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Abstract. So far, several papers have analyzed attacks on RSA when
attackers know the least significant bits of a secret exponent d as well
as a public modulus N and a public exponent e, the so-called partial
key exposure attacks. Aono (ACISP 2013), and Takayasu and Kunihiro
(ACISP 2014) generalized the attacks when there are multiple pairs of
a public/secret exponent (e1, d1), . . . , (en, dn) for the same public mod-
ulus N . The standard RSA is a special case of the generalization, i.e.,
n = 1. They revealed that RSA becomes more vulnerable when there are
more exponent pairs. However, their results have two obvious drawbacks.
First, partial key exposure situations which they considered are restric-
tive. They have proposed the attacks only for small secret exponents,
although attacks for large secret exponents have also been analyzed for
the standard RSA. Second, they could not generalize the attacks per-
fectly. More concretely, their attacks for n = 1 do not correspond to the
currently known best attacks on the standard RSA.

In this paper, we propose improved partial key exposure attacks on
RSA with multiple exponent pairs. Our results completely solve the
above drawbacks. Our attacks are the first results for large exponents,
and our attacks for n = 1 correspond to the currently known best
attacks on the standard RSA. Our results for small secret exponents
are superior to previous results when n = 1 and 2, and when n ≥ 3 and
d1, . . . , dn > N3(n−1)/(3n+1).

1 Introduction

1.1 Background

Partial Key Exposure Attacks on RSA. RSA is one of the most widely
used cryptosystems. For a public modulus N = pq where p and q are distinct
primes with the same bit size, there are an encryption/verifying exponent e and
a decryption/signing exponent d that satisfy ed = 1 mod φ(N) where φ(N) =
(p−1)(q −1). To encrypt a plaintext m (resp. verify a signature σ), me mod N
(resp. σe mod N) should be computed. Similarly, to decrypt a ciphertext c
(resp. sign a message m), cd mod N (resp. md mod N) should be computed.
To reduce the complexity of the heavy modular exponentiation, we can use a
small public exponent e ≈ Nα or a small decryption exponent d ≈ Nβ . However,
Wiener [28] showed that too small d makes RSA insecure. Their attack factors
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public modulus N in polynomial time when α = 1 and β < 1/4. Later, Boneh
and Durfee [4] further improved the bound to β < 1 − 1/

√
2 = 0.292 · · · .

Boneh, Durfee, and Frankel [5] analyzed the security of RSA when attackers
know some portions of d, that is, the so-called partial key exposure attacks. In
this paper, we focus on the situation when attackers know d̃ > Nβ−δ which is
the least significant bits of d. In this situation, the attack of Boneh et al. works
only for extremely small e = poly(log N).

Thus far, several generalizations and improvements of partial key exposure
attacks have been proposed. In this paper, we focus on three situations1;

(a) α ≤ 1 and β = 1,
(b) α ≤ 1 and β > 1,
(c) α = 1 and β ≤ 1.

Blömer and May [3] analyzed the situation (a), and their attack works when
α < 7/8 = 0.875. Joye and Lepoint [15] analyzed the situation (b), and their
attack works when β < 15/8 for extremely small α. Ernst et al. [11] analyzed the
situation (c), and their attack works when β < 7/8. In the last situation, Aono [1]
proposed an improved attack. When 1 − 1/

√
2 < β < (9 − √

21)/12 = 0.368 · · · ,
Aono’s attack works with less partial information than that of Ernst et al. Later,
in the same range of β, Takayasu and Kunihiro [27] further improved the attack.

RSA with Multiple Exponent Pairs. As opposed to the standard RSA
setting, the security of RSA with multiple exponent pairs has also been studied in
several papers [2,14,21,23,24,26]. In this setting, there are multiple public/secret
exponent pairs (e1, d1), . . . , (en, dn) for the same public modulus N such that
ejdj = 1 mod φ(N) for all j = 1, 2, . . . , n. In this context, the standard RSA can
be regarded as the special case, i.e., n = 1. We denote sizes of public exponents as
e1, . . . , en ≈ Nα and sizes of secret exponents as d1, . . . , dn ≈ Nβ . These works
showed that RSA becomes more vulnerable when there are more exponent pairs.
Takayasu and Kunihiro [26] proposed a generalization of Boneh and Durfee’s
attack [4] that works when β < 1−√

2/(3n + 1) only with public information N
and e1, . . . , en. When there are more exponent pairs, i.e., larger n, larger secret
exponents can be recovered. Especially, full size secret exponents, i.e., β = 1,
can be recovered with infinitely many exponent pairs.

