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Abstract. In 1995, Kuwakado, Koyama and Tsuruoka presented a
new RSA-type scheme based on singular cubic curves y2 ≡ x3 + bx2

(mod N) where N = pq is an RSA modulus. Then, in 2002, Elkam-
chouchi, Elshenawy and Shaban introduced an extension of the RSA
scheme to the field of Gaussian integers using a modulus N = PQ
where P and Q are Gaussian primes such that p = |P | and q = |Q|
are ordinary primes. Later, in 2007, Castagnos proposed a scheme over
quadratic field quotients with an RSA modulus N = pq. In the three
schemes, the public exponent e is an integer satisfying the key equa-
tion ed − k

(
p2 − 1

) (
q2 − 1

)
= 1. In this paper, we apply the continued

fraction method to launch an attack on the three schemes when the pri-
vate exponent d is sufficiently small. Our attack can be considered as an
extension of the famous Wiener attack on the RSA.
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1 Introduction

The public key cryptosystem RSA was introduced by Rivest, Shamir and
Adleman [10] in 1978. It is the most popular and widely used public-key cryp-
tosystem. The RSA operations system are based on modular arithmetic. Let p
and q be two large primes. The product N = pq is called the RSA modulus
and the product φ(N) = (p − 1)(q − 1) is the Euler totient function. In RSA,
the public exponent e and the private exponent d are integers satisfying ed ≡ 1
(mod φ(N)). A message m is encrypted as c ≡ me (mod N) and decrypted using
m ≡ cd (mod N).

Since its introduction, the RSA cryptosystem has been generalized in various
ways, including extensions to singular elliptic curves and Gaussian integers.
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In 1995, Kuwakado, Koyama and Tsuruoka [8] presented a new RSA-type
scheme based on singular cubic curves with equation y2 ≡ x3 + bx2 (mod N)
where N = pq is an RSA modulus and b ∈ Z/NZ. The public exponent is an
integer e such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1 and the decryption exponent is

the integer d ≡ e−1 (mod
(
p2 − 1

) (
q2 − 1

)
). From this, we deduce that e and

d satisfy a key equation of the form ed − k
(
p2 − 1

) (
q2 − 1

)
= 1 where k is a

positive integer.
In 2002, Elkamchouchi, Elshenawy and Shaban [5] introduced an extension

of RSA to the ring of Gaussian integers. A Gaussian integer is a complex number
of the form a + ib where both a and b are integers and i2 = −1. The set of all
Gaussian integers is denoted Z[i]. A Gaussian prime number is a Gaussian integer
that cannot be represented as a product of non-unit Gaussian integers. The only
unit Gaussian integers are ±1, ±i. Let P = a + ib and Q = a′ + ib′ be two
Gaussian primes. Consider the Gaussian integer N = PQ and the Euler totient
function φ(N) = (|P | − 1) (|Q| − 1) =

(
a2 + b2 − 1

) (
a′2 + b′2 − 1

)
. Let e be an

integer such that d ≡ e−1 (mod φ(N)) exists. Then, in the RSA scheme over
the domain of Gaussian integers, a message m ∈ Z[i] is encrypted using c ≡ me

(mod N) and decrypted using m ≡ cd (mod N). We note that, in this RSA
variant, the key equation is ed − k (|P | − 1) (|Q| − 1) = 1 for N = PQ ∈ Z[i].
In the situation that N = pq is an ordinary RSA modulus, the key equation
becomes ed − k

(
p2 − 1

) (
q2 − 1

)
= 1, which is the same than in the Kuwakado-

Koyama-Tsuruoka elliptic curve variant of RSA.
In 2007, Castagnos [3] proposed a probabilistic scheme based on an RSA

modulus N = pq and using arithmetical operations in quadratic field quotients.
Let e be a integer such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1. For any integer r, let

Ve(r) be the eth term of the Lucas sequence defined by V0(r) = 2, V1(r) = r
and Vk+2 = rVk+1(r) − Vk(r) for k ≥ 0. In this scheme, a message m ∈ Z/NZ is
encrypted using c ≡ (1+mN)Ve(r) (mod N2) where r is a random integer with
2 ≤ r ≤ N − 2. Then some arithmetical properties, one can decrypt c to get the
original message m. Similarly to the Kuwakado-Koyama-Tsuruoka elliptic curve
variant of RSA and RSA with Gaussian integers, Castagnos scheme leads to the
key equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1.

