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Abstract. The boomerang attack is one of the many extensions of the
original differential attack. It has been widely applied to successfully
attack many existing ciphers. In this paper, we investigate an extended
version of the boomerang attack and show that it is still a very power-
ful tool especially in the related-key setting. A new branch-and-bound
searching strategy which involves the extended boomerang framework is
then introduced. We provide an improved cryptanalysis on the KATAN
family (a family of hardware-oriented block ciphers proposed in CHES
2009) based on the boomerang attack. In the related-key setting, we
were able to greatly improve upon the previous results to achieve the
best results, namely 150 and 133 rounds by far for KATAN48/64 respec-
tively. For KATAN32 in the related-key setting and all KATAN variants
in the single-key setting, our results are the best ones in the differential
setting although inferior to the meet-in-the-middle attack.

Keywords: KATAN32/48/64 · Related-key attack · Boomerang
attack · Differential attack

1 Introduction

The statistical attack is one of the most effective attacks against symmetric key
cryptography. It includes many popular cryptanalysis techniques such as the
linear attack, differential attack and so on. Among these methods, the differ-
ential attack is one of the most popular approaches due to its wide range of
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applications to many ciphers including DES and AES. More importantly, it has
many variations such as the impossible differential attack [5], multi-differential
attack [7] and others which make differential attacks more flexible compared to
linear attacks. Among these variations, the boomerang attack [22] proposed by
Wagner back in 1999 provides an interesting approach to differential cryptanaly-
sis. By considering quartets of differences instead of pairs, the attack separates
traditional cipher distinguishers into two parts. This way, the burden of finding
good differential characteristics can be greatly eased, leading to better distin-
guishers. The amplified boomerang attack [14] and rectangle attack [3] were later
proposed to improve the efficiency of the boomerang attack. Unlike the original
version which requires adaptive chosen plaintext and ciphertext queries, the mod-
ified boomerang attacks only require chosen plaintext queries which is a more
practical attack assumption. The power of this attack has been demonstrated
when it was used to break the full-round AES-192/256 [6] in the related-key
setting. Since the boomerang attack falls under the differential attack frame-
work, one natural question is which of these two methods will lead to better
results. Although there are a lot of recent research work focusing on exploiting
the relationship between statistical attacks such as the differential and linear
attacks [8] as well as the zero correlation linear and integral attacks [21], the
relationship between the boomerang and differential attack has not been fully
investigated. However, the boomerang attack often outperforms the differential
attack which suggests that under the condition of limited computing resources,
the boomerang attack is a feasible option.

The design of lightweight block ciphers and cryptanalysis of these ciphers
have recently attracted a lot of research attention. The KATAN family pro-
posed in CHES 2009 [9] is one example. Although the cipher KTANTAN [9]
proposed by the same authors was broken with a meet-in-the-middle attack [23],
the KATAN family still remains secure after many years of cryptanalysis. There
have been several attacks on the KATAN family in both single-key and related-
key settings. In the single-key setting, a conditional differential attack [15] was
able to break 78, 70 and 68 rounds of KATAN32/48/64 respectively. In [2],
the authors took advantage of the full differential distribution to improve the
attack on KATAN32, breaking 115 rounds. However, this approach cannot be
applied on KATAN48/64 since the full differential distribution cannot be eas-
ily computed. Later on, more research work put focus on meet-in-the-middle
attacks (MITM) [10,12,13,24]. In particular, [20] was recently published on e-
print claiming to break 206 rounds of KATAN32 using MITM. The cube attack
was also applied to KATAN32 in the single key model [1] with better results
than the differential attack.

In the related-key setting, [16] introduced 120, 103 and 90-round attacks on
KATAN32/48/64 respectively. By taking advantage of the key scheduling, [11]
further improved the result to 174, 145 and 130 rounds respectively using the
boomerang attack. In this paper, we investigate the extended boomerang tech-
nique to improve upon the previously found boomerang differential characteris-
tics. As a result, we can achieve the best records in attacking KATAN48/64 in
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the related-key setting. In all the other cases, while the results are inferior to
the MITM attacks, we are able to deliver the best differential attack results so
far. Particularly in the single key setting, our approach is able to outperform the
attack on KATAN32 [2] which uses the full differential distribution. Although
their distinguisher is better than ours, we point out that using the full distri-
bution will result in an inefficient key recovery attack. Their methods are also
not applicable to larger block sizes. From this point of view, our approach is
more realistic in practice. We summarize our results along with previous related
results in Table 1.