Partial key exposure attacks on RSA with multiple exponent pairs have
also been analyzed. For the attacks, attackers know d̃1, . . . , d̃n > Nβ−δ which
are the least significant bits of d1, . . . , dn. Aono [2] analyzed a partial key
exposure attack2 in the situation (c). Although the attack on the standard

1 At a glance, a situation (b) seems useless, since d is defined as d ∈ Z
∗
φ(N) in many

cases, and β ≤ 1 always holds. However, some implementations use an exponent
which is larger than N . To decrypt/sign, one may use d + kφ(N) in turn for some
integer k > 0. This implementation offers better resistance against side-channel
attacks [9] or faster calculation by setting the exponent as low Hamming weight.

2 In [2,26], they use δ, not β−δ as ours, to represent portions of exposed bits. However,
we follow the notation from [11,27].
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RSA [2,11,26], i.e., n = 1, cannot be applied to full size secret exponent3 ,
i.e., β = 1, Aono’s attack can be applied to the case when n ≥ 3. Takayasu and
Kunihiro [26] further improved the attack when n ≥ 3 and β < 3(n−1)/(3n+1).
These results are theoretically interesting to ensure the security of RSA.

In this paper, we focus on partial key exposure attacks on RSA with multiple
exponent pairs since previous results [2,26] have two obvious drawbacks. First,
the results focus only on the situation (c). Therefore, there have been no results
which analyzed the situations (a) and (b) with multiple exponent pairs. Second,
the previous attacks [2,26] cannot be the best even in the situation (c), since the
attacks for n = 1 do not correspond to the currently known best attacks with a
single exponent pair [11,27]. As a result, although the generalization of Boneh
and Durfee’s small secret exponent attack suggests that partial key exposure
attacks should always work when β < 1 − √

2/(3n + 1) in the situation (c) even
with no partial information, when n = 1 and 2, previous attacks [2,26] does not
work in the range with small amounts of partial information.

1.2 Our Contributions

In this paper, we propose improved partial key exposure attacks on RSA with
multiple exponent pairs and completely solve the above drawbacks of previous
works [2,26]. Unlike previous works, we analyze not only the situation (c), but
also the situations (a) and (b). Therefore, we offer the first result for the attack
with multiple exponent pairs in (a) and (b). Moreover, our attack in the situation
(c) is superior to previous attacks [2,26] when n = 1 and 2, and when n ≥ 3
and β > 3(n− 1)/(3n+ 1). Our attack always works when β < 1−√

2/(3n + 1)
for n = 1 and 2. When β = 1, although previous attacks work when n ≥ 3, our
attack works when n ≥ 2. For all the situations (a), (b), and (c), our proposed
attacks for n = 1 correspond to the currently known best attacks with a single
exponent pair.

1.3 Technical Overview

Almost all the above attacks [2,3,26,27] used the Coppersmith method to solve
modular equations that have small solutions [6,13]. In the method, we construct
a lattice whose basis vectors are coefficients of polynomials that have the same
solutions as the original modular equations. To improve partial key exposure
attacks, we should construct algorithms which can find larger solutions. For
the improvement, we should select appropriate lattice bases for the resulting
lattice to have shorter vectors. We call polynomials which shorten lattice vectors
helpful polynomials. The exact criteria that decide if polynomials are helpful
or not have already been analyzed in [18,25]. To maximize solvable bounds of

3 From May [17] and Coron and May’s [10] results, given whole bits of d then the
factorization of N is a trivial. However, it does not immediately suggest that partial
key exposure attacks always work when whole bits of d are given. Indeed, Ernst et
al. [11] claimed to find such improved attacks is an interesting open problem.
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solutions, we should select as many helpful polynomials as possible and as few
unhelpful polynomials as possible in lattice bases. For example, first, Boneh and
Durfee [4] constructed lattices to obtain Wiener’s bound β < 1/4 [28]. Afterward,
they added extra polynomials, which are helpful, in lattice basis and improved
the bound to β < 1 − 1/

√
2.

