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Preface

This volume contains the papers presented at ACISP 2016: the 21st Australasian
Conference on Information Security and Privacy held during July 4–6, 2016, in
Melbourne.

This year we received a record high number of submissions: 176. Each submission
was reviewed by an average of 2.9 Program Committee members. The committee
decided to accept 52 full papers and eight short papers. In addition, we also included
eight invited papers in order to widen the coverage to different areas of cyber security
such as smart cities security and bitcoin security. We would like to extend our sincere
thanks to all authors who submitted their papers to ACISP 2016.

The program included two excellent and informative keynote addresses. One
of them was from Prof. Elisa Bertino, of Purdue University in the USA. Another was
from Prof. Chris Mitchell, of Royal Holloway, University of London in the UK.
Furthermore, our program also included eight invited talks from eight international
well-known researchers in cyber security. They were Prof. Ed Dawson from
Queensland University of Technology, Australia; Prof. Willy Susilo from University of
Wollongong, Australia; Prof. Xun Yi from RMIT, Australia; Prof. Yu Yu from
Shanghai Jiao Tong University, China; Prof. Wenlei Zhou from Deakin University,
Australia; Dr. Surya Nepal from Data61, Australia; Prof. Jinjun Chen from University
of Technology Sydney, Australia; and Dr. Jonathan Oliver from Trend Micro,
Australia.

We would like to thank the 86 Program Committee members (from 22 different
countries) as well as the external reviewers for their volunteer work of reading and
discussing the submissions. We also deeply thank the general chair, Prof. Yang Xiang,
publication co-chairs, Dr. Dong Seong Kim and Dr. Kaitai Liang, publicity chair, Dr.
Nalin Asanka, and the Web chair, Dr. Yu Wang. This conference would not have been
successful without their great assistance. Last but not least, we would like to thank
EasyChair for providing a user-friendly interface for us to manage all submissions and
proceeding files.

July 2016 Joseph K. Liu
Ron Steinfeld
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Abstract. Oblivious Signature-Based Envelope (OSBE) has been
widely employed for anonymity-orient and privacy-preserving applica-
tions. The conventional OSBE execution relies on a secure communi-
cation channel to protect against eavesdroppers. In TCC 2012, Blazy,
Pointcheval and Vergnaud proposed a framework of OSBE (BPV-OSBE)
without requiring any secure channel by clarifying and enhancing the
OSBE security notions. They showed how to generically build an OSBE
scheme satisfying the new strong security in the standard model with
a common-reference string. Their framework requires 2-round interac-
tions and relies on the smooth projective hash function (SPHF) over
special languages, i.e., languages from encryption of signatures. In this
work, we investigate the study on the strong OSBE and make the follow-
ing contributions. First, we propose a generic construction of one-round
yet strong OSBE system. Compared to the 2-round BPV-OSBE, our
one-round construction is more appealing, as its non-interactive setting
accommodates more application scenarios in the real word. Moreover,
our framework relies on the regular (identity-based) SPHF, which can
be instantiated from extensive languages and hence is more general. Sec-
ond, we also present an efficient instantiation, which is secure under the
standard model from classical assumptions, DDH and DBDH, to illus-
trate the feasibility of our one-round framework. We remark that our
construction is the first one-round OSBE with strong security.

Keywords: Oblivious signature-based envelope · Smooth projective
hash function · Privacy

1 Introduction

In 2003, Li et al. [25] introduced a new primitive namely Oblivious Signature-
Based Envelope (OSBE), which can be regarded as a nice way to ease the asym-
metrical aspect of several authentication protocols. One motivating scenario for
c© Springer International Publishing Switzerland 2016
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OSBE is as follows: Alice is a regular entity without any specific affiliation. She
wants to send a private message to another party (named Bob) if that party
possesses certain credentials, e.g., a certificate produced by an authority. For
example, Alice might be a potential informant and Bob might be an agent of
Central Intelligence Agency (CIA). However, due to the sensitive nature of CIA,
Bob is unwilling, or not allowed, to reveal his credentials. In this case, Alice and
Bob are stuck and no session could be established. OSBE protocols can well
deal with the aforementioned scenario since it allows Alice to send an envelope,
which encapsulates her private message, to Bob in such a way that Bob will be
able to open the envelope and obtain the private message if and only if Bob has
possessed a credential, e.g., a signature on an agreed-upon message from CIA.
In the process, Alice cannot determine whether Bob does really belong to CIA
(obliviousness) and no other party learns anything about Alice’s private message
(semantic security).

Three OSBE protocols were presented in [25]: RSA-OSBE, Rabin-OSBE and
BLS-OSBE. The last two protocols are one-round and derived from Identity-
Based Encryption [8,17] while RSA-OSBE is 2-round with some interesting prop-
erties. Although these protocols satisfy the security requirements of the afore-
mentioned scenario, they implicitly require a secure channel during the execution
to protect against eavesdroppers. The reason is that an adversary may eavesdrop
and replay a part of a previous interaction to impersonate a CIA agent. Par-
ticularly, the Certification Authority who has the signing key can reveal Alice’s
private message by eavesdropping on the communication between Alice and Bob.
To eliminate the dependency on the secure channel for the OSBE, in TCC 2012,
Blazy et al. [7] clarified and enhanced the security models of the OSBE by con-
sidering the security for both the sender and the receiver against the authority.
Their new strong notion, namely semantic security w.r.t. the authority, requires
that the authority who plays as the eavesdropper on the protocol, learns nothing
about the private message of the sender. They showed how to generically build
a 2-round OSBE scheme that can achieve the defined strong security in the
standard model with a common-reference string (CRS), as well as an efficient
instantiation (BPV-OSBE) in the standard model from the classical assumption.

Motivations. Although the work in [7] can achieve stronger security than the
conventional OSBE protocols, we remark that their 2-round framework has some
limitations as follows.

– From a practical point of view, the 2-round OSBE framework requires the
receiver to send his obfuscated certificate/signature to the sender first and
thereafter the sender sends its envelope to the receiver. Despite that this
setting is reasonable in the interaction case, it might be unsuitable for some
application scenarios. For example, in the aforementioned scenario, as an
informant, Alice would prefer to send her envelope directly to the CIA agent,
i.e., Bob, without contacting him in advance, as Alice might be also unwilling
to reveal her identity. However, no one-round OSBE protocol with the strong
security exists in the literature. It is thus desirable to propose an OSBE
protocol that is one-round yet with strong security.
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– Theoretically, the main idea of the generic construction in [7] is to use the
smooth projective hash function (SPHF) on the special language defined
by the encryption of valid signatures. Precisely, the framework requires the
underlying encryption scheme to be semantically secure and the signature
scheme to be existentially unforgeable. Although these schemes are quite
common in reality, the framework does require them to be of some addi-
tional properties when it comes to instantiations. This is essentially due to
the complex special language construction for the SPHF. For example, in
the instantiation (BPV-OSBE) shown in [7], a linear encryption and a re-
randomizable signature is used as the building blocks to achieve the strong
security. Therefore, in some sense, the framework is somewhat not general
due to the above instantiating limitation.

Based on the aforementioned observations, we can conclude that designing
a one-round yet general OSBE framework with strong security is of practical
and theoretical importance. In this paper, we are interested in such an OSBE
protocol that is secure in the standard model from classical assumptions.

Table 1. Comparisons with existing OSBE protocols

Protocols Round Comp. Comm. Security Assumptions

O.A. S.S. S.S.A.

RSA-OSBE [25] 2 4E+4M 2ZN+P
√ √ ×∗ R.O,CDH

Rabin-OSBE [25] 1 4|P | · E 2|P | · ZN
√ √ × R.O.,QR

BLS-OSBE [25] 1 3E+2P G1+2P
√ √ × R.O.,BDH

BPV-OSBE [7] 2 12E+8M+6P 6G1+P
√ √ √

CDH,DLin

Our protocol 1 5E+3M+2P 2G1+3GT+P
√ √ √

DDH,DBDH
a We use E to denote exponentiation, M the multiplication, P the pairing computation, P

the private message.
b For the column of Security, O.A. denotes the security of obliviousness w.r.t the authority,

S.S. denotes the security of semantic security and S.S.A. denotes the strong security of

semantic security w.r.t. the authority.
c For the column of Assumption, R.O. denotes the random oracle assumption.

Our Contributions. In this work, we make the following contributions.

– A Generic One-Round OSBE with Strong Security. We propose a generic
construction of one-round OSBE system of the strong security with a CRS.
Compared to the 2-round framework in [7], our one-round construction is
more appealing, as its non-interactive setting can accommodate more appli-
cation scenarios in the real word. Moreover, our framework relies on the regu-
lar (IB-)SPHF, which can be instantiated from extensive languages and hence
is more general than the work in [7] where special languages, i.e., languages
from encryption of signatures are needed for instantiations.



6 R. Chen et al.

– An Efficient Instantiation from Classical Assumptions. An efficient instan-
tiation secure in the standard model from classical assumptions, DDH and
DBDH, is presented to illustrate the feasibility of our generic construction.
As shown in Table 1, our one-round protocol is of the same strong security
as the BPV-OSBE [7] while the protocols in [25] are under the random ora-
cle model and fail to achieve the semantic security w.r.t. the authority. It
is worth noting that, as remarked in [7], the authority in the 2-round RSA-
OSBE protocol can break the scheme by generating the RSA modulus N = pq
dishonestly. In terms of the efficiency, the communication complexity of our
protocol is comparable to that of the BPV-OSBE [7] while our computation
(include both the sender and the receiver) is much more efficient.

Technique Overview. Our central idea is to utilize the conjunction of an
SPHF and an identity-based SPHF (IB-SPHF) for the protocol construction. The
definition of an SPHF [19] requires the existence of a domain X and an underlying
NP language L, where elements of L form a subset of X , i.e., L ⊂ X . The key
property of SPHF is that the hash value of any word W ∈ L can be computed by
using either a secret hashing key, or a public projection key with the witness to
the fact that W ∈ L (correctness). However, the projection key gives almost no
information about the hash value of any point in X \L (smoothness). Moreover,
we say that the subset membership problem is hard if the distribution of L is
computationally indistinguishable from X \L. Similarly, an IB-SPHF [4,9] has the
above properties except that its underlying language is usually associated with
the identity which also acts as the public projection key. The secret (identity)
hashing key is then derived based on the identity using a master secret key. The
IB-SPHF system has formed the backbone of many IBE schemes [9,16,18,21,22],
which, as shown in [8], give rise to the signature scheme. The master secret key
plays as the signing key and each message is viewed as an identity. The signature
is the private key corresponding to the identity.

Our construction deserves further interpretation. Precisely, the receiver owns
a hashing key pair (hk, hp) belonging to the SPHF system while the authority has
a master key pair (msk,mpk) belonging to the IB-SPHF system. The authority
can use msk to issue the receiver a valid signature on any agreed-upon message
(denoted as M), which is viewed as the identity in the IB-SPHF system. The
CRS in our system contains both hp and mpk. To send a message P , the sender
firstly samples two distinct words for the SPHF and the IB-SPHF respectively
and derives the hash value of each word using hp and M (the identity) with their
witnesses to conceal P into the envelope. The sender then sends the two words
with the concealed P to the receiver. Upon receiving the message, the receiver
uses hk and the valid signature (i.e., identity private key) of M to compute
the hash value of the words and thereafter reveals P . One can note that the
correctness of our framework relies on the correctness of the underlying SPHF
and IB-SPHF. The obliviousness is clear in our one-round framework since the
sender does not receive any information from the receiver. The semantic security
is guaranteed by the smoothness and the hard subset membership problem of the
IB-SPHF while the semantic security w.r.t. the authority is due to the underlying
SPHF system.
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Organization. The rest of this paper is organized as follows. We review some
primitives, including the definition of SPHF and IB-SPHF in Sect. 2, and intro-
duce a generic construction of one-round strong OSBE with formal security
analysis in Sect. 3. An efficient instantiation of our framework is then given in
Sect. 4. We then conclude our work in Sect. 5.

2 Preliminaries

2.1 Notations and Assumptions

Through this paper, � denotes the security parameter. For a finite set Ω, ω
$← Ω

denotes that ω is selected uniformly from Ω while ω
R← Ω denotes that ω is

picked randomly from Ω. Let X and Y be two random variables over a finite
domain Ω, the statistical distance between X and Y is defined as SD(X,Y ) =
1
2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|. We say that X and Y are ε-statistically

indistinguishable if SD(X,Y ) ≤ ε and for simplicity we denote it by X
s≡ Y .

Definition 1 (Decisional Diffie-Hellman (DDH) Assumption). Let G be
a general cyclic group of prime order p and g1, g2 ∈ G the generators of G. Given
(g1, g2), we say that the decisional Diffie-Hellman assumption holds on G if for
any PPT adversary A,

AdvDDH
A (�) = |Pr[A(gr1

1 , gr1
2 ) = 1] − Pr[A(gr1

1 , gr2
2 ) = 1]| ≤ negl(�)

where the probability is taken over the random choices r1, r2
R← Zp and the bits

consumed by the adversary A.

Let G1,GT be two multiplicative groups with the same prime order p. Let
g be the generator of G1 and I be the identity element of GT . A symmetric
bilinear map is a map e : G1 × G1 → GT such that e(ua, vb) = e(u, v)ab for all
u, v ∈ G1 and a, b ∈ Zp. It is worth noting that e can be efficiently computed
and e(g, g) �= I. We assume the existence of a group-generation algorithm BG(1�)
which takes as input 1� and outputs a tuple (G1,GT , g, e(·, ·), p) where G1,GT

are of prime order p.

Definition 2 (Decisional Bilinear Diffie-Hellman (DBDH) Assump-
tion). Let (G1,GT , g, e(·, ·), p) ← BG(1�). Given D = (g, gx, gy, gz), we say
that the decisional bilinear Diffie-Hellman assumption holds on G if for any
PPT adversary A,

AdvDBDH
A (�) = |Pr[A(D, e(g, g)xyz) = 1] − Pr[A(D, e(g, g)r) = 1]| ≤ negl(�)

where the probability is taken over the random choices x, y, z, r
R← Zp and the

bits consumed by the adversary A.
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2.2 Smooth Projective Hash Functions

Smooth projective hash function (SPHF) is originally introduced by Cramer and
Shoup [19] and extended for constructions of many cryptographic primitives
[1–3,5,6,10,11,20,23,24]. We start with the original definition.

An SPHF is based on a domain X and an NP language L, where L contains
a subset of the elements of the domain X , i.e., L ⊂ X . An SPHF system over
a language L ⊂ X , onto a set Y, is defined by the following five algorithms
(SPHFSetup,HashKG, ProjKG,Hash,ProjHash):

(param, L) ← SPHFSetup(1�) : The SPHFSetup algorithm takes as input a security
parameter � and generates the global parameters param and the description
of an NP language L. All other algorithms HashKG,ProjKG,Hash,ProjHash
implicitly include (L, param) as input.

hk ← HashKG : The HashKG algorithm generates a hashing key hk;

hp ← ProjKG(hk) : The ProjKG algorithm derives the projection key hp from the
hashing key hk;

hv ← Hash(hk, W ) : The Hash algorithm takes as input a word W and the hashing
key hk, outputs the hash value hv ∈ Y;

hv ← ProjHash(hp, W, w) : The ProjHash algorithm takes as input the projection
key hp and a word W with the witness w to the fact that W ∈ L, outputs
the hash value hv ∈ Y.

An SPHF should satisfies the following properties.

Correctness. Formally, for any word W ∈ L with w the witness, we have
Hash(hk,W ) = ProjHash(hp,W,w).

Smoothness. For any W ′ ∈ X\L, the following two distributions are statis-

tically indistinguishable, i.e.,V1
$≡ V2, where V1 = {(L, param,W ′, hp, hv)|hv =

Hash(hk,W ′)}, and V2 = {(L, param,W ′, hp, hv)|hv $← Y}. Precisely, the quan-
tity of Advsmooth

SPHF (�) =
∑

v∈Y |PrV1 [hv = v] − PrV2 [hv = v]| is negligible.
For cryptographic purposes, we normally requires the NP language L to be

membership indistinguishable, which is formally defined as follows.

Definition 3 (Hard SMP for SPHF). The subset membership problem
(SMP) is hard on (X ,L) for an SPHF that consists of (SPHFSetup, HashKG,
ProjKG,Hash, ProjHash), if for any PPT adversary A,

AdvSMP
A,SPHF(�) = Pr

⎡
⎢⎢⎢⎢⎢⎣

b′ = b :

(param, L) ← SPHFSetup(1�);
hk ← HashKG; hp ← ProjKG(hk);

b
R← {0, 1};

W0
$← X\L; W1

$← L;
b′ ← A(param, L, hk, hp, Wb)

⎤
⎥⎥⎥⎥⎥⎦

− 1

2
≤ negl(�),
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2.3 Identity-Based Smooth Projective Hash Function

The paradigm of IB-SPHF firstly appeared in [9], where the IB-SPHF is viewed as
an SPHF with trapdoor. It was later shown as an identity-based key encapsula-
tion mechanism (IB-KEM) with some special algebraic properties in [4]. IB-SPHF
and its extensions have been well applied for cryptographic constructions [12–16].

It is worth noting that most, if not all, IB-SPHF systems require the underly-
ing language L to depend on the projection key, i.e., the identity. To encompass
a broad class of IB-SPHF systems, we associate the language to the identity and
refer LID ⊂ XID to the language for an identity ID. An IB-SPHF system over
LID ⊂ XID, onto a set Y, is defined by the following algorithms (IB-SPHFSetup,
IB-HashKG, IB-Hash, IB-ProjHash):

(param, LID, (msk,mpk)) ← IB-SPHFSetup(1�) : The IB-SPHFSetup algorithm
takes as input a security parameter � and generates the global parameters
param with the description of an NP language LID. It outputs the master pub-
lic key mpk and the master secret key msk. The master public key defines an
identity set ID. All other algorithms IB-HashKG, IB-Hash, IB-ProjHash implic-
itly include (LID, param,mpk) as input.

hkID ← IB-HashKG(ID,msk) : For any identity ID ∈ ID, the IB-HashKG algorithm
uses the master secret key msk to generates an identity hashing key hkID;

hv ← IB-Hash(hkID, W ) : The IB-Hash algorithm takes as input a word W and the
identity hashing key hkID, outputs the hash value hv ∈ Y;

hv ← IB-ProjHash(ID, W, w) : The IB-ProjHash algorithm takes as input the iden-
tity ID and a word W with the witness w to the fact that W ∈ LID, outputs
the hash value hv ∈ Y.

The properties of IB-SPHF are similar to that of an SPHF system, i.e.,

– Correctness. For any values of msk,mpk produced by IB-SPHFSetup and ID ∈
ID and word W ∈ LID with w the witness, we have IB-Hash(hkID,W ) =
IB-ProjHash (ID,W,w).

– Smoothness. For any ID ∈ ID and any W ′ ∈ XID\LID, the following

two distributions are statistically indistinguishable, i.e.,V1
$≡ V2, where

V1 = {(L, param,mpk, W ′, ID,HK, hvID)|hvID = IB-Hash(hkID,W ′)}, and

V2 = {(L, param,mpk,W ′, ID,HK, hvID)|hvID $← Y}. Here HK is the set of
identity hashing key for any identity ID′ ∈ ID and ID′ �= ID. Precisely, the
quantity of Advsmooth

IB-SPHF(�) =
∑

v∈Y |PrV1 [hv = v]−PrV2 [hv = v]| is negligible.

Definition 4 (Hard SMP for IB-SPHF). The subset membership problem
(SMP) is hard on (XID,LID) for an IB-SPHF which consists of (IB-SPHFSetup,
IB-HashKG, IB-Hash, IB-ProjHash), if for any PPT adversary A,
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AdvSMP
A,IB-SPHF(�) = Pr

⎡
⎢⎢⎢⎣b′ = b :

hkID ← IB-HashKG(ID,msk);

b
R← {0, 1};

W0
$← LID; W1

$← XID\LID;

b′ ← AOreveal(·)(param, LID,mpk, ID, Wb)

⎤
⎥⎥⎥⎦−1/2 ≤ negl(�),

where msk,mpk is produced by IB-SPHFSetup and Oreveal(·) is an oracle that on
input of any id ∈ ID, returns hkid ← IB-HashKG(id,msk).

3 A One-Round Framework for Strong OSBE

In this section, we first briefly introduce the Oblivious Signature-Based Envelope,
as well as the formal security models. We then show the first generic construction
of one-round OSBE with strong security.

3.1 Oblivious Signature-Based Envelope

An OSBE protocol involves two parties, i.e., a sender S and a recipient R. S
wants to send a private message P to the recipient R so that R can receive
P if and only if he/she possesses a certificated/signature on a predefined mes-
sage M . The formal definition is as follows. We mainly follow the definition in
[25] to accommodate our generic one-round construction which is introduced in
Sect. 3.2. We remark that the new framework captures all the required properties
defined in [7,25].

Definition 5 (Oblivious Signature-Based Envelope). An OSBE scheme is
defined by an algorithm OSBESetup and an interactive protocol OSBEProtocol <
S,R >.

– OSBESetup(1�) : The OSBESetup algorithm takes as input the security para-
meter �, generates the global parameters param, and the master key pair
(mpk,msk) for the authority. The receiver R is issued a certificate/signature
σ on M by the authority.

– OSBEProtocol < S(M,P ),R(M,σ) >: The OSBEProtocol is an interactive
protocol between the sender S with a private message P , and the receiver R
with a certificate/signature σ. At the end of the protocol, R receives P if σ is
a valid certificate/signature on M , otherwise it learns nothing.

The correctness of an OSBE scheme requires that at the end of OSBEProtocol,
the authorized receiver R (who has a valid certificate/signature σ on M) can
output P .

Security Notions for Strong OSBE. According to the original definition
[25], in additional to the correctness, an OSBE scheme must satisfy obliviousness
and semantic security. In this work, we are interested in the strong OSBE scheme
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that should also satisfy another two security properties—obliviousness w.r.t. the
authority and semantic security w.r.t. the authority, which are defined in [7].

Obliviousness (w.r.t. the Authority). Below we first briefly describe the
notions of obliviousness and obliviousness w.r.t the authority. The obliviousness
requires that the sender S should not be able to distinguish whether R uses a
valid certificate/signature or not during the protocol execution. The oblivious-
ness w.r.t. the authority requires that the above indistinguishability should also
hold to the authority who plays as the sender or just eavesdrops on the proto-
col. One can easily notice that the latter notion is stronger than the former one
and both of them can be trivially achieved in one-round OSBE schemes, since
S receives no information from R.

We now formally introduce the security notions of semantic security and
semantic security w.r.t. the authority.

Semantic Security. This security is against the malicious receiver. Roughly
speaking, it requires that at the end of the protocol, R learns nothing about
the private input P of S if it does not use a valid certificate/signature on the
predefined message M . The formal security game between the challenge C and
the adversary A is defined as follows.

Setup. C runs OSBESetup(1�) and sends A the global parameters param.

Query. A can issues the following two queries:

– Sign-Query. On input of M , C returns the valid signature σM of M to A.
– Exec-Query. On input of (M, P ), C first generates σM of M , runs

OSBEProtocol < S(M, P ), R(M, σM ) > and returns the transcript to A.

Challenge. A chooses a predefined message M∗ which has not been queried for
signature by A, with two challenge message P0, P1 and sends them to C. C
randomly chooses a bit b

$← {0, 1} and runs OSBEProtocol < S(M∗, Pb), A >.

Query. A continues the query defined above, except that it cannot query M∗ for
signature.

Guess. Finally, A outputs b′ as its guess on b and wins the game if b′ = b.

We define the advantage of A in the above game as AdvSSA,OSBE(�) = Pr[b =
b′] − 1

2 .

Semantic Security w.r.t. the Authority. This security is against the mali-
cious authority. Roughly speaking, it requires that at the end of the protocol, the
authority who plays as the eavesdropper on the protocol, learns nothing about
the private input P of S. The formal security game between the challenge C and
the adversary A is defined as follows.
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Setup. C runs OSBESetup(1�) and sends A the global paramters param with the
master secret key msk.

Query. A issues an Exec query with chosen input (M, P, σM ). To answer this
query, C runs OSBEProtocol < S(M, P ), R(M, σM ) > and returns the tran-
script to A.

Challenge. A chooses a predefined message M∗ with two challenge message

P0, P1 and sends them to C. C randomly chooses a bit b
$← {0, 1} and runs

OSBEProtocol < S(M∗, Pb), R(M∗, σM∗) > which A can access to its inter-
action transcript.

Query. A continues the Exec query as defined above.

Guess. Finally, A outputs b′ as its guess on b and wins the game if b′ = b.

We define the advantage of A in the above game as AdvSS-AuthorityA,OSBE (�) = Pr[b =
b′] − 1

2 .

Definition 6 (Secure OSBE). An OSBE scheme is secure if it is oblivious
w.r.t. the authority and for any probabilistic polynomial-time adversaries A, both
AdvSSA,OSBE(�) and AdvSS-AuthorityA,OSBE (�) are negligible in �.

Remark. One may note that our security notions appear to be different from
[7], where the adversary can access several queries in addition to the original
models [25]. The reason is that our defined OSBE scheme follows the original one
while the work in [7] revised the OSBE framework to accommodate its proposed
construction. However, we insist that our models are essentially as strong as
the notions defined in [7]. The enhanced semantic security (denoted sem) in [7]
allows the adversary to obtain several interactions between the server and the
receiver with a valid certificate/signature while the adversary in our notion is
provided with the access to a so-called Exec oracle which returns the transcript of
the honest interaction with adaptively chosen input (M,P ) from the adversary.
It is worth noting that we put no restriction on the Exec query input (M,P )
from A. In particular, A can make query with input the challenge messages, i.e.,
M = M∗ and P = P0/P1. Moreover, the Sign query through which A can obtain
the signature of any non-challenge predefined message is also defined in both our
model and the experiment in [7]. Similarly, the adversary in our defined notion
of semantic security w.r.t. the authority can also query the Exec oracle for the
transcripts of any specified interaction. We therefore remark that our defined
models capture the same security properties as those do in [7].

3.2 The Proposed Generic Construction

We present a generic construction of OSBE from the conjunction of an
SPHF and an IB-SPHF. Let SPHF = (SPHFSetup,HashKG,ProjKG,Hash,
ProjHash) be a smooth projective hash function over L ⊂ X and IB-SPHF =
(IB-SPHFSetup, IB-HashKG, IB-Hash, IB-ProjHash) be an identity-based smooth
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projective hash function over LID ⊂ XID. Suppose both systems are onto the same
set Y. We additionally use a key derivation function KDF for the generation of
a pseudo-random bit-string as the encryption key for the private message. The
generic construction of an one-round OSBE protocol on a predefined message
M and a private message p is as follows.

– OSBESetup(1�) : The OSBESetup takes as input a security parameter �.
• It first generates the individual parameters as SPHFSetup(1�) →

(param1, L), IB-SPHFSetup(1�) → (param2, LID, (msk,mpk)). The master
key pair (msk,mpk) is for the authority.

• It generates a key pair (hk, hp) for the SPHF system as HashKG →
hk,ProjKG(hk) → hp. The hash key pair (hk, hp) is produced for the
receiver.

• The authority issues a signature σ = hkM (by viewing M as the identity)
as IB-HashKG(msk, M) → hkM . A valid receiver is then given the signature
σ.

The output global parameters param = (param1, param2, L, LID,mpk, hp). All
the algorithms involved in the protocol OSBEProtocol implicitly include param
as input.

– OSBEProtocol < S(M, P ), R(M, σ) >: The OSBEProtocol executes as follows:
• S picks W1 ← L, W2 ← LM with w1, w2 the witnesses respectively and

computes

V = ProjHash(hp, W1, w1) ⊕ IB-ProjHash(M, W2, w2),

Q = P ⊕ KDF(V ).

S then sends (W1, W2, Q) to R;
• Upon receiving (W1, W2, Q), R computes,

V ′ = Hash(hk, W1) ⊕ IB-Hash(hkM , W2),

P ′ = Q ⊕ KDF(V ′).

3.3 Security Analysis

We show that the generic construction is secure under our defined models.

Theorem 1 (Correctness). The generic OSBE construction is correct.

Proof. Due to the correctness of SPHF and IB-SPHF, we have that

ProjHash(hp, W1, w1) ⊕ IB-ProjHash(M, W2, w2) = Hash(hk, W1) ⊕ IB-Hash(hkM , W2),

i.e., V = V ′ and thus P ′ = P ⊕ KDF(V ) ⊕ KDF(V ′) = P .

Theorem 2 (Obliviousness w.r.t. the Authority). The generic OSBE con-
struction is oblivious w.r.t. the authority.
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Proof. This property is trivial since the protocol is one-round and the server S
receives no information from the receiver R during the protocol execution.

Theorem 3 (Semantic Security). The generic OSBE construction is seman-
tically secure if the SMP is hard on (XM ,LM ) for IB-SPHF (and under the
pseudo-randomness of KDF).

Proof. Let A be an adversary against the semantic security of our construc-
tion with advantage AdvSSA,OSBE(�). We define a sequence of games between the
challenger C and A as follows.

Game G0. In this game, C simulates as follows.

– Setup. C runs OSBESetup(1�) and outputs the global parameter param with
the receiver secret key hk to A. C keeps the master secret key msk itself.

– Query. C answers the query as follows.
• Sign-Query. On input of M from A, C computes IB-HashKG(msk,M) →

hkM , and then returns hkM to A;
• Exec-Query. On input of (M,P ) from A, C randomly picks W1

$←
L,W2

$← LM with w1, w2 the witnesses respectively. C then computes
V = ProjHash(hp, W1, w1) ⊕ IB-ProjHash(M,W2, w2), Q = P ⊕ KDF(V )
and then sends (W1,W2, Q) to A;

– Challenge. A chooses a predefined message M∗ that is not issued to the Sign
oracle, with two challenge message P0, P1 and sends them to C. C randomly
chooses a bit b

$← {0, 1} and picks W ∗
1 ← L,W ∗

2 ← LM∗ with w∗
1 , w

∗
2 the

witnesses respectively and computes

V ∗ = ProjHash(hp,W ∗
1 , w∗

1)⊕ IB-ProjHash(M∗,W ∗
2 , w∗

2), Q
∗ = Pb ⊕KDF(V ∗).

C then sends (W ∗
1 ,W ∗

2 , Q∗) to A;
– Query. C simulates as defined above.
– Output. Finally, A outputs b′ as its guess on b.

We define the advantage of A in game G0 as AdvG0
A,OSBE(�). One can note the

definition of game G0 is exactly the original model of semantic security and thus
we have AdvG0

A,OSBE(�) = AdvSSA,OSBE(�).

Game G1. Let game G1 be the same game as G0, except that in the challenge

stage, instead of choosing W ∗
2

$← LM∗ , C chooses W ∗
2

$← XM∗\LM∗ and computes
V ∗ as V ∗ = ProjHash(hp,W ∗

1 , w∗
1) ⊕ IB-Hash(hkM∗ ,W ∗

2 ). Due to the hard subset
membership problem and the correctness of IB-SPHF, we have |AdvG1

A,OSBE(�) −
AdvG0

A,OSBE(�)| ≤ AdvSMP
A,IB-SPHF(�).

Game G2. Let game G2 be the same game as G1, except that in the challenge stage,
C computes V ∗ as V ∗ = ProjHash(hp,W ∗

1 , w∗
1) ⊕ r, where r

$← Y. Due to the
smoothness of IB-SPHF, we have |AdvG2

A,OSBE(�)−AdvG1
A,OSBE(�)| ≤ Advsmooth

IB-SPHF(�).

Game G3. Let game G3 be the same game as G2, except that C computes Q∗ =
Pb ⊕ R where R

$← {0, 1}l. Due to the pseudo-randomness of KDF, we have
|AdvG3

A,OSBE(�) − AdvG2
A,OSBE(�)| ≤ AdvPRA,KDF(�).
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Game G4. Let game G4 be the same game as G3, except that C computes Q∗ $←
{0, 1}l. One can note that AdvG3

A,OSBE(�) = AdvG4
A,OSBE(�). It is easy to see that A

can only wins with probability at most 1/2 as Q∗ is independent of b and hence
we have AdvG4

A,OSBE(�) = 0.
Therefore, from game G0,G1,G2,G3 and G4, we have that AdvSSA,OSBE(�) is

negligible, which completes the proof. 
�
Theorem 4 (Semantic Security w.r.t. the Authority). The generic
OSBE construction is semantically secure w.r.t. the authority if the SMP is hard
on (X ,L) for SPHF (and under the pseudo-randomness of KDF).

Proof Let A be an adversary against the semantic security w.r.t. the authority
of our construction with advantage AdvSS-AuthorityA,OSBE (�). We define a sequence of
games between the challenger C and A as follows.
Game G0. In this game, C simulates as follows

– Setup. C runs OSBESetup(1�) and outputs the global parameter param with
the master secrete key msk to A. C keeps the hashing key hk itself.

– Query. On input of (M,P, σM ) from A for an Exec query, C randomly picks

W1
$← L,W2

$← LM with w1, w2 the witnesses respectively and computes
V = ProjHash(hp,W1, w1) ⊕ IB-ProjHash(M,W2, w2), Q = P ⊕ KDF(V ). C
then sends (W1,W2, Q) to A;

– Challenge. A chooses a predefined message M∗ with two challenge message
P0, P1 and sends them to C. C randomly chooses a bit b

$← {0, 1} and picks
W ∗

1 ← L,W ∗
2 ← LM∗ with w∗

1 , w
∗
2 the witnesses respectively, computes V ∗ =

ProjHash (hp,W ∗
1 , w∗

1) ⊕ IB-ProjHash(M∗,W ∗
2 , w∗

2), Q
∗ = Pb ⊕ KDF(V ∗). C

then sends (W ∗
1 ,W ∗

2 , Q∗) to A;
– Query. C simulates as defined above.
– Output. Finally, A outputs b′ as its guess on b.

We define the advantage of A in game G0 as AdvG0
A,OSBE(�). One can note the

definition of game G0 is exactly the original model of semantic security and thus
we have AdvG0

A,OSBE(�) = AdvSS-AuthorityA,OSBE (�).

Game G1. Let game G1 be the same game as G0, except that in the challenge

stage, instead of choosing W ∗
1

$← L, C chooses W ∗
1

$← X\L and computes V ∗ =
Hash(hk,W ∗

1 ) ⊕IB-ProjHash(M∗,W ∗
2 , w∗

2). Due to the hard subset membership
problem and the correctness of SPHF, we have |AdvG1

A,OSBE(�) − AdvG0
A,OSBE(�)| ≤

AdvSMP
A,SPHF(�).

Game G2. Let game G2 be the same game as G1, except that in the challenge stage,
C computes V ∗ as V ∗ = r ⊕ IB-ProjHash(M∗,W ∗

2 , w∗
2), where r

$← Y. Due to the
smoothness of SPHF, we have |AdvG2

A,OSBE(�) − AdvG1
A,OSBE(�)| ≤ Advsmooth

SPHF (�).

Game G3. Let game G3 be the same game as G2, except that C computes Q∗ =
Pb ⊕ R where R

$← {0, 1}l. Due to the pseudo-randomness of KDF, we have
|AdvG3

A,OSBE(�) − AdvG2
A,OSBE(�)| ≤ AdvPRA,KDF(�).
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Game G4. Let game G4 be the same game as G3, except that C computes Q∗ $←
{0, 1}l. One can note that AdvG3

A,OSBE(�) = AdvG4
A,OSBE(�). It is easy to see that A

can only wins with probability at most 1/2 as Q∗ is independent of b and hence
we have AdvG4

A,OSBE(�) = 0.
Therefore, from game G0,G1,G2,G3 and G4, we have that AdvSS-AuthorityA,OSBE (�) is

negligible, which completes the proof. 
�
Based on the results of Theorems 1, 2, 3 and 4, we then have the following

conclusion.

Theorem 5. The generic OSBE construction is secure if both SPHF and
IB-SPHF are over hard subset membership problem (and under the pseudo-
randomness of KDF).

4 An Efficient Instantiation

In this section, we present a concrete OSBE protocol based on the DDH assump-
tion and DBDH assumption.

4.1 Instantiating the Building Blocks

Due to the space limitation, we briefly describe the instantiations of SPHF and
IB-SPHF from the DDH assumption and DBDH assumption respectively and
refer the reader to the full version for more details.

DDH-Based SPHF. We first introduce the Diffie Hellman language LDH as follows.
Let G be a group of prime order p and g1, g2 be the generators of G.

LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 = gr
1, u2 = gr

2}
One can see that the witness space of LDH is Zp and LDH ⊂ G

2. Below we show
an concrete SPHF (denoted by SPHFDH) over the language LDH ⊂ XDH = G

2

onto the group Y = G.

SPHFSetup(1�) : Set param = (G, p, g1, g2);

HashKG : Pick (α1, α2)
$← Z

2
p. Output hk = (α1, α2);

ProjKG(hk) : Compute hp = gα1
1 gα2

2 ;

Hash(hk, W ) : For a word W = (u1, u2), output hv = uα1
1 uα2

2 ;

ProjHash(hp, W, w) : For a word W = (gr
1 , gr

2), output hv = hpr = (gα1
1 gα2

2 )r.

DBDH-Based IB-SPHF. We introduce the language for our instantiated IB-SPHF,
which can be viewed as the backbone of the IBE scheme in [16]. Let
(G1,GT , g, e(·, ·), p) ← BG(1�), u, h ∈ G1, α, β ∈ Zp. For any ID ∈ ID, the
associated language LID ⊂ XID are,

LID = {(u1, u2, u3)|∃z ∈ Zp, s.t., u1 = gz, u2 = (uIDh)z, u3 = e(g, g)βz}
XID = {(u1, u2, u3)|∃z1, z2 ∈ Zp, s.t., u1 = gz1 , u2 = (uIDh)z1 , u3 = e(g, g)βz2}
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One can see that the witness space is Zp and LID ⊂ G1 ×G1 ×GT . Below we
show the resulted IB-SPHF (denoted by IB-SPHF) over the language LID ⊂ XID

onto the group Y = GT .

IB-SPHFSetup(1�) : Let (G1,GT , g, e(·, ·), p) ← BG(1�). Pick u, h
$← G1, α, β

$← Zp,
set param = (G1,GT , g, e(·, ·), p, u, h), msk = (α, β),mpk = (e(g, g)α, e(g, g)β).
The identity set is ID = Zp.

IB-HashKG(ID,msk) : For ID ∈ Zp, choose t, r
$← Zp. Output hkID =

(sk1, sk2, sk3) = (gαg−βt(uIDh)r, g−r, t);

IB-Hash(hkID, W ) : For a word W = (u1, u2, u3), output hvID =
e(u1, sk1)e(u2, sk2)u

sk3
3 ;

IB-ProjHash(ID, W, w) : For a word W = (u1, u2, u3) = (gz, (uIDh)z, e(g, g)βz),
outputs hvID = e(g, g)αz.

4.2 Concrete OSBE Protocol

Using SPHFDH and IB-SPHF as instantiation blocks, below we show the
resulted OSBE protocol, where a sender S wants to send a private message
P ∈ {0, 1}l to a recipient R in possession of a signature (i.e., the identity hash-
ing key) on a message M .

– OSBESetup(1�) : Let G be a group of prime order p and g1, g2 the generators
of G and set param1 = (G, p, g1, g2). Let (G1,GT , g, e(·, ·), p) ← BG(1�), pick

u, h
$← G1, α, β

$← Zp, set param2 = (G1,GT , g, e(·, ·), p, u, h) and set msk =
(α, β),mpk = (e(g, g)α, e(g, g)β).

• Pick (α1, α2)
$← Zp, compute hk = (α1, α2), hp = gα1

1 gα2
2 . Set (hk, hp) as

the receiver key pair.

• For any predefined message M ∈ Zp, choose t, r
$← Zp and compute its

signature as σ = hkM = (sk1, sk2, sk3) = (gαg−βt(uMh)r, g−r, t)

– OSBEProtocol < S(M, P ), R(M, σ) >:
• S picks W1 = (û1, û2) = (gr

1 , gr
2), W2 = (u1, u2, u3) =

(gz, (uMh)z, e(g, g)βz) and computes

V = (gα1
1 gα2

2 )r · e(g, g)αz, Q = P ⊕ KDF(V ).

S then sends (W1, W2, Q) to R;
• Upon receiving (W1, W2, Q), R computes,

V ′ = (û1
α1 û2

α2) · (e(u1, sk1)e(u2, sk2)u
sk3
3 ),

P ′ = Q ⊕ KDF(V ′).
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One should note that in the above concrete protocol, we requires the language
used in our SPHFDH works on the GT , i.e., the DDH assumption is on G = GT .

The correctness of the above protocol is guaranteed by the correctness of
SPHFDH and IB-SPHF while the oblivious w.r.t. the authority is clear due
to the one-round execution. Based on the Theorem 5, we have the following
conclusion.

Theorem 6. The instantiated OSBE protocol is secure under the DDH,DBDH
assumptions (and the pseudo-randomness of KDF).

Efficiency. Our one-round protocol requires only one flow from the sender S
during the execution. Precisely, in addition to the l-bit string (i.e., Q) for the
masked P ∈ {0, 1}l, the communication in our protocol consists of 2 elements
in G1 and 3 elements in GT and hence is slightly higher than the BPV-OSBE
protocol [7], where 6 elements in G1 are needed per execution. It is worth noting
that by using a hash function H : G → GT on the computation of V , i.e.,
letting V = H((gα1

1 gα2
2 )r) · e(g, g)αz, we can reduce the communication cost

of our protocol, as the language used by the SPHFDH is now on the smaller
group G, instead of GT . Regarding the computation cost, we remark that our
protocol is much more efficient that the BPV-OSBE protocol. Particularly, our
protocol mainly requires 5 exponentiation, 3 multiplication and only 2 pairing
computation in total per execution while the BPV-OSBE protocol needs 12
exponentiation, 8 multiplication and 6 pairing computation.

5 Conclusion

In this work, we mainly improved the work from TCC 2012 [7] and presented a
generic construction of one-round OSBE system that is strongly secure with a
common reference string. Compared to the 2-round framework in [7], our one-
round construction is more appealing due to the fact that its non-interactive
setting accommodates more application scenarios in the real word. Moreover,
our framework relies on the (IB-)SPHF, which can be instantiated from extensive
languages and hence is more general than the work in [7] where special languages,
i.e., languages of ciphertexts from signatures are needed for instantiations. An
efficient instantiation, which is secure under the standard model from classical
assumptions, DDH and DBDH, is also shown to illustrate the feasibility of our
one-round framework.

Acknowledgements. We would like to thank the anonymous reviewers for their
invaluable comments on a previous version of this paper. The work of Guomin Yang
is supported by the Australian Research Council Discovery Early Career Researcher
Award (Grant No. DE150101116) and the National Natural Science Foundation of
China (Grant No. 61472308). The work of Mingwu Zhang is supported by the National
Natural Science Foundation of China (Grant No. 61370224).



One-Round Strong Oblivious Signature-Based Envelope 19

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013)

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015)

3. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for con-
ditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009)

4. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

5. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013)

6. Blazy, O., Chevalier, C., Vergnaud, D.: Mitigating server breaches in password-
based authentication: secure and efficient solutions. In: CT-RSA, pp. 3–18 (2016)

7. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving proto-
cols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 94–111. Springer, Heidelberg (2012)

8. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

9. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: Proceedings of 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2007), October 20–23, 2007, Providence, RI, USA,
pp. 647–657 (2007)

10. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: A new general framework for
secure public key encryption with keyword search. In: Foo, E., Stebila, D. (eds.)
ACISP 2015. LNCS, vol. 9144, pp. 59–76. Springer, Heidelberg (2015)

11. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F.: Strongly leakage-resilient authen-
ticated key exchange. In: CT-RSA, pp. 19–36 (2016)

12. Chen, Y., Zhang, Z., Lin, D., Cao, Z.: Anonymous identity-based hash proof system
and its applications. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.)
ProvSec 2012. LNCS, vol. 7496, pp. 143–160. Springer, Heidelberg (2012)

13. Chen, Y., Zhang, Z., Lin, D., Cao, Z.: Identity-based extractable hash proofs and
their applications. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS,
vol. 7341, pp. 153–170. Springer, Heidelberg (2012)

14. Chen, Y., Zhang, Z., Lin, D., Cao, Z.: Generalized (identity-based) hash proof
system and its applications. IACR Cryptology ePrint Archive 2013, 2 (2013)

15. Chen, Y., Zhang, Z., Lin, D., Cao, Z.: CCA-secure IB-KEM from identity-based
extractable hash proof system. Comput. J. 57(10), 1537–1556 (2014)

16. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, 4–8 October 2010, pp. 152–161 (2010)



20 R. Chen et al.

17. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

18. Coron, J.: A variant of Boneh-Franklin IBE with a tight reduction in the random
oracle model. Des. Codes Crypt. 50(1), 115–133 (2009)

19. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

20. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: EUROCRYPT, pp. 524–543 (2003)

21. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008,
pp. 197–206 (2008)

23. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptology 25(1), 158–193 (2012)

24. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

25. Li, N., Du, W., Boneh, D.: Oblivious signature-based envelope. In: PODC,
pp. 182–189 (2003)



Proxy Signature with Revocation

Shengmin Xu1, Guomin Yang1(B), Yi Mu1, and Sha Ma1,2

1 Centre for Computer and Information Security Research,
School of Computing and Information Technology, University of Wollongong,

Wollongong, NSW, Australia
{sx914,gyang,ymu,sma}@uow.edu.au

2 College of Mathematics and Informatics, South China Agricultural University,
Guangzhou 510640, Guangdong, China

Abstract. Proxy signature is a useful cryptographic primitive that
allows signing right delegation. In a proxy signature scheme, an original
signer can delegate his/her signing right to a proxy signer (or a group
of proxy signers) who can then sign documents on behalf of the origi-
nal signer. In this paper, we investigate the problem of proxy signature
with revocation. The revocation of delegated signing right is necessary
for a proxy signature scheme when the proxy signer’s key is compro-
mised and/or any misuse of the delegated right is noticed. Although
a proxy signature scheme usually specifies a delegation time period, it
may happen that the original signer wants to terminate the delegation
before it is expired. In order to solve this problem, in this paper we pro-
pose a new proxy signature scheme with revocation. Our scheme utilises
and combines the techniques in the Naor-Naor-Lotspiech (NNL) frame-
work for broadcast encryption, the Boneh-Boyen-Goh (BBG) hierarchi-
cal identity-based encryption and the Boneh-Lynn-Shacham (BLS) short
signature scheme and thereby constructing an efficient tree-based revo-
cation mechanism. The unrevoked proxy signer only needs to generate
evidences for proving that he/she is a valid proxy signer once in per revo-
cation epoch, and the verifier does not need a revocation list in order to
verify the validity of a proxy signature.

Keywords: Proxy signature · Revocation · Hierarchical structure

1 Introduction

Mambo, Usuda and Okamoto introduced the concept of proxy signatures in 1996
[16,17]. In a proxy signature scheme, an original signer is allowed to delegate
his signing power to a designated person called the proxy signer, and then the
proxy signer is able to sign the message on behalf of the original signer.

There are four types of delegation in proxy signature. Mambo et al. [16]
proposed three of them in their seminal work: full delegation, partial delega-
tion and delegation by warrant. In the full delegation, the original signer just
gives his signing key to the proxy signer as the proxy signing key. Thus, the
proxy signer has the same signing ability as the original signer so that the real
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 21–36, 2016.
DOI: 10.1007/978-3-319-40367-0 2
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signer of a signature is indistinguishable. To overcome this drawback, partial
delegation was proposed, in which the original signer and the proxy signer work
together to derive the proxy signing key that consists of partial private keys
of the original signer and the proxy signer. Partial delegation is further classi-
fied into proxy-unprotected delegation and proxy-protected delegation [11]. In
proxy-unprotected partial delegation, the original signer can derive the proxy
signing key without the interaction with the proxy signer, but the proxy signer
cannot derive the proxy signing key without the help from the original signer.
In the case of proxy-protected partial delegation, the proxy signing key needs
the contribution of both the proxy signer and the original signer. However, in
the partial delegation, the proxy signer has unlimited signing ability. To conquer
this problem, delegation by warrant has been proposed. The original signer signs
a warrant that certifies the legitimacy of the proxy signer. Kim et al. [10] later
proposed a new type of proxy delegation called partial delegation with warrant
combining advantages of partial delegation and delegation with warrant.

Besides, proxy signature can be categorized into proxy multi-signature
scheme and multi-proxy signature scheme. In a proxy multi-signature scheme
[13,22], a designed proxy signer can generate the signature on behalf of two or
more original signers. In the case of multi-proxy signature scheme [12,21], it
allows a group of original signers to delegate the signing capability to a desig-
nated group of proxy signers.

1.1 Motivation of This Work

In this paper, we focus on proxy signature with revocation. Although there are
many research works on proxy signature, only few of them deal with proxy
revocation. It is necessary to address the problem of proxy revocation in proxy
signature when the proxy signer is compromised. Moreover, in reality, the proxy
signer may also misuse the delegated signing right. In such situations, the origi-
nal signer should have a way to revoke the signing right delegated to the proxy
signer even when the delegation has not expired. One straightforward solution
to address this problem is to let the original signer publish a revocation/black
list and a verifier needs to check the list before verifying a proxy signature. One
limitation of such an approach is that the verifier needs to obtain the latest revo-
cation list before verifying a proxy signature. Another problem brought by this
approach is that a proxy signature generated before the proxy signer is revoked
also becomes invalid. Ideally, such proxy signatures should still be considered
valid since the proxy signer is not revoked when the signature is generated.

In [20], Sun suggested that the revocation problem can be solved by using
a timestamp and proposed a proxy signature which allows the verifier to trace
the proxy signer. However, the proposed scheme has some security issues. As
pointed out in [4], an attacker can easily forge a proxy signature.

Another solution proposed in the literature to address the problem is util-
ising a trusted third party. Das et al. [4] and Lu et al. [15] proposed some
proxy signature schemes with revocation where a trusted third party called the
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authentication server (AS) is used to provide the immediate revocation. How-
ever, a trusted third party is a very strong assumption. Hence, such a solution
is not very practical in real applications.

The third solution that has been proposed by Seo et al. [19] and Liu et al. [14]
is to use a third party called SEcurity Mediator (SEM) which is a partially
trusted online server. In such a solution, the original signer divides the delega-
tion into two parts and gives these two parts to the proxy signer and the SEM,
respectively. When the proxy signer wants to generate a proxy signature, he/she
must get the assistance from the SEM. Thus, the SEM works as a certifier to
authenticate the signing ability of every proxy signer. Such a solution is not prac-
tical either since whenever the proxy signer wants to generate a proxy signature,
he/she needs to contact the SEM which is a bottleneck of the system.

1.2 Our Result

In this paper, we introduce a novel proxy signature scheme with revocation.
Compared with the previous solutions, our scheme has the following advantages.

– Our scheme does not need any third party. In addition, the verifier does not
need to obtain the revocation list in order to verify a proxy signature. Instead
he/she only needs to know the current revocation epoch in order to verify a
proxy signature.

– The original signer can revoke a set of proxy signers in each revocation epoch.
An unrevoked proxy signer only needs to generate once in each revocation
epoch a proof which shows his/her valid proxy signing right.

– Our scheme explicitly includes the revocation epoch in signature verification,
and hence, the verifier only denies signatures generated by a proxy signer
after his/her proxy signing right is revoked. The signatures generated before
revocation will remain valid.

1.3 Outline of Paper

The rest of this paper is organized as follows. Some preliminaries are presented
in Sect. 2. The formal security models for our scheme is described in Sect. 3.
The proposed proxy signature with revocation scheme is detailed in Sect. 4. We
analyze the proposed scheme in Sect. 5. Finally, some concluding remarks are
given in Sect. 6.

2 Preliminaries

In this section, we provide some background knowledge used in this paper.

2.1 Bilinear Map

Let G and GT denote two cyclic multiplicative groups of prime order p and g be
a generator of G. The map e : G × G → GT is said to be an admissible bilinear
map if the following properties hold.
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1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
2. Non-degeneration: e(g, g) �= 1.
3. Computability: it is efficient to compute e(u, v) for any u.v ∈ G.

We say that (G,GT ) are bilinear groups if there exists a bilinear map e : G×G →
GT as above.

2.2 Complexity Assumptions

Definition 1 (Computational Diffie-Hellman (CDH) problem). Given
g, ga, gb ∈ G for some unknown a, b ∈ Zp, the computational Diffie-Hellman
(CDH) problem is to compute gab ∈ G.

Definition 2 (Computational Diffie-Hellman (CDH) assumption). The (t, ε)-
CDH assumption holds in group G if no algorithm with running time t has
probability at least ε in solving the CDH problem.

2.3 Digital Signature Scheme

A digital signature scheme consists of three algorithms [6]:

Key generation G(1k): it inputs a security parameter k and outputs in poly-
nomial time a pair (pk, sk) of matching public and secret keys.

Signature Ssk(m): it produces a signature σ ← Ssk(m) for a message m using
the secret key sk.

Verification Vpk(m,σ): it tests whether σ is a valid signature for message m
using the public key pk. The algorithm outputs either 1 (valid) or 0 (invalid).

2.4 Security Model for Existential Unforgeability

The de facto security notion is existential unforgeability under adaptive chosen
message attacks [6] which is defined using the following game.

Setup: The challenger runs G. It gives the adversary the resulting public key pk
and keeps the private key sk to itself.

Signing Query (OEUS ): The adversary issues signing queries m1, ...,mq. To
each query mi, the challenger responds by running S to generate a signature σi

of mi and sending σi to the adversary. These queries may be asked adaptively
so that each query mi may depend on the replies to m1, ...,mi−1. A database
DEUS to record the messages have been signed.

Output: Finally the adversary outputs a pair (m∗, σ∗). The adversary wins if
σ∗ is a valid signature of m∗ according to V and m∗ is not among the messages
DEUS appeared during the query phase.
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Definition 3. A signature scheme is (t, q, ε) existentially unforgeable under
adaptive chosen message attacks if no t-time adversary AEU making at most
q signing queries has advantage at least ε in the above game. For any PPT
adversary AEU involved in the experiment hereafter, we have Adveu−cma

AEU (λ) =
Pr[Expteu−cma

AEU (λ) = 1] ∈ negl(λ).

Experiment Expeu−cma
AEU (λ) Oracle OEUS (m)

(pk, sk) ← Gen(1λ); DEUS ← ∅ σ ←Sign(sk, m)

σ ← AOEUS
EU (m) DEUS ← DEUS ∪ m

(m∗, σ∗) ← AEU (pk, OEUS ) Return σ
If Ver(pk, m∗, σ∗) = 1, and
m∗ �∈ DEUS return 1 else return 0

2.5 Boneh-Lynn-Shacham Short Signature Scheme

BLS Short Signature Scheme was proposed in [3]. We use this short signature as
a primitive to provide authentication in our hierarchical revocation algorithm.
Some details of the BLS short signature are given below.

Keygen: The public key is (G,GT , q, g, y,H1) and secret key is s, where y = gs

and H1 : {0, 1}∗ → G is a hash function.

Sign: The signature for message m is σ = hs, where h = H1(m).

Verify: Check whether the equation e(σ, g) = e(H1(m), y) holds.
This scheme has been proven to be secure against adaptive chosen-message

attacks in the random oracle model assuming the CDH problem is hard.

2.6 Boneh-Boyen-Goh Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) is a generalization of identity-
based encryption and mirrors an organizational hierarchy. An identity at level
k of the hierarchy tree can issue private keys to its descendant identities, but
cannot decrypt messages intended for other identities. Boneh et al. [2] described
the first HIBE scheme where the size of ciphertext does not depend on the
depth of the receiver in the hierarchy. This HIBE scheme will be modified as
an important part in our hierarchical revocation algorithm. The BBG HIBE
scheme, which has five algorithms, is reviewed below.

Setup: The master public key is (G,GT , g, g1, g2, {hi}�
i=0) and master secret key

is gα
2 , where � is the number of levels in the hierarchy, g1 = gα and α ∈ Zp is a

random number and h0, h1, ..., h� ∈ G.

Keygen: Given master secret key msk and an identity id = (I1, ..., Ik), it
will choose a random numbers r ∈ Zp and generate the private key did =
(D1,D2,Kk+1, ...,K�). D1 and D2 are decryption keys. (Kk+1, ...,K�) is the del-
egation part and it is used to derive decryption keys for descendant identities.

D1 = gα
2 · (h0 ·

k∏

i=1

hIi
i )r, D2 = gr, Ki = hr

i for i = k + 1, ..., �.
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Derive: Given the private key did and an identity id′ = (I1, ..., Ik, Ik+1) that
is the descendant of id = (I1, ..., Ik), it chooses a random number r ∈ Zp and
outputs a private key did′ = (D′

1,D
′
2,K

′
k+2, ...,K

′
�) for id′.

did′ = (D1 · K
Ik+1
d+1 · (h0 ·

k+1∏

i=1

hIi
i )r′

,D2 · gr′
,Kk+2 · hr′

k+2, ...,K� · hr′
� ).

Encrypt: Given the master public key mpk, an identity id = (I1, ..., Id) and
a message m, it outputs a ciphertext C = (C0, C1, C2) by choosing a random
number s ∈ Zp and computing the following elements

C0 = m · e(g1, g2)s, C1 = gs, C2 = (h0 · hI1
1 · · · hId

d )s.

Decrypt: It returns M = C0 · e(C1,D1)−1 · e(C2,D2).
This scheme has been proven to be selective-ID secure in the standard model

and fully secure in the random oracle model.

2.7 Naor-Naor-Lotspiech Framework for Broadcast Encryption

Naor et al. [18] introduced a subset cover framework for broadcast encryption.
This framework is based on complete subtree (CS) method and subset difference
(SD) method. Halevy and Shamir [7] proposed a new method called layered
subset difference (LSD) to improve the key distribution in the SD method. Later,
Dodis and Fazio [5] pointed out that HIBE schemes can base on the above
methods. In this section, we will briefly introduce the SD method.

The SD method works like a white list and we call it a revocation list in this
paper. Each user is assigned to a leaf node in the tree and given the private keys
of all co-path nodes from the root to the leaf. Let N denote all the users and R
the revoked users. This method will group the valid users (N \ R) into m sets
Sk1,u1 , ..., Skm,um

. Each valid user belongs to at least one set, the number of set
m satisfies m ≤ 2|R| − 1. Let Txj

denote the subtree rooted at xj .

Fig. 1. The SD method
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The subset Ski,ui
is defined as follows. Tki

is called the primitive root. Tui

is called the secondary root, and Tui
is a descendant of Tki

. The valid users in
the set Ski,ui

consists of the leaves of Tki
that are not in Tui

. Thus, each user
may belong to more than one set.

3 Formal Definitions and Security Models

In this section, we will introduce the syntax of a hierarchical revocation algorithm
and a proxy signature with revocation and their formal security models. Here,
we provide the details of some notations that will be used in this section.

– N is the set of proxy signers, and |N | is the number of proxy signer.
– R is the set of revoked proxy signers, and |R| is the number of revoked proxy

signer. Rt is the set of revoked proxy signers in the revocation epoch t.
– � ∈ Z is the maximum level of the tree and |N | ≤ 2�.
– id ∈ {0, 1}≤� is the label value for each node in the tree.
– prefix(id) ∈ {0, 1}≤� is the set of label values which are the prefix of id.
– w ∈ Z is a warrant for signing right delegation.
– didi

= (Di,1,Di,2,Ki,1, ...,Ki,�−|idi|+1) is the hierarchical private key for idi.

3.1 Hierarchical Revocation Scheme

This hierarchical revocation scheme is derived from the Boneh-Boyen-Goh hierar-
chical identity based encryption scheme (BBG HIBE) [2] and is an essential part
of our proxy signature with revocation scheme. This scheme keeps a white list to
reject all the revoked proxy signers and the size of this revocation list is O(|R|)
since we use the Subset Difference (SD) method in the Naor-Naor-Lotspiech frame-
work [18]. This scheme can be described using the following algorithms.

Setup(1λ, 1�): Given a security parameter λ and a maximum level � of the
complete binary tree, it outputs the system parameter param, the master secret
key msk and the master public key mpk.

Keygen(wi, pki,msk, id): Given a proxy signer’s warrant wi and his/her public
key pki, master secret key msk, the master public key mpk and the label value
id in the tree, it outputs a hierarchical private key did, where did includes the
decryption key and delegation key as shown in the HIBE scheme reviewed above.

Derive(mpk, id, did, id
′): Given master public key mpk, a label value id and its

hierarchical private key did and a label value id′, which is a descendant of id in
the tree structure, it outputs another hierarchical private key did′ for id′.

Encode(mpk, id, id′): Given master public key mpk, a label value id and another
label value id′ which is a descendant of id, it outputs a encoding value C.

Verify(mpk,wi, pki, id, C, did′): Given master public key mpk, a proxy signer’s
warrant wi and his/her public key pki, a label value id, an encoding value C
(with regards to id and id′) and a hierarchical private key did′ , it outputs either
1 or 0.
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Security Model for Hierarchical Revocation Algorithm. We propose a
security notion called key robustness to define the security of our hierarchical
revocation algorithm. The security model is defined using the following game:

Setup: The challenger runs Setup. It gives the adversary the resulting of master
public key mpk and keeps the master private key msk to itself.

Keygen Query (OAG ): The adversary issues up to qG key generations queries
{(idi, wi, pki)}qG

i=1. To each (idi, wi, pki), the challenger responds by running Key-
gen to generate a result didi

for (idi, wi, pki) and sending didi
to the adversary.

These queries may be asked adaptively so that each query (idi, wi, pki) may
depend on the replies to (id1, w1, pk1),...,(idi−1, wi−1, pki−1). A database DAG
records all the messages that have been queried.

Output: Finally the adversary outputs (id∗, id∗′, w∗, C∗, pk∗, d∗
id∗′) such that C∗

is an encoding with regards to id∗ and id∗′. The adversary wins if (id∗′, w∗, pk∗)
or (prefix(id∗′), w∗, pk∗) has not appeared in any Kengen queries, and (mpk,w∗,
pk∗, id∗, C∗, d∗

id∗′) can pass the verification.
In the random oracle model, we have an additional oracle called hash

oracle:

Hash Query (OAH): The adversary issues hash queries {(idi, wi, pki)}qH

i=1. To
each (idi, wi, pki), the challenger responds by returning a random element in the
range of the hash function H1. The same result is returned if the same input is
queried for more than one time.

Definition 4. A hierarchical revocation scheme is (t, qH , qG, ε) key robust if no
t-time adversary A making at most qH hash queries and qG keygen queries has
advantage at least ε in the above game. For any PPT adversary A involved in
the experiment hereafter, we have Advkey−robust

A (λ) = Pr[Exptkey−robust
A (λ, �) =

1] ∈ negl(λ).

Oracle OAH(id, w, pk) Oracle OAG (id, w, pk)
Return H1(id, w, pk) DAG ← DAG ∪ (id, w, pk)

Return keygen(w, pk, msk, id)

Experiment Expkey−robust
A (λ, �)

(mpk, msk) ← Setup(1λ, 1�); DAG ← ∅
Hi ← AOAH (idi, wi, pki); didi ← AOAG (idi, wi, pki)
(id∗, id∗′, w∗, C∗, pk∗, d∗

id∗′) ← A(mpk, OAH , OAG )
If Verify(mpk, w∗, pk∗, id∗, C∗, d∗

id∗′) → 1, (id∗′, w∗, pk∗) �∈ DAG , and
(prefix(id∗′), w∗, pk∗)∗ �∈ DAG return 1 else return 0

3.2 Proxy Signature with Revocation

In our scheme, there are two parties: an original signer O and a group of proxy
signers Pi for i = 1, ..., |N |. A proxy signature scheme with revocation can be
described as a collection of the following algorithms:

Setup(1λ, 1�): Given a system security parameter λ and a maximum level of
the complete binary tree that defines the maximum number of the proxy signers
|N | = 2�, it outputs the system parameters Y.
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Keygen(1λ,Y): Given a system security parameter λ and the system parameters
Y, it outputs a pair of public and secret key (pk, sk). The original signer runs
this algorithm to generate its own public pko and security key sko. The proxy
signers runs this function to generate its own public pki and security key ski.

Delegation(Y, wi, pki, pko, sko): Given a system parameters Y, the warrant wi

and public key pki of the proxy signer Pi and the public key pko and secret key
sko of original signer, it generates the delegated information Ii.

Revocation(Y, sko, t,Rt): Given a system parameters Y, the secret key sko

of original signer, the current revocation epoch t and the set of revoked proxy
signers Rt, it outputs a revocation list RLt under the revocation epoch t.

Sign(Y, RLt, ski, Ii,M): Given a system parameters Y, the revocation list RLt

under revocation epoch t, the secret key ski and delegated information Ii of
proxy signer Pi and a message M , it outputs a proxy signature σ.

Verify(Y, t, pki, pko,M, σ): Given a system parameter Y, the revocation epoch
t, public key pki of proxy signer, public key pko of original signer, the message
M and the proxy signature σ, it outputs either 1 or 0.

Security Models for Proxy Signature with Revocation. To define the
unforgeability of our proxy signature scheme with revocation, according to the
classification of Huang et al. [8] and their continuing work [9], we divide the
adversaries into the following four types1:

1. Type I : This type of adversary AI has public parameter Y, public key of
original signer pko, and public keys of all proxy signers {pki}|N |

i=1.
2. Type II : This type of adversary AII has public parameter Y, public key of

original signer pko, public keys of all proxy signers {pki}|N |
i=1, and the secret

key of original signer sko.
3. Type III : This type of adversary AIII has public parameter Y, public key of

original signer pko, public keys of all proxy signers {pki}|N |
i=1, and secret keys

of all proxy signers {ski}|N |
i=1.

4. Type IV : This type of adversary AIV has public parameter Y, public key of
original signer pko, public keys of all proxy signers {pki}|N |

i=1, and the secret
key and delegated information of all revoked proxy signers {ski, Ii}i∈R2.

One can find that if our proxy signature scheme is secure against Type II (or
Type III or Type IV ) adversary, our scheme is also unforgeable against Type I
adversary. Below we give the formal security models.

Security Model for Adversary AII . Adversary AII represents original
signer, who wants to generate a valid proxy signature without knowing the secret
key of the proxy signer. The security model is defined using the following game:
1 In all the security models, we assume that there is only one set of revoked signers

Rti for each revocation epoch ti.
2 For achieving the backward security [1], we needs the time stamp server to generate

the time certificate for each proxy signature.
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Setup: The challenger generates |N | + 1 public key and secret key pairs and
assigns them to the original signer and proxy signers. Then it gives the adversary
the system parameter Y, the public keys of original signer pko and proxy signers
{pki}|N |

i=1, secret key of original signer sko, and keeps the secret keys of all proxy
signers {ski}|N |

i=1 to itself.

Signing Query (OIIS ): The adversary issues signing queries {(wi, pki,Mi, ti,
Rti

)}q
i=1 where pki �∈ Rti

. The challenger responds by running Delegation algo-
rithm to get delegated information Ii, Revocation algorithm to get revocation
list RLti

, and Sign algorithm to get the proxy signature σi. After that, the
challenger sends σi to the adversary. These queries may be asked adaptively so
that each query (wi, pki,Mi, ti,Rti

) may depend on the replies to all previous
queries. A database DIIS records all the information of queries. If pki ∈ Rti

,
the challenger rejects the query.

Output: Finally, the adversary outputs (w∗, pk∗,M∗, t∗,Rt∗ , σ∗). The adver-
sary wins if pk∗ is one of the proxy signer public keys that have been given,
(w∗, pk∗, t∗,Rt∗ ,M∗) does not appear in DIIS , and (Y, t∗, pk∗, pko,M

∗, σ∗) can
pass the verification.

Definition 5. A proxy signature scheme is (t, q, ε) existentially unforgeable
under Type-II adaptive chosen message attacks if no t-time adversary AII
making at most q signing queries has advantage at least ε in the above game.
For any PPT adversary AII involved in the experiment hereafter, we have
Adveu−cma

AII (λ) = Pr[Expteu−cma
AII (λ, �) = 1] ∈ negl(λ).

Oracle OIIS (w, pk, M, t, Rt)
I ←Delegation(Y, w, pk, pko, sko); RLt ←Revocation(Y, sko, t, Rt)
σ ←Sign(Y, RLt, sk, I, M); DIIS ← DIIS ∪ (w, pk, M, t, Rt)
Return σ

Experiment Expeu−cma
AII (λ, �)

(Y, pko, sko, {pki, ski}|N|
i=1) ← Setup(1λ, 1�); DIIS ← ∅

σ ← AOIIS
II (w, pk, M, t, Rt)

(w∗, pk∗, M∗, t∗, Rt∗ , σ∗) ← AII(Y, pko, sko, {pki}|N|
i=1, OIIS )

If Verify(Y, t∗, pk∗, pko, M
∗, σ∗) = 1, pk∗ ∈ {pki}|N|

i=1, and
(w∗, pk∗, M∗, t∗, Rt∗) �∈ DIIS return 1 else return 0

Security Model for Adversary AIII . Adversary AIII represents proxy sign-
ers, who want to generate the proxy signature without knowing the delegated
information. The security model is defined using the following game:

Setup: The challenger generates |N | + 1 public key and secret key pairs and
assigns them to original signer and proxy signers. Then it gives the adversary
the system parameter Y, the public keys of original signer pko and proxy sign-
ers {pki}|N |

i=1, secret keys of proxy signers {ski}|N |
i=1, and keeps the secret key of

original signer sko to itself.
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Delegation Query (OIIID ): The adversary issues up to qD delegation queries.
To each (wi, pki), the challenger responds by running Delegation algorithm to
gain the delegated information Ii and the challenger sends Ii to the adversary.
These queries may be asked adaptively. A database DIIID records all the dele-
gation queries.

Revocation Query (OIIIR): The adversary issues up to qR revocation queries
(ti,Rti

). To each query, the challenger responds by executing Revocation algo-
rithm to get the revocation list RLti

for revocation epoch ti. Then the challenger
sends RLti

to the adversary. These queries may be asked adaptively. Notice that
we assume there is only one Rti

for each ti.

Signing Query (OIIIS ): The adversary makes up to qS signing queries to the
challenger. For each (wi, pki,Mi, ti,Rti

) where pki �∈ Rti
, the challenger gains

the delegated information Ii by running Delegation algorithm, runs the Revoca-
tion algorithm to get the revocation list RLti

, and executes the Sign algorithm
to acquire the proxy signature σi. These queries may be asked adaptively. A
database DIIIS records all the signing queries.

Output: Finally, the adversary outputs (w∗, pk∗,M∗, t∗,Rt∗ , σ∗). The adversary
wins if pk∗ is one of the proxy signer’s public keys given, (w∗, pk∗) has not
been queried to Delegation oracle, (w∗, pk∗,M∗, t∗,Rt∗) has not been queried to
Signing oracle, and (Y, t∗, pk∗, pko,M

∗, σ∗) can pass verification.

Definition 6. A proxy signature scheme is (t, qD, qR, qS , ε) existentially
unforgeable under Type-III adaptive chosen message attacks if no t-time adver-
sary AIII making at most qD delegation queries, qR revocation queries and
qS signing queries has advantage at least ε in the above game. For any PPT
adversary AIII involved in the experiment hereafter, we have Adveu−cma

AIII (λ) =
Pr[Expteu−cma

AIII (λ) = 1] ∈ negl(λ).

Oracle OIIID (w, pk) Oracle OIIIS (w, pk, M, t, Rt)
I ←Delegation(Y, w, pk, pko, sko) I ←Delegation(Y, w, pk, pko, sko)
DIIID ← DIIID ∪ (w, pk) RLt ←Revocation(Y, sko, t, Rt)
Return I σ ←Sign(Y, RLt, sk, I, M)

Oracle OIIIR(t, Rt) DIIIS ← DIIIS ∪ (w, pk, M, t, Rt)
RLt ←Revocation(Y, sko, t, Rt) Return σ
Return RLt

Experiment Expeu−cma
AIII (λ, �)

(Y, pko, sko, {pki, ski}|N|
i=1) ← Setup(1λ, 1�); DIIID , DIIIS ← ∅

Ii ← AOIIID
III (wi, pki); RLti ← AOIIIR

III (ti, Rti)

σi ← AOIIIS
III (wi, pki, Mi, ti, Rti)

(w∗, pk∗, M∗, t∗, Rt∗ , σ∗) ← AIII(Y, pko, {pki, ski}|N|
i=1, OIIID , OIIIR , OIIIS )

If Verify(Y, t∗, pk∗, pko, M
∗, σ∗) = 1, pk∗ ∈ {pki}|N|

i=1,
(w∗, pk∗) �∈ DIIID , and (w∗, pk∗, M∗, t∗, Rt∗) �∈ DIIIS return 1 else return 0

Security Model for Adversary AIV . Adversary AIV represents proxy signers,
who want to generate the proxy signature when they have been revoked. The
security model is defined using the following game:
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Setup: The challenger generates |N | + 1 public key and secret key pairs and
assigns them to the original signer and proxy signers. Then it gives the adver-
sary the system parameter Y, the public keys of original signer pko and proxy
signers {pki}|N |

i=1, secret keys of proxy signers {ski}|N |
i=1, and keeps the secret key

of original signer sko to itself.

Delegation Query (OIVD ): The adversary issues up to qD delegation queries.
To each (wi, pki), the challenger responds by running Delegation algorithm to
gain the delegated information Ii and the challenger sends Ii to the adversary.
These queries may be asked adaptively.

Revocation Query (OIVR): The adversary issues up to qR revocation queries
(ti,Rti

).To eachquery, the challenger responds by executingRevocation algorithm
to get the revocation list RLti

for revocation epoch ti. Then the challenger sends
RLti

to the adversary. These queries may be asked adaptively. A database DIVR
records all the queries. Notice that we assume there is only one Rti

for each ti.

Signing Query (OIVS ): The adversary sends up to qS signing queries to the
challenger. For each (wi, pki,Mi, ti,Rti

) where pki �∈ Rti
, the challenger gains

the delegated information Ii by running Delegation algorithm, runs the Revoca-
tion algorithm to get the revocation list RLti

, and executes the Sign algorithm
to acquire the proxy signature σi. These queries may be asked adaptively. A
database DIVS records all the signing queries.

Output: Finally, the adversary outputs (w∗, pk∗,M∗, t∗,Rt∗ , σ∗). The adversary
wins if pk∗ ∈ Rt∗ , (w∗, pk∗,M∗, t∗,Rt∗) has not been queried to Sign oracle, and
(Y, t∗, pk∗, pko,M

∗, σ∗) can pass the verification.

Definition 7. A proxy signature scheme is (t, qD, qR, qS , ε)-strongly existen-
tially unforgeable under an adaptive chosen message attack if no t-time adversary
AIV making at most qD delegation queries, qR revocation queries and qS signing
queries has advantage at least ε in the above game. For any PPT adversary AIV
involved in the experiment hereafter, we have Adveu−cma

AIV (λ) = Pr[Expteu−cma
AIV (λ) =

1] ∈ negl(λ).

Oracle OIVD (w, pk) Oracle OIVS (w, pk, M, t, Rt)
I ←Delegation(w, Y, pk, pko, sko) I ←Delegation(Y, w, pk, pko, sko)
Return I RLt ←Revocation(Y, sko, t, Rt)

Oracle OIVR(t, Rt) σ ←Sign(Y, RLt, sk, I, M)
RLt ←Revocation(Y, sko, t, Rt) DIVS ← DIVS ∪ (w, pk, M, t, Rt)
DIVR ← DIVR ∪ (t, Rt) Return σ
Return RLt

Experiment Expeu−cma
AIV (λ, �)

(Y, pko, sko, {pki, ski}|N|
i=1) ← Setup(1λ, 1�); DIVR , DIVS ← ∅

Ii ← AOIVD
IV (wi, pki)

RLti ← AOIVR
IV (ti, Rti)

σi ← AOIVS
IV (wi, pki, Mi, ti, Rti)

(w∗, pk∗, M∗, t∗, Rt∗ , σ∗) ← AIV(Y, pko, {pki, ski}|N|
i=1, OIVD , OIVR , OIVS )

If Verify(Y, t∗, pk∗, pko, M
∗, σ∗) = 1, pk∗ ∈ Rt∗ ,

(w∗, pk∗, M∗, t∗, Rt∗) �∈ DIVS return 1 else return 0
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4 The Proposed Scheme

In this section, inspired by the BBG HIBE scheme [2], the NNL framework for
broadcast encryption [18] and the BLS short signature [3], we will construct a
hierarchical revocation scheme. Based on this revocation scheme, we will then
build our proxy signature scheme with revocation.

4.1 Hierarchical Revocation Scheme

Our hierarchical revocation scheme consists of the following algorithms.
Setup(1λ, 1�) → (param,msk,mpk):

– Set system parameter param = (e,G,GT , g, p).
– The original signer O has (pko, sko) = (gxo , xo) and each proxy signer Pi has

(pki, ski) = (gxi , xi), where xi ∈ Z
∗
p. For each Pi, assign a warrant wi.

– Set master secret key msk = sko and master public key mpk = (pko, {hi}�
i=0),

where h0, h1, ..., h� ∈ G.
– Select a injective function H : {0, 1}≤� → Z

∗
p and a hash function H1 :

{0, 1}∗ → G.

Keygen(wi, pki,msk, id) → did:

did = (D1,D2,K2, ...,K�−|id|+1)

= (H1(id, wi, pki)sko · (h0 · h
H(id)
1 )r, gr, hr

2, ..., h
r
�−|id|+1).

Derive(mpk, id, did, id
′ = (id, I1, ..., Id)) → did′ :

did′ = (D′
1,D

′
2) = (D1 ·

d∏

i=1

K
H(Ii)
i+1 ,D2)

= (H1(id, wi, pki)sko · (h0 · h
H(id)
1 · h

H(I1)
2 · · · hH(Id)

d+1 )r, gr).

Encode(mpk, id, id′ = (id, I1, ..., Id)) → C: C = h0 · h
H(id)
1 · h

H(I1)
2 · · · hH(Id)

d+1 .

Verify(mpk,wi, pki, id, C, did′) → {0, 1}: Parse did′ = (D′
1,D

′
2), return 1 if fol-

lowing equation is true: e(g,D′
1) = e(pko,H1(id, wi, pki)) · e(C,D′

2).

4.2 Proxy Signature with Revocation

Our proxy signature with revocation scheme consists of the following algorithms.

Setup(1λ, 1�): λ ∈ N is a security parameter and N = 2� is the maximum
number of proxy signer. Generate a bilinear map (e,G,GT , p, g). Choose ran-
domly {hi}�

i=0 from G. Choose a injective functions H : {0, 1}≤� → Z
∗
p and

two hash functions Hi : {0, 1}∗ → G (i = 1, 2). The system parameter
Y = ((e,G,GT , p, g), {hi}�

i=0,H,H1,H2).
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Keygen(1λ,Y): original signer O and each proxy signer Pi run the key genera-
tion algorithm to generate their own public key and secret key pair. O generates
(pko, sko) = (xo, g

xo) and Pi generates (pki, ski) = (xi, g
xi).

Delegation(Y, wi, pki, pko, sko): O generates the delegated information Ii to Pi.

– A warrant wi is an explicit description of the delegation relation.
– O assigns to Pi an availabel leaf vi of label 〈vi〉. Let x0 = ε, x1, ..., x�−1, x� = vi

be the path from the root ε of T to vi. For j = 0 to �, O does the following.
Consider the sub-tree Txj

rooted at node xj . Let copathxj
be the co-path

from xj to vi. For each node ω ∈copathxj
, since xj is an ancestor of ω,

〈xj〉 is a prefix of 〈ω〉 and we denote by ω�1 ...ω�2 ∈ {0, 1}�2−�1+1, for some
�1 ≤ �2 ≤ �, the suffix of 〈ω〉 coming right after 〈xj〉. Choose a random r ∈ Z

∗
p

and compute

dw = (Dω,1,Dω,2,Kω,�2−�1+3, ...,Kω,�)

= (H1(xj , ωi, pki)sko · (h0 · h
H(〈xj〉)
1 · h

H(〈ω�1 〉)
2 · · · hH(〈ω�2 〉)

�2−�1+2 )r,

gr, hr
�2−�1+3, ..., h

r
�).

Pi gains the delegated information Ii = (wi, 〈vi〉, {{dω}ω∈copathxj
}�

j=0).

Revocation(Y, sko, t,Rt):

– Using the SD covering algorithm, find a cover of unrevoked user set N \Rt as
the union of disjoint subsets of the form Sk1,u1 , ..., Skm,um

, with m ≤ 2·|R|−1.
– For i = 1 to m, do the following.

1. Consider Ski,ui
as the difference between sub-trees rooted at an internal

node xki
and one of its descendants xui

. The label of xui
can be written

as 〈xui
〉 = 〈xki

〉‖ui,�i,1 ...ui,�i,2 . Then, compute an encoding of Ski,ui
as a

group element:

Ci = h0 · h
H(〈xki

〉)
1 · h

H(ui,�i,1 )

2 · · · hH(ui,�i,2 )

�i,2−�i,1+2.

2. O generates a signature Θi =Signsko
(Ci, g

t) = H2(Ci, g
t)sko .

Return the revocation list RLt which is defined to be

RLt = (t,Rt, {〈xki
〉, 〈xui

〉, (Ci, Θi)}m
i=1) .

Sign(Y, RLt, ski, Ii,M): Proxy signer only needs to generate the HIBE decryp-
tion key once in each revocation epoch.

– Using RLt, determine the set Skl,ul
, with l ∈ {1, ...,m}, that contains the

leaf vi (this subset must exist since pki �∈ Rt) and let xkl
and xul

denote the
primary and secondary roots of Skl,ul

. Since xkl
is an ancestor of xul

, we can
write 〈xul

〉 = 〈xkl
〉‖ul,�1 ...ul,�2 , for some �1 < �2 < � and with ul,κ ∈ {0, 1}

for each κ ∈ {�1, ..., �2}. The proxy signer Pi computes an HIBE decryption
key of the form

(Dl,1, Dl,2) =
(
(H1(xkl , wi, pki)

sko · (h0 · h
H(〈xkl

〉)
1 · h

H(ul,�1 )

2 · · · hH(ul,�2 )

�2−�1+2)
r, gr
)

.

Note that (Dl,1,Dl,2) can be reused in whole revocation epoch.
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– Compute σm =Signski
(M,Ω) where Ω = (wi, xkl

, xul
,Dl,1,Dl,2, Cl, Θl).

Return the proxy signature σ = (Ω, σm).

Verify(Y, t, pki, pko,M, σ): Verifier checks the proxy signature.

1. Check σm: If Verifypki
((M,Ω), σm) = 0, return 0.

2. Check Θl: If Verifypko
((Cl, g

t), Θl) = 0, return 0.
3. Check Cl: If e(g,D�1) = e(pko,H1(xkl

, wi, pki)) · e(C�,D�2), return 1. Other-
wise, return 0.

5 Security Analysis

The proposed schemes is secure against Type-II/III/IV adversaries in the ran-
dom oracle model. Please refer to the full version of the paper for the full proofs.

Theorem 1. The hierarchical revocation scheme is key robust assuming that the
CDH assumption holds in G.

Theorem 2. The proxy signature with revocation scheme is secure against
Type-II/III/IV adversaries.

6 Conclusions

In this paper, we proposed a new solution for proxy signature with revocation.
Compared with the previous approaches, our solution does not require any third
party. In addtion, the verifier does not need to access the latest revocation list
in order to verify a proxy signature. We also built a novel hierarchical revoca-
tion scheme, which is of independent interest. We proved the security of the
hierarchical revocation scheme and the proxy signature scheme with revocation
against various types of adversaries.

Acknowledgement. The last author of this work is supported by the National Nat-
ural Science Foundation of China (No. 61402184).
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Abstract. A hierarchical key assignment scheme distribute some pri-
vate information and encryption keys to a set of classes in a partially
ordered hierarchy, so that the private information of higher classes can
be employed to derive the keys of classes lower down in the hierarchy.
A hierarchical key assignment scheme for dynamic structures allows to
make dynamic updates to the hierarchy, such as addition, deletion and
modification of classes and relations among them, as well as the revoca-
tion of users.

In this work we analyze security notions for hierarchical key assign-
ment schemes supporting dynamic structures. In particular, we first pro-
pose the notion of key recovery for those schemes. Furthermore, we
extend to such schemes the strong key indistinguishability and strong
key recovery security definitions proposed by Freire et al. for hierarchi-
cal key assignment schemes. Finally, we investigate the relations occur-
ring between all the state-of-the-art security notions for hierarchical key
assignment schemes supporting dynamic structures, showing implica-
tions and separations which hold between such notions. In detail, we
prove that also in the case of dynamic structures, security with respect
to strong key indistinguishability is equivalent to the one with respect to
key indistinguishability.

Keywords: Access control · Key assignment · Dynamic structures ·
Dynamic adversary · Strong key recovery · Strong key indistinguishability

1 Introduction

The main aim of the access control management is to provide only authorized
users with the access to certain resources. More precisely, based on their rel-
ative responsibilities and roles, the users of a system are usually grouped into
hierarchies, characterized by some disjoint classes (security classes). Hierarchical
structures find a natural way of application in many different areas.

The use of cryptography to deal with key management issues in hierarchi-
cal structures was first addressed by Akl and Taylor [2], which introduced a
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 37–54, 2016.
DOI: 10.1007/978-3-319-40367-0 3
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hierarchical key assignment scheme where each class is provided with a key
that can be employed, together with some public information generated by a
Trusted Authority (TA), to derive the key of any class lower down in the hierar-
chy. Following the seminal work due to Akl and Taylor, many schemes have
been proposed in the literature, each providing different trade-offs for what
concerns the quantity of public and private information, as well as the com-
plexity of key derivation (e.g., [3,4,6,14,16,17,21,24,25,27,29,30,32–35,40]).
Again, other schemes have been proposed, either supporting more general
access control policies [18,20,31,41] or satisfying further time-dependent con-
straints [7,8,15,22,23,28,37–39,42]. However, it is important to remark that
despite many schemes have been proposed in the literature, many of them are
not provided with a formal security proof or have been broken by collusive
attacks [7,19,36,43,44], when some classes collude to calculate a key to which
they cannot access.

The first formalization of the security properties concerning hierarchical key
assignment schemes was made by Atallah et al. [3], which introduced two distinct
notions: security with respect to key recovery and against key indistinguishability.
In particular, the first notion represents the fact that an adversary should not
be allowed to compute a key to which it cannot access, whereas, the second one
denotes that the adversary should not even be allowed to distinguish the real
key from a random string having the same length. More precisely, the model
proposed in [3] enables an adversary which intends to attack a given class in
the hierarchy to access the private information relative to all the users which
cannot access such a class, besides all the public information. Afterwards, several
different schemes satisfying the security notions due to Atallah et al. have been
proposed in [5,7,8,10,12,16,17,21,23–25].

Novel security notions for hierarchical key assignment schemes were intro-
duced by Freire et al. [26]. More precisely, such notions, referred to as security
with respect to strong key recovery and security against strong key indistinguisha-
bility, enable the adversary to compromise a wider set of classes and hence they
represent an improvement of the model introduced in [3]. In detail, in the model
proposed by Freire et al., the adversary, given a target class, can obtain the
private information relative to all the users which cannot access such a class,
besides the public information and encryption keys relative to the classes that
precede the target class in the hierarchy. Finally, Freire et al. proved that the
security provided by the notion of key recovery is weaker than the one provided
by the notion of strong key recovery. Therefore, such notions are separated, that
is, some schemes are secure with respect to key recovery but not with respect
to strong key recovery. However, the authors left as an open question the prob-
lem of clarifying the relations between the notions of security with respect to
key indistinguishability and with respect to strong key indistinguishability. The
equivalence between the notions of security with respect to strong key indis-
tinguishability and with respect to key indistinguishability has been recently
proven in [11]. A similar result was previously shown for the unconditionally
secure setting [9].
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It is important to remark that all security models proposed so far consider an
operational scenario which is fixed and immutable. More precisely, the adversary
is not allowed to make any changes to the hierarchy, which is fixed and chosen at
the time of the attack. It is easy to note that this fact represents an important
limitation, since the existing models are not able to characterize the different
scenarios which may arise in many operating environments.

For example, advances in wireless communication have allowed the devel-
opment of User-Centric Networks (UCNs), which are an abstraction of the
infrastructureless networks. Again, since the Internet of Things (IoT) technology
permits the transfer and sharing of data among things and users, in this highly
dynamic sharing environment the access control is essential to ensure secure
communication. Furthermore, in the context of the smart cities, IoT hubs act
as data aggregators, where a hub can support not only access to infrastructure
data, but also participatory sensing and crowd sourced data where city employ-
ees and citizens contribute directly to the data infrastructure of a city. Another
possible operational scenario is given by Vehicular Ad Hoc Networks (VANETs).

In order to overcome the above defined limitations, Castiglione et al. [13]
have recently proposed a novel model for hierarchical key assignment schemes
supporting dynamic updates. More precisely, they have extended the notions
of security with respect to key indistinguishability provided by Atallah et al.,
to address the further challenges introduced by the updates to the hierarchy.
Finally, they have proposed a construction which is secure with respect to key
indistinguishability.

In this work we consider security notions for hierarchical key assignment
schemes implementing dynamic structures and the purpose of this work is three-
fold. In particular, we first propose the notion of key recovery for those schemes.
Furthermore, we extend to such schemes the strong key indistinguishability and
strong key recovery security definitions proposed by Freire et al. for hierarchi-
cal key assignment schemes. Finally, we investigate the relations between all
the aforementioned security notions, by illustrating implications and separations
occurring between them. In detail, we show that also for what concerns dynamic
structures, the notion of security with respect to strong key indistinguishability
is equivalent to that against key indistinguishability, thus demonstrating that
the former notion is not stronger than the latter.

The paper is structured as follows: in Sect. 2 we introduce some notions
concerning hierarchical key assignment schemes with dynamic updates which
will be used later. In Sect. 3 we investigate the relations between all the security
notions proposed for hierarchical key assignment schemes supporting dynamic
structures, by showing implications and separations. Finally, in Sect. 4 we draw
some conclusions.

2 Hierarchical Key Assignment Schemes for Dynamic
Structures

Consider a set of users grouped into several disjoint classes, denoted as security
classes, where a security class can denote a generic entity. A binary relation �
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which partially orders the set of classes V is defined based on some characteristics
of each class in V . The poset (V,�) is referred to as partially ordered hierarchy.
Given two classes u and v, the notation u � v indicates that the users in v
can access u’s data. It is easy to note that since v is allowed to access its own
data, then v � v, for any v ∈ V . The partially ordered hierarchy (V,�) is
usually characterized by a directed graph G∗ = (V,E∗), in which each class
represents a vertex in G∗, and there exist an edge from v to u if and only if
u � v. Let G = (V,E) be the minimal representation of the graph G∗, i.e., the
directed acyclic graph resulting from the transitive and reflexive reduction of
the graph G∗ = (V,E∗). We remark that the graph G is characterized by the
same transitive and reflexive closure of G∗, that is, there exist a path of length
greater than or equal to zero from v to u in G if and only if there exist the edge
(v, u) in E∗. Aho et al. [1] showed that every directed graph has a transitive
reduction, which can be computed in polynomial time and is unique for directed
acyclic graphs. From now on, let Γ denote a family of graphs characterizing
partially ordered hierarchies, e.g., Γ could represent the family of the rooted
trees [34], the family of the d-dimensional hierarchies [4], etc. Let Γ be a family
of graphs characterizing partially ordered hierarchies and let G = (V,E) be
a graph in Γ . For any class v ∈ V , let AG

v be the accessible set of v in G,
i.e., the set {u ∈ V : there is a path from v to u in G} of classes which can be
accessed by v in G. Similarly, let FG

v be the forbidden set of v in G, i.e., the set
{u ∈ V : there is no path from u to v in G} of classes which cannot access v
in G.

A hierarchical key assignment scheme for a family Γ of partially ordered
hierarchies, supporting dynamic updates, has been first introduced in [13] and
is defined as follows.

Definition 1. A hierarchical key assignment scheme for Γ , supporting dynamic
updates, is a triple (Gen,Der, Upd) of algorithms with the following character-
istics:

1. The information generation algorithm Gen, carried out by a Trusted Author-
ity (TA), is probabilistic polynomial-time. It takes as inputs the security para-
meter 1τ and a graph G = (V,E) in Γ , and returns as outputs
(a) a private information su, for any class u ∈ V ;
(b) a key ku ∈ {0, 1}τ , for any class u ∈ V ;
(c) a public information pub.
Let (s, k, pub) be the output of the algorithm Gen on inputs 1τ and G, in which
s and k denote the sequences of private information and keys, respectively.

2. The key derivation algorithm Der, executed by some authorized user, is deter-
ministic polynomial-time. It takes as inputs the security parameter 1τ , a graph
G = (V,E) in Γ , two classes u ∈ V and v ∈ AG

u , the private information su

assigned to class u and the public information pub, and returns as output the
key kv ∈ {0, 1}τ assigned to class v.
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It is required that for each class u ∈ V , each class v ∈ AG
u , each private

information su, each key kv ∈ {0, 1}τ , each public information pub which can
be computed by Gen on inputs 1τ and G, it holds that

Der(1τ , G, u, v, su, pub) = kv.

3. The update algorithm Upd, carried out by the TA, is probabilistic polynomial-
time. It takes as inputs the security parameter 1τ , a graph G = (V,E) in Γ ,
the tuple (s, k, pub) (generated either by Gen or by Upd itself), an update type
up, a sequence of additional parameters params, and produces as outputs
(a) a updated graph G′ = (V ′, E′) in Γ ;
(b) a private information s′

u, for any class u ∈ V ′;
(c) a key k′

u ∈ {0, 1}τ , for any class u ∈ V ′;
(d) a public information pub′.
The sequence params, if not empty, is used to generate new keys and secret
information as a consequence of the update type up. We denote by (s′, k′, pub′)
the sequences of private information, keys, and public information output by
Upd(1τ , G, s, k, pub, up, params).

The update types we consider are the following: insertion of an edge, insertion
of a class, deletion of an edge, deletion of a class, key replacement, and revoca-
tion of a user from a class. Notice that some types of updates can be seen as a
sequence of other types of updates. For example, the deletion of a class u can be
performed by executing a sequence of edge deletions, one for each edge ingoing u
and outgoing from u. On the other hand, the deletion of the edge (u, v) requires
a key replacement operation for the class v. Finally, the revocation of a user
from a class u requires a sequence of key replacement operations. In the above
definition it is required that the updated graph G′ still belongs to the family
Γ of partially ordered hierarchies, i.e., only updates which preserve the partial
order relation between the classes in the hierarchy are allowed.

Security with respect to Key Indistinguishability. The notion of security with respect
to key indistinguishability has been extended in [13], to address the additional
security challenges introduced by the algorithm Upd used for handling dynamic
updates to the hierarchy. More precisely, in order to evaluate the security of
a hierarchical key assignment scheme supporting dynamic updates, a dynamic
adaptive adversary ADAPT attacking the scheme has been considered. Such an
adversary can make three different types of operations: performing a dynamic
update, corrupting a class, and attacking a class.

The first type of operation includes all kinds of updates described before.
More precisely, consider an updating oracle U , modeling the behavior of the
TA, which performs the required updates on the hierarchy. At the beginning,
the state of the updating oracle is represented by the tuple (G0, s0, k0, pub0),
where (s0, k0, pub0) is the output of algorithm Gen on inputs 1τ and the ini-
tial graph G0. For any i ≥ 0, the (i + 1)-th adversary’s query to the updat-
ing oracle consists of a pair (upi+1, paramsi+1), where upi+1 is an update
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operation on the graph Gi and paramsi+1 is sequence of parameters associ-
ated to the update, which the oracle answers with the updated graph Gi+1,
the public information pubi+1 associated to Gi+1, and with a sequence of
keys, denoted by old ki, which have been modified as a consequence of the
update, according to the specification of the algorithm Upd. More precisely, the
updating oracle U(1τ ,Gi,si,ki,pubi)(·, ·), given the query (upi+1, paramsi+1), runs
algorithm Upd(1τ , Gi, si, ki, pubi, upi+1, paramsi+1) and returns Gi+1, pubi+1,
and old ki to the adversary. In the following, we denote by U i(·, ·) the oracle
U(1τ ,Gi,si,ki,pubi)(·, ·). Due to its adaptive nature, the adversary may require a
polynomial number m = poly(|V |, 1τ ) of dynamic updates, where each update
is decided on the basis of the answers obtained from the updating oracle at the
previous steps.

The second type of operation is the class corruption, which can be performed
in an adaptive order and for a polynomial number of classes. For any i ≥ 0,
consider a corrupting oracle Ci, which provides the adversary with the private
information held by the corrupted classes in the graph Gi. In particular, an
adversary’s query to the corrupting oracle Ci consists of a class v in the graph
Gi, which the oracle answers with the private information held by class v in all
graphs G0, G1, . . . , Gi (if v belongs to them).

Finally, the third type of operation is the class attack, where the adversary
chooses an update index t and a class u in the hierarchy Gt and is challenged
either in computing the key kt

u or in distinguishing kt
u from a random string in

{0, 1}τ , depending on the security requirement.
In detail, Castiglione et al. have considered a dynamic adaptive adversary

ADAPT = (ADAPT1, ADAPT2) running in two stages [13]. In advance of the adver-
sary’s execution, the algorithm Gen is run on inputs 1τ and G and outputs the
tuple (s, k, pub), which is kept hidden from the adversary, with the exception of
the public information pub. During the first stage, the adversary ADAPT1 is given
access to both updating and corrupting oracles for a polynomial number m of
times. The responses obtained by the oracles are saved in some state information
denoted as history.

After interacting with the updating and corrupting oracles, the adversary
chooses an update index t and a class u in Gt, among all the classes in Gt which
cannot be accessed by the corrupted classes. In particular, the chosen class u
is such that, for any class v already queried to the corrupting oracle Ci(·) and
any i = 0, . . . , m, v cannot access u in the hierarchy Gi. In the second stage,
the adversary ADAPT2 is given again access to the corrupting oracle and is then
challenged either in computing the key kt

u assigned to u or in distinguishing kt
u

from a random string ρ ∈ {0, 1}τ . Clearly, it is required that the key kt
u on which

the adversary will be challenged is not included in the sequence old kt−1 of keys
which have been updated in the graph Gt.

Definition 2 (IND-DYN-AD). Let Γ be a family of graphs corresponding to par-
tially ordered hierarchies, let G = (V,E) ∈ Γ be a graph, and let (Gen,Der, Upd)
be a hierarchical key assignment scheme for Γ supporting dynamic updates. Let
m = poly(|V |, 1τ ) and let ADAPT = (ADAPT1, ADAPT2) be a dynamic adaptive
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adversary that during the first stage of the attack is given access both to the
updating oracle U i(·, ·) and the corrupting oracle Ci(·), for i = 1, . . . ,m, and
during the second stage of the attack is given access only to the corrupting ora-
cle. Consider the following two experiments:

Experiment ExpIND−DYN−1
ADAPT (1τ , G)

(s, k, pub) ← Gen(1τ , G)

(t, u, history) ← ADAPT
Ui(·,·),Ci(·)
1 (1τ , G, pub)

d ← ADAPT
Ci(·)
2 (1τ , t, u, history, kt

u)
return d

Experiment ExpIND−DYN−0
ADAPT (1τ , G)

(s, k, pub) ← Gen(1τ , G)

(t, u, history) ← ADAPT
Ui(·,·),Ci(·)
1 (1τ , G, pub)

ρ ← {0, 1}τ

d ← ADAPT
Ci(·)
2 (1τ , t, u, history, ρ)

return d

It is required that the class u output by ADAPT1 is such that v cannot access u
in the graph Gi, for any class v already queried to the corrupting oracle Ci(·).
Moreover, it is also required that ADAPT2 never queries the corrupting oracle Ci(·)
on a class v such that v can access u in the graph Gt. The advantage of ADAPT
is defined as

AdvIND−DYN
ADAPT (1τ , G) = |Pr[ExpIND−DYN−1

ADAPT (1τ , G) = 1]

− Pr[ExpIND−DYN−0
ADAPT (1τ , G) = 1]|.

The scheme is said to be secure with respect to IND-DYN-AD if for each graph
G = (V,E) in Γ , the function AdvIND−DYN

ADAPT (1τ , G) is negligible, for each adaptive
adversary ADAPT whose time complexity is polynomial in τ .

Notice that if the adversary ADAPT1 never queries the updating oracle dur-
ing the first stage of the attack, the above definition reduces to that of security
with respect to key indistinguishability against adaptive adversaries for hier-
archical key assignment schemes with static hierarchies, referred to as IND-AD
in [8]. However, for such schemes, it has been shown that adaptive adversaries
are polynomialy equivalent to static ones, i.e., when the class to be attacked is
chosen in advance to the execution of the scheme.

Security with respect to Key Recovery. Now, we introduce the weaker requirement
of security against key recovery. As done before, we assume the existence of the
oracles U i and Ci. We require that the adversary will guess the key kt

u with
probability only negligibly different from 1/2τ .

Definition 3 (REC-DYN-AD). Let Γ be a family of graphs corresponding to par-
tially ordered hierarchies, let G = (V,E) ∈ Γ be a graph and let (Gen,Der, Upd)
be a hierarchical key assignment scheme for Γ supporting dynamic updates. Let
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m = poly(|V |, 1τ ) and let ADAPT = (ADAPT1, ADAPT2) be a dynamic adaptive
adversary that during the first stage of the attack is given access both to the
updating oracle U i(·, ·) and the corrupting oracle Ci(·), for i = 1, . . . ,m, and
during the second stage of the attack is given access only to the corrupting ora-
cle. Consider the following experiment:

Experiment ExpREC−DYN
ADAPT (1τ , G)

(s, k, pub) ← Gen(1τ , G)

(t, u, history) ← ADAPT
Ui(·,·),Ci(·)
1 (1τ , G, pub)

kt,∗
u ← ADAPT

Ci(·)
2 (1τ , t, u, history)

return kt,∗
u

It is required that the class u output by ADAPT1 is such that v cannot access u
in the graph Gi, for any class v already queried to the corrupting oracle Ci(·).
Moreover, it is also required that ADAPT2 never queries the corrupting oracle Ci(·)
on a class v such that v can access u in the graph Gt. The advantage of ADAPT
is defined as

AdvREC−DYN
ADAPT (1τ , G) = Pr[kt,∗

u = kt
u].

The scheme is said to be secure with respect to REC-DYN-AD if, for each graph
G = (V,E) in Γ , the function AdvREC−DYN

ADAPT (1τ , G) is negligible, for each adaptive
adversary ADAPT whose time complexity is polynomial in τ .

If the adversary ADAPT1 never queries the updating oracle during the first
stage of the attack, the above definition reduces to that of security against
key recovery in presence of adaptive adversaries for hierarchical key assignment
schemes with static hierarchies, referred to as REC-AD in [8].

3 Relations Among Security Notions

As mentioned before, Freire et al. strengthened the security notions introduced
in [3] to deal with a wider set of concrete attacks. More precisely, they enable the
adversary to access the encryption keys for all the classes that precede the target
class. In fact, such keys might leak due to usage, e.g., cryptanalysis or misuse
and this may cause a compromise of the private information or encryption key
for the target class. Therefore, the model proposed by Freire et al. provides the
adversary with this further compromise capability.

In the following, we extend the security notions introduced by Freire et al. to
hierarchical key assignment schemes supporting dynamic updates. In our model,
the adversary can access the keys assigned to all the classes in the set P t

u, which
denotes the predecessors of class u in the graph Gt. Let Keysu be an algorithm
that taken as input the encryption keys kt assigned to the classes in Gt, extracts
the keys kt

v assigned to all the classes v ∈ P t
u. We denote by keysu,t the output

returned by Keysu(kt).
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Security with respect to Strong Key Indistinguishability. The next definition formal-
izes the strong key indistinguishability requirement for hierarchical key assign-
ment schemes supporting dynamic updates.

Definition 4 (STRONG-IND-DYN-AD). Let Γ be a family of graphs correspond-
ing to partially ordered hierarchies, let G = (V,E) ∈ Γ be a graph, and
let (Gen,Der, Upd) be a hierarchical key assignment scheme for Γ supporting
dynamic updates. Let m = poly(|V |, 1τ ) and let ADAPT = (ADAPT1, ADAPT2) be
a dynamic adaptive adversary that during the first stage of the attack is given
access both to the updating oracle U i(·, ·) and the corrupting oracle Ci(·), for
i = 1, . . . , m, and during the second stage of the attack is given access only to
the corrupting oracle. Consider the following two experiments:

Experiment ExpSTRONG−IND−DYN−1
ADAPT (1τ , G)

(s, k, pub) ← Gen(1τ , G)

(t, u, history) ← ADAPT
Ui(·,·),Ci(·)
1 (1τ , G, pub)

keysu,t ← Keysu(kt)

d ← ADAPT
Ci(·)
2 (1τ , t, u, history, keysu,t, k

t
u)

return d

Experiment ExpSTRONG−IND−DYN−0
ADAPT (1τ , G)

(s, k, pub) ← Gen(1τ , G)

(t, u, history) ← ADAPT
Ui(·,·),Ci(·)
1 (1τ , G, pub)

keysu,t ← Keysu(kt)
ρ ← {0, 1}τ

d ← ADAPT
Ci(·)
2 (1τ , t, u, history, keysu,t, ρ)

return d

We require that the class u output by ADAPT1 is such that v cannot access u
in the graph Gi, for any class v already queried to the corrupting oracle Ci(·).
Moreover, we also require that ADAPT2 never queries the corrupting oracle Ci(·)
on a class v such that v can access u in the graph Gt. The advantage of ADAPT
is defined as

AdvSTRONG−IND−DYN
ADAPT (1τ , G) = |Pr[ExpSTRONG−IND−DYN−1

ADAPT (1τ , G) = 1]

− Pr[ExpSTRONG−IND−DYN−0
ADAPT (1τ , G) = 1]|.

The scheme is said to be secure with respect to STRONG-IND-DYN-AD if for each
graph G = (V,E) in Γ , the function AdvSTRONG−IND−DYN

ADAPT (1τ , G) is negligible, for
each adaptive adversary ADAPT whose time complexity is polynomial in τ .

Security with respect to Strong Key Recovery. Now, we consider the weaker require-
ment of security against strong key recovery for hierarchical key assignment
schemes supporting dynamic updates. As done before, we assume the existence
of the oracles U i and Ci. We require that the adversary will guess the key kt

u

with probability only negligibly different from 1/2τ .
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Definition 5 (STRONG-REC-DYN-AD). Let Γ be a family of graphs correspond-
ing to partially ordered hierarchies, let G = (V,E) ∈ Γ be a graph and
let (Gen,Der, Upd) be a hierarchical key assignment scheme for Γ supporting
dynamic updates. Let m = poly(|V |, 1τ ) and let ADAPT = (ADAPT1, ADAPT2) be
a dynamic adaptive adversary that during the first stage of the attack is given
access both to the updating oracle U i(·, ·) and the corrupting oracle Ci(·), for
i = 1, . . . , m, and during the second stage of the attack is given access only to
the corrupting oracle. Consider the following experiment:

Experiment ExpSTRONG−REC−DYN
ADAPT (1τ , G)

(s, k, pub) ← Gen(1τ , G)

(t, u, history) ← ADAPT
Ui(·,·),Ci(·)
1 (1τ , G, pub)

keysu,t ← Keysu(kt)

kt,∗
u ← ADAPT

Ci(·)
2 (1τ , t, u, history, keysu,t)

return kt,∗
u

It is required that the class u output by ADAPT1 is such that v cannot access u
in the graph Gi, for any class v already queried to the corrupting oracle Ci(·).
Moreover, it is also required that ADAPT2 never queries the corrupting oracle Ci(·)
on a class v such that v can access u in the graph Gt. The advantage of ADAPT
is defined as

AdvSTRONG−REC−DYN
ADAPT (1τ , G) = Pr[kt,∗

u = kt
u].

The scheme is said to be secure with respect to STRONG-REC-DYN-AD if, for each
graph G = (V,E) in Γ , the function AdvSTRONG−REC−DYN

ADAPT (1τ , G) is negligible, for
each adaptive adversary ADAPT whose time complexity is polynomial in τ .

Following the same lines as Theorems 4.1, 4.2, 4.3, 4.4 and 4.5 in [11] the next
results can be easily proven.

Theorem 1 (STRONG-IND-DYN-AD⇒STRONG-REC-DYN-AD). Let Γ be a fam-
ily of graphs characterizing partially ordered hierarchies. If a hierarchical key
assignment scheme for Γ supporting dynamic updates is secure with respect to
STRONG-IND-DYN-AD, then it is also secure with respect to STRONG-REC-DYN-AD.

Theorem 2 (STRONG-REC-DYN-AD�⇒STRONG-IND-DYN-AD). Let Γ be a family
of graphs characterizing partially ordered hierarchies. If there exists a hierar-
chical key assignment scheme for Γ supporting dynamic updates that is secure
with respect to STRONG-REC-DYN-AD, then there exists a hierarchical key assign-
ment scheme for Γ supporting dynamic updates which is secure with respect to
STRONG-REC-DYN-AD but is not secure with respect to STRONG-IND-DYN-AD.

Theorem 3 (STRONG-REC-DYN-AD⇒REC-DYN-AD). Let Γ be a family of graphs
characterizing partially ordered hierarchies. If a hierarchical key assign-
ment scheme for Γ supporting dynamic updates is secure with respect to
STRONG-REC-DYN-AD, then it is also secure with respect to REC-DYN-AD.
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Theorem 4 (REC-DYN-AD�⇒STRONG-REC-DYN-AD). Let Γ be a family of graphs
characterizing partially ordered hierarchies. If there exists a hierarchical key
assignment scheme for Γ supporting dynamic updates that is secure with respect
to REC-DYN-AD, then there exists a hierarchical key assignment scheme for Γ sup-
porting dynamic updates which is secure with respect to REC-DYN-AD but which
is not secure with respect to STRONG-REC-DYN-AD.

Theorem 5 (STRONG-IND-DYN-AD⇒IND-DYN-AD). Let Γ be a family of graphs
characterizing partially ordered hierarchies. If a hierarchical key assign-
ment scheme for Γ supporting dynamic updates is secure with respect to
STRONG-IND-DYN-AD, then it is also secure with respect to IND-DYN-AD.

Following the lines of Theorem 4.6 in [11] we prove that the notion of secu-
rity with respect to strong key indistinguishability is equivalent to the one
of key indistinguishability, namely, STRONG-IND-DYN-AD is not stronger than
IND-DYN-AD.

Theorem 6 (IND-DYN-AD⇒STRONG-IND-DYN-AD). Let Γ be a family of graphs
characterizing partially ordered hierarchies. If a hierarchical key assignment
scheme for Γ supporting dynamic updates is secure with respect to IND-DYN-AD,
then it is also secure with respect to STRONG-IND-DYN-AD.

Proof. Let Γ be a family of graphs characterizing partially ordered hierarchies.
Assume by contradiction that there exists a hierarchical key assignment scheme
Σ for Γ supporting dynamic updates which is secure with respect to IND-DYN-AD
but that is not secure with respect to STRONG-IND-DYN-AD.

As a consequence, there exists a graph G = (V,E) in Γ and a dynamic adap-
tive adversary ADAPT = (ADAPT1, ADAPT2) which distinguishes between exper-
iments ExpSTRONG−IND−DYN−1

ADAPT (1τ , G) and ExpSTRONG−IND−DYN−0
ADAPT (1τ , G) with non-

negligible probability. We remark that the only difference between such two
experiments is the last input of ADAPT, corresponding to the real key kt

u assigned
by the scheme Σ to class u after the t-th update in the former experiment and
to a random value ρ ∈ {0, 1}τ in the latter. Let q(n, 1τ ) be the running-time of
ADAPT, where q is a bivariate polynomial. For any i = 1, . . . , q(n, 1τ ), let Si be
an adversary which behaves as ADAPT1 until the choice of the key to be attacked.
If the chosen key is equal to ki, then Si continues to follow ADAPT2, otherwise it
outputs 0. The advantage of ADAPT can be written as

AdvIND−DYN
ADAPT (1τ , G) ≤

q(n,1τ )∑

i=1

Pr[ADAPT1 chooses ki] · AdvIND−DYN
Si

(1τ , G).

Since AdvSTRONG−IND−DYN
ADAPT (1τ , G) is non-negligible, then there exists at least

an index h, where 1 ≤ h ≤ q(n, 1τ ), such that AdvSTRONG−IND−DYN
Sh

(1τ , G) is non-
negligible.
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We distinguish the two following cases:

– Case 1: h ≥ n + 1. This case corresponds to the scenario where the key
kh chosen by the adversary either has been created, due to a class insertion
operation, or has been modified, due to a key replacement operation.

– Case 2: 1 ≤ h ≤ n. This case corresponds to the scenario where the key
kh chosen by the adversary has been assigned to some class in the initial
graph G.

Analysis of Case 1 Assume that the key kh chosen by the adversary either has
been created or has been modified by the t-th update operation, which has
assigned such a key to a certain class u in the graph Gt. Thus, attacking the key
kh corresponds to attacking the class u in the graph Gt obtained after the t-th
update. Let P t

u be the set of predecessor of class u in Gt. Let (u1, . . . , um) be the
output of a deterministic algorithm Alg which, on input the set of predecessors
of u, finds a topological ordering of the classes in the subgraph of Gt induced
by P t

u.
We remark that the sequence keysu,t, taken as input by ADAPT, in both

the experiments ExpSTRONG−IND−DYN−1
Sh

(1τ , G) and ExpSTRONG−IND−DYN−0
Sh

(1τ , G)
contains exactly the keys kt

u1
, . . . , kt

um
. Notice that if m = 0 the

sequence keysu,t is empty, hence the experiments ExpSTRONG−IND−DYN−1
Sh

(1τ , G)
and ExpSTRONG−IND−DYN−0

Sh
(1τ , G) correspond to ExpIND−DYN−1

Sh
(1τ , G) and

ExpIND−DYN−0
Sh

(1τ , G), respectively. In this case, since Sh can distinguish between
the above experiments with non-negligible probability, this implies that the
scheme Σ is not secure with respect to IND-DYN-AD, thus leading to a con-
tradiction.

Again, consider the case where m > 0. In the following we demonstrate
how to transform the adversary Sh into a polynomial-time adversary S′

u�
, where

u� ∈ P t
u, which breaks the scheme Σ with respect to IND-DYN-AD, thus lead-

ing to a contradiction. More precisely, we create two sequences, referred to
as Exp1,1

u,t, . . . ,Exp1,m+1
u,t and Exp2,1

u,t, . . . ,Exp2,m+1
u,t , respectively, each com-

posed of m + 1 experiments, all defined over the same probability space, in
which the first experiment of the former sequence, that is Exp1,1

u,t, is equal to
ExpSTRONG−IND−DYN−0

Sh
, whereas, the last experiment of the latter sequence, that

is Exp2,m+1
u,t , is equal to ExpSTRONG−IND−DYN−1

Sh
. For any q = 2, . . . , m + 1, the

experiment Exp1,q
u,t in the former sequence is defined as follows:

Experiment Exp1,q
u,t(1

τ , G)
(s, k, pub) ← Gen(1τ , G)

(t, u, history) ← ADAPT
Ui(·,·),Ci(·)
1 (1τ , G, pub)

keysq
u,t ← Keysq

u(kt)

d ← ADAPT
Ci(·)
2 (1τ , t, u, history, keysq

u,t, ρ)
return d
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The algorithm Keysq
u returns as output the sequence keysq

u,t, in which the first
q − 1 values are chosen independently at random in {0, 1}τ and, if q ≤ m,
the other m − q + 1 values are set equal to the keys of the classes uq, . . . , um

in the graph Gt. Again, for any q = 1, . . . ,m, experiment Exp2,q
u,t in the second

sequence is defined as follows:

Experiment Exp2,q
u,t(1

τ , G)
(s, k, pub) ← Gen(1τ , G)

(t, u, history) ← ADAPT
Ui(·,·),Ci(·)
1 (1τ , G, pub)

keysm−q+2
u,t ← Keysm−q+1

u (kt)

d ← ADAPT
Ci(·)
2 (1τ , t, u, history, keysm−q+2

u,t , kt
u)

return d

where keysm−q+2
u,t represents the sequence in which the first m− q +1 values are

chosen independently at random in {0, 1}τ and, if q ≥ 2, the other q − 1 values
are set equal to the keys of the classes um−q+2, . . . , um in the graph Gt.

Since Sh can distinguish with non-negligible probability between Exp1,1
u,t,

which corresponds to ExpSTRONG−IND−DYN−0
Sh

, and Exp2,m+1
u,t , which corresponds

to ExpSTRONG−IND−DYN−1
Sh

, then there exists at least a pair of adjacent experi-
ments, in the sequence of 2m + 2 experiments obtained by composing the two
aforementioned sequences, which can be distinguished by Sh with non-negligible
probability.