We organize the paper as follows: In Sect. 2, the boomerang attack and its
extended version are described. In Sect. 3, we demonstrate the boomerang distin-
guisher search and key recovery attack on the KATAN family in both single-key
and related-key settings. Finally, we conclude our paper with a summary of
findings in Sect. 4.

2 The Framework of the Boomerang Cryptanalysis

Ever since its proposal, differential cryptanalysis [5] quickly became one of the
main cryptanalytic methods used today. Based on its original form, researchers
have later derived many extended variants such as truncated differential crypt-
analysis, multi-differential cryptanalysis and so on. The boomerang attack can
also be viewed as an extension of differential attack, but it is more unique because
it modifies the original attack in a structural manner. Let m be the block size
of a block cipher E, and we assume E to be a cascade cipher consisting of three
concatenated parts EK = E2 ◦ E1 ◦ E0 influenced by a secret key K. Here E
is a n-bit to n-bit keyed permutation E : {0, 1}n × {0, 1}k → {0, 1}n. E2 is the
final rounds where the subkey bits are the primary target whereas E1 ◦E0 is the
distinguisher.

Boomerang Attack. The motivation behind the boomerang attack is that
finding two short efficient differential distinguishers is easier than finding a long
one. The original version of the boomerang attack is a combination of a chosen
plaintext and ciphertext attack, which is a cryptanalysis model that makes very
strong assumptions with regard to the capabilities of an attacker. Furthermore,
the original boomerang attack is not efficient when performing the last round
attack due to its “boomerang” property. Later, the amplified boomerang attack
was proposed to solve these problems. Given that the rectangle attack is an
extension of the original boomerang attack, we will refer to the amplified or
rectangle attack as a boomerang throughout the paper.

In the chosen plaintext setting, an attacker chooses plaintext pairs with dif-
ferences (α, α), and expect the differences between C1, C3 and C2, C4 to be (δ, δ).
Randomly, PR((α, α) → (δ, δ)) = 2−2m, thus the boomerang distinguisher should
have probability greater than 2−2m. For E0, the attacker searches for high prob-
ability differential paths α → βi, where 0 ≤ i ≤ 2m −1. For any differential path
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Table 1. Comparison of attacks against KATAN family

Cipher Attacking Technique # Attacking Time Data Memory Reference

Technique Rounds Complexity Complexity Complexity

KATAN32 Differential (Single

Key)

78 276 216 CP Not given [15]

MitM (Single Key) 110 277 138 KP 275.1 [12]

Differential (Single

Key)

115 279 138 KP 275.1 [2]

Boomerang (Single

Key)

117 279.3 227.3 CP 229.9 Ours

MitM (Single Key) 119 279.1 144 CP 279.1 [13]

MitM (Single Key) 153 278.5 25 CP 276 [10]

Cube (Single Key) 155 278.3 232 CP 233.5 [1]

MitM (Single Key) 175 279.3 3 KP 279.58 [24]

MitM (Single Key) 206 279 3 KP 278.1 [20]

Differential (Related

Key)

120 231 Practical (CP) Practical [16]

Boomerang (Related

Key)

174 278.8 227.6 CP 226.6 [11]

Boomerang (Related

Key)

187 278.4 231.8 CP 233.9 Ours

KATAN48 Differential (Single

Key)

70 278 231 CP Not given [15]

Boomerang (Single

Key)

87 278 236.7 CP 239.3 Ours

MitM (Single Key) 100 278 128 KP 278 [12]

MitM (Single Key) 105 279.1 144 KP 279.1 [13]

MitM (Single Key) 129 278.5 25 CP 276 [10]