As noted in [26], Aono’s lattice can be viewed as a generalization of the lattice
to obtain Wiener’s bound for the small secret exponent attack. The selection of
lattice bases is too simple, since it does not depend on any values of n, β and δ.
Therefore, the lattice can be applied to attacks in situations (a) and (b), although
Aono did not analyze them. However, that means the lattice cannot provide the
best bounds when the values of n, α, β, and δ change. In [26], Takayasu and
Kunihiro work out new lattice constructions that depend on the values of n, α, β,
and δ. They revealed that Aono’s lattice contains unhelpful polynomials when
n is large and β is small, and they constructed lattices by eliminating as many
unhelpful polynomials as possible. The lattice provides an improved results when
n ≥ 3 and β < 3(n − 1)/(3n + 1).

Conversely, the above observation suggests that Aono’s lattice does not
contain all helpful polynomials when n = 1 and 2, and n ≥ 3 and β >
3(n − 1)/(3n + 1). Therefore, all we have to do is to add as many helpful poly-
nomials as possible. However, Takayasu and Kunihiro [26] could not do the task
since adding helpful polynomials is rather difficult compared with eliminating
unhelpful polynomials. We work out the analyses required to understand the
essence of the lattice constructions for the standard RSA [3,11,15,27]. Although
we analyze the three situations, i.e., (a), (b), and (c), there are only two types
of lattices in these previous works. We call them the Blömer-May lattice and
the Takayasu-Kunihiro lattice. Ernst et al.’s result [11], and Joye and Lepoint’s
result [15] can be obtained via the Blömer-May lattice. The classification offers
better understanding for the lattice constructions and we generalize the two
types of lattices in subsequent sections. As a result, this paper completes the
analysis of partial key exposure attacks on RSA with multiple exponent pairs.

1.4 Organization

In Sect. 2, we define a scenario of partial key exposure attacks and formulate them
as simultaneous modular equations. Afterward, we briefly summarize previous
results [2,3,11,26,27]. In Sect. 3, we introduce the Coppersmith method to solve
modular equations [6,13]. In Sect. 4, we propose generalized lattice constructions
of the Blömer-May. In Sect. 5, we propose generalized lattice constructions of the
Takayasu-Kunihiro.

2 Definitions of the Attack and Previous Results

For multiple exponent pairs setting, RSA key generations can be written as
ejdj = 1+�j(N −(p+q)+1) for j = 1, 2, . . . , n with some integers �j ≈ Nα+β−1.
We assume that all public exponents e1, . . . , en are pairwise co-prime as previous
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works [2,26]. Let d̃j ≈ Nβ−δ (resp. d′
j ≈ N δ) denote the least (resp. the most)

significant bits of dj . We can rewrite dj = d′
jM + d̃j with some integers M ≈

Nβ−δ. We consider partial key exposure attacks when attackers know d̃1, . . . , d̃n.
Rewrite RSA key generations

ej

(
d′

jM + d̃j

)
= 1 + �j(N − (p + q) + 1),

and consider the following modular polynomials

fj(xj , y) = 1 − ej d̃j + xj(N + y) (mod ejM) and
gj(xj , y) = 1 + xj(N + y) (mod ej)

for j = 1, 2, . . . , n. The polynomials have the roots

(x1, . . . , xn, y) = (�1, . . . , �n,−(p + q) + 1).

The absolute values of the roots are bounded above by Xj := Nα+β−1 for
j = 1, 2, . . . , n and Y := 3N1/2. If we can find the roots, we can easily factor
RSA modulus N .

In the rest of this section, we summarize previous attacks. First, we show the
previous results for the standard RSA. All conditions when Blömer and May’s
attack [3], Ernst et al.’s attack [11], and Joye and Lepoint’s attack [15] work can
be written as

δ <
5
6

−
√−5 + 6(α + β)

3
. (1)

All the attacks are based on the Blömer-May lattice and the lattices are con-
structed to solve a modular equation f1(x1, y) = 0. Takayasu and Kunihiro’s
attack [27] works when

δ <
1 + β − √

2 − 3(1 − β)2

2
and β <

9 − √
21

12
. (2)

The Takayasu-Kunihiro lattices are constructed to solve simultaneous modular
equations f1(x1, y) = 0 and g1(x1, y) = 0.