We first show that such a pair cannot consist of the two extremal experiments,
namely, the last experiment of the first sequence, that is Exp1,m+1

u,t , and the first
experiment of the second sequence, that is Exp2,1

u,t. Assume by contradiction
that Sh is able to distinguish between Exp1,m+1

u,t and Exp2,1
u,t with non-negligible

probability. Notice that the only difference between such two experiments is the
last input of Sh, corresponding to a random value chosen in {0, 1}τ in experi-
ment Exp1,m+1

u,t , and to the real key kt
u in experiment Exp2,1

u,t. We show how to
create another adversary S′

h breaking the security of the scheme Σ with respect
to IND-DYN-AD, by using the adversary Sh. The adversary S′

h, on inputs 1τ , t, u,
history, and a value α, which corresponds either to the key kt

u or to a random
value chosen in {0, 1}τ , creates the sequence keysm+1

u,t needed for Sh choosing
independently at random m elements in {0, 1}τ . Then, S′

h returns the same out-
put as Sh(1τ , t, u, history, keysm+1

u,t , α). Clearly, since Sh can distinguish between
Exp1,m+1

u,t and Exp2,1
u,t with non-negligible probability, then S′

h can distinguish
between ExpIND−DYN−AD−0

S′
h

and ExpIND−DYN−AD−1
S′

h
with non-negligible probability,

thus breaking the security of the scheme Σ with respect to IND-DYN-AD. Con-
tradiction. Therefore, the pair of adjacent experiments that Sh can distinguish
belongs either to the first sequence or to the second one.

Without loss of generality, assume that the pair of adjacent experiments
which Sh can distinguish belongs to the first sequence and it is composed of
Exp1,�

u,t and Exp1,�+1
u,t , for some � = 1, . . . ,m. We remark that the views of

Sh in the aforementioned adjacent experiments differ only in one value, corre-
sponding to the key kt

u�
in Exp1,�

u,t and to a random value chosen in {0, 1}τ in
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Exp1,�+1
u,t . In the following we show how to create an adversary S′′

u�
, which by

using the adversary Sh is able to break the security of the scheme Σ with respect
to IND-DYN-AD. More precisely, we show that S′′

u�
can distinguish between the

experiments ExpIND−DYN−AD−0
S′′

u�
and ExpIND−DYN−AD−1

S′
u�

with non-negligible proba-
bility. The adversary S′′

u�
, on inputs 1τ , t, u�, history and a value α, which

corresponds either to the key kt
u�

or to a random value chosen in {0, 1}τ , con-
structs the inputs for Sh as follows:

– Extracts from history the private information stored by corrupted classes.
This can be done since u� ∈ Pu, i.e., u� is a predecessor of u, hence the
classes corrupted for u are also corrupted for u�, and their private information
is stored in history.

– Uses the above private information and α to construct a sequence keysα
u,t,

which corresponds either to keys�
u,t or to keys�+1

u,t . More precisely, the first
� − 1 elements of keysα

u,t are chosen independently at random in {0, 1}τ , the
�-th element corresponds to α, while the other m− � elements, corresponding
to the keys of classes u�+1, . . . , um in Gt, are computed through the private
information of these classes, which are stored in history.

– Furthermore, the final input for Sh is set equal to a random value ρ chosen
in {0, 1}τ .

Finally, S′′
u�

returns as output the same output as Sh(1τ , t, u, history,

keysα
u,t, ρ). It is easy to note that since Sh can distinguish between Exp1,�

u,t

and Exp1,�+1
u,t with non-negligible probability, then S′′

u�
can distinguish between

ExpIND−DYN−AD−0
S′′

u�
and ExpIND−DYN−AD−1

S′′
u�

with non-negligible probability, hence
breaking the security of the scheme Σ with respect to IND-DYN-AD. Contradiction.

We remark that if the pair of adjacent experiments which can be distinguished
belongs to the second sequence, namely, it is composed of Exp2,�

u,t and Exp2,�+1
u,t ,

for some � = 1, . . . ,m, then the proof works similarly to the previous case.

Analysis of Case 2 As done for Case 1, we can show that no adversary Sh,
where 1 ≤ h ≤ n, distinguishes between experiments ExpSTRONG−IND−DYN−0

Sh
and

ExpSTRONG−IND−DYN−1
Sh

with non-negligible probability.
To conclude, we have proven that no dynamic adaptive adversary

ADAPT has non-negligible probability in distinguishing between experiments
ExpSTRONG−IND−DYN−0

ADAPT and ExpSTRONG−IND−DYN−1
ADAPT . Thus, the scheme is secure with

respect to STRONG − IND − DYN.

In Fig. 1 we summarize implications and separations occurring between
security notions for hierarchical key assignment schemes supporting dynamic
updates. Notice that the relations represented by the arrows without label can
be deduced trivially, due to the equivalence between STRONG-IND-DYN-AD and
IND-DYN-AD security notions.
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[STRONG − IND − DYN − AD]

[STRONG − REC − DYN − AD]

[REC − DYN − AD]

[IND − DYN − AD]

Thm. 1

Thm. 2

Thm. 3
Thm. 4

Thm. 5 and Thm. 6

Fig. 1. Overview of the relations occurring between security notions for hierarchical
key assignment schemes supporting dynamic updates.

4 Conclusions

In this paper we focused on hierarchical key assignment schemes for dynamic
structures, i.e., supporting dynamic updates such as insertions/deletions of
classes and relations between classes, as well as key replacements and user
revocations.

In particular, we have first extended to the dynamic setting the existing
security definitions for hierarchical key assignment schemes proposed by Freire
et al., namely, security with respect to strong key indistinguishability and strong
key recovery, by providing the adversary with further attack abilities.

Moreover, we have investigated the relations occurring between the secu-
rity notions for hierarchical key assignment schemes for dynamic structures, by
showing implications and separations which hold between those notions. More
precisely, we have shown that also for what concerns dynamic structures, secu-
rity with respect to strong key indistinguishability is equivalent to that with
respect to key indistinguishability. Therefore, the notion of strong key indistin-
guishability is not stronger than the one with respect to key indistinguishability.
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Abstract. Content-centric networks have demonstrated an entirely new
type of network topology, which offers a new way to distribute informa-
tion in the data-driven network. Unlike the TCP/IP network topology,
which is address-driven, content-centric networks do not require any
address. Based on the content-to-consumer paradigm, content-centric
networking architecture was proposed for the content to be provided
efficiently with great convenience to users. As the content-centric net-
work is not address-driven, when a data packet is delivered it cannot be
encrypted with any encryption key of a node. Therefore, data confiden-
tiality in content-centric network is a challenging problem. Motivated to
solve this problem, we introduce a new cryptosystem for content-based
encryption, where the encryption key is associated with the content. We
propose a content-based encryption scheme (CBE), which is proven to be
semantically secure in the random oracle model. We apply the CBE to
construct a secure content delivery protocol in a content-centric network.

Keywords: Content-centric network · Content-based encryption ·
Chosen plain-text security

1 Introduction

In the traditional TCP/IP network, which is address-centric, the data packets
need to tell where the content is. Therefore, the IP packets contain two addresses,
one for the source and the other for the destination host. All the traffic on the
Internet rely on these IP addresses. To address the security of TCP/IP network,
conventional cryptography can be applied. In case of public-key cryptography,
each host is usually equipped with a pair of public and private keys. In traditional
public key infrastructure (PKI), the public key of a host is accompanied with a
certificate. To simplify certificate management in traditional PKI, identity-based
infrastructure [1,4] can also be applied in a TCP/IP network, where the public
key of a host can be its IP address. The problem for the TCP/IP networking is

c© Springer International Publishing Switzerland 2016
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that it assumes there is end-to-end physical connectivity. However, end-to-end
connectivity may not ever exist and links (contacts) may not be suitable for
schedules. Therefore, if the target provider is unreachable or unable to provide
the requested content, then the content acquisition in TCP/IP network will fail.

When users acquire a content, which could be a file, a music, a video, etc.,
in a network, they concern what they receive, where the location of the con-
tent might not be important. To replace where with what and to overcome the
inherent problem in the TCP/IP network, the content-to-consumer paradigm
was presented to replace the host-to-host paradigm. Therefore, Content-centric
Networking [8,9,13] or Information-centric Networking [2,11], a new communica-
tion architecture built on named data, was introduced. Content-centric network
has no notion of host at its lowest level, while a packet “address” names con-
tent (not location). In a content-centric network, the content is delivered to the
intended consumers regardless of their addresses [8,9,11,13]. Therefore, it offers
great advantage for content acquisition, as in the content-centric network, the
content-centric mechanism is employed to seek the target content, and any node
which holds the requested contents can provide contents. This is a distinct fea-
ture compared with the TCP/IP network, since in the TCP/IP network, even
if an intermediate node between the source node and the destination node pos-
sesses the requested content, it cannot provide the content because only the
target provider node can provide it [10]. Therefore, the content acquisition cost
and latency might be increased. In the content-centric network, the consumer
node can acquire the content in an optimal manner. The content can be provided
by a nearest node instead of a further node if both nodes possess the content.
Therefore, the content-centric network can greatly reduce the cost of content
transmission.

As the content-centric network is not address-driven, in a public-key setting,
a content cannot be encrypted with the destination node’s public key for the con-
fidentiality of the content. Therefore, different from the TCP/IP networking, the
traditional public key infrastructure cannot be used to best suit content-centric
networking. The ID-based encryption [3,12] is unsuitable for the content-centric
network either. In 1984, Shamir [12] asked for a public key encryption scheme
in which the public key can be an arbitrary string. Their motivation was to sim-
plify certificate management in traditional public key crypto-systems. Boneh and
Franklin [3] proposed the first practical and provably secure ID-based encryp-
tion scheme. In an ID-based encryption, the user’s identity is used as the public
key, which is usually the IP address in a network protocol, and the correspond-
ing private key is extracted from the identity. As in this content-to-consumer
paradigm, there is no notion of host, which means no “IP address” is used,
the ID-based encryption cannot be used for the content-centric network when a
provider node encrypts the content. The conventional symmetric encryption is
neither a good choice to provide the content’s confidentiality in a content-centric
network, since the content provider and the content consumer need to share the
same symmetric key. The obvious issue is key distribution, which requires users’
addresses.
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In this paper, we propose a new notion of content-based encryption, where
the encryption key is directly associated with the content itself, and the cor-
responding private decryption keys, generated by a trusted party, are provided
for the valid users who are potential content receivers. Any user who wants to
acquire the content needs to obtain one of the associated private keys of the con-
tent. With the content-based encryption key, the content provider can encrypt
the content. The ciphertext is then relayed by intermediate nodes to the corre-
sponding consumer who acquires the content. The consumer can decrypt it with
his private decryption key.

To better illustrate the applicability of our scheme to the content-centric
encryption, in the paper, we also construct a secure content delivery proto-
col tailored for the content-centric network. We describe how a content can be
delivered by the content provider and acquired by the consumer and how the
confidentiality of the content is achieved.

Besides the content-centric network, the content-based encryption can be
used in many other content sharing applications, e.g. secure multimedia con-
tent dispatching and selling. The content owner encrypts the content under the
content-based public key. The consumer who has got one of the corresponding
private keys can decrypt it and retrieve the content.

As a note, we noticed that Zhao and Zhuo [14] proposed a content-based
encryption scheme for wireless H.264 compressed videos. However it is not rele-
vant to our notion of content-based encryption.

Our Contribution. We propose a new notion of content-based encryption for
the content-centric network. In this new encryption paradigm, the public encryp-
tion key is directly associated with the content name itself and the private keys
of the content are derived secretly from the content name. The content encrypted
with the public key can be decrypted by any user who holds a valid content-
based private key. We present a concrete content-based encryption scheme and
prove its semantic security under the random oracle model. Significantly, we are
able to show the application of the proposed content-based encryption scheme
when the content is delivered in the content-centric network.

Organization. We provide the definitions of content-based encryption and its
security notion in Sect. 2. In Sect. 3, we introduce the preliminaries and the hard
problem assumption. We then present our first construction CBE and its security
proof in Sect. 4. In Sect. 5, we present an application of our scheme to show how
it works in the content-centric network. We conclude this paper in Sect. 6.

2 Definitions

A content-based encryption scheme E is specified by four algorithms, namely
Setup, Encrypt, Key-Extract, and Decrypt:
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Setup(1λ): it takes as input the security parameter λ and returns the system
parameters params and master-key MK. params are publicly known, while MK is
only known to the Private Key Generator (PKG).

Encrypt(params,C, name): it is a randomized algorithm that takes as input the
public parameters params, a content C and the unique name of the content name
and outputs the ciphertext CT . Each content has a unique content name.

Key-Extract(params,MK, name): it is a randomized algorithm that takes as
input params, master-key MK, the unique name of the content C and outputs a
set of private keys SKi, i = 1, . . . , n̄, for an integer n̄.

Decrypt(params, CT, SKi): it takes as input a ciphertext CT , a private key
SKi, and the public parameters params and outputs the content C.

In the following, we slightly modify the definition of semantic security (IND-
CPA) for a public key encryption scheme [7] and define a new semantic security
model in content-based encryption where the adversary can obtain the decryp-
tion key associated with any content wrt content name namej of her choice (other
than the content name name being attacked).

We say that a content-based encryption scheme E is semantic secure against
an adaptive chosen plaintext attack (IND-name-CPA) if no polynomially bounded
adversary A has a non-negligible advantage against the challenger in the follow-
ing IND-name-CPA game.

Setup: the challenger takes a security parameter λ as input and runs the Setup
algorithm. It gives the adversary the resulting system parameters params and
keeps the master-key MK to itself.

Phase 1: A adaptively issues queries q1, . . . , qm where query qi is one of:
Key Extraction queries 〈namei〉. The challenger responds by running algo-

rithm Key-Extract to generate one private decryption key SKi corresponding
to the public key namei. It sends SKi to the adversary A.

Challenge: once Phase 1 is over, it outputs two equal length contents C∗
0,C

∗
1

on which it wishes to be challenged. The only constraint is that the adversary
did not make any key extraction query of their corresponding content names
name∗

0 or name∗
1 in Phase 1. The challenger picks a random bit b ∈ {0, 1} and

sets CT ∗ = Encrypt(params,C∗
b , name∗

b). It sends the challenge ciphertext CT ∗

to the adversary A.

Phase 2: A adaptively issues queries qm+1, . . . , qt key extraction queries as in
Phase 1. The restriction is that the adversary cannot make any key extraction
query for name∗

b (b = 0, 1).

Guess: finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b.
We refer to such an adversary A as an IND-name-CPA adversary. We define

adversary A’s advantage in attacking the scheme E as the following function of
the security parameter λ: AdvE,A(λ) =

∣
∣Pr[b′ = b] − 1

2

∣
∣ .
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Definition 1. A content-based encryption system E is semantically secure
against an adaptive chosen plaintext attack if for any polynomial time IND-name-
CPA adversary A the function AdvE,A(λ) is negligible. As shorthand, we say that
E is IND-name-CPA secure.

3 Preliminaries

3.1 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of large prime order p. e :
G × G → GT is a bilinear map which satisfy the following properties:

– Bilinear. For all u, v ∈ G and a, b ∈ Z
∗
p, we have e(ua, vb) = e(u, v)ab;

– Non-degenerate. e(g, g) �= 1, if g is a generator of G;
– Computable. For any u, v ∈ G, e(u, v) can be computed efficiently.

3.2 Complexity Assumptions

The security of our encryption system is based on the truncated decision
augmented bilinear Diffie-Hellman exponent assumption (truncated decision
ABDHE) [6]. The truncated decision n-ABDHE problem is defined as follows.

Let n be an integer and (p,G,GT , e) be a bilinear map group system. Let
g, g′ be the generators of G. For some unknown a ∈ Z

∗
p, given a vector of n + 3

elements (g′, g′(an+2), g, ga, g(a
2), . . . , g(a

n)) ∈ G
n+3 and an element Z ∈ GT as

input, decide whether Z = e(g′, g)(a
n+1) or not.

We define an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving
truncated decision n-ABDHE problem if

∣
∣
∣Pr

[
B(g′, g′(an+2), g, ga, g(a

2), . . . , g(a
n), e(g′, g)(a

n+1))) = 0
]

− Pr
[
B(g′, g′(an+2), g, ga, g(a

2), . . . , g(a
n), Z) = 0

]∣
∣
∣ ≥ ε

where the probability is over the random choice of generators g, g′ in G, the
random choice of a in Z

∗
p and the random choice of Z in GT .

Definition 2. We say that the truncated decision (t, ε, n)-ABDHE assumption
holds in G if no t-time algorithm has advantage at least ε in solving the truncated
decision n-ABDHE problem in G.

4 Construction for Chosen Plaintext Security

We propose a content-based encryption system CBE that is secure against the
chosen plaintext attack. In the construction, we assume each content denoted by
C is associated with a unique identifier denoted by name. The public encryption
key of each content is name, and its private decryption keys are generated based
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on its name. For each content, there is a unique encryption key, but multiple
private decryption keys.

Let G and GT be groups of prime order p, and e : G × G → GT be the
bilinear map. The content-based encryption system CBE works as follows.
Setup. The PKG picks random generators g, h, y ∈ G and a random number
α ∈ Z

∗
p. It sets g1 = gα ∈ G. It also chooses two collision-resistant hash functions

H : G → Z
∗
p and H1 : {0, 1}∗ → Z

∗
p. The public parameters params and the

master secret key MK are given by params = (g, g1, h, y,H,H1), MK = α.

Encrypt. To encrypt the content C ∈ GT using its unique identifier name ∈
{0, 1}∗, the sender generates a random number z ∈ Z

∗
p and computes the

ciphertext CT as follows: U = (g1g−H1(name))z, V = y−z,W = e(g, g)z,
T = C · e(g, h)−z. The sender sends the ciphertext CT = (U, V,W, T ) to the
users.

Key-Extract. For i = 1, 2, . . . , n̄, the PKG generates the secret key SKi for
a content C with the identifier name. The PKG generates a random number
ri ∈ Z

∗
p, and computes Ri = gri , ti = H(Ri), Si = (hyrig−ti)

1
α−H1(name) . For

i = 1, 2, . . . , n̄, the PKG outputs the private decryption key SKi = (Ri, Si), and
sends it to the user Ui.

Decrypt. To decrypt the ciphertext CT = (U, V,W, T ), the user Ui who holds
the decryption key SKi = (Ri, Si), firstly computes ti = H(Ri) and decrypts
the ciphertext to obtain the content: C = T · e(U, Si) · e(V,Ri) · W ti .

Correctness. Assuming the ciphertext is well-formed for name:

e(U, Si) · e(V,Ri) · W ti

= e(gz(α−H1(name)), (hyrig−ti)
1

α−H1(name) ) · e(y−z, gri) · e(g, g)zti

= e(g, h)z · e(g, y)zri · e(g, g)−zti · e(g, y)−zri · e(g, g)zti = e(g, h)z,

as required. Therefore, the content C can be recovered.

Remark. In our construction, the PKG generates multiple different secret keys
corresponding to each content. These secret keys are securely distributed to
multiple users (at registration, for example). An authorized user who holds a
private decryption key can recover the content. In CBE, without the knowledge
of the master key MK, the authorized users cannot collude to generate a new
valid secret key of the same content.

CBE is proved IND-name-CPA secure under the truncated decision n-ABDHE
assumption.

Theorem 1. Assume the truncated decision (t, ε, n)-ABDHE assumption holds
for (G,GT , e). The proposed CBE scheme is (t′, ε′, qn) IND-name-CPA secure
where qn = n − 1, t′ = t − O(tH1 · n2) − O(tH · n) − O(texp · n2), ε′ = ε + 1

p , tH1

is the time required to compute the hash H1, tH is the time required to compute
the hash H, and texp is the time required to compute the exponentiation in G.
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Proof. Assume that A is an adversary that (t′, ε′, qn)-breaks the IND-name-CPA
security of CBE above. We can then construct an algorithm, B, that solves the
truncated decision n-ABDHE problem, as follows. B takes as input a random
truncated decision n-ABDHE challenge (g′, g′an+2

, g, ga, . . . , gan

, Z), where Z is
either e(g, g′)an+1

or a random element of GT . B works as a challenger in the
following procedure.

Setup. B generates a random polynomial f(x) ∈ Zp[x] of degree n. It also
randomly chooses c, x∗ ∈ Z

∗
p. It sets h = gf(a) by computing from g, ga, . . . , gan

.
B sets g1 = ga and y = gc

1g
−cx∗

= gc(a−x∗). It sends the public key (g, g1, h, y)
to the adversary A. Since g, a, c and f(x) are uniformly chosen at random, h
and y are uniformly random, and the public key has a distribution identical to
that in the actual attack.

Hash Query. B can make hash queries of H1 and H, and maintains two hash
lists L1 and L2 correspondingly.

H1-query: B maintains a list L1 of a tuple (namei, xi). The list is initially empty.
Upon receiving a hash query for namei, B looks up the list L1 to find the hash
value xi of namei and returns xi to A. If namei is not on the list L1, B randomly
chooses xi ∈ Z

∗
p and adds a new tuple (namei, xi) to L1. Then B returns xi.

H-query: B maintains a list L2 of a tuple (ri, Ri, ti). The list is initially empty.
Upon receiving a hash query for Ri = gri , B looks up the list L2 to find the hash
value ti of Ri and returns ti to A. If (ri, Ri) is not on the list L2, B randomly
chooses ti ∈ Z

∗
p and adds a new tuple (ri, Ri, ti) to L2. Then B returns ti.

Phase 1. A makes key extraction queries. B responds to a key extraction query
for namei as follows. Firstly B looks up L1 to find a corresponding xi. If xi = a,
B uses a to directly solve the truncated decision n-ABDHE problem. Otherwise,
B randomly chooses ri ∈ Z

∗
p and computes Ri = gri . It makes an H-query

to obtain H(Ri) = ti. Then B sets Si = g
f(a)+acri−x∗cri−ti

a−xi by computing from
g, ga, . . . , gan−1

. B sets the private decryption key for namei as (Ri, Si). This is

a valid secret key for namei, since Si = g
f(a)+acri−x∗cri−ti

a−xi = (hyrig−ti)
1

a−H(namei) ,
as required.

Challenge. A outputs two equal length contents C∗
0,C

∗
1 ∈ GT with unique

identifiers name∗
0 and name∗

1 correspondingly. If x∗ = a, B uses a to solve the
truncated decision n-ABDHE problem directly. Otherwise, B generates a bit
b ∈ {0, 1}, and computes a secret key (Rb = gr∗

, Sb = (hyr∗
g−t∗

)
1

a−x∗ ) for
name∗

b as in Phase 1. Let f2(x) = xn+2 and let F2(x) = f2(x)−f2(x
∗)

x−x∗ , which is a
polynomial of degree n + 1. B sets U∗ = g′f2(a)−f2(x

∗), V ∗ = g′−c(f2(a)−f2(x
∗)),

W ∗ = Z · e(g′,
∏n

i=0 gF2,ia
i

), T ∗ = C∗
b

e(U∗,Sb)e(V ∗,Rb)W t∗ , where t∗ = H(Rb) and
F2,i is the coefficient of xi in F2(x). It returns CT ∗ = (U∗, V ∗,W ∗, T ∗) to A as
the challenge ciphertext.

Let s = (log gg′
)F2(a). If Z = e(g′, g)an+1

, then U∗ = gs(a−x∗) =
(g1g−H(name∗

b ))s, V ∗ = y−s, W ∗ = e(g, g)s and Cb/T ∗ = e(U∗, Sb)e(V ∗, Rb)
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W t∗
= e(g, h)s under randomness s. Since log gg′

is uniformly random, s is uni-
formly random. Therefore, (U∗, V ∗,W ∗, T ∗) is a valid, appropriately distributed
ciphertext to A.

Phase 2. A makes key extraction queries. B responds as in Phase 1.

Guess. Finally, A outputs its guess b′. If b′ = b, B outputs 0; otherwise, it
outputs 1.

Perfect Simulation. When Z = e(g(a
n+1), g′), the public key and challenge

ciphertext issued by B come from a distribution identical to that in the actual
construction. Now we will show that the secret keys issued by B are appropriately
distributed. Let I be a set consisting of a, the hash value H(name∗

b), and the hash
value H(namei) queried by A; observe that |I| ≤ n + 1. As f(x) is a uniformly
random polynomial of degree n, from A’s view, the values {f(ai) : ai ∈ I}
are uniformly random and independent. Therefore, the keys issued by B are
appropriately distributed.

Probability Analysis. If Z = e(gan+1
, g′), then the simulation is perfect, and A

will guess the bit b correctly with probability 1
2 + ε′. Otherwise, Z is uniformly

random, thus the elements (U∗, V ∗,W ∗) are uniformly random and indepen-
dently distributed in G×G×GT . In this case, the inequality W ∗ �= e(U∗, g)

1
a−x∗

holds with probability 1− 1
p . Since r∗ is uniformly random and independent from

A’s view, t∗ is random and independent. When the inequality W ∗ �= e(U∗, g)
1

a−x∗

holds, the value of

e(U∗, Sb)e(V ∗, Rb)W ∗t∗
= e(U∗, (hyr∗

g−t∗
)

1
a−x∗ )e(V ∗, gr∗

)W ∗t∗

= e(U∗, h
1

a−x∗ )e(U∗, y
1

a−x∗ )r∗
e(V ∗, gr∗

)(W ∗/e(U∗, g)
1

a−x∗ )t∗

is uniformly random and independent from A’s view. Therefore,

T ∗ =
C∗

b

e(U∗, Sb)e(V ∗, Rb)W ∗t∗

is uniformly random and independent, and (U∗, V ∗,W ∗, T ∗) can impart no infor-
mation regarding the bit b.

Assume that no H1(namei) equals a (which would only increase B’s success
probability). If Z is randomly sampled from GT ,

∣
∣
∣
∣Pr[B(g′, g′(an+2), g, ga, g(a

2), . . . , g(a
n), Z) = 0] − 1

2

∣
∣
∣
∣ ≤ 1

p
.

When Z = e(gan+1
, g′),

∣
∣
∣
∣Pr[B(g′, g′(an+2), g, ga, g(a

2), . . . , g(a
n), Z) = 0] − 1

2

∣
∣
∣
∣ ≥ ε′.
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Thus, for uniformly random g, g′, a and Z, we have
∣
∣
∣Pr[B(g′, g′(an+2), g, ga, g(a

2), . . . , g(a
n), e(g′, g)(a

n+1)) = 0]

− Pr[B(g′, g′(an+2), g, ga, g(a
2), . . . , g(a

n), Z) = 0]
∣
∣
∣ ≥ ε′ − 1

p
.

Time-Complexity. In the simulation, to respond A’s key extraction queries
for namei, B needs to make n H1-hash query, 1 H-hash query and to com-

pute g
f(a)+acri−x∗cri−ti

a−xi , where f(a)+acri−x∗cri−ti

a−xi
is a polynomial of degree n− 1.

Therefore, each key extraction query needs to compute O(n) exponentiations in
G. Since A makes at most n − 1 such queries, t = t′ + O(tH1 · n2) + O(tH · n) +
O(texp · n2), where tH1 is the time required to compute the hash H1, tH is the
time required to compute the hash H, and texp is the time required to compute
the exponentiation in G.

This concludes the proof of Theorem 1.

By applying a technique due to Fujisaki-Okamoto [5], we can easily convert
the IND-name-CPA secure content-based encryption scheme CBE into a chosen
ciphertext secure content-based encryption system in the random oracle model.

5 Securing Content-Centric Network

We apply our content-based encryption scheme to a content-centric network and
demonstrate the applicability of our scheme for a real-world application.

5.1 Content-Centric Network Architecture

The content-centric network consists of a trusted third party (TTP) and three
types of nodes as shown in Fig. 1:

– TTP: it provides the unique identifier for each content and acts as a pri-
vate key generator (PKG) that generates the private decryption keys for the
content;

– Provider node: it is a node which provides the content uniquely identified by
its name to the other nodes in the network;

– Consumer node: it is a node which is authorized to obtain the content pro-
vided by the Provider node;

– Intermediate node: it is a node resided between a Provider node and a Con-
sumer node, and it aims to forward an Interest sent by a Consumer node or
a Data (here, we refer content as Data) returned by a Provider node.

In Fig. 1, an example of the content-centric network is presented, where C1,
C2 and C3 are the Consumer nodes; E1, E2, E3, E4 and E5 are the Intermediate
nodes; P1 and P2 are the Provider nodes. Note that a Provider node could also
be an Intermediate node or a Consumer node for another content; a Consumer
node could also be a Provider node or an Intermediate node for another content;
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Fig. 1. Content-centric network architecture.

an Intermediate node could be a Provider node or a Consumer node for another
content. Each node has multiple interfaces where the data comes or outputs.
For simplicity, assume all the nodes including the Provider nodes, the Consumer
nodes and the Intermediate nodes have four interfaces denoted as 1, 2, 3 and 4.
Therefore, It allows multiple sources for data and can query them all in parallel.

The content-centric network communication is driven by the consumers of
data. There are three content-centric network packet types, Route Establishing
Request, Interest and Data. A Provider node which holds a content makes a Route
Establishing Request to establish links among the nodes according to the content
identifier. A Consumer node asks for an interested content by broadcasting its
Interest over all available interfaces [9]. Any node which has received the Interest
and has the data that satisfies it can respond with a Data packet (content chunk).
Data is transmitted only in response to an Interest and consumes that Interest [9].

As shown in Fig. 2, the core content-centric network packet forwarding engine
has three main data structures: FIB (Forwarding Information Base), CS (Content
Store, i.e. buffer memory), and PIT (Pending Interest Table) [8]. The FIB is used
to forward Interest packets toward content sources, i.e. the Provider nodes which
have the matching Data. The CS is the same as the buffer memory of an IP
router but it stores the received Data packet as long as possible. The PIT tracks
Interests forwarded upstream toward content source(s), so returned Data can be
sent downstream to its requester(s) [8]. After the PIT entries are used to forward
a matching Data packet, they are erased immediately.

When an Interest arrives at an interface, if there is a matching entry in the
CS, it will be returned from the same interface where the Interest comes. If
there is no matching entry, the PIT is checked for an existing Pending Interest.
If there is already a matching entry, the arrival Interface for the new Interest
is added to the list in the corresponding PIT entry. If there is no already an
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Fig. 2. Content-centric network forward engine model.

existing PIT entry, the FIB table is checked for forwarding information. If there
is a corresponding entry, the Interest is forwarded accordingly, and the Interest
and the arrival Interface are added to the PIT.

In content-centric network, the Data packet is not routed but simply follows
the chain of PIT entries back to the original requester(s).

5.2 Secure Content Delivery in Content-Centric Network

The content-centric network presented in this section is built on our notion of
content-based security for protection of the content. The proposed content-based
encryption is applied to protect the content when it is acquired and transmitted
over the content-centric network.

System Setup. To achieve the content confidentiality, the TTP executes the
following steps to setup the system. It generates the master-key MK and the
public system parameters params; chooses two collision-resistant hash functions
H2 : Z∗

p → {0, 1}l1 and H3 : GT → {0, 1}l2 , where l1, l2 are positive integers.
Then it publishes params and H2, H3, and keeps MK secret.

FIB Establishment. To establish the route among the three types of nodes,
each node maintains a Forwarding Information Base (FIB) where each entry con-
tains two fields: Interface and Identifier, as shown in Fig. 3. The routing estab-
lishment follows the next four steps:
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Fig. 3. FIB establishment.

1. If an original Provider node Px wants to provide the content Ci, it sends the
original name namei of Ci and a unique tag (tagi = H3(Ci)) to the TTP. The
TTP computes Ni = H1(namei‖tagi). The public key of Ci is set as PKi = Ni.
Then the TTP publishes (Ni, namei). The Provider node Px computes the
identifier hi = H2(Ni), and randomly selects a secure symmetric key ki to
compute Ci’s ciphertext ei = SEnc(Ci, ki) and di = Encrypt(ki, PKi) where
SEnc is the symmetric encryption and Encrypt is the proposed content-based
encryption.

2. The Provider node Px generates a route establishing request RER = (hi, Ti)
where hi is the header and Ti is the timestamp. Px forwards the request RER
to nearby nodes.

3. If an Intermediate node (or a Consumer node) receives this RER from interface
j, the Intermediate node (or Consumer node) does the following operations:

If there is no entry for hi in the FIB of the Intermediate node (or Consumer
node), it forwards the received request RER via each interface except the
interface where RER arrived, and adds a new entry [j, hi] in its FIB where
j is the interface the request arrived and hi is the identifier; Otherwise, it
discards the received RER;

4. Repeat Step 3 until all the Consumer nodes in the network receive the RER
with identifier hi and build an entry for hi in their FIBs, as shown in Fig. 3.

Assume that in the content-centric network architecture, the Provider nodes
can provide totally m pieces of contents. Each content Ci (i ∈ [1,m]) is uniquely
identified by hi. As shown in Fig. 3, the Provider node P1 owns content C1 and
it provides (h1,Data1) where h1 is the identifier of content C1 with public key
N1, Data1 = (e1, d1) is the ciphertext of content C1. The Provider node P2 owns
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content C2 and it provides (h2,Data2) where h2 is the identifier of content C2

with public key N2, Data2 = (e2, d2) is the ciphertext of content C2.
As shown in Fig. 3, P1 forwards a Route Establishing Request message RER1 =

(h1, T1) where the header is h1 from all its interfaces to its nearby nodes. P2

forwards a Route Establishing Request message RER2 = (h2, T2) where the header
is h2 from all its interfaces to its nearby nodes.

When the Intermediate node E1 receives RER1 from interface 3, it creates a
new entry [3, h1] where 3 indicates the coming interface and h1 is the identifier
in its FIB, and then it forwards RER1 from all its interfaces except interface
3. Similarly, when the intermediate node E2 receives RER1 from interface 4, it
creates a new entry [4, h1] in its FIB, and then it forwards RER1 from all its
interfaces except interface 4.

When the intermediate node E4 receives RER1 from interface 4, it creates
a new entry [4, h1] in its FIB, and then it forwards RER1 from all its interfaces
except interface 4. Then, when E4 receives an RER1 with the same identifier h1

from interface 3, it discards this request, since there is already an entry for h1

in its FIB.
When the Intermediate node E5 receives RER1 from interface 4, it creates

a new entry [4, h1] in its FIB, and then it forwards RER1 from all its interfaces
except interface 4.

The Consumer nodes C1, C2 and C3 receive the request RER1 from interface
3, 4, 4, respectively, and they create entries [3, h1], [4, h1], [4, h1] in their FIBs,
respectively. With the same approach, the Consumers nodes C1, C2 and C3

receive the request RER2 from interface 3, 3, 4, respectively, and they create
entries [3, h2], [3, h2], [4, h2] in their FIBs, respectively.

Content Acquisition. As shown in Fig. 4, to support content acquisition, all
the Intermediate nodes maintain two tables: a Pending Interest Table (PIT) and
a Content Store (CS). In the PIT, each entry consists of two fields: Interface
and Identifier. Differing from FIB, the interface in PIT is the interface where
the Interest message comes, while the interface in FIB is the interface where the
Route Establishing Request RER comes. In CS, each entry consists of two fields:
Identifier and Data.

If a Consumer node Cy wants to acquire the content Ci identified by hi, it
firstly checks whether hi is in its FIB. If there is an entry for hi, it acquires the
corresponding private decryption key SKi,y from the TTP. The private decryp-
tion key is generated according to the content-based encryption scheme in Sect. 4.
After that the Consumer node Cy acquires the content Ci according to the fol-
lowing steps:

1. Cy checks the entry for hi in its FIB. Assume the entry is [k, hi]. Cy then
forwards an interest message Interest = (hi, T

′
i ) where hi is the header and T ′

i

is the timestamp from the interface k to the nearby nodes;
2. If a node receives this Interest from interface j, the node does the following

operations:
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Fig. 4. Content acquisition.

• If there is no entry [hi, (ei, di)] in the CS of the node, where hi is the
identifier and (ei, di) is the data, the PIT is checked for an Interest entry
with the same identifier. If there is already a matching entry, the arrival
interface for the new Interest is added to the PIT list in the corresponding
PIT entry. Otherwise, a new entry [j, hi] is added in the PIT where j is
the interface the Interest comes and hi is the identifier. The node forwards
Interest from each interface except the interface where Interest comes, and
then Step 2 is repeated;

• Otherwise, the node constructs a response data packet Data = (hi, ei, di)
where the header is hi and the payload is (ei, di), and forwards back Data
from interface j;

3. If a node receives Data from the interface f , it checks if there is an entry
for hi in its CS. If no, creates a new entry [hi, (ei, di)] and adds it to its CS.
Otherwise, the new coming Data is not added to its CS. Then it checks its
PIT. If there is an entry [j, hi] in its PIT, it forwards the response data packet
Data back from the interface j according to the entry in PIT. After that it
removes that entry in its PIT.

4. Repeat Step 3 until Cy receives the response data packet Data. Then, Cy

decrypts di with the private decryption key SKi,y to obtain ki, and decrypts
ei with ki to obtain Ci.

Note that the response data packet Data includes two fields of CS entries, i.e.
Identifier and Data.

In the following, we will give an example. Assume the Consumer node C1

wants to acquire the content with identifier h1. It firstly acquires the corre-
sponding decryption key SK1,1 securely from the TTP. It searches for the entry
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for h1 in its FIB. If there is an entry [3, h1], C1 forwards an interest message
Interest = (h1, T

′
1) where the header is h1 from interface 3. Node E4 receives this

Interest from interface 1. Since there is no entry [h1, e1, d1] in E4’s CS, E4 cannot
provide the data to C1. E4 creates an entry [1, h1] in its PIT. Then, E4 checks
the entry for h1 in its FIB and finds the corresponding entry [4, h1]. E4 forwards
this interest message Interest = (h1, T

′
1) via interface 4. The Intermediate node

E1 receives this interest message Interest via the interface 2. However, there is no
entry [h1, e1, d1] in E1’s CS either. Therefore, E1 also creates an entry [2, h1] in
its PIT. Then, E1 checks the entry for h1 in its FIB and finds the corresponding
entry [3, h1]. E1 forwards this interest message Interest = (h1, T

′
1) via interface 3.

Finally, the Provider node P1 receives the Interest from interface 1.
When P1 receives the interest message Interest = (h1, T

′
1), it constructs the

response data packet Data = (h1, e1, d1) where h1 is the header and (e1, d1) is
the payload. Then, it forwards this response data packet Data via interface 1.
When E1 receives this Data, it adds an entry [h1, e1, d1] in its CS where h1 is
the identifier and (e1, d1) is the ciphertext of the content C1. E1 forwards this
response data packet Data from interface 2 based on its PIT, and then removes
the entry [2, h1] from its PIT. When E4 receives this response data packet Data,
it also adds an entry [h1, e1, d1] in its CS. E4 forwards Data from interface 1
based on its PIT, and then removes the entry [1, h1] from its PIT. Finally, the
Consumer node C1 receives this response data packet Data = (h1, e1, d1), and
it decrypts d1 with the secret key SK1,1 to obtain the symmetric key k1 and
decrypts e1 with k1 to acquire the content C1.

If the Consumer node C2 wants to acquire the content with the identifier h1,
it firstly acquires the corresponding secret key SK1,2 securely from the TTP. It
searches for the entry with the identifier h1 in its FIB. As there is an entry [4, h1]
in its FIB, C2 forwards an interest message Interest′ = (h1, T

′′
1 ) where the header

is h1 via interface 4. Node E4 receives this Interest′ from interface 2. Since there
is already an entry [h1, e1, d1] in E4’s CS, it forwards the response data packet
Data = (h1, e1, d1) via interface 2 directly. Then the Consumer node C2 receives
this response data packet Data = (h1, e1, d1), and it decrypts d1 with the secret
key SK1,2 to obtain the symmetric key k1 and decrypts e1 with k1 to acquire
the content C1.

As the content is encrypted with a symmetric key and the symmetric key is
encrypted under the content-based encryption system, any node without a valid
decryption key cannot decrypt the ciphertext and obtain the content. As the
Intermediate nodes store the ciphertext of the content transmitted via them, if
an Intermediate node wants to acquire the content it can directly decrypt the
ciphertext when it has obtained a valid decryption key. If a nearby Intermediate
node has stored the ciphertext, the Consumer node need not acquire the content
from the Provider node, but from the Intermediate node directly instead.

6 Conclusion

We presented the notion of content-based encryption tailored for content-centric
networks and also defined its security models. We proposed a content-based
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encryption scheme and proved that it is semantic secure in the random oracle
model under the truncated decision ABDHE assumption. We applied our content-
based encryption to protect the content delivered in the content-centric network.
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Abstract. In threshold encryption, the secret key is shared among a set
of decryption parties, so that only a quorum of these parties can decrypt
a given ciphertext. It is a useful building block in cryptology to distribute
the trust of the secret key as well as increase availability. In particular,
threshold Paillier encryption has been widely used in various security
protocols, such as e-auction, e-voting and e-lottery. In this paper, we
present the idea of designing provably secure threshold Paillier encryp-
tion using hyperplane geometry. Compared with the existing schemes
that are based on polynomial interpolation, our work not only renovates
the threshold Paillier cryptosystem using a different mathematical struc-
ture, but also enjoys some additional benefits: (1) our proposed method
avoids the technical obstacle of computing inverses in the group whose
order is unknown; (2) it gains computational advantages over Shoup’s
trick and it can be used as a general building block to design secure and
efficient threshold cryptosystems based on factoring.

1 Introduction

Public key encryption is a key ingredient in cryptology. It allows anyone to encrypt
some message using the public key, while only the party who possesses the corre-
sponding secret key can recover the message. Paillier encryption [14] is an exam-
ple of public key encryption that enjoys the additive homomorphic property: the
encryption of the sum of multiple messages equals to the product of the encryp-
tion of individual ones, and the computation can be carried out with encrypted
data without knowledge of the secret key. Hence, Paillier encryption can be found
in many applications where computing with encrypted values is required.

However, in many cases, the ability to perform decryption gives too much
power, and it is desirable to distribute this power. Threshold encryption is just
a solution for these cases. In (t, n)-threshold encryption, the public key is made
public and a trusted dealer shares the corresponding secret key among n decryp-
tion parties. A given ciphertext encrypted using the public key can only be
decrypted if more than t of these parties work together. But less than t parties
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 73–86, 2016.
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are unable to perform the decryption. Moreover, threshold encryption can be
used even if some parties are corrupted and they violate the protocol. A general
requirement is that the minority corrupted parties are unable to prevent hon-
est parties from recovering the plaintext. Hence, threshold encryption could not
only prevent some dishonest parties from learning the underlying plaintext, but
also increase the availability of the cryptosystem.

1.1 Previous Works

Threshold cryptosystem was first introduced by Desmedt and Frankel in [6]. In
that paper, a threshold ElGamal encryption was proposed, and it was pointed
out that designing threshold RSA encryption is much more difficult because of
the “interpolating over Zφ(N) problem” (N is the RSA modulus and φ is the
Euler’s totient function). That is, anyone who wants to recover the plaintext
by interpolating the decrypted shares will encounter the technical obstacle of
computing inverses in the group whose order is unknown.

The first attempt to address this problem was also proposed by Desmedt and
Frankel [7]. Their solution, followed by Santis et al. [18] and Gennaro et al. [11],
extends the ring of integers modulo φ(N) to a different algebraic structure, so
that the inverses can be disclosed safely. A different solution was proposed by
Frankel et al. [10], followed by Rabin [16], and their strategy is to introduce an
extra layer of secret sharing.

However, the above solutions to the “interpolating over Zφ(N) problem” are
impractical, since they have introduced a lot of interaction and complexity. A
much simpler and elegant solution to this problem was introduced by Shoup [19]
in Eurocrypt 2000. His trick is to multiply a constant value Δ = n! with each of
the Lagrange coefficient when interpolating the decrypted shares, where n is the
number of decryption parties. Because Δ will be a multiple of the denominator
in all Lagrange coefficients, there is no need to compute inverses in the group
whose order is unknown. From then on, Shoup’s trick [19] has become the de
facto standard for designing threshold cryptosystems based on factoring. For
example, Fouque et al. have extended the Pailler encryption [14] to its threshold
version [9], and Damg̊ard et al. have proposed a generalised threshold Paillier
encryption [5], both works are based on Shoup’s trick.

Nowadays, threshold Paillier encryption has become a popular building block
in cryptology, and it has been widely used in various security protocols, such as
e-auction, e-voting and e-lottery, in which computation needs to be performed
with encrypted data and the power of the secret key needs to be distributed [1,
12,13,17].

1.2 Our Contributions

In this paper, we revisit the research of threshold Paillier encryption, and ren-
ovate this technique using a different mathematical structure. We show that
provably secure threshold Paillier encryption also can be designed using hyper-
plane geometry. And compared with the existing solutions that are based on



Threshold Paillier Encryption Based on Hyperplane Geometry 75

polynomial interpolation, our proposed scheme has two additional benefits: (1)
it avoids the technical obstacle of computing inverses in the group whose order
is unknown (2) it gains computational advantages over Shoup’s trick and it can
be used to reduce the computational cost in existing threshold cryptosystems
based on factoring.

1.3 Outline of the Paper

The rest of this paper is organised as follows: the system model and security
definitions are described in Sect. 2. Some basic tools are reviewed in Sect. 3. The
proposed threshold Paillier encryption is described in Sect. 4, and its security
analysis and efficiency analysis are presented in Sect. 5. Finally, we conclude in
Sect. 6.

2 System Model and Security Definitions

A threshold encryption cryptosystem is consisted of the following five algorithms:

– KeyGen: the key generation algorithm takes as input a security parameter κ,
the number of decryption parties n (n ≥ 1), the threshold number t (1 ≤
t ≤ n) and a random string x. It outputs a public key pk, a set of secret key
shares {s1, s2, . . . , sn}, and a number of verification keys v, {v1, v2, . . . , vn}.

– Enc: the encryption algorithm takes as input the public key pk, a random
string x and a plaintext m. It outputs a ciphertext c.

– PartDec: the partial decryption algorithm takes as input the public key pk, a
ciphertext c, an index i (1 ≤ i ≤ n) and the corresponding secret key share
si. It outputs a decryption share ci and a proof pi that proves the validity of
partial decryption.

– Veri: the verification algorithm takes as input a ciphertext c, an index i (1 ≤
i ≤ n), the verification keys v, vi, the decryption share ci and its proof pi. It
output 1 if the proof is valid, and otherwise ⊥.

– Comb: the combining algorithm takes as input the public key pk and any
subset of t valid decryption shares. It outputs the plaintext m.

2.1 System Model and Communication Model

There are three types of players in our proposed protocol: a trusted dealer D, a
set of n decryption parties and an adversary A. We assume that all these players
can be modelled as probabilistic polynomial time (PPT) Turing machines.

Among these n decryption parties, we assume that there exists t honest ones.
The corrupted parties are controlled by the adversary A, and these parties can
be coerced by A to surrender their private information or violate the protocol
in any way. Note that in order to prevent corrupted parties from decrypting the
plaintext, it is required that n − t < t. In this paper, we assume that n = 2t − 1.
Moreover, we assume that the adversary A is static: A chooses which parties to
corrupt at the beginning of the protocol.
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About the communication channels, we assume that there exists a private
channel between the dealer and every decryption party. The adversary is unable
to tamper or intercept the information send through this channel. And we assume
that all players can access to some authenticated broadcast channel.

In a high level, our proposed protocol works as follows:

1. In the initialisation phase, the trusted dealer D uses the KeyGen algorithm to
generate the public key, secret key shares and verification keys. The public
key pk and all the verification keys v, {v1, v2, . . . , vn} are made public through
the broadcast channel. And D sends the secret key shares to the decryption
parties using the private channels.

2. To encrypt a message, anyone can implement the Enc algorithm using the
public key pk.

3. To decrypt a given ciphertext c, each decryption party uses her secret key
share si and the PartDec algorithm to generate a decryption share ci along
with a proof pi that proves the validity of ci. Each party broadcasts the pair
(ci, pi). Note that the proposed protocol is non-interactive, and we do not
require that all parties broadcast this pair simultaneously.

4. Now, anyone can use the verification keys v, vi and the Veri algorithm to check
whether the partial decryption ci is valid or not.

5. Finally, any subset of t valid decryption shares can be collected to recover the
plaintext using the Comb algorithm.

2.2 Security Definitions

In order to provide a rigorous security analysis for our proposed protocol, we
use the following security definitions:

Correctness: if there exists t honest decryption parties, a threshold encryption
cryptosystem can decrypt a ciphertext and output the correct plaintext, even in
the presence of some adversary who has full control of t − 1 corrupt decryption
parties.

Threshold Semantic Security: this definition was first defined by Fouque
et al. in [9], and it is an extention of the semantic security definition for non-
threshold encryption. Consider the following game G:

– G1: The adversary A chooses t − 1 decryption parties to corrupt. A can force
them to surrender their private information, and A has full control of their
behaviour for the rest of the game.

– G2: The trusted dealer D runs the KeyGen algorithm to generate the keys. The
public key pk and all verification keys v, {v1, v2, . . . , vn} are broadcasteded,
and each decryption party receives her secret key share. The adversary A
learns the secret key shares hold by the corrupted parties.

– G3: The adversary A has access to a partial decryption oracle. For example,
A can encrypt a message m and input its ciphertext c into the oracle. Then,
the oracle returns n decryption shares of c, along with proofs of their validity.
A can use this oracle as many times as she likes.
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– G4: The adversary A issues two messages m0 and m1 in the message space,
and sends them to an encryption oracle. This oracle randomly selects a bit b,
encrypts the message mb, and returns its ciphertext c to A.

– G5: Again, the adversary A uses the partial decryption oracle as many times
as she likes. The requirement is that A cannot use c to query the partial
decryption oracle.

– G6: The adversary A outputs a bit b′.

The adversary’s advantage is defined to be the absolute difference between
1/2 and the probability that b = b′. A threshold encryption is said to be threshold
semantic secure if for any PPT adversary A, her advantage of running the game
G is negligible.

3 Basic Tools

In this section, we briefly review some basic tools that are used in our proposed
protocol.

3.1 Blakely’s Secret Sharing

In (t, n) Blakely’s secret sharing [2], the secret is treated as some coordinate
of a point in a t-dimensional space. Each of the n parties is given a different
t-dimensional hyperplane in the space. And all these hyperplanes intersect at
this point. When t parties work together, they can solve a system of equations
to retrieve the secret. But less than t parties are unable to learn any information
about the secret. Blakely’s secret sharing works as follows:

– Initialisation phase: to share a secret z = a1, a dealer selects t − 1 random
values {a2, a3, . . . , at}. Then, the dealer generates an n × t matrix M and
broadcasts it. It is required that any t rows of M will form a t × t invertible
matrix MS .

– Share generation phase: the dealer generates a linear system of equations
si = bi,1a1 + bi,2a2 + . . . + bi,tat for i = 1, 2, . . . , n, where bi,j is the (i, j)-th
entry of M. Then, the dealer sends these secret shares si to each party using
the private channels.

– Secret reconstruction phase: if any subset of t parties reveal their secret
shares, the secret z can be recovered. Without loss of generality, suppose
the vector of secret shares s̄ = [s1, s2, . . . , st] is revealed. Then, the vector
ā = [a1, a2, . . . , at] can be reconstructed as āT = M−1

S · s̄T . Note that to
recover the secret z = a1, only the first row of M−1

S needs to be computed.

3.2 Paillier Encryption

The Paillier encryption [14] works as follows: let N = pq be an RSA modulus,
where p, q are large primes. Let g be an integer of order a multiple of N modulo
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N2, i.e. g = (1+N)αβN for some α ∈ ZN and β ∈ Z
∗
N . The public key is (g,N),

and the secret key is the Carmichael function λ = lcm((p − 1), (q − 1)).
To encrypt a message m ∈ ZN , we randomly choose x ∈ Z

∗
N and compute the

ciphertext c = gmxN mod N2. It is obvious that the Paillier encryption enjoys
the additive homomorphic property. To decrypt c, we compute

m =
L(cλ mod N2)
L(gλ mod N2)

mod N

where the function L(·) takes as input from the set SN = {u < N2|u ≡ 1
(mod N)} and computes L(u) = (u − 1)/N .

To see why the decryption works, we first show that for any value a ∈ Z
∗
N ,

we have aλ ≡ 1 (mod N). Suppose there exists a value t such that, for any value
a ∈ Z

∗
N , we have at ≡ 1 (mod N). This implies that at ≡ 1 (mod p) and at ≡ 1

(mod q). Because p and q are both primes, according to Fermat’s little theorem,
this holds only if p − 1 and q − 1 are both divisors of t. Therefore, the smallest t
satisfying this requirement equals λ. For similar reasons, we also have aλN ≡ 1
(mod N2) for any value a ∈ Z

∗
N2 . Moreover, recall that g = (1 + N)αβN for

some α ∈ ZN and β ∈ Z
∗
N , the following two equations always hold:

L(gλ mod N2) =
((1 + N)αλβNλ mod N2) − 1

N
=

(1 + αλN) − 1
N

≡ αλ

L(cλ mod N2) = L((gmxN )λ mod N2) = L(gmλ mod N2) = mαλ

Hence, if given the secret key λ, the plaintext can be retrieved as

m =
L(cλ mod N2)
L(gλ mod N2)

mod N

The semantic security of the Paillier encryption is based on the decisional
composite residuosity assumption (DCRA) that distinguishing N th residues from
non-N th residues modulo N2 is infeasible for PPT adversaries.

3.3 Proof of Equality of Discrete Logarithms

The Chaum-Pedersen protocol [4] can be used to prove the equality of discrete
logarithms. Let p, q be two large primes such that q|p − 1. We denote Gq as the
subgroup of Z∗

p with order q. Let g and h be two generators of Gq. We can prove
that the values y ≡ gx (mod p) and t ≡ hx (mod p) have the same exponent
value x without revealing it. The proof works as follows:

– The prover P randomly chooses a value r ∈ Zq, she then sends U ≡ gr

(mod p) and V ≡ hr (mod p) to the verifier V.
– V sends a random challenge e ∈ Zq back to P.
– P computes z = r + xe mod q, and sends z to V.
– V accepts the proof if gz ≡ Uye (mod p) and hz ≡ V te (mod p). Otherwise,

she rejects the proof.
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The correctness of the above protocol is obvious. Special soundness holds because
for two accepting conversations with the same first move (U, V, e1, z1) and
(U, V, e2, z2), where e1 �= e2, the witness x that satisfies y ≡ gx (mod p) and
t ≡ hx (mod p) can be extracted as x ≡ (z1 − z2)/(e1 − e2) (mod q). Honest
verifier zero-knowledge holds because for any random values e ∈ Zq and z ∈ Zq,
the fabricated tuple (gzy−e, hzt−e, e, z) will be an acceptable conversation, and
its distribution is perfectly indistinguishable from a real proof.

The above protocol can be made non-interactive using Fiat-Shamir heuris-
tics [8]. Moreover, as shown in [3,15], the proof of equality of discrete logarithms
can be extended to work in the cyclic group of squares in Z

∗
N2 , where N = pq is

the RSA modulus.

4 Our Proposed Scheme

Our proposed threshold Paillier encryption based on hyperplane geometry works
as follows:

Key Generation Algorithm KeyGen:
The trusted dealer D first chooses two large safe primes p = 2p′ + 1 and q =
2q′ + 1. Define N = pq and λ = p′q′. D also chooses two random values α ∈ ZN

and β ∈ Z
∗
N , and sets g = (1 + N)αβN mod N2. D then chooses a random value

γ in ZN . Now, the public key pk is a triple (g,N, θ), where θ = αλγ mod N ,
and the corresponding secret key is λγ. Note that the use of safe primes ensures
that gcd(N,φ(N)) = 1, where φ is the Euler’s totient function. And this further
implies that the function f(x, y) = (1 + N)xyN mod N2 is a bijection from
ZN × Z

∗
N to Z

∗
N2 .

As follows, D chooses an n × t matrix M:

M =

⎛

⎜
⎜
⎜
⎝

b1,1 b1,2 . . . b1,t

b2,1 b2,2 . . . b2,t

...
...

bn,1 bn,2 . . . bn,t

⎞

⎟
⎟
⎟
⎠

It is required that any t rows of M will form a t × t invertible matrix MS .
Moreover, D sets a1 as the secret key a1 = λγ, and chooses t − 1 random values
{a2, a3, . . . , at}. Then, D computes the secret shares si = a1bi,1 + a2bi,2 + · · · +
atbi,t for i = 1, 2, . . . , n.

Finally, D selects the verification key v as a generator of QN2 which is a cyclic
group of squares within Z

∗
N2 and the order of QN2 is λN . The other verification

keys are calculated as vi = vsi mod N2 for i = 1, 2, . . . , n.
Now, D broadcasts the public key pk = (g,N, θ), the matrix M, and the verifi-

cation keys v, {v1, v2, . . . , vn}. And D sends the secret key shares {s1, s2, . . . , sn}
to the corresponding decryption parties privately.
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Encryption Algorithm Enc:
To encrypt a message m ∈ ZN , anyone can randomly select x ∈ Z

∗
N and compute

the ciphertext c = gmxN mod N2.

Paritial Decryption Algorithm PartDec:
Given a ciphertext c, each decryption party partially decrypts it. For example,
the ith party Pi uses her secret share si to compute the decryption share ci =
c2si mod N2. She also generates a non-interactive proof pi to prove that c2 and
v have been raised to the same power si. The reason to use c2 instead of c is to
ensure that the value used is a square in Z

∗
N2 .

The proof works as follows: let H be some collision-resistant hash function.
Pi randomly selects a value r, computes c′ = c2r, v′ = vr. Then, the proof pi is
a pair (z, e), where e = H(c2, v, ci, vi, c

′, v′) and z = sie + r. Pi broadcasts the
decryption share ci as well as its proof pi.

Verification Algorithm Veri:
To verify whether the proof pi is valid, anyone can check the equation e =
H(c2, v, ci, vi, c

2zc−e
i , vzv−e

i ) using the verification keys v and vi. If pi is valid, ci

is a correct decryption share of c.

Combining Algorithm Comb:
Without loss of generality, we assume that the parties with indexes 1, 2, . . . , t
are honest and their published proofs are valid. If the corresponding rows are
selected from the matrix M, we get a t × t matrix MS :

MS =

⎛

⎜
⎜
⎜
⎝

b1,1 b1,2 . . . b1,t

b2,1 b2,2 . . . b2,t

...
...

bt,1 bt,2 . . . bt,t

⎞

⎟
⎟
⎟
⎠

Denote M′
S as the adjoint matrix of MS , with the (i, j)th entry as di,j . Then di,j

is the value (−1)i+j times the determinant of the matrix obtained by deleting the
jth row and ith column of MS . Note that the adjoint matrix can be computed
without division. Hence, our proposed protocol could avoid the technical obstacle
of computing inverses in the group whose order is unknown. Now, anyone can
recover the plaintext m using these decryption shares {c1, c2, . . . , ct} as:

m = L(
t∏

i=1

ci
d1,i mod N2) × 1

2Ωθ
mod N

where Ω is the determinant of MS .

5 Security and Efficiency Analysis

In this section, we analyse the security properties and the computational cost of
our proposed threshold Paillier encryption scheme.
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5.1 Security Analysis

Correctness. We first show that the above protocol achieves the correctness
property: if there exists t honest decryption parties, the correct plaintext will be
recovered even in the presence of t − 1 corrupt decryption parties.

Note that the group QN2 is defined as the subgroup of the squares in Z
∗
N2 , and

its order is λN . The number of generators of QN2 is φ(λN), and the probability
that a randomly chosen square in Z

∗
N2 to be a generator of QN2 is extremely high,

roughly 1−1/
√

N . Hence, the proof of equality of discrete logarithms works with
very high probability. In other words, if any corrupt decryption party publishes
invalid decryption share, the validity proof cannot pass the verification algorithm
Veri. Moreover, based on the assumption that t decryption parties are honest,
there will exist at least t valid decryption shares. Without loss of generality, we
denote {c1, c2, . . . , ct} as a set of t valid decryption shares. Then, the plaintext
m can be recovered because:

L(
t∏

i=1

ci
d1,i mod N2) = L(c2

∑t
i=1 si·d1,i mod N2)

= L(c2Ωλγ mod N2)
= L((gmxN )2Ωλγ mod N2)
= L((1 + N)2mΩαλγ · (β2mΩγ)λN · (x2Ωγ)λN mod N2)
= L((1 + N)2mΩαλγ mod N2)
= 2mΩαλγ

= m · 2Ωθ

Hence, the combining algorithm Comb will return the correct plaintext m.

Threshold Semantic Security. We use reduction to show that the above
protocol achieves threshold semantic security. Assume that there exists a PPT
adversary A who can break the threshold semantic security of our proposed
protocol with some non-negligible probability. Then, we prove that, using A as
a subroutine, an attacker B can be constructed in polynomial time that breaks
the semantic security of the original Paillier encryption [14]. In order to invoke
A as a subroutine, the attacker B must simulate all information that A views
in the threshold protocol. And A should not be able to distinguish between a
simulated conversation and a real run of the protocol.

Theorem 1. In the random oracle model, the threshold Paillier encryption
based on hyperplane geometry achieves threshold semantic security against static
adversaries under the decisional composite residuosity assumption.

Proof. To break semantic security of the original Paillier encryption, the attacker
B runs a game with the challenger. Firstly, B is given the public key (g,N). Then,
B chooses two messages m0 and m1 from the plaintext space, and sends them
to the challenger who then randomly chooses a bit b and returns the encryption
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of mb to B. B guesses which message has been encrypted. Now, we show that in
order to invoke A as a subroutine, B can simulate A’s view in the game G.

– G1: The adversary A chooses t − 1 decryption parties to corrupt. Without
loss of generality, we denote these parties as P1, P2, . . . , Pt−1.

– G2: The attacker B generates an n×t matrix M such that any t rows of M will
form an invertable t× t matrix MS . The (i, j)th entry of M is denoted as bi,j .
B randomly chooses α′ ∈ ZN , β′ ∈ Z

∗
N and computes g′ = gα′

β′N mod N2.
B also randomly selects θ ∈ ZN and t − 1 values s1, s2, . . . , st−1 in the range
{0, 1, . . . 	N2/4
 − 1}. Moreover, B randomly selects a value ω ∈ ZN and
sets v = g′2ω mod N2. Hence, v is a square in Z

∗
N2 . For i = 1, 2, . . . , t − 1,

B computes vi = vsi mod N2. The other verification keys vj , where j =
t, t + 1, . . . , n, can be calculated as follows: define a t × t matrix A as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0
b1,1 b1,2 . . . b1,t

b2,1 b2,2 . . . b2,t

...
...

bt−1,1 bt−1,2 . . . bt−1,t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Hence, we have A · [a1, a2, . . . at]T = [a1, s1, . . . st−1]T . Denote λi,j as the
(i, j)th entry of A−1. For k = 2, 3, . . . , t, we have

vak ≡ (va1)λk,1 ·
t−1∏

i=1

(vsi)λk,i+1 ≡ (1 + 2wθN)λk,1 ·
t−1∏

i=1

v
λk,i+1
i (mod N2)

Therefore, for j = t, t + 1, . . . , n, we can compute

vj = (1 + 2ωθN)bj,1 ·
t∏

k=2

(vak)bj,k mod N2

Finally, the attacker B sends the matrix M, the public key (g′, N, θ), the t−1
secret key shares s1, s2, . . . , st−1, and the verification keys v, v1, v2, . . . , vn to
the adversary A.

– G3: B simulates the partial decryption oracle and answers A’s decryption
queries. If A encrypts a message m and asks B to decrypt its ciphertext
c = g′mxN mod N2. B will compute ci = c2si for i = 1, 2, . . . , t−1. The other
decryption shares cj , where j = t, t + 1, . . . , n, can be calculated similarly as
in the above step: for k = 2, 3, . . . , t, we have

c2ak ≡ (ca1)2λk,1 ·
t−1∏

i=1

(c2si)λk,i+1 ≡ (1 + mθN)2λk,1 ·
t−1∏

i=1

c
λk,i+1
i (mod N2)

Therefore, we can compute

cj = (1 + mθN)2bj,1 ·
t∏

k=2

(c2ak)bj,k mod N2
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for j = t, t + 1, . . . , n. Next, B need to generate proofs for these decryp-
tion shares. If B knows si, the proof pi is generated in the standard way as
described in Sect. 3.3. Moreover, in the random oracle model, the attacker B
has full control of the hash function, and B can answer a hash query using
any value of her choice, as long as she returns consistent output if the same
input is queries multiple times. Hence, B can fabricate the other proofs that
she has no knowledge of their secret shares. This is done by defining the value
of the random oracle at H(c2, v, ci, vi, c

2zc−e
i , vzv−e

i ) to be e. Now, B returns
the n decryption shares (c1, c2, . . . , cn) along with their proofs (p1, p2, . . . , pn)
to A.

– G4: In this step, B first waits for A to select two messages m0 and m1 from
the plaintext space. Once receiving these two values, B forwards them to the
challenger. The challenger then randomly selects a bit b, encrypts mb using
the original Paillier encryption and returns its ciphertext c to B. Now, B
computes c′ = cα′

mod N2 and sends c′ to A.
– G5: This step is similar as in step G3. The additional requirement is that A

is not allowed to use c′ to query the partial decryption oracle.
– G6: A outputs a bit b′, and B forwards b′ to the challenger.

It is clear that the above simulation can be carried out in polynomial time.
The remaining task is to prove that a simulated conversation is indistinguishable
from a real run of the protocol. Because no information has been simulated in
the steps G1 and G6, and the step G5 just repeats G3. We only need to show that
the adversary A can not distinguish the simulated information from the step G2
to the step G4.

– Indistinguishability of information in G2: In this step, the same matrix
M can be reused. Both g and g′ are uniformly distributed within the set of ele-
ments whose order is a multiple of N . θ is uniformly distributed in ZN . Hence,
the matrix M and public key (g′, N, θ) follow exactly the same distribution
as in the real protocol. The secret key shares are randomly distributed in
{0, 1, . . . ,ZλN − 1} in the real protocol. In the simulation, they are randomly
distributed in {0, 1, . . . 	N2/4
−1}. Although there is some gap between these
two sets, their statistical distance is O(n−1/2) that cannot be distinguished
by PPT adversaries. The simulated verification keys v, v1, v2, . . . , vn are ran-
domly distributed in the cyclic group of squares within Z

∗
N2 , and they cannot

be distinguished from real ones. Hence, the simulated information in this step
is statistically indistinguishable from a real run of the protocol.

– Indistinguishability of information in G3: In this step, the simulated
decryption shares (c1, c2, . . . , cn) follow the same distribution as those in the
real protocol. Both of them are randomly distributed in the cyclic group of
squares within Z

∗
N2 . Moreover, the simulated proofs (p1, p2, . . . , pn) also follow

the same distribution as those in the real protocol. Hence, the simulated
information in this step is indistinguishable.

– Indistinguishability of information in G4: In this step, the ciphertext c
and the modified ciphertext c′ = cα′

mod N2 are both randomly distributed
in ZN2 . Hence, they are indistinguishable.
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5.2 Efficiency Analysis

In this part, we analyse the computational cost of our proposed protocol and
compare it with some existing works in the literature that are based on polyno-
mial interpolation, e.g. [5,9]. The analysis is divided into two parts. In general
cases, we do not restrict the selection of the matrix M as long as any t rows of it
can form an invertible matrix MS . Moreover, we discuss the use of Vandermonde
matrix. And we show that our work is more efficient than Shoup’s trick in this
special case.

– In general cases: In the KeyGen algorithm, the major difference between
our work and the existing works is how to compute the secret shares. In [5,9],
this is done by evaluating a t−1 degree polynomial. Using Horner’s algorithm,
its computational complexity is O(t), where t is the threshold. In our work,
the complexity of this task is also O(t). In both our work and the existing
works, the Enc, PartDec and Veri algorithms are similar. While in the Comb
algorithm, [5,9] use polynomial interpolation, and their computational com-
plexity is O(t2). In our work, the heavy load is to compute the adjoint matrix
of a t × t matrix. More precisely, because only the first row of the adjoint
matrix needs to be calculated, our computational complexity is also O(t2).
Hence, our work is as efficient as the existing works in general cases.

– Using Vandermonde matrix: In this case, the technical details of our work
will be very similar as in those existing work. When recovering the secret
using the decryption shares, our work also can be considered as polynomial
interpolation. The reason that our work avoids the “interpolating over Zφ(N)

problem” is that a constant value Ω has been multiplied with each of the
Lagrange coefficient during interpolating, where Ω is the determinant of the
t× t matrix MS . Note that in Vandermonde matrix, Ω =

∏t
i,j=1,i<j(ai − aj).

It is clear that Ω is a divisor of
∏n

i,j=1,i<j(ai −aj) = t!(n− t)!. Since t!(n− t)!
further divides Δ = n!, Ω is a non-trivial divisor of Δ. We have to note
that during polynomial interpolation, the modulus of the exponent part is
unknown, so the exponent value cannot be reduced. Therefore, compared
with Shoup’s trick [19], a smaller exponent value in our work not only saves
some computational cost, but also requires less storage in the register during
computation. Actually, Ω is the least common multiple of the denominator in
the Lagrange coefficients. Hence, our work can be regarded as optimization
of Shoup’s trick and it also can be used to improve the existing threshold
cryptosystems that are based on factoring.

6 Discussion and Conclusion

In this paper, we propose a threshold Paillier encryption cryptosystem using
hyperplane geometry. We have proved that it is correct and it achieves thresh-
old semantic security in the random oracle model. Compared with the existing
schemes based on polynomial interpolation, our work does not suffer the technical
obstacle of computing inverses in the group whose order is unknown. Moreover,
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it is more computationally efficient than Shoup’s trick and it can be used as
a general building block to design secure and efficient threshold cryptosystems
based on factoring.
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Abstract. Cloud computing makes it easy for people to share files any-
where and anytime with mobile end devices. There is a privacy issue
in such applications even if the files are encrypted. Specially, the public
keys or identities of the receivers will be exposed to the cloud server or
hackers. Group Encryption (GE) is designed to achieve anonymity of the
receiver(s). The existing GE schemes are all realized in the public key
infrastructure (PKI) setting, in which complicated certificates manage-
ment is required to ensure security. It is observed that GE is especially
appealing to institutions which usually have their own closed secure user
management system. In this paper, we propose a new concept, referred
to as identity-based group encryption (IBGE), which realizes GE in the
identity-based cryptography setting. In the IBGE, a private key genera-
tor (PKG) designates each user a secret key associated with his identity;
and the user can register his identity as a group member to a group
manager without leaking his secret key. Then anyone can send confiden-
tial messages to the group member without leaking the group member’s
identity. However, the group manager can trace the receiver if a dispute
occurs or the privacy mechanism is abused. Following this model, we pro-
pose the first IBGE scheme that is formally proven secure in the standard
model. Analysis shows that our scheme is also efficient and practical.

Keywords: Group encryption · Identity-based · Knowledge proof

1 Introduction

With cloud storage, now it is easy for people to share private files anywhere and
anytime with smart mobile devices. To protect the files, it is usually suggested that
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one encrypts the files before uploading to the cloud. However, even with encryp-
tion, the receivers’ identity information will be exposed to the cloud server and
hackers, which may raise social engineering attacks. Many cryptographic schemes
have been proposed to achieve user privacy. Among them, group signature [7]
allows a sender to issue a signature on behalf of the group while concealing his iden-
tity within a group of legitimate users. Group signature schemes were introduced
by Chaum and van Heyst [7] and developed by Boyen, Waters, Kiayias, Yung and
Groth [6,12,15]. Group encryption [14] is the encryption analogue of group sig-
natures and achieve different security goals. Specifically, a GE allows a sender to
send a ciphertext to a receiver whose identity is hidden within a group of certi-
fied users. A group manager (GM) issues the certificates to these users and make
them become the legitimate group members. In GE schemes, a public authority
can identify the receiver if a need arises. GE schemes were motivated by multiple
applications such as Ad-Hoc access structure group signature, secure oblivious
retriever storage and anonymous trusted third parties. GE schemes were intro-
duced by Kiayias, Tsiounis and Yung [14] and further developed in a line of works
[9,16,21].

A majority of GE schemes are based on Public Key Infrastructure (PKI).
This leads to some drawbacks of GE schemes. First, GE could be implemented
in classified organizations. These organizations have their own closed secure user
management system. They do not have to use a PKI as a component, which
comes from an open environment. A problem of PKI-based GE schemes is obvi-
ous. If the Certificate Authority (CA) is occasionally offline, then the certificates
can not be updated and the GE scheme will fail to work.

Moreover, in public-key cryptosystems user’s public key is a random string
unrelated to his identity. When a sender wants to send a message to a receiver,
he must obtain the receiver’s public key authenticated by the trusted Certificate
Authority. So the problems with the PKI-based GE schemes are the high cost
in authenticating and managing the public keys, and the difficulty in managing
multiple communities.

It seems appealing to use IBE schemes to replace the PKI-based public-
key encryption in GE. In this way, the variant of GE will be suited to the closed
environment and works more efficiently. Identity-based cryptosystems were intro-
duced by Shamir in 1984 [22]. Its main idea is that the public keys of a user can
be easily derived from arbitrary strings corresponding to his identity informa-
tion such as name, telephone number or email address. A Private Key Generator
(PKG) computes private keys from a master secret key and distributes them to
the users participating in the scheme. This eliminates the need for certificates
that have been in a traditional PKI system. Identity-based systems may be a
good alternative for PKI-based systems from the viewpoint of efficiency and
convenience.

1.1 Our Contribution

Motivated by the above scenarios, we propose a new cryptographic primitive
called identity-based group encryption (IBGE). We first contribute the model
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and security notions of IBGE. We then construct a concrete identity-based group
encryption scheme and prove its related security properties.

IBGE involves five parties, a group manager (GM), a group of legitimate
users, a sender, a verifier and a private key generator (PKG). IBGE consists of
the six procedures. They are parameter generation procedure, group key genera-
tion procedure, user key generation procedure, encryption procedure, decryption
procedure and trace procedure.

Besides correctness, we define two security notions in IBGE. The first prop-
erty, called anonymity and semantic security against chosen-identity and chosen-
plaintext attacks, protects the users from a hostile environment where the
attacker may want to extract information about the message and extracting
information about the receiver’s identity. The second property, i.e., traceability,
ensures that the tracking is reliable and the prevention of collusion attacks. We
formally define the adversary models to capture the realistic attacks.

We design a concrete IBGE scheme in a modular way. In order to get an effi-
cient and practical scheme, we use three primitives, i.e., a public-key encryption
scheme which satisfies CCA2 security, an IBE scheme which satisfies anonymity
and semantic security, and a zero-knowledge proof which satisfies special prop-
erties. Our proposal is the first scheme with anonymity and semantic security
under chosen-identity and chosen-plaintext attacks, as well as traceability.

We prove the security of our concrete IBGE scheme according to our security
notions. And we give the analysis of probability as well as time complexity.
Then we prove that the identity of the real receiver can be traced correctly. Our
IBGE is fully functional identity-based group encryption scheme proven secure
in standard model. IBGE can also be used for a fundamental component of other
cryptosystems.

1.2 Related Work

Kiayias, Tsiounis and Yung provided the conception of Group Encryption [14]
and a modular design including zero-knowledge proofs, digital signature schemes,
public-key encryption schemes with CCA2 security and key-privacy and commit-
ment schemes. They showed an efficient instantiation by using Paillier’s cryp-
tosystem [20], a modification of the Cramer-Shoup public-key cryptosystem [8].
And their GM scheme requires an interaction between the sender and a verifier
using a

∑
-protocol, but using Fiat-Shamir paradigm [11] the interaction can be

removed. Cathalo, Libert and Yung [9] proposed a group encryption with non-
interactive realization in the standard model. Independently, Qin, Wu, Susilo,
and Mu [21] considered a similar primitive called Group Decryption. The Group
Decryption has non-interactive proofs and short ciphertexts. Libert, Yung, Joye,
and Peters proposed a traceable GE [16] which can trace all the ciphertexts
encrypted by a specific user without abolishing the anonymity of the others.

The notion of custodian-hiding verifiable encryption was proposed by Liu,
et al. [17–19]. A sender can encrypt a message using a public key chosen from a
public key list but the recipient is anonymous. But there is no group manager to
manage the potential receivers. Their notion is designed for Ad-Hoc applications.
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A ciphertext has to contain the public key list of potential receivers. In the case
of dispute, no group manager can reveal the identity of the real receiver.

Identity-based cryptosystems were introduced by Shamir [22]. Boneh,
Franklin [3,4] proposed a fully functional IBE scheme. This scheme’s security
based on computational Diffie-Hellman assumption and it has chosen ciphertext
security in the random oracle model. Boneh, Franklin also gave the definition
of chosen-ciphertext security and chosen-plaintext security of an IBE scheme as
well as a concrete IBE system. Groth presented an IBE scheme [12] that is fully
secure in the standard model and provided an efficient solution to the problem
of achieving anonymous IBE without random oracles.

2 Preliminaries

2.1 Bilinear Groups

Let p be a large prime. G, Ĝ,GT are three cyclic groups of prime order p. g, ĝ
are generators of G, Ĝ respectively. We say that G, Ĝ are bilinear groups if there
is a bilinear map e : G × Ĝ → GT that satisfies the following properties [1,2]:

– Bilinear. We say a map e : G× Ĝ → GT is bilinear if e(ua, ûb) = e(u, û)ab for
all u ∈ G, û ∈ Ĝ, a, b ∈ Zp.

– Non-degenerate. If g, ĝ are generators of G, Ĝ respectively, then e(g, ĝ) is a
generator of GT .

– Computable. There is an efficient algorithm to compute e(u, û) for all u ∈
G, û ∈ Ĝ.

The bilinear group defined above [10] is asymmetric, since G and Ĝ are
distinct cyclic groups. An asymmetric bilinear map can be constructed using
curves described by Barrrto, Naehring [5]. We use bilinear groups as a black
box. If G = Ĝ, the group is a symmetrical bilinear group. In this paper, our
IBGE scheme relies on the symmetrical bilinear group.

2.2 Complexity Assumptions

Our IBGE scheme’s security is based on decisional augmented bilinear Diffie-
Hellman exponent (decisional ABDHE) assumption [12].

First, we review the q-BDHE problem: Given a vector of 2q + 1 elements

(g′, g, gα, gα2
, ..., gαq

, gαq+2
, ..., gα2q

) ∈ G
2q+1

as input, output e(g, g′)αq+1 ∈ GT . Since the term gαq+1
is missing in the input,

it is intractable to compute e(g, g′)αq+1
.

The definition of the q-ABDHE problem is almost identical: given a vector
of 2q + 2 elements

(g′, g′αq+2
, g, gα, gα2

, ..., gαq

, gαq+2
, ..., gα2q

) ∈ G
2q+2
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as input, output e(g, g′)αq+1 ∈ GT . Since the term gα−1
is missing in the input,

it is intractable to compute e(g, g′)αq+1
, even though the term g′αq+2

is added.
We will use a truncated version of the q-ABDHE problem, in which the terms

(gαq+2
, ..., gα2q

) are omitted from the input, because of this version of q-ABDHE
problem is more useful for our concrete IBGE scheme.

The truncated q-ABDHE problem: given a vector of q elements

(g′, g′αq+2
, g, gα, gα2

, ..., gαq

) ∈ G
q

as input, output e(g, g′)αq+1 ∈ GT . The truncated q-ABDHE problem is hard if
the q-ABDHE problem is hard, since the input vector of truncated q-ABDHE is
less than q-ABDHE. A has advantage ε in solving truncated q-ABDHE if

Pr[A(g′, g′αq+2
, g, gα, gα2

, ..., gαq

) = e(gq+1, g
′)] � ε

where the probability is over the randomly chosen g, g′ R← G, the randomly
chosen α

R← Zp and the randomly chosen bits by A.
We use gi and g′

i to denote gαi

and g′αi

. Now, it is easy to define the decisional
version of truncated q-ABDHE. An algorithm B that outputs b ∈ {0, 1} has
advantage ε in solving truncated decision q-ABDHE if

| Pr[B(g′, g′
q+2, g, g1, ..., gq, e(gq+1, g

′)) = 0] − Pr[B(g′, g′
q+2, g, g1, ..., gq, Z) = 0] |� ε

where the probability is over the randomly chosen g, g′ R← G, the randomly
chosen α

R← Zp, the randomly chosen Z
R← GT and the randomly chosen bits of

B. We refer to the distribution on the left as PABDHE and the distribution on
the right as RABDHE .

Definition 1. We say that the decisional version of truncated (t, ε, q)-ABDHE
assumption holds in G if no t-time algorithm has advantage at least ε in solving
the decisional version of truncated q-ABDHE problem in G.

2.3 Proof of Knowledge

Let R = (x,w) be a NP relation, namely we can verify whether (x,w) ∈ R
in polynomial time. We say that x is input and w is the witness of x. P
is a polynomial time prover with the input (x,w) ∈ R. V is a polynomial
time verifier with the input x. We consider a three-step protocol between P
and V. P selects a random r, then computes t = Commitment(x,w; r) and
sends t to V. V selects a random c from an appropriate domain and sends c
to P, we consider this procedure as Challenge. Finally, P responds V with
s = Response(x,w, c; r). V computes a bit b = Check(x, t, c, z). We require
that Commitment, Challenge, Check are polynomial time algorithms. A

∑
-

protocol is made up of Commitment, Challenge,Response and satisfies com-
pleteness, correctness, soundness with knowledge extraction and honest-verifier
zero-knowledge.
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– Completeness. Completeness is achieved if Pr[(P,V)(x) = 1|(x,w) ∈ R] �
1 − μ(k), where μ(k) is a negligible function. This means that if (x,w) ∈ R,
V will accept with probability at least 1 − μ(k). (P,V)(x) means the output
of the system when the input is x.

– Correctness.Correctness is achieved if Pr[(P̃,V)(x) = 1|(x,w) /∈ R] � μ(k),
where P̃ is a dishonest prover. This means that if (x,w) /∈ R, V will accept
with probability at most μ(k).

– Soundness with knowledge extraction. We consider a polynomial time algo-
rithm, called Extractor. Extractor plays the role of V and interacts with P.
If the input (z, t, x, z, c′, z′) satisfies Check(x, t, c, z) = Check(x, t, c′, z′) = 1,
then Extractor(z, t, x, z, c′, z′) will output a witness that satisfies (x,w) ∈ R.
This means P indeed has the knowledge.

– Honest-verifier zero-knowledge. We consider a polynomial time algorithm,
called Simulator. For all (x,w) ∈ R and c the following two distributions are
indistinguishable. The first one is (x, t, c, z) which V can obtain by interacting
with P. The second one is (x, t, c′, z′) which Simulator can obtain by com-
puting. That is to say a proof transcript can be produced by a polynomial
time with the same probability distributions.

3 Modelling IBGE

3.1 The IBGE System

IBGE involves five parties, a GM who administers the group and traces the
receivers when it is necessary. A group of legitimate users who receive messages
from senders anonymously, a sender who might be one of the group members or
not and has secret messages to be sent to the legitimate members, and a verifier
who can prove the encrypted identity and the identity that forms IBE ciphertext
are identical, and a PKG who can issue the private keys to the users. The PKG
can quit from an IBGE scheme after the execution of ParaGen and UKGen, but
the GM should be always online to manage the group and trace the receiver
when disputes occur. IBGE consists of the following procedures.

– (Params,MSK) ← ParaGen(λ). This is a polynomial time algorithm which
takes as input a security parameter λ, outputs the system parameter Params
and a master-key MSK. It is operated by PKG.

– (PKGM , SKGM ) ← GKGen(Params). This is a polynomial time algorithm
which takes as input system parameter Params, outputs the group public
key and private key (PKGM , SKGM ). It is operated by GM.

– (SKID) ← UKGen(Params, ID,MSK). This is a polynomial time algorithm
which takes as input system parameter Params, user’s ID and MSK, out-
puts the user’s corresponding private key SKID. It is operated by PKG. Each
user can register his identity as a group member to GM. GM maintains the
ID list I = {ID1, ..., IDi}.

– (C) ← Encryption(M,Params, ID, PKGM ). This is a polynomial time algo-
rithm which takes as input a message M in the structured message space,
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system parameter Params, the intended group member’s ID, and group
public key PKGM , outputs a final ciphertext C in the ciphertext space. It is
operated by the sender.

– (M) ← Decryption(Params,C, SKID). This is a polynomial time algorithm
which takes as input system parameter Params, ciphertext C, user’s private
key SKID, outputs the message M in the message space. It is operated by
the receiver.

– (ID) ← Trace(C,SKGM ). GM first verifies if the verifier V outputs 1, then
verifies the correctness of the encryption of ID. If both of them are correct,
GM runs a polynomial time algorithm takes as input ciphertext C and group
private key SKGM , outputs the ID of the receiver.

Definition 2. We say that an IBGE scheme is correct if the following correct-
ness game return 1 with overwhelming probability.

We use this notation to denote a two-party protocol

〈outputA|outputB〉 ← 〈A(inputA), B(inputB)〉(common − input).

1. Run ParaGen(λ), the algorithm outputs system parameter Params and
MSK.

2. Run GKGen(Params), the algorithm outputs group public key and private
key (PKGM , SKGM ).

3. Run UKGen(ID,MSK), the algorithm outputs the user’s corresponding pri-
vate key SKID.

4. Run Encryption(M, ID,PKGM ), the algorithm outputs C.
5. Verify if

((M �= Decryption(SKID, C)) ∨ (〈done|0〉 ←
〈P (s, n, ID),V〉(C10, C11, g, g1, g2, g3, k1, k2, ψ, l, t, v, w, d)) = 0)

∨(ID �= Trace(SKGM , C))

return 0 else return 1.

3.2 Adversarial Models

In following games, adversary A can adaptive query a series of oracles. These
oracles are maintained by a challenger. In anonymity and semantic security game,
the adversary can only adaptive query the Extract oracle. In traceability game
the adversary can adaptive query all of the following oracles.

– Extract oracle. The adversary queries the oracle with user’s ID, obtains the
user’s corresponding private key SKID.

– Corruption oracle. The adversary queries the oracle with a PKGM . The chal-
lenger responds with the corresponding secret key SKGM .

– Encryption oracle. The adversary queries the oracle with (PKGM , ID,M).
The challenger responds with the corresponding ciphertext C.

– Decrypt oracle. The adversary queries the oracle with a valid ciphertext C for
decryption. The challenger responds with the corresponding message M .

– Trace oracle. The adversary queries the oracle with a valid ciphertext C. The
challenger responds with the identity ID of the real receiver.



94 X. Luo et al.

3.3 Security Notions of IBGE

Anonymity and Semantic security. In order to protect the message secu-
rity and the receiver’s identity from attack, we propose the following definition.
When the ciphertext can not reveal information of the message, we say that the
cryptosystem is semantic secure. When the ciphertext can not reveal informa-
tion of the identity of the receiver, we say that the cryptosystem is anonymous.
Now, we consider the combination of these two notions.

Definition 3. We say that an IBGE scheme has anonymity and semantic secu-
rity against chosen-identity attacks and chosen-plaintext attacks (ANO-IND-
CIA-CPA) if no polynomially bounded adversary A has non-negligible advantage
in the following game.

– Setup. The challenger builds the system. It takes as input security parame-
ter λ and runs the algorithm ParaGen(λ) which outputs system parameter
Params and master-key MSK. It gives the adversary Params but keeps
MSK to itself.

– Phase 1. The adversary can adaptively issue extraction query of 〈IDi〉 using
Extract oracle, then obtains the user’s private key SKIDi

.
– Challenge. After Phase 1, adversary chooses two identities ID0, ID1 and two

equal length plaintexts M0,M1. The only restriction is that the two identities
did not appear in any private key extraction query in Phase 1. Challenger
chooses a random bit b ∈ {0, 1} and a random bit c ∈ {0, 1}, and sends the
ciphertext C = Encryption(Param, IDb,Mc) to adversary.

– Phase 2. It is similar to Phase 1. The two constraints are IDi �= ID and can
not query Trace oracle.

– Guess. The adversary outputs b′ ∈ {0, 1} and c′ ∈ {0, 1}. The adversary
wins the game if b = b′ ∧ c = c′.

We define adversary A’s advantage with security parameter λ in ANO-IND-CIA-
CPA game as AdvA(λ) =| Pr[b = b′ ∧ c = c′] − 1

4 | .
Traceability. In order to prevent adversary from colluding with others in IBGE,
we give the following definition. GM has capacity to trace the real receiver when
disputes occur.

Definition 4. We say that an IBGE scheme is traceable if no polynomially
bounded adversary has non-negligible probability to win in the following game.

– Setup. The challenger builds the system. It takes as input the security para-
meter λ and runs the algorithm ParaGen(λ) which outputs system parameter
Params and master-key MSK. It gives the adversary Params but keeps
MSK to itself.

– Inspect phase. The adversary can adaptively query all the oracles defined
above and controls the prover P in the zero-knowledge proof.

– Output. The adversary outputs a valid ciphertext C∗. The adversary wins
if the group manager outputs a wrong identity of the recipient.
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4 The Proposal

4.1 High Level Description of the Scheme

In this section, we provide a bird-view of our IBGE scheme. The scheme involves
three building block, i.e., an IBGE scheme with ANO-IND-ID-CPA security, a
public-key encryption with CCA2 security, a zero-knowledge proof with specific
properties. In a high level our scheme works as follow.

First, a GE scheme should protect identity of the receivers from being leaked
since the attacker may extract the receivers’ identity then obtain the total con-
stituent of the group. So, our IBGE scheme should achieve the anonymity of the
receivers. We employ an identity-based encryption with ANO-IND-ID-CPA secu-
rity [13] to produce the IBE ciphertext. This IBE ciphertext has anonymity and
semantic security against chosen-identity attacks and chosen-plaintext attacks.
We use −s · ID to blind the identity to ensure the anonymity of our scheme.

Second, our IBGE scheme needs traceability to identify the real receiver’s
identity if the need arises. But traditional IBE schemes do not have this property.
We employ public-key encryption with CCA2 security to encrypt the identity of
the anonymous recipient to achieve traceability. The encrypted identity is a part
of the resulting ciphertext. GM can trace the receiver by decrypting this part
of ciphertext. We use the Cramer-Shoup public-key cryptosystem [8] to encrypt
the identity. Because the public-key cryptosystem satisfies CCA2 security, the
encrypted identity can not been tampered.

Third, in order to show that the encrypted identity and the identity that
forms IBE ciphertext are identical, we link the identity-based encryption with the
public-key encryption using a zero-knowledge proof with correctness, complete-
ness, soundness with knowledge extraction and honest-verifier zero-knowledge.
This zero-knowledge proof indicates that the IBE ciphertext has not been tam-
pered as well as the ciphertext is well-formed. That is to say the zero-knowledge
proof makes our scheme achieve CCA2 security.

The IBE scheme achieves the anonymity and semantic security of IBGE
according to our security definition. The public-key encryption and zero-
knowledge proof ensure the traceability. The primitives above meet the require-
ments of a secure IBGE scheme.

4.2 A Concrete IBGE Scheme

Now we are ready to describe our IBGE scheme. It works as follows.

ParaGen. Let a user’s identity be ID ∈ Zp. Let G,GT be two groups of order p,
and let e : G × G → GT be a bilinear map. Let Ḡ be an Abelian group of order
p in which the DDH problem [8] is hard. PKG chooses random g, h

R←G and
random α

R←Zp. It sets g1 ← gα ∈ G. The program chooses random g2, g3, t
R← Ḡ

and a universal one-way hash function H. The system parameters and private
master-key are given by Pramas = (g, g1, h, g2, g3, t,H), MSK = α.
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GKGen. This procedure chooses random x1, x2, y1, y2, z
R←Zp, then computes

w = gx1
2 gx2

3 , d = gy1
2 gy2

3 , l = gz
2 . Group public key and secret key are PKGM =

(g2, g3, w, d, l,H) and SKGM = (x1, x2, y1, y2, z).

UKGen. Let a user’s identity be ID ∈ Zp, PKG chooses random r
R←Zp, and

calculates the user’s private key SKID = (r, hID), where hID = (hg−r)1/(α−ID).
The user can register his identity as a group member to GM.

Encryption. This encryption procedure can be divided into two sub-procedures.

1. Message encryption. Given plaintext M ∈ GT , the member’s identity ID ∈
Zp, the procedure chooses random s

R←Zp, then it computes the ciphertext
C1 = (gs

1g
−s·ID, e(g, g)s,M · e(g, h)−s) = (C10, C11, C12).

2. Member’s identity encryption. Given member’s identity ID ∈ Zp, the pro-

cedure chooses random n
R←Zp then it computes k1 = gn

2 , k2 = gn
3 , ψ =

lntID, ε = H(k1, k2, ψ), v = wndnε. The ciphertext is C2 = (k1, k2, ψ, v).

The sender sends the ciphertext C = (C1, C2) to the anonymous recipient.

Zero-knowledge proof. We construct a zero-knowledge proof which can prove
the encrypted ID and the ID that forms the IBE ciphertext are identical. It
proves the IBE ciphertext has not been tampered as well as the ciphertext is
well-formed. This is an interactive protocol between the sender (prover) and a
verifier. We denote the protocol by

ZK

{

s, n, ID

∣
∣
∣
∣
∣

C10 = gs
1g

−s·ID, C11 = e(g, g)s,

k1 = gn
2 , k2 = gn

3 , ψ = lntID, v = wndnε

}

This zero-knowledge proof is difficult to constructed directly. We convert this
zero-knowledge proof into an equivalent one as follow.

ZK

⎧
⎪⎨

⎪⎩
s, n, ID

∣
∣
∣
∣
∣
∣
∣

C10 = gs
1g

−s·ID, C11 = e(g, g)s, k1 = gn
2 , k2 = gn

3 ,

ψ = lntID, v = wndnε, A = ψs, A = A1A2,

A1 = lns, A−1
2 = t−s·ID, k = ks

1, k = gns
2

⎫
⎪⎬

⎪⎭

The 3-move protocol is as follows.

1. Prover randomly chooses integers s̄, ¯ID, n̄ and computes C̄10 =
gs̄
1g

−s̄· ¯ID, C̄11 = e(g, g)s̄, k̄1 = gn̄
2 , k̄2 = gn̄

3 , ψ̄ = ln̄t
¯ID, v̄ = wn̄dn̄ε, Ā =

ψs̄, Ā = Ā1Ā2, Ā1 = ln̄s̄, ¯A−1
2 = t−s̄· ¯ID, k̄ = k̄s̄

1, k̄ = gn̄s̄
2 then sends these

to verifier.
2. The verifier challenges the prover with a random c ∈ Zp.
3. The prover responses with r1 ≡ s̄ + cs mod p, r2 ≡ n̄ + cn mod p, r3 ≡

¯ID + c · ID mod p, r4 ≡ −s̄ ¯ID − c · s · ID mod p, r5 ≡ n̄s̄ + c · ns mod p.
4. The verifier checks that ψr1

?= AcĀ, kr1
1

?= kck̄, e(g, g)r1
?= Cc

11C̄11, g
r2
2

?=
kc
1k̄1, g

r2
3

?= kc
2k̄2, (wdε)r2

?= vcv̄, lr2tr3
?= ψcψ̄, gr1

1 gr4
?= C̄10C

c
10, t

r4
?=

¯A−1
2 (A−1

2 )c, lr5
?= Ac

1Ā1, g
r5
2

?= kck̄. The verifier outputs 1 if all checks hold;
otherwise it outputs 0.
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This zero-knowledge proof is an interactive protocol. It can be converted
into a non-interactive protocol using a hash function H̄. Specifically, the sender
can compute H̄(C1, C2, C̄10, C̄11, k̄1, k̄2, ψ̄, v̄, Ā, Ā1, Ā2,

¯A−1
2 , k̄) = c. In this way,

the sender no longer needs to interact with the GM during encryption. But the
resulting ciphertext is C = (C1, C2, C3), where the C3 = (r1, r2, r3, r4, r5).

Decryption. Input ciphertext C = (C1, C2), where C1 = (C10, C11, C12) and
user’s private key SKID = (r, hID). Output plaintext M = C12 ·e(C10, hID)Cr

11.

Receiver Tracing. Group manager can trace the receiver as follows.

1. If zero-knowledge proof’s verifier outputs 1, then the procedure executes step
2, else returns “reject”.

2. The procedure outputs tID = ψ/kz
1 . For all IDi ∈ I, compute tIDi and test

tIDi
?= tID. If tIDi = tID GM outputs ID, else returns “reject”.

Correctness of Our Scheme. We show that the above scheme is correct. We
first verify that the ciphertext can be decrypted correctly.

e(C10, hID)Cr
11 = e(gs(α−ID), h1/(α−ID)g−r/(α−ID))e(g, g)sr = e(g, h)s.

The receiver can decrypt because it possess an (α− ID)-th root of h. When this
is paired with an (α − ID)-th root of gs, the receiver obtains e(g, h)s.

We then verify that the receiver can be traced correctly. Since k1 = gn
2 , k2 =

gn
3 , we have kx1

1 kx2
2 = gnx1

2 gnx2
3 = wn. Similarly, we have ky1

1 ky2
2 = dn and

kz
1 = ln. The test kx1+y1ε

1 kx2+y2ε
2 = v will pass. The output is tID = ψ/ln.

Regarding security, the following theorems guarantee that our IBGE scheme
satisfies semantic security, anonymity and traceability in the standard model.
The proofs are provided in Appendix A.2 and A.3.

Theorem 1. Our IBGE scheme satisfies (t′, ε′, qID) ANO-IND-CIA-CPA secu-
rity assuming the truncated decision (t, ε, q) − ABDHE assumption holds for
(G,GT , e), where q = qID + 1, t′ = t − O(texp · q2), ε′ = ε + 2/q, texp is the time
required to exponentiate in G.

Theorem 2. Our IBGE scheme satisfies traceability.

4.3 Efficiency

In Table 1, we denote τm as one multiplication operation time in G and GT ,
τe as one exponent operation time in G and GT , τp as one pairing operation
time in G and GT , τ̄m as one multiplication operation time in Ḡ, τ̄e as one
exponent operation time in Ḡ. e(g, g), e(g, h) can be pre-computed. We note
that the ciphertext can be divided into two parts. One is computed in G with
size 3, another one is computed in Ḡ with size 4.

The storage complexity and computational complexity of our schemes are
constant. Table 1 shows that our scheme is efficient.
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Table 1. Efficiency of Our IBGE Scheme

PKGM Size 5 SKGM Size 5

SKID Size 2 Ciphertext Size 7

ParaGen Time 3τe + 2τ̄e GKGen Time 2τ̄m + 5τ̄e

UKGen Time τm + 2τe Encryption Time 2(τm + τ̄m) + 4τe + 6τ̄e

Decryption Time 2τm + τe + τp Trace Time τ̄e

5 Conclusion

We formalized a new cryptographic primitive, referred to as identity-based group
encryption which is more efficient and convenient than PKI-based group encryp-
tion. It allows a sender to send a ciphertext to any group member and the
receiver of the ciphertext remains anonymous. The group manager can trace the
identity of the receiver if the need arises. We propose a concrete construction
of identity-based group encryption which achieves anonymity, semantic secu-
rity and traceability. Our scheme has constant complexity in computation and
communication.
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A Proofs of Security

In this section, we prove the following zero-knowledge properties and two security
properties of our scheme.

A.1 Zero-Knowledge Properties

Lemma 1. The protocol ZK{s, n, ID|C10 = gs
1g

−s·ID, C11 = e(g, g)s, k1 =
gn
2 , k2 = gn

3 , ψ = lntID, v = wndnε} is a
∑

-protocol.

Proof. It is straightforward to validate the Correctness and Completeness of the
knowledge proof protocol.

Soundness with knowledge extraction: We construct an extractor who plays
the role of the verifier. The extractor interacts with prover two times. Because the
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responses of the extractor are c, c′(c �= c′), respectively, it obtains two equations
r1 ≡ s̄+cs mod p and r′

1 ≡ s̄+c′s mod p. It is easy to get that s = r1−r′
1

c−c′ mod p.
The extractor can obtain n, ID, s · ID and ns in the same way.

Honest-verifier zero-knowledge: We will construct a simulator S as following
steps. A simulator will play the role of the prover and interact with verifier.

1. S chooses random C̄10, C̄11, k̄1, k̄2, ψ̄, v̄, Ā, Ā1, Ā2, Ā
−1
2 , k̄. It sends them to

verifier.
2. S receives c from verifier, then chooses random r1, r2, r3, r4, r5 ∈ Zp and

computes new C̄10, C̄11, k̄1, k̄2, ψ̄, v̄, Ā, Ā1, Ā2, Ā
−1
2 , k̄.

3. S inter-
acts with verifier again. It sends new C̄10, C̄11, k̄1, k̄2, ψ̄, v̄, Ā, Ā1, Ā2, Ā

−1
2 , k̄

to verifier.
4. S receives c from verifier, then sends r1, r2, r3, r4, r5 ∈ Zp to verifier.

Let the output of verifier be {C̄10, C̄11, k̄1, k̄2, ψ̄, v̄, Ā, Ā1, Ā2, Ā
−1
2 , k̄, c, r1, r2,

r3, r4, r5}, and it is uniform random. Let the output of S
be {C̄ ′

10, C̄
′
11, k̄

′
1, k̄

′
2, ψ̄

′, v̄′, Ā′, Ā′
1, Ā

′
2, Ā

′−1
2 , k̄′, c′, r′

1, r
′
2, r

′
3, r

′
4, r

′
5}, and it is also

uniform random. We say that this protocol is perfect zero knowledge.
Equality of Identity: Let C10 = gs

1g
−s·ID, A−1

2 = t−s·ID′
, ID �= ID′.

Prover chooses −s̄ · ¯ID1,−s̄ · ¯ID2, ¯ID1 �= ¯ID2 (if ¯ID1 = ¯ID2, since gr1
1 gr4 =

C̄10C
c
10, t

r4 = ¯A−1
2 (A−1

2 )c, we obtain r4 ≡ −s̄ ¯ID1 + (−s · ID)c mod p, r4 ≡
−s̄ ¯ID2 +(−s · ID′)c mod p, ID = ID′), then computes C̄10 = gs̄

1g
−s̄· ¯ID1 , Ā−1

2 =
t−s̄· ¯ID2 . gr1

1 gr4 = C̄10C
c
10 and tr4 = ¯A−1

2 (A−1
2 )c both hold, if and only if

−s̄ ¯ID1 + (−s · ID)c ≡ −s̄ ¯ID2 + (−s · ID′)c mod p holds. This means that
c ≡ s̄( ¯ID1− ¯ID2)

s(ID′−ID) . This equation holds if and only if the verifier chooses this c

exactly. But the probability is negligible.

A.2 Proof of Theorem 1

Proof. Suppose A is an (t′, ε′, qID) ANO-IND-CIA-CPA adversary against our
scheme. We construct a simulator B solves the truncated decision q-ABDHE
problem. B takes as input (g′, g′

q+2, g, g1, ...gq, Z), where Z = e(gq+1, g
′) or a

random element of GT .

Setup. B generates a random polynomial f(x) ∈ Zp[x] of degree q. It let h =
gf(α) and computes h from (g, g1, ..., gq). It sends public parameters (g, g1, h)
to A.

Phase 1. A adaptively queries Extract oracle. B responds as follows. If
ID = α, B can solve the truncated decision q-ABDHE immediately. Other-
wise, let FID(x) = (f(x) − f(ID))/(x − ID) be the (q − 1)-degree polyno-
mial. B let (f(ID), gFID(α)) be the user’s secret key (r, hID). Since gFID(α) =
g(f(α)−f(ID)/(α−ID)) = (hg−f(ID))1/(α−ID), secret key (r, hID) is valid of ID.

Challenge. A outputs two identities ID0, ID1 and two messages M0,M1. The
restriction is that the two identities did not appear in any secret key extraction
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query. Note that if α ∈ {ID0, ID1}, B can solve the truncated decision q-ABDHE
immediately. Otherwise, B chooses bits b, c ∈ {0, 1}, and computes secret key
(rb, hIDb

) for IDb same to phase 1.
Let f2(x) = xq+2 and let F2,IDb(x) = (f2(x) − f2(IDb))/(x − IDb), which is

a polynomial of degree of q + 1. B sets

C10 = g′f2(α)−f2(IDb), C11 = Z · e(g′,
q∏

i=0

gF2,IDb
,iαi

), C12 = Mc/e(C10, hIDb
)Crb

11

where F2,IDb,i is the coefficient of xi in F2,IDb
(x). It sends C1 = (C10, C11, C12)

as the ciphertext to be challenged.
Let s = (logg g′)F2,IDb

(α). If Z = e(gq+1, g
′), then C10 = gs(α−IDb), C11 =

e(g, g)s, and Mc/C12 = e(C10, hIDb
)Crb

11 = e(g, h)s, We let C1 = (C10, C11, C12)
be an effective ciphertext of identity IDb as well as message Mc under random
value s.

Phase 2. A adaptively queries Extract oracle as in phase 1. The restriction is that
the two identities did not appear in any private key extraction query. Besides,
the adversary A can not query Trace oracle.

Guess. Finally, adversar A outputs guesses b′, c′ ∈ {0, 1} of b, c. If b′ = b∧c′ = c
B outputs 1 else 0.

The analysis of probability and time complexity is as follow.

Analysis of probability. If Z = e(gq+1, g
′) the simulation is perfect. Adversary

A can guess the bits (b, c) correctly with probability 1
4 + ε′. Otherwise, Z is

uniformly random, so (C10, C11) is a uniformly random and independent element
of (G,GT ). When this happen, the inequalities

C11 �= e(C10, g)1/(α−ID0), C11 �= e(C10, g)1/(α−ID1)

both hold in the same time with probability 1 − 2/p. When the two inequalities
hold,

e(C10, hIDb
)Crb

11 = e(C10, (hg−rb)1/(α−IDb))Crb
11

= e(C10, h)α−IDb(C11/e(C10, g)1/(α−IDb))rb

is a uniformly random and independent value from the view of adversar A,
because of rb is a uniformly random and independent value from the view of
adversar A. So, C12 is uniformly random and independent. C1 will not reveal
any information of the bits (b, c). Assuming that no queried identity equals
α, it is easy to see that | Pr[B(g′, g′

q+2, g, g1, ..., gq, Z) = 0] − 1
4 |� 2

p when
(g′, g′

q+2, g, g1, ..., gq, Z) is sampled from RABDHE . To the contrary, we can see
that | Pr[B(g′, g′

q+2, g, g1, ..., gq, Z) = 0] − 1
4 |� ε′ when (g′, g′

q+2, g, g1, ..., gq, Z)
is sampled from PABDHE . Thus, we have that

| Pr[B(g′, g′
q+2, g, g1, ..., gq, e(gq+1, g

′)) = 0]

− Pr[B(g′, g′
q+2, g, g1, ..., gq, Z) = 0] |� ε′ − 2

p
.



Identity-Based Group Encryption 101

Analysis of Time Complexity. In the simulation procedure, the overhead of
B is computing gFID(α) in order to response A’s extraction query for the ID,
where FID(x) is polynomial of q − 1 degree. Every computation requires O(q)
exponentiation in G. A makes at most q − 1 queries, thus t = t′ + O(texp · q2).

A.3 Proof of Theorem 2

Proof. Setup is same as the above proof. In inspect phase adversary can adapt-
ability query all of the oracles. The challenger will respond adversary. The adver-
sary will choose a group public key PK ′

GM = (g2, g3, w′, d′, l′,H ′) and obtain
secret key are SK ′

GM = (x′
1, x

′
2, y

′
1, y

′
2, z

′). Adversary will choose an identity ID
and obtain use’s private key SKID, as well as an other ID′. Adversary com-
putes C ′

1 using ID and computes C ′
2 using ID′. Thus, adversary outputs a valid

ciphertext C ′ = (C ′
1, C

′
2) which the GM can not trace correctly if and only if

c ≡ s̄( ¯ID1− ¯ID2)
s(ID′−ID) (Part 5.1). But the probability is negligible.
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Abstract. Edit distance, also known as Levenshtein distance, is a very
useful tool to measure the similarity between two strings. It has been
widely used in many applications such as natural language processing and
bioinformatics. In this paper, we introduce a new type of fuzzy public key
encryption called Edit Distance-based Encryption (EDE). In EDE, the
encryptor can specify an alphabet string and a threshold when encrypting
a message, and a decryptor can obtain a decryption key generated from
another alphabet string, and the decryption will be successful if and only
if the edit distance between the two strings is within the pre-defined
threshold. We provide a formal definition and security model for EDE,
and propose an EDE scheme that can securely evaluate the edit distance
between two strings embedded in the ciphertext and the secret key. We
also show an interesting application of our EDE scheme named Fuzzy
Broadcast Encryption which is very useful in a broadcasting network.

Keywords: Edit distance · Fuzzy encryption · Dynamic programming ·
Viète’s Formulas

1 Introduction

Measuring the similarity between two strings is an important task in many appli-
cations such as natural language processing, bio-informatics, and data mining.
One of the common similarity metrics that has been widely used in the above
applications is the Edit Distance (a.k.a. Levenshtein distance), which counts the
minimum number of operations (namely, insertion, deletion, and substitution)
required to transform one string into the other. In this paper, we investigate a
challenging problem of building fuzzy public key encryption schemes based on
edit distance.

Our work is motivated by an open problem raised by Sahai and Waters in
[21], where the notion of Fuzzy Identity-Based Encryption (IBE) was proposed.
The Fuzzy IBE scheme introduced in [21] can be regarded as the first Attribute-
Based Encryption (ABE) scheme with a threshold access policy. To be more
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 103–119, 2016.
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precise, it allows to use a private key corresponding to an identity string I ′ to
decrypt a ciphertext encrypted with another identity string I if and only if the
“set overlap” between I and I ′ (i.e., |I∩I ′|) is larger than a pre-defined threshold.
One of the open problems raised in [21] is to construct fuzzy encryption schemes
based on other similarity metrics.

We should note that edit distance is very different from the “set overlap”
distance used in Fuzzy IBE. For example, consider the biometric identity appli-
cation of Fuzzy IBE described in [21], given two strings I = “ATCG” and
I ′ = “GACT”, we have |I ∩ I ′| = 4 (i.e., the distance is 0). However, the edit
distance between I and I ′ is 3. It is easy to see that the order of the alphabets
in those strings will affect the edit distance, but not the set overlap distance.
This simple example shows that to a certain extent edit distance provides better
accuracy than the set overlap distance in measuring the similarity of two strings.
As another example, given an encryption string I = “admirer” and a threshold
distance d = 1, for edit distance, we can allow a decryption key associated
with I ′ = “admirers” to decrypt the message; while for set overlap distance, we
can have some totally unrelated anagrams of I, such as I ′ = “married”, whose
corresponding secret key can also decrypt the message. Due to the difference
between the two distances (or similarity metrics), we cannot easily extend the
technique used in [21] to construct a fuzzy encryption scheme for edit distance.
Also, in order to distinguish our fuzzy encryption scheme based on edit distance
from the Fuzzy IBE proposed in [21], we name our new encryption scheme Edit
Distance-based Encryption (or EDE, for short).

1.1 This Work

In this paper, we introduce the notion of Edit Distance-based Encryption (EDE),
formalize its security, and propose a practical scheme in the standard model.

Edit distance can be measured in polynomial time using different techniques,
such as dynamic programming or recursion. However, in an EDE scheme, the
two strings I and I ′ are embedded in the ciphertext CT and the user secret key
SK, respectively. Hence, the problem becomes how to measure the distance of
I and I ′ using CT and SK. We observe that the most important operation in
the edit distance algorithms is the equality test between two alphabets I[x] and
I ′[y]. Based on this observation, our proposed EDE scheme uses bilinear map [6]
to solve this issue. We illustrate our idea using the following example.

Suppose we have two strings I = “ATTGA” and I ′ = “AGTA”. We first
encode each alphabet as a group element. Then in the encryption process, we
create a randomized vector I = (As, T s, T s, Gs, As) using the same random
number s. Similarly, we create another randomized vector I′ = (Ar, Gr, T r, Ar)
in the key generation process. Then we apply bilinear map to conduct equality
test between I and I ′ using the two vectors I and I′ which are included in the
ciphertext and the secret key respectively. The crux of the idea is illustrated in
Fig. 1. In order to deal with the threshold problem, we apply the technique of
Viète’s formulas [22] to solve the problem. In the encryption process, we create
a vector d = (1, 2, . . . , d, 0, . . . , 0) for the threshold distance d and embed the
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vector d in the ciphertext. Also, based on the edit distance d′ between I and I ′,
we create another vector d′ = (1, 2, . . . , d′, ∗, . . . , ∗) where ∗ denotes the wildcard
(i.e., don’t care) symbol. Then based on d and d′, we ensure that the decryption
can be successful if and only if d′ ≤ d. Also, we overcome the issue of malleability
by using the composite order group in constructing the EDE scheme. We prove
that our proposed scheme is selectively secure under the L-composite Decisional
Diffie-Hellman (L-cDDH) assumption.

Fig. 1. Edit distance evaluation using bilinear map

We also show an interesting application of our EDE scheme named Fuzzy
Broadcast Encryption (FBE), which is very useful in broadcasting networks. An
FBE scheme allows the encryptor (i.e., message sender) to specify a set of receiver
identities during the encryption process, and a user can decrypt the message if
and only if the minimum edit distance between his/her identity and all the
identities chosen by the encryptor is below a threshold that is also specified by
the encryptor during the encryption process.

1.2 Related Work

Since the seminal work of Sahai and Waters [21], many Attribute Based Encryp-
tion (ABE) schemes with the threshold access structure have been proposed
(e.g., [5,8,9,11]). In [9], Goyal et al. extended the work of Sahai and Waters to
construct more expressive Key-Policy (KP) ABE where the access structure is
defined via a tree of threshold gates. Bethencourt et al. [5] proposed the first
Ciphertext-Policy (CP) ABE using the same access structure. Under the motiva-
tion of reducing the ciphertext size, which is linear in the size of the encryption
attribute set in most of the existing ABE schemes, Herranz et al. [11] proposed
a constant-size ABE scheme for the threshold access structure, which is essen-
tially the same as the set overlap distance metric used in Fuzzy IBE [21]. In [8],
Ge et al. proposed another constant-size ABE scheme with the same threshold
access structure but under a relatively weaker assumption. As of independent
interest, some interesting fuzzy encryption techniques have been proposed in the
literature, such as [15–17].

Another type of fuzzy identity-based encryption is the Wildcarded IBE (or
WIBE for short) proposed by Abdalla et al. [1–3]. A WIBE allows wildcard
symbols to appear in an identity string used in the encryption process, and the
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wildcard positions will be ignored when measuring the equality of two identity
strings. Another notion that is similar to WIBE is the Hidden Vector Encryption
(HVE) [12,14,18,19,22], which also allows wildcards to appear in either the
encryption string or the key generation string. However, both WIBE and HVE
are based on the fuzzy equality test between two strings, which is different from
the problem we aim to solve in this paper.

There are also a few works on the privacy-preserving edit distance evaluation
between two strings [4,7,13,20,23]. These works mainly focused on finding the
edit distance of two (perhaps encrypted) strings in a privacy-preserving manner,
and hence is completely different from this work.

2 Preliminaries

2.1 Edit Distance

Consider a finite alphabet set A whose elements are used to construct strings.
Let ZI , ZD and ZS be finite sets of integers. Let the function I : A → ZI be
the insertion cost function, i.e., I(a) is the cost of inserting the element a ∈ A
into a given string. Similarly, define the deletion cost function as D : A → ZD so
that D(a) is the cost of deleting the element a ∈ A from a given string. Finally,
define the substitution cost function S : A×A → ZS so that for a, b ∈ A, S(a, b)
is the cost of replacing the element a by the element b in a given string.

Given two strings of length m and n, denoted by X ∈ Am and Y ∈ An

respectively, consider the sequence of insertion, deletion and substitution oper-
ations needed to transform X into Y and the corresponding aggregate cost of
the transformation.

Definition 1. The edit distance between X and Y is defined as the minimum
aggregate cost of transforming X into Y .

The general definition of edit distance given above considers different weights
for different operations. In this paper we will consider a simpler definition which
is given below.

Definition 2. For all a, b ∈ A, let I(a) = D(a) = 1, S(a, b) = 1 when a �= b,
and S(a, a) = 0. Then, the edit distance is defined as the minimum number of
insertion, deletion and substitution operations required to convert X into Y .

Dynamic Programming for Edit Distance. Let X = X1X2...Xm ∈ Am and
Y = Y1Y2...Yn ∈ An be two strings. We use M(i, j) to denote the edit distance
between the two sub strings X1X2...Xi and Y1Y2...Yj . The problem of finding
the edit distance between X and Y can be solved in O(mn) time via dynamic
programming [10], which will be used in our scheme.

Let M(0, 0) = 0. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, define M(i, 0) =
i∑

k=1

I(xk), and

M(0, j) =
j∑

k=1

D(yk).
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Then, the edit distance M(m,n) is defined by the following recurrence rela-
tion for 1 ≤ i ≤ m, 1 ≤ j ≤ n: M(i, j) = min{M(i − 1, j) + D(Yj),M(i, j − 1) +
I(Xi),M(i − 1, j − 1) + S(Xi, Yj)}.