The security of the RSA cryptosystem and its variants are based on the dif-
ficulty of factoring large integers of the shape N = pq. Nevertheless, in some
cases, the modulus N can be factored by algebraic methods that are not based
on factoring algorithms. For example, in 1990, Wiener [11] showed how to break
the RSA when the decryption exponent d satisfies d < 1

3N0.25. Wiener’s method
is based on solving the key equation ed − k(p − 1)(q − 1) = 1 by applying the
continued fraction algorithm to the public rational fraction e

N . When d is small
enough, k

d is one of the convergents of the continued fraction expansion of e
N .

Later, Boneh and Durfee [1] applied lattice reduction and Coppersmith’s tech-
nique [4] and extended the bound to d < N0.292. Recently, using the convergents
of the continued fraction expansion of e

N ′ where N ′ is a number depending on N ,
Bunder and Tonien [2] could break the RSA if d2e < 8N1.5.



260 M. Bunder et al.

The complexity of the encryption and decryption algorithms are based on
the size of the encryption key e and the size of decryption key d, respectively. In
a cryptosystem with a limited resource such as a credit card, it is desirable to
have a smaller value of d. In some scenario, for convenience, e is set to a small
constant, such as e = 3.

In this paper, we consider one of the following scenarios where N = pq is
the product of two large primes and the public exponent e satisfies an equation
ed − k

(
p2 − 1

) (
q2 − 1

)
= 1 with a suitably small secret exponent d:

– an instance of the Kuwakado-Koyama-Tsuruoka cryptosystem [8],
– an instance of the RSA over Gaussian integers [5],
– an instance of Castagnos scheme [3].

Our method is inspired by Bunder and Tonien’s technique [2]. We show that
when d2e < 2N3 − 18N2 then one can find p and q and then factor the modulus
N . Our method is based on the continued fraction algorithm as in Bunder and

Tonien’s attack. Under the condition d <
√

2N3−18N2

e , we show that one can

find k
d among the convergents of the continued fraction expansion of the public

rational number e
N2− 9

4N+1
.

The paper is organized as follows. In Sect. 2, we present the Kuwakado-
Koyama-Tsuruoka RSA-type scheme, the RSA scheme over Gaussian integers
and the Castagnos scheme. In Sect. 3, we review some facts and lemmas used in
our attack. In Sect. 4, we present our new attack with a numerical example. We
conclude the paper in Sect. 5.

2 Preliminaries

In this section, we present the three variants of the RSA cryptosystem for which
our attack works, namely the Kuwakado-Koyama-Tsuruoka RSA-type scheme,
the RSA scheme over Gaussian integers and the Castagnos scheme.

2.1 The Kuwakado-Koyama-Tsuruoka RSA-type Scheme

The Kuwakado-Koyama-Tsuruoka RSA-type scheme is based on the use of an
RSA modulus N = pq as the modulus of a singular elliptic curve. Let ZN =
Z/NZ be the ring of integers modulo N and Fp be the finite field. Let a and b
be integers with gcd(ab,N) = 1 and gcd(4a3 + 27b2, N) = 1. A singular elliptic
curve EN (a, b) over the ring ZN is the concatenation of a point ON , called the
point at infinity, and the set of points (x, y) ∈ Z

2
N satisfying the Weierstrass

equation
y2 + axy ≡ x3 + bx2 (mod N).

If we consider this form modulo p, we get an elliptic curve Ep(a, b) over Fp

Ep(a, b) : y2 + axy ≡ x3 + bx2 (mod p),



A New Attack on Three Variants of the RSA Cryptosystem 261

with the point at infinity Op. It is well known that the chord-and-tangent method
defines an addition law on singular elliptic curves, as for all elliptic curves on Fp.
The addition law can be summarized as follows.

– For any point P ∈ Ep(a, b), P + Op = Op + P = P .
– If P = (x, y) ∈ Ep(a, b), then −P = (x,−ax − y).
– If P = (x, y), then 2P = P3 = (x3, y3) with

x3 =
(

3x2 + 2bx − ay

2ay + ax

)2

+ a

(
3x2 + 2bx − ay

2ay + ax

)
− b − 2x,

y3 = −
(

3x2 + 2bx − ay

2ay + ax
+ a

)
x3 − −x3

2ay + ax
.

– If P1 = (x1, y1) and P2 = (x2, y2) with P1 �= ±P2, then P1+P2 = P3 = (x3, y3)
with

x3 =
(

y2 − y1
x2 − x1

)2

+ a

(
y2 − y1
x2 − x1

)
− b − x1 − x2,

y3 = −
(

y2 − y1
x2 − x1

+ a

)
x3 − y1x2 − y2x1

x2 − x1
.