Next, we show the previous results with multiple exponent pairs. The follow-
ing attacks work in time polynomial in log N and exponential in n. Although
Aono [2] only considered the situation (c), their lattice can also be applied to
the situations (a) and (b). The attack works when

δ <
3
2

− 4
3n + 1

α − β. (3)

Aono’s lattice is constructed to solve simultaneous modular equations f1(x1, y) =
0, . . . , fn(xn, y) = 0. In the situation (c) for n ≥ 3, Takayasu and Kunihiro [26]
solved the same modular equations as Aono and improved the bound to

δ < −1
2

+ β +
(3n + 1)(1 − β)2

4
and β <

3(n − 1)
3n + 1

. (4)
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3 Preliminaries

Consider the modular equations h(x1, . . . , xn) = 0 (mod W ). All absolute values
of the solutions (x̃1, . . . , x̃n) are bounded above by X1, . . . , Xn. When

∏n
j=1 Xj

is reasonably smaller than W , the Coppersmith method can find all the solutions
in polynomial time. We write the norm of a polynomial as ‖h(x1, . . . , xn)‖, which
represents the Euclidean norm of the coefficient vector. The following Howgrave-
Graham’s Lemma reduces the modular equations into integer equations.

Lemma 1 (Howgrave-Graham’s Lemma [13]). Let h̃(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a polynomial with at most w monomials. Let m,W,X1, . . . , Xn

be positive integers. Suppose that:

1. h̃(x̃1, . . . , x̃n) = 0 (mod Wm), where |x̃1| < X1, . . . , |x̃n| < Xn,
2. ‖h̃(x1X1, . . . , xnXn)‖ < Wm/

√
w.

Then h̃(x̃1, . . . , x̃n) = 0 holds over the integers.

To solve n-variate modular equations h(x1, . . . , xn) = 0 (mod W ), it suffices to
find n new polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) whose roots are the
same as the original solutions (x̃1, . . . , x̃n) and whose norms are small enough
to satisfy Howgrave-Graham’s Lemma.

To find such polynomials from the original polynomial h(x1, . . . , xn), lat-
tices and the LLL algorithm are often used. Lattices represent the integer linear
combinations of the basis vectors. All vectors are row representation. For the
basis vectors b1, . . . , bw, which are all k dimensional linearly independent vec-
tors in Z

k, the lattice spanned by these vectors is defined as L(b1, . . . , bw) :=
{∑w

j=1 cjbj : cj ∈ Z for all j = 1, 2, . . . , w}. We also use the matrix represen-
tation for the basis. We define the basis matrix B as w × k matrix which has
the basis vectors b1, . . . , bw in each row. In the same way, the lattice can be
rewritten as L(B). We call the lattice full-rank when w = k. The volume of the
lattice vol(L(B)) is defined as the w-dimensional volume of the parallelepiped
P(B) := {cB : c ∈ R

w, 0 ≤ cj < 1, for all j = 1, 2, . . . , w}. The volume can be
computed as vol(L(B)) =

√
det(BBT ) in general, and the volume of a full-rank

lattice can be computed as vol(L(B)) = |det(B)|.
Lattice has been used in many places in cryptographic research. See [7,8,

19,20] for detailed information. In cryptanalysis, to find non-zero short lattice
vectors is essential. In this paper, we introduce the LLL algorithm [16] which
outputs short lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [16]). Given basis vectors b1, . . . , bw in Z
k,