2.2 The Viète’s Formulas

Consider two vectors:−→v = (v1, v2, . . . , vL),−→z = (z1, z2, . . . , zL) where −→v con-
tains both alphabets and wildcard symbols (*) and −→z only contains alpha-
bets. Let J = {j1, . . . , jn} ⊂ {1, . . . , L} denote the wildcard positions in −→v .
Then according to [22], the statement (vi = zi ∨ vi = ∗ for i = 1 . . . L) can be
expressed as:

L∑

i=1,i/∈J

vi

∏

j∈J

(i − j) =
L∑

i=1

zi

∏

j∈J

(i − j). (1)

Expand
∏

j∈J

(i−j) =
n∑

k=0

λkik, where λk are the coefficients dependent on J , then

(1) becomes:

L∑

i=1,i/∈J

vi

∏

j∈J

(i − j) =
n∑

k=0

λk

L∑

i=1

zii
k. (2)

To hide the computation, we choose random group element Hi and put
vi, zi as the exponents of group elements: Hvi

i ,Hzi
i . Then (2) becomes:

L∏

i=1,i/∈J

H
vi

∏
j∈J (i−j)

i =
n∏

k=0

(
L∏

i=1

Hzii
k

i )λk .

Using the Viète’s formulas we can construct the coefficient λk in (2) by: λn−k =
(−1)k

∑

1≤i1<i2<...<ik≤n

ji1ji2 . . . jik
, 0 ≤ k ≤ n. where n = |J |. For example,

if we have J = {j1, j2, j3}, the polynomial is (x − j1)(x − j2)(x − j3), then
λ3 = 1, λ2 = −(j1 + j2 + j3), λ1 = (j1j2 + j1j3 + j2j3), λ0 = −j1j2j3.

2.3 Bilinear Map on Composite Order Groups
and Its Assumption

Let p, q be two large prime numbers and n = pq. Let G,GT be cyclic groups of
order n. We say e : G×G → GT is bilinear map over composite order groups if e
satisfies the following properties: (1) Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab

for all u,v ∈ G and a,b ∈ Zp; (2)Non-degeneracy : e(g, g) �= 1.
Let Gp and Gq be two subgroups of G of order p and q, respectively. Then

G = Gp × Gq, GT = GT,p × GT,q. We use gp and gq to denote generators of Gp

and Gq, respectively. It is easy to see that e(hp, hq) = 1 for all elements hp ∈ Gp

and hq ∈ Gq since e(hp, hq) = e(ga
p , gb

q) = e(gqa, gpb) = e(g, g)pqab = 1 for a
generator g of G.
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The Decisional L−cBDHE assumption:

Let gp, h
R←− Gp, gq

R←− Gq, α
R←− Zn, Z = (gp, gq, h, gα

p , . . . , gαL

p , gαL+2

p , . . . , gα2L

p ),
T = e(gp, h)αL+1

, and R ← GT,p

We say that the decisional L−cBDHE assumption holds if for any probabilistic
polynomial-time algorithm A:|Pr[A(Z, T ) = 1] − Pr[A(Z,R) = 1]| ≤ ε(k), where
ε(k) denotes an negligible function of k.

3 Edit Distance Based Encryption

An Edit Distance Based Encryption (EDE) scheme consists of the following four
probabilistic polynomial-time algorithms:

• Setup(1n, Σ): on input a security parameter 1n, an alphabet Σ, the algorithm
outputs a public key PK and a master secret key MSK.

• Encrypt(PK,−→v ,M, d): on input a public key PK, a message M , a vector−→v ∈ Σn and a distance d, the algorithm outputs a ciphertext CT .
• KeyGen(MSK,−→x ): on input a master secret key MSK, a vector −→x ∈ Σm,

the algorithm outputs a decryption key SK.
• Decrypt(CT, SK): on input a ciphertext CT and a secret key SK, the algo-

rithm outputs either a message M if EditDistance(−→v ,−→x ) ≤ d, or a special
symbol ⊥.

Security Model. The security model for an EDE scheme is defined via the
following game between an adversary A and a challenger B.

• Setup: The challenger B run Setup(1n, Σ) to generate the PK and MSK.
PK is then passed to A.

• Query Phase 1: The challenger answers all private key queries for a vector−→σ by returning: skσ ← KeyGen(MSK,−→σ ).
• Challenge: A submits two equal-length messages M0 and M1, a target vector−→v ∗ ∈ Σn and threshold τ such that EditDistance(−→v ∗,−→σ ) > τ for any vector−→σ that has been queried in Phase 1. The challenger then flips a coin β ←

{0, 1} and computes the challenge ciphertext C∗ ← Encrypt(PK,−→v ∗,Mβ , τ),
which is given to A.

• Query Phase 2: same as Query Phase 1 except that EditDistance
(−→v ∗,−→σ ) > τ for any vector σ queried in this phase.

• Output: A outputs a bit β′ as her guess for β.

Define the advantage of A as AdvEDE
A (k) = |Pr[β′ = β] − 1/2|.

Selective Security. In the selective security model, the adversary A is required
to submit the target vector −→v ∗ ∈ Σn and threshold τ before the game setup,
and A is only allowed to make private key queries for any vector −→σ that satisfies
EditDistance(−→v ∗,−→σ ) > τ throughout the game.
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4 Edit Distance Based Encryption Scheme

In this section, we introduce our EDE scheme, which is based on the Dynamic
Programming [10] algorithm for calculating edit distance.

– Setup(1n, Σ): The setup algorithm first chooses L = poly(n) as the maximum
number of length of a word that would appear in the encryption and key
generation. It then picks large primes p, q, generates bilinear groups G,GT of
composite order n = pq, and selects generators gp ∈ Gp, gq ∈ Gq. After that,
generate:

v0, v
′
0, b0, g, f, ω, h1, . . . , hL, u1, . . . , uL ∈R Gp, x1, . . . , xL, x′

1, . . . , x
′
L ∈R Zn,

v1 = vx1
0 , . . . , vL = vxL

0 , v′
1 = (v′

0)
x1 , . . . , v′

L = (v′
0)

xL , b1 = b
x′
1

0 , . . . , bL = b
x′

L
0 ,

Rg, Rf , Rv0 , . . . , RvL
, Rv′

0
, . . . , Rv′

L
,

Rb0 , . . . , RbL
, Rh1 , . . . , RhL

, Ru1 , . . . , RuL
∈ Gq,

G = gRg, F = fRf , Y = e(g, ω),
V0 = v0Rv0 , . . . , VL = vLRvL

, V ′
0 = v′

0Rv′
0
, . . . , V ′

L = v′
LRv′

L
, B0 = b0Rb0 , . . . ,

BL = bLRbL
,H1 = h1Rh1 , . . . , HL = hLRhL

, U1 = u1Ru1 , . . . , UL = uLRuL
,

and set the public key and secret key as:

Algorithm 1. Edit distance evaluation via dynamic programming
input : CT, SK
output: d′, pos

lenv = n + 1; lenz = m + 1;
Creat cost[lenv]; Creat newcost[lenv ]; Creat pos[2][];
//setup two arrays to store the position matching pos[0][] for vector v, pos[1][] for
vector z ;
for i ← 0 to lenv do

cost[i] = i;
end
k = 0;
for j ← 1 to lenz do

newcost[0] = j;
for i ← 1 to lenv do

// matching current letters in both strings
match = (e(K2, C3,i−1) == e(C1, K3,j−1))?0 : 1 (1);
// store the i match in array pos[0], j match in array pos[1]
if i /∈ pos[0], j /∈ pos[1] then

pos[0][k ++] = i, pos[1][k ++] = j, ;
end
// computing cost for each transformation
replace = cost[i − 1] + match; insert = cost[i] + 1; delete = newcost[i − 1] + 1;
// keep minimum cost
newcost[i] = Math.min(Math.min(cost− insert, cost−delete), cost−replace);

end
// swap cost-newcost arrays
swap[] = cost; cost = newcost;newcost = swap;

end
// return the cost for transforming all letters in both strings and array list pos
including pos[0], pos[1]
return cost[lenv − 1], pos;
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PK = {Y, G, F, (V0, . . . , VL), (V ′
0 , . . . , V ′

L), (B0, . . . , BL), (H1, . . . , HL), (U1, . . . , UL)},
MSK = {g, f, ω, (v0, . . . , vL), (v′

0, . . . , v′
L), (b0, . . . , bL), (h1, . . . , hL), (u1, . . . , uL)}.

– Encrypt(PK,−→v = (v1, . . . , vn1) ∈ Σn1 ,M, d): On input the public key
PK, a vector −→v = (v1, . . . , vn1) with n1 ≤ L, it first generates for
each alphabet vi a vector xi = (vi, 1, . . . , 1L), and expands −→v to −→v =
(v1, v2, . . . , vn1 , . . . , 1L) and sets

−→
d = (1, . . . , d, 0d+1, . . . , 0L). Then choose

s ∈R Zn, and Z1, Z2, Z3, Z4, Z5 ∈R Gq, and compute:

C0 = MY s, C1 = GsZ1, C2 = F sZ2, C3,i = (Vi

L∏

j=1

H
xij

i )sZ3,

C4 = (V ′
0

L∏

i=1

Hvi
i )s · Z4, C5,k,t = (V ′

t (Bk

L∏

i=1

(Ui)dii
k

)(
L∏

j=1

(Hj)vjjt

))s · Z5.

Set the ciphertext as: CT = (n1, C0, C1, C2, {C3,i}n1
i=1, C4, {{C5,k,t}L

k=0}L
t=0).

– KeyGen(MSK,−→z = (z1, . . . , zm) ∈ Σm): Given a key vector −→z =
(z1, . . . , zm), it generates yi = (zi, 1, . . . , 1L) for each alphabet zi, and creates−→σ = (1, 2, ..., L) and expands −→z to −→z = (z1, z2, . . . , zm, . . . , 1L). Then choose
r1, r2 ∈R Zn, and compute:

K1 = gr1 ,K2 = gr2 ,K3,i = (vi

L∏

j=1

h
yij

i )r2 ,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K4,0,0 = ω(v′
0

L∏

i=1
h

zi
i )r2

((b0
L∏

i=1
(u

σi
i ))(v′

0

L∏

j=1
h

zj
j ))r1fr1

K4,1,0 = (b1
L∏

i=1
(u

σi
i )i(v′

0

L∏

j=1
h

zj
j ))r1

. . . ,

K4,L,0 = (bL

L∏

i=1
(u

σi
i )iL

(v′
0

L∏

j=1
h

zj
j ))r1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K4,0,t = (b0
L∏

i=1
(u

σi
i )(v′

t

L∏

j=1
h

zj
j )jt

)r1

K4,1,t = (b1
L∏

i=1
(u

σi
i )i(v′

t

L∏

j=1
h

zj
j )jt

)r1

. . . ,

K4,L,t = (bL

L∏

i=1
(u

σi
i )iL

(v′
t

L∏

j=1
h

zj
j )jt

)r1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(t = 1, . . . , L). Then set the user secret key as SK =
(m,K1,K2, {K3,i}m

i=1, {{K4,k,t}L
k=0}L

t=0).

– Decrypt(CT, SK): The decryption algorithm first executes the dynamic pro-
gramming algorithm for edit distance by following Algorithm1 which returns
a distance d′ = cost[lenv − 1], the matching indices array pos[0][] for −→v and
pos[1][] for −→z . It sets τ = L−d′, and applies the Viète’s formulas to compute

• for the index set

Ωv = {L\{pos[0][0], . . . , pos[0][d′ − 1]}} = {ω1, . . . , ωL−d′},

then

aτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ωi1ωi2 . . . ωik
(0 ≤ k ≤ τ), (3)
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• for the index set

Ωz = {L\{pos[1][0], . . . , pos[1][d′ − 1]}} = {ω̄1, . . . , ω̄L−d′},

then

āτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ω̄i1 ω̄i2 . . . ω̄ik
(0 ≤ k ≤ τ), (4)

• for the threshold index set

J = {j1, . . . , jτ} with j1 = d′ + 1, . . . , jτ = L,

then

âτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ji1ji2 . . . jik
(0 ≤ k ≤ τ). (5)

Then recover M as:

M =
e(K2, C4) · e(K1, C2)

τ∏

k=0

e(K
1

ā0â0
1 ,

τ∏

t=0
Cat

5,k,t)
âk

τ∏

k=0

e(
τ∏

t=0
K āt

4,k,t, C
1

ā0â0
1 )âk

· C0.

Correctness. In Algorithm 1:

e(gr2 , (Vi

L∏

j=1

H
xij

i )sZ3)
?= e(GsZ1, (vi

L∏

j=1

h
yij

i )r2).

e(g, vi)sr2e(g,
L∏

j=1

h
xij

i )sr2
?= e(g, vi)sr2e(g,

L∏

j=1

h
yij

i )sr2

We then illustrate an example:

Input: “AAGTA”, “AAAGG”
Output:

– d′ = 2
– pos =< pos[0][], pos[1][] >, with pos[0][] = {1, 2}, pos[1][] = {1, 2}

In message recovery:

C0 = M · e(g, ω)s

e(K2, C4) = e(gr2 , (V ′
0

L∏
i=1

Hvi
i )s · Z4)

= e(g, v′
0)

sr2e(g,
L∏

i=1

(hvi
i )sr2)

e(K1, C2) = e(gr1 , F sZ2) = e(g, f)sr1
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τ∏
k=0

e(K
1

ā0â0
1 ,

τ∏
t=0

Cat
5,k,t)

âk =

τ∏
k=0

e(g
r1
ā0 ,

τ∏
t=0

(V ′
t (Bk

L∏
i=1

(Ui)
diik

)(

L∏
j=1

(Hj)
vjjt

))sat)âk

= e(g, v′
0)

sr1
τ∑

t=0
xtat

τ∑

k=0
âk

ā0â0
e(g, b0)

sr1
τ∑

t=0
at

τ∑

k=0
x′

kâk

ā0â0

L∏
i=1

e(g, ui)

sr1
τ∑

t=0
at

τ∏

k=1
(i−dk)

ā0â0

L∏
j=1

e(g, hj)

vjsr1
τ∏

t=1
(i−ωt)

τ∑

k=0
âk

ā0â0 .

τ∏
k=0

e(

τ∏
t=0

K āt
4,k,t, C

1
ā0â0
1 )âk = e(ωā0â0(v′

0

L∏
i=1

(hzi
i ))r2ā0â0

τ∏
k=1

((

τ∏
t=1

(v′
t(bk

L∏
i=1

(ui)
σiik

)

(
L∏

j=1

(hj)
zjjt

))r1āt)âkfr1ā0â0 , G
s

ā0â0 Z1)

= e(g, ω)se(g, v′
0)

sr2e(g,
L∏

i=1

(hzi
i )sr2)

e(g, v′
0)

r1s
τ∑

t=0
xtāt

τ∑

k=1
âk

ā0 e(g, b0)

sr1
τ∑

t=0
āt

τ∑

k=0
x′

kâk

ā0â0

L∏
i=1

e(g, ui)

sr1
τ∑

t=0
āt

τ∏

k=1
(i−σk)

ā0â0 )
L∏

j=1

e(g, hj)

sr1zj

τ∏

t=1
(i−ω̄t)

τ∑

k=0
âk

ā0â0

e(g, f)sr1 .

5 Security Analysis for the Proposed EDE Scheme

Theorem 1. Assume that the Decisional L−cBDHE assumption holds, then for
any PPT adversary, our EDE scheme is selectively secure.

Let B denote the algorithm to solve the Decisional L−cBDHE prob-
lem. B is given a challenge instance Z, T ′ of the problem, where Z =
(gp, gq, h, gα

p , . . . , gαL

p , gαL+2

p , . . . , gα2L

p ) and T ′ is either T = e(gp, h)αL+1
or

R ∈R GT,p. B simulates the game for A as follows:

• Init: A submits a target vector −→v ∗ ∈ Σn, and target threshold τ . Let
−→
d =

(1, . . . , τ, τ + 1, . . . , L) denote a vector of length L. We denote ind(
−→
d ) =

{1 ≤ i ≤ L|di = 0} and ind(
−→
d ) = {1 ≤ i ≤ L|di �= 0}, and ind(

−→
d )|φj as

{i ∈ ind(
−→
d )|j ≤ i ≤ φ}.
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• Setup: In this phase, B generates:

γ, ψ, v0, v
′
0, b0, g, f, h′

1, . . . , h
′
L, u′

1, . . . , u
′
L ∈R Gp, x1, . . . , xL, x′

1, . . . , x
′
L ∈R Zn,

v1 = vx1
0 , . . . , vL = vxL

0 , v′
1 = (v′

0)
x1 , . . . , v′

L = (v′
0)

xL , b1 = b
x′
1

0 , . . . , bL = b
x′

L
0 ,

Ry, Rg, Rf , Rv0 , . . . , RvL
, Rv′

0
, . . . , Rv′

L
, Rb0 , . . . , RbL

, Rh′
1
, . . . , Rh′

L
, Ru′

1
, . . . ,

Ru′
L

∈R Gq,

G = gpRg, F = gψ
p Rf , Y = e(gα

p , gαL

p gγ
p ),

Vt = gv0xt
p Rvt

, V ′
t = g

v′
0xt

p Rv′
t
, with t = 1, . . . , L,

Bk = g
b0x′

k
p

∏

k∈ind(
−→
d )

g
αL+1−id

i
ik

p Rbk
, with k = 1, . . . , L,

Hi = g
h′

i
p Rhi

, {Ui = g
u′

i−αL+1−i

p Ru′
i
}

i∈ind(
−→
d )

, {Ui = g
u′

i
p Ru′

i
}

i∈ind(
−→
d )

The corresponding master secret key components are: g = gp, f =

gψ
p , hi = g

h′
i

p , {ui = g
u′

i−αL+1−i

p }
i∈ind(

−→
d )

, {ui = g
u′

i
p }

i∈ind(
−→
d )

, vt = vxt
0 , v′

t =

v′
0
xt , with t = 1, . . . , L, bk = b

x′
t

0

∏

i∈ind(
−→
d )

gαL+1−idi
p , with k = 1, . . . , L. Notice

that the master key component ω is gαL+1+αγ
p . Since B does not have gαL+1

p ,
B cannot compute ω directly.

• Query Phase 1: A queries the user secret key for a string −→z =
(z1, z2, . . . , zm) under the constraint that EditDistance(−→v ∗,−→z ) > τ . Assume
EditDistance(−→v ∗, −→z ) = σ and denote −→σ = (1, 2, . . . , σ, 0, . . . , 0) and−→
d = (1, 2, . . . , τ, 0, . . . , 0). Note that since σ > τ , there exists at least one
position i such that di = 0 and σi �= 0. Let φ ∈ ind(

−→
d ) be the smallest

integer such that σφ �= dφ. B simulates the user key generation process as
follows:

K4,0,0 = ω(v′
0

L∏

i=1

hw̄i
i )r2(b0

L∏

i=1

(uσi
i ))r1(v′

0

L∏

i=1

hw̄i
i ))r1fr1

= gαL+1+αγ
p (v′

0

L∏

i=1

hw̄i
i )r2(gb0

p

∏

i∈ind(
−→
d )

gαL+1−idi
p

∏

ind(−→σ )

(gu′
i−αL+1−i

)σi

· ∏

ind(−→σ )

(gu′
i)σi)r1(v′

0

L∏

j=1

h
w̄j

j )r1fr1

def
= gαL+1+αγ

p (v′
0

L∏

i=1

uw̄i
i )r2(gX

p )r1(v′
0

L∏

i=j

h
w̄j

j )r1fr1

where X =
∑

ind(
−→
d )

αn+1−idi + b0 +
∑

ind(−→σ )(u
′
i −αL+1−i)σi +

∑
ind(−→σ ) u′

iσi.

Since
∑

ind(−→σ )(u
′
i − αL+1−i)σi +

∑
ind(−→σ ) u′

iσi = −∑
ind(−→σ ) αL+1−iσi +

∑L
i=1 u′

iσi, and recall σi = di for i ∈ ind(
−→
d )|φ−1

1 and σφ �= dφ. Hence, we
have:
X =

∑
ind(

−→
d )|φ1

αL+1−i(di − σi) +
∑L

i=1 u′
iσi + b0 = αL+1−φΔφ +

∑L
i=1 u′

iσi + y

where Δφ = (dφ − σφ). Then we choose r̂, r′
2 randomly in Zn, and set r1 =

−αφ

Δφ
+ r′

1, r2 = r′
2. Then K4,0,0 can be represented as:
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K4,0,0 = gαL+1+αγ
p (v′

0

L∏

i=1
(hi)

w̄i )r′
2 · (gαL+1−φΔφ+

∑L
i=1 u′

iσi
p )

−αφ

Δφ
+r′

1

(v′
0

L∏

j=1
h

w̄j
j ))

−αφ

Δφ
+r′

1
f

−αφ

Δφ
+r′

1

= gαL+1+αγ
p (v′

0

L∏

i=1
h

w̄i
i )r′

2 · g−αL+1
p (g

αL+1−φΔφ
p )r′

1 (g
∑L

i=1 u′
iσi

p )
−αφ

Δφ
+r′

1

(v′
0

L∏

j=1
h

w̄j
j ))

−αφ

Δφ
+r′

1
f

−αφ

Δφ
+r′

1

= (v′
0

L∏

i=1
h

w̄i
i )r′

2 · (gαL+1−φΔφ
p )r′

1 (g
∑L

i=1 u′
iσi

p )
−αφ

Δφ
+r′

1
(v′

0

L∏

j=1
h

w̄j
j ))

−αφ

Δφ
+r′

1
f

−αφ

Δφ
+r′

1

Then we simulate T4,k,t with k, t �= 0 as:
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Next, it generates for each alphabet in −→z :

⎧
⎪⎨

⎪⎩

y1 = (z1, 1, . . . , 1L)
. . . ,

ym = (zm, 1, . . . , 1L)
, then

computes K3,i = (vi

L∏

j=1

h
yij

i )r′
2 . Other elements in the key can also be simu-

lated: K1 = gr1 = g
−αφ

Δφ
+r′

1 ,K2 = gr′
2 .

• Challenge: A sends two message M0,M1 to B. The challenger then flips a
coin β ← {0, 1}.

First, B generates for each alphabet in −→v ∗:

⎧
⎪⎨

⎪⎩

x∗
1 = (v1, 1, . . . , 1L)

. . . ,

x∗
m = (vm, 1, . . . , 1L)

, then

generates Z1, Z2, Z3, Z4, Z5
R←− Gq and sets:

C0 = Mb · T ′ · e(gα
p , h)γ , C1 = hZ1, C2 = hψZ2, C3,i = h

v0xi+
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j=1
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ix
∗
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Z3,
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idii
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t
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v∗

j h′
jjt

Z5

where h = gc
p for some unknown c ∈ Zp. B returns the challenge ciphertext

CT ∗ = (n1, C1, C2, {C3,i}n1
i=1, C4, {{C5,k,t}L

k=0}L
t=0)
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to A. If T ′ = T = e(gp, h)αL+1, then:

C0 = Mb · e(gp, gc
p)αL+1 · e(gα

p , gc
p)γ = Mb · e(gp, gαL+1

p )c · e(gα
p , gγ

p )c = Mb · Y c
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p) · Z1 = Gc · Z′
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p)ψ · Z2 = F c · Z′

2,
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the challenge ciphertext is a valid encryption of Mb. On the other hand, when
T ′ is uniformly distributed in GT,p, the challenge ciphertext is independent
of b.

• Query Phase 2: Same as Phase 1.
• Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1; otherwise outputs 0.

If b′ = 0, then the simulation is the same as in the real game. Hence, A will have
the probability 1

2 + ε to guess b correctly. If b′ = 1, then T ′ is random in GT,p,
then A will have probability 1

2 to guess b correctly.
Therefore, B can solve the Decisional L−cBDHE assumption also with

advantage ε. �

6 Extension - Fuzzy Broadcast Encryption (FBE)

We demonstrate an extension of the proposed EDE scheme to achieve Fuzzy
Broadcast Encryption. To illustrate how the scheme works, let’s consider the
following example. Suppose we encrypt a message under a keyword vector
W = {Labour Party,Defence Unit} and a threshold distance d = 2. Subsequently,
people who have the attributes related to the keyword w = Labor Party or
w′ = Defense Unit can decrypt the message since the minimum edit distance
between w (w′, respectively) and all the keywords in W is 1, which is less than
the threshold d = 2.

6.1 Definition

A Fuzzy Broadcast Encryption (FBE) scheme consists of the following four prob-
abilistic polynomial-time algorithms:

• Setup(1n, Σ): on input a security parameter 1n, an alphabet Σ, the algorithm
outputs a public key PK and the corresponding master secret key MSK.
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• Encrypt(PK,M,W = (w1,l1 , w2,l2 , . . . , wk,lk) ∈ Σn1 , d): on input a public
key PK, a list of k keywords W = (w1,l1 , w2,l2 , . . . , wk,lk) in which each
keyword wi,li has li characters, and a threshold distance d, the algorithm
outputs a ciphertext CT .

• Key Gen(MSK,w ∈ Σm): on input the master secret key MSK and a
keyword w of length m, the algorithm outputs a secret key SKw.

• Decrypt(CT, SKw): on input a ciphertext CT with keywords W =
(w1,l1 , w2,l2 , . . . , wk,lk) and a secret key SKw with keyword w, the algorithm
outputs M if Min{EditDistance(wi,li , w)}k

i=1 ≤ d, or ⊥ otherwise.

6.2 FBE Scheme

Below we present a FBE scheme based on our EDE scheme.

– Setup(1n, Σ): The setup algorithm is generated similar to the original EDE
scheme.

– Encrypt(PK,W = (w1,l1 , w2,l2 , . . . , wk′,lk′ ),M, d): On input the public key
PK, a list of k keywords W = (w1,l1 , w2,l2 , . . . , wk′,lk′ ) in which each keyword
wi,li has li alphabets, it first generates for each alphabet wi,j in keyword wi,li
a vector

⎧
⎪⎨
⎪⎩

x11 = (w11, 1, . . . , 1L), . . . ,x1l1 = (w1l1 , 1, . . . , 1L),

. . .

xk′1 = (wk′1, 1, . . . , 1L), . . . ,xk′l′
k

= (wk′lk′ , 1, . . . , 1L).

Algorithm 2. Multi-keyword Edit Distance Evaluation via Dynamic
Programming

input : CT, SK
output: distance d′, index posw, array pos[2][]

Create Array[len(W )]; Create pos[2][]; Create Array < pos > aPos;
for θ ← 1 to len(W ) do

lenv = nθ + 1; lenz = m + 1;
Creat cost[lenv ]; Creat newcost[lenv ];
for i ← 0 to lenv do

cost[i] = i;
end
k = 0;
for j ← 1 to lenz do

newcost[0] = j;
for i ← 1 to lenv do

match = (e(K1, C3,θ,i−1) == e(C1, K3,j−1))?0 : 1;
if i /∈ pos[0], j /∈ pos[1] then

pos[0][k + +] = i, pos[1][k + +] = j, ;
end
aPos.add(pos);
cost − replace = cost[i − 1] + match; cost − insert =
cost[i] + 1; cost − delete = newcost[i − 1] + 1;
newcost[i] =
Math.min(Math.min(cost − insert, cost − delete), cost − replace);

end
swap[] = cost; cost = newcost;newcost = swap;

end
Array[t + +] = cost[lenv − 1];Refreshpos;

end
return Min(Array[]), posw = index[Array[i] == Min(Array[])], pos = aPos[posw];
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Define ⎧
⎪⎨

⎪⎩

w1 = (w11, w1,2, . . . , w1,l1 , . . . , 1L),
. . . ,

wk′ = (wk′1, wk′2, . . . , wk′,lk′ , . . . , 1L),

and
−→
d = (1, . . . , d, 0d+1, . . . , 0L). Then choose s ∈R Zn, and Z1, Z2, Z3,

Z4, Z5 ∈R Gq, and compute:

C0 = MY s, C1 = GsZ1, C2 = F sZ2, C3,δ,i = (Vi
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H
xδij

i )sZ3,
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t (Bk
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(Ui)dii
k

)(
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(Hj)vδjjt

))s · Z5.

Set the ciphertext as: CT = ({lδ}k′
δ=1, C0, C1, C2, {{C3,δ,i}k′

δ=1}lδ
i=1, {C4,δ}k′

δ=1,

{{{C5,k,δ,t}L
k=0}k′

δ=1}L
t=0).

– KeyGen(MSK, w̄ = (w̄1, . . . , w̄m) ∈ Σm): given a keyword w̄ of length
m, it generates yi = (w̄i, 1, . . . , 1L) for each alphabet w̄i, and creates−→σ = (1, 2, ..., L) and expands w̄ to w̄ = (z1, z2, . . . , zm, . . . , 1L). Then choose
r1, r2 ∈R Zn, and compute:

K1 = gr1 ,K2 = gr2 ,K3,i = (vi

L∏

j=1

h
yij

i )r2 ,
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for t = 1, . . . , L. Then set the secret key as SK = (m,K1,K2, {K3,i}m
i=1,

{{K4,k,t}L
k=0}L

t=0).

– Decrypt(CT, SK): The decryption algorithm first executes the dynamic pro-
gramming algorithm for edit distance by following Algorithm2 which returns
a minimum distance d′, the index posw of the corresponding keyword w in W ,
the matching indices array pos[0][] for w and pos[1][] for w̄. It sets τ = L−d′,
and applies the Viète’s formulas to compute
We then set aτ−k, āτ−k, âτ−k similar to (3), (4), (5).
Then recover M as:

M =
e(K2, C4,posw

) · e(K1, C2)e(K
1

ā0
1 ,

τ∏

t=0
Cat

5,k,posw,t)

e(
τ∏

t=0
K āt

4,k,t, C
1

ā0
1 )

· C0.
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Theorem 2. Assume that the Decisional L−cBDHE assumption holds, then for
any PPT adversary, our FBE scheme is selectively secure.

We give the security definition in the full version since the limited space. The
security proof follows that of Theorem 1 and is omitted here.

7 Conclusions and Future Work

We introduced a new type of fuzzy public key encryption in this paper. Our
new encryption scheme, called Edit Distance-based Encryption (EDE), allows
a user associated with an identity or attribute string to decrypt a ciphertext
encrypted under another string if and only if the edit distance between the two
strings are within a threshold specified by the encrypter. We provide the formal
definition, security model, and a concrete EDE scheme in the standard model.
We also showed an extension of our EDE scheme for fuzzy broadcast encryption.
We leave the construction of an anonymous EDE scheme, which implies a Fuzzy
Public-key Encryption with Keyword Search scheme to preserve the privacy of
the matching keyword by the dynamic programming algorithm.
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Abstract. Proxy re-encryption is a public key encryption technique
that allows a proxy to perform re-encryption without exposing the cor-
responding plaintext. As a result, proxy re-encryption has increased util-
ity, and can be used in a number of fields including cloud computing. In
previous proxy re-encryption schemes, a proxy is assumed to follow the
protocol explicitly. However, this is far from the norm, and the assump-
tion is not always true, especially in cloud computing where public cloud
is considered untrusted. In this paper, we investigate the verifiability
of the re-encryption process. Specifically, we first formalize the proxy
re-encryption with delegatable verifiability and its corresponding secu-
rity model. Then, we propose the first proxy re-encryption scheme with
delegatable verifiability. Finally, security proofs of the proposal are also
formally given in the proposed security models.

Keywords: Proxy re-encryption · Delegatable verifability · Trust level

1 Introduction

Proxy re-encryption [6] is a special type of public key encryption that allows
proxies with re-encryption keys to perform transformations on ciphertexts, while
proxies are unable to access the corresponding plaintexts. Due to this useful
property, proxy re-encryption has been found very useful, and can be applied to
various scenarios where dynamic ciphertext format is required, e.g., cloud and
fog computing [19,20,22]. In previous proxy re-encryption schemes, a proxy is
assumed to be semi-trusted, i.e., the proxy would follow the protocol exactly, and
execute the specified re-encryption steps. However, this assumption is not always
true in all proxy re-encryption based applications. For instance, in a cloud storage
applying proxy re-encryption [19,20,22], the cloud plays the role of the proxy
in proxy re-encryption. Cloud servers, in their efforts to perform computations
quickly and inexpensively, may skip on re-encryption steps, for example, in order
to save computing resources for other transactions. It is therefore quite likely that
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best practices are overlooked. Obviously, proxy re-encryption, while secure with
a trusted proxy following the protocol explicitly, can fall apart when the proxy
is dishonest and cannot be trusted. A natural question arises “how can the users
trust that the cloud performs re-encryption correctly?”

To the best of our knowledge, there are no proxy re-encryption schemes
explicitly dealing with the verifiability problem. In this paper, we would like to
take this for the first step. In particular, we define verifiable proxy re-encryption
and its corresponding security models. In layman’s terms, we say a re-encryption
process is performed correctly if and only if the original ciphertext and re-
encrypted ciphertext can pass the verification. Additionally, with any source
authentication, the validity of re-encrypted ciphertext can be verified. Simi-
lar with the verifiability in outsourced computation [4,10,17], there are three
kinds of verifiability which vary by the verifier: public, private, and delegatable.
After evaluating the previous proxy re-encryption schemes, we find that some
existing proxy re-encryption schemes satisfy public verifiability, others hold pri-
vate verifiability. However, there are no available delegatable verifiability. As we
know, the delegatable verifiability is more powerful than its counterparts, since
it can be easily converted into others by revealing the verifiable key or not.
Hence, proxy re-encryption schemes with delegatable verifiability have wider
spectrums of applications. In this paper, we focus on the design of proxy re-
encryption scheme with delegatable verifiability, and propose the first such proxy
re-encryption scheme along with security proofs in our proposed security models.

1.1 Related Work

One common way to divide proxy re-encryption schemes is according to the
allowed re-encryption directions with one re-encryption key: if the re-encryption
can be proceeded in both directions with the same re-encryption key, it is bidi-
rectional; otherwise, it is unidirectional. The schemes proposed by Blaze et al.
[6] and Ateniese et al. [3] are the first bidirectional and unidirectional proxy re-
encryption scheme, respectively. These two schemes are CPA-secure, but cannot
supply the verifiable functionality.

The first CCA-secure bidirectional proxy re-encryption scheme is proposed
by Canetti and Hohenberger [8]. Surprisingly, their scheme can provide public
verifiability. Given one original ciphertext (A,B,C,D,E) and one re-encrypted
ciphertext (A′, B′, C ′,D′, E′) in the CH07 scheme, one can easily decide whether
they can yield the same plaintext by checking the validity of the two ciphertexts
and the following equalities: A = A′, C = C ′, D = D′, E = E′, and e(B, pk2) =
e(pk1, B

′), where pk1, pk2 are the underlying public keys, and e(·, ·) is a bilinear
map. Similarly, the first RCCA-secure unidirectional proxy re-encryption scheme
due to Libert and Vergnaud [16] can also supply the public verifiability by only
checking the validity of the two ciphertexts and the same elements in the two
ciphertexts.

The first CCA-secure unidirectional proxy re-encryption scheme is proposed
by Shao and Cao [18]. However, the SC09 scheme only provides private verifi-
ability. This is because the check factor (exponent r) can be computed if and
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only if the corresponding plaintext is obtained. Similar with the SC09 scheme,
Chow et al. [9] proposed a more efficient CCA-secure unidirectional proxy re-
encryption scheme by using the Fujisaki-Okamoto technique [11]. Hence, their
scheme also supports private verifiability. Later on, several other CCA-secure
unidirectional proxy re-encryption schemes are proposed [13], however, only a
few of them support verifiability.

Till now, many other proxy re-encryption schemes with some special prop-
erties are proposed, such as conditional proxy re-encryption [21], proxy re-
encryption with invisible proxy [14], attribute-based proxy re-encryption [15],
identity-based proxy re-encryption [12], and anonymous proxy re-encryption [2].
Nevertheless, only a few of the CCA-secure schemes provide verifiability.

To the best of our knowledge, there is no existing proxy re-encryption scheme
supporting delegatable verifiability.

1.2 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2, the definition and
security models of proxy re-encryption with delegatable verifiability are intro-
duced. In Sect. 3, we first present a generic construction for proxy re-encryption
with delegatable verifiability and give the security proofs. In what follows, we
give an extension of delegatable verifiability. At last, we conclude the paper in
Sect. 5.

2 Preliminaries

2.1 Definitions for Single-Hop Unidirectional Proxy Re-Encryption
with Delegatable Verifiability (PREDV)

Definition 1 (Single-hop Unidirectional PREDV). A single-hop unidirec-
tional PREDV scheme PREDV is a tuple of probabilistic polynomial time (PPT)
algorithms (KeyGen, VKGen, RKGen, Enc, ReEnc, Dec, Ver):

– KeyGen(1λ) → (pk, sk). When inputting a security parameter λ, the key gen-
eration algorithm KeyGen outputs the public/private key pair (pk, sk) of a
user. This algorithm is performed by the user who is the corresponding owner
of the generated key pair.

– VKGen(sk) → vk. When inputting a private key sk, the verification key gen-
eration algorithm VKGen outputs the verification key vk. This algorithm is
performed by the user who holds the private key sk.

– RKGen(sk1, pk2) → rk1,2. When inputting a private key sk1 and a public key
pk2, the re-encryption key generation algorithm RKGen outputs a re-encryption
key rk1,2. This algorithm is performed by the user who holds the private key
sk1.

– Enc(pk,m) → C. When inputting a public key pk, and a message m from the
message space M, the encryption algorithm Enc outputs a ciphertext C under
the public key pk. This algorithm is performed by an encryptor.
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– ReEnc(rk1,2, C1) → C2. When inputting a re-encryption key rk1,2 and a
ciphertext C1, the re-encryption algorithm ReEnc outputs a re-encrypted
ciphertext C2 under the public key pk2 or a special symbol ⊥. This algorithm
is performed by the proxy holding the re-encryption key rk1,2.

– Dec(sk, C) → m. When inputting a private key sk and a ciphertext C, the
decryption algorithm Dec outputs m in the message space or a special symbol
⊥. This algorithm is performed by the decryptor who holds the private key sk.

– Ver(C1, C2, vk) → 0 or 1. When inputting an original ciphertext C1, a re-
encrypted ciphertext C2, and a verification key vk, the verify algorithm Ver
outputs 1 if C1 and C2 are corresponding to the same plaintext; or 0 otherwise.

Correctness. For any message m in the message space M, (pk0, sk0) ←
KeyGen(1λ), and (pk1, sk1) ← KeyGen(1λ) the following conditions must hold:

Dec(ski, Enc(pki,m)) = m,

Dec(sk2, ReEnc(RKGen(sk1, pk2), Enc(pk1,m))) = m,

and

Ver(Enc(pk1,m), ReEnc(RKGen(sk1, pk2), Enc(pk1,m
′)), VKGen(sk2)) =

{
1, if m = m′;
0, if m �= m′.

Remark 1. Compared with previous definitions for single-hop unidirectional
proxy re-encryption [3,16], our definition additionally has the content related
to verifiability: algorithms VKGen and Ver, and the third requirement of correct-
ness.

2.2 Security Models for Single-Hop Unidirectional PREDV

Replayable Chosen-Ciphertext Security for Single-Hop Unidirectional
PREDV. In most of the previous unidirectional proxy re-encryption schemes,
there are two formats of ciphertexts. One is for original ciphertexts, and the other
is for re-encrypted ciphertexts. Hence, there are two cases in this definition.

The challenge ciphertext is an original ciphertext.

Setup: The challenger C sets up the system parameters according to the security
parameter (1λ).

Phase 1: A issues queries q1, · · · , qn1 where query qi is one of:
– Public key generation oracle Opk: C runs KeyGen(1λ) to generate a new

key pair (pk, sk), gives pk to A and records (pk, sk) in Table Tpk. For all
other oracle queries which involves pki, we require that (pki, ski) can be
found in Tpk, otherwise the oracle just returns ⊥.

– Private key generation oracle Osk: When inputting pki, C returns ski, or
⊥ if it does not exist in Tpk.
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– Verification key generation oracle Ovk: When inputting pki, C returns
vki = VKGen(ski).

– Re-encryption key generation oracle Ork: When inputting (pki, pkj),
where pki �= pkj , C returns rki,j = RKGen(ski, pkj) and records it in
Table Trk.

– Re-encryption oracle Ore: When inputting (pki, pkj , Ci), where pki �= pkj ,
C returns Cj = ReEnc(RKGen(ski, pkj), pki, Ci). Note that A can ask the
oracle to return the corresponding re-encrypted ciphertext generated by
a previous re-encryption key or a new re-encryption key.

– Decryption oracle Odec: When inputting (pki, Ci), C returns Dec(ski, Ci).
– Verify oracle Over: When inputting (pki, Ci, pkj , Cj), C returns
Ver(Ci, Cj , vkj), where vkj is corresponding verification key of pkj .

These queries may be asked adaptively, that is, each query qi may depend
on the replies to q1, · · · , qi−1.

Challenge: Once A decides that Phase 1 is over, it outputs two equal length
plaintexts m0, m1 from the message space M, and a public key pk∗ on which
it wishes to challenge. There are two restrictions on the public key pk∗, (i)
pk∗ has not appeared in any query to Osk; (ii) if (pk∗,�) has appeared in
any query to Ork, then � should not appear in any query to Osk. C picks
a random bit b ∈ {0, 1} and sets C∗ = Enc(pk∗,mb). It sends C∗ as the
challenge to A.

Phase 2: Same as Phase 1 but the challenger will output ⊥ in the following
cases.

– Osk: We have the two natural restrictions inherited from the challenge
phase: pki = pk∗, or (pk∗, pki) has been queried to Ork. Additionally,
we do not allow query pki when (pk∗, pki, C

∗) has been queried to Ore.
Similar concerns for Ork and Ore below.

– Ork: pki = pk∗ and pkj has been queried to Osk.
– Ore: (pki, Ci) = (pk∗, C∗) and pkj has been queried to Osk.
– Odec: pki = pk∗ and Dec(sk∗, Ci) ∈ {m0,m1}.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.

The advantage AdvRCCA-O
PREDV (λ) is defined as |Pr[b = b′] − 1/2|. The scheme

PREDV is said to be RCCA-O secure if all efficient adversaries A specified as
above, the advantage AdvRCCA-O

PREDV (λ) is negligible.

The challenge ciphertext is a re-encrypted ciphertext.

Phase 1: Identical to that in the challenge original ciphertext case.
Challenge: Once A decides that Phase 1 is over, it outputs two equal-length

plaintexts m∗
0, m∗

1 from the message space, and two public keys pk, pk∗

on which it wishes to be challenged. The public key pk∗ has not been
queried to Osk. The challenger picks a random bit b ∈ {0, 1} and sets
C ′∗ = ReEnc(rk, Enc(pk,m∗

b)), where rk is a re-encryption key from pk to
pk∗. It sends C ′∗ as the challenge ciphertext to A.
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Phase 2: Almost the same as that in Phase 1 but with the following constraints:
if pki = pk∗ in Osk or (pki, Ci) = (pk∗, C ′∗) in Odec, C returns ⊥.

Guess: Identical to that in the challenge original ciphertext case.

The advantage AdvRCCA-R
PREDV (λ) is defined as |Pr[b = b′] − 1/2|. The scheme

PREDV is said to be RCCA-R secure if all efficient adversaries A specified as
above, the advantage AdvRCCA-R

PREDV (λ) is negligible.

Remark 2. Compared with the previous RCCA security model for single-hop
unidirectional proxy re-encryption [16], our model additionally allows the
adversary to issue queries to Ovk and Over.

Private Verifiability for Single-Hop Unidirectional PREDV. This secu-
rity model guarantees that without the corresponding verification key, the veri-
fiability remains private.

Phase 1: Identical to Phase 1 of the RCCA-O game for single-hop unidirectional
PREDV.

Guess: Once A decides that Phase 1 is over, it outputs a public key pk∗, and an
original ciphertext C∗ under public key pk, on which it wishes to challenge.
There are two restrictions on the public key pk∗, i.e., pk∗ has not appeared
in any query to Osk or Ovk. C picks a random bit b ∈ {0, 1}. If b = 1, C com-
putes C ′∗ = ReEnc(rk, C∗), where rk is the re-encryption key corresponding
to the delegation from pk to pk∗; otherwise, C chooses a random value from
the space of re-encrypted ciphertexts and sets it as C ′∗. At last, C sends C ′∗

as the challenge to A.
Phase 2: Almost the same as that in Phase 1 but with the following constraints:

if pki = pk∗ in Osk or Ovk, or (pki, Ci) = (pk∗, C ′∗) in Odec, C returns ⊥.
Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game

if b = b′.

The advantage AdvVK
PREDV(λ) is defined as |Pr[b = b′] − 1/2|. The scheme

PREDV is said to be VK secure if all efficient adversaries A specified as above,
the advantage AdvVK

PREDV(λ) is negligible.

3 Our Proposal

As we mentioned above, some of previous proxy re-encryption scheme are pub-
licly verifiable and RCCA-secure, such as the scheme in [16]. In this section, we
will make use of this kind of proxy re-encryption (denoted as PREPV) and CCA-
secure public key encryption (denoted as PKE) to propose a generic construction
of proxy re-encryption with delegatable verifiability. The details of the proposed
PREDV are as follows. For clarification, we will use − and ̂ to denote the output
of algorithms of PREPV and PKE, respectively.
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– KeyGen: When inputting the security parameter 1λ, the user runs
PREPV.KeyGen(1λ) → (pk, sk) and PKE.KeyGen(1λ) → (p̂k, ŝk), and sets the
public key pk and private key sk as (pk, p̂k) and (sk, ŝk), respectively.

– VKGen: The verification key of the user is ŝk which will be sent to the verifier.
That is, vk = ŝk.

– RKGen: When inputting a private key sk1 = (sk1, ŝk1) and a public key pk2 =
(pk2, p̂k2), the user holding the private key sk1 runs PREPV.RKGen(sk1, pk2) →
rk1,2, and sets the re-encryption key rk1,2 as (rk1,2, p̂k2).

– Enc: When inputting a message m from the message space of PREPV and a
public key pk = (pk, p̂k), the encryptor runs PREPV.Enc(pk,m) → C, and sets
C = C.

– ReEnc: When inputting an original ciphertext C under public key pk1 =
(pk1, p̂k1) and a re-encryption key rk1,2 = (rk1,2, p̂k2), the proxy hold-
ing the re-encryption key rk1,2 runs PREPV.ReEnc(rk1,2, C) → C

′
and

PKE.Enc(p̂k2, C
′
) → Ĉ. At last, the proxy sets C ′ = Ĉ. Note that in this

algorithm, we simply assume that C
′

belongs to the message space of PKE,
which can be realized by the hybrid encryption method.

– Dec: Since there are two kinds of ciphertexts, we have two cases in this algo-
rithm.

• If the ciphertext is an original ciphertext C, the decryptor can get the
message m by simply running PREPV.Dec(sk, C).

• If the ciphertext is a re-encrypted ciphertext C ′, the decryptor firstly
gets C

′
by running PKE.Dec(ŝk, C ′), and then obtains the message m by

running PREPV.Dec(sk,C
′
).

– Ver: When inputting an original ciphertext C, a re-encrypted ciphertext
C ′, and verification key vk, the verifier firstly gets gets C

′
by running

PKE.Dec(vk,C ′), and then performs PREPV.Ver(C,C
′
).

Correctness. The correctness of the above PREDV can be easily obtained by the
correctness of PREPV and PKE. Hence, we omit it here.

Security Analysis. Now we will show that the above PREDV is secure in the
sense of our proposed security definitions.

Theorem 1. The proposed PREDV is RCCA-O secure only if the underlying
PREPV is RCCA-O secure.

Proof. We show that if there exists an adversary A that can break the RCCA-O
security of the proposed PREDV, we can build an algorithm B that can break the
RCCA-O security of the underlying PREPV by using A. In particular, B will act
as a challenger with A to play the following RCCA-O security game.

Setup: B sets up the system parameters according to the security
parameter (1λ).
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Phase 1: B responds A’s queries as follows.
– Opk: B runs PKE.KeyGen(1λ) to generate a new key pair (p̂k, ŝk), and

queries its own public key generation oracle Opk for PREPV to obtain a
public key pk in PREPV. After that, B records (pk, sk) = ((pk, p̂k), (−, ŝk))
in Tpk, and returns pk to A.

– Osk: When inputting pki = (pki, p̂ki), B searches the corresponding ŝki

in Tpk, and queries its own private key generation oracle Osk for PREPV to
obtain a private key ski corresponding to pki in PREPV. At last, B returns
(ski, ŝki) as the private key ski to A.

– Ovk: When inputting pki, B searches the corresponding ŝki in Tpk, and
returns it to A.

– Ork: When inputting (pki, pkj) = ((pki, p̂ki), (pkj , p̂kj)), B queries its
own re-encryption key generation oracle Ork for PREPV to obtain a re-
encryption key rki,j corresponding to the delegation from pki to pkj in
PREPV. At last, B returns (rki,j , p̂kj) as the re-encryption key rki,j to A.

– Ore: When inputting (pki, pkj , Ci), where
(pki, pkj) = ((pki, p̂ki), (pkj , p̂kj)), B queries its own re-encryption oracle
Ore for PREPV to obtain a re-encrypted ciphertext C

′
corresponding to

(pki, pkj , Ci) in PREPV, and then computes the re-encrypted ciphertext
C ′ by running PKE.Enc(p̂kj , C

′
). At last, B returns C′ to A.

– Odec: When inputting (pki, Ci), B finds the tuple in Tpk correspond-
ing to pki. If Ci is a re-encrypted ciphertext, B obtains C

′
i by running

PKE.Dec(ŝki, Ci), and then queries its own decryption oracle Odec for
PREPV to obtain a message m corresponding to (pki, C

′
i) in PREPV. If

Ci is an original ciphertext, B simply queries Odec for PREPV to obtain a
message m corresponding to (pki, Ci) in PREPV. At last, B returns m to
A.

– Over: When inputting (pki, Ci, pkj , Cj), B finds the tuple in Tpk corre-
sponding to pkj , and obtains C

′
j by running PKE.Dec(ŝkj , Cj). After that,

B returns the result of PREPV.Ver(Ci, C
′
j) to A.

Challenge: Once A decides that Phase 1 is over, it outputs two equal length
plaintexts m∗

0, m∗
1 from the message space M, and a public key pk∗ =

(pk
∗
, p̂k

∗
) on which it wishes to challenge. B queries its own challenge oracle

for PREPV with (m∗
0,m

∗
1, pk

∗
) to obtain its challenge original ciphertext C

∗
.

At last, B returns C
∗

as the challenge ciphertext to A.
Phase 2: Same as Phase 1 but with the restrictions specified in the RCCA-O

security game.
Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} that is also the

guess for B.

It is easy to see that only if A outputs the right guess in Guess Phase, so
does B. Hence, we obtain this theorem. ��
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Theorem 2. The proposed PREDV is RCCA-R secure only if the underlying
PREPV is RCCA-R secure.

Proof. Similar with the proof of Theorem1, we show that if there exists an
adversary A that can break the RCCA-R security of the proposed PREDV, we
can build an algorithm B that can break the RCCA-R security of the underlying
PREPV by using A. In particular, B will act as a challenger with A to play the
following RCCA-R security game.

Setup: B sets up the system parameters according to the security
parameter (1λ).

Phase 1: B responds A’s queries as that in Phase 1 in the proof of Theorem1.
Challenge: Once A decides that Phase 1 is over, it outputs two equal length

plaintexts m∗
0, m∗

1 from the message space M, and two public keys (pk, pk∗) =
((pk, p̂k), (pk

∗
, p̂k

∗
)). B queries its own challenge oracle for PREPV with

(m∗
0,m

∗
1, pk, pk

∗
) to obtain its challenge re-encrypted ciphertext C

′∗
. At last,

B runs PKE.Enc(p̂k
∗
, C

′∗
) to obtain the final challenge ciphertext C ′∗, and

sends it to A.
Phase 2: Same as Phase 1 but with the restrictions specified in the RCCA-R

security game.
Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} that is also the

guess for B.

Like the proof of Theorem1, only if A outputs the right guess in Guess Phase,
so does B. Hence, we obtain this theorem. ��
Theorem 3. The proposed PREDV is SV secure only if the underlying PREPV is
SV secure.

Proof. Similar with the proof of Theorem 1, we show that if there exists an
adversary A that can break the SV security of the proposed PREDV, we can build
an algorithm B that can break the SV security of the underlying PREPV by using
A. In particular, B will act as a challenger with A to play the following SV
security game.

Setup: B sets up the system parameters according to the security parameter
(1λ).

Phase 1: B responds A’s queries as that in Phase 1 in the proof of Theorem1.
Challenge: Once A decides that Phase 1 is over, it outputs one message m∗ from

the message space, and two public keys pk∗
0 = (pk

∗
0, p̂k

∗
0), pk∗

1 = (pk
∗
1, p̂k

∗
1)

on which it wishes to be challenged. B queries its own challenge oracle for
PREPV with (m∗, pk

∗
0, pk

∗
1) to obtain its challenge ciphertext C

∗
, and sends it

to A as the challenge ciphertext C∗.
Phase 2: Same as Phase 1 but with the restrictions specified in the SV security

game.
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Output: Finally, the adversary A outputs a re-encrypted ciphertext C ′∗ satisfy-
ing Ver(C∗, C ′∗, vk∗

1) = 1 and Dec(sk∗
1 , C

′∗) �= m∗. B first runs Dec(ŝk
∗
1, C

′∗)
to obtain a re-encrypted ciphertext C

′
of PREPV. According to the correct-

ness of PREDV and PREPV, we have that Ver(C∗, C
′
) = Ver(C

∗
, C

′
) = 1 and

Dec(sk
∗
1, C

′
) �= m∗. Hence, C

′
is a valid output for B’s SV security game, and

B wins the game.

Hence, we obtain this theorem. ��
Theorem 4. The proposed PREDV is PV secure only if the underlying PKE is
CCA secure.

Proof. To prove this theorem, we will show that if there exists an adversary
A that can break the PV security of the proposed PREDV, we can build an
algorithm B that can break the CCA security of the underlying PKE by using A.
In particular, B will act as a challenger with A to play the following PV security
game.

Setup: B sets up the system parameters according to the security
parameter (1λ).

Phase 1: B responds A’s queries as follows.
– Opk: B runs PREPV.KeyGen(1λ) to generate a new key pair (pk, sk), and

decides the value of θ ∈ {0, 1} with the probability Pr[θ = 1] = δ. If
θ = 1, B runs PKE.KeyGen(1λ) to generate a new key pair (p̂k, ŝk), and
records (pk, sk, θ) = ((pk, p̂k), (sk, ŝk), 1) in Tpk. If θ = 0, B queries its
own key generation oracle for PKE to obtain a public key p̂k, and records
(pk, sk, θ) = ((pk, p̂k), (sk,−), 0) in Tpk. At last, B returns pk to A.

– Osk: When inputting pki = (pki, p̂ki), B searches the tuple in Tpk corre-
sponding to pki. If θ = 1, B returns the corresponding (ski, ŝki) to A. If
θ = 0, B outputs failure and aborts the simulation.

– Ovk: When inputting pki = (pki, p̂ki), B searches the tuple in Tpk corre-
sponding to pki. If θ = 1, B returns the corresponding ŝki to A. If θ = 0,
B outputs failure and aborts the simulation.

– Ork: When
inputting (pki, pkj) = ((pki, p̂ki), (pkj , p̂kj)), B searches the tuple in Tpk

corresponding to pki, and returns (PREPV.RKGen(ski, pkj), p̂kj) to A.
– Ore: When inputting (pki, pkj , Ci), B firstly queries Ork with (pki, pkj)

to obtain the corresponding re-encryption key rki,j , and then returns the
result of PREDV.ReEnc(rki,j , Ci) to A.

– Odec: When inputting (pki, Ci), B finds the tuple in Tpk corresponding to
pki. If Ci is a re-encrypted ciphertext, B obtains C

′
i by querying its own

decryption oracle with (p̂ki, Ci), and returns PREPV.Dec(ski, C
′
i) to A. If

Ci is an original ciphertext, B can simply return PREPV.Dec(ski, Ci) to A.
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– Over: When inputting (pki, Ci, pkj , Cj), B finds the tuple in Tpk corre-
sponding to pkj , and obtains C

′
j by querying its own decryption oracle

with (p̂kj , Cj) After that, B returns the result of PREPV.Ver(Ci, C
′
j) to A.

Challenge: Once A decides that Phase 1 is over, it outputs a public key pk∗ =
(pk

∗
, p̂k

∗
), and an original ciphertext C∗ under public key pk = (pk, p̂k).

B finds the tuple in Tpk corresponding to pkj , if θ∗ = 1, then B outputs
failure and aborts the simulation; otherwise, B continues to do the fol-
lowing steps. B runs PREPV.ReEnc(PREPV.RKGen(sk, pk∗), C∗) to obtain a re-
encrypted ciphertext C

′
for PREPV, and chooses a random value R from the

re-encrypted ciphertext space of PREPV. After that, B queries its own chal-
lenge oracle with (C

′
, R, p̂k

∗
) to obtain a ciphertext Ĉ. At last, B sends

returns Ĉ as the challenge ciphertext C ′∗ to A.
Phase 2: Same as Phase 1 but with the restrictions specified in the PV security

game.
Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} that is also the

guess for B.

It is easy to see that only if A outputs the right guess in Guess Phase without
abort event, B also outputs the right guess for its own CCA security game. To
complete the proof of Theorem 4, we need to calculate the probability that B does
not abort in the simulation. Assume that A issues a total of qvk verification key
generation queries and qsk private key generation queries. Then the probability
that B does not abort in phases 1 or 2 is δqvk+qsk . Regarding the probability in
Challenge Phase, it is 1 − δ. Hence, the probability that B does not abort in
the simulation is δqvk+qsk(1 − δ). Similar with that in [7], this probability is at
least 1/e(1+ qvk + qsk). If A breaks the PV security of the proposed PREDV with
advantage ε, then we have that B breaks the CCA security of the underlying
PKE with advantage ε/e(1 + qvk + qsk). ��

4 Proxy Re-encryption with Fine-Grained Delegatable
Verifiability

In the proposed PREDV, once the verification key vk is given out, the verifier
has the verifiability on all ciphertexts all the time. This situation is not desired
in many cases. For example, there is always a possibility that the user wants
to revoke the verifying right at some point, or the user wants to delegate the
verifiability according to the intending verifier’s attributes, or the user wants
to delegate the verifiability per ciphertext. All of these demand the fine-grained
delegatable verifiability. Fortunately, by modifying the PREDV scheme proposed in
Sect. 3, we can have the proxy re-encryption scheme with fine-grained delegatable
verifiability.

To obtain the fine-grained delegatable verifiability, we require attribute-based
encryption (denoted as ABE) [1,5] instead of public key encryption. The details
are as follows.
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– KeyGen: When inputting the security parameter 1λ, the user runs PREPV.

KeyGen(1λ) → (pk, sk) and ABE.KeyGen(1λ) → (m̂pk, m̂sk), and sets the pub-
lic key pk and private key sk as (pk, m̂pk) and (sk, m̂sk), respectively.

– VKGen: The verification key vk is ABE.Ext(m̂pk, m̂sk,A), where A is the
attribute set of the intending verifier.

– RKGen: When inputting a private key sk1 = (sk1, m̂sk1) and a pub-
lic key pk2 = (pk2, m̂pk2), the user holding the private key sk1 runs
PREPV.RKGen(sk1,mpk2) → rk1,2, and sets the re-encryption key rk1,2 as
(rk1,2, m̂pk2).

– Enc: Identical to that in PREDV.
– ReEnc: When inputting an original ciphertext C under public key pk1 =

(pk1, m̂pk1) and a re-encryption key rk1,2 = (rk1,2, m̂pk2), the proxy hold-
ing the re-encryption key rk1,2 runs PREPV.ReEnc(rk1,2, C) → C

′
and

ABE.Enc(p̂k2, C
′
,P) → Ĉ, where P is the delegation policy of the verifia-

bility. At last, the proxy sets C ′ = Ĉ. As in PREDV, we simply assume that C
′

belongs to the message space of ABE, which can be also realized by the hybrid
encryption method.

– Dec: Since there are two kinds of ciphertexts, we have two cases in this algo-
rithm.

• Identical to that in PREDV.
• If the ciphertext is a re-encrypted ciphertext C ′, the decryptor firstly

gets C
′
by running ABE.Dec(vk,C ′), and then obtains the message m by

running PREPV.Dec(sk,C
′
).

– Ver: When inputting an original ciphertext C, a re-encrypted ciphertext C ′,
and verification key vk, the verifier firstly gets C

′
by running ABE.Dec(vk,C ′),

and then performs PREPV.Ver(C,C
′
).

Correctness and Security Analysis. The definitions of proxy re-encryption
with fine-grained delegatable verifiability can be proposed as those in Sect. 2,
and the analysis of correctness and security of the above proxy re-encryption
scheme can be obtained by the same method used in Sect. 3. Hence, we omit
them here.

5 Conclusions

In this paper, we explicitly investigated the problem on how to verify the re-
encryption process in the proxy re-encryption schemes. We divided the verifi-
ability into three types: public, private, and delegatable. We found that with
some slight modification, some of existing proxy re-encryption schemes can sup-
port public verifiability, others can support private verifiability. However, none
of them provides delegatable verifiability. On the other hand, delegatable verifia-
bility is more powerful than other types of verifiability, since it can be converted
into others by publishing the verification key or not. The first proxy re-encryption
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scheme with delegatable verifiability along with its security proofs are proposed
in this paper. At last, we extended the concept of delegatable verifiability, named
fine-grained delegatable verifiability, which allows users to delegate the verifia-
bility in a fine-grained way.

The proposal in this paper can only achieve the RCCA security even if the
underlying PREPV is CCA secure, since the adversary with the verification key can
always modify the re-encrypted ciphertext without changing the corresponding
plaintext or losing the validity of the ciphertext. Therefore, in future work, it is
interesting to design a new method to obtain the delegatable verifiability without
losing the CCA security.
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Abstract. Motivated by tampering attacks in practice, two different but
related security notions, termed complete non-malleability and related-
key attack security, have been proposed recently. In this work, we study
their relations and present the first public key encryption scheme that
is secure in both notions under standard assumptions. Moreover, by
exploiting the technique for achieving complete non-malleability, we
give a practical scheme for the related-key attack security. Precisely,
the scheme is proven secure against polynomial functions of bounded
degree d under a newly introduced hardness assumption called d-
modified extended decisional bilinear Diffie-Hellman assumption. Since
the schemes are constructed in a direct way instead of relying on the non-
interactive zero knowledge proof or signature techniques, they not only
achieve the strong security notions but also have better performances.

Keywords: Public key encryption · Complete non-malleability ·
Related-key attack · Chosen-ciphertext attack

1 Introduction

Public key encryption (PKE) is one of the most basic and widely deployed cryp-
tographic primitives, the security of which has been formalized in terms of various
security goals and attack scenarios. The de facto standard security of PKE is
the notion of indistinguishability against chosen-ciphertext attacks (IND-CCA),
which was proved in [5] to be equivalent to that of non-malleability against
chosen ciphertext attacks (NM-CCA) [13]. Roughly speaking, the later notion
demands that it is difficult for an adversary, given a challenge public key pk and
a ciphertext ct of some message m sampled from a distribution of her choice,
to produce a relation R and a ciphertext ct′ of message m′ that is related to m
through R.

Whilst already sufficient for many applications, IND-CCA/NM-CCA secu-
rity is not strong enough for high-level systems where users may be allowed to
c© Springer International Publishing Switzerland 2016
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issue keys on-the-fly. Motivated by constructing non-malleable commitments [15]
on top of PKE, Fischlin [14] introduced the notion of complete non-malleability
against chosen ciphertext attacks (CNM-CCA). This is a stronger flavor of NM-
CCA security, where the adversary is additionally allowed to tamper with the
public key. Accordingly, the current goal of the adversary is to produce a cipher-
text under the tampered public key such that the encrypted message is related
to the challenge one via a more general relation which also takes the public keys.
As shown in [14], CNM-CCA security is powerful, but it also turns out that such
PKE is extremely hard to construct in the plain model without random oracles.

With focus on high-level applications, the CNM-CCA security considers such
attackers that have the ability to tamper with the public key. The recent pop-
ular side-channel attacks [3,8,10,17,18] demonstrated that the attackers, given
physical access to a cryptographic hardware device, may also be able to tamper
with and induce modifications to the internal secret state of the device. When
an attacker launches a tampering attack on the key stored in a cryptographic
device, she can subsequently learn partial secret information by observing the
outcome of the cryptographic primitive under this modified key, which is usually
referred to as related-key attacks (RKAs).

The theoretical treatment of RKAs was initiated by Bellare et al. [6], where
they captured RKAs by a class Φ of efficiently computable functions termed
related-key derivation (RKD) functions and formally defined the RKA-security
with respect to (w.r.t) Φ. In general, the security against RKAs captured by Φ
(Φ-RKA security) requires that the standard security of a cryptographic prim-
itive hold even against such attackers that observe the outcomes of the crypto-
graphic primitive under modified keys φ(sk) for all φ ∈ Φ.

In fact, these two notions are somewhat related to each other, both of which
are defined by allowing attackers to tamper with the keys to gain extra attacking
advantages. Although they are well-studied separately, there is no work showing
the relationship between them. In light of the fact that encryption schemes
used in complex scenarios may suffer from both kinds of tampering attacks, we
initiate the study of their relations and the design of efficient PKE schemes that
are secure against these types of attacks.

1.1 Related Works

CNM-CCA Security. In order to comprehend the notion of CNM-CCA secu-
rity introduced in [14], Ventre et al. [28] revisited it recently. Following the
comparison-based approach [5], they introduced a game-based definition, which
is always believed to be much more convenient to work with than the simulation-
based version [14]. Moreover, they showed the reachability of their definition in
the standard model via two different approaches: the first is based on the non-
malleable non-interactive zero knowledge (NM-NIZK) proofs in the common ref-
erence string setting and the other is under the assumption that oracle queries
are issued sequentially in the interactive setting. However, these solutions are
mostly feasibility proofs than practical realizations, and they left the efficient
design of CNM-CCA secure schemes open.
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Later, under the game-based definition, Libert et al. [23] put forward two effi-
cient constructions of CNM-CCA secure PKE in the common reference string
setting. The first built on the selective identity-based encryption (IBE) [9] and
a general one-time signature is inspired by the Canetti-Halevi-Katz (CHK) par-
adigm [11]. Its security is established in the standard model under the standard
decisional bilinear Diffie-Hellman (DBDH) assumption. The other is based on the
lossy trapdoor functions [25], which is more general but suffers from long cipher-
texts compared to the first. Almost concurrently, another concrete CNM-CCA
secure PKE scheme [2] was presented by employing the techniques of Waters’ IBE
[29] and certificateless encryption [1]. This scheme was actually proven secure
in the standard model under a stronger security notion called indistinguisha-
bility against strong chosen ciphertext attacks (IND-SCCA) [2], which implies
CNM-CCA security. Due to Waters’ hash, however, it suffers from long public
parameters. Most recently, a lattice-based CNM-CCA secure scheme [27] was
presented under the similar framework [23]. Another relevant work is [31] where
the authors studied related public key attacks by showing a practical attack on
the EIGamal-based multi-recipient encryption system and initially introduced
the notion of security against such attacks, which in some sense is relevant to
CNM-CCA security but with different security goals.

Φ-RKA Security. RKA-security was pioneered by Bellare et al. [6], where they
mainly investigated the RKA security of symmetric primitives. Following this
work, the notion was also extended to public settings [4,7,12,20,24,26,30,31]
such as PKE, IBE and key-encapsulation mechanisms (KEM). Previously, most
of the works could only achieve RKA security against limited RKD functions
such as linear functions. To resist a larger class of tampering attacks, a recent
research focus has been to construct cryptographic primitives that are secure
against a broader class of RKD functions.

In 2012, Bellare et al. [7] studied how to achieve RKA-security beyond the
linear barrier and presented a generic framework through IBE. Specifically, by
extending Waters’ IBE [29] they presented a RKA-secure scheme against poly-
nomial functions of bounded degree d, and reduced its security to the d-extended
DBDH (d-EDBDH) assumption. Most recently, Qin et al. [26] and Fujisaki et al.
[16] managed to achieve RKA-security against even richer RKD function classes.
In addition, there are some other relevant works that can realize RKA-security
beyond the linear barrier, e.g., the continuous non-malleable code [19].

For various primitives including IBE, signature and KEM, all recent works
[7,16,19,26] can achieve RKA-security against polynomial (of bounded degree)
or even richer RKD functions directly. For the basic primitive PKE, however,
almost all of them realized its RKA-security via one of the following approaches:
the first is by the KEM/DEM framework [7], where a RKA-secure PKE follows
directly from RKA-security of KEM and one-time CCA security of DEM, and
the other is by the CHK transformation [4,7], where a RKA secure PKE can
be derived from any RKA-secure IBE, as shown in [7,16,26]. This approach can
realize the RKA-security of PKE against the same RKD function classes as IBE,
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but also inherits the same shortcomings of the underlying IBE such as long public
parameters due to Waters’ hash. Moreover, as analyzed in [21] the transformation
always brings some unnecessary computation/communication redundancy.

1.2 Motivations and Our Contributions

To resist different kinds of powerful attacks in practice, many strong security
notions are well-studied separately. CNM-CCA security captures such attack-
ers in high-level systems that have the ability to tamper with the public keys to
obtain extra advantages, while RKA-security captures similar tampering attacks
on the internal secret state of cryptographic implementations. Initially motivated
by the similarities between them and the fact that cryptosystems in real life may
suffer from both kinds of attacks, in this work we try to study their relations
and construct efficient encryption schemes that are secure against both types of
attacks. Specifically, we first present a practical PKE based on [22] and prove it
CNM-CCA and RKA secure in the standard model under the standard assump-
tions. For the CNM-CCA security, similar to [27] it follows the idea in [23]:
conceal some escrow keys in the common reference string and use them to prop-
erly decrypt the ciphertexts output by the adversary. Our construction, however,
is different from previous works in that it avoids using the generic NIZK or sig-
nature techniques. For RKA-security, it is inspired by the observation that the
simulator in the proof of CNM-CCA security needs to be capable of decrypting
ciphtertexts encrypted under arbitrarily adversarial chosen public keys. Thus, we
can reduce the process of related-key decryption queries to the strong decryption
capability of the simulator if the corresponding public keys can be successfully
derived from the queried RKD functions and the public information. Further
following this rough idea, we simply extend the key generation algorithm of the
previous scheme and present a practical RKA-secure PKE against polynomial
functions of bounded degree in a direct way, instead of following the indirect
approaches mentioned before. To prove its security, we introduce a new hard-
ness assumption called d-modified extended decisional bilinear Diffie-Hellman
assumption, which is simplified from the d-EDBDH assumption in [7], and then
reduce the security to this relatively weak assumption.

2 Preliminaries

Notation. We use κ to denote the security parameter. For a finite set S, s ← S
denotes the operation of sampling s from S uniformly at random. For a dis-
tribution M , we use m ← M to denote the action of sampling an element m
according to the distribution. For a randomized algorithm A(·), we denote by
a ← A(·) the operation of running the algorithm and obtaining a as its output.
PPT and negl(κ) denote the abbreviation of probabilistic polynomial time and
some negligible function in κ respectively.
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2.1 Hardness Assumptions

Definition 1 (CDH Problem). Let G be a multiplicative group of prime order
p, the computational Diffie-Hellman (CDH) problem is given (g, ga, gb) to com-
pute gab, where the elements g ∈ G and a, b ∈ Zp are chosen independently and
uniformly at random. Given a random instance (g, ga, gb), the advantage for any
PPT adversary B is defined as: AdvCDH

B,G (κ) = |Pr[B(g, ga, gb) = gab]|.
We say that the CDH assumption holds if for any efficient adversary B, its

advantage AdvCDH
B,G (κ) is negligible in κ.

Definition 2 (d-mEDBDH Assumption). Let G and GT be two multi-
plicative groups of prime order p, and e : G × G → GT be an efficiently
computable map such that e(ga, hb) = e(g, h)ab for all g, h ∈ G, a, b ∈ Z

∗
p

and e(g, h) �= 1GT
whenever g, h �= 1G. For some integer d ∈ N, the

d-modified extended decisional bilinear Diffie-Hellman (d-mEDBDH) prob-
lem is to distinguish the ensembles {(g, ga, ga2

, · · · , gad

, gb, gc, e(g, g)abc)} from
{(g, ga, ga2

, · · · , gad

, gb, gc, e(g, g)z)}, where the elements g ∈ G and a, b, c, z ∈
Zp are chosen independently and uniformly at random. Formally, the advan-
tage for any PPT distinguisher D is defined as: Advd-mEDBDH

D,G,GT
(κ) =

|Pr[D(g, ga, ga2
, · · · , gad

, gb, gc, e(g, g)abc) = 1]− Pr[D(g, ga, ga2
, · · · , gad

, gb, gc,
e(g, g)z) = 1]|.

We say that the d-mEDBDH assumption holds if for any efficient distin-
guisher D, its advantage Advd-mEDBDH

D,G,GT
(κ) is negligible in κ.

We remark that our d-mEDBDH problem is simplified from the d-EDBDH
problem [7], which additionally contains the elements (g(a2)b, · · · , g(ad)b), so its
hardness can be easily reduced to the latter. More precisely, if there exists an
efficient algorithm D that can break our hardness assumption, then it is easy
to design an efficient algorithm D′ to break the d-EDBDH assumption: given
a random d-EDBDH instance, D′ only needs to discard the extra elements
(g(a2)b, · · · , g(ad)b) and then invoke D with the left part. Hence, our construction
is based on a weaker assumption compared to [7]. Specially, it is the standard
DBDH assumption when d = 1.

Definition 3 (Collision-Resistant Hash). A hash function H : U → V is
called collision-resistant if for any PPT algorithm B, it holds that AdvCR

B,H(κ) =
Pr[u′ �= u ∧ H(u′) = H(u)|u, u′ ← B(H)] ≤ negl(κ).

2.2 Security Definitions

In general, a public key encryption scheme consists of a tuple of polynomial time
algorithms (Setup, KeyGen, Enc, Dec). As in [30], we think of the cryptographic
system as having the following components: algorithms (code), public parame-
ters, public/secret key pairs. Of these, only the public and secret keys are subject
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to tampering attacks. The public parameters generated in Setup are system-wide
and independent of users. In practice, these parameters can be hardwired into a
device in implementations.

For the completely non-malleable security, we will use the game-based def-
inition [28]. Before going ahead, we first recall an important ingredient named
complete relation, which is considered in both the simulation-based [14] and the
game-based definition [28]. A complete relation R is an efficient (probabilistic)
algorithm, which takes as input a message m, two public keys pk and pk∗, a
vector of ciphertext ct∗ encrypted under pk∗ and the corresponding plaintext
vector m∗ (i.e., the decryption of ct∗), and finally outputs a boolean value 0/1.

Definition 4 [23,28]. Let PKE=(Setup, KeyGen, Enc, Dec) be a public key
encryption scheme. For any κ ∈ N and adversary A = (A1,A2), we define

AdvCNM-CCA
A,PKE (κ) =

∣
∣
∣Pr[ExptCNM-CCA-0

A,PKE (κ) = 1] − Pr[ExptCNM-CCA-1
A,PKE (κ) = 1]

∣
∣
∣ .

where ExptCNM-CCA-0
A,PKE (κ) and ExptCNM-CCA-1

A,PKE (κ) are defined as below.

ExptCNM-CCA-0
A,PKE (κ):

pp ← Setup(1κ), (pk, sk) ← KeyGen(pp)

(M, st) ← ADsk(·)
1 (pp, pk)

m ← M , ct = Enc(pk, m)

(R, pk∗, ct∗) ← ADsk(·)
2 (st, M, pp, pk, ct)

return 1 iff ∃ m∗ such that
(ct∗ = Enc(pk∗,m∗))∧
(ct /∈ ct∗ ∨ pk �= pk∗)∧
(m∗ �= ⊥)∧
(R(m,m∗, pk, pk∗, ct∗) = 1)

ExptCNM-CCA-1
A,PKE (κ):

pp ← Setup(1κ), (pk, sk) ← KeyGen(pp)

(M, st) ← ADsk(·)
1 (pp, pk)

m, m̃ ← M , ct = Enc(pk, m)

(R, pk∗, ct∗) ← ADsk(·)
2 (st, M, pp, pk, ct)

return 1 iff ∃ m∗ such that
(ct∗ = Enc(pk∗,m∗))∧
(ct /∈ ct∗ ∨ pk �= pk∗)∧
(m∗ �= ⊥)∧
(R(m̃,m∗, pk, pk∗, ct∗) = 1)

In the above, Dsk(·) denotes the decryption oracle, which A is permitted to
query even after the challenge phase but except for ct. The message distribution
M is deemed valid if |m| = |m′| for any m,m′ with non-zero probability in M .
The condition m∗ �= ⊥ means that there exists at least one valid ciphertext in
ct∗, i.e., at least one of the messages in m∗ is different from ⊥.

Definition 5 (CNM-CCA Security). The scheme PKE is said to be
CNM-CCA secure if for any PPT adversary A, its advantage AdvCNM-CCA

A,PKE (κ)
is negligible.

In the following, let us recall the RKA security of PKE, which is parameter-
ized by a family Φ of RKD functions. Assuming the secret key space is SK, the
RKD function is always defined as an efficiently computable map on SK, such
as the affine function class Φaff = {φa,b}a,b∈SK with φa,b = a · sk + b and the
polynomial function class Φpoly(d) = {φq}q∈SKd[x] of bounded degree d, where
SK is a finite field as in [7].
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Definition 6 [4,30]. Let PKE=(Setup, KeyGen, Enc, Dec) be a public key
encryption scheme and A = (A1,A2) a PPT adversary. For any κ ∈ N and
related-key derivation function family Φ, we define

AdvΦ-RKA
A,PKE (κ) =

∣
∣
∣Pr[ExptΦ-RKA

A,PKE (κ) = 1] − 1/2
∣
∣
∣ ,

where the experiment ExptΦ-RKA
A,PKE (κ) is defined as:

ExptΦ-RKA
A,PKE (κ):

pp ← Setup(1κ), (pk, sk) ← KeyGen(pp)

(m0, m1, st) ← ARKDsk(·,·)
1 (pp, pk)

β ← {0, 1}, ct∗ ← Enc(pk, mβ)

β′ ← ARKDsk(·,·)
2 (st, ct∗)

return (β′ = β).

In the experiment, the adversary is given access to a related-key decryption
oracle, denoted by RKDsk(·, ·). Normally, each query to this oracle consists of
a related-key derivation function φ ∈ Φ and a ciphertext ct. In response to such
query (φ, ct), the oracle returns Dec(φ(sk), ct). After the challenge phase, the
adversary is still allowed to query the related-key decryption oracle RKDsk(·, ·)
even for ct∗, but with the restriction that (φ(sk), ct) �= (sk, ct∗).

Definition 7 (Φ-RKA Security). The encryption scheme PKE is called
Φ-RKA secure if for any PPT adversary A, its advantage AdvΦ-RKA

A,PKE (κ) is
negligible.

3 CNM-CCA and RKA Secure PKE

Our construction is derived from Lai et al.’ IND-CCA secure PKE scheme [22].
In order to achieve CNM-CCA security, we first extract from their public key a
common reference string, in which we could perfectly hide an escrow key and use
it to deal with the ciphertexts encrypted under new public keys. Put differently,
the ciphertexts (under the new public key) could be correctly decrypted in the
security proof by employing the escrow key together with the new public key,
instead of using the corresponding secret key. To this end, we also need to include
the public key into the inputs of hash function.

To simultaneously achieve RKA security, our main idea is to exploit the magic
decryption capability of the simulator in the CNM-CCA security to answer the
related-key decryption queries. To this goal, we should be able to derive the
corresponding public keys from the queried RKD functions and the public infor-
mation, which we could realize by relying on the property of key-malleability.
Additionally, to resist such kind of attacks (φ(sk) �= sk, ct∗) we have to make
the secret key as partial input of the hash function.

So, to achieve the above goals at the same time, we take the public key
as partial input of the hash in encryption and uses the secret key to calculate
the hash in decryption. More concretely, our construction PKE comprises the
following algorithms (Setup, KeyGen, Enc, Dec):
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Setup(1κ): given a security parameter 1κ, generate cyclic groups G,GT of prime
order p, which are endowed with an efficiently computable map e : G×G →
GT . Next, choose random elements g, g1, u, v, w ∈ G and a collision-resilient
hash function H : {0, 1}∗ → Zp. At last, set and output the common reference
string crs = (1κ,G,GT , e, g, g1, u, v, w,H).

KeyGen(crs): given the common reference string crs, choose a random α ∈ Zp

and then set the secret key sk = α and the public key pk = gα.
Enc(pk,m): given pk and a message m ∈ GT , choose random r, s ∈ Zp and

compute the ciphertext components C1, C2, C3 as follows:

C1 = gr, C2 = e(pk, g1)r · m, C3 = (utvsw)r,

where t = H(pk,C1, C2). At last, return the ciphertext ct = (C1, C2, C3, s).
Dec(sk, ct): given sk and ct = (C1, C2, C3, s), compute t = H(gsk, C1, C2) and

check if e(C1, u
tvsw) = e(g, C3). If false, return ⊥; otherwise, output the

plaintext m = C2/e(C1, g1)sk.

Remark 1. If we only consider the CNM-CCA security, just using public key
to compute the hash in both encryption and decryption (i.e., H(pk,C1, C2)) is
actually sufficient. However, it is easy to find that the scheme in this case still
suffers from the related-key attacks, which demonstrates the separation of these
two notions. To further make it immune to such attacks, we instead calculate the
input pk of hash with the secret key in decryption, which also implicitly plays
the role of pk for CNM-CCA security in this construction. By this way, we can
achieve both the CNM-CCA and RKA securities simultaneously.

4 Security Proofs

In this section, we analyze the CNM-CCA security and the RKA security of
our construction successively. First, we give the analysis of CNM-CCA security,
which is formulated in Theorem1. In the security proof, we have to deal with two
types of ciphertexts: the ones in the decryption query, which are generated under
the challenge public key pk, and those in the adversary’s final output, which are
generated under the adversarial chosen public key pk∗. In case pk∗ = pk, the
security can be analyzed in a similar way as in [22]. On the other hand, we
should be able to properly decrypt the ciphertexts under pk∗ without using its
corresponding secret key. To achieve this goal, the essential idea is to implicitly
conceal in the common reference string an escrow key, by which these ciphere-
texts could be correctly opened in the simulation even without any knowledge
of the associated secret key. The details are shown in the following.

Theorem 1 (CNM-CCA Security). The PKE scheme proposed above is
CNM-CCA secure under the CDH and DBDH assumptions and the collision-
resistance of H. More precisely, for any κ and PPT adversary A, it holds that
AdvCNM-CCA

A,PKE (κ) ≤ 2AdvCR
B1,H(κ) + AdvCDH

B2,G (κ) + 2AdvDBDH
B3,G,GT

(κ) + 2(q + 1)/p,
where q denotes the number of ciphertext produced by A including the decryption
queries as well as the elements of his final output ct∗.
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Proof. The proof is conducted via a sequence of games. Hereafter, we use Suci(β)
to denote the event that the challenger outputs 1 in the i-th game Gamei(β).

Game0(β): This is the real game of the definition. Particularly, given the com-
mon reference string crs and the public key pk, the adversary A starts to
issue the decryption queries, which could be answered by the challenger using
the secret key sk. In the challenge phase, the adversary submits a challenge
query for a plaintext distribution M of her choice. Then, the challenger chooses
m0,m1 ← M , computes C1 = gr, C2 = e(pk, g1)r · mβ , C3 = (utvsw)r, where
r, s ← Zp and t = H(pk,C1, C2), and returns the ciphertext ct = (C1, C2, C3, s).
The adversary continues to query the decryption oracle for any ciphertext but
ct. Finally, A outputs a possibly new public key pk∗, a ciphertext-vector ct∗

and the description of a relation R. At this point, the challenger invokes an all
powerful oracle that computes α∗ such that pk∗ = gα∗

, and exploits the corre-
sponding secret key sk∗ = α∗ to decrypt ct∗, i.e., m∗ = Dec(sk∗, ct∗). After
that the challenger uses m∗ to evaluate the relation R(m0,m

∗, crs, pk, pk∗, ct∗)
and check if m∗ �= ⊥. If all these conditions hold, the challenger outputs 1,
otherwise 0. Obviously, we have AdvCNM-CCA

A,PKE (κ) = |Pr[Suc0(0)] − Pr[Suc0(1)]|.
Game1(β): This is identical to the above game except for the treatment of the
ciphertexts (including the decryption queries and the elements of ct∗) output
by the adversary after the challenge phase. For such a ciphertext ct′, it is with
respect to a public key pk′ which is either pk or a new adversarial chosen public
key pk∗. Without loss of generality, we assume that pk′ = gα′

for some α′ ∈ Zp

and thus the associated secret key is sk′ = α′.
In this game, an additional rule is introduced for the process of such cipher-

texts. More concretely, the challenger now computes t′ = H(gsk′
, C ′

1, C
′
2) =

H(pk′, C ′
1, C

′
2)

1 and checks if (pk′, C ′
1, C

′
2) �= (pk,C1, C2) but t′ = t. If so, the

challenger aborts. Otherwise, it continues to verify the validity of ct′ and decrypts
it as before.

Obviously, this game is identical to the above unless that (pk′, C ′
1, C

′
2) �=

(pk,C1, C2) and t′ = t happens. However, if this occurs we would find a collision
of H. Thus, due to the collision-resistance property we get that |Pr[Suc1(β)] −
Pr[Suc0(β)]| ≤ AdvCR

B1,H(κ).

Game2(β): This game is the same as the previous, expect for the introduction
of a new rejection rule for the process of the ciphertexts generated after the
challenge phase. Specifically, the ciphertext ct′ = (C ′

1, C
′
2, C

′
3, s

′) in this game is
processed as follows:

– (C ′
1, C

′
2) = (C1, C2): return ⊥.

– (C ′
1, C

′
2) �= (C1, C2): decrypt it as previous.

1 Note that for any element pk′ in public key space G of our construction, there exists
a corresponding private key sk′ ∈ Zp satisfying pk′ = gsk′

, so all elements of G are

admissible public keys. Hence, the value H(gsk′
, C′

1, C
′
2) can be always computed

using pk′ even without knowing sk′.
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From the above we can see that Game2 is identical to Game1 unless the
adversary could generate a valid ciphertext ct′ = (C ′

1, C
′
2, C

′
3, s

′) such that
(C ′

1, C
′
2) = (C1, C2). For simplicity, we denote this event by Valid. Thus we

have |Pr[Suc2(β)] − Pr[Suc1(β)]| ≤ Pr[Valid].

Lemma 1. Under the CDH assumption, the adversary cannot generate a valid
ciphertext (C ′

1, C
′
2, C ′

3, s
′) satisfying (C ′

1, C
′
2) = (C1, C2) except with a negligible

probability. More precisely, Pr[Valid] ≤ AdvCDH
B2,G (κ) + 1/p.

Game3(β): This game is almost the same as the above, except for the way of
generating crs. In particular, the challenger at the beginning randomly chooses
xv, xw, yu, yv, yw ∈ Zp and sets u = g1g

yu , v = gxv
1 gyv , w = gxw

1 gyw , instead of
randomly picking u, v, w from G.

Clearly, crs generated in this way is identically distributed to the original
from the view of the adversary’s point. Thus, we get Pr[Suc3(β)] = Pr[Suc2(β)].

Game4(β): The only difference of this game from Game3(β) is that the cipher-
text is generated in a different way. Precisely, the ciphertext ct = (C1, C2, C3, s)
in this game is generated in the following way:

1. Choose m0,m1 ← M and a random r ← Zp.
2. Compute C1 = gr, C2 = e(pk, g1)r · mβ and t = H(pk,C1, C2).
3. Set s = −(t + xw)/xv and C3 = (gtyu+syv+yw)r.

It is easy to verify that the ciphertext ct is well-formed and properly-distributed.
Thus we have Pr[Suc4(β)] = Pr[Suc3(β)].

Game5(β): This game is identical to the previous except for the treatment of the
ciphertexts produced by the adversary, including those submitted to the decryp-
tion oracle and the elements of its final output ct∗. Specifically, the ciphertext
ct′ = (C ′

1, C
′
2, C

′
3, s

′) is treated as follows.
For the ciphertext ct′ queried before A receiving the challenge ciphertext ct,

the challenger first computes t′ = H(gsk, C ′
1, C

′
2) = H(pk,C ′

1, C
′
2) and checks the

validity of ct′, which ensures that C ′
1 = gr′

and C ′
3 = (ut′

vs′
w)r′

for some r′ by
using the pairing. If invalid, it outputs ⊥. Otherwise, checks if t′ +s′xv +xw = 0.
If so, the challenger aborts. Otherwise, it randomly chooses γ ∈ Zp and computes

dct′,1 = pk−(t′yu+s′yv+yw)/(t′+s′xv+xw)(ut′
vs′

w)γ ,

dct′,2 = pk−1/(t′+s′xv+xw)gγ .

Let γ′ = γ − α
t′+s′xv+xw

, then we have dct′,1 = gα
1 (ut′

vs′
w)γ′

and dct′,2 = gγ′
,

from which the challenger could in turn get e(C ′
1, g1)α = e(C ′

1, dct′,1)/e(C ′
3, dct′,2)

and recover the plaintext by evaluating C ′
2/e(C ′

1, g1)α.
For the ciphertext ct′ appearing after the challenge phase, the challenger

first computes t′ = H(pk′, C ′
1, C ′

2) = H(gsk′
, C ′

1, C
′
2), where pk′ is the associated

public key with ct′ and sk′ is the corresponding secret key satisfying pk′ = gsk′
.

Then it checks whether (C ′
1, C

′
2) = (C1, C2) and proceeds as follows:
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1. (C ′
1, C

′
2) = (C1, C2): return ⊥.

2. (C ′
1, C

′
2) �= (C1, C2): in this case t′ �= t. Verify if ct′ is valid, if not return ⊥.

Otherwise, check if s′ = s and proceed as below:
– s′ �= s: check whether t′ + s′xv + xw = 0. If so, the challenger aborts;

otherwise, recover the plaintext as above. More precisely, the challenger
first randomly chooses γ ∈ Zp and computes

dct′,1 = pk′−(t′yu+s′yv+yw)/(t′+s′xv+xw)(ut′
vs′

w)γ ,

dct′,2 = pk′−1/(t′+s′xv+xw)gγ .

Let γ′ = γ − sk′
t′+s′xv+xw

, we have dct′,1 = gsk′
1 (ut′

vs′
w)γ′

and dct′,2 = gγ′
.

Then the challenger could get e(C ′
1, g1)sk′

= e(C ′
1, dct′,1)/e(C ′

3, dct′,2) and
recover the plaintext by computing C ′

2/e(C ′
1, g1)sk′

.
– s′ = s: in this case t′ + s′xv + xw �= 0 holds, so the ciphertext can be

decrypted similarly.

From the above, we know that unless the challenger aborts, the decryption
oracle is perfectly simulated and the final output (pk∗, ct∗) is also perfectly
treated as if it were directly decrypted using the associated secret key sk∗. In
the following, we denote this event by abort.

By the simulation we know that abort happens only when t′ + s′xv + xw = 0
holds. From the setup of crs, it is easily observed that the values xv and xw are
blinded using yv and yw respectively, and so they are initially hidden from the
adversary A. When A queries the decryption oracle for ct′ = (C ′

1, C
′
2, C

′
3, s

′),
the challenger returns either ⊥ if ct′ is invalid or the encrypted message. More
precisely, it answers in the following way:

1. If e(C ′
1, u

t′
vs′

w) �= e(g, C ′
3), where t′ = H(gsk, C ′

1, C
′
2), it returns ⊥.

2. Otherwise, it computes dct′,1 = gα
1 (ut′

vs′
w)γ′

and dct′,2 = gγ′
, and returns

C ′
2 · e(C ′

3, dct′,2)/e(C ′
1, dct′,1) = C ′

2/e(C ′
1, g1)α.

Thus, the adversary could not get any information about either xv or xw from
these queries. After seeing the challenge ciphertext ct, the adversary gets the fact
that t + sxv + xw = 0. However, there are exactly p possible and equally likely
pairs (xv, xw) satisfying this equation. So, the probability that t′ +s′xv +xw = 0
is at most 1/p. Considering that the adversary produces at most q ciphertexts
including the decryption queries as well as the elements of ct∗, the probability
that t′ + s′xv + xw = 0 holds for at least one ciphertext is at most q/p.

Therefore, we have that |Pr[Suc5(β)] − Pr[Suc4(β)]| ≤ Pr[abort] ≤ q/p.

Game6(β): This game is essentially the same as the above except that both the
crs and ct are generated using the DBDH tuple (g, ga, gb, gc, e(g, g)abc), where
a, b, c ← Zp. In particular, the challenger randomly chooses xv, xw, yu, yv, yw ∈
Zp and sets g1 = gb, u = gbgyu , v = gbxvgyv , w = gbxwgyw and pk = ga.
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For the challenge ciphertext ct = (C1, C2, C3, s), it is generated as follows:

1. Choose m0,m1 ← M .
2. Let C1 = gc, C2 = e(g, g)abc · mβ and compute t = H(pk,C1, C2).
3. Set s = −(t + xw)/xv and C3 = (gc)tyu+syv+yw .

Clearly, this game is identical to the above, so we have Pr[Suc6(β)] =
Pr[Suc5(β)].

Game7(β): In the final game, the message mβ is perfectly hidden by a random
element e(g, g)z, where z ← Zp.

Lemma 2. Under the DBDH assumption, Game7(β) is computationally indis-
tinguishable from Game6(β). More concretely,

|Pr[Suc7(β)] − Pr[Suc6(β)]| ≤ AdvDBDH
B3,G,GT

(κ).

By assuming the correctness of Lemmas 1 and 2, the proofs of which will be
given in the full version, and combining all the probabilities before, we get that

AdvCNM-CCA
A,PKE (κ) = |Pr[Suc0(0)] − Pr[Suc0(1)]|

≤ |Pr[Suc0(0)] − Pr[Suc7(0)]| + |Pr[Suc7(0)] − Pr[Suc7(1)]|
+|Pr[Suc7(1)] − Pr[Suc0(1)]|

≤ 2AdvCR
B1,H(κ) + 2AdvCDH

B2,G (κ) + 2AdvDBDH
B3,G,GT

(κ) + 2(q + 1)/p.

Note that e(g, g)z perfectly hides mβ , so we have Pr[Suc7(0)] = Pr[Suc7(1)]. �
Second, we give the analysis of RKA security, which is formulated in Theo-

rem 2. In the simulation, we need to properly deal with the related-key decryp-
tion queries of the form (φ, ct). To this end, we should be able to (1) check if
φ(sk) = sk and (2) open the ciphertext ct under φ(sk) both without knowledge
of the secret key sk. For the first task, we accomplish it by relying on the property
of key-malleability. As to the second, we decrypt the ciphertext by exploiting
the malleability property and the escrow keys concealed in the common reference
string, which is inspired by the proof of CNM-CCA security.

Theorem 2 (Φ-RKA Security). The PKE scheme proposed above is Φaff -
RKA secure under the CDH and DBDH assumptions and the collision-resistance
of H. More precisely, for any κ, φ ∈ Φaff and PPT adversary A, it holds that
Adv

Φaff -RKA
A,PKE (κ) ≤ AdvCR

B1,H(κ)+AdvCDH
B2,G (κ)+AdvDBDH

B3,G,GT
(κ)+(q+1)/p, where

q denotes the number of related-key decryption queries made by A.

5 Φpoly(d)-RKA Secure PKE

As shown before, we can achieve RKA security by exploiting the key-malleability
and the strong decryption capability of the simulator for CNM-CCA security.
Following this way, we further give a direct and efficient construction of Φpoly(d)-
RKA secure PKE by simply extending the algorithm KeyGen of the previous
construction, the details of which are as follows.
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Setup(1κ): given a security parameter 1κ, generate cyclic groups G,GT of
prime order p, endowed with a bilinear map e : G × G → GT . Next,
choose random elements g, g1, u, v, w ∈ G and a collision-resilient hash
function H : {0, 1}∗ → Zp. Finally, output the common reference string
crs = (1κ,G,GT , e, g, g1, u, v, w,H).

KeyGen(crs): given crs, choose a random α ∈ Zp and compute π = gα. Finally,
set the secret key sk = α and the public key pk = (π, gα2

, gα3
, · · · , gαd

) for
positive integer d.

Enc(pk,m): given pk and a message m ∈ GT , choose random elements r, s ∈ Zp

and compute the ciphertext components C1, C2 and C3 as follows:

C1 = gr, C2 = e(π, g1)r · m, C3 = (utvsw)r,

where t = H(π,C1, C2). At last, return the ciphertext ct = (C1, C2, C3, s).
Dec(sk, ct): given sk and ct = (C1, C2, C3, s), first compute t = H(gsk, C1, C2),

and then check if e(C1, u
tvsw) = e(g, C3). If false, return ⊥; otherwise,

output the plaintext m = C2/e(C1, g1)sk.

Remark 2 Similar to [7], the elements gα2
, gα3

, · · · , gαd

is mainly to assist in
achieving key-malleability for Φpoly(d). In fact, they are not used in the actual
system but for the proof of RKA-security.

Theorem 3 (Φ-RKA Security). The PKE scheme proposed above is Φpoly(d)-
RKA secure under the CDH and d-mEDBDH assumptions and the collision-
resistance of H. More precisely, for any κ and PPT adversary A, it holds that
Adv

Φpoly-RKA
A,PKE (κ) ≤ AdvCR

B1,H(κ) + AdvCDH
B2,G (κ) + Advd-mEDBDH

B3,G,GT
(κ) + (q + 1)/p,

where q denotes the number of related-key decryption queries made by A.

We remark that the proof of Theorems 2 (and 3) is inspired by that of The-
orem 1. The main difference for the proof is that gφ(sk) will play the role of pk′.
Note that gφ(sk) can be seen as a transformed public key with the corresponding
secret key φ(sk). For lack of space, we will give the detailed proofs in the full
version.

6 Performance Analysis

In this part, we give a detailed performance analysis of our constructions and a
brief comparison with the related works. In the comparison, we use [·]1 and [·]2 to
denote PKEs derived from the related work [·] by the KEM/DEM approach and
CHK transformation respectively. Regarding the KEM/DEM approach, we write
SE=(E ,D) to denote an one-time CCA-secure symmetric encryption, where E
and D denote the encryption and decryption algorithm respectively. In addition,
we use Sig=(G,S,V) to denote the one-time signature used in the CHK transfor-
mation, where G outputs a signing and verification key pair (skSig, vk) and S gen-
erates a signature σ ← S(skSig,m) for a given message m. For the instantiation of
[26], we use the efficient IBE in [9] and denote the continuous non-malleable key
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derivation function used in the conversion by KDF = (K.G,K.S,K.E), where K.G
outputs public parameters pp, K.S generates a derivation key and a correspond-
ing public key pair belonging to S1 × S2, and K.E calculates a pseudorandom
key. The detailed analysis is summarized in Table 1.

Table 1. Performance Analysis and Comparison with Related Works

Scheme pka ciphertext KeyGen Enc Dec CNM Φ-RKA

LY[23] |G| +|GT | 2|G|+|GT |+vk+σ exp1 2exp1+exp2+S 3pr+2exp1+V √ ×
BF[2] 2|G|+|GT | 2|G|+|GT | 2exp1 2pr+2exp1+exp2 3pr+4exp1

√ ×
Sect. 3 |G|+|GT | 2|G|+|GT |+|Zp| exp1 2exp1+exp2 3pr+3exp1

√
Φaff

Sect. 5 d|G|+|GT | 2|G|+|GT |+|Zp| dexp1 2exp1+exp2 3pr+3exp1 × Φpoly(d)

BP+[7]b1 |G| 2|G|+ct exp1 2exp1+exp2+E 3pr+3exp1+D − Φaff

BP+[7]2 (2d − 1)|G| 2|G|+|GT |+vk+σ (2d-1)exp1 2exp1+exp2+S 2pr+4exp1+V − Φpoly(d)

QL+[26] |G| + |S2| 2|G|+|GT |+vk+σ exp1+K.S+K.E 2exp1+exp2+S 2pr+3exp1+K.E+V − Φ+
poly

(d)

FX[16]1 2|G| 4|G|+ct 3exp1 2exp1+exp2+E 7pr+2exp1+D − Φ+
poly

(d)

FX[16]2 2|G| 4|G|+|GT |+vk+σ 3exp1 2exp1+exp2+S 6pr+3exp1+V − Φ+
poly

(d)
a: identical to other works, the pairing operation e(pk, g1) in our scheme could be pre-computed and put into
the public key; b: for comparison, the KEM in [7] is adapted into the symmetric pairing setting; n: the bit-
length of a user’s “identity”/the output-length of H; ct: the ciphertext of the symmetric encryption SE; | · |: the
size of an element in a group or a finite set, e.g., |G|; “exp1”: an exponentiation operation over G (some of the
exponentiations are actually multi-exponentiation); “exp2”: an exponentiation operation over GT ; “pr”: a bilinear

pairing operation; Φ+
poly

(d): a family of RKD functions beyond polynomials of bounded degree d.

It is easy to observe from the table that our construction in Sect. 3 not only
have a comparable performance to the related works in [2,23] and [7]1, but also
achieves CNM-CCA security and RKA security simultaneously. As to the RKA
security, it is clear that our direct construction in Sect. 5 is more efficient than
[7]2, but secure against a less broad function class than [16,26]. We left the
direct and efficient constructions of PKE with CNM-CCA security and/or RKA
security against larger function classes as future work.

7 Further Discussion

As remarked in Sect. 3, CNM-CCA security cannot imply RKA security. How-
ever, it gives a new way to design practical RKA secure PKE schemes, as indi-
cated by our constructions. From the proofs we can see that the magic decryption
capability of the simulator for CNM-CCA security plays an important role for
realizing RKA security. Thus it is a natural question that under what conditions
the CNM-CCA secure PKE can be generically converted into RKA-secure PKE.

On the other hand, our construction in Sect. 5 also demonstrates that RKA
security does not imply CNM-CCA security. Actually, given a challenge cipher-
text ct for pk, the adversary can output such a public key and ciphertext pair
(pk∗, ct∗ = ct) where pk∗ �= pk but with the same π. Obviously, ct∗ is a valid
ciphertext of m∗ = m under pk∗. To avoid such trivial attacks, an easy way is
to take the whole pk as the input of H in encryption and accordingly use sk to
calculate it in decryption. However, it still cannot be proved CNM-CCA secure
like Theorem 1, because pk∗ chosen by the adversary may be not well-formed
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and thus the corresponding secret key does not exist. Intuitively, to achieve
CNM-CCA security, we have to enforce the adversary to output a valid pk∗.

From the above discussion, we know that these two notions are somewhat
related to each other, but they are completely separated. Thus, it remains inter-
esting and meaningful to find general methods to achieve both kinds of securities.

8 Conclusion

In this work, we present the first efficient public key encryption scheme which
achieves CNM-CCA security and RKA-security simultaneously. Thus it provides
a stronger security guarantee for the complex application scenarios. Relying on
the strong decryption capability implied by CNM-CCA security, we further give
a practical RKA-secure public key encryption scheme in a direct way. Based
on the newly introduced hardness assumption, it can be proven secure against
polynomial functions of bounded degree.
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In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

18. Hutter, M., Schmidt, J.-M., Plos, T.: RFID and its vulnerability to faults. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 363–379. Springer,
Heidelberg (2008)

19. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015)

20. Jia, D., Li, B., Lu, X., Mei, Q.: Related key secure PKE from hash proof systems.
In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 250–265.
Springer, Heidelberg (2014)

21. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

22. Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-secure PKE from identity-
based techniques. In: CT-RSA 2010, San Francisco, CA, USA, March 1–5, 2010,
pp. 132–147 (2010)

23. Libert, B., Yung, M.: Efficient completely non-malleable public key encryption. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6198, pp. 127–139. Springer, Heidelberg (2010)

24. Lu, X., Li, B., Jia, D.: Related-key security for hybrid encryption. In: Chow, S.S.M.,
Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 19–32.
Springer, Heidelberg (2014)



150 S.-F. Sun et al.

25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May 17–20, 2008, pp. 187–196 (2008)

26. Qin, B., Liu, S., Yuen, T.H., Deng, R.H., Chen, K.: Continuous non-malleable key
derivation and its application to related-key security. In: Proceedings of the PKC
2015, Gaithersburg, MD, USA, March 30 - April 1, 2015, pp. 557–578 (2015)

27. Sepahi, R., Steinfeld, R., Pieprzyk, J.: Lattice-based completely non-malleable
public-key encryption in the standard model. Des. Codes Crypt. 71(2), 293–313
(2014)

28. Ventre, C., Visconti, I.: Completely non-malleable encryption revisited. In: PKC
2008, Barcelona, Spain, March 9–12, 2008, pp. 65–84 (2008)

29. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

30. Wee, H.: Public key encryption against related key attacks. In: PKC 2012,
Darmstadt, Germany, May 21–23, 2012, pp. 262–279 (2012)

31. Yuen, T.H., Zhang, C., Chow, S.S.M., Yiu, S.: Related randomness attacks for
public key cryptosystems. In: ASIACCS 2015, Singapore, April 14–17, 2015,
pp. 215–223 (2015)



Searchable Encryption



Verifiable Searchable Encryption with Aggregate
Keys for Data Sharing in Outsourcing Storage

Tong Li1(B), Zheli Liu1, Ping Li2, Chunfu Jia1, Zoe L. Jiang3, and Jin Li4

1 College of Computer and Control Engineering, Nankai University, Tianjin, China
litongziyi@mail.nankai.edu.cn, {liuzheli,cfjia}@nankai.edu.cn

2 School of Mathematics and Computational Science, Sun Yat-sen University,
Guangzhou, China

liping26@mail2.sysu.edu.cn
3 Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China

zoeljiang@gmail.com
4 School of Computer Science, Guangzhou University, Guangzhou, China

lijin@gzhu.edu.cn

Abstract. In a secure data sharing system, the keyword search over
encrypted files is a basic need of a user with appropriate privileges.
Although the traditional searchable encryption technique can provide the
privacy protection, two critical issues still should be considered. Firstly, a
cloud server may be selfish in order to save its computing resources, and
thus returns only a fragment of results to reply a search query. Secondly,
since different keys are always used for different document sets, making a
search query over massive sets and verifying the search results are both
impractical for a user with massive keys. In this paper, we propose a
scheme named “verifiable searchable encryption with aggregate keys”.
In the scheme, a data owner need only distribute a single aggregate key
to other users to selectively share both search and verification privileges
over his/her document sets. After obtaining such a key, a user can use it
not only for generating a single trapdoor as a keyword search query, but
for verifying whether the server just conducts a part of computing for the
search request. Then, we define the requirements of the scheme and give
a valid construction. Finally, our analysis and performance evaluation
demonstrate that the scheme are practical and secure.

Keywords: Cloud storage · Data sharing · Verifiable searchable
encryption

1 Introduction

With the proliferation of demands for personal data storage conveniently, the
outsourced data storage technology becomes widely used in the wake of the
arrival of the cloud computing paradigm [1]. A group of file owners always want
that their sensitive files could be securely shared with each other via a cloud
server. In addition, an owner would like to authorize others several appreciate
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privileges like retrieving files over a subset of his/her. Beside the storage, today’s
commercial outsourcing storage systems, such as Dropbox and Sycany, provide
more or less other services to satisfy clients’ sharing requirements. For the key-
word search mentioned above, the searchable encryption (SE) technology [2,3]
is proposed to ensure the privacy and confidentiality while the server performs
search operations. Then, the public-key encryption with keyword search (PEKS)
schemes [4–6] can be adapted to various scenarios on the cloud.

However, sometimes sharing the search privilege over massive document sets
is not easy for their owner. In a traditional PEKS scheme, for confidentiality and
efficiency considerations, different keys are always used for different document
sets, so that the number of keys the users hold will scale with the number
of document sets they can retrieve. Thus, the sharing will naturally involve
transmission and key management troubles which are difficult to process for
mobile devices. Moreover, for some commercial reasons and hardware restrictions
in the peak period, a public cloud server may tend to save its computation or
bandwidth. That means, it executes only a fraction of search operations honestly
instead of the whole, and then returns the corresponding results. Thus, users
probably receive just a part of the search results. It is very essential to add
the verification mechanism to PEKS schemes. To ensure the keyword privacy,
only the users who hold appropriate verification tokens can verify the results
over related document sets. What is worse, the number of tokens used for the
verification is also considerable while the user finishes the search over massive
document sets.

In this paper, the semi-honest-but-curious server [7], who may execute only a
fraction of honest search operations, is set as a computationally bounded adver-
sary. And we propose a verifiable scheme called verifiable searchable encryption
with aggregate keys (VSEAK) for data sharing systems to fight against it. In
the scheme, the search keys and verification tokens, which is used over a sub-
set of a owner’s document sets, are aggregated to one single key. Therefore, in
our proposed scheme, to selectively sharing the search privileges of documents,
the owner can only send them a single aggregate key instead of massive keys
for both the search and verification. Thus, each user only needs to generate a
single aggregate trapdoor of a keyword by such a key to perform the keyword
search, and then execute the verification by the same key. Somewhat similar to
the most existing searchable encryption schemes for the group sharing [8–10],
the proposed scheme also set several auxiliary values as public for reducing the
repeated calculations and pass some tasks to the server securely. The contribu-
tion summarized as follows:

1. We give some requirements of multi-key PEKS scheme in an outsourced data
sharing system. Then, we propose a scheme that enables each authorized
user to confidentially retrieve encrypted documents selectively shared by a
document provider using a single aggregate key, and to verify the results
using the same key.
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2. We give a concrete construction which can meet the requirements. In the
construction, we design an algorithm to generate a single aggregate key for
both search and verification.

3. We also conduct related performance evaluation. The evaluation confirms
that the scheme is practical for applications.

1.1 Related Work

Multi-user Search Encryption for Data Sharing. Boneh et al. [4] intro-
duced the public key searchable encryption based on the identity-based encryp-
tion, and there is a rich literature on both symmetric searchable encryption (SSE)
schemes [2,3] and PEKS schemes [5,6,11]. Under the multi-user setting [10,12],
data owners always want to share their documents with a group of authorized
users, and each user who has the search privilege can provide trapdoors of a
keyword to perform the search over the shared documents.

For confidentiality considerations, different keys are always used for different
documents in data sharing systems during both searching and decrypting. Thus,
in most cases of the access control [13], the main problem is how to control
which users can access which documents, whereas how to reduce the number of
shared keys and trapdoors is not considered. Zheng et al. [14,15] proposed the
attribute-based keyword search scheme, which allows a data owner to control
the search privilege according to some access control key- or ciphertext-policy.

Verifiable Searchable Encryption. A threat model was considered by
Chai et al. [7], in which there is a computationally bounded adversary called
semi-honest-but-curious server. Such an adversary satisfies: (1) the server is a
storage provider who neither modifies nor destroys the stored documents; (2)
the server tries to learn the underlying plaintext or sensitive information from
stored documents; (3) the server may forge a fraction of the search outcome as
it may execute only a fraction of search operations honestly.

Some approaches about the verifiable keyword search over plaintext have
been conducted in [16,17], which is not suitable for the threat model. In the
PEKS setting, the keyword search has some requirements like other verifiable
computations [18]. Note that, to ensure the keyword privacy, the access con-
trol of the verification [19,20] should be achieved. The Bloom filter is used by
Zheng et al. [14] to verify whether a keyword really exists in a document set.

Key-aggregate Method. To reduce the number of distributed data encryption
keys in a data sharing system, Chu et al. [8] proposed the key-aggregate encryp-
tion (KAE) scheme that allows a set of documents encrypted by different keys
to be decrypted with a single aggregate key. In addition, such a method of the
aggregation can be also applied in the group keyword search [9]. Aiming at the
challenge of reducing keys, a PEKS scheme for sharing privileges conveniently
is proposed to generate an aggregate key, by which the user can perform the
keyword search over each encrypted document set in the key’s scope. Therefore,
the key-aggregate method allows the efficiently delegating of both decryption
and search privileges in a group. This is the main inspiration of our study that
the verification privileges of several document sets can also be aggregated.
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1.2 Organization

The rest of the work is organized as follows: In Sect. 2, we state some preliminar-
ies. Section 3 describes the problem statement, the framework of our scheme, and
the definition of requirements. In Sect. 4, we give the concrete construction and
some analyses. And Sect. 5 reports the performance evaluation. Finally, Sect. 6
concludes the work with a discussion.

2 Preliminary

In this section, we review some basic assumptions and cryptology concepts which
will be needed later in this paper.

2.1 Complexity Assumption

Bilinear Map. A bilinear map is a map e : G × G → G1 with the following
properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z∗
p , we have e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) �= 1.
3. Computability: there is an efficient algorithm to compute e(u, v) for any

u, v ∈ G.

Bilinear Diffie-Hellman Exponent Assumption. The l-BDHE problem in
G is stated as follows. Given a vector of 2l + 1 elements (h, g, gα, g(α

2), · ·
·, g(αl), g(α

l+2), · · ·, g(α2l)) ∈ (G∗)2l+1 as input, output e(g, h)(α
l+1) ∈ G1. An

algorithm A has advantage ε in solving l-BDHE in G if Pr[A(h, g, gα, g(α
2), · ·

·, g(αl), g(α
l+2), · · ·, g(α2l)) = e(g(α

l+1), h)] ≥ ε.

Definition 1. The (l, ε)−BDHE assumption holds in G if no algorithm has
advantage more than ε in solving the l−BDHE problem in G.

2.2 Bloom Filter

A m-bit Bloom filter can be seen as an array of m bits, which are all initialized
as 0. In this structure, k independent hash functions H1, · · ·,Hk with the same
range {0, · · ·,m − 1} is designed for verification. In the generation step, for each
element s ∈ S = {s1, · · ·, sn}, each Hj(s)-bit of the array is set to 1, where
1 ≤ j ≤ k. In the verification step, the value of the Hj(s)-bit can determine
whether an element s belongs to S or not. If the value is 0, it is certain that
s /∈ S; otherwise, s ∈ S with a high probability. Assume that the hash functions
are perfectly random, the false-positive rate is (1−(1− 1

m )kn)k ≈ (1−e−kn/m)k.
Note that k = (ln2)m/n hash functions will lead to the minimal false-positive
rate (0.6185)m/n. A m-bit Bloom filter includes two algorithms:

1. BFGen({H1, · · ·,Hk}, {s1, · · ·, sn}): This algorithm generates a m-bit Bloom
filter BF by hashing a data set S = {s1, · · ·, sn} with {H1, · · ·,Hk}.

2. BFVerify({H1, · · ·,Hk}, BF, s): This algorithm returns 1 if s ∈ S, and 0
otherwise.
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Fig. 1. Keyword Search in a verification scenario

3 Proposed Scheme

3.1 Problem Statement

There is a common scenario that several data owner as a group of a social circle
would like to share some confidential private data with each other via a public
cloud storage service. With a approach of the traditional PEKS scheme with
the verifiable mechanism, a data owner Alice encrypts her document sets and
their keywords, and then uploads them. Imagine that Bob is one of the closest
member who wants to obtain retrieving and verification privileges on a part of
those sets. As shown in Fig. 1(a), Alice is assumed to have massive document sets
{docsi}n

i=1. Without loss of generality, we suppose that Alice try to selectively
share a subset S(|S| = m) of her document sets. In this case, Alice has to send
all {ki}m

i=1 along with all {vki}m
i=1 to Bob, where the search key ki and the

verification token vki are used for the document set docsi. To search over S,
for each target document set in S, Bob need generate a target trapdoor of one
keyword w. And then, he submits all trapdoors to the cloud server. Also, to verify
the results, Bob must using massive verification tokens. When m is sufficient
large, the key distribution and storage as well as the trapdoor generation will be
too hard for Bob’s device, which basically defies the purpose of using the cloud
storage and computing.

In this paper, we propose the VSEAK scheme which partly applies the app-
roach of key aggregation to a verifiable scenario as shown in Fig. 1(b). The scheme
pass most computation and storage burdens to the cloud server without loss of
the privacy. In above scenario with VSEAK, Alice only needs distribute a sin-
gle aggregate key, instead of {ki}m

i=1 and {vki}m
i=1, for both the keyword search

and verification. And Bob only needs to generate a single aggregate trapdoor
and submit them, instead of {Tri}m

i=1, to the server. Moreover, Bob can using
the only one key during verifying. That is to say, in VSEAK, the delegation of
appreciate privileges can be achieved by selectively sharing a single aggregate
key (Fig. 2).
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3.2 Framework

A verifiable searchable encryption with aggregate keys scheme VSE =
(ParamGen, KeyGen, Encrypt, Share, Trapdoor, Retrieve, Verify) is
composed of seven algorithms as follow:

1. ParamGen(1λ, n) → params: Based on the security parameter λ and the
maximum possible number n of document sets which belongs to a data owner,
this algorithm is run by the system to set up the scheme. It outputs the public
system parameter params which can be stored in the cloud server.

2. KeyGen → (pk, sk): The indeterminate key generation algorithm is run by
the data owner to generate a random key pair (pk,sk). The public key pk is
used for encrypting keywords, and the secret key sk for sharing is kept private
by the owner.

3. Encryptpk(i, Wi) → (Δi, CWi): On input of the keyword group Wi of the
i-th document set, this algorithm is run by the data owner to encrypt all
keywords in Wi. This algorithm will generate and outputs the ciphertext
group CWi of Wi, along with a public auxiliary value Δi. Then, Δi and CWi

are stored in the cloud server.
4. Sharesk(S) → ak: Using his/her secret key sk, the data owner runs this algo-

rithm to generate and output an aggregate key ak for sharing. The user who
holds such a key is allow to perform both the keyword search and verifica-
tion over each i-th document set where i ∈ S. Thus, the owner can securely
distribute ak to others to share corresponding privileges over S.

