum message length
and the order of padding the last message block (or equivalently the order of the
two halves of the leaked 48-bit output), by presenting a structural state recovery
attack on its variants that differ from the original LAC only in the two points.
Furthermore, slightly inferior to exhaustive key search, the attack can apply to
the LAC variant that differs from the original LAC only in the reverse order of
padding the last message block. The attack is only based on the structure of
the LAC variants, and may apply to other authenticated encryption algorithms
with similar structures. Therefore, an authenticated encryption algorithm with
a such or similar structure may be weakened when it is misused with the reverse
message padding order (or equivalently the reverse order of the two halves of the
leaked output) and different maximum message lengths, and thus users should
be very careful about the two points when employing such a structure in reality.
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