the LLL algorithm finds LLL-reduced bases b̃1, . . . , b̃w that satisfy

‖b̃j‖ ≤ 2w(w−1)/4(w−j+1)(vol(L(B)))1/(w−j+1) for 1 ≤ j ≤ w,

in time polynomial in w, k, and the maximum input length.
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Again, we consider how to solve the modular equation h(x1, . . . , xn) = 0
(mod W ). First, we construct w polynomials h1(x1, . . . , xn), . . . , hw(x1, . . . , xn)
that have the roots (x̃1, . . . , x̃n) modulo Wm with some positive integer m.
We construct w basis vectors b1, . . . , bw each whose elements are coefficients
of hj(x1X1, . . . , xnXn) for j = 1, 2, . . . , w, and construct a basis matrix B.
We span a lattice L(B). Since all lattice vectors are integer linear combina-
tions of the basis vectors, all polynomials whose coefficients are derived from lat-
tice vectors have the roots (x̃1, . . . , x̃n) modulo Wm. We apply the LLL algo-
rithm to the lattice bases, and obtain n LLL-reduced vectors b̃1, . . . , b̃n. The
new polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) which are derived from the
above n LLL-reduced vectors satisfy Howgrave-Graham’s Lemma provided that
(vol(L(B)))1/w < Wm. Here, we omit small terms. When we obtain the polyno-
mials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn), it is easy to solve the modular equation
h(x1, . . . , xn) = 0 (mod W ). What we should do is to find the roots of the poly-
nomials over the integers by computing resultant or Gröbner bases. We should
note that the method needs heuristic argument if we consider multivariate prob-
lems, since the polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) have no assurance
of algebraic independency. In this paper, we assume that the polynomials derived
from outputs of the LLL algorithm are algebraic independent as previous works
[2–4,15,26,27]. Indeed, there are few papers that contradict the assumption.

Although we introduce a lattice construction to solve a single multivariate
modular equation, the method can be easily applied to simultaneous modular
equations in the same way. To attack RSA with multiple exponent pairs, we use
Minkowski sum based lattices introduced by Aono [2]. To solve n simultaneous
modular equations, the technique combine n lattices each of which is a lattice
to solve a single equation.

4 Generalizations of the Blömer-May Lattice

4.1 Our Algorithm

In this section, we solve simultaneous modular equations

fj(xj , y) = 1 − ej d̃j + xj(N + y) (mod ejM)

for j = 1, 2, . . . , n by generalizing the Blömer-May lattice [3], and obtain the
following result.

Theorem 1. Let N = pq be an RSA modulus. Let (ej , dj) be pubic/secret
exponents where ej ≈ Nα, dj ≈ Nβ, and ejdj = 1 (mod (p − 1)(q − 1)) for
j = 1, 2, . . . , n. Given public elements N, e1, . . . , en, and d̃1, . . . , d̃n > Nβ−δ

that are the least significant bits of d1, . . . , dn, respectively. Assume e1, . . . , en

are pairwise co-prime and the LLL algorithm outputs algebraically independent
polynomials. If

δ <
9n + 1 − √

(3n + 1)2 + 96nα − 24n(3n + 1)(1 − β)
12n

,

then public modulus N can be factored in time polynomial in log N and expo-
nential in n.
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Proof. At first, we show the Blömer-May lattice to solve each single modular
equation fj(xj , y) = 0 for j = 1, 2, . . . , n that yields the bound (1). To solve the
single equation, we use shift-polynomials

x
ij
j · fj(xj , y)uj · (ejM)m−uj with ij = 0, 1, . . . ,m;uj = 0, 1, . . . ,m − ij ,

ykj · fj(xj , y)ij · (ejM)m−ij with ij = 0, 1, . . . ,m; kj = 1, 2, . . . , �τm	,
in lattice bases with some positive integer m. The parameter τ ≥ 0 should be
optimized later. All these shift-polynomials modulo (ejM)m have the same roots
as the original solutions, e.g., (xj , y) = (�j ,−(p+q)+1) for j = 1, 2, . . . , n. These
polynomials generate a triangular basis matrix with diagonals

X
i′
j

j Y u′
j (ejM)m−min{i′

j ,u′
j} with i′j = 0, 1, . . . ,m;u′

j = 0, 1, . . . , i′j ,

X
i′
j

j Y i′
j+k′

j (ejM)m−i′
j with i′j = 0, 1, . . . ,m; k′

j = 1, 2, . . . , �τm	.
We set the parameter τ = (1 − 2δ)/2, and the lattice yields the bound (1).