The addition law can be extended to the elliptic curve EN (a, b) in the same
way as the addition in Ep(a, b) by replacing computations modulo p by com-
putations modulo N . In EN (a, b), a specific problem can occur. Sometimes, the
inverse modulo N does not exist. In this case, this could lead to finding a prime
factor of N , which is unlikely to happen when p and q are large. Note that this
is one of the principles of Elliptic Curve Method of factorization [9].

In 1995, Kuwakado, Koyama and Tsuruoka [8] proposed a system based on
singular elliptic curves modulo an RSA modulus, which can be summarized as
follows.

1. Key Generation:
– Choose two distinct prime numbers p and q of similar bit-length.
– Compute N = pq.
– Choose e such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1.

– Compute d = e−1 (mod
(
p2 − 1

) (
q2 − 1

)
).

– Keep p, q, d secret and publish N, e.
2. Encryption:

– Transform the message as m = (mx,my) ∈ ZN × ZN .

– Compute b = m2
y−m3

x

m2
x

(mod N).
– Compute the ciphertext point (cx, cy) = e(mx,my) on the elliptic curve

y2 = x3 + bx2 (mod N).
3. Decryption:

– Compute b = c2y−c3x
c2x

(mod N).
– Compute the plaintext point (mx,my) = d(cx, cy) on the elliptic curve

y2 = x3 + bx2 (mod N).



262 M. Bunder et al.

Observe the modular inverse d = e−1 (mod
(
p2 − 1

) (
q2 − 1

)
) can be trans-

formed as a key equation

ed − k
(
p2 − 1

) (
q2 − 1

)
= 1,

which will be the starting equation of our new attack.

2.2 RSA Over the Domain of Gaussian Integers

We now focus on how to extend the RSA cryptosystem to the ring of Gaussian
integers. We begin by reviewing the main properties of Gaussian integers.

A Gaussian integer is a complex number of the form a+bi where a, b ∈ Z and
i2 = −1. The set of all Gaussian integers is the ring Z[i]. Let α and β �= 0 be two
Gaussian integers. We say that β divides α if there exists a Gaussian integer γ
such that α = βγ. The norm of a Gaussian integer a + bi is |a + bi| = a2 + b2. A
Gaussian prime is a Gaussian integer which is divisible only by a unit. The units
in Z[i] are ±1 and ±i and have norm 1. As a consequence, if a2 + b2 is a prime
number in Z, then a+ ib is a Gaussian prime. Conversely, if p ∈ Z is an ordinary
prime number, then Gaussian integers p and pi are Gaussian primes if and only if
p ≡ 3 (mod 4). The existence of prime factorization in Z[i] allows us to consider
Gaussian integers of the form N = PQ where P and Q are Gaussian primes
with large norm. Similarly, the existence of Euclidean division and Euclidean
algorithm in Z[i] allow us to consider arithmetic operations modulo N . On the
other hand, if P is a Gaussian prime, then α|P |−1 ≡ 1 (mod P ) whenever α �≡ 0
(mod P ). Similarly, if N = PQ is the product of two Gaussian primes, then
α(|P |−1)(|Q|−1) ≡ 1 (mod N) whenever α �≡ 0 (mod N). In particular, if N =
pq ∈ Z is the product of two ordinary primes, then α(p2−1)(q2−1) ≡ 1 (mod N)
whenever α �≡ 0 (mod N).

Using the arithmetical operations on the ring Z[i], Elkamchouchi, Elshenawy
and Shaban [5] proposed an extension of the RSA cryptosystem to Gaussian
integers. The scheme can be summarized as follows.

1. Key Generation:
– Choose two distinct Gaussian primes P and Q of similar norm.
– Compute N = PQ.
– Choose e such that gcd(e, (|P | − 1)(|Q| − 1)) = 1.
– Determine d = e−1 (mod (|P | − 1)(|Q| − 1))).
– Keep P,Q, d secret, publish N, e.

2. Encryption:
– Transform the message as a Gaussian integer M ∈ Z[i].
– Compute C ≡ Me (mod N).

3. Decryption:
– Compute M ≡ Cd (mod N).
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When N = pq ∈ Z where p and q are ordinary prime numbers of the form 4m+3,
the modular inverse of e becomes d = e−1 (mod

(
p2 − 1

) (
q2 − 1

)
) and can be

rewritten as
ed − k

(
p2 − 1

) (
q2 − 1

)
= 1.