MitM (Single Key) 130 279.45 2 KP 279 [24]

MitM (Single Key) 148 279 2 KP 277 [20]

Differential (Related

Key)

103 225 Practical (CP) Practical [16]

Boomerang (Related

Key)

145 278.5 238.4 CP 237.4 [11]

Boomerang (Related

Key)

150 277.6 247.2 CP 249.8 Ours

KATAN64 Differential (Single

Key)

68 278 232 CP Not given [15]

Boomerang (Single

Key)

72 278 255.1 CP 258.1 Ours

MitM (Single Key) 94 277.68 116 KP 277.68 [12]

MitM (Single Key) 99 279.1 142 KP 279.1 [13]

MitM (Single Key) 112 279.45 2 KP 279 [24]

MitM (Single Key) 119 278.5 25 CP 274 [10]

MitM (Single Key) 129 279 2 KP 277 [20]

Differential (Related

Key)

90 227 Practical (CP) Practical [16]

Boomerang (Related

Key)

130 278.1 253.1 CP 252.1 [11]

Boomerang (Related

Key)

133 278.5 258.4 CP 261.4 Ours

KP: Known Plaintext, CP: Chosen Plaintext

α → βi starting from a message pair P1, P2, the attacker expects that the dif-
ferential path starting from the message pair P3, P4 should have the same form.
Thus after E0, the probability cost is

∑r−1
i=0 p2i where r < 2m and pi = P (α → βi).
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Two edges in the middle quartet have the difference value βi. Therefore if we
assume the third edge to have a difference γj with a random probability of 2−m,
then the last edge will have difference value γj with probability 1 since the XOR
sum of the quartet edges should be 0. Here again we can choose as many γj

as possible where j is also bounded by the block size 2m. For E1 due to the
middle quartet shift, we start from two γj differences and hope to reach the out-
put difference δ. Denote qj = P (γj → δ), then the probability can be similarly
computed as

∑t−1
j=0 q2j , t < 2m. The total probability can be computed as:

Pbmg((α, α) → (δ, δ)) =
r−1∑

i=0

p2i ·
t−1∑

j=0

q2j · 2−m

Since Pbmg((α, α) → (δ, δ)) > 2−2m, thus we need:

Pbmg−dist =
r−1∑

i=0

p2i ·
t−1∑

j=0

q2j > 2−m (1)

Here Pbmg−dist denotes the distinguisher probability, which is consistent with
previous work such as in [11]. Please refer to Fig. 1 for the boomerang model.

P1

P2

P3

P4

C1

C2

C3

C4

α α

δ

δ

βi βi

γj

γj

Fig. 1. The model of Boomerang attack

The framework of the boomerang can be further improved by considering var-
ious differential quartets in the middle. The idea was first introduced in [22] and
was later mentioned in [4]. We refer to the concept as an extended boomerang
in this paper. In the boomerang setting, we are assuming that E0 has two dif-
ferential paths α → βi that has to appear at the same time so that the middle
quartet has the format such as (βi, βi, γj , γj). However, the two differential paths
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in E0 need not be the same, thus we actually missed a lot of combinations in
the middle. For example, let us consider the following scenario:

E0 : pi = P (α → βi), pj = P (α → βj)

E1 : qs = P (γs → δ), qt = P (γt → δ)

Quartet : (βi, βj , γs, γt) satisfying βi ⊕ βj ⊕ γs ⊕ γt = 0

Now we have all combinations in the middle quartet that can still lead to the
output difference δ. This will potentially increase the total probability when all
these cases are taken into consideration. Let u and v be the size of the differential
set for α → βi and γs → δ respectively. This leads us to the new calculation
formula:

PexBmg =
u−1∑

j=0

u−1∑

i=0

pβi
· pβj

×
∑

s

∑

t

qγs
· qγt

× 2−m

Once βi, βj , γs is decided in the middle quartet, γt is determined with prob-
ability one, namely, γt = βi ⊕ βj ⊕ γs, thus we have:

PexBmg =
u−1∑

j=0

u−1∑

i=0

pβi
· pβj

×
u−1∑

i=0

u−1∑

j=0

v−1∑

s=0

qγs
· qβi⊕βj⊕γs

× 2−m (2)

To be consistent with the previous boomerang distinguisher for ease of com-
parison, we denote the first part of probability term to be p̂2, and second part to
be q̂2. We then define the probability for the extended boomerang distinguisher
to be:

PexBmg−dist = p̂2 × q̂2 > 2−m

which should be greater than the random case 2−m.