Next, we combine these n lattices based on Minkowski sum. Since we combine
triangular basis matrices, the combined basis matrix also becomes triangular
with diagonals

X
i′
j

j Y u′
j (ejM)m−min{i′

j ,u′
j} with i′j = 0, 1, . . . ,m;u′

j = 0, 1, . . . , i′j ,

X
i′
1

1 · · · Xi′
n

n Y
∑n

j=1 i′
j+k′

e
m−i′

1
1 · · · em−i′

n
n Mnm−∑n

j=1 i′
j

with i′j = 0, 1, . . . ,m for j = 1, 2, . . . , n; k′ = 1, 2, . . . , �τm	.
All polynomials which are derived from resulting lattice vectors modulo
(e1 · · · en)mMnm have the same roots as the original solutions.

We show that the above lattice offers the bound of Theorem 1. Ignoring low
order terms of m, we can compute the dimension

w =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

1 +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

1 =
(n

2
+ τ

)
mn+1,

and the volume of the lattice vol(L(B)) = X
sX1
1 · · · XsXn

n Y sY e
se1
1 · · · esen

n MsM ,
where

sXj
=

m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

i′j +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

i′j =
(

3n + 1
12

+
τ

2

)
mn+2,

sej
=

m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

(
m − min{i′j , u

′})
+

m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

(
m − i′j

)

=
(

3n + 1
12

+
τ

2

)
mn+2

for j = 1, 2, . . . , n,
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sY =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

u′ +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

⎛

⎝
n∑

j=1

i′j + k′

⎞

⎠

=
(

n(3n + 1)
24

+
nτ

2
+

τ2

2

)
mn+2,

sM =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

(nm − u′) +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

⎛

⎝nm −
n∑

j=1

i′j

⎞

⎠

=
(

n(9n − 1)
24

+
n

2
τ

)
mn+2.

We can solve the simultaneous modular equations fj(xj , y) = 0 for j =
1, 2, . . . , n, when (vol(L(B)))1/w < (e1 · · · en)mMnm, that is,

−12τ2 + 24n(1 − δ)τ + 3n(3n + 1) − 8nα − 2n(3n + 1)(β + δ) > 0.

To maximize the left-hand side of the above inequality, we set the parameter
τ = n(1 − 2δ)/2, and the condition becomes

12nδ2 − 2(9n + 1)δ + 12n + 3 − 8α − 2(3n + 1)β > 0.

The inequality results in the bound of Theorem1,

δ <
9n + 1 − √

(3n + 1)2 + 96nα − 24n(3n + 1)(1 − β)
12n

as required. 
�

4.2 Observation

Compared with Aono’s lattice, we select extra shift-polynomials, e.g., ykj ·
fj(xj , y)ij · (ejM)m−ij . As the case of the standard RSA, these extra shift-
polynomials reduce the output length of the LLL algorithm and improve partial
key exposure attacks.

The bound of Theorem 1 becomes the same as the bound (1) of the Blömer-
May lattice when n = 1. In situation (a) and (b), the bound is always superior
to the bound (3) which is derived from Aono’s lattices. In the situation (c),
the bound is superior to the bound (3) when n = 1, 2, and when n ≥ 3 and
β > 3(n − 1)/(3n + 1). When there are infinitely many exponent pairs n for
extremely small α, Aono’s attack (3), and Takayasu and Kunihiro’s attack (4)
work when β < 3/2 and β < 1, respectively, although Joye and Lepoint’s attack
(1), which uses only one exponent pair, works when β < 15/8. Our attack works
when β < 2 with infinitely many exponent pairs.
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5 Generalizations of the Takayasu-Kunihiro Lattice

5.1 Our Algorithm

In this section, we solve simultaneous modular equations

fj(xj , y) = 1 − ej d̃j + xj(N + y) (mod ejM) and
gj(xj , y) = 1 + xj(N + y) (mod ej),

for j = 1, 2, . . . , n by generalizing the Takayasu-Kunihiro lattice [27], and obtain
the following result.