5. Trapdoorak(w) → Tr: this algorithm is run by the user who holds an aggre-
gate key ak to generate and output an aggregate trapdoor Tr. Then, the user
should submit Tr and S to the server for a search query with keyword w.

6. Retrieve(Tr, S, {CWi}, {Δi}) → (RST , PRF ): The cloud server run the
retrieve algorithm which consists of two steps Direct and Test. Through the
Direct step, the input aggregate trapdoor Tr is transform to several Tri for
each i ∈ S. Each Tri is an actual trapdoor for the keyword search operation
over the i-th document set. Using a Tri, the server performs Test to determine
whether the ciphertext of the keyword is cw where cw ∈ CWi. After finishes
all operations, the algorithm first outputs a result set RST which consists
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of each rsti where i ∈ S. A rsti is a result over the i-th document set, and
contains each identity of the set’s document where the queried keyword is
existed. Note that a rsti could be empty. The algorithm also outputs a proof
set PRF which is for the following verification and consists of each prfi where
i ∈ S.

7. Verifyak(w, S, RST , PRF ) → ACC: After receive a result set RST which
has any empty member, this algorithm is run by the user who holds an aggre-
gate key ak to verify whether each “empty” is true or caused by a selfish
behaviour. If S is out of the scope of the key ak, then the output is ⊥. Using
ak, the algorithm takes the document sets S, the set RST , and a proof set
PRF as input, then outputs a set ACC of acci where i ∈ S. A bit acci is 1
if the verification proofs that the keyword w exists in the i-th document set,
and 0 otherwise. Note that the user will reject a rsti if the corresponding acci

is 1, and accept otherwise.

3.3 Requirement Definition

The VSEAK scheme introduced in the previous section provides guidance to
designing a concrete construction. Further, a valid VSEAK construction must
satisfy several functional, security, and efficiency requirements.

The correctness enables a user to generate desired trapdoors for any given
keyword for searching encrypted document sets, and accepts with large proba-
bility if all the three parties are honest. The query privacy allows that the user
may ask an untrusted cloud server to search for a sensitive word without reveal-
ing the word to the server. The controllability of the scheme means that the
adversary cannot search for an arbitrary word and verify its existence without
the data owner’s authorization.

Definition 2 (CORRECTNESS). A VSE is correct if it satisfies that if
for any document sets S and keyword w, (pk, sk) ← KeyGen, (Δi, CWi) ←
Encryptpk(i,Wi), ak ← Sharesk(S), Tr ← Trapdoorak(w), (RST, PRF ) ←
Retrieve(Tr, S, {CWi}, {Δi}), ACC ← Verifyak(w,S,RST, PRF ), and 1) one
document docj of i-th set in S contains the keyword w, then j ∈ rsti; or 2) no
document of i-th set in S, then acci is 1 with large probability.

Definition 3 (QUERY PRIVACY). A VSE is query private if it satisfies that
if for any keyword w and adversary A running in PPT, (pk, sk) ← KeyGen, (Δi,
CWi) ← Encryptpk(i, Wi), ak ← Sharesk(S), and Tr ← Trapdoorak(w), then
the Pr[A(params, pk, S, Tr, {CWi}, {Δi}) = w] is negligible.

Definition 4 (CONTROLLABILITY). A VSE is controllable if it satis-
fies that if for any keyword w in any j-th keyword group Wj (pk, sk) ←
KeyGen, (Δi, CWi) ← Encryptpk(i, Wi), ak ← Sharesk({1, ..., j − 1, j +
1, ..., n}), Trapdoorak(w), (RST, PRF ) ← Retrieve(Tr, {j}, {CWj}, {Δj}),
and ACC ← Verifyak(w, {j}, RST, PRF ), then RST is empty and ACC is ⊥.
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The compactness of the scheme is to ensure the size of the aggregate key to be
independent of the number of document sets to be shared. For the effectiveness,
the time to generate a trapdoor and verify results must be smaller than the time
to retrieve over the appreciate document sets.

Definition 5 (COMPACTNESS). A VSEAK scheme VSE is compact if for
any m where S = {docsi}m

i=1, Sharesk(S) outputs a single aggregate key which
is fixed-length.

Definition 6 (EFFECTIVENESS). A VSE is effective if for any keyword
w and valid S, the time required for Trapdoorak(w) plus the time require for
Verifyak(w,S,RST, PRF ) is o(T ), where T is the time required to retrieve.

4 Construction

4.1 Overview

In our construction, in order to generate an valid single aggregate key instead
of original massive keys, the aggregate key should be created by embedding the
owner’s secret key and the operation scale. Then, for a user, it is very easy to
generate an aggregate trapdoor about keyword w using the key. To meet the
effectiveness, we pass most actual trapdoor generating tasks to the cloud server
without loss of the privacy, and thus the server can finish retrieving correctly.
Moreover, the aggregate key can be also used as a token to verify the search
results. In this construction, we choose the Bloom filter as a verification tool.

4.2 Design of the Scheme

Based on the scheme described in Sect. 3.2, we propose a concrete construction
as follows.

1. ParamGen(1λ, n) → params:
The system will run this algorithm to initialize system parameters as follows:

– Generate a bilinear map group system B=(p, G, G1, e(·, ·)), where p is the
order of G and 2λ ≤ p ≤ 2λ+1;

– Set n as the maximum possible number of documents which belongs to a
data owner;

– Pick a random generator g ∈ G and a random α ∈ Zp, and computes
gi = g(α

i) ∈ G for i = {1, 2, · · ·, n, n + 2, · · ·, 2n};
– Choose a one-way hash function H0: {0, 1}∗ → G;
– Choose m as the maximum length of Bloom filters;
– Choose k independent universal hash functions; H ′

1, ···,H ′
k which are used

to construct a m-bit Bloom filter, and let another one-way hash function
H1: G1 → {0, 1}m be a secure pseudo-random generator.

The output is the system parameters params = (B, (g, g1, ···, gn, gn+2, ..., g2n),
H0, H1, {H ′

1, · · ·,H ′
k}).
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2. KeyGen → (pk, sk):
Each data owner runs this algorithm to generate his/her key pair. It chooses
a random γ ∈ Zp, and outputs:

pk = gγ , sk = γ.

3. Encryptpk(i, Wi) → (Δi, CWi):
This algorithm takes as input the file index i ∈ {1, ..., n}, and:

– randomly chooses a t ∈ Zp as the actual searchable encryption key ki of
this document set;

– generates a Bloom filter for this document set’s keyword set Wi by com-
puting:

BFi = BFGen({H ′
1, · · ·,H ′

k},Wi);

– randomly chooses a M ∈ G1 and generates a public auxiliary value Δi

associated with the owner’s himself/herself for ki and M by computing:

c1 = gt, c2 = (v · gi)t,

c3 = H1(M) ⊕ BFi, c4 = M · e(g1, gn)t;

– for each keyword w in this set’s keyword set Wi, computes its ciphertext
cw as:

cw = e(g,H0(w))t/e(g1, gn)t.

Finally, The algorithm outputs (Δi, CWi).
4. Sharesk(S) → ak:

For any subset S ⊆ {1, ···, n} which contains the indices of document sets, this
algorithm takes as input the owner’s secret key sk and outputs the aggregate
key ak by computing:

ak = Πj∈Sgsk
n+1−j .

5. Trapdoorak(w) → Tr:
Using the ak, the user runs this algorithm to generate a trapdoor of keyword
w. All document sets which are relevant to the aggregate key ak are also
relevant to the trapdoor. The algorithm computes and outputs:

Tr = ak · H0(w).

6. Retrieve(Tr, S, {CWi}, {Δi}) → (RST , PRF ):
The two steps are designed as follow, and each Δi has its (c1, c2, c3, c4).
Direct(Tr, i, S) → Tri:
This step is to produce a actual trapdoor for the document set with index
i ∈ S. The trapdoor Tri is generated by computing:

Tri = Tr · pubi

where pubi = Πj∈S,j �=ign+1−j+i.
Test(Tri, cw, Δi) → δ:



162 T. Li et al.

This step is to test whether the ciphertext cw is encrypted from the queried
keyword w whose the i-th actual trapdoor is Tri from the Direct. Judge

cw
?== e(Tri, c1)/e(pub0, c2)

where pub0 = Πj∈Sgn+1−j , to decide whether δ is true or false.
Taking keyword ciphertext sets {CWi} and auxiliary sets {Δi} of S, the
Retrieve algorithm executes as follow:

– For each i ∈ S, compute Tri ← Direct(Tr, i, S);
– For each i ∈ S, compute

p1 = c4 · e(pubi, c1)/e(pub0, c2),

and set p2 = c1, p3 = c3, and prfi = (p1, p2, p3);
– Reset the set RST , and for each i ∈ S, compute rsti:

for each keyword ciphertext cw ∈ CWi, compute δ ← Test(Tri, cw,
Δi), and add the identity of the corresponding document to rsti if δ is
true.

Finally, the algorithm outputs a pair of set (RST , PRF ) indicating the search
result and proof over each document set in S. In this scheme, for efficiency
consideration, the PRF and series of pub for the set S can be computed only
once.

7. Verifyak(w, S, RST , PRF ) → ACC:
This algorithm takes as input the set S, the testing keyword w, and the
received pair (RST , PRF ), and then executes:

– For each i ∈ S, compute acci:
compute M ′ = p1 · e(ak, p2);
recover the i-th Bloom filter by computing:

BF ′
i = H1(M ′) ⊕ p3;

once there is any BF ′
i cannot be recovered, break and output ⊥;

verifies the keyword w’s existence:

acci ← ¬BFVerify({H ′
1, · · ·,H ′

k}, BF ′
i , w).

The algorithm outputs ACC which is a set of acci.

4.3 Analysis

We assume that the public cloud is “semi-honest-but-curious” (described in
Sect. 1.1). We also assume that the authorized users may try to access data
either within or out of the scopes of their privileges. Moreover, communication
channels involving the public cloud are assumed to be insecure naturally.

Theorem 1. The proposed construction is correct.
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Proof: Theorem 1 is equivalent to the correctness (described in Sect. 3.3) of
both the keyword search function and the verification function. After receiving
the submitted single trapdoor Tr, the cloud server can execute VSEAK.Retrieve
algorithm to conduct the test on each keyword group. We can see that:

e(Tri, c1)/e(pub0, c2) =
e(ak · Πj∈S,j �=ign+1−j+i · H0(w), gt)

e(Πj∈sgn+1−j , (v · gi)t)

=
e(ak, gt) · e(Πj∈S,j �=ign+1−j+i · H0(w), gt)
e(Πj∈sgn+1−j , gskt) · e(Πj∈Sgn+1−j , (gi)t)

=
e(Πj∈S,j �=ign+1−j+i · H0(w), gt)

e(Πj∈sgn+1−j , (gi)t)
=

e(Πj∈S,j �=ign+1−j+i, g
t) · e(H0(w), gt)

e(Πj∈Sgn+1−j+i, gt)

=
e(H0(w), gt) · e(Πj∈Sgn+1−j+i,g

t)
e(gn+1,gt)

e(Πj∈sgn+1−j+i, gt)
=

e(H0(w), gt)
e(gn+1, gt)

=
e(H0(w), g)t

e(g1, gn)t
= cw (1)

So, the user with the aggregate key can perform a successful keyword search.
To get a Bloom filter, the user can decrypt corresponding ciphertext of the

i-th document in the S via the aggregate key. For correctness, the M is get by:

p1 · e(ak · p2) = c4 · e(ak · pubi, c1)/e(pub0, c2)

=
c4 · e(ak · Πj∈S,j �=ign+1−j+i, g

t)
e(Πj∈Sgn+1−j , (v · gi)t)

=
c4 · e(ak, gt) · e(Πj∈S,j �=ign+1−j+i, g

t)
e(Πj∈Sgn+1−j , (v · gi)t)

=
c4 · e(ak, gt) · e(Πj∈S,j �=ign+1−j+i, g

t)
e(Πj∈Sgn+1−j , gskt) · e(Πj∈Sgn+1−j , (gi)t)

=
c4 · e(Πj∈S,j �=ign+1−j+i, g

t)
e(Πj∈Sgn+1−j , (gi)t)

=
c4 · e(Πj∈S,j �=ign+1−j+i, g

t)
e(Πj∈Sgn+1−j+i, gt)

=
c4 · e(Πj∈Sgn+1−j+i,g

t)
e(gn+1,gt)

e(Πj∈sgn+1−j+i, gt)

=
M · e(g1, gn)t

e(gn+1, gt)
=

M · e(g1, gn)t

e(g1, gn)t
= M (2)

After get M , the user can easily recover the Bloom filter BFi from the third
component of Δi by computing: BFi = H1(M) ⊕ c3.

Finally, the existing of w can be verified via the algorithm BFVerify, and
thus whether the server just perform a part of search operations is known. So,
the user with the aggregate key can perform a successful verification. �
Theorem 2. The proposed construction is controllable.

Proof: The controllability (described in Sect. 3.3) can be derived from the fol-
lowing lemmas: �
Lemma 1. Even the cloud server colludes with a malicious authorized user,
they are unable to perform any keyword search and result verification over any
document out of the scope of his/her aggregate key.

Proof: In the case of collusion, an attacker A may have the knowledge of both
a curious cloud server and a malicious authorized user. This kind of attacker
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may try to perform keyword search over a document not in the scope of his/her
aggregate key. From the Eq. 1, we can see that if pub0 is generated by a wrong
set S′, the expression e(ak, gt) will be equal to the expression e(pub0, v

t) (that is
e(Πj∈sgn+1−j , g

skt

)), and they cannot cancel out of the equation. So, the pubi

must be computed by the same set S of the aggregate key. Based on the above-
mentioned fact, after receiving the single trapdoor Tr, the attacker may take
a target set S′ as the input of VSEAK.Retrieve.Direct step to generate the
actual trapdoor, but for the reason that pub0 must be computed by the set S,
such that the VSEAK.Retrieve.Test step will output false for any document
set with index i /∈ S.

The verification controllability is similar. The Eq. 2 shows that if pub0 is gen-
erated by a wrong set S′, the expression e(ak, gt) will be equal to the expression
e(pub0, v

t), and they cannot cancel out of the equation to get M . Thus, the
attacker may take the indexi′ of a document set in the target set S′ as the input
of VSEAK.Verify algorithm to test what keyword exists in such a document,
but for the reason that pub0 must be computed by the set S, such that the
VSEAK.Verify algorithm will output the wrong result for any document set
with index i /∈ S. �
Lemma 2. An attacker is unable to produce the new aggregate key for any new
set of documents from the known aggregate key.

Proof: A malicious user A that owns an aggregate key ak of a set of document
sets S from an owner, always tries to generate a new aggregate key for the set S′

(S′
� S) of the same owner. To achieve the goal, A should compute the value of

gsk
n+1−j for any j ∈ S′. Although A has obtained the ak = Πj∈sg

sk
n+1−j , he still

cannot get any multiplier from the product, and each multiplier is protected by
the owner’s secret key sk. According to the assumption in Sect. 2.1, A is unable
to generate the new key. �
Theorem 3. The proposed construction can achieve the goal of query privacy
(described in Sect. 3.3).

Proof: The cloud server can obtain the stored keyword ciphertexts and auxiliary
values {Δi}. A malicious authorized user, who can have an aggregate key ak with
privileges over a set of documents of an owner. Theorem 3 can be deduced from
the following lemmas: �
Lemma 3. An attacker is unable to determine a keyword in a query from the
submitted trapdoor nor the VSEAK.Retrieve.Direct step.

Proof: Since an attacker A wants to determine a keyword in a query after getting
the submitted trapdoor Tr=ak · H0(w), A must guess the aggregate key ak to
succeed. In the view of A, the public information is (1) the system parameters
params and the set S. However, to obtain the ak, for each j ∈ S, the attacker
A must compute the gsk

n+1−j . Because sk is the owner’s secret master key, whose
leakage is not considered, A can only have a negligible probability to get it.
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Alternatively, the VSEAK.Retrieve.Direct step executing in cloud server only
involves a product of some public information, i.e., Tri = Tr ·Πj∈s,j �=ign+1−j+i.
Since multipliers are all public, this algorithm provides no help for the attacker
to determine a keyword in the trapdoor. Above all, a successful attack cannot
be launched in this case. �
Lemma 4. An attacker is unable to determine a keyword in a document from
the stored keyword ciphertexts and the related public information.

Proof: The curious server A could try to learn something from the stored
encrypted data. With the knowledge of params, (c1, c2, c3, c4), and cw, A may
try to launch three kinds of attacks as follows:

1. Retrieve the value of t from the known c1 or c2. However, the discrete loga-
rithm problem means A cannot compute the value of t in this case.

2. Compute the value of e(g1, gn)t. Notice that A can get the value of
e(g,H0(w))t by computing e(c1,H0(w)), so when he gets the value of
e(g1, gn)t, he will determine whether keyword w is in the cw of the target
document set. To obtain e(g1, gn)t, A will compute e(c1, gn+1). However,
because params is missing the term gn+1 = gan+1

, the attacker A cannot
finish this computation. In fact, this result is ensured by the assumption of
the intractability of BDHE problem.

3. Reveal the content of a document via the verification function. However, such
an attack is not feasible. First, retrieving the value of BFi from the known
c3 is very hard while H1 is good enough for application. Moreover, the above
fact prevents retrieving the value of M from the known c4.

As a result, A cannot learn any useful content from the stored information. �

Remark. Our construction clearly achieves constant-size keyword ciphertexts,
trapdoors, and aggregate keys.

5 Performance Evaluation

5.1 Overview

Since the performance is highly dependent on the basic cryptographic operations
in the pairing computation, we use two cryptographic libraries: (1) jpbc library
is to implement cryptographic operations running in mobile smartphone; (2) pbc
library is to implement cryptographic operations running in computer. Since
the generation algorithms of the aggregate key and the trapdoor only contain
operations on G, we choose the Type-A pairing to speed up them. In addition, we
adopt MD5 to implement hash functions in each Bloom filter for the verification.
The two different platforms are: one is in Java on Samsung G3502U phone with
Android OS 5.0, the other is in C++ on Computer of Intel(R) Core(TM)i5-
3337U CPU @ 1.80 GHZ with Windows7 OS.

There are some useful experiment results [21,22] about pairing computation.
Table 1 lists the average time of pairing computation in each platform. Obviously,
in computers, the average times of pairing and pow computation are much faster.
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Table 1. Execution times of type A pairing computation (ms)

Pairing pow(in G) pow(in G1)

Mobile Devices 487 244 72

Computer 10.0 12.9 1.6

5.2 Evaluation of VSEAK Algorithms

Considering that the algorithms and their steps including VSEAK.ParamGen,
VSEAK.Retrieve.Direct and VSEAK.Retrieve.Test are only run in the cloud
server, only the execution times in computer are tested. As shown in Fig. 3, we
can see that:

1. The execution time of VSEAK.ParamGen is linear in the maximum number
of document sets belonging to one owner, and when the maximum number
grows up to 30000, it is reasonable that VSEAK.ParamGen algorithm only
needs 397 s.

2. The execution time of VSEAK.Encrypt is linear in the number of keywords
in a document set, and when the number grows up to 4000, VSEAK.Encrypt
algorithm only needs 166 s in computers, but 8018 s in mobile devices.

3. The execution time of VSEAK.Share is linear in the number of shared doc-
ument sets, and when the number grows up to 15000, VSEAK.Share algo-
rithm only needs 200 s in computer, but 3610 s in mobile devices. Because
the KASE.Share always runs along with the VSEAK.Encrypt, it is not
suggested to be executed in the mobile devices.
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4. The execution time of VSEAK.Retrieve.Direct is linear in the number of
document sets. In fact, the mathematical operation in VSEAK.Retrieve.
Direct is the i multiplication in G, where i is the index of a document set
in someone subset of a owner’s. When the number grows up to 10000, it will
take 235 s.

5. The execution time of VSEAK.Retrieve.Test is linear in the number of key-
word ciphertexts. In fact, the mathematical operation in VSEAK.Retrieve.
Test is pairing computations. When the number grows up to 30000, it will
take 701 s.

6. In order to reduce the error of Bloom filter, we assume that there are about
1000 keywords in each document, and set k = 30. The execution time of
VSEAK.Verify with one keyword w is linear in the number of document
sets. In fact, the main repeatedly mathematical operation in VSEAK.Verify
is running the BFVerify algorithm to test whether w is in each keyword
group. When the number grows up to 10000, the algorithm only needs 16.4 s
in computer, but 316 s in mobile devices.

6 Conclusion

Considering two practical problem of privacy-preserving data sharing system,
we propose the scheme of verifiable searchable encryption with aggregate keys
(VSEAK) and give a concrete construction. By reducing the number of both
keyword search keys and verification tokens, our proposal is remarkably facili-
tates client-side users. Finally, our evaluation of the performance demonstrates
the construction’s efficiency. Our future work is to design an algorithm to reduce
the number of trapdoors and auxiliary values under the multi-owners setting.
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Abstract. Public key encryption with keyword search (PEKS) provides
an elegant mechanism for a user to identify the specific encrypted data.
PEKS protects data against disclosure while making it searchable. In
this paper, we propose a new cryptographic primitive called public key
encryption with authorized keyword search (PEAKS). In PEAKS, key-
words are encrypted with one public key and users without corresponding
secret key need authorization from the authority to search keywords. We
present a concrete PEAKS construction which allows the authority to
authorize users to search different keyword sets. The proposed scheme
features with the constant-size authorized token, independent of the size
of keyword set size, which cuts down bandwidth consumption consider-
ably. This property makes our PEAKS quite useful when the authorized
token needs to be frequently updated with time for security purpose.
The semantical security against chosen keyword attack and trapdoor
unforgeability are formally proved.

Keywords: Encrypted keyword search · Public key encryption · Low
bandwidth

1 Introduction

Efficient data retrieval and data mining become more difficult with coming of big
data era. One of the instructive methods is that the user downloads and decrypts
all the encrypted data to search for his interested one. This method could
consume considerable communication bandwidth and computational resources.
Another way is that the user employs a server to execute the decryption oper-
ation with the secret key and return target data. However, this method could
compromise data privacy.

Boneh et al. [5] introduced the notion of public key encryption with keyword
search (PEKS) to search encrypted data. PEKS solves the above problems and
avoids complicated key management of symmetric searchable encryption [22].
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 170–186, 2016.
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In PEKS, a sender uploads the encrypted data with the searchable ciphertext.
The user produces the trapdoor associated with some keyword to the server for
searching. Then the server returns corresponding encrypted data to the receiver
when the keyword in trapdoor is identical to that in searchable ciphertext.

The searchable ciphertext of PEKS is generated using a specific user’s public
key and only one entity (secret key owner) can search. In the scenario of an enter-
prise, many employees are required holding the search right over the encrypted
keyword based on the enterprise’s public key. By PEKS, each employee has to
be given the enterprise’s secret key to create trapdoors. This trivial solution suf-
fers from key abuse and also has limitations. For example, each employee might
be at a different access level and can only search some keywords. The possible
solution is that the authority (i.e. manager) keeps the enterprise’s secret key
and authorizes the certain search right to each employee. The authority sets an
authorized keyword set to each employee, who can search the keywords given in
the authorized keyword set. A potential solution is to allow the authority to gen-
erate the authorized token for each authorized keyword. For security purpose,
each authorized token only works for a short time interval and the authority
needs to re-authorize a token for an online employee when the time expires. The
process needs to be repeated for each online employee at a new time interval.
Unfortunately, this approach could consume significant bandwidth. How to effec-
tively authorize the keyword search becomes an important problem needed to
be addressed.

Contribution. The contributions of this paper are twofold. First, we propose
a new notion named public key encryption with authorized keyword search
(PEAKS). In PEAKS, keywords are encrypted with one public key and users
without corresponding secret key need authorization from the authority in order
to search keywords. Each authorization process is conducted by the authority
by issuing an authorized token to the user and updates with time. The autho-
rized user can then search authorized keywords. Second, we construct a provably
secure PEAKS scheme which allows the authority to authorize users to search
different keyword sets. Authorization process features with the constant-size
authorized token independent of the authorized keyword set size. The user can
generate the trapdoors for the keyword in this authorized keyword set. The suc-
cess of a test process relies on: trapdoor freshness, trapdoor authorization and
keyword consistency. We formally prove the semantic security against chosen
keyword attacks and trapdoor unforgeability.

1.1 Related Work

Song et al. [22] initiated the research on symmetric searchable encryption (SSE),
which fails to provide encrypted data sharing to/from other entities. When shar-
ing data, SSE needs to distribute the secret key to users, which is subjected
to complicated key distribution/management. SSE have many improvement in
performance [9,10,16].
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Boneh et al. [5] introduced the notion of PEKS to address above weaknesses
and presented a concrete scheme. In their scheme, the sender creates the search-
able ciphertext using a keyword and user’s public key. The user creates a trap-
door using his secret key and keyword and provides the trapdoor to the server
for searching. The server returns the corresponding encrypted data to the user
only when the keyword in the trapdoor matches the keyword in the ciphertext.

Many PEKS variants have been proposed to improve PEKS since its intro-
duction. Public-key encryption with conjunctive keyword search (PECKS)
schemes [2,3,7,17–19] were proposed to improve the query expressiveness.
Combinable multi-keyword search using PECKS were achieved in [2,17,18].
Bethencourt et al. [3] presented a public-key encryption scheme with conjunctive
keyword range search. Boneh and Waters [7] applied a novel technique named
hidden vector encryption (HVE) to achieve conjunctive, range and subset key-
word search. Sedghi et al. [19] utilized wildcards to develop the scalability and
expression of searching query. PEKS schemes with extensional keywords [1,8]
were presented to enhance the database system usability. Abdalla et al. [1]
constructed a public key encryption with temporary keyword search (PETKS)
scheme based on the universal transformation from anonymous identity-based
encryption (AIBE) to PEKS to guarantee consistency. Camenisch et al. [8] pro-
posed the public key encryption with oblivious keyword search (PEOKS) and
constructed an authorized private information retrieval (PIR) scheme based on
PEOKS. However, PEOKS employed computationally expensive commitment
and zero-knowledge proof (ZKP), and their proposed scheme needed the user to
download the entire database, which are inefficient and impractical. Data search
schemes based on attribute-based encryption (ABE) [21,23,25] were proposed to
benefit data search control. Sun et al. [23] designed the attribute-based keyword
search scheme with user revocation for multi-user and multi-contributor sce-
nario. Zheng et al. [25] constructed a verifiable attribute-based keyword search
(VABKS) scheme to solve the server’s faithful searching verification. Shi et al.
[21] also presented an ABE-based searchable encryption to support fine-grained
search and access control. These schemes focused user identity/attributes con-
trol but not keyword control, and keyword privacy would be compromised if
directly replacing attribute with keyword. Proxy re-encryption with keyword
search (PRES) [12,20,24] was proposed to allow a proxy server to execute the
test function and the delegation decryption, which combined the primitives proxy
re-encryption (PRE) and PEKS. The authorization based on the keyword was
not considered in these PRES schemes.

The generation of short keys have been investigated in some public key
encryption schemes [6,11,13–15]. These methods cannot be directly applied to
the authorized key for searching due to keyword privacy and trapdoor genera-
tion. Therefore, how to achieve constant size authorized token and reduce the
bandwidth consumption is a challenging problem during authorization.

Organization. The remainder of the paper is organized as follows. In Sect. 2,
we describe the authorized keyword search system with relevant definitions. A
PEAKS construction with constant size authorized key is given in Sect. 3 and its
security is formally proved in Sect. 4. Finally, we conclude the paper in Sect. 5.
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2 Problem Formulation

2.1 System Model

A PEAKS system involves Sender, Server, Authority and User as illustrated in
Fig. 1. There is only one public/secret key pair (pk, sk) in the system and pk is
published.

– Sender. It uploads the encrypted data and encrypted keyword to the server
for storage and index, where the stored data is possibly available for all system
users.

– Authority. It acts as a manager in the system and keeps sk secret. It re-
authorizes the online user at a new time by issuing a new authorized token.

– User. It generates the trapdoor for some authorized keyword and submits it
to the server for searching, where only authorized user can generate a valid
trapdoor.

– Server. It executes verification for authorization and keyword matching oper-
ation, and decides whether to return the corresponding data to the user. It is
honest-but-curious, executing the searching operation honestly but inferring
the keyword from encrypted keyword curiously.

ServerSender Authority 
(sk)

( , )PEKS Encrypt pk w
( , , )iitoken Authorize sk W t

( , ')iT Trapdoor token w=

=
=

TPEKS itoken

iUser

…
…

Fig. 1. PEAKS system.

Workflow. A PEAKS system generally provides data indexing service for regis-
tered users, where no collusion among users is considered. The uploaded data
from the sender includes encrypted data for sharing and encrypted keyword
PEKS for indexing. The sender generates the searchable ciphertext PEKS
with pk and a specific keyword w. To obtain searching right, the user needs the
authorization from the authority. The authority authorizes different keyword set
to different users, where some online user Useri is authorized the keyword set
Wi. For authorized time t, the authority produces the authorized token tokeni
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using sk,Wi, t. Then the authorized user generates the trapdoor with token and
w′, where w′ ∈ W , and submits the trapdoor T to the server. When the received
T is verified to be freshly authorized and matches PEKS, the server returns the
corresponding encrypted data to the user.

2.2 Algorithm Definitions

Definition 1. A PEAKS scheme consists of the following algorithms.

Setup(1k). Taking as input the security parameter 1k, it outputs the system
public key and secret key (pk, sk).
Authorize(sk,W, t). Taking as input the secret key sk, an authorized keyword
set W and the authorized time t, it outputs the authorized key ak with its
signature σ. Then the authorized token is denoted as token = (ak, σ, t).
Encrypt(pk,wi). Taking as input the public key pk and the keyword wi, it outputs
a searchable ciphertext PEKS.
Trapdoor(pk, token,w′

i). Taking as input the public key pk, the authorized token
token and the keyword w′

i ∈ W , it outputs a trapdoor T . Then the trapdoor
tuple is denoted as TT = (T, σ, t).
Test(pk, PEKS, TT, t′). Taking as input the public key pk, the searchable cipher-
text PEKS, the trapdoor tuple TT and the trapdoor-received time t′, if t′ ≤ t,
σ can be accepted and wi = w′

i, it outputs 1; otherwise, it outputs 0.

Correctness. The correctness of public key encryption with authorized key-
word search must satisfy that for system paramters (pk, sk), token token ←
Authorize(sk,W, t), ciphertext PEKS ← Encrypt(pk,wi), trapdoor TT ←
Trapdoor(pk, token,w′

i) and the trapdoor-received time t′, if t′ ≤ t, the signature
in TT can be verified and wi = w′

i, we can have Test(pk, PEKS, TT, t′) = 1.

2.3 Security Models

We define two games from terms of semantic security against chosen keyword
attacks (SS-CKA) and trapdoor existential unforgeability (T-EUF), respectively.
The universal keyword space is assumed to be U .

Semantic Security against Chosen Keyword Attacks. The SS-CKA game
follows Boneh et al.’s model [5] and allows the adversary A to launch the chosen
keyword attacks. A is given some private keys and trapdoors with some restric-
tions and attempts to distinguish a searchable ciphertext for the keyword w0

from a ciphertext for the keyword w1, where he is not allowed to obtain the
associated trapdoor. A plays with the challenger C as follows.

Init. The adversary A declares the challenge keyword set W ∗ ⊆ U .
Setup. C runs Setup algorithm and sends the public key pk to A.
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Phase 1. A performs a polynomially bounded number of queries.

– Authorization Query. A issues the keyword set W = U − W ∗ and the autho-
rized time t to C for authorization query. C responds the authorized token
token to A by running Authorize algorithm.

– Trapdoor Query. A issues a keyword wi and the time t to C. C responds the
trapdoor tuple TT to A by running the Trapdoor algorithm.

Challenge. A generates two equal length keywords w0, w1 ∈ W ∗ on which it
wants to be challenged. A did not previously query the authorized token for
W ∗, or trapdoor for w0, w1. C takes a random bit b ∈ {0, 1} and responds the
challenge ciphertext PEKS∗

b to A.
Phase 2. A continues to ask for the authorization query and the trapdoor query
for any keyword for wi �= w0, w1. C responds as Phase1.
Guess. A outputs a bit b′ ∈ {0, 1} and wins the game if b′ = b.

Definition 2. A PEAKS scheme provides semantic security against the chosen
keyword attacks if there is no probabilistic polynomial time (PPT) adversary A
who wins the above game with a non-negligible advantage ε.

Trapdoor Existential Unforgeability. This T-EUF game allows an adver-
sary A to launch the impersonation attack. Clearly, it is hard to prevent the
impersonation attack if the adversary is authorized. A is allowed to query the
authorization and the trapdoor with some restrictions and A attempts to forge
a valid trapdoor. A interacts with the challenger as follows.

Init. The adversary A declares the challenge keyword set W ∗.
Setup. The challenger C runs the Setup algorithm and sends the public key pk
to A.
Query. A performs a polynomially bounded number of queries.

– Authorization Query. A issues a keyword set and the authorized time t to C. C
responds the authorized token token to A by running the Authorize algorithm.

– Trapdoor Query. A issues keyword wi and t to C. C responds the trapdoor
tuple TT to A by running the Trapdoor algorithm.

Forgery. A outputs a trapdoor tuple for keyword set W ∗ which had not been
queried.

Definition 3. A PEAKS scheme provides the trapdoor unforgeability if there is
no PPT adversary A who can forge a valid trapdoor with a correct signature and
time with a non-negligible advantage ε.

2.4 Hard Problems

We present two Multi-Sequence of Exponents Diffie-Hellman (MSE-DH) prob-
lems, which are two special cases of the general Diffe-Hellman exponent problems
in [4]. The intractability analysis is given in full version.
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(n, l)-MSE-DDH Problem. Let n be integers and (p,G,GT , e(·, ·)) be a bilin-
ear map group system. Let g0, h0 be the generators of G. Given random coprime
polynomials q1, q2, q in α with pairwise distinct roots, of respective orders
deg q1 = l − 1,deg q2 = n − l and deg q = 1, as well as several sequences
of group elements,

S1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g0, · · · , gαn−1

0 , gβ1
0 , gβ2

0 , grβ1
0 ,

gx
0 , hβ1β2q2

0 , hsβ1β2q1q
0 , hβ1q1q2q

0 , · · · , hβ1αn−1q1q2q
0 ,

hβ2q1q2q
0 , · · · , hβ2αn−1q1q2q

0 , hsβ1q1q2q2

0 , · · · , hsβ1αl−2q1q2q2

0 ,

hsβ2q1q2q2

0 , · · · , hsβ2αl−2q1q2q2

0 ,

and Z ∈ G, distinguish whether Z is equal to grq1q2
0 or a random element of G.

(n, l)-MSE-CDH Problem. Let n be integers and g0 be the generator of group
G. Given random coprime polynomials q1, q2 in α with pairwise distinct roots,
of respective orders deg q1 = l,deg q2 = n − l, as well as several sequences of
group elements,

S2 =

⎧
⎪⎨

⎪⎩

g0, · · · , gαn−1

0 , gβ1
0 , gβ2

0 , hβ1β2q1
0 , hβ1β2q2

0 ,
ga
0 , gb

0, gc
0, gab

0 , gbc
0 , gac

0 ,

hβ1q1q2
0 , · · · , hβ1αn−1q1q2

0 , hβ2q1q2
0 , · · · , hβ2αn−1q1q2

0 ,

where a, b, c ∈ Zp, compute gabc
0 ∈ G.

3 Public Key Encryption with Authorized Keyword
Search

In this section, we give a concrete PEAKS scheme with its efficiency analysis.
Borrowing the property of complementary set, the token in our PEAKS construc-
tion achieves constant size, independent of the size of the authorized keyword
set. Since focusing on the authorization of negotiated keywords, user revocation
is not in our scope and the token from the authority will be only issued to the
user with time.

3.1 Bilinear Pairing

Let G,GT be two cyclic groups of the same prime p and a map e : G×G → GT

be a bilinear pairing [5].

– Bilinearity: e(ga, hb) = e(g, h)ab for all g, h ∈ G and a, b ∈ Zp.
– Non-degenerate: if g ∈ G, e(g, g) is a generator of GT .
– Computability: there exists an efficient algorithm to compute e(g, h) for

g, h ∈ G.
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3.2 Construction

Setup(1k). The system generates the bilinear pairing group (p,G,GT , e) at the
security level k. Group generators g, h ∈ G and secret values α, x, β1, β2 ∈R Zp

are selected, and u1 = gβ1 , u2 = gβ2 , v1 = hβ1 , v2 = hβ2 are set. Choose two
cryptographic one-way hash functions H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → G.
The universal keyword space is denoted as U with size n. The public/secret key
is published/kept by the authority as

pk =
(
g, gα, · · · , gαn−1

, gx, {ui, vi, v
α
i , · · · , vαn−1

i }i=1,2

)
,

sk = (α, x, β1, β2, h) .

Authorize(sk,W, t). For some online user, we assume that the authority would
authorize the keyword set W (W ⊆ U) to it, where the size of W is l, l ≤ n. For
better readability, it first sets polynomials

f1(α) =
∏

wj∈U

(α + H1(wj)) ,

f2(α) =
∏

wj∈W

(α + H1(wj)) ,

F (α) =
f1(α)
f2(α)

=
∏

wj∈U−W

(α + H1(wj)) .

With a time update, the authority will re-authorize the user with a new autho-
rized token. The authority chooses s ∈R Zp and generates the authorized key
with its signature as

ak = h
β1β2
F (α) , σ = H2 (aks, t)x

,

where t is the authorized time. It distributes the authorized token token =
(ak, σ, s, t) to the user by a secure channel.

Encrypt(pk,wi). The sender chooses r, r1 ∈R Zp and computes

PEKS =
(
C1 = grf1i(α), C2 = ur−r1

1 , C3 = ur1
2

)

as the searchable ciphertext, where f1i(α) = f1(α)
α+H1(wi)

for wi ∈ U , gf1i(α) can be

computed from g, gα, · · · , gαn−1
. Then it uploads PEKS to the server.

Trapdoor(pk, token,wi). The authorized user computes the trapdoor with the
received authorization tuple

T =
(
T1 = aks, T2 = v

sf2i(α)
1 , T3 = v

sf2i(α)
2

)
,
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where f2i(α) = f2(α)
α+H1(wi)

for wi ∈ W and v
f2i(α)
1 , v

f2i(α)
2 can be computed from

v1, v
α
1 , · · · , vαn−1

1 , v2, v
α
2 , · · · , vαn−1

2 . Then it sends the trapdoor tuple TT =
(T, σ, t) to the server for search.

Test(pk, PEKS, TT, t′). Upon receiving the tuple (T, σ, t) at the time t′, the
server first checks whether t′ ≤ t. If so, the trapdoor is in the authorized time.
The server verifies the signature by checking

e (σ, g) ?= e (H2(T1, t), gx) .

If the equation holds, the trapdoor is from an authorized user. Then the server
checks

e (C1, T1)
?= e (C2, T3) · e (C3, T2) .

If the equation holds, it outputs 1 and the server returns corresponding encrypted
data to the authorized user, otherwise, outputs 0.

Correctness. We show that our construction meets the requirements of correct-
ness as we claimed in Sect. 2.2. If the signature in trapdoor is correctly issued
by authority, we can verify it by

e (σ, g) = e (H2 (aks, t)x
, g) = e (H2 (aks, t) , gx) = e (H2 (T1, t) , gx) .

Then if the keywords in the searchable ciphertext PEKS and the trapdoor T
are the same, i.e. wi , we have

e (C1, T1) = e

⎛

⎝g
r

∏

wj∈U,j �=i

(α+H1(wj))

, h

sβ1β2∏

wj∈U−W
(α+H1(wj))

⎞

⎠

= e (g, h)
rsβ1β2

∏

wj∈W,j �=i

(α+H1(wj))

= e

(

ur−r1
1 , v

s
∏

wj∈W,j �=i

(α+H1(wj))

2

)

· e

(

ur1
2 , v

s
∏

wj∈W,j �=i

(α+H1(wj))

1

)

= e(C2, T3) · e(C3, T2).

3.3 Efficiency

We analyze the communication cost in different phases, where |G|, |GT |, |t| rep-
resent the size of a group element in group G,GT and timestamp t, respectively.
The sender runs Encrypt algorithm to upload data. The size of the searchable
ciphertext represents the communication cost between the sender and the server.
It takes 3 group elements in group G. With a time update, the authority needs
to re-authorize an online user with a new authorized token. In each authoriza-
tion process, the authority issues a constant-size authorized token for a keyword
set W . The bandwidth consumption in Authorize phase is mainly dominated
by the size of authorized token token, which costs 2 group elements in G and a
timestamp, independent of the size of the authorized keyword set W . To retrieve
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data, user needs to run the Trapdoor algorithm and submit the trapdoor tuple
to the server. The bandwidth consumption is mainly due to the size of trapdoor
tuple TT , which costs 4 group elements in group G and a timestamp.

The computational cost is also given in corresponding phases, where
exp,mul, h represent the time to compute the modular exponentiation, modular
multiplication and the hash function, respectively. In Encrypt phase, it takes the
sender (n + 2)exp + (n − 1)mul to generate the ciphertext. With a time update
in Authorize phase, the authority computes a token to the user, which costs
3exp + 1h, independent of the size of the keyword set W . The user needs to pay
(2n+1)exp+(2n− 2)mul in Trapdoor phase to generate the trapdoor for a key-
word. The analysis result is listed in Table 1. Due to frequent update of the token
with time, the computational cost and communication cost in Authorize phase
should get a priority in our PEAKS. Through the above analysis, PEAKS can
achieve fast token generation and constant size bandwidth between the authority
and the user. The short token is at the expense of O(n) to generate ciphertext
and trapdoor, which is a trade-off in this PEAKS and will be considered in future
work.

Table 1. Communication Cost.

Phase Authorize Encrypt Trapdoor

Communication Cost 2|G|+ |t| 3|G| 4|G|+ |t|
Computational Cost 3exp+ 1h (n+ 1)exp+ (n− 1)mul (2n+ 1)exp+ (2n− 2)mul

4 Security Proof

4.1 SS-CKA

Theorem 1. The proposed PEAKS scheme is semantically secure against cho-
sen keyword attacks in the random oracle if (n, l)-MSE-DDH Problem is hard to
solve in probabilistic polynomial time.

Proof. Suppose there exists a PPT adversary A in the SS-CKA game, who can
attack our scheme with advantage ε, we build a simulator B with advantage
ε/eqT against (n, l)-MSE-DDH Problem. B’s running time is approximately the
same as A’s. The universal keyword space is assume to be U with size n.

Init. The adversary A declares the challenge keyword set W ∗ with size l.

Setup. The simulator B is given a group system (p,G,GT , e(·, ·)) as input, and
the (n, l)-MSE-DDH instance S1. We also have coprime polynomials q1, q2, q of
respective orders l − 1, n − l, 1, with their pairwise distinct roots. B is further
given Z ∈ G, where Z is either equal to grq1q2

0 or to some random element
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of G. We denote the challenge keyword set as W ∗ = {w1, · · · , wl}. B specifies a
keyword wθ ∈ W ∗. It implicitly sets the polynomials

q1(α) =
l∏

i=1,i �=θ

(α + ai), q2(α) =
n∏

i=l+1

(α + ai), q(α) = α + aθ.

For i ∈ [1, l], i �= θ, we set q1i(α) =
q1(α)
α + ai

.

The simulator B formally sets g = g0, h = hq1q2q
0 , and we have

u1 = gβ1
0 , u2 = gβ2

0 , gx = gx
0 ,

v1 = hβ1q1q2q
0 , · · · , vαn−1

1 = hβ1αn−1q1q2q
0 ,

v2 = hβ2q1q2q
0 , · · · , vαn−1

2 = hβ2αn−1q1q2q
0 .

B sends A public key

pk =
(
g0, · · · , gαn−1

0 , gx
0 , {ui, vi, · · · , vαn−1

i }i=1,2

)
.

H1 Query. B maintains the hash list L(wi, hi), which is initially empty. Upon
receiving an H1 query for wi, if wi is in the list L, B returns the corresponding
hi to A. Otherwise, B sets the hash value hi as follows.

hi = H1(wi) =
{

aθ, if wi = wθ,
ai, if wi �= wθ.

Then B adds (wi, hi) to the list and returns hi to A.

H2 Query. B maintains the hash list L′(aksi , ti, ri, h
′
i), which is initially empty.

Upon receiving an H query for (aksi , ti), if it is in the list L′, B returns the
corresponding h′

i to A. Otherwise, B chooses ri ∈R Zp and sets the hash value
h′

i = H2 (aksi , ti) = gri
0 . Then B adds (aksi , ti, ri, h

′
i) to the list and returns hi

to A.

Phase 1.

– Authorization Query. A queries the authorized token for the keyword set
U − W ∗ for the time ti. To each keyword wi ∈ U − W ∗, let (wi, hi) be the
corresponding tuples on the L list and we have hi = H1(wi) = ai, where
i ∈ [l + 1, n]. B obtains ak = hβ1β2q2

0 , where

ak = h

β1β2∏

wj∈U−(U−W ∗)
(α+H1(wj))

= h
β1β2q1q2q

q1q

0 = hβ1β2q2
0 .

B chooses si ∈R Zp, let (aksi , ti, ri, h
′
i) be the corresponding tuple on the list

L′, we have h′
i = H2(aksi , ti) = gri

0 , and the signature is σ = gxri
0 . B responds

token = (ak, σ, si, ti) to A.
– Trapdoor Query. When A asks the trapdoor query for the keyword wi for

time ti. B performs Trapdoor algorithm and responds to A with simulated
results.
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• If wi ∈ U − W ∗, A can obtain the authorized token with the above
Authorization Query and generate the trapdoor by himself.

• If wi ∈ W ∗, B responds the following trapdoor.
* If wi = wθ, it outputs abort.
* If wi �= wθ, let (wi, hi) be the corresponding tuple on the L list and

we have hi = H(wi) = ai, where i ∈ [1, l], i �= θ. B chooses s′′ ∈R Z
∗
p

and computes the trapdoor T as

T1 =
(
hsβ1β2q1q
0

)s′′

, T2 =
(
hsβ1q1q2q2q1i

0

)s′′

, T3 =
(
hsβ2q1q2q2q1i

0

)s′′

,

where T1 is directly from hsβ1β2q1q
0 and T2, T3 can be computed from

elements hsβ1q1q2q2

0 , · · · , hsβ1αl−2q1q2q2

0 , hsβ2q1q2q2

0 , · · · , hsβ2αl−2q1q2q2

0

in the (n, l)-MSE-DDH Problem instance.
One can verify the trapdoor by implicitly setting s′ = s′′s, and then

T1 = aks′
=

(

h
β1β2q1q2q

q2
0

)s′

=
(
hsβ1β2q1q
0

)s′′

,

T2 = v

s′ ∏

wj∈W,j �=i

(α+H1(wj))

1 =
(
hβ1q1q2q
0

)s′q1iq

=
(
hsβ1q1q2q2q1i

0

)s′′

,

T3 = v

s′ ∏

wj∈W,j �=i

(α+H1(wj))

2 =
(
hβ2q1q2q
0

)s′q1iq

=
(
hsβ2q1q2q2q1i

0

)s′′

.

Let (aks′
, ti, ri, h

′
i) be the corresponding tuple on the list L′, we have

h′
i = H2(T1, ti) = gri

0 . The signature is implicitly set σ = gxri
0 . B

responds TT = (T, σ, ti) to A.

Challenge. A produces a pair of keywords w0, w1 ∈ W ∗ that it wishes to be
challenged on and sends (w0, w1) to B. A did not previously query the authorized
token for W ∗, or the trapdoor for w0, w1. B responds as follows.

– If wθ /∈ {w0, w1}, B outputs failure and terminates.
– Otherwise, we have wθ ∈ {w0, w1}. Let (wθ, hθ) be the corresponding tuple on

the L list and we have hθ = H1(wθ) = aθ. B chooses r1 ∈R Zp and responds
A with the challenge ciphertext

PEKS∗ =
(
C1 = Z,C2 = grβ1

0 u−r1
1 , C3 = ur1

2

)
.

These items can be obtained from the elements in (n, l)-MSE-DDH instances.
Note that if Z = grq1q2

0 , by setting r′ = r, one can verify that

C1 = g
r′ ∏

wj∈U,j �=θ

(α+H1(wj))

= grq1q2
0 = Z,

C2 = ur′−r1
1 = g

β1(r−r1)
0 = grβ1

0 u−r1
1 , C3 = ur1

2 .
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Phase 2. A continues to ask for the authorization query and the trapdoor query
for any keyword for wi �= w0, w1. C responds as Phase 1.

Guess. A outputs its guess θ′ and wins the game if θ′ = θ.

This completes the description of our simulation. If B does not abort then
|Pr[θ′ = θ] − 1

2 | � ε. The probability is over the random bits used by A and B
as follows, where B’s running time is approximately the same as A’s. According
to the above process, a trapdoor query causes B to abort is 1/(qT + 1) and
the authorization query does not cause B’s aborting. Suppose A makes a total
of qA authorization queries and qT trapdoor queries, the probability that B
does not abort as a result of all queries is at least (1 − 1/(qT + 1))qT � 1/e
in Phase 1 or 2. In Challenge phase, B will abort if A can produce w0, w1

with wθ /∈ {w0, w1}. Therefore, Pr[wθ = wi] = 1/(qT + 1) for i = 0, 1, and
the two values are independent of one another, we have Pr[wθ �= w0, w1] =
(1 − 1/(qT + 1))2 � 1 − 1/qT . Hence, the probability that B does not abort is
at least 1/qT . Observe that since A can never query for the challenge keywords
w0, w1, we have B’s advantage is at least ε/eqT .

4.2 T-EUF

Theorem 2. The PEAKS scheme is trapdoor existentially unforgeable in the
random oralce model if (n, l)-MSE-CDH Problem is hard in polynomial time.

Proof. Suppose there exists a PPT adversary A in T-EUF game, who can attack
our scheme with advantage ε, we build a simulator B, who has advantage ε/((1+
qA)e) against (n, l)-MSE-CDH Problem. B’s running time is approximately the
same as A’s. The universal keyword space is assumed to be U with size n.

Init. The adversary A declares the challenge keyword set W ∗ with size l.

Setup. The simulator B is given the (n, l)-MSE-CDH instance S2. We also have
coprime polynomials q1, q2, of respective orders l, n − l, with their pairwise dis-
tinct roots. B’s goal is to output gabc

0 ∈ G. We denote W ∗ = {w1, · · · , wl}. It
sets

q1(α) =
l∏

i=1

(α + ai), q2(α) =
n∏

i=l+1

(α + ai).

The simulator B implicitly sets g = g0, h = hq1q2
0 and x = a, and we have

u1 = gβ1
0 , u2 = gβ2

0 , gx = ga
0 ,

v1 = hβ1q1q2
0 , · · · , vαn−1

1 = hβ1αn−1q1q2
0 ,

v2 = hβ2q1q2
0 , · · · , vαn−1

2 = hβ2αn−1q1q2
0 .

Then B sends A the public key

pk =
(
g0, · · · , gαn−1

0 , ga
0 , {ui, vi, · · · , vαn−1

i }i=1,2

)
.
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H1 Query. B maintains the hash list L(wi, hi), which is initially empty. Upon
receiving a query for wi, if wi is in the list L, B returns the corresponding hi

to A. Otherwise, B chooses ai ∈ Zp and sets hi = H1(wi) = ai. Then B adds
(wi, hi) to the list L and returns hi to A.

H2 Query. B maintains two lists L1 and L2.

– B maintains a list L1(ak
s1

i

W ∗ , t1i , c
1
i , r

1
i , h1

i ), which is initially empty. Upon receiv-

ing a query for (ak
s1

i

W ∗ , t1i ), B looks up L1 to find h1
i and returns it to A.

If (ak
s1

i

W ∗ , t1i ) is not on the list, B checks whether ak
s1

i

W ∗ is on the list or not.

If no, B creates a tuple (ak
s1

i

W ∗ , t1i , c
1
i , r

1
i , h1

i ) with randomly choosing c1i , r
1
i ∈R

Zp andcomputing the hash value

h1
i = H2

(
ak

s1
i

W ∗ , t1i

)
=

{
g

r1
i

0 gc
0, if c1i = t1i ,

g
r1

i
0 gbc

0 , if c1i �= t1i .

Then B adds (ak
s1

i

W ∗ , t1i , c
1
i , r

1
i , h1

i ) to L1 and returns corresponding h1
i to A.

If yes, it indicates that ak
s1

i

W ∗ has been asked before, that is to say that A asked
the hash query for different t1i . B looks up the list to get the c1i , randomly
chooses another r1i to compute the corresponding hash value according to the
above function and adds the result to the list and sends the result to A.

– B maintains a list L2(ak
s2

i

U−W ∗ , t2i , c
2
i , r

2
i , h2

i ), which is initially empty. Upon

receiving a query for (ak
s2

i

U−W ∗ , t2i ), B looks up L2 to find h2
i and returns it to A.

If (ak
s2

i

U−W ∗ , t2i ) is not on the list, B checks whether ak
s2

i

U−W ∗ is on the list or
not.
If no, B creates a tuple (ak

s2
i

U−W ∗ , t2i , c
2
i , r

2
i , h2

i ) with randomly choosing
c2i , r

2
i ∈R Zp and computing the hash value below

h2
i = H2

(
ak

s2
i

U−W ∗ , t2i

)
=

{
g

r2
i

0 , if c2i = t2i ,

g
r2

i
0 gb

0, if c2i �= t2i .

B adds (ak
s2

i

U−W ∗ , t2i , c
2
i , r

2
i , h2

i ) to the list L2 and returns corresponding h2
i

to A.
If yes, it indicates that ak

s2
i

U−W ∗ has been asked before, that is to say that A
asked the hash query for different t2i . B looks up the list to get the c2i , randomly
chooses another r2i to compute the corresponding hash value according to the
above function. Then B adds the tuple to the list and sends the result to A.

Query.

– Authorization Query. A can ask for the authorized token as follows.
• If the keyword set is W ∗, to each keyword wi ∈ W ∗, let (wi, hi) be the

corresponding tuples on the L list and we have hi = H1(wi) = ai, where
i ∈ [1, l]. B computes ak = hβ1β2q1

0 . Then B chooses s1i ∈ Zp and looks
up the list L1 to find the corresponding c1i . If t1i �= c1i , outputs abort.
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Otherwise, B sets t1i = c1i and obtains r1i from L1. B computes σ = gac
0 g

ar1
i

0

and responds token =
(
ak, σ, s1i , t

1
i

)
to A. One can verify the validity

ak = h

β1β2∏

wj∈U−W ∗
(α+H1(wj))

= h
β1β2q1q2

q2
0 = hβ1β2q1

0 ,

σ = H2

(
aks1

i , t1i

)x

=
(
gc
0g

r1
i

0

)a

= gac
0 g

ar1
i

0 .

• If the keyword set is U − W ∗, to each keyword wi ∈ U − W ∗, let (wi, hi)
be the corresponding tuples on the L list and we have hi = H1(wi) = ai,
where i ∈ [l + 1, n]. B computes ak = hβ1β2q2

0 . One can verify it by

ak = h

β1β2∏

wj∈U−(U−W ∗)
(α+H1(wj))

= h
β1β2q1q2

q1
0 = hβ1β2q2

0 .

ThenB chooses s2i ∈ Zp and looks up the listL2 to find the corresponding c2i .
* If t2i = c2i , obtains r2i from L2. B responds token =

(
ak, σ, s2i , t

2
i

)
to

A, where σ = H2

(
aks2

i , t2i

)x

=
(
g

r2
i

0

)a

= g
ar2

i
0 .

* If t2i �= c2i , obtains r2i from L2, B responds token =
(
ak, σ, s2i , t

2
i

)
to

A, where σ = H2

(
aks2

i , t2i

)x

=
(
gb
0g

r2
i

0

)a

= gab
0 g

ar2
i

0 .
– Trapdoor Query. A can ask for the trapdoor for the keyword wi. A can obtain

the authorized token token by Authorization Query and generate the trapdoor
by himself.

Forgery. A outputs a trapdoor TT =
(
T ∗, σ∗, t1∗) for wi ∈ W ∗ for time t1∗,

where T ∗ = (T ∗
1 , T ∗

2 , T ∗
3 ) and

(
T ∗
1 , t1∗) had not been queried before. Since TT =(

T ∗, σ∗, t1∗) is a valid trapdoor tuple, σ∗ is a valid signature and it implicitly

means
(
aks1∗

W ∗ , t1∗, c1∗, r1∗, h1∗
)

is on the list L1.

– If t∗ = c1∗, outputs abort.
– If t∗ �= c1∗, outputs σ∗

gar1∗
0

as the solution to (n, l)-MSE-CDH Problem. Since

H2

(
aks1∗

W ∗ , t1∗
)

= gbc
0 gr1∗

0 ,

σ∗ = H2

(
T ∗
1 , t1∗)x

= H2

(
aks1∗

W ∗ , t1∗
)x

=
(
gbc
0 gr1∗

0

)a

= gabc
0 gar1∗

0 ,

we can extract gabc
0 by gabc

0 = σ∗

gar1∗
0

.

This completes the description of our simulation. As the method in
Theorem 1, and we have B’s advantage as ε/((1 + qA)e).

5 Conclusion

We proposed a new notion of public key encryption with authorized keyword
search, which extends the PEKS primitive. In PEAKS, the keyword is encrypted
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with one public key and each authorized user, without secret key, obtains search
right from the authority. The authority distributes the authorized token to the
user with time and the user generates the trapdoor for any authorized key-
word. We constructed a provably secure PEAKS scheme, where the size of the
authorized token is independent of the size of the keyword set. The proposed
scheme reduces the bandwidth between the authority and the user significantly
and allows only the freshly authorized trapdoor with the correct keyword to
pass the test conducted by the server. We proved that our scheme possesses the
semantical security against chosen keyword attacks and trapdoor unforgeability.
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dents Foundation (Grant No. CX2015312), NSFC (Grant Nos. 61300181, 61502044,
61572390), the Fundamental Research Funds for the Central Universities (Grant No.
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Abstract. Nowadays an increasing amount of data stored in the public
cloud need to be searched remotely for fast accessing. For the sake of
privacy, the remote files are usually encrypted, which makes them dif-
ficult to be searched by remote servers. It is also harder to efficiently
share encrypted data in the cloud than those in plaintext. In this paper,
we develop a searchable encryption framework called Linear Encryp-
tion with Keyword Search (LEKS) that can semi-generically convert
some existing encryption schemes meeting our Linear Encryption Tem-
plate (LET) to be searchable without re-encrypting all the data. For
allowing easy data sharing, we convert a Key-Policy Attributed-Based
Encryption (KP-ABE) scheme to a Key-Policy Attributed-Based Key-
word Search (KP-ABKS) scheme as a concrete instance of our LEKS
framework, making both the encrypted data and the search functional-
ity under fine-grained access control. Notably, the resulting KP-ABKS
is the first proven secure ABKS scheme with IND-sCKA security in the
random oracle model, assuming the hardness of the �-DCBDH problem
derived from the (P, f)-DBDH problem family.

Keywords: Searchable encryption · Keyword search · Cloud security

1 Introduction

Cloud computing [14] provides on-demand computing resources that are acces-
sible via the Internet, including computing power and data storage. With the
convenient cloud services, users can outsource their computing resources to the
cloud, and access them through terminals with low computing capabilities, such
as mobile devices. Usually, those terminals also have low network connectivity
due to the transmission technology, access cost, and other factors.

In terms of data storage, one important function is data search. Since all
the user data are stored on the cloud server, users have to send search queries
to the server to search for the data containing certain keywords. However, the
normal search operation for plaintext is no longer working when data privacy is
considered, since all the data are encrypted and cannot be read by the server.

To perform search on encrypted data, it is impractical for the user to do
the search locally with all the data downloaded from the server, due to the high
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 187–203, 2016.
DOI: 10.1007/978-3-319-40367-0 12
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demand on the bandwidth. It is also impractical to give the server the user secret
key due to privacy concerns. Thus searchable encryption has been introduced
such that the search operation is performed by the server, but the server cannot
get any meaningful information from the search query or the encrypted data.
In searchable encryption, all the data files and their associated keywords are
encrypted. To search for the data with certain keyword, the user generates a
trapdoor for the keyword and enquires the server with the trapdoor. The server
searches the whole database to locate the data where the encrypted keyword
matches the keyword embedded in the trapdoor. During the searching process,
the server only knows whether an encrypted keyword matches the user trapdoor
or not, and nothing else. After that, the server returns the search result to the
user who can download the ciphertexts and decrypt the data.

In Public-key Encryption with Keyword Search (PEKS) [8], the data and
the keywords are encrypted for only one user (i.e., the intended receiver of the
data). In contrast, data can be encrypted with certain attributes in Attribute-
Based Encryption (ABE) [16]. For instance, Alice can encrypt some data with
attributes “full-time” and “student”. Later, any user can decrypt the resulting
ciphertext if the attributes in the ciphertext match the policy associated with the
user. Thus Bob associated with a policy “(full time AND student) OR staff” can
decrypt the above ciphertext. The corresponding searchable encryption for ABE
is named Attribute-Based Keyword Search (ABKS) [19,21]. As in ABE, Alice
can encrypt the data and its associated keywords using certain attributes. After
uploading the ciphertexts to the server, Bob can do the search and decryption
since the attributes used by Alice in the encryption matches Bob’s policy. This
feature is very important in the cloud environment where a user can share data
with multiple users by encrypting the data only once. However, to the best of
our knowledge, no ABKS scheme proposed in the literature is proven secure.
Hence, one of our goals is to construct ABKS schemes with provable security.

In addition, keyword search functionality is usually associated with an
encryption scheme where both the data and the keywords are encrypted for
the same receiver(s). This paper also aims to provide a universal construction
of searchable encryption schemes from some existing encryption schemes. This
enables us to add a compatible keyword search functionality to an existing cryp-
tosystem without re-encrypting all the data.

1.1 Related Work

Diffie and Hellman introduced the notion of Public-Key Encryption (PKE) [11]
where Alice encrypts a message with Bob’s public key, and Bob decrypts the
ciphertext with his secret key. Based on the idea of using the user identity as
the public key [17], Boneh and Franklin proposed a practical Identity-Based
Encryption (IBE) scheme [9] where Alice encrypts the message with Bob’s iden-
tity. In 2005, Sahai and Waters introduced Fuzzy Identity-Based Encryption
which can be treated as the first Attribute-Based Encryption (ABE) [16], an
instance of Function Encryption [20]. In ABE, the decryption keys of the users
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and the ciphertexts are associated with access policies and attributes, respec-
tively. If and only if the attributes match the policy, the ciphertext can be
successfully decrypted. Depending on how the identity and the ciphertext are
associated, Attribute-Based Encryption schemes are classified into Key-Policy
ABE (KP-ABE) [3,12,15,16] and Ciphertext-Policy ABE (CP-ABE) [4]. In KP-
ABE, Bob’s secret key is associated with a policy. After receiving the ciphertext
encrypted with some attributes from Alice, Bob can decrypt it if and only if
the attributes match his policy. In CP-ABE, the ciphertexts are associated with
policies, and the secret keys are associated with attributes.

To enable the search functionality for encrypted data, various searchable
encryption schemes [1,8,10,13,19,21] have been proposed under different set-
tings. Boneh et al. [8] introduced PEKS, which is used with a conventional public
key encryption scheme. Later, Identity-Based Keyword Search (IBKS) schemes
were also proposed [1,10]. Recently, due to the popularity of ABE, there have
been some research works on ABKS [19,21]. In addition, there are also keyword
search schemes for other encryption variants, such as Broadcast Encryption [2].

To the best of our knowledge, [19,21] are the only ABKS schemes proposed
in the literature. However, neither of those schemes is proven secure. In partic-
ular, after analysing the ABKS scheme in [19], we found the scheme is flawed
where an adversary can always distinguish keywords from a ciphertext by testing

e(D̂, T
1

H(w
μ′ )

i′ ) ?= e(g,Di′). For the KP-ABKS scheme in [21], the security proof
is invalid (see Sect. 4.3) and thus the security of this scheme remains unknown.
For the CP-ABKS scheme in [21], no formal security proof has been provided.

In terms of provable security, it depends on the hardness of some computa-
tional problems (e.g. Discrete Logarithm Problem (DLP), Diffie-Hellman Prob-
lem (DHP) [11], etc.). Shoup [18] introduced the generic group model which was
used to obtain the complexity lower bound regarding the hardness of DLP and
DHP. Later, dealing with bilinear maps, Boneh et al. [6] introduced the generic
bilinear group model and the general Diffie-Hellman Exponent Problem. Besides,
the generic bilinear group model is also used in [5,7] for analysing the Decisional
Linear (DLIN) Problem and q-Strong Diffie-Hellman (q-SDH) Problem.

1.2 Our Contribution

In this paper, we introduce a new problem family named Decisional Bilinear
(P, f)-Diffie-Hellman problem ((P, f)-DBDH problem, for short). We prove the
(P, f)-DBDH problem is computationally hard in generic bilinear group model if
the polynomial f is not dependent on the polynomial set P . Based on the (P, f)-
DBDH problem, we derive a hard computational problem named Decisional �-
Combined Bilinear Diffie-Hellman problem (�-DCBDH problem).

As the main contribution of this work, we introduce two new notions named
Linear Encryption Template (LET) and Linear Encryption with Keyword Search
(LEKS), and provide their formal definitions. LET can model different asym-
metric encryption schemes, including but not limited to PKE, IBE and ABE
schemes, which have the property of linearity. The linearity property requires
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a sub-algorithm e(g, g)αs ← D(SK,C1, . . . ) in the decryption algorithm where
SK is the secret key involved, (C1, . . . ) are the ciphertext components and for
all t ∈ Zp, D(SKt, C1, . . . ) = D(SK,C1, . . . )t. Given an encryption fitting LET,
we provide a semi-generic conversion to a LEKS scheme where the construc-
tion is generic but we require security proofs for individual conversions. We also
define two security models for LEKS schemes: Indistinguishability under Adap-
tive Chosen Keyword Attack (IND-CKA) and its weaker Selective-ID version
(IND-sCKA). With LET and our conversion from LET to LEKS, we can con-
struct PEKS from PKE, IBKS from IBE, ABKS from ABE, and so on.

To illustrate the feasibility of our semi-generic framework, we give an instance
of LET and then apply our conversion to procude a LEKS scheme. We first show
that a variant [15] of Goyal et al.’s ABE scheme [12] fits LET by proving it has
the property of linearity. Then we apply our LEKS conversion to convert the
KP-ABE scheme into a KP-ABKS scheme. After that, we prove the resulting
KP-ABKS scheme is IND-sCKA secure in the random oracle model under �-
DCBDH assumption. It is worth noting that to the best of our knowledge, our
converted KP-ABKS scheme is the first proven secure KP-ABKS scheme.

1.3 Paper Organisation

The rest of this paper is organised as follows. Beginning with Sect. 2, we define
(P, f)-DBDH problem family and �-DCBDH problem, and prove the hardness
of those problems. In Sect. 3, we define LEKS and its security model, followed
by the definition of LET and the LEKS conversion from LET. After that, an
instance of LEKS conversion is given in Sect. 4, converting a KP-ABE scheme to
a KP-ABKS scheme. The resulted KP-ABKS scheme is proven secure in Sect. 4.3
under the security model defined in Sect. 3.2. Finally, the conclusion is addressed
in Sect. 5.

2 Decisional Diffie-Hellman Problem Family

In this paper, we use the same bilinear map e : G1 × G1 → G2 as in [9] for
simplicity where G1, G2 are multiplicative cyclic groups of prime order p and g
is a generator of G1.

Definition 1. Let P = (p1, . . . , ps) ∈ Fp[X1, . . . , Xn]s be a s-tuples of n-variate
polynomial over Fp. We define that a polynomial f ∈ Fp[X1, . . . , Xn]s is depen-
dent on P if exists s2 + 2s constants ai,j, bk and cl such that

f =

s∑

i=1

s∑

j=1

ai,jpipj

s∑

k=1

bkpk

+
s∑

l=1

clpl or f =
s∑

l=1

clpl ±
√
√
√
√

s∑

i=1

s∑

j=1

ai,jpipj
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Equivalently, f is dependent on P if exists s2 + s + 1 constants ai,j, bk and c

cf2 +
s∑

k=1

bkpkf +
s∑

i=1

s∑

j=1

ai,jpipj = 0

where at least one of bk or c is non-zero.

Let gP (x1,...,xn) = (gp1(x1,...,xn), . . . , gps(x1,...,xn)), df denote the total degree of
f ∈ Fp[X1, . . . , Xn], and dP = max{df | f ∈ P ∈ Fp[X1, . . . , Xn]s}. We present
the family of Diffie-Hellman problems as follows.

Definition 2 (Decisional Bilinear (P, f)-Diffie-Hellman problem). Let
P = (p1, . . . , ps) ∈ Fp[X1, . . . , Xn]s be a s-tuples of n-variate polyno-
mial over Fp, f ∈ Fp[X1, . . . , Xn] be a n-variate polynomial over Fp. Let
(x1, . . . , xn) ∈R Z

n
p , and Z ∈R G1. Giving two probability distributions Dτ =

(gP (x1,...,xn), gf(x1,...,xn)) and Dρ = (gP (x1,...,xn), Z), there is an algorithm A can
distinguish Dτ and Dρ with advantage:

Adv
(P,f)−DBDH
A =

1
2

|Pr [1 ← A(D ∈R Dτ )] − Pr [1 ← A(D ∈R Dρ)]|

where D ∈R D represents that D is uniformly and independently chosen from
D. Alternatively, the problem can be represented as

b ∈R {0, 1}, Zb = gf(x1,...,xn), Z1−b ∈R G1,

Adv
(P,f)−DBDH
A =

∣
∣
∣
∣Pr

[
b = b′ ← A(gP (x1,...,xn), Z0, Z1)

]
− 1

2

∣
∣
∣
∣

As from the definition above, Decisional Bilinear (P, f)-Diffie-Hellman ((P, f)-
DBDH in short) problem family is an enhanced DDH problem on the group G1

where the adversary A is now able to do bilinear pairing operations on G1. The
(P, f)-DBDH problem family is computational hard if and only if the advantage
Adv

(P,f)−DBDH
A is negligible. Since there is no known proof of the hardness of

this problem family, we show the complexity lower bound in the generic bilinear
group model [6]. As in [6], we emphasise that a lower bound in generic groups
does not imply a lower bound in any specific group.

Theorem 1. Let ε1, ε2 : Z
+
p → {0, 1}m be two random encodings (injec-

tive maps) where G1 = {ε1(x) | x ∈ Z
+
p }, G2 = {ε2(x) | x ∈ Z

+
p }. Let

d = 2 · max(dP , df ). If f is not dependent on P , the lower bound of the
advantage Adv(P,f)−DBDH of solving the (P, f)-DBDH problem (Definition 2)
for the adversary A is stated as follows with at most q1,×, q2,× queries to the
group operation oracles O1

×, O2
× and qe queries to the bilinear pairing oracle

Oe : ε1 × ε1 → ε2.

Adv
(P,f)−DBDH
A ≤ (q1,× + q2,× + qe + s + 2)2d

2p
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Our schemes are based on a dynamic version of the above (P, f)-DBDH
problem. To describe and show the hardness of the problem, we begin with the
following lemma.

Lemma 1. Let P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ Fp[X1, . . . , Xn]s be two
s-tuple of n-variate polynomials over Fp, f ∈ Fp[X1, . . . , Xn], O = (P,Q) =
(p1, . . . , ps, q1, . . . , qs) be a 2s-tuple of n-variate polynomial. Let T be a variate,
R = (P,QT ) = (p1, . . . , ps, q1T, . . . , qsT ) = (r1, . . . , r2s) be a 2s-tuple of (n + 1)-
variate polynomial. If f is not dependent on O, f is not dependent on R.

Lemma 2. Let P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ Fp[X1, . . . , Xn]s be two
s-tuple of n-variate polynomials over Fp, f ∈ Fp[X1, . . . , Xn], O = (P,Q) =
(p1, . . . , ps, q1, . . . , qs) be a 2s-tuple of n-variate polynomial. Let T1, . . . , T� be �
variates, R = (P,QT1, . . . , QT�) = (p1, . . . , ps, q1T1, . . . , qsT1, . . . , q1T�, . . . , qsT�)
be an (� + 1)s-tuple of (n + �)-variate polynomial. If f is not dependent on O, f
is not dependent on R.

Definition 3 (Decisional �-CombinedBilinearDiffie-Hellmanproblem).
Let a, b, c, d, e, f1, . . . , f� ∈R Zp, h = ge, and Z ∈R G1. Giving two probability dis-
tributions DDCBDH = (g, ga, gb, h, hc, hd, {(gfi , gafi , hfi , hafi)}i=1...�, g

abhcd) and
Dρ = (g, ga, gb, h, hc, hd, {(gfi , gafi , hfi , hafi)}i=1...�, Z), there is an algorithm A
can distinguish DDCBDH and Dρ with advantage:

Adv�-DCBDH
A =

1
2

|Pr [1 ← A(D ∈R DDCBDH)] − Pr [1 ← A(D ∈R Dρ)]|

Alternatively, the problem can be represented as

b ∈R {0, 1}, Zb = gabhcd, Z1−b ∈R G1, Adv�-DCBDH
A =

∣
∣
∣
∣Pr

[
b = b′ ← A(g, ga, gb, h, hc, hd, {(gfi , gafi , hfi , hafi)}i=1...�, Z0, Z1)

] − 1
2

∣
∣
∣
∣

The Decisional �-Combined Bilinear Diffie-Hellman (�-DCBDH) problem belongs
to the (P, f)-DBDH problem family. We prove that the �-DCBDH problem is
hard by showing the advantage Adv�-DCBDH

A is negligible.

Theorem 2. The lower bound of the advantage Adv�-DCBDH
A of solving the

�-DCBDH problem (Definition 3) for the adversary A is stated as follows with
at most q queries to group operations and bilinear pairing operations.

Adv�-DCBDH
A ≤ 3 · (q + 4� + 8)2

p

Due to the space limitation, the proofs of the above Theorems and Lemmas will
be provided in the full version of the paper.
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3 Linear Encryption with Keyword Search

3.1 Definition

In general, a searchable encryption scheme involves three roles and consists of
two encryption parts. In detail, the roles are contributor, server and user, and
the encryption parts are the message encryption part and the keyword encryp-
tion part. A general purpose searchable encryption scheme works as follows.
Alice, as a contributor, encrypts a file using the message encryption scheme
and the related keywords using the keyword encryption part for the target users,
including Bob. Let header denote the keyword ciphertext, and payload denote
the file ciphertext. Since a file may be associated with multiple keywords, Alice
may generate multiple headers for the payload. After that, Alice assembles the
headers and the payload as a single ciphertext, and sends the ciphertext to the
server. Bob, as one of the target user, can ask the server to search the cipher-
text with certain keywords. To do secured search, Bob generates a trapdoor
for each keyword to be searched, and then uploads the trapdoors to the server
via a secure communication channel. Once the server receives the query with
the trapdoors from Bob, the server begins to test whether the keywords in the
headers match those in the trapdoors. Note that the keywords are not visible to
the server, and the headers and trapdoors match only when the corresponding
keywords are the same and Bob is one of the intended users that the headers are
encrypted for. After searching for all related ciphertexts, the server allows Bob to
download the matching payloads. Finally, Bob can download the payloads with
matching headers. In addition, a trusted authority is required in the identity
or attribute-based setting.

Formally, we define Linear Encryption with Keyword Search as follows, focus-
ing on the keyword encryption part in a general searchable encryption scheme.

Definition 4 (Linear Encryption with Keyword Search). A linear
encryption with keyword search (LEKS) scheme, involving the contributors, the
servers, the users and the trusted authority, consists of the following five (prob-
abilistic) polynomial time algorithms:

– (MSK,PK) ← Setup(1λ): The system setup algorithm run by the trusted
authority takes a security parameter 1λ, and outputs a pair of master secret
key MSK and public key PK for the trusted authority.

– SK ← KeyGen(MSK, IS): The user key generation algorithm run by the
trusted authority takes a master secret key MSK and a user identity IS, and
generates a user secret key SK for the user associated with that identity.

– C ← LEKS(PK, IC ,W ): The keyword encryption algorithm run by the con-
tributor takes a public key PK, a target identity IC and a keyword W , and
outputs a ciphertext C of the keyword W . To maximum the generality, IC is
viewed as a set that the user IS can access the ciphertext only if IS ∈ IC . It
is equivalent to F (IS , IC) = 1 with a predicate function F .

– T ← Trapdoor(SK,W ): The trapdoor generation algorithm run by the user
takes a secret key SK and a keyword W , and generates a trapdoor T of the
keyword W .
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– 1/0 ← Test(C, T ): The deterministic test algorithm run by the server takes a
ciphertext C ← LEKS(PK, IC ,W ) and a trapdoor T ← Trapdoor(SK,W )
where SK ← KeyGen(MSK, IS), and outputs

{
1 if W = W ′ ∧ IS ∈ IC ,

0 otherwise.

In the public key scenario where users are identified using public keys generated
by themselves, the trusted authority is not required and the algorithm KeyGen
is not used. Instead, the Setup algorithm is run by individual users, and outputs
a pair of secret key SK and public key PK for that user. In addition, the scheme
is required to be correct.

Definition 5 (Correctness). A LEKS scheme is correct if the following state-
ment is always true:

∀(MSK,PK) ← Setup(1λ), ∀Ic, ∀W ∈ {0, 1}∗, ∀C ← LEKS(PK, Ic,W ),
∀Is ∈ Ic,∀SK ← KeyGen(MSK, Is),∀T ← Trapdoor(SK,W ), T est(C, T ) = 1.

3.2 Security Model

In LEKS, we consider that the server is honest but curious. In addition, we do
not consider the keyword guessing attack (KGA), since the server can always
generate ciphertexts with certain keywords to test with the trapdoor legitimately.
However, we can prevent anyone from extracting the keyword directly from the
trapdoor by applying an one-way function such as a preimage-resistant hash
function.

We present two security games: Indistinguishability under Adaptive Chosen
Keyword Attack (IND-CKA) and its weaker Selective-ID version (IND-sCKA).
We first define the IND-sCKA game (Game 1) where an adaptive adversary A
tries to distinguish a ciphertext generated from either keywords W0 or W1:

1. A selects a target identity set IT and submits it to the challenger S.
2. S runs Setup(1λ) to generate a key pair (MSK,PK) and passes PK to A.
3. A can adaptively ask S for the secret key SK of the user with identity I by

querying the key generation oracle OKeyGen. At the same point, S records I
in the identity list I. The restriction is that I must not be in IT .

4. A can adaptively ask S for the trapdoor T of the user identity I with the
keyword W by querying the trapdoor generation oracle OTrapdoor. If I is not
in IT , it can be resolved that A queries the oracle OKeyGen to obtain the
secret key SK of I and further obtains the trapdoor T ← Trapdoor(SK,W ).
Otherwise, S runs the algorithm KeyGen and then the algorithm Trapdoor
to get the trapdoor, and passes it to A. At the same point, S records the
queried keyword W in the keyword list W.

5. At some point, A outputs two keywords W0 and W1 to be challenged where
those two keywords must not be in the keyword list W.
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6. S randomly selects b to be either 0 or 1 uniformly. Then S generates a cipher-
text C ← LEKS(PK, IT ,Wb) and passes it to A.

7. A can continue to query all oracles with the same restriction. In addition, A
cannot query the target keywords W0 and W1 to the oracle OTrapdoor.

8. Eventually, A outputs a bit b′. A wins the game if b = b′.

We define the advantage of winning Game 1 as follows

AdvIND-sCKA
A =

∣
∣
∣
∣Pr [b = b′ ∧ I ∩ IT = ∅ ∧ W0,W1 /∈ W] − 1

2

∣
∣
∣
∣

Definition 6 (IND-sCKA Security). A LEKS scheme is Indistinguishable
under Selective-ID Adaptive Chosen Keyword Attack if AdvIND-sCKA

A is a negli-
gible function for all adversary A winning the Game 1 in polynomial time.

Next, we define the IND-CKA game (Game 2), which is similar as the IND-
sCKA game. The difference is that A is given the public key PK in IND-CKA
before submitting the target identity set IT .

Definition 7 (IND-CKA Security). A LEKS scheme is Indistinguishable
under Adaptive Chosen Keyword Attack if AdvIND-CKA

A is a negligible function
for all adversary A winning the Game 2 in polynomial time.

Gameλ
IND-sCKA :

I, W ← ∅, IT ← A, (MSK, PK) ← Setup(1λ),

(W0, W1) ← AOKeyGen,OT rapdoor (PK), b ∈R {0, 1},

C ← LEKS(PK, IT , Wb), b′ ← AOKeyGen,OT rapdoor (C)

OKeyGen : I ← I ∪ {I}, return SK ← KeyGen(MSK, I)

OTrapdoor : W ← W ∪ {W}, return T ← Trapdoor(SK, W )

AdvIND-sCKA
A =

∣∣∣∣Pr
[
b = b′ ∧ I ∩ IT = ∅ ∧ W0, W1 /∈ W]− 1

2

∣∣∣∣
Game 1: IND-sCKA

Gameλ
IND-CKA :

I, W ← ∅, (MSK, PK) ← Setup(1λ),

(IT , W0, W1) ← AOKeyGen,OT rapdoor (PK), b ∈R {0, 1},

C ← LEKS(PK, IT , Wb), b′ ← AOKeyGen,OT rapdoor (C)

AdvIND-CKA
A =

∣∣∣∣Pr
[
b = b′ ∧ I ∩ IT = ∅ ∧ W0, W1 /∈ W]− 1

2

∣∣∣∣
Game 2: IND-CKA
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3.3 Linear Encryption Template

In this subsection, we define the Linear Encryption Template (LET). Informally,
a LET models an asymmetric encryption scheme, consisting of the senders, the
recipients and the trusted authority. Alice, as the recipient, gets her secret
key from the trusted authority using her identity where her public key is her
identity. If LET is modelling a PKE scheme, Alice’s secret/public key pair is
generated by herself, and the trusted authority is not required. To securely
send a message to a set of recipients, including Alice, the sender Bob encrypts
the message into a ciphertext, and sends it to Alice. Once Alice receives the
ciphertext, she can decrypts and obtains the original message if and only if she
is one of the target recipients. Furthermore, if an encryption scheme fits LET, we
can use it to construct the corresponding LEKS scheme in Sect. 3.4. Formally,
we describe the definition of Linear Encryption Template as follows.

Definition 8 (Linear Encryption Template). A linear encryption template,
involving the senders, the recipients, and the trusted authority, consists of the
following four (probabilistic) polynomial algorithms:

– (MSK,PK) ← Setup(params, α): The system setup algorithm run by the
trusted authority takes a set of system parameters, such as the description
of groups, security parameters and randomnesses, and it reuses these para-
meters. The algorithm also takes a component α, which is used to create the
ciphertext. The output of this algorithm is a pair of master secret key MSK
and public key PK of the trusted authority.

– SK ← KeyGen(MSK, IS): The user key generation algorithm run by the
trusted authority takes a master secret key MSK and a user identity IS, and
generates a user secret key SK for the user associated with that identity.

– C ← Encrypt(PK, IC ,M, s): The encryption algorithm run by the sender
takes a public key PK, a target identity set IC , a message M and a ran-
domness s, and outputs a ciphertext C of the message M . The randomness s
is used to bind the ciphertext parts in C and further to bind other ciphertext
parts when constructing LEKS schemes. It is required that the ciphertext must
be in the form of C = (C0, C1, . . . ) where C0 = M · e(g, g)αs.

– M ← Decrypt(SK,C): The deterministic decryption algorithm run by the
recipient takes a secret key SK and a ciphertext C, and outputs the original
message M . The decryption process is required to be two steps. The first step
is to run the sub-decryption algorithm D to get e(g, g)αs ← D(SK,C1, . . . ).
Then the second step is to extract the message M = C0

e(g,g)αs . Importantly, the
sub algorithm D is required to have linearity:

∀t ∈ Zp, D(SKt, C1, . . . ) = D(SK,C1, . . . )t

If SK consists multiple elements that SK = (SK1, SK2, . . . ), the term SKt

denotes (SKt
1, SKt

2, . . . ).
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If there is no trusted authority that users generate their key pairs by themselves,
the algorithm KeyGen is not used and the algorithm Setup is run by the user,
outputing a pair of user secret key SK and public key SK. In addition, the
scheme is required to be correct.

Definition 9 (Correctness). A LET scheme is correct if the following state-
ment is always true:

∀(MSK,PK) ← Setup(params, α),∀Ic,∀Is ∈ Ic,∀SK ← KeyGen(MSK, Is),
∀M ∈ G2, ∀s ∈ Zp, ∀C ← Encrypt(PK, Ic,M, s), Decrypt(SK,C) = M.

3.4 Keyword Search from Linear Encryption Template

In this subsection, we build our LEKS scheme with from a LET scheme as the
keyword encryption part. To construct a fully searchable encryption scheme, we
can reuse the LET scheme as the message encryption part, and combine with
the LEKS scheme. Alternatively, we also can use other encryption schemes as
the message encryption part. The main idea of the construction is to use the
LET part for authentication and combine it with a keyword equality test with
the same randomness. Let Π = (Setup,KeyGen,Encrypt,Decrypt) be a LET
modelled encryption scheme. Our LEKS scheme works as follows.

– (MSK,PK) ← Setup(1λ): Given a security parameter 1λ, the algorithm
generates two groups G1, G2 of prime order p, and specifies a bilinear map
e : G1 × G1 → G2. The algorithm also selects a random generator g of G1,
and a preimage resistant hash function H : {0, 1}∗ → G1, which may be mod-
elled as an random oracle. After that, the algorithm chooses two randomness
x1, x2 ∈R Z

+
p , and calculates g1 = gx1 and g2 = gx2 . Then the algorithm packs

all above elements into params, sets α = x1x2, and passes to the algorithm
Π.Setup to obtain the key pair Π.MSK and Π.PK. Finally, the algorithm
keeps the master secret key MSK = Π.MSK, and publishes the public key
PK = (G1,G2, e, g, g1, g2,Π.PK).

G1 = 〈g〉, e : G1 × G1 → G2, H : {0, 1}∗ → G1, x1, x2 ∈R Z
+
p ,

g1 = gx1 , g2 = gx2 , params = (G1,G2, e, g,H, x1, x2),
(Π.MSK,Π.PK) ← Π.Setup(params, x1x1)

return (MSK,PK) = (Π.MSK, (G1,G2, e, g, g1, g2,H,Π.PK)).
– SK ← KeyGen(MSK, IS): For key generation, the algorithm Π.KeyGen is

directly invoked. return SK ← Π.KeyGen(MSK, IS).
– C ← LEKS(PK, IC ,W ): To encrypt a keyword W for a target identity set

IC , the algorithm chooses two randomness r1, r2 ∈R Z
+
p . Then it computes

C ′
1 = gr2

2 H(W )r1 and C ′
2 = gr1

1 to encrypt the keyword W . After that, the
algorithm invokes Π.Encrypt with r2 to get the ciphertext (C0, C1, . . . ) to
assure the target identity set IC . Finally, the algorithm assembles two parts
together C = (C ′

1, C
′
2, C1, . . . ) as the full ciphertext bound using r2 where
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C0 = M · e(g, g)x1x2r2 is dropped. Since C0 is not used in C, we can safely
setting the message M to 0 when invoking Π.Encrypt.

r1, r2 ∈R Z
+
p , C ′

1 = gr2
2 H(W )r1 , C ′

2 = gr1
1

(C0, C1, . . . ) ← Π.Encrypt(PK, IC , 0, r2)

return C = (C ′
1, C

′
2, C1, . . . ).

– T ← Trapdoor(SK,W ): To generate a trapdoor of the keyword W , the algo-
rithm selects a randomness s ∈R Z

+
p . Then it calculates T = (T1, T2, T3)

where T1 = gs
1, T2 = H(W )s and T3 = SKs. For SKs, the operation works

the same as in Definition 8.

s ∈R Z
+
p , T1 = gs

1, T2 = H(W )s, T3 = SKs

return T = (T1, T2, T3).
– 1/0 ← Test(C, T ): For equality tests of both the keyword and the identity,

the algorithm tests the equality of the following return statement.
return e(C ′

1, T1)/e(C ′
2, T2)

?= Π.D(T3, C1, . . . ).

Theorem 3. The proposed conversion from the LET scheme to the LEKS
scheme is correct if the corresponding encryption scheme modelled by LET is
correct.

Proof. To verify, we calculate the left hand side of the test equation first.

E1 =
e(C ′

1, T1)
e(C ′

2, T2)
=

e(gr2
2 H(W )r1 , gs

1)
e(gr1

1 ,H(W )s)
=

e(gr2
2 , gs

1) · e(H(W )r1 , gs
1)

e(gr1
1 ,H(W )s)

= e(g1, g2)r2s

Then we calculate the right hand side of the test equation.

E2 = Π.D(T3, C1, . . . ) = Π.D(SKs, C1, . . . ) = Π.D(SK,C1, . . . )s

= e(g, g)x1x2r2s = e(g1, g2)r2s

As E1 = E2, the correctness is proved.

However, we are uncertain about the security of the above construction,
since some components are shared outside the encryption Π that may break
the security of Π in its original model. Therefore, we require individual security
proof for each conversion to ensure the security.

4 Key-Policy Attribute-Based Keyword Search

In this section, we show a useful instance of our LEKS conversion by converting
a KP-ABE into a KP-ABKS scheme. We starts with an ABE scheme [15] which
is a variant of Goyal et al.’s scheme [12] while the function T defined in [12] is
replaced with a random oracle. Then we convert it into a LEKS scheme by the
method in Sect. 3.4. Finally, we prove the resulted LEKS scheme is IND-sCKA
secure in random oracle model.
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4.1 Base Scheme

The ABE scheme [15] modelled by LET works as follows.

– (MSK,PK) ← Setup(params, α): The system setup algorithm reuses the
parameters params, g1 = gx1 , and g2 = gx2 . The master secret key is y =
x1. Since the function T is replaced with a random oracle, the algorithm is
required to choose a cryptographic hash function H : {0, 1}∗ → G1. Return
(MSK,PK) = (x1, (g1, g2,H)).

– SK ← KeyGen(MSK, IS): In KP-ABE, the user identity set IS is the policy
modelled as an access tree T (details in [12]). The algorithm chooses a random
polynomial qx for each non-leaf node x ∈ T in a top-down manner. For each
non-leaf node x, the degree dx of the polynomial qx is dx = kx − 1 where
kx is the threshold value of that node. For the root node, the algorithm sets
qroot(0) = x1. For other nodes, the algorithm sets qx(0) = qparent(x)(index(x)).
With polynomials for the access tree T is decided, the algorithm generates the
secret key components for the user. For each leaf node x, the algorithm chooses
a random number rx ∈R Z

+
p , and calculates Dx = g

qx(0)
2 H(attr(x))rx , Rx =

grx . Return SK = (T , {(Dx, Rx)}x∈leaves(T )).
– C ← Encrypt(PK, IC ,M, t): In KP-ABE, the target identity set IC is the

attributes γ. To encrypt, the algorithm calculates C0 = M ·e(g1, g2)t, C1 = gt,
C2 = γ. For each attribute attri ∈ γ, the algorithm computes Ci = H(attri)t.
As required by LET, we note that C0 = M · e(g1, g2)t = e(gx1 , gx2)t =
e(g, g)x1x2t = e(g, g)αt. Return C = (C0, C1, C2, {Ci}attri∈γ).

– M ← Decrypt(SK,C): At first, the algorithm checks whether T (γ) = 1 or
not. If the attributes do not match the policy that T (γ) = 0, the algorithm
returns ⊥. Otherwise, the algorithm proceeds the sub-algorithm D as follows.
For those matching attributes attri = attr(x), where attri ∈ γ and leaf node
x ∈ T , the algorithm can decrypt that node by calculating

Fx =
e(Dx, C1)
e(Rx, Ci)

=
e(gqx(0)

2 H(attr(x))rx , gt)
e(grx ,H(attri)t)

= e(g, g2)t·qx(0)

Then the algorithm can decrypt the non-leaf node x ∈ T by using polynomial
interpolation. Let Sx be the child set of the node x.

Fx =
∏

z∈Sx

F
Δi,Sx (0)
z =

∏

z∈Sx

(
e(g, g2)t·qz(0)

)Δi,Sx (0)

= e(g, g2)t·∑z∈Sx
qz(0)·Δi,Sx (0) = e(g, g2)t·qx(0)

Since T (γ) = 1, the algorithm can decrypt the root node that

Froot = e(g, g2)t·qx(0) = e(g, g2)x1t = e(g, g)x1x2t = e(g, g)αt

The algorithm sets Froot as the output of sub-algorithm D. Finally, the
algorithm computes the message M = C0/Froot and returns M .
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The correctness has been shown in the description of the decryption algorithm.
We also show that the above scheme has the linearity property required by LET.

Theorem 4 (Correctness). The above KP-ABE scheme is correct.

Theorem 5 (Linearity). The sub-algorithm D has linearity that

∀s ∈ Zp,D(SKs, C1, C2, {Ci}attri∈γ) = D(SK,C1, C2, {Ci}attri∈γ)s

Proof. For the decryption of leaf nodes, the computation becomes

F ′
x =

e(Ds
x, C1)

e(Rs
x, Ci)

=
(

e(Dx, C1)
e(Rx, Ci)

)s

= F s
x .

For the decryption of non-leaf nodes, the computation becomes

F ′
x =

∏

z∈Sx

F ′
z
Δi,Sx (0) =

∏

z∈Sx

F s
z

Δi,Sx (0) =

(
∏

z∈Sx

F
Δi,Sx (0)
z

)s

= F s
x

Thus F ′
root = F s

root.

4.2 Construction from the Base Scheme

In this section, we apply the LEKS conversion as follows with some key notes.

– (MSK,PK) ← Setup(1λ): Although the hash functions in the LEKS and
the KP-ABE schemes have the same domain and codomain, they cannot be
merged since they will be programmed into two different random oracles.

G1 = 〈g〉, e : G1 × G1 → G2, H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G1,
x1, x2 ∈R Z

+
p , g1 = gx1 , g2 = gx2

return (MSK,PK) = (x1, (G1,G2, e, g, g1, g2,H1,H2)).
– SK ← KeyGen(MSK, IS):

∀x ∈ leaves(T ), rx ∈R Z
+
p , Dx = g

qx(0)
2 H2(attr(x))rx , Rx = grx

return SK = (T , {(Dx, Rx)}x∈leaves(T )).
– C ← LEKS(PK, IC ,W ):

r1, r2 ∈R Z
+
p , C1 = gr2

2 H1(W )r1 , C2 = gr1
1 , C3 = gr2

return C = (C1, C2, C3, γ, {Ci = H2(attri)r2}attri∈γ).
– T ← Trapdoor(SK,W ):

s ∈R Z
+
p , T1 = gs

1, T2 = H1(W )s, {Tx,1 = Ds
x, Tx,2 = Rs

x}∀x∈leaves(T )

return T = (T1, T2, T , {(Tx,1, Tx,2)}x∈leaves(T )).
– 1/0 ← Test(C, T ): The algorithm follows the decryption algorithm in the

KP-ABE scheme. If T (γ) = 0, the algorithm returns ⊥. Otherwise, for leaf
node x ∈ T , it computes Fx = e(Tx,1, C1)/e(Tx,2, Ci). For non-leaf node,
it computes exactly the same as in the decryption algorithm using poly-
nomial interpolation. Eventually, the algorithm computes Froot and returns
e(C1, T1)

?= e(C2, T2) · Froot.
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4.3 Security Proof

The above converted KP-ABKS scheme is similar to Zheng et al.’s KP-ABKS
scheme [21]. The only difference between two schemes is that they use g2g

b·H(W )

as the hash function for the attributes while we use H2 : {0, 1}∗ → G1.
However, there are some issues in the security proof given in [21]. Before

the simulation provided by the challenger, the adversary selects a target set
of attributes Attr∗. In the simulation, the adversary is allowed to query the
token generation oracle OTokenGen(T,W ) with any keyword W other than the
target keywords w0, w1 and any policy T that F (Attr∗, T ) = 1. Stepping into
the oracle OTokenGen(T,W ), the challenger always runs the key generation oracle
OKeyGen(T ) to get the secret key sk, and then uses it to generate the requested
trapdoor. Since the oracle OKeyGen(T ) always aborts when F (Attr∗, T ) = 1,
the oracle OTokenGen(T,W ) always aborts when the adversary does the queries
mentioned above. This renders the proof invalid and hence the security of Zheng
et al.’s KP-ABKS scheme is unknown.

We prove our KP-ABKS is secure under the �-DCBDH assumption instead
of the standard Decisional Linear Assumption (DLIN).

Theorem 6. The proposed KP-ABKS is IND-sCKA (Definition 6) secure. If
an adversary A can win Game 1 with the advantage ε, an algorithm S can be
constructed to solve �-DCBDH problem (Definition 3) in polynomial time with
the advantage ε′ ≥ ε

2e(q+2) , querying OTrapdoor for at most q times where q ≤ �.

Due to the space limit, the proof will be provided to the full version of the paper.

5 Conclusion

In this paper, we introduced a (P, f)-DBDH problem family and demonstrated
its hardness under the generic bilinear group model. We also derived a hard
computational �-DCBDH problem from the (P, f)-DBDH problem family. As
the main contribution of this paper, we proposed LEKS and its security model,
and defined LET which can be used to convert encryption schemes into the
corresponding LEKS schemes. To show a concrete instance of our LEKS conver-
sion framework, we converted a KP-ABE scheme into a KP-ABKS scheme and
proved its security in the random oracle model under the �-DCBDH assump-
tion. Our future work will be finding more LET-compatible encryption schemes,
converting them into searchable schemes and proving their security.
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Abstract. In a broadcast encryption system, a broadcaster can encrypt
a message to a group of authorized receivers S and each authorized
receiver can use his/her own private key to correctly decrypt the broad-
cast ciphertext, while the users outside S cannot. Identity-based broad-
cast encryption (IBBE) system is a variant of broadcast encryption sys-
tem where any string representing the user’s identity (e.g., email address)
can be used as his/her public key. IBBE has found many applications
in real life, such as pay-TV systems, distribution of copyrighted materi-
als, satellite radio communications. When employing an IBBE system,
it is very important to protect the message’s confidentiality and the
users’ anonymity. However, existing IBBE systems cannot satisfy confi-
dentiality and anonymity simultaneously. In this paper, using an anony-
mous identity-based encryption (IBE) primitive with robust property as
a building block, we propose a generic IBBE construction, which can
simultaneously ensure the confidentiality and anonymity under chosen-
ciphertext attacks. Our generic IBBE construction has a desirable prop-
erty that the public parameters size, the private key size and the decryp-
tion cost are constant and independent of the number of receivers.

Keywords: Identity-based broadcast encryption · Anonymity · Robust-
ness · Chosen-ciphertext security · Random oracle model

1 Introduction

Broadcast encryption (BE), introduced by Fiat and Naor [16], is one kind of one-
to-many encryption that allows a broadcaster to encrypt one message to a group
of users who are listening to a broadcast channel, and only the authorized users
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can get the message. At present, BE causes a wide spread attention in theory
and practice. As BE can save most computational cost and communication load
relatively to repeatedly utilize point-to-point traditional encryption.

Identity-based broadcast encryption (IBBE) [12,28] is a special kind of
public-key BE, in which the public key of each user can be any string just repre-
senting the user’s identity (e.g., email address) and the private keys of users are
generated by a private key generator (PKG) according to their identities. It is
the same as in the identity-based encryption [8]. There exists a desired property
is that IBBE can support exponentially many users as potential receivers.

While an encryption scheme aims to protect the message’s confidential-
ity, another security requirement, namely, anonymity, which aims to hide the
receiver’s identity and it is a desirable security property in many application
scenarios. Anonymity comes from the key privacy concept, which was first intro-
duced by Bellare et al. [6]. It captures the property that an eavesdropper cannot
tell which public key the ciphertext is created under. However, the receiver set
S in the traditional IBBE scheme is transmitted as a part of the ciphertext.
Obviously, it cannot hide the receivers’ identities. Therefore, traditional IBBE
schemes are unable to obtain the anonymity requirement.

1.1 Our Contributions

In this paper, we propose a generic identity-based broadcast encryption (IBBE)
scheme from a generic anonymous IBE construction, which is the first IBBE
scheme simultaneously provide confidentiality and anonymity against chosen-
ciphertext attacks under Decisional Bilinear Diffie-Hellman (DBDH) assump-
tion. In addition, the public parameters size, the private key size and the decryp-
tion cost are constant and independent of the number of receivers is more efficient
than the existing IBBE schemes.

1.2 Related Work

Since broadcast encryption (BE) was introduced by Fiat and Naor [16], many
BE schemes have been proposed, e.g., [9,12,13,17,28]. However, these schemes
cannot ensure the anonymity of receivers. To address this problem, in 2006,
Barth et al. [5] presented two anonymous BE constructions in the public key
setting with chosen-ciphertext security. Their first construction is a generic BE
construction in the standard model, where the decryption cost is linear with the
number of receivers. As it need try to find an appropriate ciphertext component
for decryption. Their second construction is an improved construction in which
only a constant number of cryptographic operations is required for decryption,
whereas the security proof relies on the random oracle model [7]. In PKC 2012,
Fazio et al. [15] proposed two outsider-anonymous broadcast encryption con-
structions with sub-linear ciphertexts, which are adaptive CPA and CCA secure
in the standard model, respectively. In the same year, Libert et al. [23] presented
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several anonymous broadcast encryption constructions with adaptive CCA secu-
rity in the standard model and gave an united security definition for anonymous
BE scheme. However, all of these constructions are in the public key setting.

In 2007, the first IBBE scheme with fix-size ciphertext and private key was
proposed by Delerablee [12]. Specially, their scheme supports a flexible number
of possible users. That is, the number of users are not determined in the system
setup phase. Since then, lots of IBBE schemes with different properties have been
proposed, e.g., [19,21,24,25,28,30,31,33,34,37,40]. When identity-based encryp-
tion is incorporated to the multi-receiver setting, many multi-receiver identity-
based encryption schemes [3,4,10] have been proposed. However, among all of
these IBBE and multi-receiver identity-based encryption schemes, the receivers’
identities are transmitted as a part of the ciphertext. Obviously, these schemes
cannot provide anonymity.

Therefore, many anonymous identity-based broadcast encryption schemes,
e.g., [20,26,38] and anonymous multi-receiver identity-based encryption schemes,
e.g., [11,14,22,29,35,36,39] have been successively proposed. However, none of
these schemes can achieve confidentiality and anonymity simultaneously against
chosen-ciphertext attacks. In this paper, we have solved this problem.

1.3 Bilinear Groups

We briefly review the concept of bilinear groups which is the underlying algebraic
structure of many IBBE including ours.

We assume there is a probabilistic algorithm G which takes as input a security
parameter λ and outputs a tuple (p, G, GT , e), where G and GT are multiplicative
cyclic groups of prime order p (of bit-length λ), and e : G × G → GT is a map,
which has the following properties: Bilinearity: e(ua, vb) = e(u, v)ab for all
u, v ∈ G and ∀a, b ∈ Zp. Non-degeneracy: e(g, g) �= 1G, where g is a generator
of G. Computability: There exists an efficient algorithm to compute e(u, v) for
∀u, v ∈ G.

1.4 Decisional Bilinear Diffie-Hellman Assumption

The decisional BDH (DBDH) problem in a bilinear group (p, G, GT , e) is
as follows: Given a tuple (g, ga, gb, gc, Z) for a, b, c ←R Zp as input, out-
put 1 if Z = e(g, g)abc and 0 otherwise. For a probabilistic algorithm
A, we define its advantage in solving the DBDH problem as AdvDBDH

A =
|Pr[A(g, ga, gb, gc, e(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, Z) = 1]|, where g is a ran-
dom generator in G and Z ←R GT . We say that the DBDH assumption holds if
all probabilistic polynomial-time (PPT) algorithms have a negligible advantage
in solving the DBDH problem.

2 Identity-Based Broadcast Encryption

We shall review the definition and security notions for identity-based broadcast
encryption [18] as follows.
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An identity-based broadcast encryption scheme, associated with message
space M, consists of a tuple of four algorithms (Setup, Extract, Enc, Dec):

Setup(1λ): On input of a security parameter λ, it outputs the public parameters
params and a master secret key msk.

Extract(msk, ID): On input of a master secret key msk and an identity ID, it
outputs a private key skID for the identity ID.

Enc(params, S,M): On input of the public parameters params, a receiver set
S and a message M ∈ M, it outputs a ciphertext CT .

Dec(skID, CT ): On input of a private key skID and a ciphertext CT , it outputs
either a message M or an error symbol ⊥.

The correctness property requires that, for all ID ∈ S, if (params, msk) ←
Setup (1λ), skID ← Extract (msk, ID) and CT ← Enc (params, S, M), then
Dec (skID, CT ) = M with overwhelming probability.

Remark. Identity-based encryption is a special case of identity-based broadcast
encryption, when the size of the receiver set is only one.

Next, we shall review the security notions for an IBBE scheme. First, we
review the model of indistinguishability under chosen-ciphertext attacks (IND-
CCA), which means that the ciphertext does not leak any information of the
message. Then, we review the model of anonymity under chosen-ciphertext
attacks (ANO-CCA), which means that the ciphertext does not leak any iden-
tity in the receiver set. Last, we review the model of weakly robust against
chosen-ciphertext attacks (WROB-CCA), which guarantees that the decryption
attempts to fail with high probability when the “wrong” private key is used.
Respectively, these security models are defined by the following games between
a PPT adversary A and a challenger C.

The IND-CCA Game:

Setup: Challenger C runs (params, msk) ← Setup(1λ), and then sends the
public parameters params to adversary A and keeps the master secret key msk
itself.

Phase 1: Adversary A adaptively issues the following queries:

– Extraction Query: On input of an identity ID, challenger C returns skID ←
Extract(msk, ID) to adversary A.

– Decryption Query: On input of an identity ID and a ciphertext CT ,
challenger C returns m ←Dec(skID, CT ) to adversary A, where skID ←
Extract(msk, ID).

Challenge: Adversary A submits two distinct equal-length messages M0, M1

∈ M and a receiver set S∗ to challenger C. It is required that A has not issued
Extraction Query on ID ∈ S∗. Then challenger C flips a random coin β ∈
{0, 1} and returns the challenge ciphertext CT ∗ ← Encrypt (params, S∗, Mβ)
to adversary A.
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Phase 2: Adversary A continues to adaptively issue queries as in Phase 1 subject
to the following restrictions: (i) A cannot issue Extraction Query on ID, where
ID ∈ S∗; (ii) A cannot issue Decryption Query on (ID,C∗), where ID ∈ S∗.

Guess: Adversary A outputs a guess β′ ∈ {0, 1}.

Definition 1. We define adversary A’s advantage in the IND-CCA Game as
AdvIND-CCA

A,IBBE = |Pr[β′ = β] −1/2|. We say that an IBBE scheme is IND-CCA
secure, if for any PPT adversary A, the advantage AdvIND-CCA

A,IBBE is negligible in
IND-CCA Game.

The ANO-CCA Game:

Setup: It is the same as in the IND-CCA Game.

Phase 1: It is the same as in the IND-CCA Game.

Challenge: Adversary A submits a message M∗ and two distinct sets S0, S1

to challenger C. It is required that |S0| = |S1| and adversary A has not issued
Extraction Query on ID ∈ S0�S1, where S0�S1 denotes S0∪S1−S0∩S1. Then
challenger C flips a random coin β ∈ {0, 1} and returns the challenge ciphertext
CT ∗←Encrypt(params, Sβ ,M∗) to A.

Phase 2: Adversary A continues to adaptively issue queries as in Phase 1 with
the restrictions as follows: (i) Adversary A cannot issue Extraction Query on
ID, where ID ∈ S0�S1; (ii) Adversary A cannot issue Decryption Query on
(ID,C∗), where ID ∈ S0�S1.

Guess: Adversary A outputs a guess β′ ∈ {0, 1}.

Definition 2. We define adversary A’s advantage in the above ANO-CCA Game
as AdvANO-CCA

A,IBBE = |Pr[β′ = β]−1/2|. We say that an IBBE scheme is ANO-CCA
secure, if for any PPT adversary A, the advantage AdvANO-CCA

A,IBBE is negligible in
the above ANO-CCA Game.

Remark. Note that the definition captures not only outsider attacks but also
insider attacks. In other words, even when an identity ID ∈ S0∩S1 is corrupted,
the anonymity of any non-corrupted ID ∈ S0�S1 is still preserved.

The WROB-CCA Game:

Setup: It is the same as in the IND-CCA Game.

Query Phase: It is the same as Phase 1 in the IND-CCA Game.

Output: Adversary A outputs a message M , a receiver set S∗ = {ID1,
ID2, · · · , IDt}, where |S∗| = t. Challenger C outputs the challenge ciphertext
CT ∗ ← Encrypt (params, S∗, M).

We say that A wins the WROB-CCA Game if Dec(skID∗ , CT ∗) �= ⊥, where
ID∗ �∈ S∗ and skID∗ = Extract (msk, ID∗). It is required that A has not issued
Extraction Query on ID∗ in Query Phase.

We define adversary A’s advantage as the probability of that A wins.
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Definition 3. We say that an IBBE scheme is WROB-CCA secure, if for all
PPT adversaries A, the advantage of winning the above WROB-CCA Game is
negligible.

Remark. The above security notions of IND-CCA, ANO-CCA and WROB-
CCA can be naturally defined for an identity-based encryption (IBE) scheme by
limiting the size of the receiver set to be only one.

3 Generic Anonymous IBBE from IBE

In this section, we present a generic IBBE construction which builds on a IND-
CCA secure, ANO-CCA secure and WROB-CCA secure IBE primitive. The
generic IBBE construction has a desirable property that the public parameters
size, the private key size and the decryption cost are all constant and independent
of the number of receivers, while the ciphertext size is linear with the size of the
receivers.

3.1 Construction

Given an IND-CCA, ANO-CCA and WROB-CCA secure IBE scheme IBE=
(IBE.Setup, IBE.Extract,IBE.Enc,IBE.Dec) and a strong one-time signature
scheme Σ = (Gen,Sig,Ver), we construct an IND-CCA and ANO-CCA secure
IBBE construction IBBE = (IBBE.Setup, IBBE.Extract, IBBE. Enc, IBBE.Dec).

IBBE.Setup(1λ): On input of a security parameter λ, it generates a bilinear
map (p, G, GT , e), where G and GT are two cyclic groups with prime order p and e
is a bilinear map e : G×G → GT . Then, it chooses g←RG, α←RZp and computes
g1 = gα. Next, it runs 〈 ̂params, m̂sk〉 ←IBE.Setup(1λ). Besides, it chooses three
hash functions H1,H2,H3, such that H1 : {0, 1}∗ → G, H2 : GT → {0, 1}λ and
H3 : {0, 1}∗ → Zp. The public parameters are params = (G, GT , Zp, e, p, g, g1,
̂params, H1, H2, H3) and the master secret key is msk = (α, m̂sk).

IBBE.Extract(msk, ID): On input of a master secret key msk and an identity
ID, it computes sk0

ID = H1(ID)α and sk1
ID←IBE.Extract(m̂sk, ID). It outputs

the private key skID =(sk0
ID, sk1

ID) for the identity ID.

IBBE.Enc(params, S,M): On input of the public parameters params, a
receiver set S = {ID1, ID2, · · · , IDt} and a message M , it first generates a sig-
nature key pair (svk, ssk)← Gen (1λ). Then it chooses δ←RZp, lets r = H3(δ,M)
and computes the common part of the ciphertext T = gr. Next, for each ID ∈ S,
it computes c0ID = H2(e(g1,H1(ID))r) and c1ID←IBE.Enc( ̂params, ID, svk ||
δ || M). Let C1 = (c0ID1

, c1ID1
) || · · · || (c0IDt

, c1IDt
). The ciphertext is CT =

(svk, T , C1, σ), where σ = Sig (ssk, T || C1).

IBBE.Dec(skID, CT ): On input of a private key skID = (sk0
ID, sk1

ID) and a
ciphertext CT = (svk, T , C1, σ), where C1 = ( c0ID1

, c1ID1
) || · · · || (c0IDt

, c1IDt
).

It checks whether Ver(svk, T ||C1, σ) = 1 holds. If not, it returns ⊥. Otherwise, it
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computes c0ID = H2(e(T, sk0
ID)). If c0ID �= c0IDj

for all j ∈ {1, · · · , t}, returns ⊥;
else considers the smallest index j such that c0ID = c0IDj

, then computes L ←
IBE.Dec(sk1

ID, c1IDj
). If L =⊥, returns ⊥; else parses L as svk′||δ′||M . If svk′ �=

svk or T �= gH3(δ
′,M), returns ⊥; else returns M .

The correctness of IBBE construction follows directly from the correctness
and weak robustness of IBE scheme.

3.2 Security Analysis

In this subsection, we analyze that the above IBBE construction is ANO-CCA
secure. Regarding the IND-CCA security, we have the following Theorem 1,
whose proof can be found in the full paper.

Theorem 1. Suppose that H3 is a random oracle, the IBE scheme is IND-
CCA secure and the signature Σ scheme is a strong one-time signature, then
the generic IBBE construction in Sect. 3 is IND-CCA secure.

Next, we shall prove the following Theorem 2, which states that our IBBE con-
struction is ANO-CCA secure.

Theorem 2. Suppose that H1,H2,H3 are random oracles, the IBE scheme are
WROB-CCA and ANO-CCA secure, the signature Σ scheme is a strong one-
time signature scheme and the DBDH assumption holds, then the above IBBE
construction is ANO-CCA secure.

Proof. We proceed by a sequence of hybrid games starting with Game0 where
adversary A is given an encryption of M∗ on S0. At the last game, adversary A
is given an encryption of M∗ on S1. Without loss of generality, we suppose S0

and S1 are different by only one receiver and |S0| = |S1| = t. (The general case
can be proved through a hybrid argument, which is the adversary A selects the
receiver sets differing by only one receiver each time.) Let IDv be the unique
element of S0\S1, IDw be the unique element of S1\S0. (Note that Si\Sj =
{ID|ID ∈ Si ∩ ID �∈ Sj})

Game0: The challenge ciphertext CT ∗ is a correctly encrypted M∗ on receiver
set S0, where CT ∗ = (svk∗, T ∗, C∗

1 , σ∗) and C∗
1 = (c0∗

ID1
, c1∗

ID1
) || · · · || (c0∗

IDt
,

c1∗
IDt

). Let c = (c0∗
IDv

, c1∗
IDv

) = (H2(e(g1, H1(IDv))r), IBE.Enc( ̂params, IDv,
svk∗ ||δ∗|| M∗)) be the challenge ciphertext component which is related to the
identity IDv.

Game1: It is the same as Game0, but the challenger rejects all post challenge
Decryption Query 〈ID,CT 〉, where CT contains the same verification key svk∗.

Game2: c is replaced with (R, IBE.Enc( ̂params, IDv, svk∗ ||δ∗|| M∗)), where
R←R{0, 1}λ.

Game3: c is replaced with (R, IBE.Enc( ̂params, IDw, svk∗ ||δ∗|| M∗)).

Game4: c is replaced with (H2( e(g1, H1(IDw))r), IBE.Enc( ̂params, IDw, svk∗

||δ∗|| M∗)). Notice that the component is now encrypted on IDw instead of IDv.
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Game5: It is the same as Game4, but the challenger does not reject all post
challenge Decryption Query 〈ID, CT 〉, where CT contains the same verification
key svk∗. Notice that the challenge ciphertext CT ∗ is correctly encrypted M∗

under the receiver set S1 now.
The above games differ slightly from each other. In the following lemmas, we

shall show that every two adjacent games are computationally indistinguishable.
Transitivity shows that Game0 and Game5 are computationally indistinguish-
able. The challenge ciphertext CT ∗ in Game0 is encrypted M∗ on receiver set
S0 and the challenge ciphertext CT ∗ in Game5 is encrypted M∗ on receiver set
S1. According to the ANO-CCA Game, we can achieve that the above IBBE
construction is ANO-CCA secure.

Lemma 1. Suppose that the signature scheme Σ is a strong one-time signature
scheme, then Game0 and Game1 are computationally indistinguishable.

Proof. We define event F that adversary A makes a legal Decryption Query
on (ID,CT = (svk, T, C1, σ)), where Ver(svk, T ||C1, σ) = 1 and svk = svk∗

and 〈(T ||C1), σ〉 �= 〈(T ∗||C∗
1 ), σ∗〉. Suppose event F happens, then it is easy to

construct a PPT algorithm C, which makes use of adversary A to break the
underlying one-time signature scheme Σ.

Setup: C is given a verification key svk∗. Then C runs (params, msk) ←
IBBE.Setup(1λ). Next, it returns params to A and keeps msk itself.

Phase 1: A can adaptively issue Extraction Query and Decryption Query. C
can answer any Extraction Query and Decryption Query since it has the master
secret key msk.

Challenge: A submits a message M∗ and two distinct sets S0, S1 to C.
It is required that A has not issued Extraction Query on ID in Phase 1,
where ID ∈ {IDv, IDw}. C first runs IBBE.Enc(params, S0, M∗) to obtain
a part of ciphertext 〈T ∗, C∗

1 〉, and then obtains (from its signing oracle) a
signature σ∗ on the “message”〈T ∗||C∗

1 〉. Finally, C sends challenge ciphertext
CT ∗ = (svk∗, T ∗, C∗

1 , σ∗) to A.