3 KATAN Family

The KATAN block cipher family comprises of three lightweight block ciphers
KATAN32, KATAN48 and KATAN64 whose block sizes are 32 bits, 48 bits and
64 bits respectively. It was proposed in CHES 2009 [9] and it is a well known
cipher in the area. The design is based on the linear feedback shift register
(LFSR) and supports an 80-bit key.

The key scheduling function expands an 80-bit user-provided key ki (0 ≤ i <
80) into a 508-bit subkey ski (0 ≤ i < 508) by the following linear operations,

ski =

{
ki (0 ≤ i < 80),
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 (80 ≤ i < 508).

These operations are expressed as an 80-bit LFSR whose polynomial is x80 +
x61 + x50 + x13 + 1 as shown in Fig. 2.
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79 67 30  19  0

Fig. 2. Key scheduling function of
KATAN32/48/64

18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0

 0  1  2  3  4  5  6  7  8  9 10 11 12
IR

ka

kb

Fig. 3. Round function of KATAN32

In the round function, each bit of a plaintext is loaded into registers L1 and
L2. Then, these are updated as follows:

fa(L1) = L1[x1] ⊕ L1[x2] ⊕ (L1[x3] · L1[x4]) ⊕ (L1[x5] · IR) ⊕ ka,

fb(L2) = L2[y1] ⊕ L2[y2] ⊕ (L2[y3] · L2[y4]) ⊕ (L2[y5] · L2[y6]) ⊕ kb,

L1[i] = L1[i − 1] (1 ≤ i < |L1|), L1[0] = fb(L2),
L2[i] = L2[i − 1] (1 ≤ i < |L2|), L2[0] = fa(L1),

where ⊕ and · are bitwise XOR and AND operations, respectively, and L[x]
denotes the x-th bit of L, IR is the round constant value defined in the specifica-
tion, and ka and kb are two subkey bits. Table 2 shows the detailed parameters of
KATAN32/48/64. For round i, ka and kb correspond to sk2(i−1) and sk2(i−1)+1,
respectively. After 254 rounds (1-254 round), values of registers are output as a
ciphertext. Fig. 3 illustrates the round function of KATAN32.

Table 2. Parameters of KATAN family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3

KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6

KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

4 Improved Attack on KATAN Family

4.1 Novel Searching Strategy

The basic searching strategy used to find differentials is a branch-and-bound
algorithm divided into two parts. The first part (single trail search) is based on
the branch-and-bound algorithm proposed by Matsui [19]. It performs a search
for individual differential paths that have the best probabilities. These paths are
then used in the second part of the algorithm (cluster search) which expands
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the search to find other paths that start from the same input difference and lead
to the same output difference. Any paths found by the cluster search improves
the differential probability of the paths found by single trail search.

As an exhaustive search using this algorithm would take a long time, several
bounds are imposed onto the search. The first bound, θ is used in the single
trail search. When θ = 1, only paths with the best probabilities will be stored
for the cluster search whereas θ = 0 will store every path exhaustively. When
the θ bound is loosened, the paths found can range from high probability paths
to extremely low probability paths. To filter out paths with low probability, a
second bound λ is used. As an example, if λ = 2−16, only paths with probabilities
larger than 2−16 will be stored for the cluster search. The cluster search itself
has a bound μ which ranges from [0,1] (similar to θ).

For ciphers with block size less than 32-bit, it is possible to derive all the
differential paths, so that the size of the differential set u or v could reach 2m−1.
However, for larger size greater than say 48 bits, we are still bounded to searching
a subset of all differential paths with relatively high probabilities. Based on the
extended boomerang framework, we derive the following advanced algorithm
which can be used to improve the cryptanalytic capability of the boomerang
attack:

Extended Boomerang Characteristic Searching Algorithm.