Theorem 2. Let N = pq be an RSA modulus. Let (ej , dj) be pubic/secret
exponents where ej ≈ N, dj ≈ Nβ, and ejdj = 1 (mod (p − 1)(q − 1)) for
j = 1, 2, . . . , n. Given public elements N, e1, . . . , en, and d̃1, . . . , d̃n > Nβ−δ

that are the least significant bits of d1, . . . , dn, respectively. Assume e1, . . . , en

are pairwise co-prime and the LLL algorithm outputs algebraically independent
polynomials. If

δ <
3n + 1 + (9n − 5)β − √

16(3n − 1) − 3(3n + 1)(7n − 3)(1 − β)2

4(3n − 1)
and

β <
3(11n + 1) − √−3(21n2 − 130n − 3)

48n

for n = 1 and 2, then public modulus N can be factored in time polynomial in
log N and exponential in n.

Proof. At first, we show the Takayasu-Kunihiro lattice to solve each single mod-
ular equation fj(xj , y) = 0 and gj(xj , y) = 0 for j = 1, 2, . . . , n that yields the
bound (2). To solve the single equation, when 1 + 2δ − 4β > 0, we define a
function

l1(k) = max
{

0,
k − 2(β − δ)m
1 + 2δ − 4β

}
,

and use shift-polynomials

x
ij
j · fj(xj , y)uj · (ejM)m−uj with ij = 0, 1, . . . ,m;uj = 0, 1, . . . ,m − ij ,

ykj · f(x, y)ij−�l1(kj)� · g(x, y)�l1(kj)� · em−ijMm−(ij−�l1(kj)�)

with ij = 0, 1, . . . , m; kj = 1, 2, . . . , �2(β − δ)m + (1 + 2δ − 4β)ij	

in lattice bases with some positive integer m. All these shift-polynomials modulo
(ejM)m have the same roots as the original solutions, (xj , y) = (�j ,−(p+q)+1)
for j = 1, 2, . . . , n. Although these polynomials do not directly generate a tri-
angular basis matrix, we can transform it into triangular by using unravelled
linearization [12]. See [27] for the detailed analysis of the proof. After the trans-
formation, sizes of diagonals are
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X
i′
j

j Y u′
j (ejM)m−min{i′

j ,u′
j} with i′j = 0, 1, . . . ,m;u′

j = 0, 1, . . . , i′j ,

X
i′
j

j Y i′
j+k′

je
m−i′

j

1 Mm−(i′
j−l1(k

′
j)) with i′j = 0, 1, . . . ,m;

k′
j = 1, 2, . . . , �2(β − δ)m + (1 + 2δ − 4β)i′j	.

When 1 + 2δ − 4β > 0, the lattice yields the bound (2).
Next, we combine these n lattices based on Minkowski sum. When 1 + 2δ −

4β > 0, we define a function

ln(k) = max
{

0,
k − 2(β − δ)nm

1 + 2δ − 4β

}

where the validities of the definition will be discussed later. Since we combine
triangular basis matrices, the combined basis matrix becomes triangular with
diagonals

X
i′
j

j Y u′
j (ejM)m−min{i′

j ,u′
j} with i′j = 0, 1, . . . ,m;u′

j = 0, 1, . . . , i′j ,

X
i′
1

1 · · · Xi′
n

n Y
∑n

j=1 i′
j+k′

e
m−i′

1
1 · · · em−i′

n
n Mnm−(∑n

j=1 i′
j−ln(k

′))

with i′j = 0, 1, . . . ,m for j = 1, 2, . . . , n;

k′ = 1, 2, . . . , �2(β − δ)nm + (1 + 2δ − 4β)
n∑

j=1

i′j	.

All polynomials which are derived from resulting lattice vectors modulo
(e1 · · · en)mMnm have the same roots as the original solutions.