Phase 2: A continues to adaptively issue queries as follows:

– Extraction Query: A issues Extraction Query on ID, such that ID �∈ {IDv,
IDw}, C handles them as in Phase 1.

– Decryption Query: A issues Decryption Query on 〈ID,CT 〉, C parses CT as
(svk, σ, T , C1), if Ver (svk, T ||C1, σ) = 1, svk = svk∗ and 〈(T ||C1), σ〉 �=
〈(T ∗||C∗

1 ), σ∗〉, then C presents 〈(T ||C1), σ〉 as a forgery and aborts. Other-
wise, C answers these queries with the master secret key msk as in Phase 1.

Guess: A outputs a bit b′ ∈ {0, 1}.
Observe that Game0 and Game1 are identical as long as event F does not

happen. If event F happens with a non-negligible probability, then C can forge
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a valid signature with a non-negligible advantage. However, since the signature
scheme Σ is a strong one-time signature scheme, then event F happens with
negligible probability.

Hence, Game0 and Game1 are computationally indistinguishable.

Lemma 2. Suppose that DBDH assumption holds, then Game1 and Game2 are
computationally indistinguishable.

Proof. Suppose there exists an adversary A who can distinguish Game1 from
Game2. It is easy to construct a PPT algorithm C that makes use of A to solve
the DBDH problem. Suppose C is given a DBDH challenge (g, ga, gb, gc, Z) with
unknown a, b, c ∈ Zp, C’s goal is to output 1 if Z = e(g, g)abc and 0 otherwise. C
acts as a challenger with adversary A as follows.

Setup: C runs ( ̂params, m̂sk)←IBE.Setup(1λ), sets g1 = ga, and chooses H1,
H2, H3 as random oracles. C gives the public parameters params = ( ̂params,
g, g1, H1, H2, H3) to A and keeps m̂sk itself.

Phase 1: A adaptively issues queries as follows:

Hash1 Query: On input of an identity ID, C does as follows: if there exists
a record 〈ID,Q, q,�〉 in the H1-list, which the list is initially empty, returns
Q; else chooses � ←R {0, 1} and q ←R Zp. If � = 0, computes Q = gq; else
computes Q = gbq and adds 〈ID,Q, q,�〉 into the H1-list. C returns Q to A.

Hash2 Query: On input of X, C does the following: if there exists a record 〈X, v〉
in the H2-list, which the list is initially empty, returns v; else selects v ←R Zp,
and adds 〈X, v〉 into the H2-list. C returns v to A.

Hash3 Query: On input of (δ,M), C does the following: if there exists a record
〈δ,M, r, gr〉 in the H3-list, which the list is initially empty, returns r; else selects
r ←R Zp, adds 〈δ,M, r, gr〉 into the H3-list. Returns r to adversary A.

Extraction Query: On input of an identity ID, C first issues Hash1 Query on
the identity ID and gets the tuple 〈ID,Q, q,�〉. If � = 1, C outputs ⊥ and
aborts; else C computes sk0

ID = gq
1. Then runs IBE.Extract(m̂sk, ID) to obtain

sk1
ID. C returns skID = (sk0

ID, sk1
ID) to adversary A.

Decryption Query: On input of 〈ID,CT 〉, C parses CT as (svk, σ, T, C1), where
C1 = (c0ID1

, c1ID1
)|| · · · ||(c0IDt

, c1IDt
). If Ver(svk, T ||C1, σ) = 0, C outputs ⊥;

else C issues Hash1 Query on ID to obtain the tuple 〈ID,Q, q,�〉. When
� = 0, C computes sk0

ID = gq
1, and then uses sk0

ID and the master secret
key m̂sk to respond this Decryption Query. When � = 1, C computes
sk1

ID ← IBE.Extract(m̂sk, ID), computes L =IBE.Dec(sk1
ID, c1IDj

) in turn for
j ∈ {1, 2, · · · , t}. If L is ⊥, continues to the next j until L as svk′||δ′||M ′. Then
checks if svk = svk′, if not, output ⊥; else queries Hash3 Query on (δ′,M ′) to
gets (δ′,M ′, r′, gr′

), and then checks if T = gr′
, if not, outputs ⊥; else returns M ′.
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Challenge: Adversary A submits a message M∗ and two distinct sets S0, S1

to C. It is required that A has not issued Extraction Query on ID in Phase 1,
where ID ∈ {IDv, IDw}. C first runs (svk∗, ssk∗)←Gen(1λ) and sets T ∗ = gc.
Then, C issues Hash1 Query on IDv to obtain the tuple 〈IDv, Qv, qv,�v〉.
If �v = 0, C outputs ⊥ and aborts; else C computes X∗

v = Zqv . C issues
Hash1 Query on all IDj , where IDj ∈ S0/IDv, to obtain the corresponding
tuple 〈IDj , Qj , qj ,�j〉. If there exists some �j = 1, outputs ⊥ and aborts;
else computes X∗

j = e(ga, gc)qj . Meanwhile, for all IDj ∈ S0, C queries Hash2

Query on X∗
j to obtain c0∗

IDj
, where c0∗

IDj
= H2(X∗

j ). Next, C chooses a ran-
dom δ∗ and runs c1∗

IDj
←IBE.Enc( ̂params, IDj , svk∗||δ∗||M∗) for IDj ∈ S0. Let

C∗
1 = (c0∗

ID1
, c1∗

ID1
)|| · · · ||(c0∗

IDt
, c1∗

IDt
). Last, C runs σ∗ ←Sig(ssk∗, T ∗||C∗

1 ) and
returns CT ∗ = (svk∗, T ∗, C∗

1 , σ∗) to adversary A.

Phase 2: A continues to adaptively issue queries as follows:

Extraction Query: Adversary A issues Extraction Query on ID, where ID �∈
{IDv, IDw}, C handles them as in Phase 1.

Decryption Query: Adversary A issues Decryption Query on 〈ID,CT 〉. C parses
CT = (svk, T, C1, σ), where C1 = (c0ID1

, c1ID1
)|| · · · ||(c0IDt

, c1IDt
). If svk = svk∗

or Ver(svk, T ||C1, σ) = 0, C outputs ⊥. Otherwise, C does as follows:

– When CT = CT ∗ and ID ∈ {IDv, IDw}, C outputs ⊥;
– When CT = CT ∗ and ID ∈ S0 ∩ S1, C outputs M∗;
– When (CT = CT ∗ and ID �∈ S0 ∪ S1) or (CT �= CT ∗ and ID �∈ {IDv, IDw}),

C answers as in Phase 1;
– When CT �= CT ∗ and ID ∈ {IDv, IDw}, C computes sk1

ID ← IBE.Extract

(m̂sk, ID). If there does not exist j ∈ {1, 2, · · · , t}, such that c1IDj
= c1∗

IDv
,

C answers as in Phase 1; Otherwise, if there exists some j ∈ {1, 2, · · · , t},
such that c1IDj

= c1∗
IDv

, where c1∗
IDv

← IBE.Enc( ̂params, IDv, svk∗ ||δ∗|| M∗).
When ID = IDv, C outputs ⊥, as the corresponding message is svk∗||δ∗||M∗,
as svk = svk∗ has been rejected. When ID = IDw, C answers as in Phase 1.

Guess: A outputs a bit b′ ∈ {0, 1}.
It is easy to observe that, if Z = e(g, g)abc, then C has properly simulated

Game1. If Z is uniform and independent in GT then C has properly simulated
Game2. Therefore, if A can distinguish Game1 and Game2 with a non-negligible
advantage, then C also has a non-negligible advantage to resolve the DBDH
problem. However, the DBDH assumption is hard to resolve. Hence, Game1 and
Game2 are computationally indistinguishable.

Lemma 3. Suppose that the IBE scheme are ANO-CCA secure and WROB-
CCA secure, then Game2 and Game3 are computationally indistinguishable.

Proof. Suppose there exists an adversary A who can distinguish Game2 from
Game3, it is easy to construct a PPT algorithm C who makes use of A to break
the IBE scheme’s ANO-CCA security or the IBE scheme’s WROB-CCA security.
C acts as a challenger and plays with adversary A as follows.
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Setup: C first receives the master public key ̂params from the IBE challenger.
Then C picks generator g ∈R G, α ∈R Zp, computes g1 = gα and chooses hash
functions H1, H2, H3. Next, C gives public parameters params = ( ̂params, g, g1,
H1, H2, H3) to A and keeps α itself.

Phase 1: A adaptively issues queries as follows:

– Extraction Query: On input of an identity ID, C first issues Extraction Query
on ID to the IBE challenger to obtain sk1

ID, and then C computes sk0
ID =

H1(ID)α. Finally, C returns skID = ( sk0
ID, sk1

ID) to adversary A.
– Decryption Query: On input of 〈ID, CT 〉, C first parses CT as (svk, σ, T ,

C1), where C1 = (c0ID1
, c1ID1

) || · · · ||( c0IDt
, c1IDt

). If Ver(svk, T ||C1, σ) = 0,
C outputs ⊥; else C computes sk0

ID = H1(ID)α and c0ID = H2( e(T , sk0
ID)).

If there is no c0IDj
= c0ID for j ∈ {1, · · · , t}, C returns ⊥; else C considers the

smallest index j such that c0IDj
= c0ID, and then C issues Decryption Query

on (ID, c1ID) to the IBE challenger and obtains a result L. If L =⊥, C outputs
⊥; else parses L as svk′||δ′||M ′, checks if svk = svk′, if not, outputs ⊥; else
issues Hash3 Query on (δ′,M ′) and obtains (δ′,M ′, r′, gr′

), checks whether
T = gr′

holds, if not, outputs ⊥; else returns M ′.

Challenge: A submits a message M∗ and two distinct sets S0, S1 to C. It
is required that A has not issued Extraction Query on ID ∈ {IDv, IDw} in
Phase 1. First, C picks δ∗←RZp, computes r = H3(δ∗,M∗) and sets T ∗ = gr.
Second, C runs (svk∗, ssk∗)←Gen(1λ), sets m∗ = svk∗||δ∗||M∗ and sends m∗

and (IDv, IDw) to the IBE challenger and receives a ciphertext c1∗
IDβ

←IBE.Enc

( ̂params, IDβ , m∗) from IBE challenger. Third, C chooses a random R ∈ {0, 1}λ

and sets c0∗
IDβ

= R. For IDj ∈ S0 ∩ S1, C computes c0IDj
= H2(e(g1,H1(IDj))r)

and c1IDj
←IBE.Enc( ̂params, IDj , svk∗||δ∗||M∗). Let C∗

1 be the concatenation
of (c0IDj

, c1IDj
) for all IDj ∈ Sβ . Fianlly, C runs σ∗ ← Sig(ssk∗, T ∗||C∗

1 ) and
returns the challenge ciphertext CT ∗ = (svk∗, T ∗, C∗

1 , σ∗) to adversary A.

Phase 2: A continues to adaptively issue queries as follows:

Extraction Query: A issues Extraction Query on ID, where ID �∈ {IDv, IDw},
C handles them as in Phase 1.
Decryption Query: A issues Decryption Query on 〈ID, CT 〉, C parses CT as
(svk, σ, T , C1), where C1 = (c0ID1

, c1ID1
)|| · · · ||( c0IDt

, c1IDt
). If svk = svk∗ or

Ver(svk, T ||C1, σ) = 0, then C outputs ⊥. Otherwise, C does as follows:

– When CT = CT ∗ and ID ∈ {IDv, IDw}, C outputs ⊥;
– When CT = CT ∗ and ID ∈ S0 ∩ S1, C outputs M∗;
– When (CT = CT ∗ and ID �∈ S0 ∪ S1) or (CT �= CT ∗ and ID �∈ {IDv, IDw}),

C answers as in Phase 1;
– When CT �= CT ∗ and ID ∈ {IDv, IDw}, C first computes sk0

ID = H1(ID)α

and c0ID = H2(e(T, sk0
ID)). For each j ∈ {1, · · · , t}, if c0IDj

�= c0ID, C returns
⊥; else C considers the smallest index j such that c0IDj

= c0ID. If c1ID = c1∗
IDβ

,
C outputs ⊥. Since c1∗

IDβ
← IBE.Enc(IDβ , svk∗||δ∗||M∗), when ID = IDβ ,
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IBE.Dec(skIDβ
, c1∗

IDβ
) and the corresponding message is svk∗||δ∗||M∗, as

svk = svk∗ has been rejected; When ID ∈ {IDv, IDw}/{IDβ}. As the IBE
scheme is WROB-CCA secure, then IBE.Dec(skID, c1∗

IDβ
) �=⊥ with negligi-

ble probability. Otherwise, C issues Decryption Query on (ID, c1ID) to IBE
challenger as in Phase 1.

Guess: A outputs a bit b′ ∈ {0, 1}.
If the IBE challenger encrypts svk∗||δ∗||M∗ under IDv, then C is simulating

Game2; else the IBE challenger encrypts svk∗||δ∗||M∗ under IDw, that is C is
simulating Game3. Therefore, if adversary A can distinguish Game2 from Game3
with a non-negligible advantage, then C also have a non-negligible advantage
to break the ANO-CCA security or WROB-CCA security of the IBE scheme.
However, the IBE scheme is ANO-CCA secure and WROB-CCA secure. Hence,
Game2 and Game3 are computationally indistinguishable.

Lemma 4. Suppose that DBDH assumption holds, then Game3 and Game4 are
computationally indistinguishable.

Proof. The case for distinguishing Game3 from Game4 is symmetric with the
case for distinguishing Game1 from Game2.

Lemma 5. Suppose that the signature scheme Σ is a strong one-time signature
scheme, then Game4 and Game5 are computationally indistinguishable.

Proof. The case for distinguishing Game4 from Game5 is symmetric with the
case for distinguishing Game0 from Game1.

4 Comparisons

In this section, we compare the security and performance among the existing
anonymous IBBE schemes and our concrete instantiation from our generic IBBE
construction which is presented in AppendixA. The results of comparisons are
presented in Table 1.

In Table 1, it shows that the constructions [14,29] and the first construction
[39] have some security flaws in their security proofs. As constructions [11,29]
both pointed out construction [14] does not achieve anonymity. Constructions
[22,35] both pointed out construction [29] does not achieve anonymity. Con-
struction [36] gave an insider attack about anonymity for the first scheme of
[39]. Construction [11] and the second construction [39] do not have security
proofs. Construction [32] is only an outsider-anonymous IBBE with adaptive
CPA security in standard model. Constructions [20,26,38] are all CPA, while
our construction can simultaneously ensure the confidentiality and anonymity
under chosen-ciphertext attacks. In particular, our scheme is not less efficient
than these existing IBBE schemes, although all of them cannot obtain the same
security as ours. Thus, the comparison results indicate that our concrete IBBE
scheme has a better overall security and performance. The symbol “×” means
there exists some security flaws or problems in their security proofs and “−”
means there is no security proof in the scheme.
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Table 1. Security and Performance Comparisons

[14] [11] [29] [39]-1 [39]-2 [20] [26] [38] [32] Ours

Confidentiality CCA - CCA CCA - CPA CPA CPA CPA CCA

Outsider Anonymity × - CCA CCA - CPA CPA CPA CPA CCA

Insider Anonymity × - × × - CPA CPA CPA − CCA

Security Model ROM - ROM ROM - ROM STD STD STD ROM

Pk Size O(1) O(1) O(1) O(1) O(1) O(1) O(n) O(�) O(�) O(1)

Sk Size O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(k) O(k) O(1)

CT Size O(k) O(k) O(k) O(k) O(k) O(k) O(k) O(1) O(1) O(k)

Decryption time O(1) O(k) O(1) O(k) O(k) O(1) O(1) O(1) O(1) O(1)

5 Conclusion

In this paper, we propose a generic IBBE scheme from a generic anonymous
IBE construction. The generic IBBE scheme obtains the confidentiality and
anonymity against chosen-ciphertext attacks simultaneously. In addition, the
scheme has a desirable property, that is the public parameters size, the private
key size and the decryption cost are constant and independent of the number
of receivers. However, our construction is proved in the random oracle model.
So our future work is to construct a generic anonymous IBBE construction with
chosen-ciphertext security in the standard model.
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A A Concrete Instantiation

We shall present a concrete instantiation based on the generic IBBE construc-
tion, employing Boneh-Franklin IBE scheme [8], which is IND-CCA secure and
ANO-CCA secure as noticed in [1] and WROB-CCA secure as noticed in [2]
and a concrete signature scheme, e.g. [27] which is a strong one-time signature
scheme Σ = (Gen,Sig,Ver).

Setup(1λ): On input of a security parameter λ, it first chooses a bilinear group
G, GT of prime order p with bilinear map e : G × G → GT and a generator
g←RG, and then picks α, β←RZp, computes g1 = gα and g2 = gβ , chooses hash
functions H1 : {0, 1}∗ → G, H2 : {0, 1}� × {0, 1}n → Zp, H3 : GT → {0, 1}�,
H4 : {0, 1}� → {0, 1}(λ+�+n), H5 : {0, 1}� × {0, 1}λ+�+n → Zp which
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are modeled as random oracles. The public parameters are params =
(G, GT , Zp, p, e, g, g1, g2,H1,H2,H3, H4, H5) and the master secret key is msk
= (α, β).

Extract(msk, ID): On input of the master secret key msk and an identity
ID, it computes sk0

ID = H1(ID)α and sk1
ID = H1(ID)β . The private key is

skID = (sk0
ID, sk1

ID).

Enc(params, S,M): On input of the public parameters params, a receiver
set S = {ID1, ID2, · · · , IDt} and a message M ∈ {0, 1}n, it first runs
(svk, ssk) ← Gen(1λ), chooses δ1, δ2 ←R {0, 1}�, lets r1 = H2(δ1||M) and
r2 = H5(δ2||svk||δ1 ||M), and then computes T1 = gr1 and T2 = gr2 .
For each ID ∈ S, it computes c0ID = H3(e(g1,H1(ID))r1) and c1ID =
(c10ID, c11ID) = (H3(e(g2,H1(ID))r) ⊕ δ2,H4(δ2) ⊕ (svk||δ1 ||M)). Let C1 =
(c0ID1

, c1ID1
)|| · · · ||(c0IDt

, c1IDt
). The ciphertext is CT = (svk, T1, T2, C1, σ), where

σ =Sig(ssk, T1||T2||C1).

Dec(skID, CT ): On input of a private key skID and a ciphertext CT , it parses
CT as (svk, σ, T, C1), where C1 = (c0ID1

, c1ID1
)|| · · · ||(c0IDt

, c1IDt
). If Ver(svk,

T1||T2||C1, σ)=0, returns ⊥; else computes c0ID=H3 (e(T1, sk0
ID)) and determines

which ciphertext should be decrypted among (c0ID1
, c1ID1

)|| · · · ||(c0IDt
, c1IDt

). For
each IDj ∈ S, if c0ID �= c0IDj

, returns ⊥; else chooses the smallest index j such
that c0ID = c0IDj

and c1ID = c1IDj
. It computes δ′

2 = H3(e(T2, sk
1
ID)) ⊕ c10ID,

svk||δ1||M = H4(δ′
2) ⊕ c11ID. If T1 �= gH2(δ1||M) or T2 �= gH5(δ2||svk||δ1||M), returns

⊥; else returns M .
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Abstract. Traditionally, a ciphertext from an identity-based broadcast
encryption can be distributed to a group of receivers whose identities
are included in the ciphertext. Once the ciphertext has been created, it
is not possible to remove any intended receivers from it without con-
ducting decryption. In this paper, we consider an interesting question:
how to remove target designated receivers from a ciphertext generated
by an anonymous identity-based broadcast encryption? The solution to
this question is found applicable to file sharing with revocation. In this
work, we found an affirmative answer to this question. We construct an
anonymous identity-based broadcast encryption, which offers the user
revocation of ciphertext and the revocation process does not reveal any
information of the plaintext and receiver identity. In our proposed
scheme, the group of receiver identities are anonymous and only known
by the encryptor. We prove that our scheme is semantically secure in the
random oracle model.

Keywords: Identity-based encryption · Revocation · Anonymity

1 Introduction

In a broadcast encryption system, a file can be encrypted for a group of receivers
such that any receiver in the group can decrypt the ciphertext using its respec-
tive private key. The users outside the group learn nothing about the encrypted
file even if they collude. Broadcast encryption is a useful way for data sharing,
where receivers can obtain the broadcast (or shared) data with their private keys.
However, directly applying a broadcast encryption for data sharing in database
systems or cloud computing might suffer from some drawbacks. For example, it
cannot preserve the receiver privacy, since all receiver identities must be attached
with the ciphertext. Therefore, if applying an identity-based broadcast encryp-
tion scheme to file sharing, an anonymous broadcast encryption would be more
desirable.

We consider an application scenario using an anonymous identity-based
broadcast encryption, where the file sharing system for a company is supplied by
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a cloud service. Without losing generality, let’s assume that the system involves
a cloud server, file owner, and a group of users. The file owner first encrypts a
file for a selected group S, and then stores the encrypted file in the cloud for
sharing. When some users R leave the company, the server must revoke them
from accessing all files. If the revoked users are in S, they cannot decrypt the
ciphertext after the server conducts revocation. Mostly important, it requires
the cloud server to be able to revoke users from a ciphertext without knowing
the encrypted file and the identities of receivers.

A trivial solution to the scenario is to adopt the “decrypt then re-encrypt”
approach. It requires the server to have the ability to decrypt the ciphertext.
When some identities should be revoked, the server first decrypts the ciphertext
and removes them from the original authorized user set. It then re-encrypts
the file using the new authorized user set. However, in this trivial solution, the
cloud server is able to learn the content and the identity of authorized users
who can access the file. Alternatively, the cloud server without decryption right
can encrypt the ciphertext by using the broadcast encryption scheme (e.g. [21])
where anyone can decrypt the ciphertext except the revoked users. This method
guarantees that the cloud server cannot get any useful information about the
content and the authorized users’ identities from the original ciphertext. The
limitation is that this method could cause a collusion attack. For example, let
IDi be the identity of User i; if ID1 /∈ S ∪ R, ID2 ∈ S ∩ R, ID1 can use its
private key to help ID2 recover the original ciphertext, then ID2 uses its private
key to decrypt the original ciphertext.

Our Contributions. We notice that there is no ideal trivial solution to the
aforementioned problem. In this work, we provide a solution to the stated prob-
lem earlier and show how to revoke users’ identities from the ciphertext without
the knowledge of the plaintext and the knowledge of the receivers. We propose a
new cryptographic notion called anonymous identity-based broadcast encryption
with revocation (AIBBER) to realize this. Our novel solution allows the cloud
server to revoke users’ identities without decryption and achieves full anonymity
where only the sender knows the receivers’ identities. We present two security
models to meet the requirements of the proposed notion and show that our con-
struction is secure under the attacks in the proposed model. In our setting, both
the system public key and user private key are constant. The computation in
revocation phase is small, more precisely O(t), where t is the number of revoked
identities.

1.1 Related Work

Anonymous Broadcast Encryption. Since Fiat and Naor [15] formally intro-
duced broadcast encryption, subsequent works [3,6,8–10,16,25] have proposed
broadcast encryption systems with different properties. They mainly focused
on reducing public key sizes, private key sizes, ciphertext sizes and computa-
tional costs for encryption and decryption. The notion of identity-based broad-
cast encryption was introduced by Sakai and Furukawa [26], and Delerablée’s
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work [8] achieves constant size ciphertext and private keys. In these schemes,
the receiver identities must be attached with the ciphertext, which exposes the
privacy of the receivers.

The first work addressing the anonymity in broadcast encryption appeared
in [1]. The authors presented the notion of private broadcast encryption to pro-
tect the identities of the receivers and gave a generic construction from any
key indistinguishable CCA scheme, which achieves receiver anonymity and CCA
security. The security in [1] depends on a strongly secure one-time signature.
Boneh, Sahai and Waters [4] extended this notion to construct private linear
broadcast encryption and proposed a fully collusion resistant tracing traitors
scheme with sublinear size ciphertexts and constant size private keys. However,
the receivers cannot be arbitrary sets of users. Subsequently, many anonymous
ID-based broadcast encryption schemes were proposed [12,14,18,22,28].

Libert, Paterson and Quaglia [22] examined the security of the number-
theoretic construction in [1] and suggested the proof techniques without the ran-
dom oracle. The authors proposed an anonymous broadcast encryption scheme
that achieves adaptive security without random oracles. The ciphertext in their
schemes are linear of the number of receivers and the security depends on a one-
time signature. Later, Fazio and Perera [14] formalized the notion of outsider-
anonymous broadcast encryption, which lies between the complete lack of pro-
tection that characterizes traditional broadcast encryption scheme [15] and the
full anonymity in [1]. Their constructions achieve sublinear ciphertext length but
fail to obtain anonymity among the receiver.

The work of Kiayias and Samari [19] aimed to study the lower bounds for the
ciphertext size of private broadcast encryption. They showed that an atomic pri-
vate broadcast encryption scheme with fully anonymous must have a ciphertext
size of Ω(n · k), where n is the number of broadcast set and k is the secu-
rity parameter. Recently, Fazio, Nicolosi and Perera [13] studied the broadcast
steganography and introduced a new construction called outsider-anonymous
broadcast encryption with pseudorandom ciphertexts, which achieves sublinear
ciphertext size and is secure without random oracles.

Revocation. The revocation schemes in the literature only guarantee the
revoked users cannot decrypt the ciphertext. While the revocation in our paper
focuses on how to revoke the identities from a group of users S. Only the users
who are in S but not in the revocation set can retrieve the plaintext. Revocation
system is a variant of the broadcast encryption system, where it takes a set of
revoked users as input to the encryption function. Several elegant revocation
constructions [5,11,17,20,21,23,24] have been proposed. Naor, Naor and Lot-
spiech [23] presented a technique called subset-cover framework, and based on
this framework they proposed the first stateless tree-based revocation scheme
which was secure against a collision of any number of users. Boneh and Waters
[5] introduced a primitive called augmented broadcast encryption which was
claimed to be sufficient for constructing trace and revoke schemes. The authors
proposed a revocation scheme with sublinear size ciphertexts and private keys.
The scheme was proved to be secure against adaptive adversaries.
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Lewko, Sahai and Waters [21] proposed a revocation system with very small
private keys using the “two equation” technique. The primary challenge is to
achieve full collusion resilience. Anyone can decrypt the ciphertext and get the
broadcast message except the revoked users even if they collude. In Lewko et
al.’s scheme, the ciphertext size is O(t) and the size of the public key is constant,
where t is the number of revoked users. Recently, to narrow the scope of decrypter
in [21], a single revocation encryption (SRE) scheme was presented by Lee et al.
[20], which allows a sender to broadcast a message to a group of selected users
and one group user is revoked. Any group member can decrypt the ciphertext
except the revoked user. The authors then proposed a public key trace and
revoke scheme by combining the layered subset difference scheme and their SRE
scheme.

Broadcast Proxy Re-Encryption. The concept of proxy re-encryption (PRE)
was introduced by Blaze, Bleumer and Strauss [2], which provides a flexible and
secure way to share data. PRE allows an honest-but-curious proxy to turn a
ciphertext intended for a receiver into another ciphertext intended for another
receiver. While, the proxy cannot learn any useful information about the plain-
text during the transformation. Chu et al. [7] extended this notion to construct
the proxy broadcast re-encryption (PBRE). Compared with PRE, PBRE allows
the proxy to transform a ciphertext intended for a receiver set to another cipher-
text intended for another receiver set. Recently, motivated by the cloud email
system, Xu et al. [27] presented a conditional identity-based broadcast proxy
re-encryption scheme with constant ciphertext based on [8]. In both the PRE
and PBRE system, the data owner has to delegate a re-encryption key to the
proxy and the proxy knows the new receivers’ identities.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
give some preliminaries including complexity assumption, the formal definition
of anonymous identity-based broadcast encryption with revocation and the cor-
responding security models. The concrete construction is presented in Sect. 3.
In Sect. 4, we show the security proofs of our scheme. Finally, we conclude the
paper in Sect. 5.

2 Preliminaries

2.1 Complexity Assumption

Let G and GT be two cyclic groups of the same prime order p. A bilinear map
is a map e : G × G → GT which satisfies the following properties:

1. Bilinear: For all P,Q ∈ G and a, b ∈ Z
∗
p, we have e (aP, bQ) = e(P,Q)ab.

2. Non-degeneracy: There exists P,Q ∈ G such that e (P,Q) �= 1.
3. Computability: It is efficient to compute e (P,Q) for all P,Q ∈ G.

A bilinear group BG = (G,GT , e, p) is composed of objects as described above.
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Bilinear Diffie-Hellman Problem (BDH). Let BG = (G,GT , e, p) be a bilin-
ear group with a generator P ∈ G. The BDH problem in (G,GT , e) is as follows:
Given a tuple (P, aP, bP, cP ) for some unknown a, b, c ∈ Z

∗
p as input, output

e(P, P )abc ∈ GT . An algorithm A has advantage ε in solving BDH in (G,GT , e) if

Pr
[
A (P, aP, bP, cP ) = e(P, P )abc

]
≥ ε,

where the probability is over the random choice of a, b, c in Z
∗
p and P ∈ G.

Definition 1. We say that the BDH assumption holds in G if no PPT adversary
has advantage at least ε in solving the BDH problem in G.

2.2 Anonymous ID-Based Broadcast Encryption with Revocation

The AIBBER system is derived from Identity-Based Broadcast Encryption
(IBBE) [8] with more functions. Formally, an AIBBER scheme consists of the
algorithms AIBBER = (Setup,KeyGen, Encrypt,Revoke,Decrypt) defined as fol-
lows.
Setup (1λ): Taking a security parameter 1λ as input, it outputs a master public
key mpk and a master secrete key msk. The mpk is publicly known while the msk
is kept secretly.
KeyGen (mpk,msk, ID): Taking the master key pair (msk,mpk) and a user
identity ID as input, it outputs a private key dID for ID.
Encrypt (mpk,M, S): Taking the master public key mpk, a message M and a
set of identities S = (ID1, ID2, ..., IDn) as input, it outputs a ciphertext CT .
Revoke (mpk, R,CT ): Taking the master public key mpk, a ciphertext CT and
a revocation identity set R = (ID1, ID2, · · · , IDt) as input, it outputs a new
ciphertext CT ′ with R.
Decrypt (mpk, CT ′, ID, dID): Taking the master public key mpk, a ciphertext
CT ′, an identity ID and the private key dID as input. It outputs the message
M if ID ∈ S and ID /∈ R.
Correctness. Note that if t = 0, the AIBBER scheme is AIBBE scheme. Thus,
it requires that for any ID ∈ S and ID /∈ R, if (mpk,msk) ← Setup(1λ), dID ←
KeyGen(mpk,msk, ID), CT ← Encrypt(mpk,M, S), CT ′ ← Revoke(mpk, R,CT ),
we have Decrypt(CT, ID, dID) = M and Decrypt(CT ′, ID, dID) = M .

2.3 Security Models

The security of AIBBER scheme requires that without a valid private key, both
the encrypted message and the intended receivers are unknown to the adversary.
Let CT be the original ciphertext for receivers S, R be the revoke users and CT ′

be the ciphertext after revocation. The security requires:
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1. The message in the ciphertext CT cannot be distinguished without a valid
private key associated with an identity ID ∈ S. The message in CT ′ cannot be
distinguished without a valid private key associated with an identity ID′ ∈ S
and ID′ /∈ R.

2. The identity set in the ciphertext CT cannot be distinguished without a
valid private key associated with an identity ID ∈ S. The identity set in
CT ′ cannot be distinguished without a valid private key associated with an
identity ID′ ∈ S and ID′ /∈ R.

We define the IND-ID-CPA security and ANON-ID-CPA security for the
AIBBER system in a similar way as anonymous IBBE system.
IND-ID-CPA Security. IND-ID-CPA security in AIBBER allows the adver-
sary to issue the private key query to obtain the private key associated with any
identity ID of her choice. The adversary is challenged on an identity set S∗,
two messages M0,M1 of its choice and a revocation identity set R∗. Adversary’s
goal is to distinguish whether the challenge ciphertext is encrypted under M0 or
M1 for S∗ with some restrictions. We say that adversary breaks the scheme if it
guesses the message correctly. Specifically, the notion of IND-ID-CPA is defined
under the following game between the challenger C and the PPT adversary A.
Setup: C runs the Setup algorithm to generate the master public key mpk and
master secret key msk. Then it sends the mpk to A and keeps the msk secretly.
Phase 1: A issues private key queries. Upon receiving a private key query for
IDi. C runs the KeyGen algorithm to generate the private key dIDi

and sends
the result back to A.
Challenge: When A decides that Phase 1 is over, it outputs two distinct
messages M0, M1 from the same message space, a challenge identity set S∗ =
(ID1, ID2, · · · , IDn) and a revocation identity set R∗ = (ID′

1, ID′
2, · · · , ID′

t)
with the restriction that A has not queried the private key on IDi in Phase 1,
where IDi ∈ S∗ and IDi /∈ R∗. C randomly picks a bit b ∈ {0, 1} and generates
the challenge ciphertext CT ∗ as follows:

CT = Encrypt(mpk,Mb, S
∗), CT ′ = Revoke(mpk,Mb, CT ).

If R∗ �= ∅, set CT ∗ = CT ′ as the challenge ciphertext, otherwise set CT ∗ = CT
as the challenge ciphertext, then send CT ∗ to A.
Phase 2: A issues more private key queries as in Phase 1, but it cannot query
the private key on IDi where IDi ∈ S∗ and IDi /∈ R∗.
Guess: Finally, A outputs its guess b′ ∈ {0, 1} and wins the game if b′ = b.

We refer to such an adversary A as an IND-ID-CPA adversary and define
adversary A’s advantage in attacking the scheme as AdvIND-ID-CPA

AIBER (A) =
|Pr [b = b′] − 1/2|. The probability is over the random bits used by the chal-
lenger and the adversary.

Definition 2. We say that an AIBBER scheme is IND-ID-CPA secure if there
is no IND-ID-CPA adversary A has a non-negligible advantage in this game.
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ANON-ID-CPA Security. ANON-ID-CPA security in AIBBER allows the
adversary to issue the private key query to obtain the private key of any identity
ID of its choice. Similarly, the adversary is challenged on a message M∗, two
identity sets S0, S1 and a revocation identity set R∗ of its choice. Adversary’s
goal is to distinguish whether the challenge ciphertext is generated under S0 or
S1 with some restrictions. We say that adversary breaks the scheme if it guesses
the identity set correctly. Specifically, the notion of ANON-ID-CPA is defined
under the following game between the challenger C and the PPT adversary A.
Setup: C runs the Setup algorithm to generate the master public key mpk and
master secret key msk. Then it sends the mpk to A and keeps the msk secretly.
Phase 1: A issues private key queries. Upon receiving a private key query for
IDi. C runs the KeyGen algorithm to generate the private key dIDi

and sends
the result back to A.
Challenge: When A decides that Phase 1 is over, it outputs a mes-
sage M∗, two distinct identity sets S0 = (ID0,1, ID0,2, ..., ID0,n), S1 =
(ID1,1, ID1,2, ..., ID1,n) and a revocation set R∗ = (ID′

1, ID′
2, · · · , ID′

t). We
require that A has not issued the private key queries on IDi in Phase 1, where
IDi ∈ (S0 ∪ S1)\(S0 ∩ S1). C randomly picks a bit b ∈ {0, 1} and generates the
challenge ciphertext CT ∗ as follows:

CT = Encrypt(mpk,M∗, Sb), CT ′ = Revoke(mpk,M∗, CT ).

If R∗ �= ∅, set CT ∗ = CT ′ as the challenge ciphertext, otherwise set CT ∗ = CT
as the challenge ciphertext, then send CT ∗ to A.
Phase 2: A issues more private key queries as in Phase 1, but it cannot query
the private key on any IDi, where IDi ∈ (S0 ∪ S1)\(S0 ∩ S1).
Guess: Finally, A outputs its guess b′ ∈ {0, 1} and wins the game if b′ = b.

We refer to such an adversary A as an ANON-ID-CPA adversary and define
adversary A’s advantage in attacking the scheme as AdvANON-ID-CPA

AIBER (A) =
|Pr [b = b′] − 1/2|. The probability is over the random bits used by the chal-
lenger and the adversary.

Definition 3. We say that an AIBBER scheme is ANON-ID-CPA secure if
there is for any PPT adversary A, AdvANON-ID-CPA

AIBER (A) is negligible.

3 The Proposed Scheme

3.1 Construction

Setup: Given a security parameter 1λ, the setup algorithm randomly chooses a
bilinear group BG = (G,GT , e, p) with a generator P ∈ G, s ∈ Z

∗
p and computes

Ppub = sP . It then picks four cryptographic hash functions H : {0, 1}∗ → Z
∗
p,

H1 : {0, 1}∗ → G, H2 : GT × {0, 1}∗ → G, H3 : GT × {0, 1}∗ → G. The master
public key and master secret key are

mpk = {BG, P, Ppub,H,H1,H2,H3}, msk = s.
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KeyGen: Given the master key pair (mpk,msk) and an identity ID ∈ {0, 1}∗,
this algorithm outputs the private key

dID = sH1(ID).

Encrypt: Given the master public key mpk, a set of identity S =
(ID1, ID2, . . . , IDn) and a message M ∈ G, this algorithm randomly chooses
r1, r2 ∈ Z

∗
p and v ∈ G. For i = 1, 2, · · · , n, it computes xi = H(IDi),

fi(x) =
n∏

j=1,j �=i

x − xj

xi − xj
=

n−1∑

j=0

ai,jx
j mod p,

Ai = H2

(
e
(
H1(IDi), Ppub

)r1
, IDi

)
, Bi = v · H3

(
e
(
H1(IDi), Ppub

)r2
, IDi

)
.

We have fi(xi) = 1 and fi(xj) = 0 for i �= j. Then it creates the ciphertext CT
as C0 = v · M,C1 = r1P,C2 = r2P, together with, for each i = 1, 2, · · · , n:

Qi =
n∏

j=1

A
aj,i−1
j , Ui =

n∏

j=1

B
aj,i−1
j .

Revoke: Given a ciphertext CT = (C0, C1, C2, Qi, Ui, i ∈ [1, n]), the master
public key mpk and a revocation identity set R, where |R| = t. It requires t < n.
If R = ∅, this algorithm sets CT ′ = CT . Otherwise, it randomly chooses u ∈ G

and computes C ′
0 = u · C0, xi = H(IDi) for IDi ∈ R,

g (x) =
t∏

i=1

(x − xi) =
t∑

i=0

bix
i mod p.

Then it sets bi = 0 for i = t + 1, t + 2, · · · , n − 1 and for each i = 1, 2, · · · , n
computes

Q′
i = Qi · ubi−1 .

Then it sets CT ′ = (R,C ′
0, C1, C2, Q

′
i, Ui, i ∈ [1, n]).

Decrypt: Given a ciphertext CT ′ = (R,C ′
0, C1, C2, Q

′
i, Ui, i ∈ [1, n]), an identity

IDi, a private key dIDi
and the master public key mpk, this algorithm computes

xi = H(IDi) and

U = U1 · U2
xi · U3

x2
i · · · Un

xn−1
i , Q = Q′

1 · Q′
2
xi · Q′

3
x2
i · · · Q′

n
xn−1
i .

Then it computes xj = H(IDj) for each IDj ∈ R to reconstruct g(x) as:

g (x) =
t∏

j=1

(x − xj) =
t∑

j=0

bjx
j mod p.
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Finally, it uses the private key dIDi
to compute

v′ = H3

(
e(C2, dIDi

), IDi

)−1
U, u′ =

(
Q · H2

(
e(C1, dIDi

), IDi

)−1
) 1

g(xi) .

and recovers the message M = C ′
0 ·(u′v′)−1. If the identity IDi ∈ S and IDi /∈ R,

we have u′ = u, v′ = v, then it obtains the correct M after decryption.
Note: For simplicity, we omit the modulo operation and assume that the coeffi-
cients of all polynomials are from Z

∗
p in the rest of paper.

3.2 Discussion and Correctness

One may think that after revocation, the revocation set may be updated multiple
times. Our scheme allows the server to update the revocation set. For each
update, the server uses the original ciphertext and the new revocation set to
perform the Revoke algorithm. Thus, the server needs to store the original
ciphertext CT in our scheme. In our setting, there is no requirement of R ⊂ S.
The revocation set R can be arbitrary users.

From our setting, only the users in S can decryption the ciphertext CT . After
revocation, the revoked users cannot decrypt the ciphertext CT ′. We note that
if ID ∈ R, g(H(ID)) = 0 and ug(H(ID)) = 1. The user with identity ID cannot
retrieve one of the decryption keys u, even all users in R conclude. To obtain the
decryption keys u and v, the user must belong to S and not belong to R. Thus
our scheme ensures that even if all the revoked users collude, they still cannot
access the file and learn the identities of receivers.

Next we show that our construction meets the requirements of correctness
as we claimed in the Sect. 2.3. If xi = H(IDi) is computed correctly, for any
IDi ∈ S and IDi /∈ R, we have g(xi) �= 0 and

Q = Q′
1 ·Q′

2
xi ·Q′

3
x2
i · · ·Q′

n
xn−1
i

=
(
Q1 · (Q2)

xi · (Q3)
x2
i · · · (Qn)x

n−1
i

)
·
(
ub0+b1xi+b2x

2
i+···+bn−1x

n−1
i

)

=

((
A

a1,0
1 A

a2,0
2 · · ·Aan,0

n

) · · · (Aa1,n−1
1 A

a2,n−1
2 · · ·Aan,n−1

n

)xn−1
i

)
·
(
ug(xi)

)

=

(
A

a1,0+a1,1xi+a1,2x
2
i+·+a1,n−1x

n−1
i

1

)
·
(
A

a2,0+a2,1xi+a2,2x
2
i+·+a2,n−1x

n−1
i

2

)
· · ·

(
A

an,0+an,1xi+an,2x
2
i+·+an,n−1x

n−1
i

n

)
· ug(xi)

= A
f1(xi)
1 ·Af2(xi)

2 · · ·Afn(xi)
n · ug(xi)

= Ai · ug(xi)

u′ =
(
Q ·H2

(
e(C1, dIDi), IDi

)−1
) 1

g(xi)

=
(
Ai · ug(xi) ·H2

(
e(C1, dIDi), IDi

)−1
) 1

g(xi)

=

(
H2

(
e
(
H1(IDi), Ppub

)r1 , IDi

)
·H2

(
e
(
r1P, sH1(IDi)

)
, IDi

)−1

· ug(xi)

) 1
g(xi)

=
(
ug(xi)

) 1
g(xi)

= u.
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The user IDi uses its private key dIDi
to remove Ai from Qi via above compu-

tation. As g(xi) �= 0, the user can obtain u.

U = U1 · U2
xi · U3

x2
i · · · Un

xn−1
i

=
(
(Ba1,0

1 B
a2,0
2 · · · Ban,0

n ) · · · (Ba1,n−1
1 B

a2,n−1
2 · · · Ban,n−1

n )xn−1
i

)

=
(
B

a1,0+a1,1xi+a1,2x2
i+·+a1,n−1xn−1

i
1

)
·
(
B

a2,0+a2,1xi+a2,2x2
i+·+a2,n−1xn−1

i
2

)
· · ·

(
B

an,0+an,1xi+an,2x2
i+·+an,n−1xn−1

i
n

)

= B
f1(xi)
1 · B

f2(xi)
2 · · · Bfn(xi)

n

= Bi

v′ = H3

(
e(C2, dIDi

), IDi

)−1
U

= H3

(
e
(
r2P, sH1(IDi)

)
, IDi

)−1

· Bi

= H3

(
e
(
P,H1(IDi)

)sr2
, IDi

)−1

· H3

(
e
(
H1(IDi), Ppub

)r2
, IDi

)
· v

= v.

After recovering u and v, we get the message as C ′
0·(u′v′)−1 = Mvuu−1v−1 = M .

4 Security Analysis

Theorem 1. Suppose the hash functions H1, H2, H3 are random oracles. If the
BDH problem is hard, the proposed scheme is IND-ID-CPA secure. Specifically,
suppose there is an IND-ID-CPA adversary A that has advantage ε against our
proposed scheme. A makes at most qE private key queries and qH1 , qH2 , qH3

queries to the functions H1, H2 and H3 respectively. Then there is an algorithm
S to solve the BDH problem with advantage ε′ ≥ ε

n·e·(qH2+qH3 )
, where n is the

number of the broadcast identities.

Proof. Suppose there exists an adversary A who can break our scheme with
advantage ε. We build a simulator S that can solve the BDH problem with
advantage ε′ by running A. Let (P, aP, bP, cP ) be a random instance of BDH
problem taken as input by S and its goal is to compute e(P, P )abc. In order to
use A to solve the problem, S needs to simulate a challenger and respond all the
queries for A. For simplicity, we assume that the H2 and H3 query is after the H1

query for the same identity. S works by interacting with A in an IND-ID-CPA
game as follows:
Setup: S sets Ppub = aP and creates mpk = (p, P, Ppub, e,H).
H1-queries: A makes H1 queries. S responds to a query on IDi as follow.
S maintains a list L1 of a tuple (IDi, ci, ri, hi). This list is initially empty.
S first checks the L1. If the query IDi already appears on the L1 in a tuple
(IDi, ci, ri, hi), it returns the corresponding hi as the value of H1(IDi). Other-
wise, do the following:
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1. Select ci ∈R {0, 1} with Pr[ci = 0] = δ for some δ (determine later).
2. Pick ri ∈R Z

∗
p, if ci = 0, compute hi = ribP . If ci = 1, compute hi = riP .

3. Add the tuple (IDi, ci, ri, hi) to the L1 and respond with hi to A.

H2-queries: A makes H2 queries. S responds to a query on (Xi, IDi) as fol-
low. S maintains a list L2 of a tuple (Xi, IDi, λi). This list is initially empty.
S first checks the L2. If the query (Xi, IDi) already appears on the L2 in a
tuple (Xi, IDi, λi), it returns the corresponding λi as the value of H2(Xi, IDi).
Otherwise, S randomly picks a λi ∈ G as the value of H2(Xi, IDi), then adds
the tuple (Xi, IDi, λi) to the L2 and responds to A with λi.
H3-queries: A makes H3 queries. S responds to a query on (Yi, IDi) as fol-
low. S maintains a list L3 of a tuple (Yi, IDi, γi). This list is initially empty. S
first checks the L3. If the query (Yi, IDi) already appears on the L3 in a tuple
(Yi, IDi, γi), it returns the corresponding γi as the value of H3(Yi, IDi). Other-
wise, S randomly picks a γi ∈ G as the value of H3(Yi, IDi), then adds the tuple
(Yi, IDi, γi) to the L3 and responds to A with γi.
Phase 1: A issues the private key queries on IDi for several times as needed.
For each time, S first runs the H1 query to get the corresponding ci and ri. If
ci = 0, S aborts. If ci = 1, S computes dIDi

= sH1(IDi) = ariP = riPpub.
Challenge: When A decides Phase 1 is over, it outputs two distinct messages
M0,M1, a challenge identity set S∗ = (ID1, ID2, · · · , IDn) and a revocation
identity set R∗ = (ID′

1, ID′
2, · · · , ID′

t) under the restriction that A has not
queried the private key on IDi in Phase 1, where IDi ∈ S∗ and IDi /∈ R∗. S
randomly picks a random bit b ∈ {0, 1} and does the follows:
Case 1: R∗ = ∅. In this case, S randomly picks r∗ ∈ Z

∗
p, C∗

0 ∈ G, for each IDi ∈
S∗, i = 1, 2 · · · , n, randomly chooses Ai, B∗

i ∈ G and computes x∗
i = H(IDi),

fi(x) =
n∏

j=1,j �=i

x − x∗
j

x∗
i − x∗

j

=
n−1∑

j=0

ai,jx
j ,

Then S generates the challenge ciphertext CT ∗ as C0, C
∗
1 = r∗cP,C∗

2 = cP ,
together with, for each i = 1, 2, · · · , n :

Q∗
i =

n∏

j=1

A∗
j
aj,i−1 , U∗

i =
n∏

j=1

B∗
j

aj,i−1 .

Case 2: R∗ �= ∅. In this case, S does the follows:

1. Pick r∗ ∈R Z
∗
p, v∗, u∗ ∈R G, compute C ′∗

0 = v∗ ·u∗ ·Mb, C∗
1 = r∗cP , C∗

2 = cP .
2. For each (IDi ∈ S∗)∧ (IDi /∈ R∗), S randomly chooses Ai, B∗

i ∈ G. For each
(IDi ∈ S∗) ∧ (IDi ∈ R∗), S gets ri from the L1 (If IDi is not in the L1,
do H1 queries to get ri). Then it computes Xi = e(aP, cP )r∗ri and checks
whether the tuple (Xi, IDi) in the L2. If yes, it obtains the corresponding λi

and sets A∗
i = λi. Otherwise, it randomly choose A∗

i ∈ G and adds the new
tuple (Xi, IDi, A

∗
i ) to the L2. Then S computes Yi = e(aP, cP )ri and checks
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whether the tuple (Yi, IDi) in the L3. If yes, it obtains the corresponding γi

and sets w∗
i = γi. Otherwise, it randomly chooses w∗

i ∈ G and adds the new
tuple (Yi, IDi, w

∗
i ) to the L3, and computes B∗

i = w∗
i · v∗.

3. For each IDi ∈ S∗, i = 1, 2 · · · , n, compute x∗
i = H(IDi),

fi(x) =
n∏

j=1,j �=i

x − x∗
j

x∗
i − x∗

j

=
n−1∑

j=0

ai,jx
j ,

Q∗
i =

n∏

j=1

A∗
j
aj,i−1 , U∗

i =
n∏

j=1

B∗
j

aj,i−1 .

4. Compute x′∗
i = H(IDi) for IDi ∈ R∗ and

g (x) =
t∏

i=1

(x − x′∗
i ) =

t∑

i=0

bix
i.

Then set bi = 0 for i = t + 1, t + 2, · · · , n − 1. For 1 ≤ i ≤ n, compute

Q′∗
i = Q∗

i · u∗bi−1 ,

and set CT ∗ = (R∗, C ′∗
0 , C∗

1 , C∗
2 , Q′∗

i , U∗
i , i ∈ [1, n]).

Phase 2: A issues private key queries as needed, but it cannot query the private
key on IDi, where IDi ∈ S∗ and IDi /∈ R∗. S responds as in Phase 1.
Guess: Finally, A outputs its guess b′ ∈ {0, 1}.
Probability Analysis. Note that in the case R∗ = ∅, we can view
v∗ as the encryption key to encrypt the challenge message. Let W =
(e(H1(IDi), Ppub)c, IDi) where IDi ∈ S∗. In the real scheme, B∗

i = v∗ · H3(W ),
thus we also can regard H3(W ) as the encryption key to encrypt v∗. Before
querying the H3 value of W , the result of H3(W ) is unknown and random. From
the view of adversary, v∗ is encrypted with a random number key independent
of W . Therefore, B∗

i is a one-time pad. In other words, the challenge ciphertext
is a one-time pad. According to the assumption(A can break our scheme with
advantage ε), the adversary will query H3 on W . In this case, simulator decides
the corresponding hard problem’s solution is in the L3 and can solve it with
probability δ

n .
When R∗ �= ∅, we can view v∗ and u∗ as the encryption key to encrypt

the challenge message. However, in this case, the adversary can retrieve v∗ by
querying the private key of (IDi ∈ S∗) ∧ (IDi ∈ R∗). That is, the message
encryption key is only u∗. Let Ω =

(
e(H1(IDi), Ppub)r∗c, IDi

)
, where (IDi ∈

S∗) ∧ (IDi /∈ R∗). Similarly, in real scheme Q∗ = A∗
i · (u∗)g(x∗

i ) = H2(Ω) ·
(u∗)g(x∗

i ), we can regard Ω as the encryption key to encrypt u∗. Before querying
the H2 value of Ω, the result of H2(Ω) is unknown and random. From the view
of adversary, u∗ is encrypted with a random number key independent of Ω.
Therefore, Q∗ is a one-time pad, that is, the challenge ciphertext is a one-time
pad. According to the assumption(A can break our scheme with advantage ε),
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the adversary will query H2 on Ω. In this case, simulator can decides the solution
of the corresponding hard problem is in the L3 and solve it with probability δ

n−l
where l = |S∗ ∩R∗|. Here, we define the query which can solve the hard problem
as useful query.

If useful query happens, it means cj = 0, H1(IDj) = rjbP and dIDj
=

rjabP . From the decryption algorithm, we have e(C∗
1 , dIDj

) = e(P, P )r∗rjabc

and e(C∗
2 , dIDj

) = e(P, P )rjabc. Here S ign ores the guess of A and picks a
random tuple from the L2 or L3. It first obtains the corresponding rj from the

L1. If S picks the tuple (Xj , IDj , λj) from the L2, it computes X
(r∗rj)

−1

j as the
solution to the given instance of BDH problem. If S picks the tuple (Yj , IDj , γj)

from the L3, it computes X
r−1
j

j as the solution to the given instance of BDH
problem.

The above completes the description of simulation algorithm S. To complete
the security proof, it remains to show that S correctly outputs e (P, P )abc with
advantage at least ε′. According to our above analysis, we first define the follow-
ing events:

E1: Simulation dose not abort in private key query.
E2: At least one of the H1 values of challenge identities contains hard problem.
E3: Adversary chooses an identity where ci = 0 to distinguish challenge message.
E4: Simulator correctly chooses the solution from the L2 or L3 list.

The simulator can successfully solve the hard problem if and only if all events
happen simultaneously. Next, we analyze the probability of all events. From the
private key query, we know when each ci = 1, simulation will not abort, thus

Pr[E1] = Pr[ci = 1, i = 1, 2, · · · , qE ] = (1 − δ)qE .

All ci are chosen by simulator where ci = 0 with probability δ, ci = 1 with
probability 1 − δ. When ci = 0, the value of H1 contains the hard problem,
thus Pr[E2] = δ. Since all ci are chosen by simulator and they are secretly to
adversary, adversary does not know which identity’s ci is equal to 0 or 1. That
is, from adversary’s point of view, it does not know the probabilities of ci = 0
and ci = 1. Therefore, under event E2, we have

Pr[E3] = Pr[E3|ci = 0] Pr[ci = 0] + Pr[E3|ci = 1] Pr[ci = 1]
= 1

n−l Pr[ci = 0] + 1
n−l Pr[ci = 1]

= 1
n−l ≥ 1

n .

Note that the identity IDi ∈ S∗ ∩ R∗ allows to query the corresponding private
key. In our setting, these identities cannot be used to distinguish the challenge
messages. Since |S∗ ∩R∗| = l, the potential useful identity is n− l. Thus we have
above result Pr[E3] = 1

n−l ≥ 1
n .

Finally, from the simulator’s point of view, if adversary can guess the correct
b′ and with the conditions that E1, E2, E3 happen, it only knows that the
solution of the hard problem is in the L2 or L3, but it dose not know which one



236 J. Lai et al.

is, thus Pr[E4] ≥ 1
qH2+qH3

. It is clear that these four events are independent,
therefore, we have

ε′ ≥ Pr[E1 ∧ E2 ∧ E3 ∧ E4] · ε
= Pr[E1] · Pr[E2] · Pr[E3] · Pr[E4] · ε
≥ (1 − δ)qE · δ · 1

n · 1
qH2+qH3

· ε

= (1 − δ)qE · δ · ε
n(qH2+qH3 )

.

The function (1 − δ)qE · δ is maximized at δ = 1
qE+1 , we have

(1 − δ)qE · δ =
1

qE + 1
·
(

1 − 1
qE + 1

)qE

=
1
qE

·
(

1 − 1
qE + 1

)qE+1

.

For a large qE ,
(
1 − 1

qE+1

)qE+1

≈ 1
e , thus we have

ε′ ≥ (1 − δ)qE · δ · ε

n(qH2 + qH3)
≈ ε

n · e · (qH2 + qH3)
.

This completes the proof. �
Discussion. When R∗ = ∅, the challenge message is encrypted by v∗. If the
adversary can distinguish the message, the simulator can decide it must have
queried the H3 value with the input embedding the hard problem, but simulator
does not know which input embeds the hard problem. In this case, Pr[E4] =
1

qH3
≥ 1

qH2+qH3
. When R∗ �= ∅, even the inputs of H3 contain the hard problem,

the adversary can retrieve v∗ by the identity IDi ∈ S∗ and IDi ∈ R∗. Thus the
useful queries are from H2 and Pr[E4] = 1

qH2
≥ 1

qH2+qH3
.

Theorem 2. Suppose the hash functions H1, H2,H3 are random oracles. The
proposed scheme is ANON-ID-CPA secure under the BDH assumption. Specif-
ically, suppose there is an ANON-ID-CPA adversary A that has advantage ε
against our proposed scheme. A makes at most qE private key queries and qH1 ,
qH2 , qH3 queries to the functions H1, H2 and H3 respectively. Then there is an
algorithm S to solve the BDH problem with advantage ε′ ≥ ε

n·e·(qH2+qH3 )
, where

n is the number of broadcast identities.

Proof. The proof of Theorem2 is similar to the proof of Theorem 1. Given a
random instance of BDH problem (P, aP, bP, cP ), S works by interacting with
A in an ANON-ID-CPA game. The Setup, H1-query, H2-query, H3-query
and Phase 1 query are the same as in Theorem 1.

Challenge: When A decides Phase 1 is over, it outputs a challenge message
M∗, two distinct identity sets S0 = (ID0,1, ID0,2, · · · , ID0,n), S1 = (ID1,1,
ID1,2, · · · , ID1,n) and a revocation identity set R∗ = (ID′

1, ID′
2, · · · , ID′

t). We
require that any identity IDi ∈ (S0 ∪ S1)\(S0 ∩ S1) has not been queried the
private key in Phase 1. S picks a random bit b ∈ {0, 1} and dose the follows:
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1. Pick r∗ ∈R Z
∗
p, v∗ ∈ G, compute C∗

0 = v∗ · M , C∗
1 = r∗cP , C∗

2 = cP .
2. For each IDi ∈ Sb\(S0 ∩ S1), randomly choose A∗

i , B
∗
i ∈ G. For each IDi ∈

S0 ∩ S1, S first gets ri from the L1 (If IDi is not in the L1, do H1 queries to
get ri). Then it computes Xi = e(aP, cP )r∗ri and checks whether the tuple
(Xi, IDi) is in the L2. If yes, it obtains the corresponding λi and sets A∗

i = λi.
Otherwise, it randomly chooses A∗

i ∈ G and adds the new tuple (Xi, IDi, A
∗
i )

to the L2. Then S computes Yi = e(aP, cP )ri and checks whether the tuple
(Yi, IDi) in the L3. If yes, it obtains the corresponding γi and sets w∗

i = γi.
Otherwise, it randomly chooses w∗

i ∈ G and adds the new tuple (Yi, IDi, w
∗
i )

to the L3, and computes B∗
i = w∗

i · v∗.
3. For each i = 1, 2 · · · , n, compute x∗

i = H(IDi),

fi(x) =
n∏

j=1,j �=i

x − x∗
j

x∗
i − x∗

j

=
n−1∑

j=0

ai,jx
j ,

Q∗
i =

n∏

j=1

A∗
j
aj,i−1 , U∗

i =
n∏

j=1

B∗
j

aj,i−1

and set CT = (R∗, C∗
0 , C∗

1 , C∗
2 , Q∗

i , U
∗
i , i ∈ [1, n]).

Case 1: R∗ = ∅. S sets the challenge ciphertext CT ∗ = CT .
Case 2: R∗ �= ∅. S randomly chooses u∗ ∈ G and computes C ′∗

0 = u∗ · C∗
0 . For

each IDi ∈ R∗, S computes x′∗
i = H(IDi),

g (x) =
t∏

i=1

(x − x′∗
i ) =

t∑

i=0

bix
i,

and sets bi = 0 for i = t + 1, t + 2, · · · , n − 1. Finally, for each i = 1, 2, · · · , n, S
computes

Q′∗
i = Q∗

i · u∗bi−1 ,

and sets CT ∗ = (R∗, C ′∗
0 , C∗

1 , C∗
2 , Q′∗

i , U∗
i , i ∈ [1, n]).

Phase 2: A issues more private key queries, but it cannot query the private key
on IDi, where IDi ∈ (S0 ∪ S1)\(S0 ∩ S1). S responds as in Phase 1.
Guess: Finally, A outputs its guess b′ ∈ {0, 1}.

The probability analysis is almost similar to the one of Theorem1. Due to
space constraints, we omit it here.

5 Conclusion

We presented an anonymous identity-based broadcast encryption with revoca-
tion scheme for file sharing. The file owner can encrypt a file for sharing with
a group of users and stores the encrypted file in the cloud server (or any other
third party). The server can revoke target users without knowing the file and the
receiver identities. Our scheme ensures that even if all the revoked users collude,
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they still cannot access the file and learn the identities of receivers. The cloud
server also learns nothing about the file and the receiver identities. Finally, we
proved that the proposed scheme is IND-ID-CPA secure and ANON-ID-CPA
secure under the BDH assumption in the random oracle model.
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LNCS, vol. 5594, pp. 327–342. Springer, Heidelberg (2009)

8. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007)

9. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007)

10. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

11. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive
chosen ciphertext. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567. Springer,
Heidelberg (2002)

12. Fan, C., Huang, L., Ho, P.: Anonymous multireceiver identity-based encryption.
IEEE Trans. Comput. 59(9), 1239–1249 (2010)

13. Fazio, N., Nicolosi, A.R., Perera, I.M.: Broadcast steganography. In: Benaloh, J.
(ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 64–84. Springer, Heidelberg (2014)

14. Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear
ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 225–242. Springer, Heidelberg (2012)



Anonymous Identity-Based Broadcast Encryption 239

15. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

16. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 171–188. Springer, Heidelberg (2009)

17. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups
of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 511–527. Springer, Heidelberg (2004)

18. Hur, J., Park, C., Hwang, S.: Privacy-preserving identity-based broadcast encryp-
tion. Inf. Fusion 13(4), 296–303 (2012)

19. Kiayias, A., Samari, K.: Lower bounds for private broadcast encryption. In:
Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 176–190. Springer,
Heidelberg (2013)

20. Lee, K., Koo, W.K., Lee, D.H., Park, J.H.: Public-key revocation and tracing
schemes with subset difference methods revisited. In: Kuty�lowski, M., Vaidya, J.
(eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 1–18. Springer, Heidelberg (2014)

21. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: 2010 IEEE Symposium on Security and Privacy, pp. 273–285 (2010)

22. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: adap-
tive security and efficient constructions in the standard model. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224.
Springer, Heidelberg (2012)

23. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

24. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

25. Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA
Broadcast encryption with constant-size secret keys and ciphertexts. In: Susilo, W.,
Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 308–321. Springer,
Heidelberg (2012)

26. Sakai, R., Furukawa, J.: Identity-based broadcast encryption. IACR Cryptology
ePrint Archive 2007, 217 (2007)

27. Xu, P., Jiao, T., Wu, Q., Wang, W., Jin, H.: Conditional identity-based broad-
cast proxy re-encryption and its application to cloud email. IEEE Trans. Comput.
65(1), 66–79 (2016)

28. Zhang, L., Wu, Q., Mu, Y.: Anonymous identity-based broadcast encryption with
adaptive security. In: Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds.) CSS 2013.
LNCS, vol. 8300, pp. 258–271. Springer, Heidelberg (2013)



Mathematical Primitives



Partial Key Exposure Attacks on RSA
with Multiple Exponent Pairs

Atsushi Takayasu(B) and Noboru Kunihiro

The University of Tokyo, Tokyo, Japan
a-takayasu@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

Abstract. So far, several papers have analyzed attacks on RSA when
attackers know the least significant bits of a secret exponent d as well
as a public modulus N and a public exponent e, the so-called partial
key exposure attacks. Aono (ACISP 2013), and Takayasu and Kunihiro
(ACISP 2014) generalized the attacks when there are multiple pairs of
a public/secret exponent (e1, d1), . . . , (en, dn) for the same public mod-
ulus N . The standard RSA is a special case of the generalization, i.e.,
n = 1. They revealed that RSA becomes more vulnerable when there are
more exponent pairs. However, their results have two obvious drawbacks.
First, partial key exposure situations which they considered are restric-
tive. They have proposed the attacks only for small secret exponents,
although attacks for large secret exponents have also been analyzed for
the standard RSA. Second, they could not generalize the attacks per-
fectly. More concretely, their attacks for n = 1 do not correspond to the
currently known best attacks on the standard RSA.

In this paper, we propose improved partial key exposure attacks on
RSA with multiple exponent pairs. Our results completely solve the
above drawbacks. Our attacks are the first results for large exponents,
and our attacks for n = 1 correspond to the currently known best
attacks on the standard RSA. Our results for small secret exponents
are superior to previous results when n = 1 and 2, and when n ≥ 3 and
d1, . . . , dn > N3(n−1)/(3n+1).

1 Introduction

1.1 Background

Partial Key Exposure Attacks on RSA. RSA is one of the most widely
used cryptosystems. For a public modulus N = pq where p and q are distinct
primes with the same bit size, there are an encryption/verifying exponent e and
a decryption/signing exponent d that satisfy ed = 1 mod φ(N) where φ(N) =
(p−1)(q −1). To encrypt a plaintext m (resp. verify a signature σ), me mod N
(resp. σe mod N) should be computed. Similarly, to decrypt a ciphertext c
(resp. sign a message m), cd mod N (resp. md mod N) should be computed.
To reduce the complexity of the heavy modular exponentiation, we can use a
small public exponent e ≈ Nα or a small decryption exponent d ≈ Nβ . However,
Wiener [28] showed that too small d makes RSA insecure. Their attack factors
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 243–257, 2016.
DOI: 10.1007/978-3-319-40367-0 15
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public modulus N in polynomial time when α = 1 and β < 1/4. Later, Boneh
and Durfee [4] further improved the bound to β < 1 − 1/

√
2 = 0.292 · · · .

Boneh, Durfee, and Frankel [5] analyzed the security of RSA when attackers
know some portions of d, that is, the so-called partial key exposure attacks. In
this paper, we focus on the situation when attackers know d̃ > Nβ−δ which is
the least significant bits of d. In this situation, the attack of Boneh et al. works
only for extremely small e = poly(log N).

Thus far, several generalizations and improvements of partial key exposure
attacks have been proposed. In this paper, we focus on three situations1;

(a) α ≤ 1 and β = 1,
(b) α ≤ 1 and β > 1,
(c) α = 1 and β ≤ 1.

Blömer and May [3] analyzed the situation (a), and their attack works when
α < 7/8 = 0.875. Joye and Lepoint [15] analyzed the situation (b), and their
attack works when β < 15/8 for extremely small α. Ernst et al. [11] analyzed the
situation (c), and their attack works when β < 7/8. In the last situation, Aono [1]
proposed an improved attack. When 1 − 1/

√
2 < β < (9 − √

21)/12 = 0.368 · · · ,
Aono’s attack works with less partial information than that of Ernst et al. Later,
in the same range of β, Takayasu and Kunihiro [27] further improved the attack.

RSA with Multiple Exponent Pairs. As opposed to the standard RSA
setting, the security of RSA with multiple exponent pairs has also been studied in
several papers [2,14,21,23,24,26]. In this setting, there are multiple public/secret
exponent pairs (e1, d1), . . . , (en, dn) for the same public modulus N such that
ejdj = 1 mod φ(N) for all j = 1, 2, . . . , n. In this context, the standard RSA can
be regarded as the special case, i.e., n = 1. We denote sizes of public exponents as
e1, . . . , en ≈ Nα and sizes of secret exponents as d1, . . . , dn ≈ Nβ . These works
showed that RSA becomes more vulnerable when there are more exponent pairs.
Takayasu and Kunihiro [26] proposed a generalization of Boneh and Durfee’s
attack [4] that works when β < 1−√

2/(3n + 1) only with public information N
and e1, . . . , en. When there are more exponent pairs, i.e., larger n, larger secret
exponents can be recovered. Especially, full size secret exponents, i.e., β = 1,
can be recovered with infinitely many exponent pairs.

Partial key exposure attacks on RSA with multiple exponent pairs have
also been analyzed. For the attacks, attackers know d̃1, . . . , d̃n > Nβ−δ which
are the least significant bits of d1, . . . , dn. Aono [2] analyzed a partial key
exposure attack2 in the situation (c). Although the attack on the standard

1 At a glance, a situation (b) seems useless, since d is defined as d ∈ Z
∗
φ(N) in many

cases, and β ≤ 1 always holds. However, some implementations use an exponent
which is larger than N . To decrypt/sign, one may use d + kφ(N) in turn for some
integer k > 0. This implementation offers better resistance against side-channel
attacks [9] or faster calculation by setting the exponent as low Hamming weight.

2 In [2,26], they use δ, not β−δ as ours, to represent portions of exposed bits. However,
we follow the notation from [11,27].
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RSA [2,11,26], i.e., n = 1, cannot be applied to full size secret exponent3 ,
i.e., β = 1, Aono’s attack can be applied to the case when n ≥ 3. Takayasu and
Kunihiro [26] further improved the attack when n ≥ 3 and β < 3(n−1)/(3n+1).
These results are theoretically interesting to ensure the security of RSA.

In this paper, we focus on partial key exposure attacks on RSA with multiple
exponent pairs since previous results [2,26] have two obvious drawbacks. First,
the results focus only on the situation (c). Therefore, there have been no results
which analyzed the situations (a) and (b) with multiple exponent pairs. Second,
the previous attacks [2,26] cannot be the best even in the situation (c), since the
attacks for n = 1 do not correspond to the currently known best attacks with a
single exponent pair [11,27]. As a result, although the generalization of Boneh
and Durfee’s small secret exponent attack suggests that partial key exposure
attacks should always work when β < 1 − √

2/(3n + 1) in the situation (c) even
with no partial information, when n = 1 and 2, previous attacks [2,26] does not
work in the range with small amounts of partial information.

1.2 Our Contributions

In this paper, we propose improved partial key exposure attacks on RSA with
multiple exponent pairs and completely solve the above drawbacks of previous
works [2,26]. Unlike previous works, we analyze not only the situation (c), but
also the situations (a) and (b). Therefore, we offer the first result for the attack
with multiple exponent pairs in (a) and (b). Moreover, our attack in the situation
(c) is superior to previous attacks [2,26] when n = 1 and 2, and when n ≥ 3
and β > 3(n− 1)/(3n+ 1). Our attack always works when β < 1−√

2/(3n + 1)
for n = 1 and 2. When β = 1, although previous attacks work when n ≥ 3, our
attack works when n ≥ 2. For all the situations (a), (b), and (c), our proposed
attacks for n = 1 correspond to the currently known best attacks with a single
exponent pair.

1.3 Technical Overview

Almost all the above attacks [2,3,26,27] used the Coppersmith method to solve
modular equations that have small solutions [6,13]. In the method, we construct
a lattice whose basis vectors are coefficients of polynomials that have the same
solutions as the original modular equations. To improve partial key exposure
attacks, we should construct algorithms which can find larger solutions. For
the improvement, we should select appropriate lattice bases for the resulting
lattice to have shorter vectors. We call polynomials which shorten lattice vectors
helpful polynomials. The exact criteria that decide if polynomials are helpful
or not have already been analyzed in [18,25]. To maximize solvable bounds of

3 From May [17] and Coron and May’s [10] results, given whole bits of d then the
factorization of N is a trivial. However, it does not immediately suggest that partial
key exposure attacks always work when whole bits of d are given. Indeed, Ernst et
al. [11] claimed to find such improved attacks is an interesting open problem.



246 A. Takayasu and N. Kunihiro

solutions, we should select as many helpful polynomials as possible and as few
unhelpful polynomials as possible in lattice bases. For example, first, Boneh and
Durfee [4] constructed lattices to obtain Wiener’s bound β < 1/4 [28]. Afterward,
they added extra polynomials, which are helpful, in lattice basis and improved
the bound to β < 1 − 1/

√
2.

As noted in [26], Aono’s lattice can be viewed as a generalization of the lattice
to obtain Wiener’s bound for the small secret exponent attack. The selection of
lattice bases is too simple, since it does not depend on any values of n, β and δ.
Therefore, the lattice can be applied to attacks in situations (a) and (b), although
Aono did not analyze them. However, that means the lattice cannot provide the
best bounds when the values of n, α, β, and δ change. In [26], Takayasu and
Kunihiro work out new lattice constructions that depend on the values of n, α, β,
and δ. They revealed that Aono’s lattice contains unhelpful polynomials when
n is large and β is small, and they constructed lattices by eliminating as many
unhelpful polynomials as possible. The lattice provides an improved results when
n ≥ 3 and β < 3(n − 1)/(3n + 1).

Conversely, the above observation suggests that Aono’s lattice does not
contain all helpful polynomials when n = 1 and 2, and n ≥ 3 and β >
3(n − 1)/(3n + 1). Therefore, all we have to do is to add as many helpful poly-
nomials as possible. However, Takayasu and Kunihiro [26] could not do the task
since adding helpful polynomials is rather difficult compared with eliminating
unhelpful polynomials. We work out the analyses required to understand the
essence of the lattice constructions for the standard RSA [3,11,15,27]. Although
we analyze the three situations, i.e., (a), (b), and (c), there are only two types
of lattices in these previous works. We call them the Blömer-May lattice and
the Takayasu-Kunihiro lattice. Ernst et al.’s result [11], and Joye and Lepoint’s
result [15] can be obtained via the Blömer-May lattice. The classification offers
better understanding for the lattice constructions and we generalize the two
types of lattices in subsequent sections. As a result, this paper completes the
analysis of partial key exposure attacks on RSA with multiple exponent pairs.

1.4 Organization

In Sect. 2, we define a scenario of partial key exposure attacks and formulate them
as simultaneous modular equations. Afterward, we briefly summarize previous
results [2,3,11,26,27]. In Sect. 3, we introduce the Coppersmith method to solve
modular equations [6,13]. In Sect. 4, we propose generalized lattice constructions
of the Blömer-May. In Sect. 5, we propose generalized lattice constructions of the
Takayasu-Kunihiro.

2 Definitions of the Attack and Previous Results

For multiple exponent pairs setting, RSA key generations can be written as
ejdj = 1+�j(N −(p+q)+1) for j = 1, 2, . . . , n with some integers �j ≈ Nα+β−1.
We assume that all public exponents e1, . . . , en are pairwise co-prime as previous
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works [2,26]. Let d̃j ≈ Nβ−δ (resp. d′
j ≈ N δ) denote the least (resp. the most)

significant bits of dj . We can rewrite dj = d′
jM + d̃j with some integers M ≈

Nβ−δ. We consider partial key exposure attacks when attackers know d̃1, . . . , d̃n.
Rewrite RSA key generations

ej

(
d′

jM + d̃j

)
= 1 + �j(N − (p + q) + 1),

and consider the following modular polynomials

fj(xj , y) = 1 − ej d̃j + xj(N + y) (mod ejM) and
gj(xj , y) = 1 + xj(N + y) (mod ej)

for j = 1, 2, . . . , n. The polynomials have the roots

(x1, . . . , xn, y) = (�1, . . . , �n,−(p + q) + 1).

The absolute values of the roots are bounded above by Xj := Nα+β−1 for
j = 1, 2, . . . , n and Y := 3N1/2. If we can find the roots, we can easily factor
RSA modulus N .

In the rest of this section, we summarize previous attacks. First, we show the
previous results for the standard RSA. All conditions when Blömer and May’s
attack [3], Ernst et al.’s attack [11], and Joye and Lepoint’s attack [15] work can
be written as

δ <
5
6

−
√−5 + 6(α + β)

3
. (1)

All the attacks are based on the Blömer-May lattice and the lattices are con-
structed to solve a modular equation f1(x1, y) = 0. Takayasu and Kunihiro’s
attack [27] works when

δ <
1 + β − √

2 − 3(1 − β)2

2
and β <

9 − √
21

12
. (2)

The Takayasu-Kunihiro lattices are constructed to solve simultaneous modular
equations f1(x1, y) = 0 and g1(x1, y) = 0.

Next, we show the previous results with multiple exponent pairs. The follow-
ing attacks work in time polynomial in log N and exponential in n. Although
Aono [2] only considered the situation (c), their lattice can also be applied to
the situations (a) and (b). The attack works when

δ <
3
2

− 4
3n + 1

α − β. (3)

Aono’s lattice is constructed to solve simultaneous modular equations f1(x1, y) =
0, . . . , fn(xn, y) = 0. In the situation (c) for n ≥ 3, Takayasu and Kunihiro [26]
solved the same modular equations as Aono and improved the bound to

δ < −1
2

+ β +
(3n + 1)(1 − β)2

4
and β <

3(n − 1)
3n + 1

. (4)
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3 Preliminaries

Consider the modular equations h(x1, . . . , xn) = 0 (mod W ). All absolute values
of the solutions (x̃1, . . . , x̃n) are bounded above by X1, . . . , Xn. When

∏n
j=1 Xj

is reasonably smaller than W , the Coppersmith method can find all the solutions
in polynomial time. We write the norm of a polynomial as ‖h(x1, . . . , xn)‖, which
represents the Euclidean norm of the coefficient vector. The following Howgrave-
Graham’s Lemma reduces the modular equations into integer equations.

Lemma 1 (Howgrave-Graham’s Lemma [13]). Let h̃(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a polynomial with at most w monomials. Let m,W,X1, . . . , Xn

be positive integers. Suppose that:

1. h̃(x̃1, . . . , x̃n) = 0 (mod Wm), where |x̃1| < X1, . . . , |x̃n| < Xn,
2. ‖h̃(x1X1, . . . , xnXn)‖ < Wm/

√
w.

Then h̃(x̃1, . . . , x̃n) = 0 holds over the integers.

To solve n-variate modular equations h(x1, . . . , xn) = 0 (mod W ), it suffices to
find n new polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) whose roots are the
same as the original solutions (x̃1, . . . , x̃n) and whose norms are small enough
to satisfy Howgrave-Graham’s Lemma.

To find such polynomials from the original polynomial h(x1, . . . , xn), lat-
tices and the LLL algorithm are often used. Lattices represent the integer linear
combinations of the basis vectors. All vectors are row representation. For the
basis vectors b1, . . . , bw, which are all k dimensional linearly independent vec-
tors in Z

k, the lattice spanned by these vectors is defined as L(b1, . . . , bw) :=
{∑w

j=1 cjbj : cj ∈ Z for all j = 1, 2, . . . , w}. We also use the matrix represen-
tation for the basis. We define the basis matrix B as w × k matrix which has
the basis vectors b1, . . . , bw in each row. In the same way, the lattice can be
rewritten as L(B). We call the lattice full-rank when w = k. The volume of the
lattice vol(L(B)) is defined as the w-dimensional volume of the parallelepiped
P(B) := {cB : c ∈ R

w, 0 ≤ cj < 1, for all j = 1, 2, . . . , w}. The volume can be
computed as vol(L(B)) =

√
det(BBT ) in general, and the volume of a full-rank

lattice can be computed as vol(L(B)) = |det(B)|.
Lattice has been used in many places in cryptographic research. See [7,8,

19,20] for detailed information. In cryptanalysis, to find non-zero short lattice
vectors is essential. In this paper, we introduce the LLL algorithm [16] which
outputs short lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [16]). Given basis vectors b1, . . . , bw in Z
k,

the LLL algorithm finds LLL-reduced bases b̃1, . . . , b̃w that satisfy

‖b̃j‖ ≤ 2w(w−1)/4(w−j+1)(vol(L(B)))1/(w−j+1) for 1 ≤ j ≤ w,

in time polynomial in w, k, and the maximum input length.
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Again, we consider how to solve the modular equation h(x1, . . . , xn) = 0
(mod W ). First, we construct w polynomials h1(x1, . . . , xn), . . . , hw(x1, . . . , xn)
that have the roots (x̃1, . . . , x̃n) modulo Wm with some positive integer m.
We construct w basis vectors b1, . . . , bw each whose elements are coefficients
of hj(x1X1, . . . , xnXn) for j = 1, 2, . . . , w, and construct a basis matrix B.
We span a lattice L(B). Since all lattice vectors are integer linear combina-
tions of the basis vectors, all polynomials whose coefficients are derived from lat-
tice vectors have the roots (x̃1, . . . , x̃n) modulo Wm. We apply the LLL algo-
rithm to the lattice bases, and obtain n LLL-reduced vectors b̃1, . . . , b̃n. The
new polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) which are derived from the
above n LLL-reduced vectors satisfy Howgrave-Graham’s Lemma provided that
(vol(L(B)))1/w < Wm. Here, we omit small terms. When we obtain the polyno-
mials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn), it is easy to solve the modular equation
h(x1, . . . , xn) = 0 (mod W ). What we should do is to find the roots of the poly-
nomials over the integers by computing resultant or Gröbner bases. We should
note that the method needs heuristic argument if we consider multivariate prob-
lems, since the polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) have no assurance
of algebraic independency. In this paper, we assume that the polynomials derived
from outputs of the LLL algorithm are algebraic independent as previous works
[2–4,15,26,27]. Indeed, there are few papers that contradict the assumption.

Although we introduce a lattice construction to solve a single multivariate
modular equation, the method can be easily applied to simultaneous modular
equations in the same way. To attack RSA with multiple exponent pairs, we use
Minkowski sum based lattices introduced by Aono [2]. To solve n simultaneous
modular equations, the technique combine n lattices each of which is a lattice
to solve a single equation.

4 Generalizations of the Blömer-May Lattice

4.1 Our Algorithm

In this section, we solve simultaneous modular equations

fj(xj , y) = 1 − ej d̃j + xj(N + y) (mod ejM)

for j = 1, 2, . . . , n by generalizing the Blömer-May lattice [3], and obtain the
following result.

Theorem 1. Let N = pq be an RSA modulus. Let (ej , dj) be pubic/secret
exponents where ej ≈ Nα, dj ≈ Nβ, and ejdj = 1 (mod (p − 1)(q − 1)) for
j = 1, 2, . . . , n. Given public elements N, e1, . . . , en, and d̃1, . . . , d̃n > Nβ−δ

that are the least significant bits of d1, . . . , dn, respectively. Assume e1, . . . , en

are pairwise co-prime and the LLL algorithm outputs algebraically independent
polynomials. If

δ <
9n + 1 − √

(3n + 1)2 + 96nα − 24n(3n + 1)(1 − β)
12n

,

then public modulus N can be factored in time polynomial in log N and expo-
nential in n.
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Proof. At first, we show the Blömer-May lattice to solve each single modular
equation fj(xj , y) = 0 for j = 1, 2, . . . , n that yields the bound (1). To solve the
single equation, we use shift-polynomials

x
ij
j · fj(xj , y)uj · (ejM)m−uj with ij = 0, 1, . . . ,m;uj = 0, 1, . . . ,m − ij ,

ykj · fj(xj , y)ij · (ejM)m−ij with ij = 0, 1, . . . ,m; kj = 1, 2, . . . , �τm	,
in lattice bases with some positive integer m. The parameter τ ≥ 0 should be
optimized later. All these shift-polynomials modulo (ejM)m have the same roots
as the original solutions, e.g., (xj , y) = (�j ,−(p+q)+1) for j = 1, 2, . . . , n. These
polynomials generate a triangular basis matrix with diagonals

X
i′
j

j Y u′
j (ejM)m−min{i′

j ,u′
j} with i′j = 0, 1, . . . ,m;u′

j = 0, 1, . . . , i′j ,

X
i′
j

j Y i′
j+k′

j (ejM)m−i′
j with i′j = 0, 1, . . . ,m; k′

j = 1, 2, . . . , �τm	.
We set the parameter τ = (1 − 2δ)/2, and the lattice yields the bound (1).

Next, we combine these n lattices based on Minkowski sum. Since we combine
triangular basis matrices, the combined basis matrix also becomes triangular
with diagonals

X
i′
j

j Y u′
j (ejM)m−min{i′

j ,u′
j} with i′j = 0, 1, . . . ,m;u′

j = 0, 1, . . . , i′j ,

X
i′
1

1 · · · Xi′
n

n Y
∑n

j=1 i′
j+k′

e
m−i′

1
1 · · · em−i′

n
n Mnm−∑n

j=1 i′
j

with i′j = 0, 1, . . . ,m for j = 1, 2, . . . , n; k′ = 1, 2, . . . , �τm	.
All polynomials which are derived from resulting lattice vectors modulo
(e1 · · · en)mMnm have the same roots as the original solutions.

We show that the above lattice offers the bound of Theorem 1. Ignoring low
order terms of m, we can compute the dimension

w =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

1 +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

1 =
(n

2
+ τ

)
mn+1,

and the volume of the lattice vol(L(B)) = X
sX1
1 · · · XsXn

n Y sY e
se1
1 · · · esen

n MsM ,
where

sXj
=

m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

i′j +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

i′j =
(

3n + 1
12

+
τ

2

)

mn+2,

sej
=

m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

(
m − min{i′j , u

′})
+

m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

(
m − i′j

)

=
(

3n + 1
12

+
τ

2

)

mn+2

for j = 1, 2, . . . , n,



Partial Key Exposure Attacks on RSA with Multiple Exponent Pairs 251

sY =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

u′ +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

⎛

⎝
n∑

j=1

i′j + k′

⎞

⎠

=
(

n(3n + 1)
24

+
nτ

2
+

τ2

2

)

mn+2,

sM =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

(nm − u′) +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�τm�∑

k′=1

⎛

⎝nm −
n∑

j=1

i′j

⎞

⎠

=
(

n(9n − 1)
24

+
n

2
τ

)

mn+2.

We can solve the simultaneous modular equations fj(xj , y) = 0 for j =
1, 2, . . . , n, when (vol(L(B)))1/w < (e1 · · · en)mMnm, that is,

−12τ2 + 24n(1 − δ)τ + 3n(3n + 1) − 8nα − 2n(3n + 1)(β + δ) > 0.

To maximize the left-hand side of the above inequality, we set the parameter
τ = n(1 − 2δ)/2, and the condition becomes

12nδ2 − 2(9n + 1)δ + 12n + 3 − 8α − 2(3n + 1)β > 0.

The inequality results in the bound of Theorem1,

δ <
9n + 1 − √

(3n + 1)2 + 96nα − 24n(3n + 1)(1 − β)
12n

as required. 
�

4.2 Observation

Compared with Aono’s lattice, we select extra shift-polynomials, e.g., ykj ·
fj(xj , y)ij · (ejM)m−ij . As the case of the standard RSA, these extra shift-
polynomials reduce the output length of the LLL algorithm and improve partial
key exposure attacks.

The bound of Theorem 1 becomes the same as the bound (1) of the Blömer-
May lattice when n = 1. In situation (a) and (b), the bound is always superior
to the bound (3) which is derived from Aono’s lattices. In the situation (c),
the bound is superior to the bound (3) when n = 1, 2, and when n ≥ 3 and
β > 3(n − 1)/(3n + 1). When there are infinitely many exponent pairs n for
extremely small α, Aono’s attack (3), and Takayasu and Kunihiro’s attack (4)
work when β < 3/2 and β < 1, respectively, although Joye and Lepoint’s attack
(1), which uses only one exponent pair, works when β < 15/8. Our attack works
when β < 2 with infinitely many exponent pairs.
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5 Generalizations of the Takayasu-Kunihiro Lattice

5.1 Our Algorithm

In this section, we solve simultaneous modular equations

fj(xj , y) = 1 − ej d̃j + xj(N + y) (mod ejM) and
gj(xj , y) = 1 + xj(N + y) (mod ej),

for j = 1, 2, . . . , n by generalizing the Takayasu-Kunihiro lattice [27], and obtain
the following result.

Theorem 2. Let N = pq be an RSA modulus. Let (ej , dj) be pubic/secret
exponents where ej ≈ N, dj ≈ Nβ, and ejdj = 1 (mod (p − 1)(q − 1)) for
j = 1, 2, . . . , n. Given public elements N, e1, . . . , en, and d̃1, . . . , d̃n > Nβ−δ

that are the least significant bits of d1, . . . , dn, respectively. Assume e1, . . . , en

are pairwise co-prime and the LLL algorithm outputs algebraically independent
polynomials. If

δ <
3n + 1 + (9n − 5)β − √

16(3n − 1) − 3(3n + 1)(7n − 3)(1 − β)2

4(3n − 1)
and

β <
3(11n + 1) − √−3(21n2 − 130n − 3)

48n

for n = 1 and 2, then public modulus N can be factored in time polynomial in
log N and exponential in n.

Proof. At first, we show the Takayasu-Kunihiro lattice to solve each single mod-
ular equation fj(xj , y) = 0 and gj(xj , y) = 0 for j = 1, 2, . . . , n that yields the
bound (2). To solve the single equation, when 1 + 2δ − 4β > 0, we define a
function

l1(k) = max
{

0,
k − 2(β − δ)m
1 + 2δ − 4β

}

,

and use shift-polynomials

x
ij
j · fj(xj , y)uj · (ejM)m−uj with ij = 0, 1, . . . ,m;uj = 0, 1, . . . ,m − ij ,

ykj · f(x, y)ij−�l1(kj)� · g(x, y)�l1(kj)� · em−ijMm−(ij−�l1(kj)�)

with ij = 0, 1, . . . , m; kj = 1, 2, . . . , �2(β − δ)m + (1 + 2δ − 4β)ij	

in lattice bases with some positive integer m. All these shift-polynomials modulo
(ejM)m have the same roots as the original solutions, (xj , y) = (�j ,−(p+q)+1)
for j = 1, 2, . . . , n. Although these polynomials do not directly generate a tri-
angular basis matrix, we can transform it into triangular by using unravelled
linearization [12]. See [27] for the detailed analysis of the proof. After the trans-
formation, sizes of diagonals are
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X
i′
j

j Y u′
j (ejM)m−min{i′

j ,u′
j} with i′j = 0, 1, . . . ,m;u′

j = 0, 1, . . . , i′j ,

X
i′
j

j Y i′
j+k′

je
m−i′

j

1 Mm−(i′
j−l1(k

′
j)) with i′j = 0, 1, . . . ,m;

k′
j = 1, 2, . . . , �2(β − δ)m + (1 + 2δ − 4β)i′j	.

When 1 + 2δ − 4β > 0, the lattice yields the bound (2).
Next, we combine these n lattices based on Minkowski sum. When 1 + 2δ −

4β > 0, we define a function

ln(k) = max
{

0,
k − 2(β − δ)nm

1 + 2δ − 4β

}

where the validities of the definition will be discussed later. Since we combine
triangular basis matrices, the combined basis matrix becomes triangular with
diagonals

X
i′
j

j Y u′
j (ejM)m−min{i′

j ,u′
j} with i′j = 0, 1, . . . ,m;u′

j = 0, 1, . . . , i′j ,

X
i′
1

1 · · · Xi′
n

n Y
∑n

j=1 i′
j+k′

e
m−i′

1
1 · · · em−i′

n
n Mnm−(∑n

j=1 i′
j−ln(k

′))

with i′j = 0, 1, . . . ,m for j = 1, 2, . . . , n;

k′ = 1, 2, . . . , �2(β − δ)nm + (1 + 2δ − 4β)
n∑

j=1

i′j	.

All polynomials which are derived from resulting lattice vectors modulo
(e1 · · · en)mMnm have the same roots as the original solutions.

We show that the above lattice offers the bound of Theorem 2. Ignoring low
order terms of m, we can compute the dimension

w =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

1 +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�

∑

k′=1

1

= n(1 − δ)mn+1,

and the volume of the lattice vol(L(B)) = X
sX1
1 · · · XsXn

n Y sY e
se1
1 · · · esen

n MsM ,
where

sXj
=

m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

i′j +
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�

∑

k′=1

i′j

=
(

3n + 1
12

+ (β − δ)n +
3n + 1

12
(1 + 2δ − 4β)

)

mn+2,



254 A. Takayasu and N. Kunihiro

sej
=

m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

(m − min{i′j , u
′})

+
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�

∑

k′=1

(m − i′j)

=
(

3n + 1
12

+ n(β − δ) +
3n − 1

12
(1 + 2δ − 4β)

)

mn+2

for j = 1, 2, . . . , n,

sY =
m∑

i1=0

· · ·
m∑

in=0

∑n
j=1 ij∑

u=0

u

+
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�

∑

k′=1

⎛

⎝
n∑

j=1

i′j + k′

⎞

⎠

=
(

n(3n + 1)
24

+ n2(β − δ) + 2n2(β − δ)2 + n2(β − δ)(1 + 2δ − 4β)
)

mn+2

+
(

n(3n + 1)
12

(1 + 2δ − 4β) +
n(3n + 1)

24
(1 + 2δ − 4β)2

)

mn+2,

sM =
m∑

i′
1=0

· · ·
m∑

i′
n=0

∑n
j=1 i′

j∑

u′=0

(nm − u′)

+
m∑

i′
1=0

· · ·
m∑

i′
n=0

�2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′
j�

∑

k′=1

⎛

⎝nm −
⎛

⎝
n∑

j=1

i′j − ln(k′)

⎞

⎠

⎞

⎠

=
(

n(9n − 1)
24

+ n2(β − δ) +
n(9n − 1)

24
(1 + 2δ − 4β)

)

mn+2.

We can solve the simultaneous modular equations fj(xj , y) = 0 and
gj(xj , y) = 0 for j = 1, 2, . . . , n, when (vol(L(B)))1/w < (e1 · · · en)mMnm,
that is,

4(3n − 1)(β − δ)2 + 2(3n + 1)(1 − β)(β − δ)
+6n − 2 − (12n + 4)β + (6n + 2)β2 > 0.

The inequality results in the bound of Theorem 2,

δ <
3n + 1 + (9n − 5)β − √

16(3n − 1) − 3(3n + 1)(7n − 3)(1 − β)2

4(3n − 1)

as required. The bound is valid only when 1 + 2δ − 4β > 0 that is equivalent to

24nβ2 − 3(11n + 1)β + 2(6n − 1) > 0,
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that is,

β <
3(11n + 1) − √−3(21n2 − 130n − 3)

48n
.


�

5.2 Observation

As with the lattice in the previous section, compared with Aono’s lattice, we
select extra shift-polynomials, e.g., ykj · fj(xj , y)ij · (ejM)m−ij . As the case of
the standard RSA, these extra shift-polynomials reduce the output length of the
LLL algorithm and improve partial key exposure attacks. Moreover, we eliminate
some shift-polynomials from lattices in the previous section. This appropriate
elimination enables us to obtain better bounds with some parameters. In par-
ticular, to generalize the attack [27], we define a function ln(k) to satisfy the
following property.

Proposition 2. When 1 + 2δ − 4β > 0, polynomials whose diagonals are
X

i′
1

1 · · · Xi′
n

n Y
∑n

j=1 i′
j+k′

are helpful when k′ ≤ 2(β−δ)nm+(1+2δ−4β)
∑n

j=1 i′j.
In addition, the polynomials are unhelpful when k′ > 2(β − δ)nm + (1 + 2δ −
4β)

∑n
j=1 i′j.

The bound of Theorem 2 becomes the same as the bound (2) when n = 1.
The bound of Theorem 2 is superior to that of Theorem 1 when

β <
3(11n + 1) − √−3(21n2 − 130n − 3)

48n

for n = 1 and 2, β <
(
9 − √

21
)
/12 = 0.368 · · · for n = 1 and β <

(
69 − √

537
)
/96 = 0.477 · · · for n = 2. Using the attack, partial key exposure

attack always works when β < 1 − √
2/(3n + 1).

6 Concluding Remarks

In this paper, we study partial key exposure attacks on RSA with multiple
exponent pairs when attackers know the least significant bits of secret exponents.
The attacks have been analyzed for a single exponent pair case and we propose
generalizations of the attacks. Our proposed attacks cover every situation that
is worth studying and provide significant improvements.

Although we think our work completes the attack in this direction, there
still remains an open problem. In this paper, we only analyze the case when
attackers know the least significant bits of secret exponents. However, for a
single exponent pair, partial key exposure attacks on RSA when attackers know
the most significant bits of secret exponents have also been analyzed [11,22,27].
To generalize the attack with multiple exponent pairs remains as future work.
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Abstract. In 1995, Kuwakado, Koyama and Tsuruoka presented a
new RSA-type scheme based on singular cubic curves y2 ≡ x3 + bx2

(mod N) where N = pq is an RSA modulus. Then, in 2002, Elkam-
chouchi, Elshenawy and Shaban introduced an extension of the RSA
scheme to the field of Gaussian integers using a modulus N = PQ
where P and Q are Gaussian primes such that p = |P | and q = |Q|
are ordinary primes. Later, in 2007, Castagnos proposed a scheme over
quadratic field quotients with an RSA modulus N = pq. In the three
schemes, the public exponent e is an integer satisfying the key equa-
tion ed − k

(
p2 − 1

) (
q2 − 1

)
= 1. In this paper, we apply the continued

fraction method to launch an attack on the three schemes when the pri-
vate exponent d is sufficiently small. Our attack can be considered as an
extension of the famous Wiener attack on the RSA.

Keywords: RSA · Elliptic curves · Continued fractions

1 Introduction

The public key cryptosystem RSA was introduced by Rivest, Shamir and
Adleman [10] in 1978. It is the most popular and widely used public-key cryp-
tosystem. The RSA operations system are based on modular arithmetic. Let p
and q be two large primes. The product N = pq is called the RSA modulus
and the product φ(N) = (p − 1)(q − 1) is the Euler totient function. In RSA,
the public exponent e and the private exponent d are integers satisfying ed ≡ 1
(mod φ(N)). A message m is encrypted as c ≡ me (mod N) and decrypted using
m ≡ cd (mod N).

Since its introduction, the RSA cryptosystem has been generalized in various
ways, including extensions to singular elliptic curves and Gaussian integers.

c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 258–268, 2016.
DOI: 10.1007/978-3-319-40367-0 16
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In 1995, Kuwakado, Koyama and Tsuruoka [8] presented a new RSA-type
scheme based on singular cubic curves with equation y2 ≡ x3 + bx2 (mod N)
where N = pq is an RSA modulus and b ∈ Z/NZ. The public exponent is an
integer e such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1 and the decryption exponent is

the integer d ≡ e−1 (mod
(
p2 − 1

) (
q2 − 1

)
). From this, we deduce that e and

d satisfy a key equation of the form ed − k
(
p2 − 1

) (
q2 − 1

)
= 1 where k is a

positive integer.
In 2002, Elkamchouchi, Elshenawy and Shaban [5] introduced an extension

of RSA to the ring of Gaussian integers. A Gaussian integer is a complex number
of the form a + ib where both a and b are integers and i2 = −1. The set of all
Gaussian integers is denoted Z[i]. A Gaussian prime number is a Gaussian integer
that cannot be represented as a product of non-unit Gaussian integers. The only
unit Gaussian integers are ±1, ±i. Let P = a + ib and Q = a′ + ib′ be two
Gaussian primes. Consider the Gaussian integer N = PQ and the Euler totient
function φ(N) = (|P | − 1) (|Q| − 1) =

(
a2 + b2 − 1

) (
a′2 + b′2 − 1

)
. Let e be an

integer such that d ≡ e−1 (mod φ(N)) exists. Then, in the RSA scheme over
the domain of Gaussian integers, a message m ∈ Z[i] is encrypted using c ≡ me

(mod N) and decrypted using m ≡ cd (mod N). We note that, in this RSA
variant, the key equation is ed − k (|P | − 1) (|Q| − 1) = 1 for N = PQ ∈ Z[i].
In the situation that N = pq is an ordinary RSA modulus, the key equation
becomes ed − k

(
p2 − 1

) (
q2 − 1

)
= 1, which is the same than in the Kuwakado-

Koyama-Tsuruoka elliptic curve variant of RSA.
In 2007, Castagnos [3] proposed a probabilistic scheme based on an RSA

modulus N = pq and using arithmetical operations in quadratic field quotients.
Let e be a integer such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1. For any integer r, let

Ve(r) be the eth term of the Lucas sequence defined by V0(r) = 2, V1(r) = r
and Vk+2 = rVk+1(r) − Vk(r) for k ≥ 0. In this scheme, a message m ∈ Z/NZ is
encrypted using c ≡ (1+mN)Ve(r) (mod N2) where r is a random integer with
2 ≤ r ≤ N − 2. Then some arithmetical properties, one can decrypt c to get the
original message m. Similarly to the Kuwakado-Koyama-Tsuruoka elliptic curve
variant of RSA and RSA with Gaussian integers, Castagnos scheme leads to the
key equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1.

The security of the RSA cryptosystem and its variants are based on the dif-
ficulty of factoring large integers of the shape N = pq. Nevertheless, in some
cases, the modulus N can be factored by algebraic methods that are not based
on factoring algorithms. For example, in 1990, Wiener [11] showed how to break
the RSA when the decryption exponent d satisfies d < 1

3N0.25. Wiener’s method
is based on solving the key equation ed − k(p − 1)(q − 1) = 1 by applying the
continued fraction algorithm to the public rational fraction e

N . When d is small
enough, k

d is one of the convergents of the continued fraction expansion of e
N .

Later, Boneh and Durfee [1] applied lattice reduction and Coppersmith’s tech-
nique [4] and extended the bound to d < N0.292. Recently, using the convergents
of the continued fraction expansion of e

N ′ where N ′ is a number depending on N ,
Bunder and Tonien [2] could break the RSA if d2e < 8N1.5.
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The complexity of the encryption and decryption algorithms are based on
the size of the encryption key e and the size of decryption key d, respectively. In
a cryptosystem with a limited resource such as a credit card, it is desirable to
have a smaller value of d. In some scenario, for convenience, e is set to a small
constant, such as e = 3.

In this paper, we consider one of the following scenarios where N = pq is
the product of two large primes and the public exponent e satisfies an equation
ed − k

(
p2 − 1

) (
q2 − 1

)
= 1 with a suitably small secret exponent d:

– an instance of the Kuwakado-Koyama-Tsuruoka cryptosystem [8],
– an instance of the RSA over Gaussian integers [5],
– an instance of Castagnos scheme [3].

Our method is inspired by Bunder and Tonien’s technique [2]. We show that
when d2e < 2N3 − 18N2 then one can find p and q and then factor the modulus
N . Our method is based on the continued fraction algorithm as in Bunder and

Tonien’s attack. Under the condition d <
√

2N3−18N2

e , we show that one can

find k
d among the convergents of the continued fraction expansion of the public

rational number e
N2− 9

4N+1
.

The paper is organized as follows. In Sect. 2, we present the Kuwakado-
Koyama-Tsuruoka RSA-type scheme, the RSA scheme over Gaussian integers
and the Castagnos scheme. In Sect. 3, we review some facts and lemmas used in
our attack. In Sect. 4, we present our new attack with a numerical example. We
conclude the paper in Sect. 5.

2 Preliminaries

In this section, we present the three variants of the RSA cryptosystem for which
our attack works, namely the Kuwakado-Koyama-Tsuruoka RSA-type scheme,
the RSA scheme over Gaussian integers and the Castagnos scheme.

2.1 The Kuwakado-Koyama-Tsuruoka RSA-type Scheme

The Kuwakado-Koyama-Tsuruoka RSA-type scheme is based on the use of an
RSA modulus N = pq as the modulus of a singular elliptic curve. Let ZN =
Z/NZ be the ring of integers modulo N and Fp be the finite field. Let a and b
be integers with gcd(ab,N) = 1 and gcd(4a3 + 27b2, N) = 1. A singular elliptic
curve EN (a, b) over the ring ZN is the concatenation of a point ON , called the
point at infinity, and the set of points (x, y) ∈ Z

2
N satisfying the Weierstrass

equation
y2 + axy ≡ x3 + bx2 (mod N).

If we consider this form modulo p, we get an elliptic curve Ep(a, b) over Fp

Ep(a, b) : y2 + axy ≡ x3 + bx2 (mod p),
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with the point at infinity Op. It is well known that the chord-and-tangent method
defines an addition law on singular elliptic curves, as for all elliptic curves on Fp.
The addition law can be summarized as follows.

– For any point P ∈ Ep(a, b), P + Op = Op + P = P .
– If P = (x, y) ∈ Ep(a, b), then −P = (x,−ax − y).
– If P = (x, y), then 2P = P3 = (x3, y3) with

x3 =
(

3x2 + 2bx − ay

2ay + ax

)2

+ a

(
3x2 + 2bx − ay

2ay + ax

)

− b − 2x,

y3 = −
(

3x2 + 2bx − ay

2ay + ax
+ a

)

x3 − −x3

2ay + ax
.

– If P1 = (x1, y1) and P2 = (x2, y2) with P1 �= ±P2, then P1+P2 = P3 = (x3, y3)
with

x3 =
(

y2 − y1
x2 − x1

)2

+ a

(
y2 − y1
x2 − x1

)

− b − x1 − x2,

y3 = −
(

y2 − y1
x2 − x1

+ a

)

x3 − y1x2 − y2x1

x2 − x1
.

The addition law can be extended to the elliptic curve EN (a, b) in the same
way as the addition in Ep(a, b) by replacing computations modulo p by com-
putations modulo N . In EN (a, b), a specific problem can occur. Sometimes, the
inverse modulo N does not exist. In this case, this could lead to finding a prime
factor of N , which is unlikely to happen when p and q are large. Note that this
is one of the principles of Elliptic Curve Method of factorization [9].

In 1995, Kuwakado, Koyama and Tsuruoka [8] proposed a system based on
singular elliptic curves modulo an RSA modulus, which can be summarized as
follows.

1. Key Generation:
– Choose two distinct prime numbers p and q of similar bit-length.
– Compute N = pq.
– Choose e such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1.

– Compute d = e−1 (mod
(
p2 − 1

) (
q2 − 1

)
).

– Keep p, q, d secret and publish N, e.
2. Encryption:

– Transform the message as m = (mx,my) ∈ ZN × ZN .

– Compute b = m2
y−m3

x

m2
x

(mod N).
– Compute the ciphertext point (cx, cy) = e(mx,my) on the elliptic curve

y2 = x3 + bx2 (mod N).
3. Decryption:

– Compute b = c2y−c3x
c2x

(mod N).
– Compute the plaintext point (mx,my) = d(cx, cy) on the elliptic curve

y2 = x3 + bx2 (mod N).
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Observe the modular inverse d = e−1 (mod
(
p2 − 1

) (
q2 − 1

)
) can be trans-

formed as a key equation

ed − k
(
p2 − 1

) (
q2 − 1

)
= 1,

which will be the starting equation of our new attack.

2.2 RSA Over the Domain of Gaussian Integers

We now focus on how to extend the RSA cryptosystem to the ring of Gaussian
integers. We begin by reviewing the main properties of Gaussian integers.

A Gaussian integer is a complex number of the form a+bi where a, b ∈ Z and
i2 = −1. The set of all Gaussian integers is the ring Z[i]. Let α and β �= 0 be two
Gaussian integers. We say that β divides α if there exists a Gaussian integer γ
such that α = βγ. The norm of a Gaussian integer a + bi is |a + bi| = a2 + b2. A
Gaussian prime is a Gaussian integer which is divisible only by a unit. The units
in Z[i] are ±1 and ±i and have norm 1. As a consequence, if a2 + b2 is a prime
number in Z, then a+ ib is a Gaussian prime. Conversely, if p ∈ Z is an ordinary
prime number, then Gaussian integers p and pi are Gaussian primes if and only if
p ≡ 3 (mod 4). The existence of prime factorization in Z[i] allows us to consider
Gaussian integers of the form N = PQ where P and Q are Gaussian primes
with large norm. Similarly, the existence of Euclidean division and Euclidean
algorithm in Z[i] allow us to consider arithmetic operations modulo N . On the
other hand, if P is a Gaussian prime, then α|P |−1 ≡ 1 (mod P ) whenever α �≡ 0
(mod P ). Similarly, if N = PQ is the product of two Gaussian primes, then
α(|P |−1)(|Q|−1) ≡ 1 (mod N) whenever α �≡ 0 (mod N). In particular, if N =
pq ∈ Z is the product of two ordinary primes, then α(p2−1)(q2−1) ≡ 1 (mod N)
whenever α �≡ 0 (mod N).

Using the arithmetical operations on the ring Z[i], Elkamchouchi, Elshenawy
and Shaban [5] proposed an extension of the RSA cryptosystem to Gaussian
integers. The scheme can be summarized as follows.

1. Key Generation:
– Choose two distinct Gaussian primes P and Q of similar norm.
– Compute N = PQ.
– Choose e such that gcd(e, (|P | − 1)(|Q| − 1)) = 1.
– Determine d = e−1 (mod (|P | − 1)(|Q| − 1))).
– Keep P,Q, d secret, publish N, e.

2. Encryption:
– Transform the message as a Gaussian integer M ∈ Z[i].
– Compute C ≡ Me (mod N).

3. Decryption:
– Compute M ≡ Cd (mod N).
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When N = pq ∈ Z where p and q are ordinary prime numbers of the form 4m+3,
the modular inverse of e becomes d = e−1 (mod

(
p2 − 1

) (
q2 − 1

)
) and can be

rewritten as
ed − k

(
p2 − 1

) (
q2 − 1

)
= 1.

This is the same key equation that comes up in the Kuwakado-Koyama-Tsuruoka
RSA-type scheme.

2.3 Castagnos Scheme

Castagnos scheme [3] was proposed in 2007 and uses an RSA modulus N = pq
and a public exponent e such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1. The encryp-

tion and the decryption algorithms make use of the Lucas series. Let r be an
integer. Define V0(r) = 2 and V1(r) = r. For k ≥ 0, the k + 2th term of the
Lucas sequence is defined by Vk+2 = rVk+1(r) − Vk(r). The Lucas series can
be computed efficiently by the square and multiply algorithm. The Castagnos
scheme can be summarized as follows, where

(
x
p

)
is the Jacobi symbol.

1. Key Generation:
– Choose two distinct prime numbers p and q of similar bit-length.
– Compute N = pq.
– Choose e such that gcd

(
e,

(
p2 − 1

) (
q2 − 1

))
= 1.

– Keep p, q secret and publish N, e.
2. Encryption:

– Transform the message as an integer m ∈ Z/NZ.
– Choose a random integer r ∈ [2, n − 2].
– Compute the ciphertext c ≡ (1 + mN)Ve(r) (mod N2).

3. Decryption:
– Compute ip =

(
c2−4
p

)
and d(p, ip) ≡ e−1 (mod p − ip).

– Compute iq =
(

c2−4
q

)
and d(q, iq) ≡ e−1 (mod q − iq).

– Compute rp ≡ Vd(p,ip) (mod p) and rq ≡ Vd(q,iq) (mod q).
– Compute p′ ≡ p−1 (mod q) and r = rp + p(rp − rq)p′ (mod N).
– Compute tp ≡ c

Ve(r)
(mod p2) and mp ≡ tp−1

p · q−1 (mod p).

– Compute tq ≡ c
Ve(r)

(mod q2) and mq ≡ tq−1
q · p−1 (mod q).

– Compute the plaintext m ≡ mp + p(mq − mp)p′ (mod N).

Despite the inverse d ≡ e−1 (mod
(
p2 − 1

) (
q2 − 1

)
) is not being used directly

in the scheme, we use the key equation ed−k
(
p2 − 1

) (
q2 − 1

)
= 1 to launch an

attack on Castagnos scheme when d is suitably small.

3 Useful Lemmas

In this section, we review the main properties of the continued fractions and
state a useful lemma that will be used in the attack.
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A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1
. . .

The continued fraction expansion of a number is formed by subtracting away
the integer part of it and inverting the remainder and then repeating this process
again and again. The coefficients ai of the continued fraction of a number x are
constructed as follows:

x0 = x, an = [xn], xn+1 =
1

xn − an

We use the following notation to denote the continued fraction

x = [a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1
an

If k ≤ n, the continued fraction [a0, a1, . . . , ak] is called the kth convergent of
x. The following theorem gives us the fundamental recursive formulas to calculate
the convergents.

Theorem 1 [6]. The kth convergent can be determined as

[a0, . . . , ak] =
pk
qk

where the sequences {pn} and {qn} are specified as follows:

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, ∀n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, ∀n ≥ 0.

Theorem 2 [6]. Let p, q be positive integers such that

0 <

∣
∣
∣
∣x − p

q

∣
∣
∣
∣ <

1
2q2

then p
q is a convergent of the continued fraction of x.

Now, we present a useful result that will be used throughout the paper.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Let φ1 = N2 +
1 − 5

2N and φ2 = N2 + 1 − 2N . Then

φ1 < (p2 − 1)(q2 − 1) < φ2.
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Proof. Suppose that q < p < 2q. Then 1 < p
q < 2, so since the function f(x) =

x + 1
x is increasing on [1,+∞), we get f(1) < f

(
p
q

)
< f(2), that is

2 <
p

q
+

q

p
<

5
2
.

Multiplying by N , we get

2N < p2 + q2 <
5
2
N.

Since
(
p2 − 1

) (
q2 − 1

)
= N2 + 1 − (

p2 + q2
)
, we get

N2 + 1 − 5
2
N < (p2 − 1)(q2 − 1) < N2 + 1 − 2N,

that is φ1 < (p2 − 1)(q2 − 1) < φ2. This terminates the proof.

4 A New Attack on RSA Variants Based on Continued
Fractions

In this section, we propose a new attack on the Kuwakado-Koyama-Tsuruoka
cryptosystem as well as RSA over the Gaussian integer domain and the Castag-
nos scheme in the situation that the key equation ed − k(p2 − 1)(q2 − 1) = 1 is
satisfied with a suitably small secret exponent d.

Theorem 3. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka
cryptosystem or in the RSA cryptosystem with Gaussian integers or in the
Castagnos scheme with N = pq and q < p < 2q. If e <

(
p2 − 1

) (
q2 − 1

)
satisfies

an equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1 with

d <

√
2N3 − 18N2

e
,

then one can factor N in polynomial time.

Proof. Let φ1 = N2 + 1 − 5
2N and φ2 = N2 + 1 − 2N . Then N ′ = N2 − 9

4N + 1
is the midpoint of the interval [φ1, φ2]. Since

(
p2 − 1

) (
q2 − 1

) ∈ [φ1, φ2], then

∣
∣
(
p2 − 1

) (
q2 − 1

) − N ′∣∣ <
1
2
(φ2 − φ1) =

1
4
N. (1)

Using the equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1, we get

∣
∣
∣
∣

e

N ′ − k

d

∣
∣
∣
∣ ≤ e

∣
∣
∣
∣

1
N ′ − 1

(p2 − 1) (q2 − 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

e

(p2 − 1) (q2 − 1)
− k

d

∣
∣
∣
∣

= e

∣
∣
(
p2 − 1

) (
q2 − 1

) − N ′∣∣

N ′ (p2 − 1) (q2 − 1)
+

1
(p2 − 1) (q2 − 1) d
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Then, using d =
k(p2−1)(q2−1)+1

e and (1), we get
∣
∣
∣
∣

e

N ′ − k

d

∣
∣
∣
∣ <

eN

4N ′ (p2 − 1) (q2 − 1)
+

e

(p2 − 1) (q2 − 1) (k (p2 − 1) (q2 − 1) + 1)
.

Now, using Lemma 1, we get
∣
∣
∣
∣

e

N ′ − k

d

∣
∣
∣
∣ <

eN

4φ2
1

+
e

φ2
1

<
e(N + 4)
4(φ1 − 1)2

=
e(N + 4)

4
(
N2 − 5

2N
)2 . (2)

A straightforward calculation shows that

N + 4

4
(
N2 − 5

2N
)2 <

1
4N3 − 36N2

.

Combining this with (2), we get
∣
∣
∣
∣

e

N ′ − k

d

∣
∣
∣
∣ <

e

4N3 − 36N2
.

If d <
√

2N3−18N2

e , then
∣
∣ e
N ′ − k

d

∣
∣ < 1

2d2 and by Theorem 2, k
d is a convergent

of the continued fraction expansion of e
N ′ . Using k and d, we get

(
p2 − 1

) (
q2 − 1

)
=

ed − 1
k

.

Combining with N = pq, we get the values of p and q which leads to the fac-
torization of N . Observe that every step in the proof can be done in polynomial
time. This terminates the proof.

4.1 A Numerical Example

In connection with Theorem 3, we present an experimental result. We consider
the RSA modulus N and the public exponent e as follows.

N = 2617939220553315302745462091,
e = 5656039332305952436559424461831783955572872351157004185.

The first partial quotients of e
N2− 9

4N+1
are

0, 1, 4, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 46, 3, 5, 1, 1, 2, 26, 2, 2, 39, 1, 3, 2, 3, 1, 23104, 1, 9,

1, 1, 2, 1, 3, 2, 2, ....
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We found k
d at the 28th convergent

k

d
=

981582747476
1189415557289

and obtain

(
p2 − 1

) (
q2 − 1

)
=

ed − 1
k

= 6853605762511300064473195588212095096351361928469816064.

Combining with the equation N = pq, we get

p = 68410308889243,
q = 38268197630737.

which completes the factorization of N . In this example, we can check that the

condition d <
√

2N3−18N2

e is satisfied as required in Theorem 3.