1. For E0 precompute the good differential paths (α → βi) using branch-and-
bound algorithm where i ≤ u. Store all the βi in a set Φ.

2. Proceed similarly for E1 to find paths (γj → δ), j ≤ v, and save the output
differences in a set Ω.

3. For all the βi, βj ∈ Φ and γs ∈ Ω, compute γt = βi ⊕ βj ⊕ γs. If γt ∈ Ω, then
(βi, βj , γs, γt) is a valid quartet, and we can add the corresponding paths’
probability to the total boomerang probability.

4.2 Related Key Boomerang Distinguisher Search

To perform a basic boomerang search, the single trail search and cluster search
algorithms are performed separately for E0 and E1. As the clustering effect for
E1 starts from one output difference δ to multiple intermediary differences γ, the
branch-and-bound algorithm has to be applied in reverse (decryption) starting
from δ to find multiple γ. The search is performed for various combinations of
E0 and E1 rounds to find the optimal middle point for the boomerang attack.
In the related key setting, the search algorithm also involves key differences. As
a starting point, we build upon the findings of Isobe et al. [11] who found a 140-
round distinguisher with a probability of 2−27.2. In their paper, they identified
sets of plaintext/key differences that lead to blank steps that have no differences
in registers and subkeys. We use these sets as the inputs of our E0 search and
also use them to find ciphertext/key sets for the reverse E1 search.

To find starting points for the E1 search (ciphertext and key differences),
we first perform the E0 search starting from a designated intermediate round.
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E.g. if the number of rounds for E0 is 70, we start our search from round 71
onwards. By using the same sets from [11] as a guide, we obtain the output
and key differences which are used as inputs to the E1 search. The best results
for the basic related key boomerang search is shown in Table 3 with the follow-
ing settings: (θ = 0, μ = 0.5, λ = 2−20). It can be seen that the branch-and-
bound algorithm is able to improve Isobe’s 140-round distinguisher probability
(2−27.2 → 2−26.58214). We are also able to push a valid distinguisher for 2 more
rounds to obtain a 142-round distinguisher with probability of 2−30.58214.

Next, the extended search algorithm is applied where βi and γs from the basic
boomerang search are stored in sets Φ and Ω respectively. We found that for
certain values of α and δ, the extended search is unable to find additional quar-
tets, therefore did not improve the existing distinguisher probability. However,
there also exist other α and δ values that lead to a large amount of additional
quartets. The following settings were used for the branch-and-bound search:
(θ = 0, μ = 0.5) whereas the λ bound varies based on input. We provide only
the best result found in Table 4 where large improvements to the overall distin-
guisher probability are obtained. We are able to improve upon the previously
found 142-round distinguisher by 12 rounds, obtaining a 154-round distinguisher
with a probability of 2−29.7209 after applying the extended boomerang search.

The conditional difference is another technique which has been used in pre-
vious research work such as [11,16]. For KATAN, the only non-linear part is the
AND logic gate. According to the AND table, if we fix one of the two inputs to
the AND gate to be 0, then any difference in the other input will be canceled
out and the final output difference will be 0. Based on this observation, we can
improve the probability of E0 by fixing some of the plaintext bits. The downside
of using this technique is that the message space will be reduced, thus we have
to determine if the probability gain will surpass the decrease of the message
space. Fortunately, the extended boomerang technique can potentially amplify
the effect of the conditional difference approach due to the extra quartets we
can collect in the middle. For KATAN32, we set L2[1] = L2[4] = L2[8] = 0 for
the input difference α = 10020040 and key differences located at k6, k25. As a
result, we can improve the distinguisher probability to 2−23.7209. The results of
the distinguisher for KATAN32/48/64 are located in Table 4. The application
of the extended boomerang in the single key setting follows the same steps, but
with the exclusion of key differences. Please refer to the appendix for the distin-
guishers in the single-key setting. The overall related key extended boomerang
search algorithm is summarized below:

1. Identify an input set that leads to blank rounds for the E0 search. For this
input, determine the fixed bits for the conditional difference technique.