This is the same key equation that comes up in the Kuwakado-Koyama-Tsuruoka
RSA-type scheme.

2.3 Castagnos Scheme

Castagnos scheme [3] was proposed in 2007 and uses an RSA modulus N = pq
and a public exponent e such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1. The encryp-

tion and the decryption algorithms make use of the Lucas series. Let r be an
integer. Define V0(r) = 2 and V1(r) = r. For k ≥ 0, the k + 2th term of the
Lucas sequence is defined by Vk+2 = rVk+1(r) − Vk(r). The Lucas series can
be computed efficiently by the square and multiply algorithm. The Castagnos
scheme can be summarized as follows, where

(
x
p

)
is the Jacobi symbol.

1. Key Generation:
– Choose two distinct prime numbers p and q of similar bit-length.
– Compute N = pq.
– Choose e such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1.

– Keep p, q secret and publish N, e.
2. Encryption:

– Transform the message as an integer m ∈ Z/NZ.
– Choose a random integer r ∈ [2, n − 2].
– Compute the ciphertext c ≡ (1 + mN)Ve(r) (mod N2).

3. Decryption:
– Compute ip =

(
c2−4
p

)
and d(p, ip) ≡ e−1 (mod p − ip).

– Compute iq =
(

c2−4
q

)
and d(q, iq) ≡ e−1 (mod q − iq).

– Compute rp ≡ Vd(p,ip) (mod p) and rq ≡ Vd(q,iq) (mod q).
– Compute p′ ≡ p−1 (mod q) and r = rp + p(rp − rq)p′ (mod N).
– Compute tp ≡ c

Ve(r)
(mod p2) and mp ≡ tp−1

p · q−1 (mod p).

– Compute tq ≡ c
Ve(r)

(mod q2) and mq ≡ tq−1
q · p−1 (mod q).

– Compute the plaintext m ≡ mp + p(mq − mp)p′ (mod N).

Despite the inverse d ≡ e−1 (mod
(
p2 − 1

) (
q2 − 1

)
) is not being used directly

in the scheme, we use the key equation ed−k
(
p2 − 1

) (
q2 − 1

)
= 1 to launch an

attack on Castagnos scheme when d is suitably small.

3 Useful Lemmas

In this section, we review the main properties of the continued fractions and
state a useful lemma that will be used in the attack.
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A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1
. . .

The continued fraction expansion of a number is formed by subtracting away
the integer part of it and inverting the remainder and then repeating this process
again and again. The coefficients ai of the continued fraction of a number x are
constructed as follows:

x0 = x, an = [xn], xn+1 =
1

xn − an

We use the following notation to denote the continued fraction

x = [a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1
an

If k ≤ n, the continued fraction [a0, a1, . . . , ak] is called the kth convergent of
x. The following theorem gives us the fundamental recursive formulas to calculate
the convergents.

Theorem 1 [6]. The kth convergent can be determined as

[a0, . . . , ak] =
pk
qk

where the sequences {pn} and {qn} are specified as follows:

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, ∀n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, ∀n ≥ 0.

Theorem 2 [6]. Let p, q be positive integers such that

0 <

∣
∣
∣
∣x − p

q

∣
∣
∣
∣ <

1
2q2

then p
q is a convergent of the continued fraction of x.

Now, we present a useful result that will be used throughout the paper.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Let φ1 = N2 +
1 − 5

2N and φ2 = N2 + 1 − 2N . Then

φ1 < (p2 − 1)(q2 − 1) < φ2.
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Proof. Suppose that q < p < 2q. Then 1 < p
q < 2, so since the function f(x) =

x + 1
x is increasing on [1,+∞), we get f(1) < f

(
p
q

)
< f(2), that is

2 <
p

q
+

q

p
<

5
2
.

Multiplying by N , we get

2N < p2 + q2 <
5
2
N.

Since
(
p2 − 1

) (
q2 − 1

)
= N2 + 1 − (

p2 + q2
)
, we get

N2 + 1 − 5
2
N < (p2 − 1)(q2 − 1) < N2 + 1 − 2N,

that is φ1 < (p2 − 1)(q2 − 1) < φ2. This terminates the proof.

4 A New Attack on RSA Variants Based on Continued
Fractions

In this section, we propose a new attack on the Kuwakado-Koyama-Tsuruoka
cryptosystem as well as RSA over the Gaussian integer domain and the Castag-
nos scheme in the situation that the key equation ed − k(p2 − 1)(q2 − 1) = 1 is
satisfied with a suitably small secret exponent d.