5 Conclusion

We have proposed an attack on three variants of the RSA cryptosystem,
namely the Kuwakado-Koyama-Tsuruoka extension for singular elliptic curves,
Elkamchouchi et al.’s extension of RSA to the Gaussian integer ring and Castag-
nos scheme. For the three extensions, we showed that the RSA modulus N = pq
can be factored in polynomial time if the public exponent e is related to a suitably
small secret exponent d. The attack is based on the theory of continued fractions
and can be seen as an extension of Wiener’s [11] and Bunder-Tonien’s [2] attacks
on the RSA.
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Abstract. A self-bilinear map (SBM) is a bilinear map where source and
target groups are identical. An SBM naturally yields a multilinear map,
which has numerous applications in cryptography. In spite of its useful-
ness, there is known a strong negative result on the existence of an ideal
SBM. On the other hand, Yamakawa et al. (CRYPTO’14) introduced the
notion of a self-bilinear map with auxiliary information (AI-SBM), which
is a weaker variant of SBM and constructed it based on the factoring
assumption and an indistinguishability obfuscation (iO). In their work,
they proved that their AI-SBM satisfies the Auxiliary Information Mul-
tilinear Computational Diffie-Hellman (AI-MCDH) assumption, which
is a natural analogue of the Multilinear Computational Diffie-Hellman
(MCDH) assumption w.r.t. multilinear maps. Then they show that they
can replace multilinear maps with AI-SBMs in some multilinear-map-
based primitives that is proven secure under the MCDH assumption.
In this work, we further investigate what hardness assumptions hold
w.r.t. their AI-SBM. Specifically, we introduce a new hardness assump-
tion called the Auxiliary Information Generalized Multilinear Diffie-
Hellman (AI-GMDH) assumption. The AI-GMDH is parameterized by
some parameters and thus can be seen as a family of hardness assump-
tions. We give a sufficient condition of parameters for which the AI-
GMDH assumption holds under the same assumption as in the previous
work. Based on this result, we can easily prove the AI-SBM satisfies
certain hardness assumptions including not only the AI-GMDH assump-
tion but also more complicated assumptions. This enable us to convert
a multilinear-map-based primitive that is proven secure under a com-
plicated hardness assumption to AI-SBP-based (and thus the factor-
ing and iO-based) one. As an example, we convert Catalano et al.’s
multilinear-map-based homomorphic signatures (CRYPTO’14) to AI-
SBP-based ones.

1 Introduction

Bilinear maps are fundamental tools in cryptography and they enable us
to construct various cryptographic primitives including (but not limited to)
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identity-based encryption [3,4], attribute-based encryption [27], and non-
interactive zero-knowledge proof system [20,21]. In these works, bilinear maps
on elliptic curves are considered where source and target groups are different.
On the other hand, Cheon et al. [12] considered the notion of self-bilinear map
(SBM) where source and target groups are identical and observed that such a
map implies multilinear map [7], which is a very powerful tool that enables us
to construct non-interactive multiparty key exchange [7], broadcast encryption
[7,8], attribute-based encryption [6,17], obfuscation [16] etc. Therefore if we can
construct an SBM, then we immediately obtain a multilinear map and thus we
may obtain various multilinear-map based cryptographic primitives as stated
above. However, Cheon et al. [12] also proved a strong negative result on the
existence of an efficiently computable SBM, which implies constructing ideal
SBMs is implausible.

On the other hand, Yamakawa et al. [29] weakened the definition of SBM to
define a self-bilinear map with auxiliary information (AI-SBM), where certain
“auxiliary information” is needed to efficiently compute the map. They con-
structed it by combining techniques of factoring-based cryptography and indis-
tinguishability obfuscation (iO). Though AI-SBMs is a weaker notion than ideal
SBMs, it still yields a useful version of multilinear maps, which can replace mul-
tilinear maps in some multilinear-map-based cryptographic primitives. Specifi-
cally, the authors of [29] proved that their AI-SBM satisfies the auxiliary informa-
tion multilinear computational Diffie-Hellman (AI-MCDH) assumption1, which
is a natural analogue of the multilinear computational Diffie-Hellman (MCDH)
assumption [15] originally defined for multilinear maps. Thus they showed that
they can replace multilinear maps with AI-SBMs in the MCDH-based schemes
such as multiparty key exchange [7], broadcast encryption [7] and attribute based
encryption [17].

On the other hand, there exist some other multilinear-map-based primitives
whose security rely on different, stronger and more complicated assumptions
than the MCDH assumption. For example, Boneh et al. [6] constructed attribute
based encryption for circuit with compact ciphertext based on the Multilin-
ear Diffie-Hellman Exponent (MDHE) assumption, Boneh et al. [8] constructed
a broadcast encryption with compact parameters based on the Hybrid Diffie-
Hellman Exponent (HDHE) assumption, and Catalano et al. [9] constructed
a homomorphic signature scheme based on the Augmented Power Multilinear
Diffie-Hellman (APMDH) assumption, all of which are rather complicated and
parametrized (e.g., q-type) assumptions for multilinear maps. Our motivation
is to investigate whether we can replace multilinear maps with AI-SBMs in
these schemes. To do so, we investigate what types of assumptions hold w.r.t.
Yamakawa et al.’s AI-SBMs.

1 Actually in [29], this assumption is called Multilinear Computational Diffie-Hellman
with Auxiliary Information (MCDHAI) assumption. We rename the assumption for
the consistency with other assumptions in this paper.



Generalized Hardness Assumption for Self-bilinear Map 271

1.1 Our Result

We define a generalized assumption that we call Auxiliary Information Gener-
alized Multilinear Diffie-Hellman (AI-GMDH) assumption for AI-SBMs. Then
we give a sufficient condition that the AI-GMDH assumption holds w.r.t.
Yamakawa et al.’s AI-SBM. Since the condition is very easy to check, this can
be seen as a useful tool that enables us to easily prove that certain hardness
assumptions hold w.r.t. their AI-SBM. Specifically, we show that the AI-MCDH
assumption holds w.r.t. their AI-SBM as an immediate corollary of our result.
Thus our result generalizes the result in [29]. Moreover, we show that the Aux-
iliary Information Augmented Power Multilinear Diffie-Hellman (AI-APMDH)
assumption, which is a natural analogue of the APMDH assumption also holds.
Thus we can construct homomorphic signatures in the similar way as in [9] by
replacing multilinear maps with AI-SBMs.

Main theorem. First we review the definition of AI-SBMs. For AI-SBMs on a
group G, a set TX of auxiliary information is defined for each element of X ∈ G.
We require that a self-bilinear map e(X,Y ) can be computed efficiently if aux-
iliary information τX ∈ TX or τY ∈ TY is given. The AI-GMDH assumption is
parametrized by polynomials f1,. . . , fm and f∗ on variables x1, . . . , xn and a nat-
ural number �∗ ≥ 2 and we denote it by ({fj}j∈[m], f

∗, �∗)-AI-GMDH assump-
tion2. Intuitively, the ({fj}j∈[m], f

∗, �∗)-AI-GMDH assumption claims the fol-
lowing. For any PPT adversary A that is given g, gfj(x1,...,xn) for j ∈ [m]
and auxiliary information corresponding to these elements cannot compute
e�∗(g, . . . , g)f∗(x1,...,xn) with non-negligible probability, where e�∗ denote the �∗-
multilinear map induced by the underlying AI-SBM e. In this paper, we only
consider the case where f1,. . . , fm and f∗ are monic monomials, i.e., written
as

∏n
i=1 xti

i where ti is a natural number for i ∈ [n]. For a monic monomial
f(x1, . . . , xn) =

∏n
i=1 xti

i , we define f̄(x1, . . . , xn) :=
∑n

i=1 tixi. Then our main
theorem can be stated as follows. (See Theorem 1 for the full statement of our
theorem.)

Theorem 1 (informal). If there exist integers a1, . . . , an such that f̄i

(a1, . . . , an) ≤ −1 and �∗ + f̄∗(a1, . . . , an) ≥ −1 hold, then the ({fj}j∈[m], f
∗, �)-

AI-GMDH holds w.r.t. Yamakawa et al.’s AI-SBM if iO is secure and the fac-
toring assumption holds.

Though the condition in the above theorem may seem a bit strange, it is actu-
ally not difficult to check the condition holds in many cases. For example,
we explain the case of the AI-MCDH assumption. The AI-MCDH assumption
claims that any PPT adversary that is given g, gx1 , . . . , gxn and corresponding
auxiliary information for these elements cannot compute en−1(g, . . . , g)

∏n
i=1 xi

with non-negligible probability. It is easy to see that the AI-MCDH assump-
tion is equivalent to the AI-GMDH assumption if we set m := n, �∗ := n − 1,
2 Actually, the AI-GMDH assumption is also parametrized by an additional natural

number M . We omit it here for making the intuition simpler. For more details, see
Definition 3 followed by Remark 2.
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fi(x1, . . . , xn) := xi for i ∈ [n] and f∗(x1, . . . , xn) :=
∏n

i=1 xi. Then if we set
ai := −1 for all i ∈ [n], we have f̄i(a1, . . . an) = −1 and �∗ + f̄∗(a1, . . . , an) =
(n − 1) + n · (−1) = −1 and thus the condition is satisfied and the AI-MCDH
assumption holds w.r.t. the AI-SBM if iO is secure and the factoring assumption
holds. As shown above, our main theorem enables us to validate certain hardness
assumptions w.r.t. the AI-SBM in an easy manner.

Interpretation of our result. In this work, we prove that a wide range of hard-
ness assumptions w.r.t. AI-SBM including some complicated and parameterized
assumptions can be reduced to simple and well-studied assumptions (the fac-
toring assumption and the existence of iO). Formerly, the only way to validate
counterparts of these assumptions for multilinear maps was relying on the generic
multilinear map group model, which is an ideal model and rather problematic.
Our technique can be used to convert a multilinear-map-based primitive based on
such a complicated assumption to an AI-SBM-based (and thus factoring and iO-
based) one. One may wonder if this is meaningful since candidate constructions
of iO depend on multilinear maps. However, to construct a iO, what is required
is a “symmetric version” of multilinear maps, where group elements are gener-
ated only privately rather than usual “public”multilinear maps. Thus it seems
that breaking iO is rather more difficult than breaking the underlying multilin-
ear map. Thus converting a multilinear-map-based primitive to iO-based one is
still meaningful. Indeed, there are some existing work in the similar spirit [1,26].

Applications. As an application of our result, we convert multilinear-map-
based homomorphic signatures for polynomial-degree polynomials proposed by
Catalano et al. [9] to AI-SBM-based one. The security of their scheme relies
on the APMDH assumption, which is complicated and validated only in the
generic multilinear group model. We prove that the counterpart of the APMDH
assumption for the AI-SBM (which we call the AI-APMDH assumption) hold
by using our main theorem. Then we can simply replace multilinear maps with
AI-SBMs in the Catalano’s construction. Since our purpose here is to demon-
strate how we can replace multilinear maps with AI-SBMs in an easy-to-follow
manner, we focus on the simplest definition of homomorphic signatures (e.g.,
selective security for single dataset). Note that we do not claim that we con-
struct a homomorphic signature scheme with a useful property existing works
never have. Indeed, there already exists a fully homomorphic signature scheme
based on iO [28], which can handle any (bounded) polynomial-size circuit rather
than polynomial-degree polynomials.

Though we find only one application of our technique in this paper, we believe
that there will be further applications in the future.

1.2 Related Work

Indistinguihshability obfuscation. The concept of indistinguishability obfuscation
(iO) is first proposed by Barak et al. [2] and the first candidate construction was
proposed by Garg et al. [16]. Their construction of iO depends on multilinear
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maps, whose first candidate was proposed by Garg et al. [15] followed by some
others [13,14,18]. Until now, many cryptanalyses are done against the above
multilinear maps and some of them appear not to be secure [10,11,23]. Almost
all of the above cryptanalysis relies on that “low level encodings of zero” are
published, which is not needed for constructing iO and thus these attacks are
not applicable to attacking iO based on these multilinear maps. Very recently,
some works [24,25] attacks the GGH multilinear map [15] without using low
level encodings of zero. Thus iO based on the GGH multilinear map is no longer
secure. However, their works are limited to the GGH multilinear map and it
is not clear whether their attacks can be extended to attack other candidate
multilinear maps. Therefore, for example, we can use iO based on the CLT
multilinear map [14] as an instantiation of our scheme.

Multilinar map from iO. There are some works that shows the relation between
multilinear maps and iO. Paneth and Sahai [26] constructed a polynomial jigsaw
puzzle, which is a variant of a multilinear map, solely based on iO. However,
they does not provide any application of polynomial jigsaw puzzles and thus
it is unclear how that is useful in constructions of cryptographic primitives.
Albrecht et al. [1] constructed a multilinear map based on iO, non-interactive
zero-knowledge proof system, and additive homomorphic encryption. Since the
assumptions they rely on is incomparable to ours, their result is incomparable
to ours. Moreover, their multilinear map does not provide a graded encoding
system [15] and thus some applications of multilinear maps such as attribute
based encryption [17] and homomorphic signatures [9] cannot be instantiated.

Homomorphic signature. Boneh and Freeman [5] were the first to propose homo-
morphic signatures that can handle a wider class of functions than linear func-
tions. Their scheme can handle arbitrary polynomial and security is proven in
the random oracle based on the hardness of the short integer solution (SIS) prob-
lem. Catalano et al. [9] proposed such a scheme in the standard model based
on a multilinear map. Gorbunov et al. [19] constructed a (leveled) fully homo-
morphic signature, which can handle any polynomial size function based on the
learning with errors (LWE) assumption. Xie et al. [28] proposed (bounded) fully
homomorphic signatures based on iO.

1.3 Notations

We use N to denote the set of all natural numbers, and [n] to denote the set
{1, . . . n} for n ∈ N. If S is a finite set, then we use x

$← S to denote that x
is chosen uniformly at random from S. If A is an (randomized) algorithm, we
use x ← A(y) to mean that x is output by A whose input is y. We say that a
function f(·) : N → [0, 1] is negligible if for all positive polynomials p(·) and all
sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say that an algorithm A is
probabilistic polynomial time (PPT) if there exists a polynomial p such that the
running time of A with input length λ is less than p(λ). For two integers x �= 0
and y, we say that x and y are negligibly close if |x−y|/x is negligible. For a set
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S and a random variable x over S, we say that x is almost uniform on S if the
statistical distance between the distribution of x and the uniform distribution
on S is negligible. poly denotes an unspecified polynomial.

2 Preliminaries

Definition 1 (Indistinguishability Obfuscator). Let Cλ be the class of circuits
of size at most λ. An efficient randomized algorithm iO is called an indistin-
guishability obfuscator for P/poly if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, we have that

Pr[∀x C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) efficient algorithm A = (A1,A2), there
exists a negligible function α such that the following holds: if A1(1λ) always
outputs (C0, C1, σ) such that we have C0, C1 ∈ Cλ and ∀x C0(x) = C1(x),
then we have

|Pr[A2(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← A1(1λ)]
−Pr[A2(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← A1(1λ)]| ≤ α(λ)

Note that a candidate construction of iO that satisfies the above definition is
given in [16].

2.1 Group of Signed Quadratic Residues

Here, we recall the definition and some properties of a group of signed quadratic
residues [22] that we mainly work with in this paper. An integer N = PQ
is called a Blum integer if P and Q are distinct primes with the same length
and P ≡ Q ≡ 3 mod 4 and gcd(P − 1, Q − 1) = 2 hold. Let RSAGen(1λ) be
an efficient algorithm which outputs a random �N -bit Blum integer N = PQ
and its factorization (P,Q). We say that the factoring assumption holds with
respect to RSAGen if for any efficient adversary A, Pr[x ∈ {P,Q} : (N,P,Q) ←
RSAGen(1λ), x ← A(1λ, N)] is negligible. We define the group of signed quadratic
residues as QR

+
N := {|u2| : u ∈ ZN

∗} where |u2| denotes the absolute value of
u2 when it is represented as an element of {−(N − 1)/2, . . . , (N − 1)/2}. For
simplicity, we assume that a random element of QR

+
N is a generator of the group

with overwhelming probability for every N generated by RSAGen3. A remarkable
property of QR

+
N is that it is efficiently recognizable. That is, there exists an

efficient algorithm that determines whether a given string is an element of QR
+
N

or not [22]. It is easy to prove that if there exists an efficient algorithm that
computes the square root of a random element h ∈ QRN , then N is factorized
efficiently [22].
3 This holds for example, if we assume the existence of a constant δ such that all prime

factors of (P − 1)(Q − 1)/4 is no less than δ�N -bit as in [22,29]. Especially, strong
RSA moduli (e.g., N = PQ = (2p + 1)(2q + 1) such that P , Q, p and q are distinct
primes) suffice.
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2.2 Self-bilinear Map

Here, we recall the definition of a self-bilinear map. A self-bilinear map is a
bilinear map where the domain and target groups are identical. The formal
definition is as follows.

Definition 2 (Self-bilinear Map [12]). For a cyclic group G, a self-bilinear map
e : G × G → G has the following properties.

– For all g1, g2 ∈ G and α ∈ Z, it holds that

e(gα
1 , g2) = e(g1, gα

2 ) = e(g1, g2)α.

– The map e is non-degenerate, i.e., if g1, g2 ∈ G are generators of G, then
e(g1, g2) is a generator of G.

We can construct an n-multilinear map for any integer n ≥ 2 from a self-bilinear
map e. We denote this n-multilinear map by en. This can be seen by easy
induction: suppose that an n-multilinear map en can be constructed from a
self-bilinear map e, then we can construct an (n + 1)-multilinear map en+1 by
defining

en+1(g1, . . . , gn, gn+1) := e(en(g1, . . . , gn), gn+1).

3 Self-bilinear Map with Auxiliary Information

In this section, we give the definition and construction of self-bilinear maps with
auxiliary information (AI-SBMs). Though they are almost the similar to that
in [29], we made some modifications so that they become more useful.

Definition. Here, we recall the definition of AI-SBM introduced by Yamakawa
et al. [29]. We slightly modify the definition from the original one so that it is
more useful in applications. The differences between our definition and theirs
are summarized right below the definition.

InstGen(1λ) → params = (G, e, g) : InstGen takes the security parameter 1λ as
input and outputs the public parameters params which consists of descrip-
tions of an efficiently recognizable cyclic group G on which the group opera-
tion is efficiently computable, a self-bilinear map e on G and an element g of
G. We require that g is a generator of G with overwhelming probability and
that an approximation Approx(G) of ord(G) can be computed efficiently from
params, which is negligibly close to ord(G). By using g and Approx(G), we
can generate an almost uniform element h of G by taking x

$← [Approx(G)]
and outputting h := gx. With a slight abuse of notation, we often simply
write h

$← G to mean the above procedure. Additionally, params specifies
sets TX of auxiliary information for all X ∈ G. Since params is input for all
algorithms below, we omit it for simplicity.

AIGen(x) → τgx : AIGen takes an integer x as input, and outputs an auxiliary
information τgx ∈ Tgx that corresponds to gx.
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Map(X, τY ) → e(X,Y ) : Map takes X ∈ G and τY ∈ TY as input and
outputs e(X,Y ). By using this algorithm iteratively, we can compute
en(X1,X2, . . . , Xn) if we are given X1, . . . , Xn and τX1 , . . . , τXn

4.
AIMult(τX , τY ) → τXY : AIMult takes τX ∈ TX , τY as input and outputs τXY ∈

TXY . We require that |τXY | ≤ |τX | + |τY | + poly(λ) holds. With a slight
abuse of notation, we often write τX · τY to mean applying this algorithm.

AIMap(τX , τY ) → τe(X,Y ) : AIMap takes τX ∈ TX , τY as input and outputs
τe(X,Y ) ∈ Te(X,Y ). We require that |τe(X,Y )| ≤ |τX | + |τY | + poly(λ) holds.
With a slight abuse of notation, we often write e(τX · τY ) to mean applying
this algorithm.

AIExp(τX , α) → τXα : AIMap takes τX ∈ TX and a integer α as input and
outputs τXα ∈ TXα . We require that |τXα | ≤ |τX | + poly(λ, log α) holds.
With a slight abuse of notation, we often write τα

X to mean applying this
algorithm.

AIRand(S, τX) → τ ′
X : AIRand takes a natural number S and τX ∈ TX such that

|τX | ≤ S as input and outputs τ ′
X ∈ TX such that |τ ′

X | ≤ poly(S, λ).

We require for AIRand to satisfy the following property.

– Indistinguishability of Auxiliary Information. Intuitively, two auxil-
iary information corresponding to the same group element output by AIRand
are computationally indistinguishable. More formally, for any params ←
InstGen(1λ), X ∈ G, if τX,i ∈ TX and |τX,i| ≤ S hold and we set τ ′

X,i ←
AIRand(S, τX,i) (i = 0, 1), then τ ′

X,0 and τ ′
X,1 are computationally indistin-

guishable.

Differences between our Definition and that in [29]. Our definition of
AI-SBM differs from the original definition in [29] in the following four aspects.
First, we write auxiliary information of X = gx by τX rather than τx as in [29].
This is because in some situations, discrete logarithm value x is complicated to
write and simply writing a group element X is rather simple. We note that this
is only a notational convention and does not cause any significant difference.
Second, we abandon the concept of the level of auxiliary information defined
in [29]. In [29], the level of auxiliary information actually means the size of
the auxiliary information in their real construction. Thus we treat the sizes of
auxiliary information directly rather than abstracting them as levels. Third, we
divide the algorithm AIMult in [29] into two algorithms AIMult and AIRand. In
the original definition of AIMult, this algorithm, given auxiliary information for
X and Y , computes auxiliary information for XY and then “randomize” it. This
randomizing process is done by applying obfuscation in the real construction and
this makes the size of auxiliary information polynomially larger. We separate
these two processes since randomization is not always required right after a
multiplication. Finally, we added two algorithms AIMap and AIExp. They are
useful in applications and these algorithms can be naturally derived from their
construction of AI-SBM.
4 Note that actually not all of these elements are needed to evaluate the map en.
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Remark 1. As pointed out in [1], AI-SBMs have a significant drawback com-
pared with ideal self-bilinear maps that the size of auxiliary information grows
almost double in each computation of AIMult and AIMap. Thus if we apply these
computations recursively, then the size grows exponentially in the number of
computations. Thus we cannot compute polynomial depth circuit on auxiliary
information. We remark, however, that we can compute logarithmic depth cir-
cuits on auxiliary information.

Construction. Here, we review the construction of an AI-SBM given by
Yamakawa et. al. [29]. We note that we define a selfbilinear map e as e(gx, gy) :=
g2

kxy for some integer k wheres they defined as e(gx, gy) := g2xy in [29]. This
is due to a technical reason and cause minor changes. First we prepare some
notations for circuits on QR

+
N .

Notation for Circuits on QR
+
N . In the following, for an �N -bit RSA modu-

lus N and an integer x ∈ Z, CN,x denotes a set of circuits CN,x that computes
x-th power on the group QR

+
N . If an input is not an element of QR

+
N , CN,x

outputs 0�N (that is interpreted as ⊥). We define the canonical circuit C̃N,x in
CN,x in a natural way5. For circuits C1, C2 whose output can be interpreted as
elements of QR

+
N , Mult(C1, C2) denotes a circuit that takes a as input and out-

puts C1(a) · C2(a) where · denotes the multiplication on QR
+
N . C1 ◦ C2 denotes

a circuit that takes a as input and outputs C1(C2(a)). The sizes of Mult(C1, C2)
and C1 ◦ C2 can be bounded by |C1| + |C2| + poly(log N).

Now we are ready to describe the construction. Let k be an arbitrary natural
number. The construction is as follows.

InstGen(1λ) → params = (N, g): Run RSAGen(1λ) to obtain (N,P,Q), chooses
g

$← QR
+
N and outputs params = (N, g). params defines the underlying

group G := QR
+
N , the self bilinear map e(gx, gy) := g2

kxy and Approx(G) :=
(N − 1)/4. For any element X = gx ∈ G, the set TX is defined as the set of
all circuits that computes 2kx-th power on QR

+
N (and outputs ⊥ for input

out of QR
+
N ).

AIGen(x) → τgx : Take the canonical circuit C̃N,2kx ∈ CN,2kx, set τgx := C̃N,2kx

and output τgx .
Map(X, τY ) → e(X,Y ): Compute τY (X) and output it. (Recall that τY is

a circuit that computes the 2ky-th power for an element of QR
+
N where

Y = gy.)
AIMult(τX , τY ) → τXY : Compute τXY ← Mult(τX , τY ) and output it.
AIMap(τX , τY ) → τe(X,Y ): Compute τe(X,Y ) ← τX ◦ τY and output it.
AIExp(τX , α) → τXα : Take the canonical circuit C̃N,α ∈ CN,α, compute τX ◦C̃N,α

and output it.
AIRand(S, τ ′

X): Compute τ ′
X ← iO(S, τX) and output it.

5 There is flexibility for the definition of the canonical circuit. However, any definition
works if the size of C̃N,x is polynomially bounded in λ and |x|.
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The indistinguishability of auxiliary information easily follows from the definition
of indistinguishability obfuscation.

4 Hardness Assumptions for AI-SBM

In this section, we first define the Auxiliary Information Generalized Multilinear
Diffie-Hellman (AI-GMDH) assumption. Then we prove our main theorem that
gives a sufficient condition for that the AI-GMDH assumption holds. Finally, we
give some applications of our main theorem.

4.1 Our Main Theorem

First, we define the AI-GMDH assumption.

Definition 3 (({fi}i∈[m], f
∗, �∗,M)-AI-GMDH assumption). Let f1, . . . , fm, f∗

be n-variable polynomials and �∗ and M be natural numbers. Then we say that
the Auxiliary Information Generalized Multilinear Diffie-Hellman (AI-GMDH)
assumption holds if the following holds. There exists a polynomial S(λ) such that
for any PPT adversary A,

Pr[(c∗, F ∗c∗
) ← A(params, {Fi}i∈[m], {τFi

}i∈[m]), c∗ �= 0, |c∗| ≤ M ]

is negligible, where params
$← InstGen(1λ), x1, . . . , xm

$← [Approx(G)], Fi :=
gfi(x1,...,xn), τFi

← AIRand(S,AIGen(fi(x1, . . . , xn))) (for i ∈ [m]), and F ∗ :=
e�∗(g, . . . , g)f∗(x1,...,xn).

Remark 2. If G is a group of known prime order, then it is the same if we
only consider the case of c∗ = 1. However, since we consider a group of unknown
order, we formulate the assumption as the above. Indeed, it is crucial to consider
the case of c∗ �= 1 in the application in Sect. 5.

In the following, we give a sufficient condition for that ({fi}i∈[M ], f
∗, �∗,M)-AI-

GMDH assumption holds when {fi}i∈[M ] and f∗ are monic polynomials, i.e.,
written as

∏n
i=1 xti

i where ti is a natural number. First, we define a notation.

Definition 4. For a monic monomial f defined by f(x1, . . . , xn) =
∏n

i=1 xti
i ,

we define its corresponding polynomial f̄ by f̄(x1, . . . , xn) :=
∑n

i=1 tixi.

Our main theorem is as follows.

Theorem 1. Let f1, . . . , fm and f∗ be functions of the form as in Definition 4.
If there exists (a1, . . . , an) ∈ Z

n such that f̄i(a1, . . . , an) ≥ −1 for all i ∈ [m] and
�∗ + f̄∗(a1, . . . , an) ≤ −1 hold. Then if iO is an indistinguishability obfuscation
and the factoring assumption holds w.r.t. RSAGen, then ({fi}i∈[m], f

∗, �∗, 2k−1)-
AI-GMDH assumption holds w.r.t. the AI-SBM constructed in Sect. 3.
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Proof. Assume that there exists a PPT adversary A that breaks the
({fi}i∈[m], f

∗, �∗, 2k−1)-AI-GMDH assumption. We construct a PPT algorithm B
that computes the square root of a random element of QR

+
N with non-negligible

probability. (As remarked in Sect. 2.1, such an algorithm yields a PPT algorithm
that breaks the factoring assumption.) The description of B is as follows.

B(N,h): Let g := h2k

and params := (N, g). Pick x′
i

$← [(N −1)/4] and implicitly
define xi := 2kai(2x′

i +1) mod ord(QR
+
N ). (Since B do not know ord(QR

+
N ),

it cannot compute xi. It defines as above only in mind.) Then for all i ∈ [m],
we have

fi(x1, . . . , xn) ≡ 2kf̄i(a1,...,an)oddi mod ord(QR
+
N ), and

f∗(x1, . . . , xn) ≡ 2kf̄∗(a1,...,an)odd∗ mod ord(QR
+
N )

where oddi and odd∗ are odd numbers efficiently computable from {x′
i}i∈[n].

Here, we let Ai := 2k(f̄i(a1,...,an)+1)oddi, Fi := hAi , and τFi
:= iO(S, C̃N,Ai

)
where C̃N,Ai

is the canonical circuit that computes Ai-th power on QR
+
N .

Then B runs (c∗, T ) ← A(params, {Fi}i∈[m], {τFi
}i∈[m]). We can express c∗

as c∗ = 2voddc∗ where oddc∗ is the odd part of c∗. Then we have v ≤ k − 1
since we have |c∗| ≤ M ≤ 2k−1. If A succeeds, then we have

T = e�∗(g, . . . , g)c∗f∗(x1,...,xn)

= g2
k(�∗−1)c∗f∗(x1,...,xn)

= h2k�∗
c∗2kf̄∗(a1,...,an)odd∗

= h2k(�∗+f̄∗(a1,...,an))+vodd′

where we define odd′ := odd∗ · oddc∗ . Here, since we have �∗ +
f̄∗(a1, . . . , an) ≤ −1 by the assumption and v ≤ k − 1, we have k(�∗ +
f̄∗(a1, . . . , an)) + v ≤ −1. Then if we define a natural number α by
α := −(k(�∗ + f̄∗(a1, . . . , an)) + v), then we have T = h2−αodd′

. There-
fore we have Tα−1 = h2−1odd′

. Then if we let odd′ := 2even′ + 1 , then
we have Tα−1 = heven′+1/2. Therefore B can compute h1/2 by computing
Tα−1h−even′

.

This completes the description of B. In the above description, we already show
that if A succeeds, then B also succeeds. What is left is to prove the distribution
of A’s input in the above algorithm is computationally indistinguishable from
that in the AI-GMDH assumption. N is generated in the same way as in the
AI-GMDH assumption (it is generated as N ← RSAGen(1λ)). g is uniformly
distributed on QR

+
N as in the AI-GMDH assumption since h is uniformly dis-

tributed on QR
+
N and 2k is coprime to ord(QR

+
N ). Since {x′

i}i∈[n] are almost
uniformly distributed on [ord(QR

+
N )] and 2 is coprime to ord(QR

+
N ), {xi}i∈[n]

are also almost uniformly distributed on [ord(QR
+
N )]. Since we have Fi = hAi

and Ai ≡ 2kfi(x1, . . . , xn) mod ord(QR
+
N ), we have hAi = h2kfi(x1,...,xn) =

gfi(x1,...,xn) for i ∈ [m]. Thus we can see that gfi(x1,...,xn) is simulated cor-
rectly. What is left is to prove that the distribution of τFi

(i ∈ [m]) simulated
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by B is computationally indistinguishable from the real distribution in the AI-
GMDH assumption conditioned on any fixed params, {Fi}i∈[m]. τFi

is generated
as τFi

:= iO(S, C̃N,Ai
) in the simulation by B, and τFi

:= iO(S, C̃N,2kfi(x1,...,xn))
in the AI-GMDH assumption. Here, since we have Ai ≡ 2kfi(x1, . . . , xn)
mod ord(QR

+
N ), C̃N,2kfi(x1,...,xn) and C̃N,Ai

have the completely the same func-
tionality. Therefore if S is larger than the sizes od these circuits, then the above
two are computationally indistinguishable by the property of the indistinguisha-
bility obfuscation.

4.2 Implications of Our Main Theorem

Here, we give some implications of Theorem 1. We define two assumptions w.r.t.
AI-SBMs. The first is the Auxiliary Information Multilinear Computational
Diffie-Hellman (AI-MCDH) assumption that was introduced in [29]6.

Definition 5 (n-AI-MCDH assumption). We say that the Auxiliary Informa-
tion Multilinear Computational Diffie-Hellman (AI-MCDH) assumption if there
exists a polynomial S(λ) such that for any PPT adversary A,

Pr[en−1(g, . . . , g)
∏n

i=1 xi ← A(params, {gxi}i∈[n], {τgxi }i∈[n])]

is negligible, where params
$← InstGen(1λ), x1, . . . , xn

$← [Approx(G)] and τgxi ←
AIRand(S,AIGen(xi)) (for i ∈ [n]).

Corollary 1. If iO is a secure indistinguishability obfuscation and the factor-
ing assumption holds, then for any (polynomially bounded) n, the n-AI-MCDH
assumption holds w.r.t. our AI-SBM.

Proof. We define fi(x1, . . . , xn) := xi for i ∈ [n], and f∗(x1, . . . , xn) :=
∏n

i=1 xi.
Then the n-AI-MCDH assumption is equivalent to ({fi}i∈[n], f

∗, n − 1, 1)-AI-
GMDH assumption. If we let ai := −1 for i ∈ [n], then we have f̄i(a1, . . . , an) =
−1 for i ∈ [n], �+ f̄∗(a1, . . . , an) = n−1+n · (−1) = −1, and thus the condition
of Theorem 1 is satisfied. Therefore this corollary follows from Theorem 1.

Definition 6 ((�,M)-AI-APMDH assumption). We say that the (�,M)-
auxiliary information augmented power multilinear Diffie-Hellman((�,M)-AI-
APMDH) holds if there exists a polynomial S(λ) such that for any PPT adver-
sary A,

Pr[(c∗, F ∗c∗
) ← A(params, {Fi}i∈[4], {τFi

}i∈[4]), c∗ �= 0, |c∗| ≤ M ]

is negligible where params
$← InstGen(1λ), x1, x2, x3

$← [Approx(G)], F1 :=
gx2 , F2 := gx3 , F3 := gx1x2 , F4 := gx1x2x3 , F ∗ := e�(g, . . . , g)x�−1

1 (x2x3)
�

,
τF1 ← AIRand(S,AIGen(x2)), τF2 ← AIRand(S,AIGen(x3)), τF3 ← AIRand
(S,AIGen(x1x2)), and τF4 ← AIRand(S,AIGen(x1x2x3))

6 The actual presentation is slightly modified due to the modification of the definition.
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Remark 3. In the original definition of the APMDH assumption, an adversary
is also given gx1 and gx1x3 additionally. In our application in Sect. 5, they are
not needed and thus we omit them.

Corollary 2. If iO is a secure indistinguishability obfuscation and the factor-
ing assumption holds, then for any (polynomially bounded) �, the (�, 2k−1)-AI-
APMDH assumption holds w.r.t. our AI-SBM.

Proof. We define f1(x1, x2, x3) := x2, f2(x1, x2, x3) := x3, f3(x1, x2, x3) :=
x1x2, f4(x1, x2, x3) := x1x2x3, and f∗(x1, x2, x3) := x�−1

1 (x2x3)� Then
the (�, 2k−1)-AI-APMDH assumption is equivalent to ({fi}i∈[4], f

∗, �, 2k−1)-
AI-GMDH assumption. If we let (a1, a2, a3) := (1,−1,−1), then we have
f̄1(a1, a2, a3) = −1, f̄2(a1, a2, a3) = −1, f̄3(a1, a2, a3) = 1 − 1 = 0,
f̄4(a1, a2, a3) = 1 − 1 − 1 = −1, and � + f̄∗(a1, a2, a3) = � + (� − 1) − � − � = −1,
and thus the condition of Theorem1 is satisfied. Therefore this corollary follows
from Theorem 1.

5 Homomorphic Signature

In this section, we construct homomorphic signatures based on AI-SBMs. We
define homomorphic signatures similarly as in [19]. The full definition is given
in the full version of this paper.

5.1 Construction

Here, we construct a selectively secure single data homomorphic signature
scheme for the class of all polynomials. Our scheme is based on the idea of [9].
Namely, our scheme is almost automatically obtained by replacing multilinear
maps by AI-SBP in the scheme of [9]. We let [M ] be the message space.

KeyGen(1λ, 1n) → (vk, sk): Generate (G, e, g) = params ← ParamGen(1λ),
choose ri

$← [Approx(G)] (i = 1, . . . , n) and x1, x2, x3
$← [Approx(G)], and set

Ri := gri (i = 1, . . . , n), A := gx2 , B := gx3 , C := gx1x2 , U := gx1x2x3 ,
τRi

:= AIRand(S′,AIGen(ri)) (i = 1, . . . , n), τA := AIRand(S,AIGen(x2)),
τB := AIRand(S,AIGen(x3)), τC := AIRand(S,AIGen(x1x2)), τU := AIRand
(S,AIGen(x1x2x3)), where S′ can be set as an arbitrary integer larger than
the maximal size of auxiliary information that is used as a second input of
AIRand when generating Ri through the real scheme and the security proof.
Then set
vk := (params, {Ri}i∈[N ], A,B,C,U, {τRi

}i∈[N ], τA, τB , τC , τU ), sk :=
(x1, x2, vk)
and output (vk.sk).

Sign(sk, i,m) → σ:
Compute Λ := (RiB

−m)x2 , Γ := Λx1 , τΛ := AIRand(S′′, (τRi
τ−m
B )x2),

τΓ := AIRand(S′′, (τRi
τ−m
B )x1x2)

and output σ := (Λ, Γ, τΛ, τΓ ), where S′ can be set as an arbitrary integer
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larger than the maximal size of auxiliary information that is used as a sec-
ond input of AIRand when generating τΓ through the real scheme and the
security proof.

Eval(f, (m1, σ1), . . . , (mn, σn)) → σ∗: Let f be a polynomial of degree d. Then
f can be seen as an arithmetic circuit of depth O(log(d)). We let σi =
(Λi, Γi, τΛi

, τΓi
). We label the i-th input wire of f by (1,mi, σi). For all

i ∈ [d], compute Ui := ei(U, . . . , U), τUi
:= ei(τU , . . . , τU ).

For each gate of f , compute the following.
Addition: Assume that the input wires for this gate is labeled by

(i,m(1), (Λ(1), Γ (1), τΛ(1) , τΓ (1))), (j,m(2), (Λ(2), Γ (2), τΛ(2) , τΓ (2))).
Without loss of generality, we assume that i ≥ j. First, adjust the
“degree” of each value. That is, set
Λ′(2) := ei−j+1(Λ(2), g, . . . , g), Γ ′(2) := ei−j+1(Γ (2), g, . . . , g),
τΛ′(2) := ei−j+1(τΛ(2) , τg, . . . , τg), τΓ ′(2) := ei−j+1(τΓ (2) , τg, . . . , τg).

Then set
m∗ := m1 + m2, Λ∗ := Λ(1) · Λ′(2), Γ ∗ := Γ (1) · Γ ′(2), τΛ∗ := τΛ(1) · τΛ′(2) ,
τΓ ∗ := τΓ (1) · τΓ ′(2) ,
and assign (i,m∗, (Λ∗, Γ ∗, τΛ∗ , τΓ ∗)) to the output wire of this gate.

Multiplication by constant c: Let (i,m, (Λ, Γ, τΛ, τΓ )) be the value labeled
to the input wire of this gate. Then compute
m∗ := c · m Λ∗ := Λc Γ ∗ := Γ c τΛ := τ c

Λ τΓ := τ c
Γ

and assign (i,m∗, (Λ∗, Γ ∗, τΛ∗ , τΓ ∗)) to the output wire of this gate.
Multiplication: Assume that the input wires for this gate is labeled by

(i,m(1), (Λ(1), Γ (1), τΛ(1) , τΓ (1))),
(j,m(2), (Λ(2), Γ (2), τΛ(2) , τΓ (2))).

Then compute
m∗ := mA · mB,
Λ∗ := e(Λ(1), Γ (2)) · e(Λ(1), Um2

j ) · e(Umi
i , Λ(2)), Γ ∗ := e(Γ (1), Γ (2)) ·

e(Γ (1), Um2
j ) · e(Umi

i , Γ (2)) τΛ∗ := e(τΛ(1) , τΓ (2)) · e(τΛ(1) , τm2
Uj

) ·
e(τm1

Ui
, τΛ(2)), τΓ ∗ := e(τΓ (1) , τΓ (2))·e(τΓ (1) , τm2

Uj
)·e(τm1

Ui
, τΓ (2)), and assign

(i + j,m∗, (Λ∗, Γ ∗, τΛ∗ , τΓ ∗)) to the output wire of this gate.
We can see that the output wire of f is labeled by (d, f(m1, . . . ,mn),
(Λout, Γout, τΛout , τΓout)) for some (Λout, Γout, τΛout , τΓout). ThenEval outputs Λout.

Verify(vk, f,m, σ = Λ) → 1/0: Set gd := ed(g, . . . , g) and compute R =
g

f(r1,...,rN )
d and its corresponding auxiliary information τR. This can be com-

puted by evaluating f on the values R1, . . . , Rn. Namely, replace an addition
in f by a multiplication in G and a multiplication by an evaluation of e. Let

Bd := ed(B, . . . , B) and verify e(R · B−m
d , g

xd−1
1 xd

2
d ) = e(Λd, gd). If this equa-

tion holds, then output 1, and otherwise output 0. Here, required values
for the verification can be computed as τR·B−m

d
:= τR · e(τB , . . . , τB)−m,

g
xd−1
1 xd

2
d := ed(A,C, . . . , C), and τgd

:= ed(τg, . . . , τg).
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5.2 Security

Theorem 2 If (�,M) − AI − APMDH assumption hold for all polynomially
bounded � then the above scheme is selectively secure.

Combining with Corollary 2, we obtain the following corollary.

Corollary 3 If iO is an indistinguishability obfuscation and the factoring
assumption holds, then the above homomorphic signature scheme instantiated by
the AI-SBM given in Sect. 3 is selectively secure as long as we have 2k−1 ≥ M .

The proof of Theorem 2 can be found in the full version.
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Abstract. This paper describes a deterministic encoding f from a finite
field Fq to a twisted Edwards curve E when q ≡ 2 (mod 3). This
encoding f satisfies all 3 properties of deterministic encoding in Boneh-
Franklin’s identity-based scheme. We show that the construction f(h(m))
is a hash function if h(m) is a classical hash function. We present that for
any nontrivial character χ of E(Fq), the character sum Sf (χ) satisfies
Sf (χ) � 20

√
q + 2. It follows that f(h1(m)) + f(h2(m)) is indifferen-

tiable from a random oracle in the random oracle model for h1 and h2

by Farashahi, Fouque, Shparlinski, Tibouchi, and Voloch’s framework.
This encoding saves 3 field inversions and 3 field multiplications com-
pared with birational equivalence composed with Icart’s encoding; saves 2
field inversions and 2 field multiplications compared with Yu and Wang’s
encoding at the cost of 2 field squarings; and saves 2 field inversions, 3
field multiplications and 3 field squarings compared with Alasha’s encod-
ing. Practical implementations show that f is 46.1 %,35.7 %, and 38.9 %
faster than the above encodings respectively.

Keywords: Twisted Edwards curve · Deterministic encoding · Elliptic
curve · Hashing · Random oracle model
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the hash function is a deterministic encoding composed with a classical hash
function. Also, indifferentiable hashing into ordinary elliptic curves [6,7] needs
deterministic encodings.

There exist various encodings mapping elements of Fq to an elliptic curve
in deterministic polynomial time. Shallue and Woestijne’s encoding [8] is based
on Skalba’s equality [9] and uses a modification of Tonelli–Shanks algorithm
for computing square roots efficiently. Icart [10] in Crypto 2009 proposed an
encoding based on finding cube roots efficiently as x1/3 = x(2q−1)/3 when q ≡ 2
(mod 3). Both encodings map an element of a finite field into Weierstrass-form
elliptic curves. These two methods of constructing encodings also applied to
other algebraic curves such as hyperelliptic curves [11,12], Hessian curves [13],
Montgomery curves [14], and Jacobi quartic curves [15].

Unlike the more well known Weierstrass form elliptic curves, the Edwards
form elliptic curve, first proposed by Edwards [16], admits a unified addition
formula which is very useful in providing resistance to timing attacks [17]. The
group law on Edwards curves was improved using projective coordinates [18]
and using inverted coordinates [19] by Bernstein and Lange. The twisted form
of Edwards curves was investigated [20,21], which also has efficient group law
and is against timing attacks. The pairing on twisted Edwards curves [23–25]
has attracted many interests for the pairing was used to construct the first
practical identity-based encryption scheme [2]. Hence, Yu and Wang [26] intro-
duced an deterministic encoding into twisted Edwards curves in 2010. In 2012,
Alasha [27] proposed a new deterministic encoding into twisted Edwards curves
based on calculating a cube root. Moreover, birational equivalence from Mont-
gomery curve to twisted Edwards curve composed with birational equivalence
from Weierstrass curve to Montgomery curve composed with Icart’s encoding
[10] is also a deterministic encoding into twisted Edwards curves.

These encodings all satisfy the three properties of the deterministic encod-
ing ψ : S → R in Boneh-Franklin’s identity-based scheme [2]: (1) computable:
ψ is computable in deterministic polynomial time; (2) l-to-1: for any r ∈ R,
#ψ−1(r) = l; (3) samplable: there exists a probabilistic polynomial time algo-
rithm that for any r ∈ R returns a random element in ψ−1(r). For the second
property, the smaller l is, the better the encoding is.

This paper presents a deterministic encoding from a finite field Fq to twisted
Edwards curves over Fq when q ≡ 2 (mod 3) which satisfies all 3 properties of the
deterministic encoding in Boneh-Franklin’s identity-based scheme. This encod-
ing is based on computing a cube root and mainly constructed by symmetrical
characteristic of twisted Edwards curves.

Our encoding is efficiently computable. Without precomputations, this
encoding costs 3 field inversions and 3 field multiplications less than Icart’s
algorithm; 2 field inversions and 2 field multiplications less than Yu and
Wang’s encoding at the cost of 2 field squarings; and 2 field inversions, 3 field
multiplications and 3 field squarings less than Alasha’s deterministic encod-
ing. Experimental results show that with precomputations this encoding f is
20.2 %, 22.2 % 36.5 % faster than the above algorithms respectively and without
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precomputations f is 46.1 %,35.7 % 38.9 % faster than the above algorithms
respectively. In a word, f is fastest among these existing encodings not only
with precomputations but also without precomputations.

For the second property, f is 4-to-1 whereas the deterministic encodings in
[10] is 4-to-1; in [26] is 8-to-1, in [27] is 9-to-1. From these facts, our encoding is
superior. Additionally, the image of f satisfies |#Im(f)− 5

8#E(Fq)| � 5
4 (31q1/2+

72q1/4 + 67).
Moreover, we show that the construction f(h(m)) is a hash function if h(m)

is a hash function. We prove that for any nontrivial character χ of E(Fq), the
character sum Sf (χ) is less than or equal to 20

√
q+2. This property follows that

f(h1(m)) + f(h2(m)) is indifferentiable from a random oracle in the random
oracle model for h1 and h2 by Farashahi, Fouque, Shparlinski, Tibouchi, and
Voloch’s framework.

The paper is organized as follows. In Sect. 2, we recall some basic facts
about twisted Edwards curves and introduce existing deterministic encodings
into twisted Edwards curves. In Sect. 3, we introduce our encoding from Fq into
twisted Edwards curves. In Sect. 4, we give the properties of f . In Sect. 5, we
compare our encoding f with other existing deterministic encodings. Finally, we
conclude the paper.

2 Existing Deterministic Encodings into Twisted
Edwards Curves

In 2007, Edwards [16] noticed an addition law on a special case of the elliptic
curve x2 + y2 + x2y2 = 1 hinted by Euler and explicitly stated by Gauss, and
followed an addition law for the curves defined by

x2 + y2 = c2(1 + x2y2) (1)

over a non-binary field K. He showed that if K is algebraically closed, every
elliptic curve over K can be expressed in the form (1). However, over finite
fields, only a small fraction of elliptic curves can be expressed in this form. All
eliptic curves defined by Eq. (1) are isomorphic to curves of the form

x2 + y2 = 1 + dx2y2,

with d �= 1, d ∈ K.
In [20], Bernstein et al. generalized the equation of Edwards curves in [16] to

the equation
E : ax2 + y2 = 1 + dx2y2, (2)

where ad �= 0, a �= d, which are twisted Edwards curves. The neutral element is
(0, 1), and the negative of (x1, y1) is (−x1, y1).
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Edwards curves are a variant of twisted Edwards curves with a = 1. The
addition law for points on twisted Edwards curves is given by

(x1, y1) + (x2, y2) =
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)

.

If a is a square and d is not a square in K, then the addition law is valid for all
points, with no exceptions, which leads to the resistance of timing attacks.

In the following, three deterministic encodings from a finite field Fq to twisted
Edwards curves in the literature are listed when q ≡ 2 (mod 3). Let q = pn ≡ 2
(mod 3) where p is an odd prime. The function x �→ x3 is a bijection with its
inverse function x �→ x

1
3 = x

2pn−1
3 = x

2q−1
3 , which enables the following three

encodings from Fq to a subset of elliptic curve Ea,d to be calculated efficiently.

2.1 Icart’s Encoding [10]

For convenience, let M denote field multiplication, S field squaring, I field inver-
sion, C the cube root. For purposes of simplification, we disregard field addi-
tions/subtractions and discard multiplications/divisions by small constants.

Icart proposed a deterministic encoding from a finite field Fq to Weierstrass
curves when q ≡ 2 (mod 3). Birational equivalence from Montgomery curve to
twisted Edwards curve composed with birational equivalence from Weierstrass
curve to Montgomery curve composed with Icart’s function [10] is a deterministic
encoding from a finite field to twisted Edwards curves shown as follows.

One can first precompute A = 2(a+d)
a−d , B = 4

a−d , α = A
3B , F = 1

B2 − 3α2, G =
−α3 − Fα at the cost of 2I + 3M + 2S, which also can be computed in the
process. Next, compute as

v =
3F − u4

6u
,

m =
(

v2 − G − u6

27

)1/3

+
u2

3
,

n =um + v,

s =B(m − α), t = Bn,

x =
s

t
, y =

s − 1
s + 1

.

This deterministic encoding u �→ (x, y) is denoted by fIcart where u �= 0. The cost
of v,m, n, s together with t, and x together with y are I+2S+M , C+M +S, M ,
2M , and I+5M respectively. The total cost of this encoding is C+2I+10M+3S
with precomputations and C + 4I + 13M + 5S without precomputations.

2.2 Yu and Wang’s Encoding [26]

Yu and Wang [26] proposed a deterministic encoding directly into twisted
Edwards curves when q ≡ 2 (mod 3). One can precompute A = 2(a + d)/(a −
d), B = 4/(a − d) at the cost of I + M . Next, compute as
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v =
1

2Bu

(

1 − (A − Bu2)2

3

)

,

s = −A − Bu2

3
+

((
A − Bu2

3

)3

+ Bv2

)1/3

,

t = us + v,

x = s/t, y = (s − 1)/(s + 1).

This deterministic encoding u �→ (x, y) is denoted by fY uWang where u �= 0. The
cost of v, s together with t, and x together with y are I+3M+2S, C+3M+S, and
I +5M respectively. The total cost is C +2I +11M +3S with precomputations
and C + 3I + 12M + 3S without precomputations.

2.3 Alasha’s Encoding [27]

Alasha also proposed an efficiently deterministic encoding directly into twisted
Edwards curves when q ≡ 2 (mod 3). One can precompute a2, ad, d2, ad(a + d)
at the cost of 2M + 2S. Next, compute as

v = − a2 + 14ad + d2 + 2u2(a + d) + u4

12u
,

m =
a + d + u2

6
,

s =
(

−2m3 +
ad(a + d) − v2

2
− (ad + uv)m

)1/3

+ m,

x =
us + v

s2 − ad
,

δ =
(s − d)(s − a)

s2 − ad
,

y =
δ

dx2 − 1
.

This deterministic encoding u �→ (x, y) is denoted by fAlasha where u �= 0. The
cost of v together with m, s, x, δ, and y are I + 2M + 2S, C + 3M + 2S,
I + 2M + S, 2M , and I + 2M + S respectively. The total cost of this encoding
is C + 3I + 11M + 6S with precomputations and C + 3I + 13M + 8S without
precomputations.

In the next section, we present our encoding from Fq to twisted Edwards
curves.

3 Our Encoding

Our construction f : u �→ (x, y) is also based on computing a cube root where
(x, y) satisfies ax2 + y2 = 1 + dx2y2. We first precompute (a − d)2 at the cost
of S. Then, compute as
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x =
t(t + 24(a − d)u)

(ut + s)(t + 24(a − d)u)
,

y =
(ut + s)(t − 24(a − d)u)
(ut + s)(t + 24(a − d)u)

,

(3)

where

s =3(a − d)2 − 4(a + d − 2u2)2,

t = − 16u(a + d − 2u2) +
((

16u(a + d − 2u2)
)3

+ 24 · 4us2
)1/3

.

The expressions of x and y are constructed mainly by symmetrical property of
twisted Edwards curves. The cost of x, y, s, and t are I + 5M , 2M , 2S, and
C +3M +2S respectively. The total cost of f is C + I +10M +4S with precom-
putations and C + I + 10M + 5S without precomputations. In the following, we
will prove that the point (x, y) is on E.

Lemma 1. Let Fq be a finite field where q ≡ 2 (mod 3). For any u ∈ Fq, f(u)
is a point of twisted Edwards curve Ea,d(Fq): ax2+y2 = 1+dx2y2, a �= d, ad �= 0.

Proof. Let M = 24(a − d)u, N = a + d − 2u2.
Since t = −16uN +

(
(16uN)3 + 24 · 4us2

)1/3
, then

(t + 16uN)3 =
(
(16uN)3 + 24 · 4us2

)
.

Combing like terms, it follows (a− d)t3 +2M [a+ d− 2u2]t2 +M [(a− d)M −
8us]t − 4Ms2 = 0. Rearrange it and we obtain

at(t + M)2 − 4M(ut + s)2 = dt(t − M)2.

Multiply by t
(ut+s)2(t+M)2 on each side of equation, then we gain a( t

ut+s )
2 −

2 2M
t+M + ( 2M

t+M )2 = d( t
ut+s )

2( t−M
t+M )2. By rearranging, we obtain

a(
t

ut + s
)2 + (1 − 2M

t + M
)2 = 1 + d(

t

ut + s
)2(

t − M

t + M
)2,

which is ax2 + y2 = 1 + dx2y2. �

We show that the encoding f ia valid for any input u. The only three special
cases are u = 0, ut + s = 0, and t + 24(a − d)u = 0. When u = 0, f(u) = (0, 1);
when ut+s = 0, x = ∞, then a = d, which is impossible; when t+24(a−d)u = 0,
y = ∞, then a = d, which is impossible. Thus, f is valid for any input u. For
fIcart, fY uWang, fAlasha all have invalid input u = 0 whose image need to be
given separately, thus our encoding is well.

Next, we will discuss the properties of f .
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4 Properties of f

Lemma 2 is convenient for calculating #f−1 and the character sum of f .

Lemma 2. Let P be a point on an Edwards curve E. The solutions of f(u) = P
are in the solutions of polynomial equation:

Ha,d(u) =16x(y − 1)u4 + [24(a − d)(y + 1) − 16(y − 1)(a + d)]xu2

− 24(a − d)(y + 1)u + x(y − 1)(a2 + d2 + 14ad) = 0.

Proof. Let s and t be defined as in Eq. (3).

⎧
⎪⎨

⎪⎩

ax2 + y2 = 1 + dx2y2

16x(y − 1)u4 + [24(a − d)(y + 1) − 16(y − 1)(a + d)]xu2

−24(a − d)(y + 1)u + x(y − 1)(a2 + d2 + 14ad) = 0

⇔

⎧
⎪⎨

⎪⎩

ax2 + y2 = 1 + dx2y2

x(1 − y)
[
3(a − d)2 − 4(a + d − 2u2)2

]

= 24(a − d)u(1 − xu)(y + 1)

⇔
{

ax2 + y2 = 1 + dx2y2

xs(1 − y) = 24(a − d)u(1 − xu)(y + 1)

⇔
{

x = t
ut+s

xs(1 − y) = 48(a − d)u(1 − xu)
⇔

{
x = t

ut+s

y = t−24(a−d)u
t+24(a−d)u .

�

Lemma 2 leads to the following result.

Lemma 3. f−1(P ) is computable in polynomial time and #f−1(P ) � 4, for all
P ∈ E(Fq).

Proof. Lemma 2 ensures that to compute f−1, it is sufficient to solve a degree
4 equation over Fq. Because solving polynomial equations of degree m over a
finite field can be solved in O(m2 log3 q) binary operations using the Berlekamp
algorithm [29]. Thus, f−1 can be solved in polynomial time. Since the pre-images
are solution of a degree 4 equation about u over Fq, then there are at most 4
solutions for any point P . �

It is easy to check that this encoding f satisfies the 3 properties of Boneh-
Franklin’s identity-based scheme. Particularly, our encoding is 4-to-1 while
fIcart, fY uWang, and fAlasha are 4-to-1, 8-to-1, and 9-to-1 respectively.
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Lemma 4. The function fa,d can be implemented in deterministic polynomial
time, with O(log3 q) running time and in a constant number of operations
over Fq.

Proof. When q ≡ 2 (mod 3), computing x �→ x1/3 is an exponentiation with
exponent (2q − 1)/3. This can be implemented in a constant number of opera-
tions over Fq. We calculate f from Fq to twisted Edwards curves which mainly
compute a cube root, about log q times multiplications. Thus the function f can
be implemented in deterministic polynomial time, with O(log3 q) running time.
The computation of f(u) for any u needs the same operations over Fq, then the
function f can be implemented in a constant number of operations over Fq. �

This map f satisfies the condition in [10] which requires that
maxP∈E

(
#f−1(P )

)
is a constant when constructing hash function into ellip-

tic curves. Then f(h(m)) is a hash function if h(m) is a classical hash function.
Next, we prove that f(h1(m))+f(h2(m)) is indifferentiable from a random oracle
in the random oracle model for h1 and h2 by character sum.

4.1 Character Sum of f

Consider the graph of f :

C = {(x, y, u) ∈ E × P
1(Fq)|f(u) = (x, y)}

= {(x, y, u) ∈ E × P
1(Fq)|Ha,d(u) = 0}.

Now we calculate the genus of C. The projection g : C → E is a morphism
of degree 4, hence the fiber at each point of E contains 4 points. The branch
points are points (x, y) on E where Ha,d has multiple roots, which means that
its discriminant D vanishes at (x, y). By substituting x2 = − y2−1

a−dy2 into D, it
can be represented as

D = 220 · 32
(y2 − 1)(P (y)x + Q(y))

(dy2 − a)3
,

where P (y) is a polynomial of degree 8, Q(y) is a sextic polynomial. By calcula-
tion, there are at most 20 different branch points on E, with ramification index
2. By Riemann-Hurwitz formula 2gC − 2 � 4 · (2 · 1 − 2) + 20, we get gC � 11.

Definition 1 [7]. Suppose f is an encoding from Fq into an elliptic curve E, χ
is a character of E(Fq). We define the character sum

Sf (χ) =
∑

s∈Fq

χ(f(s)).

And we say f is B-well-distributed if for any nontrivial character χ of E(Fq),
the inequality |Sf (χ)| � B

√
q holds.
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Lemma 5. (See Corollary 2, Sect. 3, [7]). If f : Fq → E(Fq) is a B-well-
distributed encoding into a curve E, then the statistical distance between the
distribution defined by f⊗s on E(Fq) and the uniform distribution is bounded as:

∑

D∈E(Fq)

|Ns(D)
qs

− 1
#E(Fq)

| � Bs

qs/2

√
#E(Fq),

where
f⊗s(u1, . . . , us) = f(u1) + . . . + f(us),

Ns(D) = #{(u1, . . . , us) ∈ (Fq)s|D = f(u1) + . . . + f(us)},

i.e., Ns(D) is the size of preimage of D under f⊗s. In particular, when s is
greater than the genus of E, the distribution defined by f⊗s on E(Fq) is sta-
tistically indistinguishable from the uniform distribution. Especially, the hash
function construction

m �→ f⊗s(h1(m), . . . , hs(m)) (s = gE + 1)

is indifferentiable from a random oracle if h1, . . . , hs are seen as independent
random oracles into Fq.

Next, we focus on the character sums of f .

Definition 2 (Artin Character). Let X be an elliptic curve, E(Fq) is the
Jacobian group of X. Let χ be a character of E(Fq). Extend χ to a multiplicative
map χ : DivFq

(X) → C :

χ(n(P )) =

{
χ(P )n, P ∈ S

0, P /∈ S,

S is a finite point set on E(Fq), usually denotes the ramification locus of a
morphism Y → X. Then we call χ an Artin character of X.

Theorem 1. Let h : X̃ → X be a nonconstant morphism of projective curves,
and χ an Artin character of X. Suppose that h∗χ is unramified and nontrivial,
then

|
∑

P∈X̃(Fq)

χ(h(P ))| � (2g̃ − 2)
√

q.

Proof. See Theorem 3, [7]. �

Theorem 2. Let f be the deterministic encoding from Fq to E. For any non-
trivial character χ of E(Fq), the character sum Sf (χ) satisfies:

Sf (χ) � 20
√

q + 2.
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Proof. Since the genus of the curve C is at most 11, by Theorem 1, we have

|Sf (χ) +
∑

P∈C(Fq),u(P )=∞
χ ◦ h(P )| =|

∑

P∈C(Fq)

χ ◦ h(P )|

�(2 · 11 − 2)
√

q = 20
√

q.

It is easy to show that u has 2 poles, then Sf (χ) � 20
√

q + 2. �
By Lemma 5, Sf (χ) � 20

√
q+2, then f(h1(m))+f(h2(m)) is indifferentiable

from a random oracle in the random oracle model for h1 and h2.

4.2 Calculating the Sizes of Images of f

Apply Chebotarev density theorem onto twisted Edwards curves, we give the
sizes of the images of f .

Lemma 6 (Chebotarev [28]). Let K be an extension of Fq(x) of degree n < ∞
and L be a Galois extension of K of degree m < ∞. Assume that Fq is alge-
braically closed in L, and fix some subset ϕ of Gal(L/K) stable under conjuga-
tion. Let s = #ϕ and N(ϕ) be the number of places v of K of degree 1, unramified

in L, such that the Artin symbol
(

L/K

v

)

(defined up to conjugation) is in ϕ.

Then

|N(ϕ) − s

m
q| � 2s

m
((m + gL) · q1/2 + m(2gK + 1) · q1/4 + gL + nm)

where gK and gL are genera of the function fields of K and L respectively.

Theorem 3. Let E be the twisted Edwards curve over Fq defined by equation
ax2 + y2 = 1 + dx2y2, ad �= 0, a �= d. Then

|#Im(f) − 5
8
#E(Fq)| � 5

4
(31q1/2 + 72q1/4 + 67).

Proof. K is the function field of E which is a quadratic extension of Fq(x), hence
n = 2, and by the property of elliptic curves, gK = 1.

In the case that Gal(L/K) = S4, m = #S4 = 24. ϕ is the subset of Gal(L/K)
consisting at least one point, which are conjugates of (1)(2)(3)(4), (12)(3)(4) and
(123)(4), then s = 1+6+8 = 15. Since the places v of K of degree 1 correspond
to the projective unramified points on E(Fq), hence |#Im(f) − #E(Fq)| �
12+2 = 14, where 2 represents the number of infinite points on E, 12 represents
the number of branch points. Then we have

|#Im(f) − 5
8
q| �|#Im(f) − N(ϕ)| + |N(ϕ) − 5

8
q|

�14 +
5
4
(31q1/2 + 72q1/4 + 55)

<
5
4
(31q1/2 + 72q1/4 + 67).

�
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5 Comparisons

Now, we compare f with fIcart, fY uWang, and fAlasha. Miracl lib [30] is used to
implement big number arithmetic. The experiments are tested on an Intel Core
2, 2.66 GHz processor where S = M , I = 18.5M , and C = 33M .

Table 1. Time cost of different deterministic encodings with precomputations

Encoding Cost Time(μs)

fIcart C + 2I + 10M + 3S = 83M 174.6

fY uWang C + 2I + 11M + 3S = 84M 179.2

fAlasha C + 3I + 11M + 6S = 105.5M 219.5

f C + I + 10M + 4S = 65.5M 139.4

The cost of different deterministic encodings into twisted Edward curves with
precomputations are summarized in Table 1. With precomputations, our encod-
ing f saves 17.5M compared with fIcart; 18.5M compared with fY uWang; and
40M compared with fAlasha which means that f is 21.1 % faster than fIcart,
22.0 % faster than fY uWang, 37.9 % faster than fAlasha. We ran every determin-
istic encoding 10,000 times using different inputs over different 256 bit prime
fields and gained the average value shown in Table 1. Practical implementations
show that, with precomputations, f is 20.2 % faster than fIcart, 22.2 % faster
than fY uWang, 36.5 % faster than fAlasha.

Table 2. Time cost of different deterministic encodings without precomputation

Encoding Cost Time(μs)

fIcart C + 4I + 13M + 5S = 125M 262.3

fY uWang C + 3I + 12M + 3S = 103.5M 219.8

fAlasha C + 3I + 13M + 8S = 109.5M 231.2

f C + I + 10M + 5S = 66.5M 141.3

The cost of different deterministic encodings into twisted Edward curves
without precomputations are summarized in Table 2. From Table 2, our deter-
ministic encoding costs 58.5 field multiplications less than fIcart; costs 37 field
multiplications less than fY uWang; 43 field multiplications less than fAlasha

which mean that f is 46.8 % faster than fIcart, 35.7 % faster than fY uWang,
39.3 % faster than fAlasha. We ran every deterministic encoding 10,000 times
using different inputs over different 256 bit prime fields and gained the average
value shown in Table 2. Practical implementations show that f is 46.1 % faster
than fIcart, 35.7 % faster than fY uWang, 38.9 % faster than fAlasha.
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The results of practical implementations have some mistakes with theoretical
analyses for that we disregard field additions/subtractions and discard multipli-
cations/divisions by small constants in theoretical analyses. Within the bounds
of the errors, the practical implementations is consistent with these analyses. The
theoretical analyses and practical implementations both show that f is fastest
among existing encodings from finite fields into twisted Edward curves.

6 Conclusion

We have provided an encoding f that encodes an element of a finite field Fq

into twisted Edwards curves in a constant number of field operation when q ≡ 2
(mod 3). For any nontrivial character χ of E(Fq), the character sum Sf (χ) sat-
isfies: Sf (χ) � 20

√
q + 2. As an application, f(h1(m)) + f(h2(m)) is indiffer-

entiable from a random oracle in the random oracle model for h1 and h2. f
is fastest among existing deterministic encodings into twisted Edwards curves
including f , fIcart, fY uWang, and fAlasha not only in theoretical analyses but
also in practice.
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Abstract. In this paper, we present improved rebound attacks against
AESQ permutation that is an underlying permutation of PAEQ authen-
ticated encryption scheme currently discussed in the second round of the
CAESAR competition. AESQ is an AES-based permutation. Designers
claim that no attack should be found with complexity up to 2256 and
they have shown a rebound attack against 12 (out of 20) rounds with
2256 computational cost and 2256 memory. In this paper, we present the
first third-party cryptanalysis on AESQ. First, we reduce the complexity
of the 12-round attack to 2128 computational cost and negligible mem-
ory. We then extend the number of rounds and present a 16-round attack
with 2192 computational cost and 2128 memory. Moreover, we discuss
time-memory tradeoffs and multiple limited birthday distinguishers. In
particular, the time-memory tradeoff is useful for the 12-round attack,
which allows us to balance the time and memory complexities to 2102.4.

Keywords: CAESAR · PAEQ · AESQ · Permutation · Authenticated
encryption · Rebound attack

1 Introduction

Motivation. Authenticated encryption (AE) describes an important class of
cryptographic algorithms with many applications in information security. It pro-
vides both confidentiality and authentication of data to two parties communi-
cating via an insecure channel. This is essential for many applications such as
SSL/TLS, IPSEC, SSH or hard disk encryption.

However, the security and performance of many of these current approaches
is often not satisfying. This situation has inspired new efforts in the design and
analysis of authenticated ciphers in the last years. This is also reflected by the
ongoing CAESAR competition [1] that aims to select a portfolio of authenti-
cated ciphers with many advantages over current solutions. During the ongoing
security evaluation in CAESAR, not only the classical security requirements are
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considered. Researchers look at the building block and reduced variants of ciphers
to get a good view on the security margins of the authenticated encryptions.

In this paper, we analyse the second-round CAESAR candidate PAEQ [2].
PAEQ is fully parallelizable and uses a 512-bit wide AES based permutation as
its core, called AESQ. The only operations that are used in AESQ are AES-
round function and some word shuffling. Hence, it can benefit from the Intel
Advanced Encryption Standard New Instructions (AES-NI) and it is expected
to provide good performance in such platforms.

Security of PAEQ was proven in a random permutation model, thus iden-
tifying non-random behaviors of the underlying AESQ permutation has non-
negligible impact. In fact, the designers explicitly make a security claim for
AESQ; no attack against AESQ exists with complexity below 2256. Besides, the
designers’ security claim for PAEQ (with the primary choice of the design para-
meter; 128-bit key and 128-bit tag) is up to 128 bits. Thus discussing attacks
with complexity below 2128 is of independent interest.

In this work, we present the first third-party security analysis of AESQ.
We investigate the security of AESQ against rebound attack [16]. Although the
designers also have analysed the security of this permutation against rebound
attack, we present attacks that cover more rounds with less computational cost
and less memory requirement compared to their results.

Related Work. Although PAEQ is a second-round candidate of CAESAR,
no third-party security analysis has been published so far. On the other hand,
rebound attack [16] has been widely used to analyse several AES based schemes,
e.g. Grøstl [16,17], Whirlpool [12,13] and Kupyna [4]. Moreover, the rebound
attack has also been applied to AES-based permutation combining multiple AES
states, e.g. LANE [14], 3D [5] and ECHO [8,11,15,18,19,21]. This motivated us
to investigate the security of AESQ against rebound attack.

Designers of PAEQ have applied rebound attack to AESQ. AESQ has 20
rounds and they showed that the complexity of the rebound attack on 12 rounds
(starting from Round 2) of AESQ almost matches its security claim, i.e. the
complexity of their rebound attack has time and memory complexity of 2256.
One drawback of their attack is that the complexity to satisfy the same property
against a random permutation is 2257, thus the gain is very small.

Our Contribution. In this paper we provide several improvement over the
designers’ analysis of AESQ. First, we reduce the complexity of the previous 12-
round rebound attack, starting from Round 2, to the time complexity of 2128 and
negligible memory, this should be compared to the designers’ attack with time
complexity of 2256 and memory complexity of 2256. Due to this improvement, the
gain of the attack compared to the complexity against a random permutation,
2257, becomes huge. Moreover, we employ time-memory tradeoff of this attack in
order to reduce min{Time,Memory} to below 2128, which is the claimed security
of PAEQ authenticated encryption. With the tradeoff, we can balance the time
and memory complexities to improve min{Time,Memory} to 2102.4.
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Second, 16-round rebound attack, starting from Round 2, with time com-
plexity of 2192 and memory complexity of 2128 is presented, while the complexity
against a random permutation is 2257. We then apply multiple limited birthday
distinguishers [10] to reduce its time complexity from 2192 to 2188.

The 12-round attack provided by the designers and our 16-round attack need
to start from Round 2. We point our that we can start from Round 1 by cutting
the first round of those attacks, which leads to a 15-round attack with the same
complexity as the 16-round attack.

A summary of our results and the designers’ analysis are presented in Table 1.
Our attacks cannot be applied to full rounds of AESQ. Thus the security of
AESQ is not threatened with our attacks.

Table 1. Summary of attacks. All attacks in the list start from Round 2. 15-round
attacks (Round 1–15) can be achieved by removing the first round of 16-round attacks.

Rounds Time Memory Remarks Reference

12 2256 2256 standard attack [2]

2128 negligible standard attack Sect. 4.1

2102.4 2102.4 time-memory tradeoff Sect. 5.1

2128−x/4 2x time-memory tradeoff Sect. 5.1

16 2192 2128 standard attack Sect. 4.2

2188 2128 multi limited-birthday dist Sect. 4.4

2192+x 2128−x time-memory tradeoff Sect. 5.2

Outline. The rest of the paper is organized as follows. In Sect. 2, we describe
PAEQ and AESQ as much as necessary for our analysis and explain basic concept
of rebound attacks. In Sect. 3, we describe the only known rebound attack on 12-
round AESQ in detail. Our improved rebound attacks are described in Sect. 4.
In Sect. 5, we present time-memory tradeoff for rebound attacks. Finally, we
provide the closing remarks in Sect. 6.

2 Preliminaries

2.1 Description of AESQ

The AESQ permutation was designed by Biryukov and Khovratovich as an
underlying primitive of an authenticated encryption scheme PAEQ [2], which
is currently evaluated as one of the second round candidates of CAESAR.

The encryption of PAEQ looks like a counter mode with a big permutation.
Let ctri, N and K be a counter value for block i, nonce and key, respectively.
Those are processed by AESQ and 128 bits are extracted as a keystream, ks.
Namely ks ← trunc128

(
AESQ(ctri‖N‖K)

)
, where trunc128(·) is a 128-bit trun-

cation. Ciphertext Ci for message Mi is computed by Ci ← Mi ⊕ ks. Owing to
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this computation structure, non-random behaviors of AESQ may directly appear
in the ciphertext. Moreover, the designers of PAEQ proved its security by assum-
ing that the underlying permutation is a random permutation. Thus AESQ takes
an important role to ensure the security of PAEQ.

AESQ Round Function. AESQ is a 512-bit permutation based on AES [3].
Its computation consists of the following three operations.

– four parallel computations of AES round function
– constant addition
– a operation called “Shuffle” to mix data from four different AES states.

The AES round function will be explained later in this section. Constant addition
XORs a predefined 8-bit constant to four bytes in each of 128-bit AES states.
Because constant addition is irrelevant to rebound attack discussed in this paper,
we omit its details. The Shuffle operation exchanges each column of four AES
states. Let A,B,C,D be four AES states and A[j], B[j], C[j],D[j], j = 0, 1, 2, 3
be four columns of each state. Then, column positions are exchanged with
Shuffle as follows.

from A[0] A[1] A[2] A[3] B[0] B[1] B[2] B[3] C[0] C[1] C[2] C[3] D[0] D[1] D[2] D[3]

to A[3] D[3] C[2] B[2] A[1] D[1] C[0] B[0] A[2] D[2] C[3] B[3] A[0] D[0] C[1] B[1]

AESQ consists of 20 rounds.1 In short, four AES states are independently
updated by iterating the AES round function and constant addition twice (this
operation corresponds to two rounds), and then columns of four AES states are
exchanged with the Shuffle operation. This is iterated 10 times, which makes
the entire computation 20 rounds. The constant for the (2i + j)-th round and
the k-th AES state, i ∈ {1, 2, . . . , 10}, j ∈ {1, 2}, k ∈ {1, 2, 3, 4} is denoted by
Qi,j,k. Illustration for two rounds of AESQ is given in Fig. 1 and algorithmic
representation of the entire AESQ is given in Algorithm1.

AES Round Function. AESQ uses AES round function without key to mix
a 128-bit data. Firstly, 128-bit input is loaded to the state represented as a
4 × 4 byte-array.

Let SI
i be an input state to the AES round function in round i. Then, the

state is updated by the following three operations.

SubBytes SSB
i ← SB(SI

i ): Apply an 8-bit S-box to each byte of the state.
ShifttRows SSR

i ← SR(SSB
i ): Rotate byte positions in row j to left by j bytes.

MixColumns SMC
i ← MC(SSR

i ): Apply a multiplication with an MDS matrix to
each column.

Here, we omit the exact specification of the S-box and the MDS matrix, which
can be found in [3]. SMC

i is the output of the AES round function in Round i.
1 The designers starts the round index from 0, while we start from 1 in this paper.
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Round i

Round i+1

Shuffle

SB,SR,MC SB,SR,MC SB,SR,MC SB,SR,MC

SB,SR,MC SB,SR,MC SB,SR,MC SB,SR,MC

,1,1 ,1,2 ,1,3 ,1,4

,2,1 ,2,2 ,2,3 ,2,4

Fig. 1. Two rounds of AESQ.

Round i

Round i+1

Round i+2

Round i+3

SubBytes / ShiftRows

Shuffle

MixColumns

MixColumns

SubBytes / ShiftRows

SubBytes / ShiftRows

MixColumns

Shuffle

SubBytes / ShiftRows

Fig. 2. MegaSBox in AESQ. (Color
figure online)

Security Claim of AESQ. In [2, Sect. 3.2.2], the designers explicitly claim 256-
bit security of AESQ against all attacks. Namely, any attack with complexity
below 2256 should not exist.

2.2 Limited Birthday Problem and Rebound Attack

Limited birthday problem [6] on an n-bit permutation P (·) first defines a sub-
space of the input difference, I ⊂ {0, 1}n, and a subspace of the output difference,
O ⊂ {0, 1}n. The attacker’s goal is finding a pair of input values i1, i2 such that
i1 ⊕ i2 ∈ I and P (i1) ⊕ P (i2) ∈ O more efficiently than finding such i1, i2 for
a random permutation. More precisely, for a given |I| and |O|, the number of
queries Nq that the attacker needs to make to find the above i1, i2 for random
permutation is determined. Here, we mean by random permutation the one cho-
sen uniformly at random from a set of all permutations having the same domain
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Algorithm 1. AESQ Computation.
1 Input: four 128-bit state values A, B, C, D and round constant Qi,j,1, . . . , Qi,j,4

2 Output: updated state values A, B, C, D
1: for i = 1, 2, . . . , 10 do
2: for j = 1, 2 do
3: A ← MixColumns ◦ ShiftRows ◦ SubBytes(A);
4: A ← A ⊕ Qi,j,1;
5: B ← MixColumns ◦ ShiftRows ◦ SubBytes(B);
6: B ← B ⊕ Qi,j,2;
7: C ← MixColumns ◦ ShiftRows ◦ SubBytes(C);
8: C ← C ⊕ Qi,j,3;
9: D ← MixColumns ◦ ShiftRows ◦ SubBytes(D);

10: D ← D ⊕ Qi,j,4;
11: end for
12: (A,B,C,D) ← Shuffle(A,B,C,D);
13: end for

and range. Iwamoto et al. [7] proved this number for a random function case,
which is given by

Nq = max
{

min
{

2
n−log |I|

2 , 2
n−log |O|

2

}
, 2n−log |I|−log |O|+1

}

. (1)

min{2(n−log |I|)/2, 2(n−log |O|)/2} is a complexity for a simple birthday attack
where I and O are sufficiently large. In this paper we mainly discuss the case in
which 2n−log |I|−log |O|+1 is a bottleneck. If the attacker can find i1, i2 with both
of time and memory complexities less than Nq for a particular permutation P ,
then P is regarded to have a non-random property. Note that the generic com-
plexity of limited-birthday distinguishers against a random permutation is an
open problem, while the current best attack complexity matches (1).

Rebound attack [16] is the attacker’s approach to efficiently satisfy a type of
truncated differential of the target algorithm P . The rebound attack divides P
into three parts, Ppre, Pmid, Ppost, such that

P = Ppost ◦ Pmid ◦ Ppre. (2)

Then, the attacker searches for the paired values satisfying the differential with
a two-stage procedure called inbound phase and outbound phase.

Inbound Phase. The attacker first determines the differential propagation
from the beginning of Pmid to the end of Pmid. In general, the differential prop-
agation through Pmid is dense, i.e. most of internal state bytes are active. This
is because the differences at the beginning and the end of Pmid are chosen in
order to optimize the differential propagation in the outbound phase.

Then, the attacker searches for paired values satisfying the differential prop-
agation through Pmid. At this stage, the internal state value is not fixed, thus
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the attacker can control the differential propagation by choosing the value, in
other words, by utilizing the freedom degrees of the internal state value.

Outbound Phase. After the inbound phase, no freedom degrees remain in the
internal state value, thus the attacker simply propagates each pair generated
in the inbound phase through Ppre and Ppost and expects that the differential
propagation is probabilistically satisfied. In general, the differential propagation
in the outbound phase is built so that |I| and |O| can be small. In the end, if the
cost of the inbound and outbound phases are smaller than Nq given by Eq. (1),
the attack succeeds.

3 Previous rebound attack on AESQ

So far the only cryptanalytic result against AESQ is the rebound attack shown by
the designers [2], which can identify a non-random differential behavior of AESQ
reduced to 12 rounds (starting from Round 2 and end with Round 13) with a
complexity of 2256 computational cost and memory to store 2256 AESQ state
values. The analysis uses the fact that the middle 3.5 rounds of AESQ can be
separated into four 128-bit independent computations. Each of four independent
computations is called MegaSBox.

3.1 MegaSBox

MegaSBox is a 128-bit computation through 3.5 rounds that is independent from
other 384 bits of the state. More precisely, a MegaSBox covers 3.5 rounds starting
from middle of two consecutive AES-round applications, i.e., it covers AES round
function, Shuffle, AES round function, AES round function, Shuffle and AES
round function without MixColumns. MegaSBox is illustrated in Fig. 2. In Fig. 2,
colored bytes show the 16 bytes involved in a MegaSBox. We show the result of
applying ShiftRows and MixColumns in different states. Constant addition is
removed from the figure for the sake of simplicity.

Set up: We first focus on 16 bytes at the input to Round i, in which 4 bytes in
each of 4 AES states are located in a diagonal position.

Round i: Those diagonal 4 bytes in each AES state can be processed by the
AES round function independently from the other 12 bytes due to a well-
known property of AES. After 1 round, the focused 4 bytes moved to one
column.

Shuffle: The subsequent Shuffle operation collects 4 columns in different AES
states into the same AES state. The diagonal positions in the set up phase
must be chosen so that all 16 bytes can gather in one AES state here.

Round i + 1 and i + 2: During those rounds, all focused bytes are in the same
AES state, thus the AES round function can be computed independently
from the other AES states.
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Shuffle and Round i + 3: 4 columns in an AES state are separated into 4
different AES states with Shuffle. The 4 bytes in each AES state are further
separated into different columns with ShiftRows in Round i + 3, then no
more independent computation can be performed.

In the end, 3.5-round computation on the 512-bit state can be separated into
four independent 128-bit MegaSBox. This property is heavily exploited in the
rebound attack on AESQ.

3.2 Previous 12-Round Rebound Attack on AESQ

The previous 12-round rebound attack covers from Round 2 to Round 13. The
inbound phase Pmid covers from Round 6 to Round 8.5, which is composed of a
single MegaSBox layer. The outbound phase Ppre covers backward computation
from Round 5 to Round 2 (4 rounds) and Ppost covers forward computation from
Round 8.5 to Round 12 (4.5 rounds).

Truncated Differential. The rebound attack starts from choosing a truncated
differential so that the outbound phase can be optimized. The truncated differ-
ential is depicted in Fig. 3, which will be explained below.

Ppre and Ppost are chosen so that all active bytes are located in a single AES
state in the middle 2 rounds of Ppre and Ppost. This fixes the truncated differ-
ential at the state after applying ShiftRows and before applying MixColumns
in Round 5 (SSR

5 ) so that 4 bytes in the inverse diagonal of each AES state are
active. Because MixColumns is linear, this also fixes the truncated differential at
the beginning of Pmid, i.e. ΔSI

6 = MixColumns(ΔSSR
5 ). Therefore, though SI

6 are
active in all bytes, the number of differences at SI

6 is up to 2128.
The same is applied for Ppost and the end of Pmid. SI

10 has active bytes in
the diagonal of each AES state and this is propagated with MC−1, which makes
SSR
9 all active but the number of differences is up to 2128.

Inbound Phase. The inbound phase Pmid covers from Round 6 to Round 8.5
consisting of 4 parallel computations of MegaSBox. In the previous attack [2], the
difference at the beginning (ΔSI

6) and the end (ΔSSR
9 ) are chosen. Then, the goal

of the inbound phase is finding paired values satisfying those two differences. In
order to find such values, the attacker first constructs differential distribution
table (DDT) of each MegaSBox. Once DDT is constructed, the attacker knows
which pair of input and output differences can have solutions along with exact
paired values. Therefore, the attacker first chooses difference ΔSI

6 and ΔSSR
9 so

that they can have solutions. Then, paired values satisfying the differences can
be obtained with a single table look-up.

Constructing a DDT for an n-bit S-box requires 22n computations and 22n

memory. Therefore, constructing DDTs for 128-bit MegaSBox requires 2256 com-
putations and 2256 memory. Note that four MegaSBox are different due to the
different constant addition. Thus, four different DDTs need to be constructed.
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Also note that 1 MegaSBox is a quoter of the whole state, thus making 4 DDTs
is not evaluated to require the cost of 4 · 2256 AESQ computations.

Outbound Phase and Comparison with Random Permutation. Out-
bound phase is a simple differential propagation with probability 1. Thus as
soon as a pair of values satisfying the inbound phase is obtained, they also sat-
isfy the outbound phase. As a result of outbound phase, the input difference has
16 active bytes and the subspace of the output difference is limited to 16 bytes.

From Eq. (1), satisfying those input and output differences against a random
permutation requires 2512−128−128+1 = 2257 queries. Meanwhile, for AESQ, this
property can be detected with complexity 2256 which is a cost for generating
DDTs in the inbound phase. Because the cost for AESQ is smaller than the
random permutation case, the attack is valid (but a gain is very small; 1-bit).

Round 6 Round 10

Round 2

Round 7 Round 11

Round 3 Round 8 Round 12

Round 4

Round 9 Round 13

Round 5

SubBytes / ShiftRows

MixColumns

SubBytes / ShiftRows SubBytes / ShiftRows

Shuffle
MixColumns MixColumns

SubBytes / ShiftRows
Shuffle Shuffle
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Fig. 3. Previous 12-round rebound attack on AESQ [2]. Colored bytes are active. Four
colors correspond to four MegaSBox, which can be computed independently. The last
state is fully active, but the number of differences, O, is limited to 2128. (Color figure
online)
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Note that the number of claimed security bits for AESQ by the designers
is 256, thus it is unclear if the attack with complexity 2256 reveals undesired
property of 12-round AESQ.

4 Improved Rebound Attacks on AESQ

First, we significantly reduce the complexity of the previous 12-round attack
by improving the inbound phase. Then we extend the attack to 16 rounds by
identifying best differential propagation for the outbound phase. We then discuss
the application of multiple limited birthday distinguishers on 16-round attack, to
make the attack complexity lower. Finally, we give some remarks on the choice
of differential propagation in our 16-round attack.

4.1 Improved 12-Round Attack

The bottleneck of the previous 12-round attack is the construction of DDT for
MegaSBox. Here, we show that the attack can be mounted without using DDT,
which reduces both of the computational cost and memory amount significantly.

In the attack we use exactly the same truncated differential, and only change
the procedure to generate a pair to satisfy the inbound part. The idea is to
generate such a pair on-the-fly for a given input and output differences for Pmid.
It can be summarized as follows.

First, the attacker chooses the difference at the beginning, ΔSI
6, and the end,

ΔSSR
9 . Next, the attacker focuses on a single MegaSBox. Let α, β, γ, δ be four

MegaSBox and ΔSI
6|α be the 128-bit difference of a part of ΔSI

6 corresponds to
the 128 bits of α. Similarly, the output difference ΔSSR

9 |α can be defined.
Then, the attacker exhaustively examines 2128 input values to α, denoted by

x, and computes the difference between α(x) and α(x⊕ΔSI
6|α). If this difference

matches ΔSSR
9 |α, the attacker obtains the solution for 128 bits of α. By repeating

this also for the MegaSBox β, γ and δ, a 512-bit solution of the inbound phase
can be obtained. Since the truncated differential trail in the outbound phase has
probability 1, the attacker immediately completes the attack by generating 1
pair satisfying the inbound phase.

The complexity of this attack is 4 iterations of 2128 computations of each
MegaSBox, which is equivalent to 2128 computations of 3.5-round AESQ. The
memory requirements are negligible. Note that the complexity to satisfy the
same property against random permutation is the same as the previous attack
in Sect. 3, that is 2257. Hence, the gain of our attack is 2129 bits.

Note that for a fixed pair of ΔSI
6|α,ΔSSR

9 |α, we will find a solution with
probability 2−1. Hence, for α, β, γ, δ, we need to iterate the procedure 24. Con-
sidering that 1 MegaSBox only covers 3.5 rounds and very detailed optimization
techniques can be applied, we keep the complexity of 2128.



Improved Rebound Attacks on AESQ 311

4.2 16-Round Attack

The attack on 12-round AESQ can be further extended by adding 2 rounds in
both the forward and backward direction of the outbound part in the attack,
while the inbound part Pmid is the same as in the 12-round attack. The result
is an attack on 16 rounds (Round 2 – Round 17) of AESQ (see Fig. 4).

First, note that in the attack on 16 rounds of AESQ we use a probabilistic
truncated differential in the outbound phase. As can bee seen in Fig. 4 we require
that the truncated differential in the outbound phase propagate from 16 to 4
active bytes through the MixColumns transformation of AES, both in Rounds 5
and in Round 13 in the backward and forward direction, respectively. Since each
16 to 4 transition has a probability of 2−96, the probability of the outbound
phase of the attack is 2−192.

In other words, we need to generate about 2192 solutions for the inbound
part Pmid of the attack to find one pair following the truncated differential in
the outbound part (Ppre and Ppost) of the attack.

In the following, we will show how to find a solution for Pmid with amortized
cost 1. To be more precise, we can find 2128 solutions for the inbound phase
of the attack with a complexity of 2128 in time and memory. Note that similar
methods have been discussed for AES and AES-based hash functions in [6,12].
It can be summarized as follows.

1. Fix a 512-bit input difference to Pmid, which is ΔSI
8 in the 16-round attack.

2. Compute all 2128 512-bit output differences of Pmid, ΔSSR
11, and store them in

a table M .
3. Connect the single 512-bit input difference of Pmid with the 2128 512-bit

output differences of Pmid stored in the table M using independent MegaSBox
matches. For each MegaSBox α, β, γ, δ we proceed as follows:
(a) Take all the 2128 values for the MegaSBox at the input of Pmid and compute

both values and differences forward to the output of Pmid.
(b) Check for a matching 128-bit differences in the table M . Since we compute

2128 differences forward and have 2128 entries in M , we get 2128 solutions
(differences and values) for the match. We update M to contain these
2128 solutions.

4. For each MegaSBox and thus, for the whole inbound phase the number of
resulting solutions is 2128.

Since we have generated in total 2512 pairs (2128 pairs for each MegaSBox)
at state SI

8 and all those pairs are filtered with the truncated differential of
state SSR

11 (96 × 4 bits), we expect to find 2512−96×4 = 2128 valid solutions for
the inbound part of the attack. Moreover, the computational cost to find these
2128 solutions is 2128 in time and memory. Hence, the amortized cost of finding
one solution in the inbound phase is 1. Since the inbound phase can be repeated
up to 2128 times with other differences in state SI

8, leading to a maximum of
2256 solutions in the inbound phase of the attack, we can find a pair following
the truncated differential trail in the outbound phase of the attack on 16 rounds
with a complexity of about 2192 and memory requirements of 2128.
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The complexity for a random permutation is the same as previous attacks
i.e. 2257. Thus, the gain of our attack is 65 bits.
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Fig. 4. 16-round rebound attack on AESQ. (Color figure online)
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4.3 15-Round Attack Starting from the First Round

Because of the property that MegaSBox starts from an even round, optimized
attacks need to start from an even round as in the 12-round and 16-round attacks.
In order to start from the first round, we can remove one round at the very
beginning of those attacks. Thus a 15-round attack starting from the first round
is obtained by using round 3 to round 17 of the 16-round attack with the same
complexity i.e. 2192 computational complexity and memory requirements of 2128.

4.4 16-Round Attack with Multiple Limited Birthday Distinguishers

The complexity of the 16-round attack can be slightly reduced from 2192 to 2188

by considering multiple limited birthday distinguisher [10].

4.5 Remarks on Choice of Differential

Main difficulty of this research lies in identifying good truncated differentials. In
particular, mixing four AES states with light column-shuffling makes the analysis
more complicated than simple AES-based permutations. Previous work on this
type of permutation, e.g. LANE, 3D and ECHO, shows that identifying the best
differential is non-trivial even though attack procedure with a given differential
is simple. In fact, this might be a reason why the designers of AESQ only could
show the 12-round attack with very high complexity. Hence, we need to search
for truncated differentials carefully towards obtaining the optimal attack.

Although we cannot prove that our truncated differential is optimal, we con-
sidered various choices of the differential propagation. Regarding the outbound,
we considered the following differential propagation for MC or MC−1.

– full active state can be full active with probability 1 or a single (inverse)
diagonal with probability 2−96.

– state with a single active column can be a single active column with proba-
bility 1 or a single active byte with probability 2−24.

As a result, the best differential propagation is the one shown in Fig. 4. Interest-
ingly, forcing only a single active byte in the 512-bit state does not lead to the
best attack. For example in Fig. 4, we can make the number of active byte 1 at
state SMC

14 by paying 224 cost. However, this eventually leads to 1 full active state
at SMC

16. Then making a state with a single active byte only wastes the compu-
tational cost. For 15-round attack, we found other types of differential with the
same complexity, but the complexity could not be less than 2192.

Regarding the inbound, we also considered several patterns. The current
choice, a single MegaSBox layer, corresponds to a single SuperSBox layer for
simple AES-based permutations, which is one of the most effective choices for
them. Improved rebound attack [9] covers three SubBytes layers in the inbound
phase. However the MegaSBox has already covered four SubBytes layers. More-
over, the technique cannot be applied when the state consists of only four
MegaSBox/SuperSBox. Regarding Whirlpool, two iterations of “1-column, full
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active, 1 diagonal” can be included in the inbound [12]. However, this attack
essentially requires additional freedom degrees of block-cipher’s key, thus cannot
be applied to permutation like AESQ.

5 Time-Memory Tradeoff for Rebound Attacks

5.1 Tradeoff for Inbound Part: Application to 12-Round Attack

In Sect. 4.1, we showed that the previous 12-round attack can be improved to 2128

computational cost (T ) and negligible memory (M). Here, the natural question
is: if it is possible to further reduce T by increasing M . Namely, if the attack
complexity is measured by min{T,M}, what is the best complexity?

This question naturally fits in discussing the security of PAEQ authenticated
encryption. The designers claim the security of PAEQ (with the primary choice
of the design parameter; 128-bit key and 128-bit tag) up to 128 bits, though 256-
bit security is claimed on AESQ. It is not allowed to make 2128 queries against
PAEQ, thus identifying non-random behavior without reaching 2128 complexity
is of interest.

Considering that the outbound phase of the 12-round attack has probability
1, the above issue is equivalent to identify time-memory tradeoff to find one
solution of the inbound phase consisting of a single MegaSBox layer. The similar
tradeoff has been discussed on AES [20], and we apply it to MegaSBox of AESQ.
Note that the attacks in Sect. 4.2 use the fact that the amortized computational
cost of the inbound phase can be 1 if many solutions are needed. To be more
precise, if 2128 computational cost can be spent, 2128 solutions of the inbound
phase can be obtained. Thus, reducing the computation cost from 2128 if only
one solution is needed is non-trivial.

Let us recall the procedure to achieve the amortized cost 1 for Pmid.

1. Fix a 512-bit input difference to Pmid, which is ΔSI
6 in the 12-round attack.

2. Store 2128 512-bit output differences of Pmid, ΔSSR
9 , in a table M of size 2128.

3. For each MegaSBox, process 2128 input values to find corresponding output
difference in M .

Step 2 determines the memory amount M and Step 3 determines the compu-
tational cost T . We now consider reducing the number of processed values in
Step 3 from 2128 to 2128/X. Then, after each MegaSBox is analyzed, only a frac-
tion of 1/X output differences can be reached. Namely, by starting from 2128

differences in M , the number of differences that can be reached is 2128/X after
the first MegaSBox α, 2128/X2 after the second MegaSBox β, 2128/X3 after the
third MegaSBox γ and 2128/X4 after the fourth MegaSBox δ. If we start by storing
M differences in a memory, M/X4 output differences can be reached after the
analysis, thus the number of solutions of the inbound phase is M/X4.

Considering that T = 2128/X and finding 1 solution is sufficient for 12-round
attack, the time-memory tradeoff of the 12-round attack can be represented by

MT 4 = 2512. (3)

In general, with memory amount of M = 2x, the computational cost of the 12-
round attack is T = 2128−x/4. By setting M = T , we achieve M = T = 2102.4.
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5.2 Tradeoff for Outbound Part: Applications to 16-Round Attack

In the tradeoff in Eq. (3), M can take up to 2128. Therefore, if the memory
amount of the attack has already reached 2128, it is impossible to reduce the
computational cost by increasing the memory amount.

Then, the only direction of time-memory tradeoff for the 16-round attack is
a very straightforward one, which reduces the memory amount by increasing the
computational cost as discussed for AES and AES-based hash functions in [6,12].
In Step 2 of the procedure in Sect. 5.1, M is set to be smaller than 2128. Then,
after processing 2128 input values for each MegaSBox in Step 3, M solutions of
the inbound phase can be obtained. Thus, the amortized cost, ac, for generating
solutions of the inbound phase is 2128/M .

Let pout be the probability of the outbound phase. Then, the computational
cost of the rebound attack is represented by p−1

out × ac. By setting M = 2128−x,
the computational cost of the 16-round and 15-round attacks becomes 2192 ×
2128/2128−x = 2192+x. Note that by setting x = 0, this complexity matches the
one in Sect. 4.2.

6 Concluding Remarks

In this paper, we investigated the security of AESQ, the core permutation on
PAEQ, against rebound attack. We have shown that the designers’ attack on 12-
round AESQ can be improved significantly, both regarding the computational
cost and the amount of memory. In addition, we have extended the attack to 15
and 16 rounds of AESQ, and have discussed time-memory tradeoff and multiple
limited birthday distinguishers.

Our results on reduced-round AESQ cannot be applied to full (20) rounds of
AESQ. Thus the security of AESQ is not threatened by our attacks. Moreover,
the results are not applicable to PAEQ mode of operation. However, the analysis
gives some new insights in the security margin of PAEQ against rebound attacks,
which will contribute to CAESAR for future selection of good candidates.
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11. Jean, J., Naya-Plasencia, M., Schläffer, M.: Improved analysis of ECHO-256. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 19–36. Springer,
Heidelberg (2012)

12. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
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Abstract. Block-cipher-based authenticated encryption has obtained
considerable attention from the ongoing CAESAR competition. While
the focus of CAESAR resides primarily on nonce-based authenticated
encryption, Deterministic Authenticated Encryption (DAE) is used in
domains such as key wrap, where the available message entropy moti-
vates to omit the overhead for nonces. Since the highest possible security
is desirable when protecting keys, beyond-birthday-bound (BBB) secu-
rity is a valuable goal for DAE. In the past, significant efforts had to
be invested into designing BBB-secure AE schemes from conventional
block ciphers, with the consequences of losing efficiency and sophisticat-
ing security proofs.

This work proposes Deterministic Counter in Tweak (DCT), a
BBB-secure DAE scheme inspired by the Counter-in-Tweak encryption
scheme by Peyrin and Seurin. Our design combines a fast ε-almost-XOR-
universal family of hash functions, for ε close to 2−2n, with a single call to
a 2n-bit SPRP, and a BBB-secure encryption scheme. First, we describe
our construction generically with three independent keys, one for each
component. Next, we present an efficient instantiation which (1) requires
only a single key, (2) provides software efficiency by encrypting at less
than two cycles per byte on current x64 processors, and (3) produces only
the minimal τ -bit stretch for τ bit authenticity. We leave open two minor
aspects for future work: our current generic construction is defined for
messages of at least 2n − τ bits, and the verification algorithm requires
the inverse of the used 2n-bit SPRP and the encryption scheme.

Keywords: Deterministic authenticated encryption · Symmetric cryp-
tography · Cryptographic schemes · Provable security · Tweakable block
cipher · Universal hash function

1 Introduction

Deterministic Authenticated Encryption. A secure authenticated encryp-
tion (AE, hereafter) scheme is nowadays widely understood as a construction
c© Springer International Publishing Switzerland 2016
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which produces ciphertexts that are indistinguishable from random bitstrings
and infeasible to forge. Modern AE schemes are mostly nonce-based [33], i.e., the
user is responsible to supply an additional nonce that must be unique for every
encryption. In contrast, Deterministic Authenticated Encryption (DAE) [34] is
employed for settings where it is more senseful to exploit existing entropy or
redundancy in the inputs to avoid the overhead of nonces, e.g., for wrapping
cryptographic keys.

Existing Designs. A variety of DAE schemes has been proposed since, e.g.,
Haddoc [6], BCTR [9], DAEAD [10], MRO/MRS/MROS [14], GCM-SIV
[15], BTM [21], HBS [22], Deoxys [24], Joltik [25], HS1-SIV [26], MiniCtr
[28], MR-OMD [32], and SIV [34]. The naturally raising question is: Which
unsolved problem requires the proposal of a novel mode?

Block-cipher-based DAE schemes are inherently efficient. While a myriad of
block ciphers is available, the dominating standard state size is still 128 bits,
which renders the privacy guarantees of existing DAE schemes built upon them
void already after encrypting about 264 blocks under the same key. However,
since the highest attainable security is desirable for the protection of crypto-
graphic keys, beyond-birthday-bound (BBB) security is a highly valuable goal
for DAE schemes.

At least two straight-forward approaches for achieving BBB security exist in
this context: first, by increasing the block size of the underlying cipher [21,22]
or second, by using a wide-block permutation or compression function instead
[6,14,32]. Though, previous wide-block constructions possessed significant dis-
advantages in terms of memory and performance, among which the latter aspect
was attempted to be compensated by optimistic reduction of the underlying
primitive [6,14], which implies the need for further cryptanalysis. The present
work shows that neither the number of rounds nor the state size of the underly-
ing cipher need to be modified to achieve our goal in a performant manner with
the help of recent advances in the domain of tweakable block ciphers.

Relations to Wide-Block Ciphers. The birthday-bound limit is also relevant
for wide-block ciphers and Tweakable Enciphering Schemes (TES). TES are
closely related to DAE: Hoang et al. [19] showed that the Encode-then-Encipher
[4] approach can be used to transform an STPRP-secure (Strong Tweakable
Pseudo-Random Permutation) TES into a provably robust AE scheme using
(a hash of) the associated data as tweak. Such designs could offer even more
security than necessary for DAE, i.e., best achievable AE security [2,19]. Thus,
one could theoretically adapt any existing BBB-secure TES scheme for DAE
[27,29,39]. Though, for the popular approaches Hash-Encrypt-Hash [37], Hash-
Counter-Hash [40], and Protected IV [39], this strategy would also imply more
operations than necessary for DAE, i.e., three passes over the plaintext. While
Encrypt-Mix-Encrypt-based [18] designs employ only two passes, a BBB-secure
variant of Encrypt-Mix-Encrypt with a 2n-bit primitive would be considerably
less efficient than our proposal. Therefore, a motivating observation of this work
is the following: one can encode τ bits of redundancy into the message, encrypt
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it with the Hash-Counter-Hash approach reduced from three to two passes, and
can obtain a BBB-secure DAE scheme.

A recent proposal is Simpira [16,17], a family of 128b-bit cryptographic per-
mutations based on the AES round function. In contrast to the “modes” above,
Simpira is a primitive on its own. The initial version [16] based on a flawed gen-
eral Feistel structure for b = 4, which was fixed in Simpirav2 [17]. Though, the
prior attacks [12,36] indicated that Simpira may require more intensive stud-
ies to become fully mature. While our example instantiation employs its fixed
version with b = 2 blocks for which no attacks are known, it can be seemlessly
replaced by another secure 2n-bit SPRP.

Contribution. This work proposes Deterministic Counter in Tweak (DCT), a
BBB-secure DAE scheme that combines an ε-almost-XOR-universal (AXU) fam-
ily of hash functions, for ε ≈ O(2−2n), with a single call to a 2n-bit SPRP, and
a 2n-block-secure encryption scheme. First, we propose our construction generi-
cally with three independent keys, one for each component. Next, we introduce
an efficient instantiation which (1) provides software efficiency by encrypting at
less than two cycles per byte on current x64 processors, (2) requires only a single
key, and (3) produces only the minimal τ -bit stretch. We leave open two minor
aspects for future work: our current generic construction is defined for messages
of ≥ 2n−τ bits, and the verification algorithm requires the inverse of the SPRP
and the encryption scheme. Though, since our instantiation uses a Feistel-based
two-block construction as 2n-bit SPRP and counter mode as encryption scheme,
its decryption can fully reuse the components for encryption.

Remark 1. We stress that the HBS [22] and BTM [21] constructions by Iwata
and Yasuda are similar to our work, and that Iwata and Yasuda already discussed
BBB-secure adaptions. Both their BBB variants suggested the use of a 2n-bit
block cipher for encryption. Their earlier concept employed a (clearly pointed
out by the authors to be inefficient) six-round Feistel network [22]; their later
construction [21] used a 2n-bit tweakable block cipher by Minematsu [27]. Both
designs still required several keys, lacked software efficiency, and produced a
2n-bit stretch. This work addresses their open questions.

The rest of this paper is structured as follows: after briefly reviewing prelim-
inaries, Sect. 3 describes the generic DCT framework. Section 4 recalls relevant
security notions. Section 5 summarizes our security analysis, Sect. 6 details our
instantiation, and Sect. 7 discusses our proposal and concludes.

2 Preliminaries

We use lowercase letters x, y for indices and integers, uppercase letters X,Y for
binary strings and functions, and calligraphic uppercase letters X ,Y for sets.
ε denotes the empty string. We denote the concatenation of binary strings X
and Y by X ‖Y and the result of their bitwise XOR by X ⊕ Y . We indicate
the length of X in bits by |X|, and write Xi for the i-th block, X[i] for the
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Fig. 1. The encrpytion process of DCT (right). The encoding (left) encodes τ bits
of redundancy into the message M and splits it into a 2n-bit part ML and a variable-
length part MR such that the redundancy is fully contained in ML.

i-th most significant bit of X, and X[i..j] for the bit sequence X[i], . . . ,X[j].
X � X denotes that X is chosen uniformly at random from the set X . We
define three sets of particular interest: Perm(X ) be the set of all permutations
on X , P̃erm(T ,X ) the set of all tweaked permutations over X with associated
non-empty tweak space T , and Func(X ,Y) the set of all functions F : X → Y.
We define by X1, . . . , Xj

x←− X the injective splitting of the string X into x-
bit blocks such that X = X1 ‖ · · · ‖Xj , with |Xi| = x for 1 ≤ i ≤ j − 1, and
|Xj | ≤ x. For an event E, we denote by Pr[E] the probability of E. We write
〈x〉n for the binary representation of an integer x as an n-bit string, or short
〈x〉 if n is clear from the context, in big-endian manner, i.e., the decimal 〈135〉
is encoded to (00..00100000111)2.

3 Generic Definition of DCT

This section defines the generic DCT construction. Fix integers n, τ ≥ 1 with
τ ≤ 2n, and derive μ = 2n − τ . Let K1, K2, and K3 be non-empty key spaces
and K = K1 × K2 × K3. Let A ⊆ {0, 1}∗ denote the associated-data space,
M ⊆ {0, 1}≥μ the message space, and C ⊆ {0, 1}≥2n denote the ciphertext space,
respectively. Let H =

{
H|H : A × {0, 1}∗ → {0, 1}2n

}
be a family of ε-AXU

hash functions, indexed by elements from K1. Let E : K2 × {0, 1}2n → {0, 1}2n

denote a keyed permutation, and let Π = (E ,D) be an IV-based encryption
scheme (covered in the next section) with a non-empty key space K3 and an IV
space IV = {0, 1}2n.

Encoding. Let Encode : N0 × M → {0, 1}2n × {0, 1}∗ be an injective function
that takes an integer τ ∈ N0 and a bit string M as inputs and produces two
outputs (ML,MR) such that |ML| = 2n and |MR| = |M |−μ. Since Encodeτ (·)
is injective, there exists a corresponding unique decoding function Decode :
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Algorithm 1. Encryption and decryption of the generic DCT construction.

1: function ẼK1,K2,K3(A, M)
2: (ML, MR) ← Encodeτ (M)
3: X ← HK1(A, MR)
4: Y ← ML ⊕ X
5: CL ← EK2(Y )
6: CR ← EK3(CL, MR)
7: return (CL ‖ CR)

11: function D̃K1,K2,K3(A, C)
12: (CL, CR) ← C
13: MR ← DK3(CL, CR)
14: X ← HK1(A, MR)
15: Y ← E

−1
K2

(CL)
16: ML ← X ⊕ Y
17: return Decodeτ (ML, MR)

N0 × {0, 1}2n × {0, 1}≥μ → {0, 1}∗ ∪ {⊥} such that, for a fixed τ ∈ N0 and all
X,Y ∈ {0, 1}2n ×{0, 1}∗, Decodeτ (X,Y ) returns the unique M ∈ M such that
Encodeτ (M) = (X,Y ) if such an M exists, and ⊥ otherwise.

Encryption. For encryption, Encodeτ (M) encodes τ bits redundancy into an
input message M and splits the result into a 2n-bit part ML, and a variable-
length part MR, such that the redundancy is fully contained in ML.1 The latter
part, MR, is hashed together with the associated data A to a 2n-bit hash value:
X ← HK1(A,MR). Next, X is XORed to ML, producing Y ← X ⊕ ML, and
the result Y is encrypted by E to the fixed-length part of the ciphertext: CL ←
EK2(Y ). This composition of a hash function and a final call to a PRF is a well-
known method for constructing an efficient PRF [8]. Next, the PRF output CL

is used as IV for an encryption scheme Π = (E ,D) which enciphers the variable-
length part of the message: CR ← EK3(CL,MR). Finally, (CL ‖CR) is returned
as the ciphertext. Figure 1 illustrates the encryption process schematically.

Decryption. For decryption, the ciphertext C is split into (CL, CR) ← C,
such that |CL| = 2n. The variable-length part CR is decrypted to MR ←
DK3(CL, CR). Next, the scheme evaluates X ← HK1(A,MR) and Y ← E

−1
K2

(CL),
and XORs both results: ML ← X ⊕ Y . Decodeτ (ML,MR) can either effi-
ciently remove the redundancy from ML and determine M with Encodeτ (M) =
(ML,MR) if such an M exists; otherwise, it can efficiently detect the invalid
redundancy. The decryption returns M in the former case, and ⊥ in the latter.

Limitations. We define DCT for messages of length at least μ bits, and cipher-
texts of at least 2n bits length. For simplicity, we assume that, whenever smaller
plain- or ciphertexts are passed to the encryption or decryption algorithms,
respectively, the response will be ⊥. We are aware of this current limitation of
our proposal, and work actively to overcome it.

Definition 1 (Generic DCT). Given the definitions above, we define the
DAE scheme DCTH,E,Π = (Ẽ , D̃) with deterministic encryption algorithm
Ẽ : K × A × M → C, and deterministic decryption algorithm D̃ : K × A × C →
M ∪ {⊥}, as given in Algorithm 1.

1 Note that encoding redundancy into MR would require a chosen-ciphertext-secure
encryption scheme Π.
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For all K ∈ K, A ∈ A, M ∈ M, and C ∈ C holds: if ẼA
K(M) = C, then

D̃A
K(C) = M , and if D̃A

K(C) = M �= ⊥, then ẼA
K(M) = C.

4 Security Notions

4.1 Adversaries and Advantages

An adversary A is an efficient Turing machine that interacts with a given set
of oracles that appear as black boxes to A. We denote by AO the output of A
after interacting with some oracle O. We write ΔA(OL;OR) for the advantage
of A to distinguish between oracles OL and OR. All probabilities are defined
over the random coins of the oracles and those of the adversary, if any. We
write AdvX

F (q, �, t) := maxA

{
AdvX

F (A)
}

for the maximal advantage over all
X-adversaries A on F that run in time at most t and pose at most q queries
of at most � blocks in total to its oracles. Wlog., we assume that A never asks
queries to which it already knows the answer.

If the oracles Oi, Oj represent a family of algorithms indexed by inputs, the
indices must match. For example, when ẼA

K(M) and D̃A
K(C) represent encryption

and decryption algorithms with a fixed key K and indexed by A, then ẼK ↪→ D̃K

says that A queries first ẼA
K(M) and later D̃A

K(C). We often write ẼA
K(M) and

D̃A
K(C) as short forms for Ẽ(K,A,M) and D̃(K,A,C).

We define ⊥, when in place of an oracle, to always return the invalid symbol ⊥.
We define $O for an oracle that, given an input X, chooses uniformly at random
a value Y equal in length of the expected output, |Y | = |O(X)|, and returns Y .
We assume that $O performs lazy sampling, i.e., $O(X) returns the same value
Y when queried with the same input X. We often omit the key for brevity, e.g.,
$Ẽ(X) will be short for $ẼK (X).

4.2 Security Definitions for Universal Hashing

Definition 2 (ε-Almost-(XOR-)Universal Hash Functions). Let X ,Y ⊆
{0, 1}∗. Let H = {H |H : X → Y} denote a family of hash functions. H is called
ε-almost-universal (ε-AU) iff for all distinct elements X,X ′ ∈ X , it holds that
PrH�H [H(X) = H(X ′)] ≤ ε.
H is called ε-almost-XOR-universal (ε-AXU) iff for all distinct elements X,X ′ ∈
X and Y ∈ Y, it holds that PrH�H[H(X) ⊕ H(X ′) = Y ] ≤ ε.

In [7], Boesgaard et al. showed the following theorem.

Theorem 1 (Theorem 3 from [7]). Let X ,Y ⊆ {0, 1}∗. Further, let H =
{H |H : X → Y} be a family of ε-AXU hash functions. Then, the family H′ =
{H ′ |H ′ : X × Y → Y} with H ′(X,Y ) := H(X) ⊕ Y , is ε-AU.
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4.3 Security Definitions for Functions and Ciphers

Definition 3 ((Strong) PRP Advantage). Fix integers n, k ≥ 1. Let E :
{0, 1}k × {0, 1}n → {0, 1}n be a block cipher and A (A′) be a computationally
bounded adversary with access to an oracle (two oracles). Let K � {0, 1}k and
π � Perm({0, 1}n). Then, the PRP and SPRP advantages of A and A′ with
respect to E are defined as AdvPRP

E (A) := ΔA(EK ;π) and AdvSPRP
E,E−1(A′) :=

ΔA′(EK , E−1
K ;π, π−1), respectively.

Definition 4 ((Strong) Tweakable PRP Advantage). Fix two integers
n, k ≥ 1. Let T denote a non-empty set. Let Ẽ : {0, 1}k × T × {0, 1}n →
{0, 1}n be a tweakable block cipher and A (A′) a computationally bounded
adversary with access to an oracle (two oracles). Let K � {0, 1}k and π̃ �
P̃erm(T , {0, 1}n). Then, the TPRP and STPRP advantages of A and A′ with
respect to Ẽ are defined as AdvTPRP

Ẽ
(A) := ΔA(ẼK ; π̃) and AdvSTPRP

Ẽ,Ẽ−1 (A′) :=

ΔA′(ẼK , Ẽ−1
K ; π̃, π̃−1), respectively.

4.4 Security Definitions for IV-Based Encryption Schemes

An IV-based encryption scheme [3] is a tuple Π = (E ,D) of encryption and
decryption algorithms E : K × IV × M → C and D : K × IV × C → M, with
associated non-empty key space K, non-empty IV space IV, and where M, C ⊆
{0, 1}∗ denote message and ciphertext space, respectively. We assume correctness
for all K ∈ K, IV ∈ IV, and M ∈ M, i.e., if EIV

K (M) = C, then DIV
K (C) =

M . Moreover, we assume tidiness, i.e., if DIV
K (C) = M , then EIV

K (M) = C.
The security of IV-based encryption schemes is defined as the distinguishing
advantage from random bits. For every query M , the encryption oracle samples
uniformly at random IV � IV and computes C ← EIV

K (M). The real oracle
outputs (IV,C), whereas $E outputs |(IV ‖C)| random bits.

Definition 5 (IVE Advantage). Let Π = (E ,D) be an IV-based encryption
scheme and K � K. Let A be a computationally bounded adversary with access
to an oracle. Then, the ivE advantage of A with respect to Π is defined as
AdvivE

Π (A) := ΔA(EK ; $E).

4.5 Security Definitions for DAE Schemes

A deterministic AE scheme [34] is a tuple Π̃ = (Ẽ , D̃) of deterministic algorithms
Ẽ : K×A×M → C and D̃ : K×A×C → M∪{⊥} with associated non-empty key
space K, associated-data space A, and message/ciphertext space M, C ⊆ {0, 1}∗.
For each K ∈ K, A ∈ A, M ∈ M, ẼA

K(M) maps (A,M) to an output C

such that |C| = |M | + τ for fixed stretch τ . D̃A
K(C) outputs the corresponding

message M iff C is valid, and ⊥ otherwise. We assume correctness, i.e., for all
K,A,M ∈ K × A × M, it holds that D̃A

K(ẼA
K(M)) = M . Moreover, we assume

tidiness, i.e., if there exists an M such that D̃A
K(C) = M , then it holds that

ẼA
K(D̃A

K(C)) = C.
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Definition 6 (DETPRIV, DETAUTH, and DAE Advantages [34]). Let
Π̃ = (Ẽ , D̃) be a DAE scheme and K � K. Let A1, A2, A3 denote computation-
ally bounded adversaries; A1 has access to one oracle; A2 and A3 have access to
two oracles O1 and O2 each. A2 and A3 never submit queries O1 ↪→ O2. Then,
the detPriv, detAuth, and DAE advantages of A1, A2, and A3 with respect
to Π̃, are defined as

AdvdetPriv
Π̃

(A1) := Δ
A1

(ẼK ; $Ẽ),

AdvdetAuth
Π̃

(A2) := Pr
[
AẼK ,D̃K

2 forges
]
, and

AdvDAE
Π̃

(A3) := Δ
A3

(ẼK , D̃K ; $Ẽ ,⊥),

where “forges” means that D̃K returns anything other than ⊥ for a query.