2. Perform single trail search and cluster search for #E0 rounds. Store all inter-
mediary differences, βi in a set Φ along with their probabilities (which have
been improved using the sufficient condition technique).

3. Identify an input set that leads to blank rounds for the E1 search. Using this
input set, start from (#E0 +1) rounds and perform the single trail search for
#E1 rounds to obtain the corresponding output difference, δ and output key
difference.
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4. Using δ and output key difference as a starting point, the single trail search
and cluster search is performed in reverse (decryption) starting from round-
(#E0+#E1) for #E1 rounds. Store all intermediary differences, γi in a set
Ω along with their probabilities.

5. For all the βi, βj ∈ Φ and γs ∈ Ω, compute γt = βi ⊕ βj ⊕ γs. If γt ∈ Ω, then
(βi, βj , γs, γt) is a valid quartet, and we can add the corresponding paths’
probability to the total boomerang probability.

Table 3. Related Key Boomerang Distinguisher on KATAN32 (before extended search)

α #E0 Prob p
(log2)

δ #E1 Prob q (log2) Total Rounds Final Prob
(log2)

10020040 70 −6.79 280184 70 −6.5 140 −26.58

10020040 70 −6.79 280184 71 −7.5 141 −28.58

10020040 70 −6.79 280184 72 −8.5 142 −30.58

4.3 Key Recovery Attacks

Finally, we demonstrate the concrete key recovery attack for the KATAN family
in both related-key and single-key setting. [11] has already provided an optimized
key recovery framework. Because each round is rather cheap for the KATAN
family and we want to add many rounds in E2, the differential pattern will be
lost. This makes sieving techniques impossible. In other words, the key recovery
technique in [11] is not related to the exact output difference values, thus it is
easy to seamlessly apply here for a fair comparison. The principle of the attack
and some facts of KATAN family used in the attack are listed below:

1. Use meet-in-the-middle approach to recover the key. This is achieved by stor-
ing all the ciphertexts pairs in a table, guessing the subkey bits for decryption
then checking for matches in the table.

2. The differential state is known after #E2 rounds by only guessing (#E2 −4)-
round subkeys.

Table 4. Boomerang distinguisher for KATAN32/48/64 in the related-key setting

#E0 #E1 α δ λE0/λE1
(log2) (log2)

2−24/2−22 k6, k25 L2[1] = L2[4] = L2[8] = 0

2−22/2−22 k0, k19 L2[0] = L2[1] = L2[2] =
L2[11] = L2[17] = 0,

L2[10] �= L2[18]

2−18/2−26 k11 L2[9] = L2[10] =
L2[11] = L2[33] = 0
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3. A trade-off trick can be achieved by using the partial matching method which
involves matching only part of the differential state instead of the whole. This
technique is also known as the “early abort” mentioned in paper [17] and [18].
Denote Pr as the probability that a subkey candidate is the correct key, which
is supposed to be N2 × 2−2m, where N is the number plaintext pairs. Let r
denote the number of rounds that we do not guess subkeys (except for the
first skipped round, we guess 1 bit). By using the partial matching technique,
we can improve the probability as follows:
(a) KATAN32: Pr = N2×2−86+4r, r ≥ 6, known difference bits when match-

ing is Smatching = 43 − 2r.
(b) KATAN48: Pr = N2 × 2−120+8r, r ≥ 4, known difference bits when

matching is Smatching = 59 − 4r.
(c) KATAN64: Pr = N2 × 2−152+12r, r ≥ 3, known difference bits when

matching is Smatching = 74 − 6r.

#E2 denotes the number of rounds for the key recovery phase, then the
subkey bits we need to guess is denoted by 2(#E2 − r) + 1. Since N is the
number plaintext pairs required, then we can generate N2 quartets. To assure
that the right quartet will appear, we set N = 2

m
2 × P

−1/2
r . Since we adapt the

meet-in-the-middle approach, two pairs of plaintexts and ciphertexts need to be
processed independently, thus the data complexity D is 2

m
2 +1 × P

−1/2
r . The key

recovery steps are as follows:

1. Choose N plaintext pairs (P1, P2) and (P3, P4) such that P1⊕P2 = P3⊕P4 =
α, ask for ciphertexts C1, C2, C3 and C4 under secret key K1,K2,K3 and K4.