We show that the above lattice offers the bound of Theorem 2. Ignoring low
order terms of m, we can compute the dimension

w =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

1 +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�∑

k′=1

1

= n(1 − δ)mn+1,

and the volume of the lattice vol(L(B)) = X
sX1
1 · · · XsXn

n Y sY e
se1
1 · · · esen

n MsM ,
where

sXj
=

m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

i′j +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�∑

k′=1

i′j

=
(

3n + 1
12

+ (β − δ)n +
3n + 1

12
(1 + 2δ − 4β)

)
mn+2,
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sej
=

m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

(m − min{i′j , u
′})

+
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�∑

k′=1

(m − i′j)

=
(

3n + 1
12

+ n(β − δ) +
3n − 1

12
(1 + 2δ − 4β)

)
mn+2

for j = 1, 2, . . . , n,

sY =
m∑

i1=0

· · ·
m∑

in=0

∑n
j=1 ij∑

u=0

u

+
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�∑

k′=1

⎛

⎝
n∑

j=1

i′j + k′

⎞

⎠

=
(

n(3n + 1)
24

+ n2(β − δ) + 2n2(β − δ)2 + n2(β − δ)(1 + 2δ − 4β)
)

mn+2

+
(

n(3n + 1)
12

(1 + 2δ − 4β) +
n(3n + 1)

24
(1 + 2δ − 4β)2

)
mn+2,

sM =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

(nm − u′)

+
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�∑

k′=1

⎛

⎝nm −
⎛

⎝
n∑

j=1

i′j − ln(k′)

⎞

⎠

⎞

⎠

=
(

n(9n − 1)
24

+ n2(β − δ) +
n(9n − 1)

24
(1 + 2δ − 4β)

)
mn+2.

We can solve the simultaneous modular equations fj(xj , y) = 0 and
gj(xj , y) = 0 for j = 1, 2, . . . , n, when (vol(L(B)))1/w < (e1 · · · en)mMnm,
that is,

4(3n − 1)(β − δ)2 + 2(3n + 1)(1 − β)(β − δ)
+6n − 2 − (12n + 4)β + (6n + 2)β2 > 0.

The inequality results in the bound of Theorem 2,

δ <
3n + 1 + (9n − 5)β − √

16(3n − 1) − 3(3n + 1)(7n − 3)(1 − β)2

4(3n − 1)

as required. The bound is valid only when 1 + 2δ − 4β > 0 that is equivalent to

24nβ2 − 3(11n + 1)β + 2(6n − 1) > 0,
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that is,

β <
3(11n + 1) − √−3(21n2 − 130n − 3)

48n
.


�

5.2 Observation

As with the lattice in the previous section, compared with Aono’s lattice, we
select extra shift-polynomials, e.g., ykj · fj(xj , y)ij · (ejM)m−ij . As the case of
the standard RSA, these extra shift-polynomials reduce the output length of the
LLL algorithm and improve partial key exposure attacks. Moreover, we eliminate
some shift-polynomials from lattices in the previous section. This appropriate
elimination enables us to obtain better bounds with some parameters. In par-
ticular, to generalize the attack [27], we define a function ln(k) to satisfy the
following property.

Proposition 2. When 1 + 2δ − 4β > 0, polynomials whose diagonals are
X

i′
1

1 · · · Xi′
n

n Y
∑n

j=1 i′
j+k′

are helpful when k′ ≤ 2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′j.
In addition, the polynomials are unhelpful when k′ > 2(β − δ)nm + (1 + 2δ −
4β)

∑n
j=1 i′j.

The bound of Theorem 2 becomes the same as the bound (2) when n = 1.
The bound of Theorem 2 is superior to that of Theorem 1 when

β <
3(11n + 1) − √−3(21n2 − 130n − 3)

48n

for n = 1 and 2, β <
(
9 − √

21
)
/12 = 0.368 · · · for n = 1 and β <(

69 − √
537

)
/96 = 0.477 · · · for n = 2. Using the attack, partial key exposure

attack always works when β < 1 − √
2/(3n + 1).

6 Concluding Remarks

In this paper, we study partial key exposure attacks on RSA with multiple
exponent pairs when attackers know the least significant bits of secret exponents.
The attacks have been analyzed for a single exponent pair case and we propose
generalizations of the attacks. Our proposed attacks cover every situation that
is worth studying and provide significant improvements.

Although we think our work completes the attack in this direction, there
still remains an open problem. In this paper, we only analyze the case when
attackers know the least significant bits of secret exponents. However, for a
single exponent pair, partial key exposure attacks on RSA when attackers know
the most significant bits of secret exponents have also been analyzed [11,22,27].
To generalize the attack with multiple exponent pairs remains as future work.
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