Theorem 2 (Proposition 8 in [35]). Let Π̃ = (Ẽ , D̃) be a DAE scheme and
K � K. Let A be a computationally bounded DAE adversary on Π̃ with access
to two oracles O1 and O2 such that A never queries O1 ↪→ O2, and A runs in
time at most t and submits at most q queries of at most � blocks in total. Then,
there exist a computationally bounded detPriv adversary A1 and a computa-
tionally bounded detAuth adversary A2 both on Π̃, such that

AdvDAE
Π̃

(A) ≤ AdvdetPriv
Π̃

(A1) + AdvdetAuth
Π̃

(A2),

where A1 and A2 make at most q queries of at most � blocks and run in time
O(t) each.

5 Security Results for the Generic DCT Construction

This section summarizes the security bounds for the generic DCT construction.

Theorem 3 (DAE Security of Generic DCT). Let Π̃ = DCTH,E,Π be as
defined in Definition 1. Let A be a computationally bounded DAE adversary on
Π̃ that asks at most q queries of at most � blocks in total, and runs in time at
most t. Then, AdvDAE

Π̃
(A) is upper bounded by

3q2ε

2
+

2q2

22n
+

3qε · 22n

2τ
+ 3 · AdvSPRP

E,E−1(q,O(t)) + 2 · AdvivE
Π (q, �, O(t)).

The proof of Theorem 3 follows from Theorem 2 and the individual bounds
for the detPriv and detAuth security in Lemmata 1 and 2. Due to space
limitations, the proofs of both lemmas are deferred to the full version of this
work [13].

Lemma 1 (DETPRIV Security of Generic DCT). Let Π̃ = DCTH,E,Π be as
defined in Definition 1. Let A be a computationally bounded detPriv adversary
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on Π̃ that submits at most q queries of at most � blocks in total and runs in time
at most t. Then

AdvdetPriv
Π̃

(A) ≤ q2
(

ε +
2

22n

)

+ 2
(
AdvPRP

E
(q,O(t)) + AdvivE

Π (q, �, O(t))
)

.

Lemma 2 (DETAUTH Security of Generic DCT). Let Π̃ = DCTH,E,Π

be as defined in Definition 1. Let A be a computationally bounded detAuth
adversary on Π̃ that submits at most q queries of at most � blocks in total, and
runs in time at most t. Then

AdvdetAuth
Π̃

(A) ≤ ε ·
(

q2

2
+

3q · 22n

2τ

)

+ AdvSPRP
E,E−1(q,O(t)).

6 Instantiation

Our proposed instantiation of DCT requires (1) an efficient 2n-bit SPRP, (2) a
beyond-birthday-bound-secure IV-based encryption scheme, and (3) an ε-AXU
family of hash functions. This section describes the components in detail.

6.1 Components

Efficient Tweakable Block Ciphers. The TWEAKEY framework by Jean
et al. [23] provides a set of software-efficient tweakable block ciphers based on
the AES. Therefore, they allow to exploit AES native instructions on current x64
processor architectures. Among the three available TWEAKEY ciphers Kiasu-
BC, Joltik-BC, and Deoxys-BC, we concentrate on Deoxys-BC-128-128 [24]
for its support of 128-bit tweaks. In the remainder, we denote it as Ẽ : K × T ×
{0, 1}n → {0, 1}n, with a state size of n = 128 bits, and with K = T = {0, 1}n.

2n-bit SPRP. Simpira [16] is a recently proposed family of 128b-bit crypto-
graphic permutations based on the AES round function by Gueron and Mouha.
We employ Simpira with two-block inputs (b = 2), which is similar to a
Feistel network with 15 rounds (the output halves are swapped). The round
function F consists of two AES rounds (an AES round is also denoted by
aesenc in the pseudocode); the first AES round in F uses a round counter
c and b = 2 as key; the second round an all-zeroes key. The construction is
used in an Even-Mansour design, so that a 256-bit ciphertext is computed by
CL ← Simpira(Y ⊕ (K ‖ 0128)) ⊕ (K ‖ 0128), with a 128-bit secret key K, and
where Y ← ML ⊕ X.

Since it is hard to prove the security of Simpira, a possible provably secure
2n-bit SPRP would be the Ψ3 construction by Coron et al. [11], which consists of
three invocations of a tweakable block cipher; though, this construction is a little
less performant than our current choice and requires the inverse for decryption.

Encryption Scheme. The recently proposed CTRT mode by Peyrin and
Seurin [30] is an IV-based encryption scheme that can provide security for



326 C. Forler et al.

Fig. 2. The components of our instantiation of DCT: the two-block Simpira construc-
tion [16] for E (left) and the CTRT[Ẽ] mode [30] (right) for E . F denotes two AES
rounds used in the Simpira construction.

close to 2n blocks encrypted under the same key. Originally, the authors pro-
posed it as a nonce-IV -based mode that requires an n-bit nonce V as input
to the block cipher Ẽ and an n-bit IV as tweak that is converted by a reg-
ular function2 Conv : {0, 1}n → T to an (n − d)-bit tweak for a fixed
d ≤ n. Basically, CTRT represents a counter mode built upon a tweakable
block cipher, where only the tweak is incremented for each block. We denote
encryption and decryption algorithms, instantiated with a tweakable block cipher
Ẽ, by CTRT[Ẽ] = (CTRT.E [Ẽ],CTRT.D[Ẽ]). The i-th message block Mi is
encrypted to a ciphertext block Ci by Ci ← Ẽ

D ‖ T+i
K (V )⊕Mi, where D ∈ {0, 1}d

denotes the domain. For our instantiation of DCT, we adopt the purely IV-based
variant of CTRT from [30, Appendix C], with a minor modification: to eliminate
carry-bit concerns, we XOR the counter to the tweak instead of adding it modulo
2n. Clearly, since the IV is expected to be random, this modification does not
change the probability distribution of tweaks to occur. Thus, the bounds from
[30] apply to our adapted mode in a straight-forward manner. Our variant is
defined in Algorithm 2; the encryption process is depicted in Fig. 2.

Similar to [24,30], we encode a domain into the tweak to simplify our security
analysis and to avoid multiple keys for the instances of Ẽ inside CTRT[Ẽ] and
for key generation. For the calls to Ẽ inside CTRT[Ẽ], we set the most significant
bit to 1 as domain and truncate the most significant bit of the IV U to derive
the tweak: T ← U [2..n].

Universal Hash Function. We considered several approaches for efficient
hashing. Recent works pointed out weak-key issues [1,31] of Horner-based poly-
nomials (e.g. GHASH or Poly1305) that modern AE schemes should avoid, which
motivated our choice of BRW polynomials [5]. If it will turn out that simi-
lar attacks apply also to Bernstein-Rabin-Winograd (BRW) polynomials, one
can easily switch to a different family of hash functions with similar security
guarantees as our construction.

BRW polynomials require only a single n-bit key, half the number of mul-
tiplications compared to Horner-based polynomials, and a negligible number of
2 F : X → Y is called regular iff all outputs Y ∈ Y are produced by an equal number

of preimages X ∈ X .
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Algorithm 2. Definition of our instantiation of DCT, with n = 128 and τ ≤ 2n.

101: function ẼSK(A, M)
102: (K1

1 , K2
1 , K2, K3) ← KeyGen(SK)

103: (ML, MR) ← Encodeτ (M)
104: X ← H

K1
1 ‖ K2

1
(A, MR)

105: Y ← ML ⊕ X
106: CL ← SimpiraK2 (Y )

107: CR ← CTRT.E[Ẽ]K3 (CL, MR)
108: return (CL ‖ CR)

111: function Encodeτ (M)
112: μ ← 2n − τ
113: ML ← 0τ ‖ M [1..μ]
114: MR ← M [(μ + 1)..|M |]
115: return (ML, MR)

121: function SimpiraK(Y )

122: (Y 0, Y 1)
n←− Y

123: Y 1 ← Y 1 ⊕ K
124: for c ← 1 to 15 do
125: l ← (c − 1) mod 2
126: r ← c mod 2
127: Y r ← Y r ⊕ Simpira.Fc,2(Y

l)

128: C0
L ← Y 0 ⊕ K

129: C1
L ← Y 1

130: return (C0
L ‖ C1

L)

131: function Simpira.Fc,b(X)
132: L ← (c, b, 0, 0)
133: return aesenc(aesenc(X, L), 0)

141: function CTRT.E[Ẽ]K(IV, MR)

142: (U, V )
n←− IV

143: T ← U [2..n]
144: m ← 	MR/n

145: (M1

R, . . . , Mm
R )

n←− MR

146: for i ← 1 to m − 1 do

147: Ci
R ← Ẽ

1,T ⊕〈i−1〉
K (V ) ⊕ Mi

R

148: κm ← Ẽ
1,T ⊕〈m−1〉
K (V )

149: Cm
R ← κm[1..|Mm

R |] ⊕ Mm
R

150: return (C1
R ‖ · · · ‖ Cm

R )

161: function CTRT.D[Ẽ]K(IV, CR)

162: return CTRT.E[Ẽ]K(IV, CR)

171: function ẼD,T
K (X)

172: return Deoxys-BC-n-n
D ‖ T
K (X)

201: function D̃SK(A, C)
202: (K1

1 , K2
1 , K2, K3) ← KeyGen(SK)

203: (CL, CR) ← C

204: MR ← CTRT.D[Ẽ]K3 (CL, CR)
205: X ← H

K1
1 ‖ K2

1
(A, MR)

206: Y ← Simpira−1
K2

(CL)

207: ML ← X ⊕ Y
208: return Decodeτ (ML, MR)

211: function Decodeτ (ML, MR)
212: R ← ML[1..τ ]
213: M ← ML[(τ + 1)..2n] ‖ MR

214: if R = 0τ then return M
215: return ⊥
221: function Simpira−1

K (CL)

222: (C0
L, C1

L)
n←− CL

223: Y 0 ← C0
L ⊕ K

224: Y 1 ← C1
L

225: for c ← 15 downto 1 do
226: l ← (c − 1) mod 2
227: r ← c mod 2
228: Y r ← Y r ⊕ Simpira.Fc,2(Y

l)

229: Y 0 ← Y 0 ⊕ K
230: return (Y 0 ‖ Y 1)

231: function KeyGen(SK)
232: for i ← 1 to 4 do
233: Ki ← Ẽ

0,〈i〉
SK (〈i〉)

234: return (K1, K2, K3, K4)

241: function HK(A, MR)
242: W ← Encode′(A, MR)

243: (K1
1 , K2

1 )
n←− K

244: H1 ← K1
1 · BRW

K1
1
(W )

245: H2 ← K2
1 · BRW

K2
1
(W )

246: return (H1 ‖ H2)

251: function Encode′(A, M)

252: A ← padn(A)

253: M ← padn(M)
254: L ← 〈|A|〉64 ‖ 〈|M |〉64
255: return (A ‖ M ‖ L)

261: function padn(X)
262: if |X| mod n = 0 then return X

263: return (X ‖ 0n−(|X| mod n))

�log2(m)� additional squarings. Hereafter, we denote by GF(2n) the Galois Field
with a given irreducible polynomial p(x) of degree n. We represent the elements
in the field by n-bit strings. In this context, we use big-endian encoding where
the most significant bit is on the left, e.g., M = (10000111)2 represents the poly-
nomial x7+x2+x+1. For n = 128, we fix p(x) = x128+x7+x2+x+1. Given an
m-word message M = (M1, . . . ,Mm) and a key K ∈ {0, 1}n, the hash function
BRWK(M) is defined recursively by

– BRWK(ε) := 0n if m = 0,
– BRWK(M1) := M1 if m = 1,
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– BRWK(M1,M2) := (M1 · K) ⊕ M2 if m = 2,
– BRWK(M1,M2,M3) := (M1 ⊕ K) · (M2 ⊕ K2) ⊕ M3 if m = 3,
– BRWK(M1, . . . ,Mm) := BRWK(M1, . . . ,Mt−1) · (Mt ⊕ Kt) ⊕ BRWK

(Mt+1, . . ., Mm) if t ≤ m < 2t for t ∈ {4, 8, 16, 32, . . .},

where all multiplications are in GF(2n). Since BRW hashing XORs the final
block Mm when m is not a multiple of four, we perform an additional multipli-
cation, K · BRWK(M), to prevent predictable output differences.

Our family of hash functions – H or BRW-256 hereafter – takes as inputs the
associated data A and the variable-length part of the message MR. Therefore, we
define an injective encoding function Encode′ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ for
merging both inputs to a single bit string before hashing. First, Encode′ pads
A ← padn(A) and MR ← padn(MR) with the minimal number of trailing zeroes
such that their lengths after padding are multiples of n. Next, their original
lengths in bits are encoded as two 64-bit big-endian-encoded integers: L ←
〈|A|〉64 ‖ 〈|MR|〉64. Finally, Encode′ returns (A ‖MR ‖L), which is used as input
to H. The procedure is given in Algorithm 2. Applications that have to process
messages of more than 264 bits can alternatively encode |A| and |M | as two
128-bit values, with slightly reduced security.

Key Schedule and Change of Key. Our instantiation requires a 128-bit user-
supplied secret key SK. In total, our instantiation of DCT uses four independent
128-bit key words: a 256-bit key K2

1 ‖K2
1 for H, a 128-bit key K3 for E, and a

128-bit key K3 for Ẽ used in the CTRT mode. We borrow the idea from [20]
of deriving the keys for the individual components with Ẽ under the secret SK
in counter mode with distinct tweaks; neither those tweaks nor SK are used
any further in our mode. So, the derived keys are pairwise independent. We
recommend a default stretch of τ = 128 bits, at most 264 bits be encrypted
under the same key, and the maximum query length be limited to 240 blocks.

6.2 Concrete Security Bounds

We derive the following conjecture from the existing analysis of Simpira [17].

Conjecture 1 (Security of two-block Simpira). Let n = 128 and b = 2. Let E

denote Simpira for 2n-bit inputs. Let A be a computationally bounded SPRP
adversary on E with access to two oracles, where A asks at most q queries and
runs in time at most t. Then, there exists an absolute constant c such that

AdvSPRP
E,E−1(A) ≤ c · q

2n
.

Theorem 1 and Appendix C in [30] provide the following theorem.

Theorem 4 (IVE Advantage of CTRT [30]). Fix n ≥ 1. Let T be a non-
empty set and π̃ � P̃erm(T , {0, 1}n). Let A be an ivE adversary with access to
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an oracle, where A runs in time at most t and poses at most q queries to its
oracles with at most 8 ≤ � ≤ |T | blocks in total. Then

AdvivE
CTRT[π̃](A) ≤ 1

2n
+

1
|T | +

4� log2(q)
|T | +

� log2(�)
2n

.

Theorem 5.4 in [5] and Theorem 1 in [38] show that BRWK(M1, . . ., Mm)
is a monic polynomial of degree 2�log2 m�+1 − 1 ≤ 2m − 1. The additional
multiplications for the length-encoding block and the final multiplication with
K ·BRWK(M) lead to a monic polynomial of degree 2(m+1). For our proposed
instantiation for H, we can derive the following statement:

Theorem 5 (BRW Hashing). Let n,m ≥ 1, and let X =
⋃m

i=0 GF(2n)i. Then,
the family of hash functions G = {BRW |BRW : X → GF(2n)} is ε-AXU for
ε ≤ 2(m+1)/2n. Moreover, the family of hash functions H = {BRW1,BRW2 �
G ×G |H(M) := BRW1(M) ‖BRW2(M)} with independent BRW1 and BRW2

is ε′-AXU for ε′ ≤ 4(m + 1)2/22n.

Inserting the bounds from Conjecture 1 and Theorems 4 and 5 into those from
Lemmata 1 and 2, we can derive the following statements for our proposed
instantiation DCTBRW-256,Simpira,CTRT[Ẽ]. The full version of this work discusses
also how to reduce the quadratic dependency on m′ to a linear one for τ ≤ n.

Theorem 6. Let K � K and let Π̃ denote DCTBRW-256,Simpira,CTRT[Ẽ] as
defined in Algorithm 2. Let n = 128, τ ≤ 2n, |T | = 2n−1, m be the sum of
the maximal number blocks of message and associated data for each query, and
c be an absolute constant. Define m′ = m + 1. Then, for 8 ≤ � ≤ |T |, it holds
that

AdvdetPriv
Π̃

(q, �, t) ≤ 2
(

q2(2m′2 +1)
22n

+
3+cq+8� log2(q)+� log2(�)

2n
+δTPRP

Ẽ

)

AdvdetAuth
Π̃

(q, �, t) ≤ 2q2m′2

22n
+

12qm′2

2τ
+

cq

2n
+ δSTPRP

Ẽ,Ẽ−1 ,

where δTPRP
Ẽ

and δSTPRP
Ẽ,Ẽ−1 denote AdvTPRP

Ẽ
(q,O(t)) and AdvSTPRP

Ẽ,Ẽ−1 (q,O(t)).

6.3 Software Performance on x64 Processors

We implemented an optimized version of our proposed instance in C. https://
github.com/medsec/dct. Table 1 summarizes the results of our benchmarks. Our
code was compiled using gcc v5.2.1 with options -O3 -maes -mavx2 -mpclmul
-march=native, and run (1) on an Intel Core i5-4200M (Haswell) at 2.50 GHz,
and (2) on an Intel Core i5-5200U (Broadwell), both with TurboBoost, Speed-
Step, and HyperThreading options disabled. For measuring, we used the mean
from 100 medians of 10000 encryptions each in the single-message setting, where
we omitted the cost for key setup, and used the rdtsc instruction. Starting
from 512 bytes, the values in Table 1 have a standard deviation of less than 0.02

https://github.com/medsec/dct
https://github.com/medsec/dct
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Table 1. Performance results in cycles per byte for optimized implementations of
DCTBRW-256,Simpira,CTRT[Ẽ] on Haswell and Broadwell, respectively. Details of our
benchmarking setup are given in the text.

Message length (bytes)

Construction 128 256 512 1024 2048 4096 8192 16384

Haswell 6.17 4.48 3.28 2.65 2.28 2.09 2.00 1.96

Broadwell 6.15 4.45 3.16 2.51 2.14 1.98 1.86 1.81

cycles per byte (cpb). The results show that our proposed instance approaches
a performance of less than two cpb on current x64 processors for messages of
eight KiB and longer. The difference results majorly from the improved inverse
throughput of the pclmulqdq instruction (2 cycles per instruction on Haswell, 1
on Broadwell).

7 Discussion and Conclusion

This work proposed Deterministic Counter in Tweak (DCT), a beyond-birthday-
bound-secure DAE scheme that combines an almost-XOR-universal family of
hash functions with a single call to a double-block-length SPRP, and a beyond-
birthday-bound-secure encryption scheme. DCT produces the minimal stretch,
e.g., τ = 128 bit for 128-bit security. Our generic construction comes with a
straight-forward security proof. We proposed a software-efficient instantiation
that profits greatly from the recent progress in the domain of tweakable block
ciphers and encryption schemes; in particular, from the TWEAKEY framework,
the tweaked counter mode as encryption scheme, and the Simpira construction
as 2n-bit SPRP – both of which allow to exploit AES-NI instructions. As a
result, our instantiation can encrypt at speeds of less than two cycles per byte
on current x64 processors in the single-message setting. While our generic design
employs three independent keys, our instantiation requires only a single 128-bit
key and provides security close to that of our generic proposal. Moreover, the
use of tweaked counter mode and the Feistel-based Simpira as SPRP yields
an inverse-free decryption. DCT is currently defined for messages of ≥ 2n − τ
bits; one solution to also allow smaller messages could be to use a padding
and two additional distinct tweaks T for long and small messages, respectively.
For example, Gueron and Mouha proposed to use K · T instead of K as key
for Simpira, using a multiplication in GF(2128). Yet, the detailed security and
efficiency implications of this approach are interesting aspects for future work.
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Abstract. The boomerang attack is one of the many extensions of the
original differential attack. It has been widely applied to successfully
attack many existing ciphers. In this paper, we investigate an extended
version of the boomerang attack and show that it is still a very power-
ful tool especially in the related-key setting. A new branch-and-bound
searching strategy which involves the extended boomerang framework is
then introduced. We provide an improved cryptanalysis on the KATAN
family (a family of hardware-oriented block ciphers proposed in CHES
2009) based on the boomerang attack. In the related-key setting, we
were able to greatly improve upon the previous results to achieve the
best results, namely 150 and 133 rounds by far for KATAN48/64 respec-
tively. For KATAN32 in the related-key setting and all KATAN variants
in the single-key setting, our results are the best ones in the differential
setting although inferior to the meet-in-the-middle attack.

Keywords: KATAN32/48/64 · Related-key attack · Boomerang
attack · Differential attack

1 Introduction

The statistical attack is one of the most effective attacks against symmetric key
cryptography. It includes many popular cryptanalysis techniques such as the
linear attack, differential attack and so on. Among these methods, the differ-
ential attack is one of the most popular approaches due to its wide range of
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applications to many ciphers including DES and AES. More importantly, it has
many variations such as the impossible differential attack [5], multi-differential
attack [7] and others which make differential attacks more flexible compared to
linear attacks. Among these variations, the boomerang attack [22] proposed by
Wagner back in 1999 provides an interesting approach to differential cryptanaly-
sis. By considering quartets of differences instead of pairs, the attack separates
traditional cipher distinguishers into two parts. This way, the burden of finding
good differential characteristics can be greatly eased, leading to better distin-
guishers. The amplified boomerang attack [14] and rectangle attack [3] were later
proposed to improve the efficiency of the boomerang attack. Unlike the original
version which requires adaptive chosen plaintext and ciphertext queries, the mod-
ified boomerang attacks only require chosen plaintext queries which is a more
practical attack assumption. The power of this attack has been demonstrated
when it was used to break the full-round AES-192/256 [6] in the related-key
setting. Since the boomerang attack falls under the differential attack frame-
work, one natural question is which of these two methods will lead to better
results. Although there are a lot of recent research work focusing on exploiting
the relationship between statistical attacks such as the differential and linear
attacks [8] as well as the zero correlation linear and integral attacks [21], the
relationship between the boomerang and differential attack has not been fully
investigated. However, the boomerang attack often outperforms the differential
attack which suggests that under the condition of limited computing resources,
the boomerang attack is a feasible option.

The design of lightweight block ciphers and cryptanalysis of these ciphers
have recently attracted a lot of research attention. The KATAN family pro-
posed in CHES 2009 [9] is one example. Although the cipher KTANTAN [9]
proposed by the same authors was broken with a meet-in-the-middle attack [23],
the KATAN family still remains secure after many years of cryptanalysis. There
have been several attacks on the KATAN family in both single-key and related-
key settings. In the single-key setting, a conditional differential attack [15] was
able to break 78, 70 and 68 rounds of KATAN32/48/64 respectively. In [2],
the authors took advantage of the full differential distribution to improve the
attack on KATAN32, breaking 115 rounds. However, this approach cannot be
applied on KATAN48/64 since the full differential distribution cannot be eas-
ily computed. Later on, more research work put focus on meet-in-the-middle
attacks (MITM) [10,12,13,24]. In particular, [20] was recently published on e-
print claiming to break 206 rounds of KATAN32 using MITM. The cube attack
was also applied to KATAN32 in the single key model [1] with better results
than the differential attack.

In the related-key setting, [16] introduced 120, 103 and 90-round attacks on
KATAN32/48/64 respectively. By taking advantage of the key scheduling, [11]
further improved the result to 174, 145 and 130 rounds respectively using the
boomerang attack. In this paper, we investigate the extended boomerang tech-
nique to improve upon the previously found boomerang differential characteris-
tics. As a result, we can achieve the best records in attacking KATAN48/64 in
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the related-key setting. In all the other cases, while the results are inferior to
the MITM attacks, we are able to deliver the best differential attack results so
far. Particularly in the single key setting, our approach is able to outperform the
attack on KATAN32 [2] which uses the full differential distribution. Although
their distinguisher is better than ours, we point out that using the full distri-
bution will result in an inefficient key recovery attack. Their methods are also
not applicable to larger block sizes. From this point of view, our approach is
more realistic in practice. We summarize our results along with previous related
results in Table 1.

We organize the paper as follows: In Sect. 2, the boomerang attack and its
extended version are described. In Sect. 3, we demonstrate the boomerang distin-
guisher search and key recovery attack on the KATAN family in both single-key
and related-key settings. Finally, we conclude our paper with a summary of
findings in Sect. 4.

2 The Framework of the Boomerang Cryptanalysis

Ever since its proposal, differential cryptanalysis [5] quickly became one of the
main cryptanalytic methods used today. Based on its original form, researchers
have later derived many extended variants such as truncated differential crypt-
analysis, multi-differential cryptanalysis and so on. The boomerang attack can
also be viewed as an extension of differential attack, but it is more unique because
it modifies the original attack in a structural manner. Let m be the block size
of a block cipher E, and we assume E to be a cascade cipher consisting of three
concatenated parts EK = E2 ◦ E1 ◦ E0 influenced by a secret key K. Here E
is a n-bit to n-bit keyed permutation E : {0, 1}n × {0, 1}k → {0, 1}n. E2 is the
final rounds where the subkey bits are the primary target whereas E1 ◦E0 is the
distinguisher.

Boomerang Attack. The motivation behind the boomerang attack is that
finding two short efficient differential distinguishers is easier than finding a long
one. The original version of the boomerang attack is a combination of a chosen
plaintext and ciphertext attack, which is a cryptanalysis model that makes very
strong assumptions with regard to the capabilities of an attacker. Furthermore,
the original boomerang attack is not efficient when performing the last round
attack due to its “boomerang” property. Later, the amplified boomerang attack
was proposed to solve these problems. Given that the rectangle attack is an
extension of the original boomerang attack, we will refer to the amplified or
rectangle attack as a boomerang throughout the paper.

In the chosen plaintext setting, an attacker chooses plaintext pairs with dif-
ferences (α, α), and expect the differences between C1, C3 and C2, C4 to be (δ, δ).
Randomly, PR((α, α) → (δ, δ)) = 2−2m, thus the boomerang distinguisher should
have probability greater than 2−2m. For E0, the attacker searches for high prob-
ability differential paths α → βi, where 0 ≤ i ≤ 2m −1. For any differential path
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Table 1. Comparison of attacks against KATAN family

Cipher Attacking Technique # Attacking Time Data Memory Reference

Technique Rounds Complexity Complexity Complexity

KATAN32 Differential (Single

Key)

78 276 216 CP Not given [15]

MitM (Single Key) 110 277 138 KP 275.1 [12]

Differential (Single

Key)

115 279 138 KP 275.1 [2]

Boomerang (Single

Key)

117 279.3 227.3 CP 229.9 Ours

MitM (Single Key) 119 279.1 144 CP 279.1 [13]

MitM (Single Key) 153 278.5 25 CP 276 [10]

Cube (Single Key) 155 278.3 232 CP 233.5 [1]

MitM (Single Key) 175 279.3 3 KP 279.58 [24]

MitM (Single Key) 206 279 3 KP 278.1 [20]

Differential (Related

Key)

120 231 Practical (CP) Practical [16]

Boomerang (Related

Key)

174 278.8 227.6 CP 226.6 [11]

Boomerang (Related

Key)

187 278.4 231.8 CP 233.9 Ours

KATAN48 Differential (Single

Key)

70 278 231 CP Not given [15]

Boomerang (Single

Key)

87 278 236.7 CP 239.3 Ours

MitM (Single Key) 100 278 128 KP 278 [12]

MitM (Single Key) 105 279.1 144 KP 279.1 [13]

MitM (Single Key) 129 278.5 25 CP 276 [10]

MitM (Single Key) 130 279.45 2 KP 279 [24]

MitM (Single Key) 148 279 2 KP 277 [20]

Differential (Related

Key)

103 225 Practical (CP) Practical [16]

Boomerang (Related

Key)

145 278.5 238.4 CP 237.4 [11]

Boomerang (Related

Key)

150 277.6 247.2 CP 249.8 Ours

KATAN64 Differential (Single

Key)

68 278 232 CP Not given [15]

Boomerang (Single

Key)

72 278 255.1 CP 258.1 Ours

MitM (Single Key) 94 277.68 116 KP 277.68 [12]

MitM (Single Key) 99 279.1 142 KP 279.1 [13]

MitM (Single Key) 112 279.45 2 KP 279 [24]

MitM (Single Key) 119 278.5 25 CP 274 [10]

MitM (Single Key) 129 279 2 KP 277 [20]

Differential (Related

Key)

90 227 Practical (CP) Practical [16]

Boomerang (Related

Key)

130 278.1 253.1 CP 252.1 [11]

Boomerang (Related

Key)

133 278.5 258.4 CP 261.4 Ours

KP: Known Plaintext, CP: Chosen Plaintext

α → βi starting from a message pair P1, P2, the attacker expects that the dif-
ferential path starting from the message pair P3, P4 should have the same form.
Thus after E0, the probability cost is

∑r−1
i=0 p2i where r < 2m and pi = P (α → βi).
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Two edges in the middle quartet have the difference value βi. Therefore if we
assume the third edge to have a difference γj with a random probability of 2−m,
then the last edge will have difference value γj with probability 1 since the XOR
sum of the quartet edges should be 0. Here again we can choose as many γj

as possible where j is also bounded by the block size 2m. For E1 due to the
middle quartet shift, we start from two γj differences and hope to reach the out-
put difference δ. Denote qj = P (γj → δ), then the probability can be similarly
computed as

∑t−1
j=0 q2j , t < 2m. The total probability can be computed as:

Pbmg((α, α) → (δ, δ)) =
r−1∑

i=0

p2i ·
t−1∑

j=0

q2j · 2−m

Since Pbmg((α, α) → (δ, δ)) > 2−2m, thus we need:

Pbmg−dist =
r−1∑

i=0

p2i ·
t−1∑

j=0

q2j > 2−m (1)

Here Pbmg−dist denotes the distinguisher probability, which is consistent with
previous work such as in [11]. Please refer to Fig. 1 for the boomerang model.

P1

P2

P3

P4

C1

C2

C3

C4

α α

δ

δ

βi βi

γj

γj

Fig. 1. The model of Boomerang attack

The framework of the boomerang can be further improved by considering var-
ious differential quartets in the middle. The idea was first introduced in [22] and
was later mentioned in [4]. We refer to the concept as an extended boomerang
in this paper. In the boomerang setting, we are assuming that E0 has two dif-
ferential paths α → βi that has to appear at the same time so that the middle
quartet has the format such as (βi, βi, γj , γj). However, the two differential paths
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in E0 need not be the same, thus we actually missed a lot of combinations in
the middle. For example, let us consider the following scenario:

E0 : pi = P (α → βi), pj = P (α → βj)

E1 : qs = P (γs → δ), qt = P (γt → δ)

Quartet : (βi, βj , γs, γt) satisfying βi ⊕ βj ⊕ γs ⊕ γt = 0

Now we have all combinations in the middle quartet that can still lead to the
output difference δ. This will potentially increase the total probability when all
these cases are taken into consideration. Let u and v be the size of the differential
set for α → βi and γs → δ respectively. This leads us to the new calculation
formula:

PexBmg =
u−1∑

j=0

u−1∑

i=0

pβi
· pβj

×
∑

s

∑

t

qγs
· qγt

× 2−m

Once βi, βj , γs is decided in the middle quartet, γt is determined with prob-
ability one, namely, γt = βi ⊕ βj ⊕ γs, thus we have:

PexBmg =
u−1∑

j=0

u−1∑

i=0

pβi
· pβj

×
u−1∑

i=0

u−1∑

j=0

v−1∑

s=0

qγs
· qβi⊕βj⊕γs

× 2−m (2)

To be consistent with the previous boomerang distinguisher for ease of com-
parison, we denote the first part of probability term to be p̂2, and second part to
be q̂2. We then define the probability for the extended boomerang distinguisher
to be:

PexBmg−dist = p̂2 × q̂2 > 2−m

which should be greater than the random case 2−m.

3 KATAN Family

The KATAN block cipher family comprises of three lightweight block ciphers
KATAN32, KATAN48 and KATAN64 whose block sizes are 32 bits, 48 bits and
64 bits respectively. It was proposed in CHES 2009 [9] and it is a well known
cipher in the area. The design is based on the linear feedback shift register
(LFSR) and supports an 80-bit key.

The key scheduling function expands an 80-bit user-provided key ki (0 ≤ i <
80) into a 508-bit subkey ski (0 ≤ i < 508) by the following linear operations,

ski =

{
ki (0 ≤ i < 80),
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 (80 ≤ i < 508).

These operations are expressed as an 80-bit LFSR whose polynomial is x80 +
x61 + x50 + x13 + 1 as shown in Fig. 2.
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79 67 30  19  0

Fig. 2. Key scheduling function of
KATAN32/48/64

18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0

 0  1  2  3  4  5  6  7  8  9 10 11 12
IR

ka

kb

Fig. 3. Round function of KATAN32

In the round function, each bit of a plaintext is loaded into registers L1 and
L2. Then, these are updated as follows:

fa(L1) = L1[x1] ⊕ L1[x2] ⊕ (L1[x3] · L1[x4]) ⊕ (L1[x5] · IR) ⊕ ka,

fb(L2) = L2[y1] ⊕ L2[y2] ⊕ (L2[y3] · L2[y4]) ⊕ (L2[y5] · L2[y6]) ⊕ kb,

L1[i] = L1[i − 1] (1 ≤ i < |L1|), L1[0] = fb(L2),
L2[i] = L2[i − 1] (1 ≤ i < |L2|), L2[0] = fa(L1),

where ⊕ and · are bitwise XOR and AND operations, respectively, and L[x]
denotes the x-th bit of L, IR is the round constant value defined in the specifica-
tion, and ka and kb are two subkey bits. Table 2 shows the detailed parameters of
KATAN32/48/64. For round i, ka and kb correspond to sk2(i−1) and sk2(i−1)+1,
respectively. After 254 rounds (1-254 round), values of registers are output as a
ciphertext. Fig. 3 illustrates the round function of KATAN32.

Table 2. Parameters of KATAN family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3

KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6

KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

4 Improved Attack on KATAN Family

4.1 Novel Searching Strategy

The basic searching strategy used to find differentials is a branch-and-bound
algorithm divided into two parts. The first part (single trail search) is based on
the branch-and-bound algorithm proposed by Matsui [19]. It performs a search
for individual differential paths that have the best probabilities. These paths are
then used in the second part of the algorithm (cluster search) which expands
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the search to find other paths that start from the same input difference and lead
to the same output difference. Any paths found by the cluster search improves
the differential probability of the paths found by single trail search.

As an exhaustive search using this algorithm would take a long time, several
bounds are imposed onto the search. The first bound, θ is used in the single
trail search. When θ = 1, only paths with the best probabilities will be stored
for the cluster search whereas θ = 0 will store every path exhaustively. When
the θ bound is loosened, the paths found can range from high probability paths
to extremely low probability paths. To filter out paths with low probability, a
second bound λ is used. As an example, if λ = 2−16, only paths with probabilities
larger than 2−16 will be stored for the cluster search. The cluster search itself
has a bound μ which ranges from [0,1] (similar to θ).

For ciphers with block size less than 32-bit, it is possible to derive all the
differential paths, so that the size of the differential set u or v could reach 2m−1.
However, for larger size greater than say 48 bits, we are still bounded to searching
a subset of all differential paths with relatively high probabilities. Based on the
extended boomerang framework, we derive the following advanced algorithm
which can be used to improve the cryptanalytic capability of the boomerang
attack:

Extended Boomerang Characteristic Searching Algorithm.

1. For E0 precompute the good differential paths (α → βi) using branch-and-
bound algorithm where i ≤ u. Store all the βi in a set Φ.

2. Proceed similarly for E1 to find paths (γj → δ), j ≤ v, and save the output
differences in a set Ω.

3. For all the βi, βj ∈ Φ and γs ∈ Ω, compute γt = βi ⊕ βj ⊕ γs. If γt ∈ Ω, then
(βi, βj , γs, γt) is a valid quartet, and we can add the corresponding paths’
probability to the total boomerang probability.

4.2 Related Key Boomerang Distinguisher Search

To perform a basic boomerang search, the single trail search and cluster search
algorithms are performed separately for E0 and E1. As the clustering effect for
E1 starts from one output difference δ to multiple intermediary differences γ, the
branch-and-bound algorithm has to be applied in reverse (decryption) starting
from δ to find multiple γ. The search is performed for various combinations of
E0 and E1 rounds to find the optimal middle point for the boomerang attack.
In the related key setting, the search algorithm also involves key differences. As
a starting point, we build upon the findings of Isobe et al. [11] who found a 140-
round distinguisher with a probability of 2−27.2. In their paper, they identified
sets of plaintext/key differences that lead to blank steps that have no differences
in registers and subkeys. We use these sets as the inputs of our E0 search and
also use them to find ciphertext/key sets for the reverse E1 search.

To find starting points for the E1 search (ciphertext and key differences),
we first perform the E0 search starting from a designated intermediate round.
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E.g. if the number of rounds for E0 is 70, we start our search from round 71
onwards. By using the same sets from [11] as a guide, we obtain the output
and key differences which are used as inputs to the E1 search. The best results
for the basic related key boomerang search is shown in Table 3 with the follow-
ing settings: (θ = 0, μ = 0.5, λ = 2−20). It can be seen that the branch-and-
bound algorithm is able to improve Isobe’s 140-round distinguisher probability
(2−27.2 → 2−26.58214). We are also able to push a valid distinguisher for 2 more
rounds to obtain a 142-round distinguisher with probability of 2−30.58214.

Next, the extended search algorithm is applied where βi and γs from the basic
boomerang search are stored in sets Φ and Ω respectively. We found that for
certain values of α and δ, the extended search is unable to find additional quar-
tets, therefore did not improve the existing distinguisher probability. However,
there also exist other α and δ values that lead to a large amount of additional
quartets. The following settings were used for the branch-and-bound search:
(θ = 0, μ = 0.5) whereas the λ bound varies based on input. We provide only
the best result found in Table 4 where large improvements to the overall distin-
guisher probability are obtained. We are able to improve upon the previously
found 142-round distinguisher by 12 rounds, obtaining a 154-round distinguisher
with a probability of 2−29.7209 after applying the extended boomerang search.

The conditional difference is another technique which has been used in pre-
vious research work such as [11,16]. For KATAN, the only non-linear part is the
AND logic gate. According to the AND table, if we fix one of the two inputs to
the AND gate to be 0, then any difference in the other input will be canceled
out and the final output difference will be 0. Based on this observation, we can
improve the probability of E0 by fixing some of the plaintext bits. The downside
of using this technique is that the message space will be reduced, thus we have
to determine if the probability gain will surpass the decrease of the message
space. Fortunately, the extended boomerang technique can potentially amplify
the effect of the conditional difference approach due to the extra quartets we
can collect in the middle. For KATAN32, we set L2[1] = L2[4] = L2[8] = 0 for
the input difference α = 10020040 and key differences located at k6, k25. As a
result, we can improve the distinguisher probability to 2−23.7209. The results of
the distinguisher for KATAN32/48/64 are located in Table 4. The application
of the extended boomerang in the single key setting follows the same steps, but
with the exclusion of key differences. Please refer to the appendix for the distin-
guishers in the single-key setting. The overall related key extended boomerang
search algorithm is summarized below:

1. Identify an input set that leads to blank rounds for the E0 search. For this
input, determine the fixed bits for the conditional difference technique.

2. Perform single trail search and cluster search for #E0 rounds. Store all inter-
mediary differences, βi in a set Φ along with their probabilities (which have
been improved using the sufficient condition technique).

3. Identify an input set that leads to blank rounds for the E1 search. Using this
input set, start from (#E0 +1) rounds and perform the single trail search for
#E1 rounds to obtain the corresponding output difference, δ and output key
difference.
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4. Using δ and output key difference as a starting point, the single trail search
and cluster search is performed in reverse (decryption) starting from round-
(#E0+#E1) for #E1 rounds. Store all intermediary differences, γi in a set
Ω along with their probabilities.

5. For all the βi, βj ∈ Φ and γs ∈ Ω, compute γt = βi ⊕ βj ⊕ γs. If γt ∈ Ω, then
(βi, βj , γs, γt) is a valid quartet, and we can add the corresponding paths’
probability to the total boomerang probability.

Table 3. Related Key Boomerang Distinguisher on KATAN32 (before extended search)

α #E0 Prob p
(log2)

δ #E1 Prob q (log2) Total Rounds Final Prob
(log2)

10020040 70 −6.79 280184 70 −6.5 140 −26.58

10020040 70 −6.79 280184 71 −7.5 141 −28.58

10020040 70 −6.79 280184 72 −8.5 142 −30.58

4.3 Key Recovery Attacks

Finally, we demonstrate the concrete key recovery attack for the KATAN family
in both related-key and single-key setting. [11] has already provided an optimized
key recovery framework. Because each round is rather cheap for the KATAN
family and we want to add many rounds in E2, the differential pattern will be
lost. This makes sieving techniques impossible. In other words, the key recovery
technique in [11] is not related to the exact output difference values, thus it is
easy to seamlessly apply here for a fair comparison. The principle of the attack
and some facts of KATAN family used in the attack are listed below:

1. Use meet-in-the-middle approach to recover the key. This is achieved by stor-
ing all the ciphertexts pairs in a table, guessing the subkey bits for decryption
then checking for matches in the table.

2. The differential state is known after #E2 rounds by only guessing (#E2 −4)-
round subkeys.

Table 4. Boomerang distinguisher for KATAN32/48/64 in the related-key setting

#E0 #E1 α δ λE0/λE1
(log2) (log2)

2−24/2−22 k6, k25 L2[1] = L2[4] = L2[8] = 0

2−22/2−22 k0, k19 L2[0] = L2[1] = L2[2] =
L2[11] = L2[17] = 0,

L2[10] �= L2[18]

2−18/2−26 k11 L2[9] = L2[10] =
L2[11] = L2[33] = 0
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3. A trade-off trick can be achieved by using the partial matching method which
involves matching only part of the differential state instead of the whole. This
technique is also known as the “early abort” mentioned in paper [17] and [18].
Denote Pr as the probability that a subkey candidate is the correct key, which
is supposed to be N2 × 2−2m, where N is the number plaintext pairs. Let r
denote the number of rounds that we do not guess subkeys (except for the
first skipped round, we guess 1 bit). By using the partial matching technique,
we can improve the probability as follows:
(a) KATAN32: Pr = N2×2−86+4r, r ≥ 6, known difference bits when match-

ing is Smatching = 43 − 2r.
(b) KATAN48: Pr = N2 × 2−120+8r, r ≥ 4, known difference bits when

matching is Smatching = 59 − 4r.
(c) KATAN64: Pr = N2 × 2−152+12r, r ≥ 3, known difference bits when

matching is Smatching = 74 − 6r.

#E2 denotes the number of rounds for the key recovery phase, then the
subkey bits we need to guess is denoted by 2(#E2 − r) + 1. Since N is the
number plaintext pairs required, then we can generate N2 quartets. To assure
that the right quartet will appear, we set N = 2

m
2 × P

−1/2
r . Since we adapt the

meet-in-the-middle approach, two pairs of plaintexts and ciphertexts need to be
processed independently, thus the data complexity D is 2

m
2 +1 × P

−1/2
r . The key

recovery steps are as follows:

1. Choose N plaintext pairs (P1, P2) and (P3, P4) such that P1⊕P2 = P3⊕P4 =
α, ask for ciphertexts C1, C2, C3 and C4 under secret key K1,K2,K3 and K4.

2. For each guess of 2(#E2 − r) + 1 bits of subkey for Ki (Guess one Ki and
others are determined), do the following:
(a) For both (C1, C2), derive Smatching bits of known differences by decrypt-

ing t rounds. XOR with δ and store in the big table.
(b) For each pair (C3, C4), do

i. Decrypt #E2 rounds and compute the Smatching bits of the known
difference.

ii. Check if the value matches the ones stored in the table. If it exists,
proceed the following step.

iii. Brute force search the rest of the 80 − (2(#E2 − r) + 1) = 79 −
2(#E2 − r) unknown bits. Verify with fresh plaintext and ciphertext
pairs, output the correct key if passed.

Step 2(a) and 2(b)-i requires to compute (2
2(#E2−r−1)×N×2×#E2

#E0+#E1+#E2
#E0+#E1+

#E2) rounds of KATAN32/48/64. Then after filtering, we have 22(#E2−r)+1×Pr

key candidates remaining. To brute force search the rest key bits, step(b)-iii takes
22(#E2−r)+1×Pr×279−2(#E2−r) = 280×Pr. As a result, the total time complexity
can be denoted as

T = 2 × 22(#E2−r−1) × N × 2 × #E2

#E0 + #E1 + #E2
+ 280 × Pr
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The memory complexity depends on Step2(a) where 2 × N state values need to
be stored.

Now based on the derived distinguishers for both single-key and related-key
settings, we test all the possible variables for #E2 and r to derive the optimal
results shown in Tables 5 and 6 respectively.

Table 5. Cryptanalysis results for KATAN family in the single-key setting

Ciphers Total rounds #E0 #E1 #E2 r Dist Prob(log2) T (log2) D(log2) MEM(bytes)

KATAN32 117 35 48 34 7 −21.78 79.25 27.89 29.89

KATAN48 87 35 25 27 5 −23.36 78.00 36.68 39.26

KATAN64 72 30 26 16 3 −44.26 77.99 55.13 58.13

Table 6. Cryptanalysis results for KATAN family in the Related-key setting

Ciphers Total rounds #E0 #E1 #E2 r Dist Prob(log2) T (log2) D(log2) MEM(bytes)

KATAN32 187 70 84 33 7 −23.72 78.39 31.86 33.86

KATAN48 150 63 63 24 4 −32.40 77.60 47.20 49.79

KATAN64 133 56 60 17 3 −42.84 78.46 58.42 61.42

5 Conclusion

In this paper, we investigated the extended boomerang attacks. Our study
showed that by considering the extended version of the original boomerang
attack, the efficiency of distinguishers can be greatly improved. For situations
where the full differential distribution is not available or computing resources are
limited, our results have shown that the extended boomerang attack can lead
to strong results in practical cryptanalysis. Furthermore, we observed that the
extended boomerang framework is able to amplify the effect of the conditional
difference technique due to the large number of differential paths involved in the
computation. As a result, we are able to derive the best cryptanalysis results by
far on KATAN48/64 in the related-key setting. For all the other versions of the
family, the best differential attacks are derived.
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Appendix - Distinguisher Results in the Single-key Setting

By applying the same searching methodology, we derive the distinguishers for
KATAN32/48/64 in the single-key setting as follows (Table 7).

Table 7. Boomerang distinguisher for KATAN32/48/64 in the single-key setting

Ciphers Total rounds #E0 #E1 α δ Before ES After ES λE0/λE1

KATAN32 83 35 48 8010 801081 −38.58 −21.78 −17/ − 24

KATAN48 60 35 25 904000 402000000 −36.60 −23.36 −22/ − 18

KATAN64 56 30 26 4002001 20110080000000 −52.52 −44.26 −22/ − 22
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Abstract. Standard form of authenticated encryption (AE) requires the
ciphertext to be expanded by the nonce and the authentication tag.
These expansions can be problematic when messages are relatively short
and communication cost is high. To overcome the problem we propose
a new form of AE scheme, MiniAE, which expands the ciphertext only
by the single variable integrating nonce and tag. An important feature
of MiniAE is that it requires the receiver to be stateful not only for
detecting replays but also for detecting forgery of any type. McGrew
and Foley already proposed a scheme having this feature, called AERO,
however, there is no formal security guarantee based on the provable
security framework.

We provide a provable security analysis for MiniAE, and show sev-
eral provably-secure schemes using standard symmetric crypto primi-
tives. This covers a generalization of AERO, hence our results imply a
provable security of AERO. Moreover, one of our schemes has a simi-
lar structure as OCB mode of operation and enables rate-1 operation,
i.e. only one blockcipher call to process one input block. This implies
that the computation cost of MiniAE can be as small as encryption-only
schemes.

Keywords: Authenticated encryption · Stateful decryption · Provable
security · AERO · OCB

1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic function for
communication which provides both confidentiality and integrity of messages.
A standard form of AE requires the ciphertext to be expanded by the amount of
nonce, a never-repeating value maintained by the sender, and the authentication
tag. This holds for popular schemes, such as CCM [1] and GCM [2]. The amount
of expansion is small, say several dozen bytes. Nevertheless, it can be problem-
atic when the messages are quite short. A typical example is wireless sensor net-
work (WSN). For WSN, communication is much more energy-consuming than
computation, and thus network packets are required to be very short. In fact,
McGrew [3] provided examples of such real-life wireless protocols having maxi-
mum payload size ranging from 10 to 1K bytes. Struik [4] suggested that saving
c© Springer International Publishing Switzerland 2016
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8 bytes in communication may justify making encryption ten-times more expen-
sive for WSN. Similar observation was given by Seys and Preneel [5]. Detailed
energy cost evaluations for communication and cryptographic computation are
given by [6,7].

As a solution to this problem, we propose MiniAE, a class of AE having smaller
stretch than normal AEs. Its ciphertext is only expanded by the amount of sin-
gle variable integrating nonce and tag. When ciphertext of MiniAE is stretched
by s bits, it provides (about) s-bit authenticity and can securely encrypt at most
2s messages, while nonce-based AE (NAE) needs 2s-bit stretch for this purpose.
A key difference from NAE is that MiniAE requires both sender and receiver to
maintain a state (say counter), whereas NAE basically needs only the sender to
be stateful. At first sight this might seem a big disadvantage, however, we remark
that even NAE needs a stateful receiver when one wants to detect replays. In fact,
replay detection via stateful receiver is employed by most of Internet protocols and
wireless networks, such as Zigbee1 and Bluetooth low energy (BLE)2. An impor-
tant feature of MiniAE is that a receiver’s state is not only used to detect replays
but to detect forgeries of any other types. McGrew and Foley [3,8] already showed
a similar idea and proposed a scheme called AERO. It can be seen as an encryp-
tion following encode-then-encipher (ETE) approach by Bellare and Rogaway [9],
using XCB mode of operation [10] as its internal large keyed permutation. The
approach of AERO is intuitively sound, however [3,8] do not provide a formal secu-
rity analysis. As a consequence, it is not clear if ETE is essential for achieving the
goal, i.e. small stretch. This is undesirable since these schemes are likely to be used
by resource-constrained devices.

We provide a formal model of MiniAE and basic security notions, namely the
confidentiality, integrity and replay protection, and show provably secure con-
structions. Our model is different from Bellare, Kohno and Namprempre [11],
which proposes a security model with stateful decryption tailored to analyze (a
generalization of) SSH Binary Packet Protocol. More specifically, we propose
three MiniAE schemes with concrete security proofs. The first scheme is based
on ETE and can be seen as a simple generalization of AERO. This shows that
AERO is indeed secure for our security notions. The second scheme, which we
call MiniCTR, is similar to a generic composition [12,13]. If it is instantiated by
CTR mode encryption and a polynomial hash function, the computation cost
of MiniCTR is almost the same as GCM [2]. The third scheme tries to further
improve the efficiency. It is called MiniOCB for its structural similarity with
OCB [14–16]. As well as OCB it is defined as a mode of tweakable blockcipher
(TBC), and TBC can be instantiated by a blockcipher. It is parallelizable and
rate-1, that is, it requires one blockcipher call for processing one plaintext block.
The last two schemes show that ETE is not the exclusive approach to MiniAE,
and a secure MiniAE can be as fast as nonce-based (unauthenticated) encryp-
tions. We here stress that, unlike most NAEs, all our schemes are not capable
of on-line encryption, and thus not desirable to handle long messages.

1 http://www.zigbee.org.
2 http://www.bluetooth.com.

http://www.zigbee.org
http://www.bluetooth.com
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We remark that our basic security notions in Sect. 3.2 are extensions of stan-
dard NAE security notions, hence do not consider misuse. According to [8] AERO
is expected to have a certain misuse-resistance beyond NAE. To fill the gap, in
the full version, we provide a short security analysis involving extended security
notions covering misuse, and show a separation between the proposed schemes
if we require these extended notions in addition to the basic ones.

2 Preliminaries

Let {0, 1}∗ denote the set of all binary sequences including the empty string, ε.
For X ∈ {0, 1}∗, we write |X| to denote the bit length of X, and let |X|n def=
�|X|/n�. For X,Y ∈ {0, 1}∗ we write X‖Y to denote their concatenation. The
first (last) i bits of X is denoted by msbi(X) (lsbi(X)). We have msb0(X) = ε
and ε ⊕ X = ε for any X. For any s > 0, a partition of X into s-bit blocks is
written as (X[1], . . . , X[x]) s← X, where |X[i]| = s for i < x and |X[x]| ≤ s.
For X = ε, we let X[1] s← X with X[1] = ε. Moreover, for X and Y such that
|X| ≤ n and |X| + |Y | ≥ n we write (X,Y ) n

↼ (X,Y ) to denote the parsing into
X = X‖msbn−|X|(Y ) and Y = lsb|Y |−(n−|X|)Y . The inverse parsing is written
as (X,Y ) m

↽ (X,Y ), where |X| ≥ m and X = msbm(X), Y = lsb|X|−m(X‖Y ).
By writing X10∗ for 0 ≤ |X| < n we mean a padding 10n−|X|−1 to X. We have
X10∗ = X when |X| = n, and ε10∗ = 10n−1. For a finite set X we write X

$← X
to mean the uniform sampling of X over X .

For keyed function F : K × X → Y with key K ∈ K, we may simply write
FK : X → Y if key space is obvious, or even write as F : X → Y if being
keyed is obvious. If EK : X → X is a keyed permutation, or a blockcipher, EK

is a permutation over X for every K ∈ K. Its inverse is denoted by E−1
K . A

tweakable keyed permutation or TBC [17], ẼK : T × X → X , is a family of
keyed permutation over X indexed by tweak T ∈ T and its encryption is written
as C = ẼT

K(M) for plaintext M , tweak T and ciphertext C. The decryption
is written as M = Ẽ−1,T

K (C). We consider X to be either a set of fixed length
strings or variable length strings (though the original definition [17] assumes the
fixed length). The latter is also called tweakable enciphering scheme (TES).

Random Functions. Let Func(n,m) be the set of all functions {0, 1}n →
{0, 1}m, and let Perm(n) be the set of all permutations over {0, 1}n. A uniform
random function (URF) having n-bit input and m-bit output is a function family
uniformly distributed over Func(n,m). It is denoted by R

$← Func(n,m). An n-
bit uniform random permutation (URP), denoted by P, is similarly defined as
P

$← Perm(n). We also define tweakable URP. Let T be a set of tweak and
PermT (n) be the set of all functions such that for any f ∈ PermT (n) and t ∈ T ,
f(t, ∗) is a permutation. A tweakable n-bit URP with tweak T ∈ T is defined as
P̃

$← PermT (n).

Pseudorandom Function. For c oracles, O1, O2, . . . , Oc, we write AO1,O2,...,Oc

to represent the adversary A accessing these c oracles in an arbitrarily order.
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If O and O′ are oracles having the same input and output domains, we say
they are compatible. Let FK : {0, 1}n → {0, 1}m and GK′ : {0, 1}n → {0, 1}m

be two compatible keyed functions, with K ∈ K and K ′ ∈ K′ (key spaces are
not necessarily the same). Let A be an adversary trying distinguish them using
queries. Then the advantage of A is defined as

AdvcpaFK ,GK′ (A) def= Pr[AFK ⇒ 1] − Pr[AGK′ ⇒ 1],

AdvccaFK ,GK′ (A) def= Pr[AFK ,F −1
K ⇒ 1] − Pr[AGK′ ,G−1

K′ ⇒ 1],

where the latter is defined if F and G are keyed permutation, and probabil-
ities are defined over uniform samplings of keys and internal randomness of
A. If F and G are tweakable, a tweak for a query is arbitrarily chosen by
the adversary for both Advcpa and Advcca. For URF R compatible to F , let
AdvprfFK

(A) def= AdvcpaFK ,R(A). In a similar manner, let tweakable URP P̃ compatible
to TBC ẼK . Then we define

Advtprp
ẼK

(A) def= Advcpa
ẼK ,P̃

(A), and Advtsprp
ẼK

(A) def= Advcca
ẼK ,P̃

(A),

We further extends these notions to the functions (or permutations) having
variable-input length (VIL). For example, if FK is a VIL keyed function:
{0, 1}∗ → {0, 1}n we define AdvprfFK

(A) as AdvcpaFK ,R∗(A), where R∗ is an URF
compatible to FK which can be implemented by lazy sampling.

Time Complexity. If adversary A is with time complexity t, it means the
total computation time and memory of A required for query generation and
final decision, in some fixed model. If there is no description on time complexity
of A, it means A has no computational restriction. Conventionally we say FK

is a pseudorandom function (PRF) if AdvprfFK
(A) is negligible for all practical

adversaries (though the formal definition requires FK to be a function family).
Similarly we say FK is a pseudorandom permutation (PRP) if AdvprpFK

(A) is
negligible and FK is invertible. Strong PRP (SPRP), tweakable PRP (TPRP)
and tweakable SPRP (TSPRP) are defined in a similar manner.

Universal Hash Function. Let H : K × X → {0, 1}n be a keyed function,
where key K is uniform over K and X ⊆ {0, 1}∗. We say HK is ε(x)-almost
XOR universal (AXU) if

max
c∈{0,1}n

Pr
K

[HK(X) ⊕ HK(X ′) = c] ≤ ε(x) (1)

holds for any distinct X,X ′ ∈ X with max{|X|n, |X ′|n} = x and for some ε(∗).
If input is divided into two parts, e.g. X = (X1,X2), |X|n means |X1|n + |X2|n.

Building TBC. All our constructions will use TBC. It can be built from
scratch [18–20] or from a blockcipher. Suppose we want a TBC of n-bit block and
tweak space (which is assumed to be a set of binary strings) T . From the result
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of [17], using an n-bit blockcipher EK and an independently-keyed ε(x)-AXU
hash function, HK′ : T → {0, 1}n, we can build TBC as

ẼT
K,K′(M) = EK(S ⊕ M) ⊕ S, where S = HK′(T ) (2)

for encryption of plaintext M and tweak T . This has a TSPRP-advantage of
O(ε(�) · q2) plus a CCA-advantage of EK , for any adversary with q CCA queries
using tweak of maximum block length �. Typically we can use a polynomial hash
function defined over GF(2n) as a universal hash fulfilling (1) with ε(x) = x/2n.
Alternatively we can use PRF as a computational counterpart, say CMAC. In
some cases the use of two keys in (2) can be reduced to one [15,21].

3 Definition of MiniAE

3.1 Basic Model

The encryption function of MiniAE accepts nonce N , associated data (AD) A,
and plaintext M , and generates ciphertext C and encrypted nonce L, where
N,L ∈ Nae = {0, 1}ν for some fixed ν, A ∈ Aae, M ∈ Mae with |C| = |M |.
Typically Aae = Mae = {0, 1}∗ and we may simply write M for Mae. A message
sent over a communication channel is (A,L,C). Thus the expansion is ν bits. AD
A and plaintext M can be empty, and if M is empty the corresponding C is also
empty. We require unique nonce for each encryption. We define nonce increment
function μ : Nae → Nae, which is a permutation over Nae and has single cycle of
length |Nae|. We assume μ and initial nonce value are public and fixed. If N is the
nonce last used in encryption, the next nonce is μ(N). Typically, μ is a counter
increment μ(N) = N +1 where + is modulo 2ν . As mentioned earlier we assume
stateful decryption. On receiving (A′, L′, C ′), the stateful decryption function
first computes the decrypted nonce N ′ ∈ Nae using the key, and outputs the
decrypted plaintext M ′ if N ′ is considered as valid, otherwise the default error
symbol, ⊥. The validity of N ′ is determined by comparison with the receiver
state. Here stateful decryption is essential to detect replays, and we assume the
receiver state is uniquely determined by the nonce in the previous successful
decryption (thus a state is an element of Nae), which is typical in many replay
protection schemes including AERO [8]3. More generally, the receiver has a set
of expected nonce values for each decryption. The set is defined as a function
of the receiver state, and we write the function as ρ : Nae → 2Nae , where
2Nae is the power set of Nae. The function ρ is public, and when N ′ is the
value obtained by the decryption and N̂ is the last nonce accepted as valid,
N ′ is determined as valid iff N ′ ∈ ρ(N̂) holds true. In this paper we assume
|ρ(N)| ≤ ω holds for any N , where ω is called verification range size. Let us
write i-th nonce used at encryption as Ni (e.g. N2 = μ(N1)). Naturally we
require that Ni+1(= μ(Ni)) ∈ ρ(Ni) for any i to accept the genuine ciphertext,

3 Decryption of [8] also maintains the most recent invalid nonce, in order to do resyn-
chronization.
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and Nj �∈ ρ(Ni) for any j ≤ i to reject replays without fail. In practice ρ
determines the resilience against packet loss. If the synchronization is perfect
between the sender and receiver, the simplest setting as ρ(N) = μ(N) with ω = 1
works fine. However we often need to include {Nj} for some j > i + 1 for ρ(Ni)
when packets can lost in the channel. In this case ρ(N) = {μ(N), μ(μ(N)), ...}
to tolerate the loss of consecutive ω − 1 packets. This will increase a chance of
success at forgery, roughly by a factor of ω.

Nonce Shorter than Block. As all of our constructions are defined over n-bit
blocks for some n (say 128), we require ν ≤ n, and |N | + |M | ≥ n holds, which
means if ν < n we have a nonzero limit on the minimum plaintext length, or,
in practice we may pad as [8]. Throughout the paper, we may implicitly use
(N,M) to denote the result of parsing (N,M) n

↼ (N,M), provided N and M
are clear from the context. Similarly we may use (L,C) to denote the result of
parsing (L,C) n

↼ (L,C). We remark that when ν = n, we have N = N , M = M
and L = L, C = C.

3.2 Security Notions

Following NAE security notions, we introduce two security notions, namely pri-
vacy and authenticity, to model the security of MiniAE. Here privacy notion
reflects the pseudorandomness of ciphertexts, and authenticity notion reflects
the hardness of forgery even if the receiver state are chosen by the adversary.
We think this form of authenticity will be beneficial for its simplicity, strong
assurance, and independence of the details of state management4. Let MiAE
be an MiniAE with ν-bit nonce (with some key K

$← K). The encryption and
decryption algorithms are MiAE-E and MiAE-D. Following Sect. 3.1, MiAE-E
takes (N,A,M) and returns (L,C) with |M | = |C| and |N | = |L| = ν. MiAE-D
takes (N̂ , A′, L′, C ′) with |N̂ | = |L′| = ν, where N̂ is a receiver state (i.e. a
decrypted nonce) guessed by adversary. In practice N̂ is not sent over the com-
munication channel. MiAE-D then computes the decrypted nonce, N ′, and see
if N ′ ∈ ρ(N̂). If true it returns a decrypted message M ′ ∈ Mae and otherwise ⊥.
Thus we have

(L,C) ←MiAE-E(N,A,M)

M ′/⊥ ←MiAE-D(N̂ , A′, L′, C ′).

Privacy Notion. Let A be a Priv-adversary who accesses MiAE-E using q
encryption queries with distinct nonces (i.e. nonce-respecting). Here we assume

4 In this sense our notions are similar to Rogaway’s nonce-based encryption [22] as it
allows a provable security analysis without taking into account the details of nonce
generation.
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nonces are not necessarily updated5 by μ, in the same manner to [22]. The
privacy notion for Priv-adversary A is defined as

AdvprivMiAE(A) def= Pr[AMiAE-E ⇒ 1] − Pr[A$ ⇒ 1], (3)

where random-bit oracle, $, takes (N,A,M) and returns (L,C) $← {0, 1}ν ×
{0, 1}|M |.

Authenticity Notion. Let A be an Auth-adversary against MiAE. We
write q encryption queries as (N1, A1,M1), . . . , (Nq, Aq,Mq), and q′ decryp-
tion queries as (N̂1, A

′
1, L

′
1, C

′
1), . . . , (N̂q′ , A′

q′ , L′
q′ , C ′

q′). We may say verification
queries instead of decryption queries. We also let (L1, C1), . . . , (Lq, Cq) be the
corresponding oracle answers for encryption queries. We assume A follows the
two conditions.

Condition 1: Adversary is nonce-respecting for encryption queries (i.e. Ni �= Nj

for any i �= j)
Condition 2: For all i = 1, . . . , q′, (A′

i, L
′
i, C

′
i) �= (Aj , Lj , Cj) holds for all j-th

encryption queries before the i-th decryption query.

As well as the privacy notion, nonces in the encryption queries are not nec-
essarily generated by μ. The second condition excludes the adversary’s triv-
ial win including a replay, that is, a decryption query (N̂ , A′, L′, C ′) with
(A′, L′, C ′) = (A,L,C) with N ∈ ρ(N̂) for some previous encryption query
(N,A,M) and response (L,C). This is because a replay is always detected at
the decryption side in actual use of any MiniAE scheme following Sect. 3.1. We
also excluded the case N �∈ ρ(N̂), as it will be always rejected (thus trivial loss).
The authenticity notion is defined as

AdvauthMiAE(A) def= Pr[AMiAE-E,MiAE-D forges], (4)

where A forges if MiAE-D returns output other than ⊥ for a decryption query.
For both privacy and authenticity notions, we write the total input blocks,

denoted by σ, to mean
∑

i |Ni|n + |Ai|n + |Mi|n for the privacy notion, and∑
i |Ni|n + |Ai|n + |Mi|n +

∑
j |L′

j |n + |A′
j |n + |C ′

j |n for the authenticity notion.
MiniAE as a large tweakable random permutation. Since MiAE is a tweak-
able keyed permutation in general (where tweak is used for AD), we write
AdvtprpMiAE(A) and AdvtsprpMiAE(A) to denote TPRP and TSPRP advantages of the
underlying tweakable keyed permutation Ẽ. Note that Ẽ is not always required
to be strong with respect to these notions. In fact our results show that it can
be much weaker.

IV-based Encryption. We also define IV-based encryption scheme: ΠK : I ×
M → M which is a permutation over M determined by K ∈ K and fixed-
length initialization-vector (IV) I ∈ I. Here IV is sampled uniformly random
5 It is possible to define the adversary in our security notions strictly following the

generation of nonce described at Sect. 3.1. Here we employ a more general definition
for the simplicity.
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for every encryption. Let ΠK oracle as the encryption oracle take M ∈ M and
return (I, C), where I

$← I and C → ΠK(I,M). We remark that the adversary
is not allowed to see I before querying M . We define the PRIV$ advantage as
the indistinguishability of ΠK from the random-bit oracle ($), which returns
|I| + |M |-bit random sequence, i.e.,

Advpriv$ΠK
(A) def= Pr[AΠK ⇒ 1] − Pr[A$ ⇒ 1]. (5)

We say the total input block of A to mean the total number of plaintext blocks.

3.3 Remarks

Comparison with NAE security notions. Our security notions are quite
similar to NAE security notions, e.g. [12,23]. For privacy notion, both NAE
and MiniAE require that the outputs of encryption oracle are pseudorandom.
For authenticity notion, both NAE and MiniAE require that a forgery is hard for
nonce-respecting adversary. The standard authenticity notion for NAE considers
stateless receiver, however if a certain NAE scheme is secure with respect to
the standard authenticity notion, then it certainly detects replays if receiver is
stateful and nonce is dealt with μ and ρ as described at Sect. 3.1. We remark
that, when the receiver loses state NAE still can detect forgeries other than
replays, while MiniAE can not: only unverified decryption is possible.

Comparison with Alternative Solutions. If sender and receiver are com-
pletely synchronized, we can use NAE and simply omit the nonce to be sent
to save bandwidth (also called implicit sequence number [3]). However this is
problematic when packets may lost. A mitigation is to send a partial informa-
tion. This technique is employed by some popular protocols as [3] shows. There-
fore it basically works for some settings, however it makes the messaging format
dependent on the number of tolerable packet lost, which depends on the network
condition and application and sometimes hard to determine in practice. More-
over, once the receiver loses the state, even the unverified decryption becomes
impossible. In contrast, MiniAE allows ad-hoc mechanisms to handle packet lost
without changing the message format, and unverified decryption without state,
and allows efficient built-in resynchronization as shown by AERO.

Another solution to suppress expansion is Deterministic AE (DAE) proposed
by Rogaway and Shrimpton [24]. In DAE there is no nonce and for plaintext M
the encryption output is (C, T ) where |C| = |M | and T is the authentication tag
of fixed length6. Since DAE encryption is deterministic, the standard privacy
notion is impossible to achieve. DAE can prevent replay if the receiver keeps
(hash values of) all received ciphertexts, or using Bloom filter allowing some
false negatives. Either option requires much larger memories or computations
than the verification of MiniAE. Table 1 summarizes encryption schemes in the
presence of stateful receiver for replay protection.
6 If DAE takes nonce as its input we call it MRAE (misuse-resistant AE) which has

the same expansion as NAE.
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Table 1. Comparison of encryption schemes.

Scheme Expansion Privacy Authenticity Replay protect Dec w/o state

nonce-based Enc |N | � - � �
NAE |N | + |T | � � � �
DAE |T | - � difficult �
NAE+Nonce omit |T | � � � -

MiniAE |N | � � � �

Applications to Low-power Wireless Sensor Network. To suppress com-
munication overhead, link-layer security protocols for low-power WSN often
employed NAE having a short nonce and short tag (see [25] for a good sur-
vey). For example, Zigbee and BLE use AES-CCM with 13-byte initial vector
consisting of nonce and supplemental information, and 4-byte tag. If MiniAE is
used instead, it enables stronger authenticity, say from 32-bit to 64-bit, while
keeping the same ciphertext expansion, or, it is also possible to reduce the expan-
sion, say by 4 bytes, while keeping the original level of authenticity and nonce
space. More details are shown in the full version.

4 Building MiniAE

In this section we provide constructions of MiniAE. Throughout the section all
schemes are assumed to have nonce of ν bits and verification range size ω. We
assume ν and ω are fixed parameters, and also assume ν ≤ n for some fixed
block length n, and plaintext M used in a scheme satisfies |M | ≥ ν − n.

4.1 MiniAE from Large Tweakable Blockcipher

We start with a naive solution based on ETE approach mentioned earlier. We
call the scheme MiniETE. More specifically, let Ẽ : T × M → M be a TBC,
where M =

⋃
i≥n{0, 1}i. The encryption of MiniETE using Ẽ is defined as

(L‖C) = ẼA(N‖M). For decryption, we perform (N ′‖M ′) = Ẽ−1,A(L‖C) and
see if N ′ ∈ ρ(N̂). This scheme is provably secure if Ẽ is a TSPRP. Concrete
security bounds of MiniETE are shown in the following propositions. Here, the
proof of Proposition 1 is trivial and that of Proposition 2 is easily obtained as a
variant of the proof of Theorem2 thus we omit it here.

Proposition 1. Let MiniETE[Ẽ] be MiniETE using Ẽ. If A is a Priv-adversary
with q encryption queries and σ total input blocks and time complexity t, we have

Advpriv
MiniETE[Ẽ]

(A) ≤ Advtprp
Ẽ

(B) +
q2

2n+1
,

where B uses q encryption queries with σ total input blocks and time complexity
t′ = t + O(σ).
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Proposition 2. Let A be an Auth-adversary with q encryption and q′ decryption
queries, σ total input blocks and time complexity t. We assume (q + q′) < 2ν−1.
Then we have

Advauth
MiniETE[Ẽ]

(A) ≤ Advtsprp
Ẽ

(B) +
2(q + q′)(ω + q′)

2ν
,

where B uses q encryption queries and q′ decryption queries with σ total input
blocks and time complexity t′ = t + O(σ).

For instantiations of Ẽ, we could use known schemes [26–29] as internal wide-
block TBC. As mentioned, this scheme is in fact a generalization of AERO which
uses XCB [10] with AES-128. That is, AERO is provably secure in our security
model, although there are minor differences and additional features7. MiniETE
also has some similarities with ETE-based AE schemes, such as AEZ [30] and
PIV [29].

4.2 MiniAE from encrypted counter

MiniETE is conceptually simple, however actual computation cost is rather high.
A popular approach to Ẽ shown by the seminal paper by Naor and Reingold [31]
uses two universal hashing layers with one encryption layer, called Hash-Enc-
Hash [26,32,33]. EME and CMC [27,28] do not use universal hash but require
two blockcipher calls for each n-bit input block.

To improve the efficiency, we present a two-pass scheme which we call
MiniCTR. The name comes from that it consists of encryption of nonce and an
additive encryption. Specifically, MiniCTR uses an n-bit block, variable-length
tweak TBC ẼK : T × {0, 1}n → {0, 1}n and a keyed function of n-bit input and
variable-length output, FK′ : {0, 1}n → {0, 1}∗. Here we assume T is sufficiently
large to encode a pair (A,M). Two keys, K and K ′, are assumed to be indepen-
dent. The algorithms of MiniCTR are shown in Fig. 1 and the encryption is also
shown in Fig. 2. We write Π[FK′ ] to denote the underlying additive encryption,
where L is used as n-bit IV. In Theorems 1 and 2 below, we prove the security
of MiniCTR when Ẽ is TSPRP-secure and Π[FK′ ] is PRIV$-secure.

DAE does not work. The presented scheme has a similar structure as DAE
schemes [24,34,35] or randomized encryption by Desai [36]. However we can not
directly use them as MiniAE. For example, (a generic form of) DAE with n-bit
tag is obtained by changing line 2 of Fig. 1 as a Feistel round L ← N ⊕F ′(A,M)
with N fixed to 0n using another PRF F ′. However the privacy of this scheme
is easily broken if we query (N,A,M) and (N ⊕ c,A,M) for some non-constant
c: the corresponding pair of L has a fixed difference c.

Security. Let MiniCTR[Ẽ, F ] be MiniCTR using TBC ẼK and FK′ . The security
bounds for MiniCTR[Ẽ, F ] are presented in the following theorems.
7 For instance AERO’s nonce is a sequence number, and appended to the plaintext.

Moreover the receiver additionally keeps the most recent sequence number value
which was rejected, in order to do resynchronization.



Authenticated Encryption with Small Stretch 357

Fig. 1. Encryption and decryption algorithms of MiniCTR[Ẽ, F ]

Fig. 2. The encryption algorithm of MiniCTR[Ẽ, F ], except the pre- and post-parsings.

Theorem 1. If A is a Priv-adversary with q encryption queries and σ total
input blocks and time complexity t, we have

Advpriv
MiniCTR[Ẽ,F ]

(A) ≤ Advtprp
Ẽ

(B) + Advpriv$Π[F ] (C) +
q2

2n+1
.

where B uses q queries with total input blocks σ and time complexity t′ = t+O(σ),
and C uses q queries and σ total input blocks with time complexity t′ = t+O(σ).

Theorem 2. Let A be an Auth-adversary with q encryption queries, q′ decryp-
tion queries, σ total input blocks, and time complexity t. We assume (q + q′) <
2ν−1. Then we have

Advauth
MiniCTR[Ẽ,F ]

(A) ≤ Advtsprp
Ẽ

(B) +
2(q + q′)(ω + q′)

2ν
,

where B uses q encryption queries and q′ decryption queries, having time com-
plexity t′ = t + O(σ).

We remark that the authenticity does not require any security property of F
here: the reason is simple, since the authenticity of N is guaranteed even when
adversary can access the key of F .
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Proof Overview. The proofs of Theorems 1 and 2 are deferred to the full ver-
sion. Here we provide intuitions for them. For the privacy bound, we observe that
the distinctness of N guarantees L to have a birthday-type collision probability,
and the distinctness of L guarantees C to be uniform. For the authenticity, we
observe that F has in fact no contribution to authenticity and thus the key of
F can be given to the adversary. The resulting scheme is a variant of stateful
message authentication code (MAC). Here the tag check procedure involves a
comparison of decrypted nonce N ′ with a set of candidates of size ω (i.e. ρ(N̂)).
Defining bad event as a collision between N and N ′ or two N ′s, we perform
an analysis of bad event probability. Note that a collision can occur either at
an encryption or a decryption query, which makes the probability larger than
q′ω/2ν (which is an obvious bound for guessing ν-bit random value with q′ trials,
with each trial consisting of ω candidates).

Instantiation. Typically, Ẽ is instantiated by n-bit blockcipher and n-bit
polynomial hash with (2) and F is instantiated by CTR mode, e.g. C =
Π[FK′ ](L,M) with C[i] = EK′(N ⊕ i) ⊕ M [i] for i = 1, 2, . . . using blockci-
pher EK′ . In this case, the computation cost of MiniCTR for each n-bit plaintext
block is one GF(2n) multiplication and one blockcipher call, which is roughly
the same as GCM. Combined with [17,21] and standard security result for CTR
mode, e.g. [37], we can prove the birthday-type bounds of MiniCTR comparable
to those of GCM [38] both for privacy and authenticity8. For GCM, 12-byte
nonce and 16-byte tag is a popular setting, and MiniCTR with 16-byte nonce
will reduce the ciphertext expansion from 28 to 16 bytes keeping a comparable
level of security.

4.3 MiniAE from OCB Mode

The computation cost of MiniCTR is similar to the generic composition of NAE,
and thus there is still a significant difference from the nonce-based unauthenti-
cated encryption. A natural question here is if we can further reduce the com-
putation cost. We positively answer this question by showing a scheme achieving
rate-1 operation, i.e. one blockcipher call per one input block. We call our proposal
MiniOCB since the design is based on OCB [14–16]. MiniOCB is parallelizable for
both encryption and decryption. MiniOCB uses n-bit TBC, Ẽ, having variable-
length tweak in T = {0, 1}n × Aae × N × {0, 1, 2} where N = {1, 2, . . . }. The
encryption and decryption algorithms of MiniOCB are shown in Figs. 3 and 4. It
needs one TBC call to process one input block, and if TBC is instantiated by a
blockcipher it is still rate-1 with respect to the underlying blockcipher (see below).

Design. While MiniOCB is based on OCB, it has an important difference. OCB
uses a TBC (which is instantiated by XEX mode [15]) that takes a tweak involv-
ing the nonce, whereas MiniOCB can not explicitly use the nonce as a part of
a tweak. This is because the nonce can not be present clear in a ciphertext and
the decryption should be done so that any small change to a ciphertext will make
8 Assuming GCM of ν-bit tag. We note that there is a difference in authentication

strength due to the numerators of 1/2ν , and GCM can be better e.g. when q′ is huge.
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Fig. 3. Encryption and decryption algorithms of MiniOCB[Ẽ].

Fig. 4. The encryption algorithm of MiniOCB[Ẽ]. Σ denotes the plaintext checksum,
and d for encryption of N is 0 when |M [m]| = n and 1 otherwise.

the decrypted nonce random. Instead we use encrypted nonce L to be a part of
tweaks for plaintext encryption, and L is derived from an encryption of nonce
with tweak involving the plaintext checksum, i.e., XOR of plaintext blocks, in
the similar manner to OCB. A tweak of MiniOCB also contains d = 0, 1, 2 which
is used to separate the roles of TBC calls. We remark that ν ≤ n is required, as
well as previous schemes.

We present security bounds of MiniOCB in the following theorems. For sim-
plicity we here provide a security bound for the case of single decryption query.

Theorem 3. Let Ẽ be a TBC with n-bit block with tweak space T = {0, 1}n ×
Aae × N × {0, 1, 2}, and let MiniOCB[Ẽ] be MiniOCB using Ẽ with ν-bit nonce
and verification range size ω. Then, for any Priv-adversary A with q < 2n−1

encryption queries and σ total input blocks and time complexity t, we have

Advpriv
MiniOCB[Ẽ]

(A) ≤ Advtprp
Ẽ

(B) +
q2

2n
,

for an adversary B using σ encryption queries with t + O(σ) time.
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Theorem 4. For any Auth-adversary A with q < 2n−1 encryption queries with
σ input blocks, and single decryption query with σ′ input blocks, and time com-
plexity t, we have

Advauth
MiniOCB[Ẽ]

(A) ≤ Advtsprp
Ẽ

(B) +
2.5q2

2n
+

2ω

2ν
,

for an adversary B using σ encryption queries and σ′ decryption queries with
t + O(σ + σ′) time.

The proofs of these theorems are shown in the full version.
A blockcipher-based instantiation of Ẽ used in MiniOCB can use the construc-

tion of (2). One may wonder if every tweak update of Ẽ in MiniOCB requires
computation proportional to |A|, since A is a part of tweak. However this is not
true for most universal hash functions and PRFs, as we can cache the interme-
diate result depending only on A (e.g. CMAC). Tweak update with respect to
third and fourth coordinates can be done without needing additional blockcipher
calls (say) by using GF doubling technique [15]. Therefore once we process A,
the cost of tweak update is quite small. In the full version, we provide a brief
complexity analysis of our proposals with existing schemes.

5 Conclusion

In this paper, we have presented a new form of authenticated encryption scheme,
called MiniAE, whose ciphertext expansion is the same as the length of single
variable integrating nonce and tag, with the help of stateful decryption. While
McGrew and Foley’s AERO has the same feature, there is no formal treatment
on the provable security. Focusing on the most fundamental security properties,
i.e., pseudorandomness of ciphertexts under unique nonce, and a basic form of
integrity protection including replay detection, we proposed three constructions
of MiniAE, called MiniETE, MiniCTR and MiniOCB, where MiniETE is a gener-
alization of AERO. Notably MiniOCB is based on OCB mode of operation and
achieves rate-1 parallelizable encryption. This implies that MiniAE can be as
efficient as nonce-based unauthenticated encryption.

Acknowledgements. The author would like to thank the anonymous reviewers of
ACISP 2016 for useful comments, and Tetsu Iwata for fruitful discussions.
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Abstract. As an international standard by ISO/IEC, Camellia is a
widely used block cipher, which has received much attention from crypt-
analysts. The impossible differential attack is one of efficient methods to
analyze Camellia. Liu et al. gave an 8-round impossible differential, of
which the input and output differences depend on some weak keys. In this
paper, we apply some key relations to build the precomputation table to
reduce time complexity and give some relations between the size of weak
key sets and the number of input and output differences of the impossi-
ble differentials, which are used to balance the time complexity and the
fraction of key space attacked. Furthermore, we give an impossible differ-
ential attack on 14-round Camellia-192 with 2126.5 known plaintexts and
2189.32 encryptions. Our impossible differential attack works one more
round than previous cryptanalysis results.

Keywords: Camellia · Block cipher · Impossible differential attack

1 Introduction

The block cipher Camellia was designed by Aoki et al. in 2000 [1], which is a
Feistel-like construction with 128-bit block size. Nowadays Camellia has become
an e-government recommended cipher by CRYPTREC, as well as one of NESSIE
block cipher portfolio and international standard by ISO/IEC 18033-3 [9]. It has
three versions with different key lengths and rounds, i.e. 18 rounds for a 128-
bit key and 24 rounds for a 192 or 256-bit key corresponding to Camellia-128,
Camellia-192 and Camellia-256, respectively. There is an interesting property for
Camellia that FL/FL−1 layers are inserted every 6 rounds. The FL/FL−1 lay-
ers are used to resist the differential cryptanalysis by exploiting key-dependent
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functions across rounds. Therefore, some cryptanalyses on the simplified versions
of Camellia without the FL/FL−1 layers are given, such as truncated differen-
tial attacks [11,22], linear and differential attacks [21], square attacks [13], and
impossible differential attacks [16,17,20,23] etc.

In this paper, we focus on the original versions of Camellia with FL/FL−1

layers, which has been analysed by many cryptographers with various block
cipher cryptanalysis methods. The square-type attacks were efficient to attack
9-round Camellia-128 and 10-round Camellia-256 [12]. The higher order differ-
ential attack was used to analyse the last 11 rounds Camellia-256 [8]. There is
a little flaw in both the above attacks on reduced Camellia-256, which was cor-
rected by Lu et al. [16]. The meet-in-the-middle (MITM) attacks on Camellia
were given in [6,7,18,19], which were valid for 10-round Camellia-128, 12-round
Camellia-192 and 13-round Camellia-256. The impossible differential attacks on
11/12/13-round Camellia-128/192/256 were given in [15], and recently improved
by Boura et al. [4]. Besides, zero-correlation (ZC) cryptanalysis was utilized to
attack 11-round Camellia-128 and 12-round Camellia-192 [3]. Recently, the trun-
cated differential is used to attack 12-round Camellia-192 [14].

In this paper, we give the impossible differential attacks on Camellia with
FL/FL−1 layers. There are some 7-round or 8-round impossible differentials
introduced since Chen et al. presented the first 6-round impossible differential
with FL/FL−1 layers [5]. Specially, Liu et al. proposed an 8-round impossi-
ble differential with FL/FL−1 layers after the first round and the 7-th round
for some weak keys. Considering the 8-round impossible differentials without
FL/FL−1 layers given by Wu et al. [23], we extend Liu et al’s impossible dif-
ferential. Since the input and output differences of the impossible differential
depend on some weak keys, it requires different data complexity for different
weak key sets. Hence, we study the relations between the size of weak key sets
and the input and output differences of the impossible differentials, which are
used to increase the fraction of key space attacked and reduce the time complex-
ity. We give a 14-round impossible differential attack on a fraction of 2−2.92 of
key space, which needs 2126.5 known plaintexts and 2181.40 encryptions. The cur-
rent time complexity is about one in 27.68 of the exhaustive search complexity for
2−2.92 weak key space. Applying four different impossible differentials and bal-
ancing the fraction of weak key space and the time complexity, we introduce the

Table 1. Summary of the attacks on reduced-round Camellia-192

Rounds Whitening

keys

Percentage of

key space

Attack type Data Time (Enc) Memory

(Bytes)

Source

12 yes 100% ZC 2125.7KP 2188.8 2112 [3]

12 yes 100% MITM 2113CP 2180 2158 [7]

12 yes 100% Impossible Diff 2119.7CP 2161.06 2154.7 [4]

12 yes 100% Truncated Diff 2117CP 2185.3 2119 [14]

13(3–15) no 100% Impossible Diff 2118.59CP 2182.10 2124.0 [2]

14(2–15) no 2−2.92 Impossible Diff 2126.5KP 2181.4 2137 Sect. 4

14(2–15) no 41% Impossible Diff 2126.5KP 2184.98 2137.0 Sect. 4

14(2–15) no 100% Impossible Diff 2126.5KP 2189.32 2137.0 Sect. 4
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first impossible differential attack on 14-round Camellia-192 with 2126.5 known
plaintexts and 2189.32 encryptions.

Table 1 summarizes our cryptanalysis results along with some previous results
of reduced-round Camellia-192 with FL/FL−1, where KP and CP represent
known plaintexts and chosen plaintexts, respectively.

The rest of this paper is organized as follows. we list some notations and
briefly describe the block cipher Camellia in Sect. 2. Section 3 presents some
observations and impossible differentials of Camellia used in our cryptanalysis.
We give impossible differential attacks on 14-round Camellia-192 in Sect. 4. In
Sect. 5 we conclude this paper.

2 Preliminaries

In this section we list the notations used throughout this paper, and then give
a brief description of the block cipher Camellia.

2.1 Notations

The following notations are used in this paper:

Lr−1 the left 64-bit half of the r-th round input
Rr−1 the right 64-bit half of the r-th round input
Xr the state after the key addition layer of the r-th round
Yr the state after the substitution transformation layer of the

r-th round
Zr the state after the diffusion layer of the r-th round
kr the subkey used in the r-th round
kfi the subkey used in the FL and FL−1 functions of Camellia,

i = 1, 2, 3, 4, 5, 6
kwi the whitening key used in the begin and end of Camellia,

i = 1, 2, 3, 4
X[i] the i-th byte of a bit string X (0 ≤ i ≤ 7), where the left

most byte is X[0]
X[i ∼ j] the j − i + 1 bytes of a bit string X starting from X[i]
XL (XR) the left (right) half of a bit string X,
X{i} the i-th most significant bit of a bit string X(0 ≤ i ≤ 127),

where the left-most bit is the most significant bit X{0}
X{i ∼ j} the j − i + 1 bit string of X from the i-th most significant

bit
ΔX the XOR difference of X and X ′, i.e., ΔX = X ⊕ X ′

ham(x) the hamming weight of x
zero(x) the number of x’s zero bits
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⊕, ∧, ∨ bitwise exclusive OR (XOR), AND, OR
x binary complement of bit string x
|SWK | the size of the weak key set SWK

x‖y bit string concatenation of x and y
x ≪ l rotate x to the left by l bit

2.2 Brief Description of Block Cipher Camellia

Camellia [1] is a 128-bit block cipher with Feistel-like structure. There are
three versions depending on the key size used, which are named as Camellia-
128/192/256 with 18/24/24 rounds, respectively. Here, a brief description of the
Camellia-192 is introduced.

Let L0‖R0 represent the XOR of 128-bit plaintext M and the whitening key
(kw1‖kw2). The encryption is given in the following (see Fig. 1).

– For r = 1 to 24, and r �= 6, 12 and 18, do

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

– For r = 6, 12 and 18, do

L∗
r = Rr−1 ⊕ F (Lr−1, kr), R∗

r = Lr−1,
Lr = FL(L∗

r , kfr/3−1), Rr = FL−1(R∗
r , kfr/3),

– The 128-bit ciphertext C = (R24‖L24) ⊕ (kw3‖kw4).

Fig. 1. The encryption of Camellia-192
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The round function F includes there parts, i.e., a key-addition layer, a sub-
stitution transformation layer S and a diffusion layer P . The key-addition layer
is the XOR between the left half input of the round function and the round
subkey, i.e. Xr = Lr−1 ⊕ kr for the r-th round. The substitution transformation
layer S contains four types of 8 × 8 S-boxes s1, s2, s3 and s4. Let the input of
S in the r-th round be Xr = (x0, x1, x2, x3, x4, x5, x6, x7), and then the output

Yr = S(Xr) =
(
s1(x0), s2(x1), s3(x2), s4(x3), s2(x4), s3(x5), s4(x6), s1(x7)

)
.

The linear transformation P is a diffusion component based on bytes.
Zr = P (Yr) and its inverse P−1 are defined in the following, where
Yr = (y0, y1, y2, y3, y4, y5, y6, y7) is the input of P in r-th round, and Zr =
(z0, z1, z2, z3, z4, z5, z6, z7) is the output.

z0 = y0 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y7, y0 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7,
z1 = y0 ⊕ y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7, y1 = z0 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7,
z2 = y0 ⊕ y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7, y2 = z0 ⊕ z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7,
z3 = y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6, y3 = z0 ⊕ z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6,
z4 = y0 ⊕ y1 ⊕ y5 ⊕ y6 ⊕ y7, y4 = z0 ⊕ z1 ⊕ z4 ⊕ z6 ⊕ z7,
z5 = y1 ⊕ y2 ⊕ y4 ⊕ y6 ⊕ y7, y5 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7,
z6 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y7, y6 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6,
z7 = y0 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6, y7 = z0 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7,

The FL function is a key-dependent boolean function inserted every 6 rounds.
Let (aL‖aR, kfiL‖kfiR) and (bL‖bR) be the input and output of FL, where
aL, aR, kfiL, kfiR, bL and bR are 32-bit words. The FL function is defined as

bR = ((aL ∧ kfiL) ≪ 1) ⊕ aR, bL = (bR ∨ kfiR) ⊕ aL.

Key Schedule. Let the master key of Camellia be K, which generates the
subkeys KL and KR. For Camellia-192, KL = K{0 − 127} is the left 128-bit
of K, and KR = K{128 − 191}‖K{128 − 191} is the concatenation of the right
64-bit of K and its binary complement. Two 128-bit subkeys KA and KB are
derived from KL and KR by the computation of 6 round functions (see Fig. 4
in Appendix A). Then the whitening keys kwi (i = 1, ..., 4), round subkeys kr
(r = 1, . . . , 24) and kfj (j = 1, ..., 6) are generated by rotating KL, KR, KA or
KB (see Table 5 in Appendix A).

3 Impossible Differential Characteristics of Camellia

In this section, we give some observations of the block cipher Camellia, and
present impossible differential characteristics for different key subsets.

3.1 Some Observations of Camellia

This section introduces some observations which help us to analyze the reduced-
round Camellia-192.
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Observation 1 [10]. Let X, X ′, K be l-bit values, and ΔX = X ⊕ X ′, then
the differential properties of AND and OR operations are:

(X ∧ K) ⊕ (X ′ ∧ K) = ΔX ∧ K,

(X ∨ K) ⊕ (X ′ ∨ K) = ΔX ⊕ (ΔX ∧ K).

Observation 2. For S-boxes in Camellia, given an input and output differences
pair (α, β), the probability that there exits x such that si(x ⊕ α) ⊕ si(x) = β

(abbreviated by α
si−→ β) is 0.5, where α �= 0, β �= 0, and i = 1, 2, 3, 4. And there

exist 2 values of x when the input difference α can propagate β by S-boxes.

We know there exist 127 non-zero output differences for a given non-zero
input difference for any S-box in Camellia. Given (α, β), when α �= 0 and β �= 0,
the probability to make si(x ⊕ α) ⊕ si(x) = β hold is 127/255 ≈ 0.5 and there
are averagely 256/127 ≈ 2 values of x. When α and β are any bytes, because
there are 256 × 256 values of (α, x) and (α, β), respectively. There is a value of
x such that α

si−→ β on average.

Observation 3 [20]. For Camellia-192/256, if a value of (KB ,KR) is given,
then the corresponding value for (KL,KA) can be obtained with a computational
complexity of approximately 6 one-round Camellia computations.

Observation 4. For Camellia-192/256, if a value for (KBR,KRL) is given,
then there is a linear relation between KAL and KBL in the following.

KBL ⊕ KAL = KRL ⊕ F (KBR,Σ6). (1)

This property is obviously deduced by the key schedule of Camellia-192/256.

3.2 8-Round Impossible Differential Characteristics

Wu et al. proposed 4 8-round impossible differential characteristics for Camellia
without FL/FL−1 layers as follows:

(0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0) 8r
� (h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0) 8r
� (0, h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0) 8r
� (0, 0, h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0) 8r
� (0, 0, 0, h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where a �= 0, h �= 0.
For some weak keys, Liu et al. extend the 8-round impossible differential

characteristic with two FL/FL−1 layers inserted after the first and seventh
rounds, i.e.,

D1 : (0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, a′, 0, 0, 0)
8r
� (b, 0, 0, 0, b′, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ),

where a �= 0, b �= 0, a′ and b′ are any values of byte [15], see Fig. 2. Here we only
considering the case a′ = 0, b′ = 0, which is described in Observation 5.
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Observation 5. For an 8-round Camellia encryption with two FL/FL−1 lay-
ers inserted after the first and seventh rounds, in which four subkeys kfj(j =
1, 2, 3, 4) are used. Let the input differences of the first round be ΔL0 = 0, ΔR0 =
(a, 0, 0, 0, 0, 0, 0, 0, 0), and the output differences of the 8-th round be ΔL8 =

(h, 0, 0, 0, 0, 0, 0, 0, 0), ΔR8 = 0. Then (ΔL0,ΔR0)
8 rounds−−−−−−−→ (ΔL8,ΔR8) are 8-

round impossible differentials when kf1[0]∧a = 0 and kf4[0]∧h = 0, a �= 0, h �= 0.

Fig. 2. 8-round Impossible Differential of Camellia in [15]

Considering the above 8-round impossible differentials without FL/FL−1

layers, we extend Liu et al’s impossible differential. Similarly, there are another
three 8-round impossible differentials in the following, where a �= 0, h �= 0.
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D2 : (0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0)
8r
� (0, h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where kf1[1] ∧ a = 0, kf4[1] ∧ h = 0;

D3 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0)
8r
� (0, 0, h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where kf1[2] ∧ a = 0, kf4[2] ∧ h = 0;

D4 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0)
8r
� (0, 0, 0, h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where kf1[3] ∧ a = 0, kf4[3] ∧ h = 0.

However, it is obvious that the above 8-round differentials with the same input
and output differences are impossible when a = 0, h �= 0 or a �= 0, h = 0 for any
key. Hence, we consider the size of the subkey space in which there exist 8-round
impossible differentials.

Property 1. Let SWKi,j
= {(kf1[0], kf4[0])|zero(kf1[0]) ≥ i, zero(kf4[0]) ≥ j}.

Then the size of SWKi,j
is

|SWKi,j
| =

∑

i≤x≤8

Cx
8 ×

∑

j≤x≤8

Cx
8 . (2)

The set SWKi,j
covers a fraction of Pri,j = |SWKi,j

|/216 of the key space. For an
element of SWKi,j

, the least number of (a, h) to make both kf1[0] ∧ a = 0 and
kf4[0] ∧ h = 0 hold is about 2i+j .

For k = 0, . . . , 7, a{k} must be 0 when kf1[0]{k} = 1. Since there are at most
8 − i bits equaling to 1 for kf1[0] which means the corresponding 8 − i bits of a
must be zero and there are no conditions for the remaining i bits of a. Then the
least number of a is 2i − 1 to make kf1[0] ∧ a = 0. Similarly, there are at least
2j − 1 values of h to make kf4[0] ∧ h = 0. Hence, there are about 2i+j values of
(a, h) at least. The percentage Pri,j of SWKi,j

is presented in Table 2.

Table 2. The percentage Pri,j when zero(kf1[0]) ≥ i and zero(kf4[0]) ≥ j

(i, j) 0 1 2 3 4 5 6 7 8

0 1 2−0.01 2−0.05 2−0.23 2−0.65 2−1.46 2−2.79 2−4.83 2−8.00

1 2−0.01 2−0.01 2−0.06 2−0.23 2−0.66 2−1.47 2−2.80 2−4.84 2−8.01

2 2−0.05 2−0.06 2−0.10 2−0.28 2−0.70 2−1.51 2−2.84 2−4.88 2−8.05

3 2−0.23 2−0.23 2−0.28 2−0.45 2−0.88 2−1.69 2−3.02 2−5.06 2−8.23

4 2−0.65 2−0.66 2−0.70 2−0.88 2−1.30 2−2.11 2−3.44 2−5.48 2−8.65

5 2−1.46 2−1.47 2−1.51 2−1.69 2−2.11 2−2.92 2−4.25 2−6.29 2−9.46

6 2−2.79 2−2.80 2−2.84 2−3.02 2−3.44 2−4.25 2−5.58 2−7.62 2−10.79

7 2−4.83 2−4.84 2−4.88 2−5.06 2−5.48 2−6.29 2−7.62 2−9.66 2−12.83

8 2−8.00 2−8.01 2−8.05 2−8.23 2−8.65 2−9.46 2−10.79 2−12.83 2−16.00

Given a byte a, let zero(·) represent the number of zero bits, and ham(·)
mean the number of bits equaling to 1. It is obvious that ham(a)+ zero(a) = 8.
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Property 2. Let the number of zero bits of the byte b satisfy zero(b) ≥ i, and
the hamming weight of a non-zero byte a satisfy ham(a) ≤ i, where 1 ≤ i ≤ 8.
The probability Pi to make a ∧ b = 0 and zero(b) ≥ i for a given a(a �= 0) with
ham(a) ≤ i is:

Pi = P{a ∧ b = 0, zero(b) ≥ i|a �= 0, ham(a) ≤ i, b = 0, . . . , 255}

=

∑

i≤t≤8

(

Ct
8 × (

∑

i≤x≤8

Cx−t
8−t × 2−8)

)

∑

1≤t≤i

Ct
8

, (3)

where i = 1, . . . , 7.

Proof. Let ham(a) = t ≤ i. Then there are t zero bits of b to make a ∧ b = 0.
Since zero(b) ≥ i, there are at least i − t zero bits for the remaining 8 − t bits of
b. Hence,

P{a ∧ b = 0, zero(b) ≥ i|a �= 0, ham(a) = t, b = 0, . . . , 255} =
∑

i≤x≤8

Cx−t
8−t × 2−8.

There are Ct
8 values of a such that ham(a) = t, and

∑

1≤x≤i

Cx
8 values of a to make

ham(a) ≤ i. Thus, we have Eq. (3) to compute the probability Pi. �
The values of Pi for i = 1, . . . , 8 see Table 3, which are also obtained by enumer-
ating all a and b satisfying constraints and checking the conditions.

Table 3. The probability Pi obtained from the property 2

i 1 2 3 4 5 6 7 8

Pi 2−1 2−1.71 2−2.38 2−2.98 2−3.59 2−4.38 2−5.68 2−8

4 Impossible Differential Attack on 14-Round
Camellia-192

In this section, we mount the 8-round impossible differential by Observation 5
from rounds 6–13, and extend 4 rounds on the top and 2 rounds on the bot-
tom to attack 14-round Camellia-192 (see Fig. 3). By the key schedule, we
know kf1[0] = KR{30 ∼ 37}, kf4[0] = KL{124 ∼ 127, 0 ∼ 3} (see Table 5 in
Appendix A). Let the input and output differences of the 8-round impossible
differential be

(ΔL5,ΔR5) = (0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0),
(ΔL13,ΔR13) = (h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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Let SWKi,j
be the weak key set. Then we know ham(a) ≤ i, ham(h) ≤ j in

order to generate the impossible differential based on Observation 5.

Precomputation. In order to reduce the time complexity, we build a table to
store some intermediated values and differences which has been used to eliminate
the wrong keys more efficiently based on the key relation k3 = k4 and the
difference propagation in the extended top rounds.

Given (y0, y1, y5, y6, y7), we know the following equations by the linear trans-
formation Zr = P (Yr),

– y0 ⊕ y6 = z1 ⊕ z4 ⊕ z7;
– y0 ⊕ y1 ⊕ y5 = z0 ⊕ z2 ⊕ z7;
– y6 ⊕ y7 = z0 ⊕ z2 ⊕ z4 ⊕ z7;

where Yr = (y0, y1, y2, y3, y4, y5, y6, y7) and Zr = (z0, z1, z2, z3, z4, z5, z6, z7). It
is obvious that these equations are independent of (z3, z5, z6) and we can get
(z1, z4, z7) by solving the above equation systems when we know (z0, z2).

From Fig. 3, we know ΔL2 = P (α0α1α20α400α7) ⊕ P (0aaaa00a), ΔL3 =
(ααα0α00α),ΔL4 = (a0000000),ΔR2 = (????????), where ham(a) ≤ i. We tra-
verse ΔL2,ΔL3,ΔL4,ΔR2, Then we deduce ΔX4, ΔY4, ΔX3, ΔY3 by partial
encryption. Furthermore, we get X3 and Y3, X4[0, 1, 2, 4, 7] by the input and out-
put differences of S-boxes. For all k3[0, 1, 2, 4, 7](KR{15 ∼ 38, 47 ∼ 54, 7 ∼ 14})
which make kf1[0] ∧ a = 0 (kf1[0] = k3{15 ∼ 22}), we compute R2[0, 1, 2, 4, 7]
and L2[0, 1, 2, 4, 7] as a result of k4 = k3. We build a table T1 to store the
(k3[0, 1, 2, 4, 7], X3[3, 5, 6], L2[0, 2], α, α2, a, α4) indexed by (ΔR2, R2[0, 1, 2, 4, 7],
α0, α1, α7, L2[1]⊕L2[4]⊕L2[7], L2[0]⊕L2[2]⊕L2[7], L2[0]⊕L2[2]⊕L2[4]⊕L2[7]).

Since there are at least 8 − i zero bits for a, the number of a is na = C1
8 +

· · · + Ci
8. There are 214×8 × na values for (ΔL2,ΔL3,ΔL4,ΔR2) and 240 values

for k3[0, 1, 2, 4, 7]. The probability such that kf1[0] ∧ a = 0 and zero(kf1[0]) ≥ i

by Property 2 is Pi. Therefore, there are about 219×8×na

219×8 ×Pi = na×Pi values for
each index. The complexity of building the table is less than 220×8 encryptions.

We demonstrate the attack on 14-round Camellia-192 in a known plaintexts
attack scenario as follows. Here the early abort technique from [17] is used to
reduce the time complexity.

Data Collection. For 2n plaintexts, ask for the encryption of these plain-
texts, and store the corresponding ciphertexts in a hash table H indexed by
72-bit (R15[3, 5, 6], R15[0]⊕R15[1], R15[0]⊕R15[2], R15[0]⊕R15[4], R15[0]⊕R15[7],
P−1(L15)[5, 6]). Then, we get 22n−73 pairs, which satisfy

ΔP−1(L15) = (∗, ∗, ∗, h, ∗, 0, 0, ∗),ΔR15 = (g, g, g, 0, g, 0, 0, g),

where h �= 0, g �= 0. Since ΔY2 = P−1(ΔR1 ⊕ ΔL2), then we would compute
ΔY2[5, 6] = P−1(ΔR1)[5, 6], and ΔY15 would be deduced from ΔL15 (see Fig. 3).
Then we get the input and output differences of 7 active S-boxes in the 2-nd
round and 15-th the round in total. For an active S-box, let the input difference
be α, the output difference be β, the pairs which make the differential transition
α

S−box−−−−→ β would remain, where α �= 0 and β �= 0. There are about 22n−80 pairs
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Fig. 3. The attack on 14-round Camellia-192

left by Observation 2. Then we filter out the pairs in which there are at least
8 − j zero bits for h, i.e., ham(h) ≤ j. The number of h is nh = C1

8 + · · · + Cj
8 .

There are about 22n−80 × nh × 2−8 = 22n−88 × nh remaining pairs on average.

Key Recovery. We apply the following procedure to eliminate the wrong sub-
keys, and find the right key.

1. For each pair, according to the input and output differences of 7 active S-
boxes in the 2-nd round and 15-th round obtained in data collection, we
deduce the subkey k15[0, 1, 2, 4, 7] (KB{60 ∼ 83, 92 ∼ 99, 116 ∼ 123}) and
k2[5, 6](KB{104 ∼ 119}) by accessing the difference distribution table of S-
boxes. If k2[6]{4 ∼ 7} = k15[7]{0 ∼ 3}, keep the pairs. There are about
22n−90×nh

1 pairs left, which are corresponding to 25 values of 52-bit KB{60 ∼
83, 92 ∼ 99, 104 ∼ 123} on average.

2. Guessing 24 values of KB{124 ∼ 127}, we know k2[0, 1, 5, 6, 7] and then
deduce ΔY2[0, 1, 7] and Y2[0, 1, 5, 6, 7] to compute Y2[0]⊕Y2[6]⊕P−1(ΔL2)[0]⊕
P−1(ΔL2)[6], Y2[0] ⊕ Y2[1] ⊕ P−1(ΔL2)[0] ⊕ P−1(ΔL2)[1], Y2[6] ⊕ Y2[7] ⊕
P−1(ΔL2)[6] ⊕ P−1(ΔL2)[7]. By partial encryption, we get ΔR2, R2. Hence,
we obtain k3[0, 1, 2, 4, 7], X3[3, 5, 6], L2[0, 2], P−1(ΔL2)[2, 3, 4], L2[0, 2] and
ΔL3 by accessing table T1. And then we compute ΔY2[2, 3, 4] and deduce
k2[2, 3, 4] by the input and output differences of S-boxes in round 2. If

1 There are 2 values for k2[6] and k15[7], respectively. Hence for a given pair, the
probability Pr{k2[6]{4 ∼ 7} = k15[7]{0 ∼ 3}} = 2 × 2 × 2−4 = 2−2. Hence, there are
about 22n−90 × nh remaining pairs.



374 K. Jia and N. Wang

k2{16 ∼ 19} = KB{80 ∼ 83} or k2{32 ∼ 35} = KB{96 ∼ 99}, we store
the pairs and the corresponding subkeys. We compute (R1 ⊕Z2)[0, 2] by par-
tial encryption and keep the pairs such that (R1 ⊕ Z2)[0, 2] = L2[0, 2]. There
are about 22n−90+5+4−24 = 22n−105 × nh × na × Pi pairs left.

3. For the remaining pairs, partially encrypt to get L2 and compute k3[3, 5, 6] =
L2[3, 5, 6] ⊕ X3[3, 5, 6]. Since we know k15[3, 5, 6] by key schedule, then com-
pute L13[0], and deduce the subkey k14[0](KR{60 ∼ 63, 0 ∼ 3}) as a result
of ΔL13[0] = h,ΔY14[0] = g. Keep the pairs which result in k3{45 ∼ 52} =
k14[0].

4. Then we deduce L3. Since k4 = k3, compute L4[0]. Since ΔX5[0] =
a,ΔY5[0] = ΔL3[0], deduce subkey k5[0](KA{15 ∼ 22}) by the input and
output differences of S-boxes in the 5-th round.

5. Eliminate these wrong subkeys for the remaining pairs.
6. For the known KBR,KR,KA{15 ∼ 22}, we deduce KB{15 ∼ 22} by equation

(1). Then there are 76-bit information for KB obtained from the equivalent
subkeys, exhaustively search the remaining 52 bits of KB and deduce the
master key from (KB ,KR).

Complexity Analysis. For the data collection, we need 2n known plaintexts, 2n

encryptions and 22n−73(1+2−1+· · ·+2−6)×1/8 = 22n−75 one-round encryptions.
In the key recovery procedure, we spend 22n−88 × nh × 1/8 = 22n−91 × nh one-
round encryptions in step 1. In step 2, 22n−90 × nh × 25 × 24 = 22n−81 × nh

memory accesses and 22n−81 × nh × na × Pi × 3/8 + 22n−81 × nh × na × Pi ×
2−8 = 22n−82.4 × na × nh × Pi one-round encryptions are needed. There are
22n−105 × nh × na × Pi and 22n−113 × nh × na × Pi one-round encryptions in
steps 3 and 4, respectively. It costs 22n−113 ×nh×na×Pi one-round encryptions
and memory accesses in step 5. The computation complexities of first 5 steps
is denoted by TC0 ≈ 22n−91(216 + nh + 28.6 × na × nh × Pi)/14 + 22n−81 × nh

encryptions2. There are 140 unknown bits of (KB ,KR) which may lead to the
impossible differential. Since we choose the weak key set SWKi,j

, it is expected
that there remain ε = 2140 × Pri,j ×(1 − 2−168)2

2n−73−(8−i)−(8−j)
possible values

for the 140-bit subkey. The complexity of last step is TC1 = 252ε encryptions.
The time complexity represents TCall = TC0 + TC1.

We choose i, j, n to balance the size of weak key set attacked and the time
complexity see Table 4. Let i = 5, j = 5, n = 126.5, which covers a fraction of
2−2.92 of key space. The data complexity is about 2126.5 known plaintexts. The
time complexity of the 5 steps is 2180.36 encryptions, and exhaustive search of the
last step needs 2180.44 encryptions. Hence the time complexity is about 2181.40

encryptions.

Attack for the Whole Key Space. We apply four impossible differentials to
attack 14-round Camellia-192, which take similar data collection and key recov-
ery procedure. The four attacks cover the fraction of key space is 1−(1−WKi,j)4.
Then we need to exhaustive search the remaining (1 − WKi,j)4 fraction of key

2 It is convenient to calculate, we take a memory access as a 14-round encryption.
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Table 4. The complexities for different key spaces

i j Percentage of key space Data complexity TC1 TC0 TCall

1 1 1 2128 2190.55 2178.75 2190.55

1 1 1 2127 2193.43 2176.75 2193.43

4 4 2−1.3 2126.5 2184.94 2180 2184.98

5 5 2−2.92 2126.5 2180.44 2180.36 2181.40

6 6 2−5.58 2125.5 2177.78 2178.36 2179.10

8 8 2−16 2122 2171.68 2171.06 2171.4

space. When the percentage of weak key space WKi,j is less, the complexity of
exhaustively search the remaining fraction of key space is larger. The attacks
on some weak key space can not be transformed to attacks on the whole key
space as a result of the high exhaustively search complexity. By balance, we
choose i = 4, j = 4, n = 126.5, each attack needs 2184.94 encryptions for 2126.5

known plaintexts. The four impossible differentials cover the fraction of key
space is 1 − (1 − 0.41)4 = 87.50%. Then we exhaustive search the remaining
(1 − 0.41)4 = 2−3 fraction of key space, which needs 2192−3 = 2189 encryptions.
Hence the time complexity of the impossible differential attack on 14-round
Camellia-192 for the whole key space is 2184.98 × 4 + 2189 = 2189.32 encryptions.

5 Conclusion

In this paper, we improve the impossible differential attacks on reduced-round
Camellia-192 with one more round than previous results based on 8-round impos-
sible differential given by Liu et al. Because the input and output differences of
the impossible differential depends on the weak keys. Hence, we classify the key
space into different weak key sets, which corresponds to a set of input and output
differences. Then we present some relations between the size of weak key sets
and the number of input and output differences of the impossible differentials,
which are used to reduce the time complexity and increase the fraction of key
space attacked. Finally, combining with key relations and pre-computation tech-
niques, we give the first impossible differential attack on 14-round Camellia-192.
The impossible differential attack on 14-round Camellia-192 needs 2126.5 known
plaintexts and 2189.32 encryptions.

Acknowledgments. We would like to thank anonymous reviewers and the shepherd
Jiqiang Lu for their very helpful comments on the paper.

A Key Schedule for Camellia-192

Here, we introduce the key schedule of Camellia in Fig. 4 and subkeys for
Camellia-192 in Table 5.
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Fig. 4. The key schedule of Camellia

Table 5. Subkeys for Camellia-192 from Round 1 to Round 24

Subkey Value Subkey Value

Round 1 k1 (KB ≪ 0)L Round 13 k13 (KR ≪ 60)L

Round 2 k2 (KB ≪ 0)R Round 14 k14 (KR ≪ 60)R

Round 3 k3 (KR ≪ 15)L Round 15 k15 (KB ≪ 60)L

Round 4 k4 (KR ≪ 15)R Round 16 k16 (KB ≪ 60)R

Round 5 k5 (KA ≪ 15)L Round 17 k17 (KL ≪ 77)L

Round 6 k6 (KA ≪ 15)R Round 18 k18 (KL ≪ 77)R

FL kf1 (KR ≪ 30)L FL kf5 (KA ≪ 77)L

FL−1 kf2 (KR ≪ 30)R FL−1 kf6 (KA ≪ 77)R

Round 7 k7 (KB ≪ 30)L Round 19 k19 (KR ≪ 94)L

Round 8 k8 (KB ≪ 30)R Round 20 k20 (KR ≪ 94)R

Round 9 k9 (KL ≪ 45)L Round 21 k21 (KA ≪ 94)L

Round 10 k10 (KL ≪ 45)R Round 22 k22 (KA ≪ 94)R

Round 11 k11 (KA ≪ 45)L Round 23 k23 (KL ≪ 111)L

Round 12 k12 (KA ≪ 45)R Round 24 k24 (KL ≪ 111)R

FL kf3 (KL ≪ 60)L

FL−1 kf4 (KL ≪ 60)R
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Abstract. In this paper, we focus on the automatic differential crypt-
analysis of ARX block ciphers with respect to XOR-difference, and
develop Mouha et al.’s framework for finding differential characteristics
by adding a new method to construct long characteristics from short
ones. The new method reduces the searching time a lot and makes it
possible to search differential characteristics for ARX block ciphers with
large word sizes such as n = 48, 64. What’s more, we take the differ-
ential effect into consideration and find that the differential probabil-
ity increases by a factor of 4 ∼ 16 for SPECK and more than 210 for
LEA when multiple characteristics are counted in. The efficiency of our
method is demonstrated by improved attacks of SPECK and LEA, which
attack 1, 1, 4 and 6 more rounds of SPECK48, SPECK64, SPECK96 and
SPECK128, respectively, and 2 more rounds of LEA than previous works.

Keywords: Differential cryptanalysis · Automatic search · ARX ·
SPECK · LEA

1 Introduction

ARX ciphers are a broad class of symmetric-key cryptographic algorithms
that only consists of three operations: additions modulo 2n, bit rotations and
XORs. Some examples of ARX ciphers are: the block ciphers SPECK [3],
LEA [13], Chaskey [16], the stream cipher Salsa20 [4], and the SHA-3 finalists
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Skein [10] and Blake [2]. To evaluate the security of an ARX cipher, differential
cryptanalysis [5] is one of the most important attacks that should be considered.

Even though ARX ciphers have a long history for use, their security analysis
are lagging behind. For S-box based symmetric-key ciphers, their security against
differential cryptanalysis is measured by the number of active S-boxes. On the con-
trary, there is no rigorous security proof of ARX ciphers against differential crypt-
analysis in existing literature, so searching optimal differentials becomes the only
way for evaluation. In 2013, Mouha et al. introduce a framework [17] for search-
ing optimal differential characteristics of ARX ciphers, assuming all the opera-
tions in the cipher are independent. From the application to Salsa20, the assump-
tion is shown to be invalid sometimes. In [6,7], Biryukov et al. proposed a tool
for automatically searching differential characteristics in ARX ciphers based on
Matsui’s algorithm and partial difference distribution tables. This tool suits dif-
ferential search with respect to both XOR- and ADD- differences. However, the it
is not applicable for cases where the block size is too large, such as n = 48, 64.