Theorem 3. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka
cryptosystem or in the RSA cryptosystem with Gaussian integers or in the
Castagnos scheme with N = pq and q < p < 2q. If e <

(
p2 − 1

) (
q2 − 1

)
satisfies

an equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1 with

d <

√
2N3 − 18N2

e
,

then one can factor N in polynomial time.

Proof. Let φ1 = N2 + 1 − 5
2N and φ2 = N2 + 1 − 2N . Then N ′ = N2 − 9

4N + 1
is the midpoint of the interval [φ1, φ2]. Since

(
p2 − 1

) (
q2 − 1

) ∈ [φ1, φ2], then

∣
∣(p2 − 1

) (
q2 − 1

) − N ′∣∣ <
1
2
(φ2 − φ1) =

1
4
N. (1)

Using the equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1, we get

∣
∣
∣
∣

e

N ′ − k

d

∣
∣
∣
∣ ≤ e

∣
∣
∣
∣

1
N ′ − 1

(p2 − 1) (q2 − 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

e

(p2 − 1) (q2 − 1)
− k

d

∣
∣
∣
∣

= e

∣
∣(p2 − 1

) (
q2 − 1

) − N ′∣∣

N ′ (p2 − 1) (q2 − 1)
+

1
(p2 − 1) (q2 − 1) d



266 M. Bunder et al.

Then, using d =
k(p2−1)(q2−1)+1

e and (1), we get
∣
∣
∣
∣

e

N ′ − k

d

∣
∣
∣
∣ <

eN

4N ′ (p2 − 1) (q2 − 1)
+

e

(p2 − 1) (q2 − 1) (k (p2 − 1) (q2 − 1) + 1)
.

Now, using Lemma 1, we get
∣
∣
∣
∣

e

N ′ − k

d

∣
∣
∣
∣ <

eN

4φ2
1

+
e

φ2
1

<
e(N + 4)
4(φ1 − 1)2

=
e(N + 4)

4
(
N2 − 5

2N
)2 . (2)

A straightforward calculation shows that

N + 4

4
(
N2 − 5

2N
)2 <

1
4N3 − 36N2

.

Combining this with (2), we get
∣
∣
∣
∣

e

N ′ − k

d

∣
∣
∣
∣ <

e

4N3 − 36N2
.

If d <
√

2N3−18N2

e , then
∣
∣ e
N ′ − k

d

∣
∣ < 1

2d2 and by Theorem 2, k
d is a convergent

of the continued fraction expansion of e
N ′ . Using k and d, we get

(
p2 − 1

) (
q2 − 1

)
=

ed − 1
k

.

Combining with N = pq, we get the values of p and q which leads to the fac-
torization of N . Observe that every step in the proof can be done in polynomial
time. This terminates the proof.

4.1 A Numerical Example

In connection with Theorem 3, we present an experimental result. We consider
the RSA modulus N and the public exponent e as follows.

N = 2617939220553315302745462091,
e = 5656039332305952436559424461831783955572872351157004185.

The first partial quotients of e
N2− 9

4N+1
are

0, 1, 4, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 46, 3, 5, 1, 1, 2, 26, 2, 2, 39, 1, 3, 2, 3, 1, 23104, 1, 9,

1, 1, 2, 1, 3, 2, 2, ....
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We found k
d at the 28th convergent

k

d
=

981582747476
1189415557289

and obtain

(
p2 − 1

) (
q2 − 1

)
=

ed − 1
k

= 6853605762511300064473195588212095096351361928469816064.

Combining with the equation N = pq, we get

p = 68410308889243,
q = 38268197630737.

which completes the factorization of N . In this example, we can check that the

condition d <
√

2N3−18N2

e is satisfied as required in Theorem 3.

5 Conclusion

We have proposed an attack on three variants of the RSA cryptosystem,
namely the Kuwakado-Koyama-Tsuruoka extension for singular elliptic curves,
Elkamchouchi et al.’s extension of RSA to the Gaussian integer ring and Castag-
nos scheme. For the three extensions, we showed that the RSA modulus N = pq
can be factored in polynomial time if the public exponent e is related to a suitably
small secret exponent d. The attack is based on the theory of continued fractions
and can be seen as an extension of Wiener’s [11] and Bunder-Tonien’s [2] attacks
on the RSA.
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