2. For each guess of 2(#E2 − r) + 1 bits of subkey for Ki (Guess one Ki and
others are determined), do the following:
(a) For both (C1, C2), derive Smatching bits of known differences by decrypt-

ing t rounds. XOR with δ and store in the big table.
(b) For each pair (C3, C4), do

i. Decrypt #E2 rounds and compute the Smatching bits of the known
difference.

ii. Check if the value matches the ones stored in the table. If it exists,
proceed the following step.

iii. Brute force search the rest of the 80 − (2(#E2 − r) + 1) = 79 −
2(#E2 − r) unknown bits. Verify with fresh plaintext and ciphertext
pairs, output the correct key if passed.

Step 2(a) and 2(b)-i requires to compute (2
2(#E2−r−1)×N×2×#E2

#E0+#E1+#E2
#E0+#E1+

#E2) rounds of KATAN32/48/64. Then after filtering, we have 22(#E2−r)+1×Pr

key candidates remaining. To brute force search the rest key bits, step(b)-iii takes
22(#E2−r)+1×Pr×279−2(#E2−r) = 280×Pr. As a result, the total time complexity
can be denoted as

T = 2 × 22(#E2−r−1) × N × 2 × #E2

#E0 + #E1 + #E2
+ 280 × Pr
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The memory complexity depends on Step2(a) where 2 × N state values need to
be stored.

Now based on the derived distinguishers for both single-key and related-key
settings, we test all the possible variables for #E2 and r to derive the optimal
results shown in Tables 5 and 6 respectively.

Table 5. Cryptanalysis results for KATAN family in the single-key setting

Ciphers Total rounds #E0 #E1 #E2 r Dist Prob(log2) T (log2) D(log2) MEM(bytes)

KATAN32 117 35 48 34 7 −21.78 79.25 27.89 29.89

KATAN48 87 35 25 27 5 −23.36 78.00 36.68 39.26

KATAN64 72 30 26 16 3 −44.26 77.99 55.13 58.13

Table 6. Cryptanalysis results for KATAN family in the Related-key setting

Ciphers Total rounds #E0 #E1 #E2 r Dist Prob(log2) T (log2) D(log2) MEM(bytes)

KATAN32 187 70 84 33 7 −23.72 78.39 31.86 33.86

KATAN48 150 63 63 24 4 −32.40 77.60 47.20 49.79

KATAN64 133 56 60 17 3 −42.84 78.46 58.42 61.42

5 Conclusion

In this paper, we investigated the extended boomerang attacks. Our study
showed that by considering the extended version of the original boomerang
attack, the efficiency of distinguishers can be greatly improved. For situations
where the full differential distribution is not available or computing resources are
limited, our results have shown that the extended boomerang attack can lead
to strong results in practical cryptanalysis. Furthermore, we observed that the
extended boomerang framework is able to amplify the effect of the conditional
difference technique due to the large number of differential paths involved in the
computation. As a result, we are able to derive the best cryptanalysis results by
far on KATAN48/64 in the related-key setting. For all the other versions of the
family, the best differential attacks are derived.
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Appendix - Distinguisher Results in the Single-key Setting

By applying the same searching methodology, we derive the distinguishers for
KATAN32/48/64 in the single-key setting as follows (Table 7).

Table 7. Boomerang distinguisher for KATAN32/48/64 in the single-key setting

Ciphers Total rounds #E0 #E1 α δ Before ES After ES λE0/λE1

KATAN32 83 35 48 8010 801081 −38.58 −21.78 −17/ − 24

KATAN48 60 35 25 904000 402000000 −36.60 −23.36 −22/ − 18

KATAN64 56 30 26 4002001 20110080000000 −52.52 −44.26 −22/ − 22
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