In this paper, we focus on the automatic differential cryptanalysis of ARX
block ciphers with respect to XOR-difference. We apply Mouha et al.’s frame-
work of finding differential characteristics to ARX block ciphers assuming addi-
tions are independent, and develop the framework by adding a new method for
constructing long characteristics from short ones. The new method reduces the
searching time, especially for a large word size such as n = 64. Besides, we take
the differential effect into consideration and find that the differential probability
increases by a factor of 4 ∼ 210 when multiple characteristics are counted in.
The efficiency of our new method can be demonstrated by the application to
two block ciphers: SPECK and LEA, in which better differentials are found and
differential attacks against them are improved. The results are summarized in
Table 1 and compared with the best ones of previous works. As can be seen,
for SPECK we reduce the complexities of differential attack on SPECK32/64,
and attack 1, 1, 4 and 6 more rounds against SPECK48, SPECK64, SPECK96
and SPECK128, respectively; for LEA, except the attacks in the specification
we provide the first differential analysis for it and attack 13, 13 and 15 rounds
of LEA-128, LEA-192 and LEA-256, respectively.

During the submission of this paper, there are another two related papers pre-
sented on FSE 2016 [8,11]. In [11] Fu et al. extend Sun’s MILP-based automatic
search algorithms for differential and linear trails [20] from Sbox-based block
ciphers to ARX block ciphers and improve the differential and linear attacks
on SPECK. In the other paper, Biryukov et al. [8] propose the first adaptation
of Matsuis algorithm for finding the best differential and linear trails in ARX
ciphers and the adapted algorithm is also applied to SPECK. Still the differential
characteristics of SPECK96 and SPECK128 in this paper are the best in terms of
the number of rounds, and the ones of SPECK32, SPECK48 and SPECK64 are
the best in terms of probabilities because we take differential effect into account.

The rest of this paper is organized as follows. Section 2 provides a background
of differential cryptanalysis; Sect. 3 elaborates on searching method developed
in this paper; Sect. 4 briefly describes the two block ciphers SPECK and LEA;
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Table 1. Previous attacks and our new attacks on SPECK.

Variant Rounds attacked/ Time Data (CP) Memory Reference

Total rounds

SPECK32/64 14/22 263 231 222 [9]

14/22 261.41 229.41 222 This paper

SPECK48/72 14/22 265 241 222 [9]

15/22 268.31 244.31 222 This paper

SPECK48/96 15/23 289 241 222 [9]

16/23 292.31 244.31 222 This paper

SPECK64/96 18/26 293 261 222 [9]

19/26 292.56 260.56 222 This paper

SPECK64/128 19/27 2125 261 222 [9]

20/27 2124.56 260.56 222 This paper

SPECK96/96 16/28 285 285 222 [9]

18/28 285 285 222 This paper

20/28 294.94 294.94 222 This paper

SPECK96/144 17/29 2133 285 222 [9]

19/29 2133 2133 222 This paper

21/29 2142.94 294.94 222 This paper

SPECK128/128 17/32 2113 2113 222 [9]

23/32 2124.35 2124.35 222 This paper

SPECK128/192 18/33 2177 2113 222 [9]

24/33 2188.35 2124.35 222 This paper

SPECK128/256 19/34 2241 2113 222 [9]

25/34 2252.35 2124.35 222 This paper

LEA-128 12/24 284 2100 276 [13]

LEA-128 14/24 2124.02 2124.02 222 This paper

LEA-192 14/28 2124.02 2124.02 222 This paper

LEA-256 15/32 2252.02 2124.02 222 This paper

in Sect. 5 we provide the searching results for differentials of SPECK and LEA,
on which attacks are launched; Sect. 6 is a short discussion; and finally, the last
section is the conclusion.

A few words on notations: differences here are expressed using XOR; values
for differences are represented in hexadecimal.

2 Background

This section briefly reviews the differential cryptanalysis and differential proper-
ties of addition. At the end of this section, the assumption we take in this paper
is clarified.
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2.1 Differential Cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir in [5]. For block
ciphers, it is used to analyze how input differences lead to output differences. If
certain input/output difference happens in a non-random way, it can be used to
build a distinguisher or even to recover keys.

To consider the security of iterated block ciphers against differential crypt-
analysis, Lai et al. first introduced the theory of Markov ciphers and made a
distinction between a differential and a differential characteristic [14]. A differ-
ential is a difference propagation from an input difference to an output difference,
while a differential characteristic specifies not only the input/output difference,
but also all the internal differences after each round. For a Markov cipher, the
probability of a differential characteristic is the multiplication of difference tran-
sition probabilities of each round, and the probability of a differential is equal to
the sum of the probabilities of all differential characteristics which correspond
to the differential.

2.2 Estimating Differential Probabilities for ARX Ciphers

For ARX block ciphers, only additions modulo 2n are non-linear operations and
propagate differences indefinitely. So we focus on calculating differential proba-
bility of addition. In [15], Lipmaa and Moriai study the differential properties
of addition. Let xdp+(α, β → γ) be the XOR-differential probability of addition
modulo 2n, with input differences α, β and output difference γ. The authors
prove that the differential (α, β → γ) is valid if and only if

eq(α � 1, β � 1, γ � 1) ∧ (α ⊕ β ⊕ γ ⊕ (β � 1)) = 0, (1)

where
eq(x, y, z) := (¬x ⊕ y) ∧ (¬x ⊕ z). (2)

For every valid differential (α, β → γ), the weight w(α, β → γ) is defined as
follows:

w(α, β → γ) := − log2(xdp+(α, β → γ)).

The weight of a valid differential can be calculated as:

w(α, β → γ) = h(¬eq(α, β, γ)), (3)

where h(x) denotes the number of non-zero bits in x except the most signifi-
cant bit.

Assumption of Independent Additions. In this paper, we assume that addi-
tions in the block cipher are independent of each other with regard to XOR-
difference due to the use of round keys. Under this assumption, the probability
of a differential characteristic is equal to the multiplication of the probabilities
of all addition operations. Specifically, we calculate the weight of a differential
characteristic as the sum of weights of all addition operations.
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3 Automatic Search for Characteristics and Differentials
in ARX Block Ciphers

In this section we elaborate on the searching method used in this paper.

3.1 Mouha’s Framework for Searching Differential Characteristics
of ARX Ciphers

In [17], Mouha and Preneel construct a framework to search for optimal differen-
tial characteristics of ARX ciphers and apply it to Salsa20. In their framework,
a typical Satisfiability Modulo Theory (SMT) solver STP [12] is used. STP is
built upon a SAT solver. Since many word-wise operations are included in its
input language, it is suitable for searching problems of ARX ciphers.

In the framework, they find differential characteristics up to a certain weight
W with STP. First, they write simple equations with respect to XOR-difference
for every addition, rotation and XOR of an ARX cipher as follows.

– Use n-bit variables to represent input difference words.
– Introduce additional n-bit variables to represent the differences after the addi-

tion, XOR, and rotation operations when required.
– Use Eqs. (1) and (2) for every addition modulo 2n of the cipher to ensure

that the input and output differences correspond to a valid differential of the
addition operation.

– Include Eq. (3) to calculate the weight of each addition operation, and rep-
resent the sum of weights of all additions with W , which corresponds to the
weight of the differential characteristics under consideration.

– Specify that input difference is non-zero and restrict W to a maximum of a
certain number.

Second, they feed the equations generated into STP. STP converts these
equations into formulae of conjunctive normal form (CNF), and then invokes an
underlying SAT solver to find solutions.

Although Mouha’s framework that multiplies the differential probabilities of
all additions was originally applied to a stream cipher, it is more suitable for
ARX block ciphers where a round key is XORed each round. The reason is that
additions in an ARX stream cipher are usually not independent, while additions
in an ARX block cipher may be independent due to the use of round keys.

3.2 Obtaining a Long Characteristic from Two Short Ones

Mouha’s framework can be applied directly to ARX block ciphers where addi-
tions are independent with regard to XOR-difference. However, due to the limita-
tion of computation power, it takes too much time to find a long characteristic. In
this paper, we introduce a method to obtain a long characteristic from two short
ones. The method lies in searching differential characteristics from an internal
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difference which has only one active bit. This idea for searching long characteris-
tics was inspired by the phenomenon that many optimal characteristics obtained
have a special internal difference with only one active bit which usually leads to
a differential transition of the nearest round with probability 1.

The method for obtaining long characteristics is illustrated in Fig. 1. First,
we set an internal difference after some rounds D to be a value where only
one bit is nonzero, and then search forward and backward independently to get
two short characteristics. After that we combine these two short characteristics
together to get a long one. Since either the input or output difference is fixed,
two short characteristics with best probability can be easily searched. Note that
this method saves much time for searching long characteristics, but does not
always guarantee best characteristics.

Fig. 1. Obtaining a longer characteristic from two shorter ones.

This method in differential attack resembles the one used in boomerang
attack [21]. However, conditions for the two short characteristics are different.
Suppose the probabilities of the two short characteristics are p and q respec-
tively, and the block size is N . For standard differential attacks, pq > 2−N and
the two short characteristics must be connected, while for boomerang attacks
pq > 2−N/2+1 and the two short characteristics are independent.

3.3 Characteristics to Differentials

For ARX ciphers, the probability of one characteristic cannot well approximate
the probability of the corresponding differential because of a strong differential
effect, that is, between the input difference and the output difference there are
many characteristics.

To calculate the differential probability as accurately as possible, more char-
acteristics sharing the same input and output difference should be counted in.
After a good characteristic is obtained, we fix the input and output difference,
and search all characteristics with probability less or equal than that of the one
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obtained. More precisely, if the characteristic obtained has a weight W , we search
all characteristics with the same input and output difference where the weight
is W,W + 1,W + 2, · · · , and add the probabilities of all these characteristics
together. Note that STP just outputs one solution. To find all solutions, the
user can tell STP to generate the CNF formulae and exit. A special SAT solver,
such as CryptoMiniSat [19], can then be used to get all solutions.

4 Description of SPECK and LEA

4.1 SPECK

SPECK is a family of lightweight block ciphers designed by researchers from the
U.S. National Security Agency (NSA) [3]. It contains 10 variants, each of which
is characterized by its block size 2n and key size mn. For example, SPECK32/64
refers to the SPECK block cipher with block size 32 bits and key size 64 bits.
The parameters of SPECK are listed in Table 4.

The SPECK2n encryption maps a plaintext of two n-bit words (x0, y0) into
a ciphertext (xT , yT ), using a sequence of T rounds. The key-dependent round
function is defined as

Rk(x, y) = (((x ≫ α) � y) ⊕ k, (y ≪ β) ⊕ ((x ≫ α) � y) ⊕ k),

where k is the round key, and rotation constants α and β are given in Table 4.
The SPECK key schedule reuses the round function to generate the round

keys k0, · · · , kT . The m-word master key K = (lm−2, · · · , l0, k0) are used as
follow:

li+m−1 = (ki � (li ≫ α)) ⊕ i

ki+1 = (ki ≪ β) ⊕ li+m−1.

Figure 2 provides a schematic view on the round function and the key schedule
of SPECK.

Fig. 2. The round function and the key schedule of SPECK. Ri is the SPECK round
function with i acting as the round key.
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4.2 LEA

LEA is an ARX block cipher designed by Hong et al. [13] and provides a high-
speed software encryption on general-purpose processors. It has the block size
of 128 bits and the key size of 128, 192, or 256 bits. We denote the algorithms
with 128-bit, 192-bit, and 256-bit keys by LEA-128, LEA-192, and LEA-256,
respectively.

The encryption of LEA maps a plaintext of four 32-bit words (x0
0, x

0
1, x

0
2, x

0
3)

into a ciphertext (xr
0, x

r
1, x

r
2, x

r
3) using a sequence of r rounds, where r = 24 for

LEA-128, r = 28 for LEA-192 and r = 32 for LEA-256. The round function for
round i, 0 ≤ i < r is defined as follows:

xi+1
0 ← ((xi

0 ⊕ rki
0) � (xi

1 ⊕ rki
1)) ≪ 9,

xi+1
1 ← ((xi

1 ⊕ rki
2) � (xi

2 ⊕ rki
3)) ≫ 5,

xi+1
2 ← ((xi

2 ⊕ rki
4) � (xi

3 ⊕ rki
5)) ≫ 3,

xi+1
3 ← xi

0.

where rki = (rki
0, rk

i
1, rk

i
2, rk

i
3, rk

i
4, rk

i
5) is the round key, which is generated by

a key schedule. We take LEA-128 as an example. Let K = (k0, k1, k2, k3) be a
128-bit key. We set t0i = ki for 0 ≤ i < 4. For round i, 0 ≤ i < r, rki is produced
through following relations:

ti+1
0 ← (ti0 � (δi ≪ i)) ≪ 1,

ti+1
1 ← (ti1 � (δi ≪ i + 1)) ≪ 3,

ti+1
2 ← (ti2 � (δi ≪ i + 2)) ≪ 6,

ti+1
3 ← (ti3 � (δi ≪ i + 3)) ≪ 11,

rki ← (ti+1
0 , ti+1

1 , ti+1
2 , ti+1

1 , ti+1
3 , ti+1

1 ).

where δi is the constant for round i. Figure 3 provides a schematic view on the
round function of LEA and the key schedule of LEA-128. We omit key schedules
of LEA-192 and LEA-256.

Fig. 3. The round function of LEA and the key schedule of LEA-128.
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5 Searching Results and Attacks of SPECK and LEA

In this section we apply the searching method explained in Sect. 3 to SPECK
and LEA. For five versions of SPECK (in respect of block size) and LEA, we
would like to find the longest characteristics. To this goal, we need to find the
minimal weight of differential characteristics with given number of rounds. Sup-
pose the block size is N . If the weight of an r-round differential characteristic
is less than N , then the corresponding differential characteristic can be used to
build a distinguisher or to recover the key. On the contrary, if the minimal weight
of all r-round differential characteristics is no less than N , then no useful dif-
ferential characteristic exists for that r-round cipher. However, even though the
weight of some characteristics is larger than N , the weight of the corresponding
differential may be less than N . Therefore, we also evaluate the probability of
the corresponding differential by counting in more characteristics which share
the same input and output difference. For a differential, as long as its weight
is less than N , it is useful, and our attacks in this paper are mounted based
on differentials. Note that all of the characteristics are searched with STP2.0
on a 3.4 GHz Intel Core i7-2600 processor, and CryptoMiniSat4 is used as the
underlying solver of STP.

5.1 Characteristics and Differentials of SPECK

Characteristics of SPECK32 and SPECK48. We directly apply Mouha’s
framework to SPECK with block size 2n = 32, 48. For SPECK32, the best 9-
round characteristic obtained has a weight of 30, which coincides with that of [6].
We provides the source code for searching 9-round characteristics of SPECK32
in the extension of this paper [18] for verification. In addition, from a 10-round
characteristic with weight 35 as shown in Table 5, we get the corresponding dif-
ferential (0040, 2040) → (A840, 0800) with weight 31. As far as we know, this 10-
round characteristic is the longest distinguisher for SPECK32 in the literature.
For SPECK48, our computer takes 12.5 days to find a 11-round characteristic
with weight 46, and the corresponding differential has a weight of 43.31. In [11]
another 11-round characteristic with weight 45 is provided. According to our
computation its corresponding differential has a weight of 42.38, which is better
than ours.

Characteristics of SPECK64, SPECK96 and SPECK128. We construct
long characteristics for these versions where 2n = 64, 96, 128 from two short
ones. Take SPECK64 as an example. We set an internal difference to be
(00000080, 00000000) and search forward and backward independently. Accord-
ing to experiments, a 4-round forward characteristic with weight 9 and an 11-
round backward characteristic with weight 53 can be combined to get a 15-round
characteristic of weight 62. The corresponding differential has a weight less than
59.56. For SPECK96 and SPECK128, the searching works similarly. However,
for both of them, differentials are derived from characteristics with weight equal
to the block size. Specifically, from a 17-round characteristic of SPECK96 with
weight 96 we get a 17-round differential with weight less than 93.94; from a
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20-round characteristic of SPECK128 with weight 128, we obtain a 20-round
differential with weight less than 123.35. The times for searching long charac-
teristics for SPECK64, SPECK96 and SPECK128 are 0.9 h, 11.3 h and 5.2 h
respectively, which are much less compared with the time for directly searching
characteristics of SPECK48.

Comparison. Table 2 compares the differentials of SPECK we find with the
ones in the literature. For SPECK32, we find a 10-round differential with proba-
bility 2−31.02, the best distinguisher of SPECK32 to date. We also find a 9-round
characteristic of SPECK32 that coincides with that of [6] but has a tighter esti-
mation of differential probability. For SPECK48, we obtain an 11-round char-
acteristic with a better weight. For SPECK64, SPECK96 and SPECK128, the
characteristics cover 1, 4 and 5 more round(s) than previous works.

Table 2. Comparison of our differentials of SPECK with previous ones.

Block size Rounds r Prob. Input difference Output difference Reference

32 9 2−30 (8054, A900) (0040, 0542) [6]

9 2−28.41 (8054, A900) (0040, 0542) This paper

10 2−31.01 (0040, 2040) (A840, 0800) This paper

48 11 2−46.48 (202040, 082921) (808424, 84A905) [6]

11 2−43.31 (504200, 004240) (202001, 202000) This paper

64 14 2−59.02 (00000009, 01000000) (00040024, 04200D01) [6]

15 2−59.56 (04092400, 20040104) (808080A0, A08481A4) This paper

96 13 2−84 (2A20200800A2,

322320680801)

(1008004C804,

C0180228C60)

[1]

15 2−84 (000900000000,

000001000000)

(A0A000008880,

81A02004C88C)

This paper

17 2−93.94 (240004000009,

010420040000)

(A0A000008880,

81A02004C88C)

This paper

128 15 2−117.28 (0640240804002440,

6004400C20040004)

(828028080A080888,

E88C81A4A0924B2C)

[1]

18 2−117.75 (0202000000000080,

8012020000000480)

(0800002080820808,

48080124A0924A08)

This paper

20 2−123.35 (0124000400000000,

0801042004000000)

(8004000080000124,

8420040080000801)

This paper

5.2 Characteristics and Differentials of LEA

Characteristics of LEA. We construct long characteristics for LEA from
two short ones. We set an internal difference to be (00000100, 00000000,
00000000, 000 00000) and search forward and backward independently. A 12-
round characteristic of weight 112 can be constructed by combining two short
ones of 6 forward rounds and 6 backward rounds respectively. From this charac-
teristic we derive a 12-round differential

(10401080, 0A001080, 02041208, 00049228)
→(88008008, 88A2A00A, 22020060, 00000010)
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with weight less than 101.71. Also, a 13-round characteristic can be constructed
by connecting two short ones of 6 forward rounds and 7 backward rounds and
its weight is 134. From this characteristic a 13-round differential

(00049018, 40049000, 10220041, 00028001)
→(88008008, 88A2A00A, 22020060, 00000010)

of weight less than 123.02 is derived.
The details of these two characteristics are shown in Table 7. Compared with

the only differential analysis in the specification of LEA, the differential in this
paper covers two more rounds Tables 3 and 6.

Table 3. Comparison of our differentials of LEA with previous ones.

#Rounds Prob. Reference

11 2−98 [13]

12 2−128 [13]

12 2−101.71 This paper

13 2−123.02 This paper

5.3 Differential Attacks on SPECK and LEA

Differential attacks on SPECK. In [9] Dinur proposed an enumeration tech-
nique for key recovery in differential attacks against SPECK. Given a differential
characteristic for SPECK2n/mn that covers r rounds of the cipher with proba-
bility p > 2 · 2−2n, the enumeration technique can be used to recover the key of
a variant with (r + m) rounds with 2 · p−1 chosen plaintexts, in an average time
complexity of 2 · p−1 · 2(m−2)n encryptions. The required memory is constant for
all versions of SPECK, which is 222 bytes, i.e. only a few megabytes.

Adding one round for free. We use the r-round differential (α → β) over
rounds 2 ∼ (r + 1), and choose pairs of plaintexts such that their difference
after the first round is α. In this way, one more round can be extended for free.
This idea was also adopted by Abed et al. in [1]. Consequently, given an r-round
differential, the attack can cover (r + m + 1) rounds.

For SPECK32/64, we use the same 9-round differential as in [1,6]. Accord-
ing to our experiments, the differential holds with probability at least 2−28.41,
which is much larger than 2−30, the probability of the best characteristic of the
differential. This indicates that the complexities of the attack can be reduced
with a tighter estimation of the probability of the differential. Combined with
Dinur’s enumeration technique for key recovery, the differential can be used to
attack a 14-round SPECK32/64 at a cost of 2 · 228.41 = 229.41 plaintexts and
2 · 228.41 · 232 = 261.41 encryptions.

Differential attacks for the rest variants are similar to that of SPECK32/64,
so we omit the details on calculation of the complexities. The attacks are
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mounted based on the differentials in Table 2 and the results are summa-
rized in Table 1. Compared with the previous works, the attacks on SPECK48,
SPECK64, SPCKE96, SPECK128 extend 1, 1, 4 and 6 more round(s)
respectively.

Differential Attacks on LEA. Since the differential equations of addition in
the key recovery of LEA are similar to that of SPECK, Dinur’s enumeration
technique can be adapted to LEA. Given an r-round differential characteristic
of LEA with probability p > 2 · 2−N where N is the block size, for LEA-128 and
LEA-192, the attack recovers the key of a variant of (r + 1) rounds with 2 · p−1

plaintexts, in expected time complexity of 2·p−1 encryptions, while (r+2) rounds
of LEA-256 can be attacked with 2 · p−1 plaintexts and 2 · p−1 · 2N encryptions
in average. The attacks are summarized in Table 1.

6 Discussion

Differential Effect. Experimental results confirm the strong differential effect
of ARX block ciphers. When the characteristics sharing the same input and
output difference are counted in, the differential probability increases by a factor
of 4 ∼ 16 for SPECK and by a factor more than 210 for LEA. Due to this
differential effect, the probability of a characteristic shouldn’t be simply taken
as the differential probability for these ARX block ciphers.

Limitation of Our Searching Method. The searching method discussed in
this paper takes the assumption of independent additions with respect to XOR-
difference. However, additions are not independent in most ARX block ciphers,
such as TEA [22], and Chaskey [16], to which our searching method can not be
applied directly. One of our future work is to deal with the dependency among
additions.

7 Conclusion

In this paper, we apply Mouha’s framework of finding differential characteristics
to ARX block ciphers where the additions are independent with respect to XOR
differences, and develop this framework by adding a new method for constructing
long characteristics from short ones. This new method reduces the searching time
a lot and makes it possible to search differential characteristics for ARX block
ciphers with large word size such as n = 64. In addition, we take the differential
effect into consideration and the results show the probability of a characteristic
shouldn’t be simply taken as the differential probability for these ARX block
ciphers. The efficiency of our method is demonstrated by improved attacks of
SPECK and LEA. One of our future work is to deal with the dependency among
additions which are common in most ARX ciphers.

Acknowledgement. The authors would like to thank Jian Guo for his valuable
suggestions and thank the anonymous reviewers for their valuable comments and
suggestions.
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A Parameters of SPECK

Table 4. The SPECK parameters.

Block size Key size Word size Key words Rounds α β

2n mn n m T

32 64 16 4 22 7 2

48 72 24 3 22 8 3

96 4 23 8 3

64 96 32 3 26 8 3

128 4 27 8 3

96 96 48 2 28 8 3

144 3 29 8 3

128 128 64 2 32 8 3

192 3 33 8 3

256 4 34 8 3

B Differential Characteristics of SPECK and LEA

Table 5. Differential characteristics for SPECK32, SPECK48 and SPECK64.

r SPECK32 SPECK48 SPECK64

Δx Δy log2 p Δx Δy log2 p Δx Δy log2 p

0 2040 0040 504200 004240 04092400 20040104

1 8000 8100 −1 001202 020002 −5 20000820 20200001 −6

2 8000 8402 −1 000010 100000 −3 00000009 01000000 −4

3 8D02 9D08 −4 000000 800000 −1 08000000 00000000 −2

4 6002 1420 −9 800000 800004 0 00080000 00080000 −1

5 1060 40E0 −5 808004 808020 −2 00080800 00480800 −2

6 0380 0001 −6 8400A0 8001A4 −4 00480008 02084008 −4

7 0004 0000 −3 608DA4 608080 −9 06080808 164A0848 −7

8 0800 0800 −1 042003 002400 −11 F2400040 40104200 −13

9 0810 2810 −2 012020 000020 −5 00820200 00001202 −8

10 0800 A840 −3 200100 200000 −3 00009000 00000010 −4

11 202001 202000 −3 00000080 00000000 −2

12 80000000 80000000 0

13 80800000 80800004 −1

14 80008004 84008020 −3

15 808080A0 A08481A4 −5

Σrlog2pr −35 −46 −62

log2pdiff> −31.01 −43.31 −59.56
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Table 6. Differential characteristics for SPECK96 and SPECK128.

r SPECK96 SPECK128

Δx Δy log2 p Δx Δy log2 p

0 240004000009 010420040000 0124000400000000 0801042004000000

1 082020000000 000120200000 −6 0800202000000000 4808012020000000 −6

2 000900000000 000001000000 −4 4800010000000000 0840080100000002 −6

3 000008000000 000000000000 −2 0808080000000006 4A08480800000016 −7

4 000000080000 000000080000 −1 4000400000000032 1042004000000080 −12

5 000000080800 000000480800 −2 0202000000000080 8012020000000480 −7

6 000000480008 000002084008 −4 0010000000000480 0080100000002084 −5

7 0800FE080808 0800EE4A0848 −12 8080000000006080 84808000000164A0 −6

8 000772400040 400000104200 −21 0400000000032400 2004000000080104 −11

9 000000820200 000000001202 −11 2000000000080020 2020000000480801 −7

10 000000009000 000000000010 −4 0000000000480001 0100000002084008 −6

11 000000000080 000000000000 −2 000000000E080808 080000001E4A0848 −8

12 800000000000 800000000000 0 00000000F2400040 4000000000104200 −15

13 808000000000 808000000004 −1 0000000000820200 0000000000001202 −8

14 800080000004 840080000020 −3 0000000000009000 0000000000000010 −4

15 808080800020 A08480800124 −5 0000000000000080 0000000000000000 −2

16 800400008124 842004008801 −9 8000000000000000 8000000000000000 0

17 A0A000008880 81A02004C88C −9 8080000000000000 8080000000000004 −1

18 8000800000000004 8400800000000020 −3

19 8080808000000020 A084808000000124 −5

20 8004000080000124 8420040080000801 −9

Σr log2 pr −96 −128

log2 pdiff > −93.94 −123.35

Table 7. Differential characteristics for LEA.

r 12-round 13-round

Δx0 ‖ Δx1 ‖ Δx2 ‖ Δx3 log2 p Δx0 ‖ Δx1 ‖ Δx2 ‖ Δx3 log2 p

0 104010800A0010800204120800049228 00049018400490000002800110220041

1 80000014404020140040100410401080 −20 104010800A0010800204100800049018 −20

2 80400080860000808200001080000014 −16 800000144040200C0040100410401080 −20

3 8000000C8040000C8040000480400080 −14 80400080860000808200001080000014 −18

4 8000000080000000800000108000000C −10 8000000C8040000C8040000480400080 −14

5 00000000800000008000000080000000 −4 8000000080000000800000108000000C −10

6 00000100000000000000000000000000 0 00000000800000008000000080000000 −4

7 00020000000000000000000000000100 −1 00000100000000000000000000000000 −0

8 04000000000000000000002000020000 −2 00020000000000000000000000000100 −1

9 00000008000000070000400404000000 −6 04000000000000000000002000020000 −2

10 00000200080002008080080000000008 −11 00000008000000070000400404000000 −6

11 00000010044400501010010100000200 −9 00000200080002008080080000000008 −11

12 8800800888A2A00A2202006000000010 −19 00000010044400501010010100000200 −9

13 8800800888A2A00A2202006000000010 19

Σr log2 pr −112 −134

log2 pdiff> −101.71 −123.02
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Abstract. The LAC authenticated encryption algorithm was a candi-
date to the CAESAR competition on authenticated encryption, which
follows the design of the ALE authenticated encryption algorithm. In
this paper, we show that the security of LAC depends greatly on the
parameter of the maximum message length and the order of padding the
last message block, by cryptanalysing its variants that differ from the
original LAC only in the above-mentioned two points. For the LAC vari-
ants, we present a structural state recovery attack in the nonce-respecting
scenario, which is independent from the underlying block cipher, which
requires only chosen queries to their encryption and tag generation ora-
cles and can recover an internal state of the initialization phase for one
of some used Public Message Numbers (PMNs) more advantageously
than exhaustive key search; and the recovered internal state can be used
to make an existential forgery attack under this PMN. Besides, slightly
inferior to exhaustive key search, the state recovery attack can apply to
the LAC variant that differs from LAC only in the order of padding the
last message block. Although the state recovery attack does not apply
to the original LAC, it sheds some light on this type of interesting struc-
tures, and shows that an authenticated encryption algorithm with a such
or similar structure may be weakened when it is misused deliberately or
accidentally with the reverse message padding order and a different max-
imum message length, and users should be careful about the two points
when employing such a structure in reality.

Keywords: Authenticated encryption algorithm · LAC · State recovery
attack · Forgery attack

1 Introduction

A (symmetric) authenticated encryption algorithm is an algorithm that trans-
forms an arbitrary-length data stream (below an upper bound generally), called
a message or plaintext, into another data stream of the same length, called a
ciphertext, and generates an authentication tag for the message at the same
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 395–408, 2016.
DOI: 10.1007/978-3-319-40367-0 25
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time, under the control of a secret key. We refer the reader to Bellare and Nam-
prempre’s work [1] for an introduction to authenticated encryption.

LAC [9] is a block-cipher-based lightweight authenticated encryption algo-
rithm, which has a similar structure to the ALE [3] authenticated encryption
algorithm. Built on a variant called LBlock-s of the LBlock lightweight block
cipher [8], LAC takes as input an 80-bit user key, a 64-bit public message num-
ber (nonce) and a plaintext as well as associated data, and outputs a ciphertext
of the same length as the plaintext and a 64-bit authentication tag. In 2014,
LAC was submitted to the Competition for Authenticated Encryption: Security,
Applicability, and Robustness (CAESAR) [4], however, Leurent [5] described an
(existential) forgery attack on the full LAC algorithm, by showing that there
exist 16-round differentials [2] with a probability of 2−61.52 in the LBlock-s
cipher, which is slightly larger than the expected bound 2−64. It is worthy to
mention that the full ALE algorithm was shown in 2013 by Wu et al. [7] to suffer
from an (existential) forgery attack based on differential cryptanalysis.

Leurent’s attack on LAC as well as Wu et al.’s attack on ALE is mainly
due to a security weakness of the underlying round-reduced block cipher, specif-
ically the number of rounds is too small to be sufficient; otherwise, the attack
would not work. In this paper, we analyse the security of LAC from a struc-
tural perspective, by focusing on its structure without exploiting any security
weakness of the underlying block cipher, that is, we treat the block cipher as
a sound pseudo-random permutation. We find that the security of LAC (in the
nonce-respecting scenario) depends greatly on the parameter of the maximum
message length and the order of padding the last message block (or equivalently
the order of the two halves of the leaked 48-bit output), by presenting a state
recovery attack on the LAC variants that differ from the original LAC only in
that a different value is used for the parameter of the maximum message length
and that the reverse order for padding the last message block is used. The attack
on the LAC variants requires only chosen queries to their encryption and tag
generation oracles, and can recover an internal state of the initialization phase
for one of some used Public Message Numbers (PMNs) more advantageously
than exhaustive key search. The recovered internal state can be used to make an
existential forgery attack on the LAC variants under this PMN. Besides, slightly
inferior to exhaustive key search, the attack can apply to the LAC variant that
differs from LAC only in the reverse order of padding the last message block.

Our attack may apply to other authenticated encryption algorithms with sim-
ilar structures, for example, it may apply to similar variants of ALE [6]. In reality,
particularly in industry, a cryptographic algorithm is sometimes misused delib-
erately or accidentally, due to various practical reasons, say, being slightly modi-
fied for a particular application requirement, being modified with a different block
cipher in place of the underlying block cipher, being confused with big- and little-
endian formats, etc. As a result, although our attack does not apply to the original
LAC, it sheds some light on this type of interesting structures, and shows that
an authenticated encryption algorithm with a such or similar structure may be
weakened when it is misused with the reverse message padding order and a dif-
ferent maximum message length. Thus, users should be very careful about the two
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pointswhen employing such a structure in reality, evenwhen the underlying round-
reduced block cipher has a sufficient number of rounds in the sense of security.

The remainder of the paper is organised as follows. In the next section, we give
the notation and describe the LAC algorithm and the variants for our attacks.
We present our state recovery attack and existential forgery attack on the LAC
variants in Sects. 3 and 4, respectively. Section 5 concludes this paper.

2 Preliminaries

In this section, we give the notation used throughout this paper, and briefly
describe the LAC algorithm and the variants for our attacks.

2.1 Notation

In all descriptions we assume that the bits of a value are numbered from right to
left (or sometimes from top to bottom), starting with 1, with the first bit being
the least significant bit. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) operation of two bit strings of the
same length

|| string concatenation
|X| the number of elements when X is a set, or the bit length when X is

a value
e the base of the natural logarithm (e = 2.71828 · · · )
�X� the smallest integer that is larger than or equal to a value X
O(X) a value that is of the same order as a value X

2.2 The LAC Authenticated Encryption Algorithm

The message encryption and tag generation procedure of LAC [9] consists of
four phases: initialization, processing associated data, message encryption, and
tag generation, as depicted in Fig. 1, where

– PMN is a 64-bit Public Message Number (PMN), serving as a nonce. The
designers require that a PMN should be used (at most) only once under the
same key, that is, LAC works in a nonce-respecting scenario.

– E is a simplified version LBlock-s of the LBlock [8] block cipher, that has a
64-bit block length, an 80-bit user key K and a total of 32 rounds;

– G is a 16-round reduced version of the E block cipher, with the 16 round
subkeys generated from the key schedule KS;

– Ĝ is the version of G that not only outputs a normal 64-bit ciphertext but
also outputs the most significant 24 bits of the left half X9 of the output of
the eighth round of the G cipher and the most significant 24 bits of the left
half X17 of the output of the sixteenth round of the G cipher (i.e., the output
of G), (the 48 bits serve as a keystream block);

– 016 is a binary string of 16 zeros;
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Fig. 1. The message encryption and tag generation procedure of LAC

– (AD1, AD2, · · · , ADabn) is an associated data of abn 48-bit blocks;
– (M1,M2, · · · ,Mmbn) is a message of mbn 48-bit blocks;
– (C1, C2, · · · , Cmbn) is the ciphertext for (M1,M2, · · · ,Mmbn); and
– T is the tag for (M1,M2, · · · ,Mmbn).

During the initialization phase, a PMN passes through a cascade of two
applications of the E block cipher with the user key K, and the concatenation
of the outputs of the two applications of the E block cipher constitutes a 128-bit
internal state. Then, the most significant 80 bits of the 128-bit internal state are
used as the key for encrypting a 64-bit zero string with E to produce the initial
data state; and the least significant 80 bits of the 128-bit internal state are to
be used as the initial key state. During the phase of processing associated data,
the key state is updated iteratively, and the data state is updated iteratively by
first applying the G operation with the corresponding key state as the key, and
then XORing with the corresponding block of associated data. During the phase
of encrypting message, the key state is updated likewise, but the data state is
updated iteratively by first applying the Ĝ operation with the corresponding key
state as the key, and then XORing with the corresponding message block, and
the 48-bit output leaked from Ĝ is XORed with the message block to produce
the corresponding ciphertext block. Finally, the data state is encrypted with E
under the user key K to generate an authentication tag. We refer the reader
to [9] for the specification of LAC.

Denote the bit length of a message by msl. The message padding of LAC
will append the smallest number u of zeros such that (u+msl +40) mod 48 = 0
and then append the message length msl on the subsequent 40 bits (the length
of a message is limited to be at most 240 bits long). Accordingly, the 40 + u bits
of the last one or two ciphertext blocks that correspond to the u bit positions
of the appended u zeros and the 40 bit positions for message length msl will be
truncated. In particular, when the last message block is full, LAC will make an
additional 48-bit message block of the form 08||msl, and the resulting ciphertext
block will be discarded without transmission.

More specifically, suppose m is the last message block of a message, then
the padding is of the form m|| 0 · · · 0︸ ︷︷ ︸

u

||msl, such that (u + |m| + 40) mod 48 = 0.



On the Security of the LAC Authenticated Encryption Algorithm 399

Suppose the 64-bit output of the last Ĝ operation is X17||X16 and its 48-bit out-
put is X9[9 ∼ 32]||X17[9 ∼ 32], where X9,X16,X17 are 32-bit blocks, X9[9 ∼ 32]
represents bits (9, 10, · · · , 32) of X9, and so on. If |m| ≤ 8, then the last cipher-
text block before truncation is (X9[9 ∼ 32]||X17[9 ∼ 32])⊕ (m|| 0 · · · 0︸ ︷︷ ︸

u

|msl), and

the bits corresponding to (0 · · · 0︸ ︷︷ ︸
u

|msl) will be truncated before transmission.

Padding is similar if the bit length of the associated data is not a multiple of 48.

2.3 Variants of LAC

Denote by mml the bit number of the maximum message length. (CAESAR
requires that a maximum message length must not be smaller than 65536
bytes [4]). Now we define some variants of LAC as follows:

• 24 ≤ mml ≤ 31 is used. Thus, the resulting message padding is to append
the smallest number u of zeros such that (u + msl + mml) mod 48 = 0 and
the message length msl on the subsequent mml bits. (mml = 40 for LAC.)

• For the last block m of a message of msl bits long, the padding is of the form
msl|| 0 · · · 0︸ ︷︷ ︸

u

||m, such that (u + msl + mml) mod 48 = 01. This is the reverse

order of the original LAC.
• All the other specifications of the variants are exactly the same as LAC,

(including that when the last message block is full, the variants will make
an additional 48-bit message block and the resulting ciphertext block will be
discarded without transmission).

The first two points may be easily made in reality, due to various reasons, for
example, the first point may be deliberate to meet the different message length
of a particular application, and the second point may be accidental due to a
confusion with endianness, particularly when employing a different cipher.

We note that for our attacks, there are some trivial equivalents to the above
variants, for example, a variant assuming that there is no message padding if the
last message block is full — a popular manner for message padding for message
authentication schemes, and another variant assuming that the last ciphertext
block for the padded message block will be transmitted without truncation.

We denote by L̂AC the variants of LAC, as well as their equivalents with
respect to our attacks. To make it easier to describe our attacks, we define four
64-bit (secret) parameters A,B,X, Y to represent the values at the four internal
states marked in Fig. 1, that is, A is the output of the first E operation; B is the
output of the second E operation; X is the output of the last Ĝ operation; and
Y is the input to the last E operation.
1 An equivalent of this point under our attack is that the position of the most sig-

nificant 24 bits of the output of the eighth round of the Ĝ operation is exchanged
with the position of the most significant 24 bits of the output of the sixteenth
round of the Ĝ operation, (without reversing the message padding order), that is
(X17[9 ∼ 32]||X9[9 ∼ 32]).
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3 State Recovery Attack on L̂AC

In this section, we present a state recovery attack on L̂AC in a nonce-respecting
scenario (under the same key). The attack requires only chosen queries to the
encryption and tag generation oracle of L̂AC, and it can recover the 128-bit
internal state immediately after the first two E operations for one of some used
PMNs, more advantageously than exhaustive key search.

3.1 Attack Procedure

The attack procedure is made up of three phases, to be described in Sub-
sects. 3.1.1, 3.1.2 and 3.1.3. Observe that for a message of msl bits long such
that msl mod 48 = 48 − mml, the last-block message-ciphertext pair reveals
(48−mml) bits of the 64-bit output of the last Ĝ operation, by the specification
of L̂AC.

3.1.1 Phase I
This phase works in a chosen-message and known-nonce scenario with fixed
associated data, which is illustrated in Fig. 2.

(a) Choose an arbitrary message M of msl bits long such that msl mod 48 =
48−mml, and represent it as (M1,M2, · · · ,Mmbn), where the first mbn− 1
blocks are 48 bits long each, and mbn = �msl

48 � < 2mml

48 . Query the L̂AC
encryption and tag generation oracle with the message M and associated
data (AD1, AD2, · · · , ADabn) of abn 48-bit blocks long for 2φ times (abn ≥
0, and the last one or two blocks are padded ones), where φ meets the
following Condition (1), and φ and mbn meet the following Condition (2):

2φ+mml−64 � 1 − e−22φ−64
; (1)

22φ+2×mml−48×mbn+32 � 1 − e−22φ−64
. (2)

For the i-th query (i = 1, 2, · · · , 2φ), we denote by:
– PMNi the PMN used;
– C(i) = (C(i)

1 , C
(i)
2 , · · · , C

(i)
mbn) the ciphertext, where the first mbn−1 blocks

are 48 bits long each, and the last block C
(i)
mbn is msl mod 48 = 48−mml

bits long;
– Ti the tag; and
– Ai, Bi,Xi, Yi respectively for the four parameters A,B,C,D defined in

Sect. 2.3.
Observe that

Xi[41 ∼ (88 − mml)] = (Mmbn ⊕ C
(i)
mbn)[1 ∼ (48 − mml)],

Yi = Xi ⊕ (016+mml||Mmbn).
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Ĝ ⊕
M1

⊕
C

(j)
1

· · ·

· · ·

KS

⊕
Mmbn

⊕
C

(j)
mbn
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Fig. 2. Phase I of the state recovery attack on L̂AC

(b) For each permutation (PMNi, PMNj) of two PMNs PMNi and PMNj ,2

(1 ≤ i, j ≤ 2φ, j 	= i), check whether PMNi = Yj partially by checking
whether

PMNi[41 ∼ (88 − mml)]
= Yj [41 ∼ (88 − mml)] (3)

(= Xj [41 ∼ (88 − mml)] ⊕ (016+mml||Mmbn)[41 ∼ (88 − mml)])

(= (Mmbn ⊕ C
(j)
mbn)[1 ∼ (48 − mml)] ⊕

(016+mml||Mmbn)[41 ∼ (88 − mml)]),

which can be done efficiently by storing PMNj in a table indexed by Yj [41 ∼
(88 − mml)]. Keep only the qualified permutations (PMNi, PMNj), and
we denote by PMNi(j,l) the qualified PMNs PMNi for PMNj , where l
is the number of qualified PMNs PMNi. Thus, we have PMNi(j,l) [41 ∼
(88 − mml)] = Yj [41 ∼ (88 − mml)]. Furthermore, we have:

if PMNi(j,l) = Yj , then Ai(j,l) = Tj .

3.1.2 Phase II
This phase works in a chosen-message and chosen-nonce scenario with arbitrary
associated data, which is illustrated in Fig. 3.

2 Note that (PMNi, PMNj) is a permutation, rather than a combination. Thus,
(PMNi, PMNj) and (PMNj , PMNi) are different.
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Ŷq(j,r)

EK EK

EK

ÂD
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Fig. 3. Phase II of the state recovery attack on L̂AC

(a) Let S = {Tj such that |PMNi(j,l) | > 0, j = 1, 2, · · · , 2φ}, and |S| = 2β .

Query the L̂AC encryption and tag generation oracle with an arbitrary
associated data for any PMN PMN = Tj ∈ S in a chosen-nonce scenario.
For PMN = Tj , we denote
– the PMN by P̂MN j(= Tj);

– the associated data by (ÂD
(j)

1 , ÂD
(j)

2 , · · · , ÂD
(j)

âbnj
), that is âbnj 48-bit

blocks long, (âbnj ≥ 0, âbnj can be different one another, and the last
one or two blocks are padded ones);

– by M̂ (j) = (M̂ (j)
1 , M̂

(j)
2 , · · · , M̂

(j)

m̂bnj

) the message of m̂slj bits long such

that m̂slj mod 48 = 48 − mml, where m̂bnj = � m̂slj
48 � < 2mml

48 , the first
m̂bnj−1 blocks are 48 bits long each, (m̂bnj can be different one another);

– the ciphertext by Ĉ(j) = (Ĉ(j)
1 , Ĉ

(j)
2 , · · · , Ĉ

(j)

m̂bnj

), where the first m̂bnj −1

blocks are 48 bits long each, and the last block Ĉ
(j)

m̂bnj

is m̂slj mod 48 =
48 − mml bits long;
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– the tag by T̂j ; and
– Âj , B̂j , X̂j , Ŷj respectively for the four parameters A,B,C,D defined in

Sect. 2.3.
Note that if P̂MN j(= Tj) happens to appear in Step I-(a) we can reuse
the corresponding associated data, message, ciphertext and tag, (without
querying for P̂MN j here).

(b) For each permutation (P̂MNp, P̂MNq) of two PMNs P̂MNp and P̂MNq,3

(1 ≤ p 	= q ≤ 2β), check whether P̂MNp = Ŷq partially by checking whether

P̂MNp[41 ∼ (88 − mml)]

= Ŷq[41 ∼ (88 − mml)]

(= X̂q[41 ∼ (88 − mml)] ⊕ (016+mml||M̂ (q)

m̂bnq

)[41 ∼ (88 − mml)])

(= (M̂ (q)

m̂bnq

⊕ Ĉ
(q)

m̂bnq

)[1 ∼ (48 − mml)] ⊕
(016+mml||M̂ (q)

m̂bnq

)[41 ∼ (88 − mml)]),

which can be similarly done efficiently by storing P̂MNp in a table indexed
by Ŷp[41 ∼ (88 − mml)]. Keep only the qualified permutations (P̂MNp,

P̂MNq). In particular, for P̂MN j(= Tj), we denote by P̂MNq(j,r)(= Tq(j,r))

the qualified PMNs, where r is the number of qualified PMNs for P̂MN j .
Thus, we have

P̂MN j [41 ∼ (88 − mml)]

= Ŷq(j,r) [41 ∼ (88 − mml)] (4)

(= X̂q(j,r) [41 ∼ (88 − mml)] ⊕ (016+mml||M̂ (q(j,r))

m̂bnq(j,r)

)[41 ∼ (88 − mml)])

(= (M̂ (q(j,r))

m̂bnq(j,r)

⊕ Ĉ
(q(j,r))

m̂bnq(j,r)

)[1 ∼ (48 − mml)] ⊕

(016+mml||M̂ (q(j,r))

m̂bnq(j,r)

)[41 ∼ (88 − mml)]),

and if P̂MN j = Ŷq(j,r) , then Âj = T̂q(j,r) .

(c) For any (P̂MN j(= Tj), P̂MNq(j,r)(= Tq(j,r))), treat the corresponding value
(Tj ||T̂q(j,r)) as the 128-bit secret state immediately after the first two E

operations of L̂AC, then compute the resulting ciphertext for message M =
(M1,M2, · · · ,Mmbn) under the associated data (AD1, AD2, · · · , ADabn),
and finally check whether the mbn ciphertext blocks respectively match the

3 Likewise, (P̂MNp, P̂MNq) is a permutation, so (P̂MNp, P̂MNq) and (P̂MNq,

P̂MNp) are different.
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mbn ciphertext blocks of some C(i(j,l)) such that (PMNi(j,l) , PMNj) is a
qualified permutation in Phase I. Record the qualified triples (PMNi(j,l) ,

P̂MN j , P̂MNq(j,r)) only.

3.1.3 Phase III
For a recorded (PMNi(j,l) , P̂MN j , P̂MNq(j,r)) in Step II-(c), output (Tj ||T̂q(j,r))
as the 128-bit secret state just after the first two E operations under PMN =
PMNi(j,l) . As a consequence, we can generate all subsequent internal states
except the last EK operation under PMN = PMNi(j,l) .

3.2 Complexity Analysis

In Step I-(b), for every PMN PMNj , it is expected that there are 2φ−1
264 ≈ 2φ−64

qualified PMNs PMNi such that PMNi = Yj , and there are 2φ−1
248−mml ≈

2φ+mml−48 qualified PMNs PMNj such that Eq. (3) holds, that is l ≈ 2φ+mml−48

on average; and the 2φ−64 qualified PMNs PMNi must be among the 2φ+mml−48

qualified PMNs PMNi(j,l) . Since φ ≥ 24 (from Condition (1)) generally, it is
expected that β = φ in Phase II. The probability that there exists a qualified per-
mutation (PMNi, PMNj) such that PMNi = Yj holds is 1−(1− 1

264 )2
φ×(2φ−1) ≈

1 − e−22φ−64
.

In Step II-(b), the expected number of distinct P̂MNp is 2β ; for every
P̂MNp, it is expected that there are approximately 2β−1

264 ≈ 2β−64 qualified
PMNs P̂MNq such that P̂MNp = Ŷq; and for every P̂MN j(= Tj), it is
expected that there are approximately 2β−1

248−mml ≈ 2β+mml−48 qualified PMNs
P̂MNq(j,r)(= Tq(j,r)) such that Eq. (4) holds, that is r ≈ 2β+mml−48 on average;

and the 2β−64 qualified PMNs P̂MNq must be among the 2β+mml−48 qual-
ified PMNs P̂MNq(j,r) . Hence, the expected number of the set {(P̂MN j(=

Tj), P̂MN q(j,r)(= Tq(j,r)))|j = 1, 2, · · · , 2β} is 2β × 2β+mml−48 = 22β+mml−48.

In Step II-(c), for a permutation (P̂MN j , P̂MNq(j,r)), the resulting cipher-
text matches the ciphertext of some C(i(j,l)) such that (PMNi(j,l) , PMNj) is a
qualified permutation in Phase I is expected to be approximately 2φ+mml−48 ×
(2−48)mbn = 2φ+mml−48×(mbn+1). Hence, the expected number of the recorded
(PMNi(j,l) , P̂MN j , P̂MNq(j,r)) is

22β+mml−48 × 2φ+mml−48×(mbn+1) = 23φ+2×mml−48×(mbn+2).

On the other hand, a permutation (PMNi(j,l) , P̂MN j , P̂MNq(j,r)) such that

both PMNi(j,l) = Yj and P̂MN j = Ŷq(j,r) hold is expected to be correct,
and thus can pass the filtering condition with probability one. For a permu-
tation (PMNi(j,l) , PMNj) such that PMNi(j,l) = Yj holds, the probability that

there is a qualified permutation (P̂MN j(= Tj), P̂MN q(j,r)(= Tq(j,r))) such that
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P̂MN j = Ŷq(j,r) holds is 1 − (1 − 1
264 )2

β−1 ≈ 2β−64, as β = φ < 64. Hence,

the probability that there is a permutation (PMNi(j,l) , P̂MN j , P̂MNq(j,r)) such

that both PMNi(j,l) = Yj and P̂MN j = Ŷq(j,r) hold is (1 − e−22φ−64
) × 2β−64 =

(1 − e−22φ−64
) × 2φ−64.

Step I-(a) requires 2φ queries and a memory of approximately 2φ × (mbn ×
48
8 + 8 × 2 + 3 × 2) = 2φ × (6 × mbn + 22) bytes, and Step I-(b) has a com-
putational complexity of approximately 2φ × 2φ+mml−48 = 22φ+mml−48 memory
accesses to retrieve (PMNi(j,l) , PMNj). Step II-(a) requires 2β queries and a

memory of
∑2β

i=1(âbni × 48
8 + 2 × m̂bni × 48

8 + 8 × 2 + 3 × 2) bytes (it can be
reduced by using the same set of associated data and message), and Step II-(b)
has a computational complexity of approximately 22β+mml−48 memory accesses
to retrieve (P̂MN j , P̂MNq(j,r)). Step II-(c) has a computational complexity of

approximately 22β+mml−48 = 22φ+mml−48 computations of L̂AC.
The attack is valid if:

1. the expected number of correct (PMNi(j,l) , P̂MN j , P̂MNq(j,r)) recorded in

Step II-(c) (that meets both PMNi(j,l) = Yj and P̂MN j = Ŷq(j,r)) is much

more than the expected number of wrong (PMNi(j,l) , P̂MN j , P̂MNq(j,r))
recorded in Step II-(c), that is

23φ+2×mml−48×(mbn+2) � (1 − e−22φ−64
) × 2φ−64,

which corresponds to Condition (2); and
2. the expected computational complexity for the attack to recover an inter-

nal state is less than the computational complexity of a generic attack (e.g.
exhaustive key search) recovering an internal state, that is

22φ+mml−48

(1 − e−22φ−64) × 2φ−64
� 280,

which corresponds to Condition (1).

A simple analysis of Conditions (1) and (2) reveals that there is a solution for
φ and mbn when (24 ≤)mml ≤ 31. Therefore, working in the nonce-respecting
scenario, the state recovery attack requires 2φ+1 queries on the L̂AC encryption
and tag generation oracle and a memory of O(2φ+1) bytes, and has a compu-
tational complexity of approximately 22φ+mml−48 computations of L̂AC, with a
success probability of (1 − e−22φ−64

) × 2φ−64. In particular, when mml = 30, we
can set φ = 32 and mbn ≥ 4, and the attack requires 233 queries and a memory
of O(233) bytes, and has a computational complexity of approximately 246 com-
putations of L̂AC, with a success probability of about 2−32.7. When mml = 24,
we can set φ = 32 and mbn ≥ 2, and the attack requires 233 queries and a mem-
ory of O(233) bytes, and has a computational complexity of approximately 240
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computations of L̂AC, with a success probability of about 2−32.7. Obviously, the
memory can be reused if we want to repeat the attack with many times, e.g. for
different keys.

Note that the attack can apply to the case with mml = 40 for the original
LAC, but it is slightly inferior to exhaustive key search, for example, when we
set φ = 32 and mbn ≥ 4, the attack requires 233 queries and a memory of O(233)
bytes, and has a computational complexity of approximately 256 computations,
with a success probability of about 2−32.7.

4 Existential Forgery Attack on L̂AC

Once a concerned 128-bit internal state is recovered by the above state recovery
attack, we can make an existential forgery attack on L̂AC without any further
queries, under the PMN corresponding to the recovered internal state.

For a permutation (PMNi(j,l) , P̂MN j(= Tj), P̂MN q(j,r)(= Tq(j,r))) out-
putted in the above state recovery attack, the corresponding 128-bit secret state
just after the first two E operations is (Tj ||T̂q(j,r)). We can choose a message
(M̃1, M̃2, · · · , M̃

m̃bn
) of m̃bn(≥ 3) 48-bit blocks long, and then produce its

ciphertext (C̃1, C̃2, · · · , C̃
m̃bn

) and tag T̃ under PMN = PMNi(j,l) , for example,
in the following way as illustrated in Fig. 4:

1. Compute the first (m̃bn − 3) ciphertext blocks (C̃1, C̃2, · · · , C̃
m̃bn−3

) for the

first (m̃bn−3) message blocks (M̃1, M̃2, · · · , M̃
m̃bn−3

) until immediately after

the output of the last third Ĝ operation.
2. Let Ỹ = PMNi(j,l) (or Tj). Choose and pad the last message block to form

M̃
m̃bn

, then compute X̃ = (016||M̃
m̃bn

) ⊕ Ỹ , decrypt X̃ through the last Ĝ
operation, and we denote the resulting value by Z̃ (that is the input to the
last Ĝ operation), finally compute the last ciphertext block C̃

m̃bn
.

3. For t = 1, 2, · · · , 216, choose randomly at uniform the last second message
block M̃

(t)

m̃bn−1
, and do as follows:

(a) Decrypt (016||M̃ (t)

m̃bn−1
) ⊕ Z̃ through the last second Ĝ operation, and

check whether the most significant 16 bits of the resulting value corre-
spond to the most significant 16 bits of the 64-bit output of the last third
Ĝ operation that is generated in Step 1. If yes, go to the next sub-step;
otherwise, repeat Step 3 with a different t.

(b) Compute the last third message block M̃
m̃bn−2

from the output of the

last third Ĝ operation and the input to the last second Ĝ operation, and
compute the last second and third ciphertext blocks C̃

m̃bn−1
and C̃

m̃bn−2
.

The corresponding tag T̃ = Tj (respectively T̂q(j,r)).

Observe that Ỹ can be that value corresponding to a different permutation
outputted in the above state recovery attack, and T̃ will be the corresponding
value as well.
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The attack has a computational complexity of 216 computations of the Ĝ
operation to obtain a forgery for a message under PMN = PMNi(j,l) , with a
success probability of (1 − 2−16)2

16 ≈ 63%, (a larger success probability can be
achieved by using a larger t). Once made, the forgery can replace the original
ciphertext-tag pair under PMN = PMNi(j,l) during online communications,

and thus will pass the decryption and tag verification phase of L̂AC, in the nonce-
respecting scenario that does not allow to use a nonce twice in the decryption
and tag verification phase.

EKPMNi(j,l)

80 bits

E0

80 bits KS

G ⊕
ÃD1

· · ·

· · ·

KS

G ⊕
ÃD

ãbn

KS

Ĝ ⊕

M̃1
⊕
C̃1

· · ·

· · ·

KS

⊕

M̃
m̃bn−2

⊕

C̃
m̃bn−2

Ĝ

EK

Tj T̂q(j,r)

(Tj ||T̂q(j,r)) = known KS

⊕

M̃
m̃bn

⊕

C̃
m̃bn

Ĝ EK

Ỹ = PMNi(j,l) (or Tj)

T̃ = Tj (resp. T̂q(j,r))
X̃

KS

⊕

M̃
(t)

m̃bn−1

⊕

C̃
m̃bn−1

Ĝ
Z̃

Fig. 4. Existential forgery attack on L̂AC

Note that the forgery attack that includes the phases of the state recovery
attack as a step is meaningless if a forgery is the sole attack goal, because it is
slower than a generic attack on a 64-bit tag size. It is a side result of the state
recovery attack presented in Sect. 3.

5 Concluding Remarks

In this paper, we have shown that the security of the LAC authenticated encryp-
tion algorithm depends greatly on the parameter of the maximum message length
and the order of padding the last message block (or equivalently the order of the
two halves of the leaked 48-bit output), by presenting a structural state recovery
attack on its variants that differ from the original LAC only in the two points.
Furthermore, slightly inferior to exhaustive key search, the attack can apply to
the LAC variant that differs from the original LAC only in the reverse order of
padding the last message block. The attack is only based on the structure of
the LAC variants, and may apply to other authenticated encryption algorithms
with similar structures. Therefore, an authenticated encryption algorithm with
a such or similar structure may be weakened when it is misused with the reverse
message padding order (or equivalently the reverse order of the two halves of the
leaked output) and different maximum message lengths, and thus users should
be very careful about the two points when employing such a structure in reality.
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Abstract. Simeck is a new family of lightweight block cipher proposed
by Yang et al. in CHES’15, which performs efficiently in hardware imple-
mentation. In this paper, we search out Simeck’s differentials with low
Hamming weight and high probability using Kölbl’s tool, then exploit
the links between differentials and linear characteristics to construct lin-
ear hulls for Simeck. We give improved linear hull attack with dynamic
key-guessing techniques on Simeck on the basis of round function’s prop-
erty. Our results cover Simeck 32/64 reduced to 23 rounds, Simeck 48/96
reduced to 30 rounds, Simeck 64/128 reduced to 37 rounds, which are
the best known results so far for any variant of Simeck.

Keywords: Simeck · Linear cryptanalysis · Differential cryptanalysis ·
Linear hull · Dynamic key-guessing

1 Introduction

Simeck [19] is a new family of lightweight block cipher proposed in CHES’15
by Yang, Zhu, Suder, Aagaard and Gongbased. They combined the Simon and
Speck block ciphers designed by NSA in [8], using a different set of rotation
constants of Simon’s round function and the key schedule of Speck. The round
function of Simeck only contains the AND operation, left rotation and the XOR
operation, leading to a more compact and efficient implementation in hardware.
The Simeck family has three variants with different block size and key size,
including Simeck32/64, Simeck48/96, Simeck64/128.

Related Works. Many cryptanalysis techniques of Simon can be used to attack
Simeck due to their similarity, including differential [3,5,9], linear [2,4] crypt-
analysis and so on. For Simon, Wang et al. [18] improved the differential attack

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40367-0 26
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results by dynamic key-guessing techniques. Then basing on the dynamic key-
guessing techniques in the linear hull cryptanalysis, Chen et al. [10] applied the
Guess, Split and Combine technique to reduce the time complexity in the cal-
culation of the empirical correlations. They can attack one or two more rounds
for all versions of Simon than Wang et al.’s results.

For Simeck, there are only a few cryptanalysis results so far. Kölbl et al.
[12] compared Simon and Simeck on the lower bound of differential and lin-
ear characteristic and presented some differentials to attack 19/26/33 rounds
of Simeck32/48/64. Bagheri et al. [7] analyzed Simeck’s security against lin-
ear cryptanalysis. With Matsui’s algorithm 2, they can attack 18/23/27 rounds
for Simeck32/48/64. Zhang et al. evaluated the security of 20/24/27 rounds of
Simeck32/48/64 against zero correlation linear cryptanalysis [20]. Qiao et al. [15]
used differential cryptanalysis with dynamic key-guessing techniques to attack
Simeck and improved the previously best results on all versions by 2 rounds.

Table 1. Summary of cryptanalysis results on Simeck

Cipher Round Data complexity Time complexity Reference

Simeck32/64 18 231 263.5 [7]

19 231 236 [12]

20 232 256.65 [20]

22 232 257.9 [15]

23 231.91 261.78Aa + 256.41Eb Sect. 4.1

Simeck48/96 24 245 294 [7]

24 248 291.6 [20]

26 247 262 [12]

28 246 268.3 [15]

30 247.66 292.2A + 288.04E Sect. 4.2

Simeck64/128 27 261 2120.5 [7]

27 264 2112.79 [20]

33 263 296 [12]

35 263 2116.3 [15]

37 263.09 2111.44A + 2121.25E Sect. 4.3
a additions.
b encryption of attacked rounds.

Our Contributions. This paper analyzes the security of Simeck against
improved linear hull cryptanalysis with dynamic key-guessing techniques. At first
using Kölbl’s tool, we search out better differentials than the previous results.
The probability of Simeck32/64 is more accurate with searching more differen-
tial characteristics. For Simeck48/96 and Simeck64/128, the differentials with
less active bits are preferred so we can extend the trails for more rounds and
attack more rounds. Then we take advantage of the links between linear char-
acteristic and differential characteristic to construct linear hull distinguishers
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for the Simeck family. After getting the boolean expressions for the parity bits
of the distinguishers, we use the Guess, Split and Combine technique to calcu-
late the empirical correlations, which reduces the time complexity greatly. As a
result, 23/30/37 rounds of Simeck32/48/64 can be attacked (Table 1), which are
the best results so far. We also do some experiments to verify our results. The
experiment on the bias of the linear hull for Simeck32/64 meets our expectation
and 48.4% of the results have a bias higher than we expect. Due to the time
limitation, we implement the attack on 21-round Simeck32/64 to recover 8-bit
information of 32-bit subkeys. The success rate is 45.6% corresponding to our
estimated value, which proves our algorithm is effective.

Outline. This paper is organized as follows. Section 2 gives a brief description of
the Simeck family and dynamic key-guessing techniques in the linear hull crypt-
analysis. In Sect. 3, we introduce some new differentials and linear hulls from the
differentials. Then linear hull cryptanalysis with the dynamic key-guessing tech-
niques are applied to attack all versions of Simeck in Sect. 4. Finally we conclude
in Sect. 5.

2 Preliminaries

2.1 The Simeck Family

The Simeck family with Feistel structure is proposed in CHES’15. The cipher
with 2n-bit block and mn-bit key will be referred to as Simeck2n/mn. There
are three versions of Simeck, including Simeck32/64 (32 rounds), Simeck48/96
(36 rounds) and Simeck64/128 (44 rounds). In this paper, we use the notations
as follows.

Xr 2n-bit output of round r (input of round r + 1)
Xr

L left n-bit of Xr

Xr
R right n-bit of Xr

Kr n-bit subkey of round r + 1
X <<< i cycle shift of X to the left by i bits
⊕ bitwise XOR
& bitwise AND

Round Function. The round function is described in Fig. 1. The (r+1) round’s
input is (Xr

L||Xr
R) and output is (Xr+1

L ||Xr+1
R ). The round function is

Xr+1
L = F (Xr

L) ⊕ Xr
R ⊕ Kr, Xr+1

R = Xr
L,

where function F (X) = ((X <<< 5)&X) ⊕ (X <<< 1). We can also present the
round function for single bit, which we will use in the rest of the paper. Let
Xr

L = {Xr
L,n−1,X

r
L,n−2, ..., Xr

L,0}, Xr
R = {Xr

R,n−1,X
r
R,n−2, ...,X

r
R,0}, and the

round function can be denoted as

Xr+1
L,i = (Xr

L,(i−5+n)%n&XL,i) ⊕ Xr
L,(i−1+n)%n ⊕ Xr

R,i ⊕ Kr
i , Xr+1

R,i = Xr
L,i,

where i = 0, 1, ..., n − 1, and Xr
L,0, Xr

R,0 is the LSB of Xr
L and Xr

R.
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<<<5

<<<1

&

K r

X r
L

X r+1
L

X r
R

X r+1
R

Fig. 1. The round function of Simeck

t i+2 t i+1 t i K i

t i+3

F(t i)

C   (zj)i

Fig. 2. The key schedule of Simeck

Key Schedule. The key schedule of Simeck (Fig. 2) is similar with Speck. We
describe it briefly. To generate a sequence of round keys {K0, ...,Knr−1} from
the master key, the states {t2, t1, t0,K0} are initialized with the master key
at first. Then the registers are updated to generate the round keys used in all
nr-round encryption. The updating process is

Ki+1 = ti, ti+3 = F (ti) ⊕ Ki ⊕ C ⊕ (zj)i,

where 0 ≤ i ≤ nr − 1, C = 2n − 4 (n is the word size), (zj)i is the i-th bit
of zj . For Simeck32/64 and Simeck48/96, the sequence zj is generated by the
primitive polynomial X5 + X2 + 1 with the initial states (1, 1, 1, 1, 1). And for
Simeck64/128, the zj is generated by the primitive polynomial X6 +X + 1 with
the initial states (1, 1, 1, 1, 1, 1).

2.2 Linear Cryptanalysis

We first give the calculation formula of the correlation for boolean function.
Let g(x) : Fn

2 → F2 is a boolean function and B(g) =
∑

x∈Fn
2

(−1)g(x), so the
correlation c(g) is

c(g) =
1
2n

B(g) =
1
2n

∑

x∈Fn
2

(−1)g(x)
.

Then the bias of g(x) is ε(g) = 1
2c(g). In the rest of the paper, we use the B(g)

as correlation for simplicity of description in some situations.
Linear cryptanalysis [13] is an important known plaintext cryptanalytic tech-

nique, and it tries to find a highly probable expression with plaintexts P , cipher-
texts C and key bits K as

α · P ⊕ β · C = γ · K,

where α, β, γ are masks. The bias of the expression is ε(α · P ⊕ β · C ⊕ γ · K), so
at least O( 1

ε2 ) plaintexts are needed in the key recovery attack.
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The linear hull [14] is a set of linear approximations with the same input
mask and output mask, and the potential of a linear hull with mask α and β is

ALH(α, β) =
∑

γ
ε2(α · P ⊕ β · C ⊕ γ · K) = ε̄2.

Notice the ε̄2 may be higher than ε2 in most situations, so there needs less
plaintexts in the linear hull cryptanalysis than linear cryptanalysis.

2.3 Linear Compression and Dynamic Key-Guessing Techniques

To reduce the time complexity of calculating the correlation in the linear hull
cryptanalysis, the linear part of the function can be compressed at first. Let
y = f(x, k) is a boolean function, and x is l1-bit plaintext, k is l2-bit key, the
counter vector V [x] denotes the number of x. If y = f(x, k) = x0⊕k0⊕f ′(x′, k′),
we can generate a new counter vector V ′[x′] =

∑
x0∈F2

(−1)x0V [x0||x′], so the
correlation of y under some k guess is

Bk(y) =
∑

x
(−1)f(x,k)

V [x] ⇒ Bk(y) = (−1)k0
∑

x′ (−1)f ′(x′,k′)
V ′[x′].

Since the k0 value doesn’t affect the absolute value of Bk(y), k0 is called related
bit and doesn’t need to be guessed. So there needs 2l1+l2−2 computations, less
than 2l1+l2 . If y = f(x, k) has multiple linear bits of x, k, we can also compress
them using above method.

Besides, Chen et al. in [10] introduced the Guess, Split and Combine tech-
nique to reduce the time complexity based on the dynamic key-guessing tech-
niques. In the calculation of Bk(y) =

∑
x (−1)f(x,k)

V [x], let k = kG||kA||kB ||kC

((kG, kA, kB , kC) are lG2 , lA2 , lB2 , lC2 -bit) and guess the kG at first. Then all
the x values are split into two sets SA and SB . For NA values of x ∈ SA,
f(x) = fA(x, kA||kC), and for NB values of x ∈ SB ,f(x) = fB(x, kB ||kC),

Bk(y) =
∑

x∈SA

(−1)fA(x,kA||kC)
VA[x] +

∑

x∈SB

(−1)fB(x,kB ||kC)
VB [x].

One needs NA2lG2 +lA2 +lC2 + NB2lG2 +lB2 +lC2 + 2l2 additions in the Guess, Split and
Combine process, which takes less time than the general method with 2l1+l2 .

For example, we use the Guess, Split and Combine technique to calculate the
correlation Bk1,k2(y) of f1 = (x1 ⊕ k1)&(x2 ⊕ k2) with the counter V [x1, x2].

1. Guess k1 at first.
2. Split the x = x1||x2 into two cases according the value of (x1 ⊕ k1).

(a) For x1 that satisfies x1 ⊕ k1 = 0, f1 = 0. It is necessary to generate a new
counter V1 =

∑
x2∈F2

V [x1 = k1, x2].
(b) For x1 that satisfies x1 ⊕ k1 = 1, f1(x, k) = (x2 ⊕ k2). It is necessary to

generate a new counter V2 =
∑

x2∈F2
(−1)x2V [x1 = k1 ⊕ 1, x2], and k2 is

related bit.
3. Combine the two cases, Bk1,k2(y) = V1 + (−1)k2V2.

Step 2.(a)/2.(b) needs 1 addition, and step 3 needs 2 additions. So in total there
needs 2 × (1 + 1 + 2) = 23 additions to compress x1, x2, less than the general
method.
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3 The Linear Hull Distinguishers of Simeck

This section first gives some good differentials searched by Kölbl’s tool, then
derives equivalent linear hulls from the differentials. We also do an experiment
on the 13-round linear hull for Simeck32/64 to verify the bias in Sect. 3.2.

3.1 Differential Distinguishers of Simeck

Differential cryptanalysis is a chosen plaintext/ciphertext cryptanalytic tech-
nique. In the round function of Simeck, the only non-linear operation is the
AND operation. For the single bit x and y, the probability of (x&y) = 0 is 0.75.
We can extract highly probable differential expressions of the function F (X) as

Differential Characteristic 1 : Pr [(ΔX))i → (ΔF (X))i+1] = 0.5,

Differential Characteristic 2 : Pr [(ΔX))i → (ΔF (X))i+1,i] = 0.5,

Differential Characteristic 3 : Pr [(ΔX))i → (ΔF (X))i+1,i+5] = 0.5,

Differential Characteristic 4 : Pr [(ΔX))i → (ΔF (X))i+1,i,i+5] = 0.5,

where the (ΔF (X))i+1 denotes the (i + 1)-th bit is 1 and the others are 0.
In [11], Kölbl introduced a tool for cryptanalysis of symmetric primitives

based on SMT/SAT solvers. We use the tool to search the differentials which
have a balance between low Hamming weight and high probability to attack more
rounds using less plaintexts. The differentials we choose are listed in Table 2.

Table 2. The differentials of Simeck

Cipher Round Δin Δout log2diff Reference

Simeck32/64 13 (0x0, 0x2) (0x2, 0x0) −29.64 [15]

Simeck32/64 13 (0x0, 0x2) (0x2, 0x0) −28.91 this paper

Simeck48/96 20 (0x400000, 0xE00000) (0x400000, 0x200000) −43.65 [12]

Simeck48/96 20 (0x400000, 0xA00000) (0x400000, 0x200000) −43.66 this paper

Simeck64/128 26 (0x0, 0x4400000) (0x8800000, 0x400000) −60.02 [12]

Simeck64/128 26 (0x0, 0x4400000) (0x800000, 0x400000) −60.09 this paper

For Simeck32/64, by searching all the characteristics with probability higher
than 2−52, we get more accurate result than [15]. For Simeck48/96 and
Simeck64/128, the differentials with less active bits in the input difference and
output difference are preferred, since less key bits are involved in the attack.
At the same time, the probability of the differentials must be higher than 2−45

or 2−61, to ensure the data complexity and success rate can be achieved (If we
search more time, the probability will be equivalent to the result in [12]).
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3.2 Linear Hull Distinguishers of Simeck

In [4], Alizadeh et al. noticed each differential characteristic can be mapped into
a linear approximation for Simon. The property is based on the round function of
Simon, so we can use the similar property for Simeck to construct an equivalent
linear characteristic from a differential characteristic. The relation between the
probability p of a differential and the potential ε̄2 of a linear hull is ε̄2 = 2−2p.
The linear approximation expressions of the function F (X) for Simeck are

Linear Approxiamtion 1 : Pr[(F (X))i = (X)i−1] = 0.75,

Linear Approxiamtion 2 : Pr[(F (X))i = (X)i−1 ⊕ (X)i] = 0.75,

Linear Approxiamtion 3 : Pr[(F (X))i = (X)i−1 ⊕ (X)i−5] = 0.75,

Linear Approxiamtion 4 : Pr[(F (X))i = (X)i−1 ⊕ (X)i ⊕ (X)i−5] = 0.25.

[1,6,17] gave some other methods to find linear hulls for Simon, including
correlation matrix, Mixed Integer Programming (MIP) and so on. In this paper,
we use the differential characteristics to get linear characteristics. The used linear
approximations (Used App) can be found above. The details for Simeck32/64
are listed in Table 3. For Simeck48/96 and Simeck64/128, the details of the
calculation process are similar with Simeck32/64 that we omit them in this
paper. The linear hulls for all versions of Simeck can be seen in Table 4.

Table 3. Linear hull based on the differential for Simeck32/64

r Differential Linear

ΔL ΔR XL XR Used app

0 − 1 1 − −
1 1 − − 1 1

2 2 1 1 0 1

3 1, 3 2 0 1, 15 1: 1

4 4 1, 3 1, 15 14 1

5 1, 3, 5 4 14 1, 13, 15 3: 1 : 2

6 2, 3 1, 3, 5 1, 13, 15 0, 15 1 : 1

7 1, 4, 5 2, 3 0, 15 1, 13, 14 3 : 2 : 2

8 3, 4 1, 4, 5 1, 13, 14 14, 15 1 : 2

9 1, 3 3, 4 14, 15 1, 15 1 : 2

10 2 1, 3 1, 15 0 1

11 1 2 0 1 1

12 − 1 1 − −
13 1 − − 1 −∑

r log2pr = −38 log2ε
2 = −40

log2pdiff = −28.91 log2ε̄
2 = −30.91

#trails = 1846518 #characteristics = 1846518



416 L. Qin et al.

Table 4. The linear hulls for Simeck

Cipher Round Input Active bits Output Active bits ALH

Simeck32/64 13 Xr
L,1 Xr+13

R,1 −30.91

Simeck48/96 20 Xr
L,19, X

r
L,21, X

r
R,20 Xr+20

L,21 , Xr+20
R,20 −45.66

Simeck64/128 26 Xr
L,18, X

r
L,22 Xr+26

L,22 , Xr+26
R,21 −62.09

Experiments for Simeck32/64. Since the block of Simeck32/64 only contains
32 bits, we can iterate over the 232 possible plaintexts to validate the bias (ε̄2)
of the 13-round linear hull. Randomly select 1000 keys and the experimental
results are listed in Table 5. In the experiments, 48.4% of the keys have a bias
higher than 2−30.91, which is corresponding to the linear hull’s ALH = 2−30.91.

Table 5. Bias of the 13-round linear hull

log2(ε̄
2) Num Probability log2(ε̄

2) Num Probability

[−27.91, 0) 56 0.056 [−30.91, −29.91) 151 0.151

[−28.91, −27.91) 123 0.123 [−31.91, −30.91) 144 0.144

[−29.91, −28.91) 154 0.154 (−∞, −31.91) 372 0.372

4 Key Recovery Attack on Simeck

In this section, we discuss key recovery attack on all three versions of Simeck,
and implement the 21-round attack for Simeck32/64 to verify our algorithm.

4.1 Key Recovery Attack on Simeck32/64

We use the 13-round linear hull

Xr
L,1 → Xr+13

R,1

obtained in Sect. 3.2 to attack Simeck32/64. At first four more rounds before and
four more rounds after the linear hull are added to get a 21-round distinguisher.
Take some plaintexts or subkeys as a whole, we can get the expression for Xr

L,1

as f(x, k) = x0 ⊕ k0 ⊕ f ′(x′, k′), where

f ′(x′, k′) = ((x1 ⊕ k1)&(x2 ⊕ k2)) ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕
[(x5 ⊕ k5 ⊕ (x6 ⊕ k6)&(x7 ⊕ k7))&(x8 ⊕ k8 ⊕ (x7 ⊕ k7)&(x9 ⊕ k9))]
⊕ {{(x10 ⊕ k10 ⊕ (x6 ⊕ k6)&(x7 ⊕ k7))⊕
[(x11 ⊕ k11 ⊕ (x12 ⊕ k12)&(x13 ⊕ k13))&(x14 ⊕ k14 ⊕ (x3 ⊕ k3)&(x13 ⊕ k13))]}
&{(x15 ⊕ k15 ⊕ (x7 ⊕ k7)&(x9 ⊕ k9))⊕
[(x14 ⊕ k14 ⊕ (x13 ⊕ k13)&(x3 ⊕ k3))&(x16 ⊕ k16 ⊕ (x3 ⊕ k3)&(x4 ⊕ k4))]}}.
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In the expression, x′ = {x1, ..., x16} and k′ = {k1, ..., k16}. The details of {x0, x1,
. . . , x16}, {k0, k1, . . . , k16} are given in Table 6. Notice x10 = x3 ⊕ x5 and x15 =
x4 ⊕x8, so there are 15 independent bits of x and 17 independent bits of k. The
Xr+13

R,1 also can be represented as f(x, k) where x, k have similar expressions as
that in Table 6. (The expressions of x, k for Xr+13

R,1 is so similar to Table 6 that
we omit them in this paper).

Table 6. The expressions for Xr
L,1

x Expression of x k Expression of k

x0
Xr−4

L,1 ⊕ Xr−4
L,15

⊕(Xr−4
L,9 & ⊕ Xr−4

L,14) ⊕ Xr−4
L,13 ⊕ Xr−4

R,14

k0
Kr−1

1 ⊕ Kr−2
0 ⊕ Kr−3

1

⊕Kr−3
15 ⊕ Kr−4

14

x1 (Xr−4
L,5 & ⊕ Xr−4

L,10) ⊕ Xr−4
L,9 ⊕ Xr−4

R,10 k1 Kr−4
10

x2 (Xr−4
L,10& ⊕ Xr−4

L,15) ⊕ Xr−4
L,14 ⊕ Xr−4

R,15 k2 Kr−4
15

x3 (Xr−4
L,7 & ⊕ Xr−4

L,12) ⊕ Xr−4
L,11 ⊕ Xr−4

R,12 k3 Kr−4
12

x4 (Xr−4
L,12& ⊕ Xr−4

L,1 ) ⊕ Xr−4
L,0 ⊕ Xr−4

R,1 k4 Kr−4
1

x5 (Xr−4
L,5 & ⊕ Xr−4

L,10) ⊕ Xr−4
L,9 ⊕ Xr−4

R,10 ⊕ Xr−4
L,11 k5 Kr−4

10 ⊕ Kr−3
11

x6 (Xr−4
L,1 & ⊕ Xr−4

L,6 ) ⊕ Xr−4
L,5 ⊕ Xr−4

R,6 k6 Kr−4
6

x7 (Xr−4
L,6 & ⊕ Xr−4

L,11) ⊕ Xr−4
L,10 ⊕ Xr−4

R,11 k7 Kr−4
11

x8 (Xr−4
L,10& ⊕ Xr−4

L,15) ⊕ Xr−4
L,14 ⊕ Xr−4

R,15 ⊕ Xr−4
L,0 k8 Kr−4

15 ⊕ Kr−3
0

x9 (Xr−4
L,11& ⊕ Xr−4

L,0 ) ⊕ Xr−4
L,15 ⊕ Xr−4

R,0 k9 Kr−4
0

x10 x3 ⊕ x5 k10 k3 ⊕ k5 ⊕ Kr−2
12

x11 (Xr−4
L,1 & ⊕ Xr−4

L,6 ) ⊕ Xr−4
L,5 ⊕ Xr−4

R,6 ⊕ Xr−4
L,7 k11 Kr−4

6 ⊕ Kr−3
7

x12 (Xr−4
L,13& ⊕ Xr−4

L,2 ) ⊕ Xr−4
L,1 ⊕ Xr−4

R,2 k12 Kr−4
2

x13 (Xr−4
L,2 & ⊕ Xr−4

L,7 ) ⊕ Xr−4
L,6 ⊕ Xr−4

R,7 k13 Kr−4
7

x14 (Xr−4
L,6 & ⊕ Xr−4

L,11) ⊕ Xr−4
L,10 ⊕ Xr−4

R,11 ⊕ Xr−4
L,12 k14 Kr−4

11 ⊕ Kr−3
12

x15 x4 ⊕ x8 k15 k4 ⊕ k8 ⊕ Kr−2
1

x16 (Xr−4
L,11& ⊕ Xr−4

L,0 ) ⊕ Xr−4
L,15 ⊕ Xr−4

R,0 ⊕ Xr−4
L,1 k16 Kr−4

0 ⊕ Kr−3
1

The x denotes the plaintexts or ciphertexts and the k denotes the subkey bits.
We use xp = {xp,0, ..., xp,16} and kp = {kp,0, ..., kp,16} to represent the x, k for
Xr

L,1. For Xr+13
R,1 , we use xc and kc. Then the Xr

L,1 can be denoted by f(xp, kp)
and the Xr+13

R,1 can be denoted by f(xc, kc).
Let the plaintexts P = Xr−4 and the ciphertexts C = Xr+17. We can com-

press the N pairs (P,C) into a counter vector V [xp, xc] of size 215+15 = 230.
Then the empirical correlation under some subkey kp and kc is

ckp,kc
=

1
N

∑

xp,xc

(−1)f(xp,kp)⊕f(xc,kc)V [xp, xc].
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As we can see, f(x, k) = x0 ⊕k0 ⊕f ′(x′, k′) is linear with x0 ⊕k0. So the xp,0

and xc,0 can be compressed at first as following

V1[x′
p, x

′
c] =

∑

xp,0,xc,0∈F2
(−1)xp,0⊕xx,0V [xp, xc].

The target correlation becomes

ck′
p,k′

c
=

1
N

∑

x′
c

(−1)f ′(x′
c,k′

c)
∑

x′
p

(−1)f ′(x′
p,k′

p)V1[x′
p, x

′
c],

and the kp,0, kc,0 can be regarded as related bits and omitted in the calcula-
tion. We introduce how to calculate the Bk′

(y) =
∑

x′ (−1)f ′(x′,k′)
V ′[x′] effi-

ciently using dynamic key-guessing techniques in the following Procedure A,
where y = f ′(x′, k′) and V ′[x′] is the num of x′. The calculation of Bk′

p(y) =
∑

x′
p
(−1)f ′(x′

p,k′
p)V1[x′

p, x
′
c] for constant x′

c is same with Bk′
(y), so calculating

the ck′
p,k′

c
needs to call Procedure A twice.

Procedure A. The expression of f ′(x′, k′) is the same with the expression for
Simon32/64, so the calculation process is similar. The details can be seen in the
Sect. 4.2 of [10], and we gives the basic ideas in the following. There are only 14
independent bits for {x1, . . . x16} and 16 independent bits for {k1, . . . , k16}. We
introduces the procedure briefly.

1. Guess k1, k3, k7 at first.
2. Split the f ′(x′, k′) into 8 cases according to the values of {x1⊕k1, x3⊕k3, x7⊕

k7}. For each case, there needs 28 × 7 additions to generate a new counter
vector. Then also apply the Guess, Split and Combine technique to calculate
the partial correlation of each case, and the time complexity is 211.19 additions
each.

3. Combine the 8 cases to get the final correlation, there needs 213×7 additions.

The total time of Procedure A is

T = 23 × (8 × (28 × 7 + 211.19) + 213 × 7) = 219.46.

Attack on 23 Rounds. We add one more round before and one more
round after the 21-round distinguisher. According the plaintexts and cipher-
texts involved in the 21-round distinguisher, there needs to guess 13-bit keys in
(r − 5)-th round and 13-bit keys in (r + 17)-th round. The estimated potential
ε̄2 of the linear hull is 2−30.91. Set the advantage a = 8 and data complexity
N = 2 × 230.19 = 231.19 = cN · ε̄2. According to the experiments on the bias of
the 13-round linear hull in the Sect. 3.2 and the theory of success rate in [16],
we can get the range of the success rate (0.411, 0.532) of the attack in Table 7.
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Table 7. Experimental results for the 13-round linear hull of Simeck32/64

log2(ε̄2) Prob.(p) cN Lower success-rate(sl) Upper success-rate(su)

[−27.91, 0) 0.056 cN ≥ 16 1 1

[−28.91, −27.91) 0.123 8 ≤ cN < 16 0.997 1

[−29.91, −28.91) 0.154 4 ≤ cN < 8 0.867 0.997

[−30.91, −29.91) 0.151 2 ≤ cN < 4 0.477 0.867

[−31.91, −30.91) 0.144 1 ≤ cN < 2 0.188 0.477
∑

p · sl = 0.411
∑

p · su = 0.532

The details of the attack are as follows.

1. Guess 13 bits {Kr−5
0 − Kr−5

2 ,Kr−5
5 − Kr−5

7 ,Kr−5
9 − Kr−5

15 } and 13 bits
{Kr+17

0 −Kr+17
2 ,Kr+17

5 −Kr+17
7 ,Kr+17

9 −Kr+17
15 }. For each of the 226 values,

a. Encrypt the plaintexts by one round and decrypt the ciphertexts by
one round to get the Xr−4 and Xr+17. Then compress the N pairs
(Xr−4,Xr+17) into a counter vector V1[x′

p, x
′
c] of size 214+14 = 228. This

step takes N = 231.91 times two-round encryptions and compressions.
b. For each of 214 x′

c, call Procedure A to calculate the correlation for dif-
ferent k′

p and constant x′
c. Now we have 216+14 counters of 14 bits x′

c and
16 bits k′

p. This step needs 214 × 219.46 times additions.
c. For each of 216 k′

p, call Procedure A to calculate the correlation for dif-
ferent k′

c. Now we have 216+16 counters of 16 bits k′
p and 16 bits k′

c. This
step needs 216 × 219.46 additions.

In total, there needs 226 × 231.91 times two-round encryptions and 226 ×
(233.46 + 235.46) = 261.78 additions.

2. We have 226+32 = 258 counters now. Since the advantage is 8, so the key
ranked in the largest 258−8 counters can be the right key. Get 256 candidates
of the master key according to the the key schedule and do exhaustive search
to find the right key. There needs 256 times 23-round encryptions.

Attack complexity: 261.78 additions and 256.41 23-round encryptions.

Implementation of the 21-Round Attack. If we don’t consider the (r − 5)-
th round and (r+17)-th round in the 23-round attack, the 21-round attack needs
235.78 additions to get 224 possible values of 32 subkey bits. (Due to the time
limitation, we don’t do the exhaustive search to recover the whole master key).

We randomly select the master key to do experiments on the recovery of
8-bit key information for the 32 bits subkey involved in the 21-round attack. If
the correct subkey bits are in the first 224 counters of all the 232 counters in
descending order, we believe the attack is successful and can recover the correct
key bits. There are 1000 master keys tested and the success rate is 0.456, which
meets our expectation (0.411, 0.531) and our attack algorithm is effective.
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4.2 Key Recovery Attack on Simeck48/96

We use the 20-round linear hull

Xr
L,19 ⊕ Xr

L,21 ⊕ Xr
R,20 → Xr+20

L,21 ⊕ Xr+20
R,20

obtained in Sect. 3.2 to attack Simeck48/96. Add 4 rounds before r-th round,
we get the expression fB(xB , kB) for Xr

L,19 ⊕Xr
L,21 ⊕Xr

R,20. Add 4 rounds after
(r+20)-th round, we get the expression fC(xC , kC) for Xr+20

L,21 ⊕Xr+20
R,20 .(We give

expressions of fB(xB , kB) and fC(xC , kC) and details of {xB , kB} and {xC , kC}
are similar with Table 6 that we omit them in this paper.). Then we can get a
28-round distinguisher for Simeck48/96.

Table 8. Time complexity for some functions

Case Expression Time

f1 (x1 ⊕ k1 ⊕ (x2 ⊕ k2)&(x3 ⊕ k3))&(x4 ⊕ k4 ⊕ (x2 ⊕ k2)&(x5 ⊕ k5)) 26.46

f2

[x1 ⊕ k1 ⊕ (x2 ⊕ k2)&(x3 ⊕ k3)⊕
(x4 ⊕ k4 ⊕ (x5 ⊕ k5)&(x6 ⊕ k6))&(x7 ⊕ k7 ⊕ (x6 ⊕ k6)&(x8 ⊕ k8))]

&[x9 ⊕ k9 ⊕ (x3 ⊕ k3)&(x10 ⊕ k10)⊕
(x7 ⊕ k7 ⊕ (x6 ⊕ k6)&(x8 ⊕ k8))&(x11 ⊕ k11 ⊕ (x8 ⊕ k8)&(x12 ⊕ k12))]

215.99

f3 f2 ⊕ ((x8 ⊕ k8)&(x12 ⊕ k12)) 215.99

f4

f2 ⊕ ((x13 ⊕ k13)&(x14 ⊕ k14)) ⊕ ((x8 ⊕ k8)&(x12 ⊕ k12))⊕
(x15 ⊕ k15 ⊕ (x2 ⊕ k2)&(x3 ⊕ k3))&(x16 ⊕ k16 ⊕ (x10 ⊕ k10)&(x3 ⊕ k3))

Notice : x1 = x8 ⊕ x15, x9 = x12 ⊕ x16

219.46

f5 f4 ⊕ ((x8 ⊕ k8)&(x12 ⊕ k12)) 219.46

For simplicity, we give the time complexity of calculating the correlation for
some common boolean functions in Table 8. Case f1 and f2 can be found in [10]
and the time complexity is 26.46 and 215.99. There is little difference between
case f2 and f3, where f3 = f2 ⊕ ((x8 ⊕k8)&(x12 ⊕k12)). Because the x8, x12 and
k8, k12 are also involved in f2 and compressed at first, so in the calculation the
only change is the method of generating the new counter vector, and the time
complexity is equal for the two cases. The case f4 is same with the Procedure A
in Sect. 4.1 and the time complexity is 219.46. For the similar reason like f2 and
f3, the f5 have a time complexity of 219.46 as f4.

Procedure B. Here we discuss how to calculate BkB (y) =
∑

xB
(−1)fB(xB ,kB)

fB(xB , kB) = x0 ⊕ k0 ⊕ (x1 ⊕ k1)&(x2 ⊕ k2)
⊕ (x3 ⊕ k3)&(x4 ⊕ k4) ⊕ (x5 ⊕ k5)&(x6 ⊕ k6)
⊕ [(x7 ⊕ k7 ⊕ (x8 ⊕ k8)&(x9 ⊕ k9))&(x10 ⊕ k10 ⊕ (x9 ⊕ k9)&(x11 ⊕ k11))]
⊕ {[x12 ⊕ k12 ⊕ (x8 ⊕ k8)&(x9 ⊕ k9)⊕
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(x13 ⊕ k13 ⊕ (x14 ⊕ k14)&(x15 ⊕ k15))&(x16 ⊕ k16 ⊕ (x3 ⊕ k3)&(x15 ⊕ k15))]
&[x17 ⊕ k17 ⊕ ((x9 ⊕ k9)&(x11 ⊕ k11))⊕
(x16 ⊕ k16 ⊕ (x3 ⊕ k3)&(x15 ⊕ k15))&(x18 ⊕ k18 ⊕ (x3 ⊕ k3)&(x4 ⊕ k4))]}
⊕ {[x19 ⊕ k19 ⊕ (x20 ⊕ k20)&(x21 ⊕ k21)⊕
(x22 ⊕ k22 ⊕ (x23 ⊕ k23)&(x24 ⊕ k24))&(x25 ⊕ k25 ⊕ (x5 ⊕ k5)&(x24 ⊕ k24))]
&[x26 ⊕ k26 ⊕ (x21 ⊕ k21)&(x27 ⊕ k27)⊕
(x25 ⊕ k25 ⊕ (x5 ⊕ k5)&(x24 ⊕ k24))&(x28 ⊕ k28 ⊕ (x5 ⊕ k5)&(x6 ⊕ k6))]}

VB[x] efficiently using dynamic key-guessing techniques. Compress the plaintexts
of r-th round into a counter VB [x1, ..., x28]. Since x12 = x3 ⊕ x7, x17 = x4 ⊕ x10,
there are only 26 independent x bits.

1. Compress {x1 − x4, x7 − x18} as case f4 for each {x5, x6, x19 − x28}, the
time complexity is 219.46 each. This step needs 212 · 219.46 = 231.46 additions
in total. Now we have a counter vector for 16 bits keys and 12 bits x.

2. Compress {x5, x6, x19 − x28} as case f3 for each {k1 − k4, x7 − x18}, the time
complexity is 215.99 each. This step needs 216·215.99 = 231.99 additions in total.
Now we have a counter vector for 28 bits keys.

In total, the time complexity of procedure B is 231.46 +231.99 = 232.75 additions.

Procedure C. Here we discuss how to calculate BkC (y) =
∑

xC
(−1)fC(xC ,kC)

VC [x] efficiently using dynamic key-guessing techniques. Compress the cipher-
texts of (r+20)-th round into a counter VC [x1, ..., x21], since x13 = x8⊕x18, x19 =
x11 ⊕ x21, there are only 19 independent x bits.

fC(xC , kC) = x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))
⊕ [(x3 ⊕ k3 ⊕ (x4 ⊕ k4)&(x5 ⊕ k5))&(x6 ⊕ k6 ⊕ (x5 ⊕ k5)&(x7 ⊕ k7))]
⊕ [(x8 ⊕ k8 ⊕ (x9 ⊕ k9)&(x10 ⊕ k10))&(x11 ⊕ k11 ⊕ (x10 ⊕ k10)&(x12 ⊕ k12))]
⊕ {[x13 ⊕ k13 ⊕ ((x9 ⊕ k9)&(x10 ⊕ k10))⊕
(x14 ⊕ k14 ⊕ (x15 ⊕ k15)&(x16 ⊕ k16))&(x17 ⊕ k17 ⊕ (x16 ⊕ k16)&(x18 ⊕ k18))]
&[x19 ⊕ k19 ⊕ ((x10 ⊕ k10)&(x12 ⊕ k12))⊕
(x17 ⊕ k17 ⊕ (x16 ⊕ k16)&(x18 ⊕ k18))&(x20 ⊕ k20 ⊕ (x18 ⊕ k18)&(x21 ⊕ k21))]}

1. Compress {x3−x7} as case f1 for each {x1, x2, x8−x21}, the time complexity
is 26.46 each. This step needs 214 · 26.46 = 220.46 additions in total. Now we
have a counter vector for 5 bits keys and 14 bits x.

2. Compress {x1, x2, x8−x21} as case f5 for each {k3−k7}, the time complexity
is 219.46 each, and this step needs 25 · 219.46 = 224.46 additions. Now we have
a counter vector for 21 bits keys.

In total, the time complexity of procedure C is 220.46 +224.46 = 224.55 additions.
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Attack on 30 Rounds. We add one more round before and one more
round after the 28-round distinguisher. According the plaintexts and cipher-
texts involved in the 28-round distinguisher, there needs to guess 21-bit keys
in (r − 5)-th round and 18-bit keys in (r + 24)-th round. The estimated poten-
tial of this linear hull is 2−45.66. Set the advantage a = 8 and data complexity
N = 4 × 245.66 = 247.66, the success rate is 0.867.

1. Guess 21 bits {Kr−5
1 ,Kr−5

3 − Kr−5
21 ,Kr−5

23 } and 18 bits {Kr+24
0 ,Kr+24

4 −
Kr+24

6 ,Kr+24
8 − Kr+24

21 }. For each of 239 values,
a. Encrypt the plaintexts by one round and decrypt the ciphertexts by

one round to get the Xr−4 and Xr+24. Then compress the N pairs
(Xr−4,Xr+24) into a counter vector of size 245. This step takes N = 247.66

times two-round encryptions and compressions.
b. For each of 219 xC in fC , call Procedure B. Now we have 219+28 counters

of 19 bits xC and 28 bits kB . This step needs 219 × 232.75 additions.
c. For each of 228 kB , call Procedure C. Now we have 228+21 counters of 28

bits kB and 21 bits kC . This step needs 228 × 224.55 additions.
In total, this step needs 239×247.66 times two-round encryptions and 239×253.2

additions.
2. We have 239+49 = 288 counters in total and the key ranked in the largest

288−8 counters can be the right key. Get 288 candidates of the master key
according to the the key schedule and do exhaustive search to find the right
key.

Attack complexity: 292.2 additions and 288.04 30-round encryptions.

4.3 Key Recovery Attack on Simeck64/128

We use the 26-round linear hull

Xr
L,18 ⊕ Xr

L,22 → Xr+26
L,22 ⊕ Xr+26

R,21

obtained in Sect. 3.2 to attack Simeck64/128. Add four more rounds on the
top and four more rounds on the bottom to get a 34-round distinguisher. The
expression for the parity bits Xr

L,18 ⊕ Xr
L,22 and Xr+26

L,22 ⊕ Xr+26
R,21 are also similar

with the other two situations that we omit the details in this paper.
Then adding two more rounds before and one more round after the 34-round

distinguisher we can attack the 37-round Simeck64/128. The procedure is sim-
ilar with the attack on Simeck32/64 and Simeck48/96, and due to the space
limitation we will not repeat it. The estimated potential of this linear hull is
2−62.09. Set the advantage a = 8 and data complexity N = 2 × 262.09 = 263.09,
the success rate is 0.477. The time complexity of the 37-round attack is 2111.44

additions and 2121.25 37-round encryptions.
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5 Conclusion

In this paper, we analyzed the security of Simeck against improved linear hull
cryptanalysis with dynamic key-guessing techniques. We searched out better
differentials using Kölbl’s tool, then got linear hulls for all versions of Simeck.
With Chen etal.’s Guess, Split, Combine technique to reduce the time complexity
in the calculation of empirical correlations, we made the improved linear hull
attack on Simeck. As a result, we can attack 23-round Simeck32/64, 30-round
Simeck48/96 and 37-round Simeck64/128, which are the best results so far from
the point of rounds attacked. The experiments on the bias of the linear hull for
Simeck32/64 met our expectation and 48.4% of the results have a bias higher
than we expected. We also implemented the attack on 21-round Simeck32/64,
and the success rate is 45.6% corresponding to our estimated value, which proves
our algorithm is effective.

In the future, we will try to search better linear hulls for Simeck using other
methods like correlation matrix, Mixed Integer Programming (MIP) and so on.
Then we will apply the improved linear hull attack with dynamic key-guessing
techniques to other bit-oriented block ciphers.
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Abstract. Multivariate Public Key Cryptography (MPKC) is one of
the main candidates for secure communication in a post-quantum era.
Recently, Yasuda and Sakurai proposed in [8] a new multivariate encryp-
tion scheme called SRP, which is very efficient and resists all known
attacks against multivariate schemes. However, the key sizes of the
scheme are quite large. In this paper we propose a new strategy to reduce
the key size of the SRP scheme, which enables us to reduce the size of the
public key by up to 54 %. Furthermore, we can use the additional struc-
ture in the public key polynomials to speed up the encryption process of
the scheme by up to 50 %. We show by experiments that our modifica-
tions do not weaken the security of the scheme.

Keywords: Multivariate cryptography · SRP encryption scheme ·
Key size reduction · Efficiency

1 Introduction

Multivariate cryptography is one of the main candidates to guarantee the secu-
rity of communication in the post-quantum era. Multivariate schemes are in
general very fast and require only modest computational resources, which makes
them attractive for the use on low cost devices like RFIDs or smart cards. While
there exist many practical multivariate signature schemes such as UOV, Rainbow
and Gui, the number of candidates for practical multivariate encryption schemes
is quite limited. Therefore, the development of secure and efficient multivariate
encryption schemes is an important research topic.

Recently, Yasuda and Sakurai proposed in [8] a new multivariate encryption
scheme called SRP, which is very efficient and resists all known attacks against
multivariate schemes. However, similar to other multivariate schemes, the sizes
of the public and private key of SRP are quite large.

In this paper we propose a technique to reduce the public key size of the
SRP scheme, by which we achieve a reduction of the public key size of SRP by
up to 54%. Furthermore, the additional structure in the public key polynomials
allows us to speed up the encryption process of the scheme by up to 50%.
c© Springer International Publishing Switzerland 2016
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We show by experiments that the security of the SRP scheme is not weakened
by our modifications. Our technique is the first approach to reduce the public
key size of a multivariate encryption scheme.

By our modifications, we obtain a very efficient multivariate encryption
scheme. The public key size of the scheme is about 50% smaller than that of
other multivariate encryption schemes such as ABC and ZHFE. The encryption
process is about twice as fast as that of the other schemes.

Our paper is organized as follows. In Sect. 2, we recall the basic concepts of
multivariate public key cryptography and the SRP encryption scheme. Section 3
presents the construction of our CyclicSRP scheme and analyzes the security of
our construction. In Sect. 4 we give concrete parameter sets for our scheme and
compare it with the standard SRP scheme with regard to key sizes and efficiency
of the encryption process. Finally, Sect. 5 concludes the paper.

2 The SRP Encryption Scheme

In this section, we recall the basic SRP scheme of [8]. Before we come to the
description of the scheme itself, we start with a short overview of the basic
concepts of multivariate cryptography.

2.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials over a finite field. The security of multivariate schemes is
based on the MQ Problem of solving such a system, which has been proven to
be NP-Hard.

To build a multivariate public key cryptosystem (MPKC), one starts with
an easily invertible quadratic map F : F

n → F
m (central map). To hide the

structure of F in the public key, we compose it with two invertible affine (or
linear) maps S : Fm → F

m and T : Fn → F
n. The public key of the scheme is

therefore given by P = S ◦ F ◦ T : Fn → F
m. The private key consists of the

three maps S,F and T and therefore allows to invert the public key. To encrypt a
message M ∈ F

n, one simply computes C = P(M) ∈ F
m. To decrypt a ciphertext

C ∈ F
m, one computes recursively x = S−1(C) ∈ F

m, y = F−1(x) ∈ F
n and

M = T −1(y). M ∈ F
n is the plaintext corresponding to the ciphertext C.

2.2 SRP

The SRP encryption scheme was proposed by Yasuda and Sakurai in [8] by
combining the Square encryption scheme [3], the Rainbow signature scheme [5]
and the Plus method [4]. By combining Square and Rainbow to one scheme,
several attacks against the single schemes are not longer applicable. Furthermore,
since both Square and Rainbow are very efficient, the same holds for the SRP
scheme.

Let F be a finite field with q elements (q ≡ 3 mod 4), E be a degree d
extension field of F (d odd), and φ be an isomorphism between the field E and
the vector space F

d. Moreover, let o, r, s and l be non-negative integers.
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Key Generation. Let n = d + o − l, n′ = d + o and m = d + o + r + s. The
central map F : Fn′ → F

m of the scheme is the concatenation of three maps FS ,
FR, and FP . These maps are defined as follows.

(i) The Square part FS : Fn′ → F
d is the composition of the maps

F
d+o πd−→ F

d φ−1

−→ E
X �→X2

−→ E
φ−→ F

d.

Here πd : Fd+o → F
d is the projection to the first d coordinates.

(ii) The UOV (Rainbow) part FR = (f (1), . . . , f (o+r)) : F
n′ → F

o+r is con-
structed as for the usual UOV signature scheme: let V = {1, . . . , d} and
O = {d + 1, . . . , d + o}. For every k ∈ {1, . . . , o + r}, the quadratic polyno-
mial f (k) is of the form

f (k)(x1, . . . , xn′) =
∑

i∈O,j∈V

α
(k)
i,j xixj +

∑

i,j∈V,i≤j

β
(k)
i,j xixj +

∑

i∈V ∪O

γ
(k)
i xi + η(k),

where α
(k)
i,j , β

(k)
i,j , γ

(k)
i , η(k) are randomly chosen F-elements.

(iii) The Plus part FP = (g(1), . . . , g(s)) : F
n′ → F

s consists of s randomly
chosen quadratic polynomials g(1), . . . , g(s).

We additionally choose an affine embedding T : Fn ↪→ F
n′

of full rank and an
affine isomorphism S : Fm → F

m. The public key is given by P = S ◦ F ◦ T :
F

n → F
m and the private key consists of S,F and T .

Encryption: Given a message M ∈ F
n, the ciphertext C is computed as C =

P(M) ∈ F
m.

Decryption: Given a ciphertext C ∈ F
m, the decryption is executed as follows.

(1) Compute x = (x1, . . . , xm) = S−1(C) and X = φ−1(x1, . . . , xd).
(2) Compute R1,2 = ±X(qd+1)/4 and set y(i) = (y(i)

1 , . . . , y
(i)
d ) = φ(Ri)

(i = 1, 2).
(3) Given the vinegar values y

(i)
1 , . . . , y

(i)
d (i = 1, 2), solve the two systems of

o + r linear equations in n′ − d = o variables ud+1, . . . , un′ given by

f (k)(y(i)
1 , . . . , y

(i)
d , ud+1, · · · , un′) = xd+k (i = 1, 2)

for k = 1, · · · , o + r. The solution is denoted by (yd+1, · · · , yn′).1
(4) Compute the plaintext M ∈ F

n by finding the pre-image of (y1, · · · , yn′)
under the affine embedding T .

Note that the only part of the central map needed for decryption are the coeffi-
cients of the Rainbow polynomials f (1), . . . , f (o+r).

In the following, we restrict to a homogeneous quadratic map F as well as
to linear maps S and T . Therefore, the public key P of the scheme will be a
homogeneous quadratic system, too. The number of terms in each component of
the public key is given by n·(n+1)

2 =: D.

1 By increasing r, the probability of both (y
(1)
1 , . . . , y

(1)
d ) and (y

(2)
1 , . . . , y

(2)
d ) leading

to a solution of the linear system can be reduced arbitrarily.
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3 Our Improved Scheme

In this section, we present our technique to generate a key pair for SRP with a
structured public key. In particular we are able to construct a public key of the
form shown in Fig. 1.

Fig. 1. Structure of the public key P

Here, the matrices B1 ∈ F
(m−d)×h and B2 ∈ F

s×(D−h) can be arbitrarily
chosen by the user, and the parameter h is given by h = d·(d+1)

2 + d · (o − l).
In the following, we choose the matrices B1 and B2 in a “cyclic” way. In

particular, we choose two random vectors b1 ∈ F
h and b2 ∈ F

D−h. The first
row of the matrix B1 is just the vector b1, while the i-th row of B1 corresponds
to a cyclic right shift of the vector b1 by i − 1 positions (i = 2, . . . ,m − d).
Analogously, the first row of the matrix B2 corresponds to the vector b2 and the
i-th row of this matrix is the cyclic right shift of b2 by i − 1 positions.

By choosing the matrices B1 and B2 in this way, we have to store only the
two vectors b1 and b2 in order to recover the matrices B1 and B2. Therefore, the
public key size of the scheme is reduced significantly (see Sect. 4). Furthermore,
we can use the structure in the matrices B1 and B2 to speed up the encryption
process of the scheme. The resulting scheme is called CyclicSRP.

3.1 Notations

Let Q = F ◦ T . For the maps F ,Q and P we denote the coefficients of the
monomial xi · xj in the k-th component of the maps by f

(k)
ij , q

(k)
ij and p

(k)
ij

respectively. We write these coefficients down into matrices F , Q and P and
divide these matrices into submatrices as shown in Fig. 2.

Furthermore, let S = (sij)
1≤j≤m
1≤i≤m and T = (tij)

1≤j≤n
1≤i≤n′ be the matrix repre-

sentations of the linear maps S and T respectively.

Additionally, we defineQS = (QSh‖Q′
S) ∈ F

d×D and QRPh =
(

QRh

QPh

)

∈
F
(o+r+s)×h.
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Fig. 2. Layout of the matrices S, Q and F

3.2 Construction

After fixing the matrices S, T , B1 and B2, the entries of the matrix QS (i.e. the
coefficients of the map Q referring to the Square part of SRP) are determined
by the equation

QS(x) = φ
(
(φ−1 ◦ πd ◦ T (x))2

)
= (q(1)(x), . . . , q(d)(x)). (1)

From P = S ◦ Q it follows directly that P = S · Q. Therefore we obtain
B1 = Sd ·QSh+Smd ·QRPh which, under the assumption of Smd being invertible,
yields

QRPh = S−1
md · (B1 − Sd · QSh). (2)

Furthermore, from Q = F ◦ T we obtain the relation

q
(k)
ij =

n′
∑

r=1

n′
∑

s=r

αrs
ij f (k)

rs (1 ≤ i ≤ j ≤ n) (3)

for each k = 1, . . . ,m, where

αrs
ij =

{
tritsi if i = j
tritsj + trjtsi otherwise.

We consider the m − d − s = o + r equations from (3) for k = d + 1, . . . , m − s;
those correspond to the UOV part of SRP. Due to the special structure of the
UOV polynomials, we have

q
(k)
ij =

d∑

r=1

n′
∑

s=r

αrs
ij f (k)

rs (1 ≤ i ≤ j ≤ n, d + 1 ≤ k ≤ m − s). (4)

Let A be the (d(d + 1)/2 + od) × h matrix containing the coefficients αrs
ij of

Eq. (4) for 1 ≤ r ≤ d, r ≤ s ≤ n′ for the rows and 1 ≤ i ≤ d, i ≤ j ≤ n for the
columns. With this notation, Eq. (4) yields

QRh = FR · A. (5)
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If A has full rank, we therefore can recover FR from QRh by solving, for each
k ∈ {d + 1, . . . ,m − s}, a linear system of the form

(q(k)11 , q
(k)
12 , . . . , q

(k)
dn ) = (f (k)

11 , f
(k)
12 , . . . , f

(k)
dn′) · A. (6)

Remark: (1) Experiments show that, for a randomly chosen invertible matrix
T , the probability of A having rank h is quite high. Therefore, we do not have
to test many matrices T to find a matrix A of full rank.
(2) The linear systems in Eq. (6) have multiple solutions. We just randomly
choose one of these solutions and put it into the matrix FR.

Having recovered the coefficients of the Rainbow central map, we can easily
compute the elements of the matrix Q′

R by using the relation Q = F ◦ T .
The last submatrix of Q still unknown is now Q′

P . Under the assumption of
SP being invertible we can recover it by

Q′
P = S−1

P ·
(

B2 − S′
P ·

(
Q′

S

Q′
R

))

. (7)

Having therefore recovered the whole matrix Q, it is easy to compute the coef-
ficient matrix of the public key by

P = S · Q. (8)

Note that the so computed matrix P will have the structure shown in Fig. 1.
We publish P as the public key of our scheme, while the private key consists

of S, T and FR. Algorithm 1 shows this key generation process in compact form.

Algorithm 1. Key Generation of CyclicSRP
Input: SRP parameters q, d, o, r, s, l, matrices B1 ∈ F

(m−d)×h and B2 ∈ F
s×(D−h).

Output: SRP key pair ((S, FR, T ), P ) with P of the form of Figure 1.
1: Choose an invertible matrix S ∈ F

m×m such that the submatrices
Smd ∈ F

(m−s)×(m−s) and Sp ∈ F
s×s are invertible.

2: Choose a full rank matrix T ∈ F
n′×n such that the matrix A has full rank.

3: Compute QS by equation (1).
4: Compute QRPh by equation (2).
5: Compute FR by solving the linear systems of equation (6).
6: Compute QR using the relation Q = F ◦ T .
7: Compute Q′

P by equation (7).
8: Compute P = S · Q.
9: return ((S, FR, T ), P )

3.3 Security

The security analysis of our scheme runs in the same way as for the standard
SRP scheme of [8]. We therefore refer to [8] regarding an analysis of our scheme
against structural attacks [1,6], and only cover here direct attacks [4].
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Direct Attacks. The direct attack tries to recover the plaintext M by solving
the public system P(M) = C as an instance of the MQ Problem using an
algorithm like XL or a Gröbner Basis method.

To study the security of the CyclicSRP scheme against direct attacks, we
carried out a large number of experiments with MAGMA, which contains an
efficient implementation of Faugéres F4-algorithm for computing Gröbner Bases.
Table 1 shows the results of our experiments against random systems, the SRP
scheme and our scheme.

Table 1. Results of experiments with direct attacks

Parameters CyclicSRP SRP Random system

q, d, o, r, s, l m, n dreg time (s) dreg time (s) dreg time (s)

31, 11, 10, 5, 4, 6 30, 15 4 3.2 4 3.2 4 3.2

31, 11, 10, 5, 4, 4 30, 17 5 91.8 5 92.7 5 94.0

31, 11, 10, 5, 4, 2 30, 19 6 4, 646 6 4, 650 6 5, 785

As the table shows, the F4 algorithm can not solve our systems significantly
faster than those of the standard SRP scheme.

4 Results

In this section we compare our scheme with the standard SRP scheme of [8]. We
use the three parameter sets proposed in [8], i.e.

(A) (q, d, o, r, s, l) =(31, 33, 32, 16, 5, 16) providing 80 bit of security
(B) (q, d, o, r, s, l) =(31, 47, 47, 22, 5, 22) providing 112 bit of security and
(C) (q, d, o, r, s, l) =(31, 71, 71, 32, 5, 32) proving a security level of 160 bit.

Table 2. Comparison between SRP and CyclicSRP regarding key sizes and efficiency
of the encryption process

(A) (B) (C)

Parameters q, d, o, r, s, l 31, 33, 32, 16, 5, 16 31, 47, 47, 22, 5, 22 31, 71, 71, 32, 5, 32

m,n 86, 49 121, 72 179, 110

Public key size Standard SRP 105, 350 317, 988 1, 092, 795

CyclicSRP 48, 178 148, 569 519.900

Reduction 54.3% 53.3% 52.4%

# field mult. Standard SRP 106,575 320,616 1,098,900

during CyclicSRP 54,068 160,587 546,875

encryption Reduction 49.3% 49.9% 50.2%
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Table 2 gives a comparison between the standard SRP scheme and our scheme
with regard to the public key size.

Additionally to the key size reduction, we can use the structure in the public
key of CyclicSRP to reduce the number of multiplications needed in the encryp-
tion process significantly. However, due to lack of space, we can not describe the
details of this technique here (see the extended version of this paper [2]) and
just present the results (see Table 2).

5 Conclusion

In this paper we investigated the recent multivariate encryption scheme SRP [8]
which is a good candidate for post-quantum encryption schemes. We proposed
a technique to reduce the public key size of this scheme. The resulting scheme,
CyclicSRP, reduces the size of the public key by up to 54% and the number
of field multiplications needed during the encryption process by 50%. By our
technique we therefore help to solve one of the biggest problems of multivariate
schemes, namely the large size of the public keys. To our knowledge, our proposal
is the first application of such a technique to a multivariate encryption scheme.

Acknowledgements. This research is supported by JSPS KAKENHI no. 15F15350
and 16K17644.
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Abstract. Access control is vital to prevent adversary from stealing resources
from data centres. The security of traditional authentication means, such as pass‐
word and Personal Identification Number (PIN), are imperfect for access control.
In this paper, a reliable facial biometric access control with promising authenti‐
cation performance is proposed. In our study, facial feature representation is
computed based on ICA modelling, descriptor binarization, bitwise operation on
the bit maps and effective compression via whitening PCA. The proposed tech‐
nique is namely Binarized Independent Component Pattern (BICP). BICP
training module integrates ICA methodology to construct ICA filter bank from
natural image patches. Each face image is convoluted with the filters for the
corresponding ICA responses. The ICA responses are further processed via
feature binarization, and XOR bitwise operation before convert to code map.
Next, block-wise histogramming is applied on each code map. By concatenating
the regional histograms, it produces a set of high dimensional BICP descriptor,
which will be further scaled and compressed. Empirical results show the remark‐
able performance of BICP on facial expression, illumination, time span and facial
makeup effects.

Keywords: Access control · Face biometric · ICA filters · XOR operation ·
Binary pattern

1 Introduction

Access control is an absolute necessity to prevent adversary to view and exploit
resources in a computing environment. The widely used authentication means for access
control are Personal Identification Number and passwords. These knowledge-based
authentication systems are sub-reliable, considering their vulnerability of getting stolen
or cracked. In the recent decade, biometrics has gradually overtaken these methods due
to its high accuracy and reliability. Biometric-based access control systems include but
not limited to palm vein recognition system proposed by Sonal et al. [1], finger knuckle
print recognition proposed by Zhang et al. [2], multimodal biometric identification
system which combining palm veins and palm print proposed by Wang et al. [3] and
facial biometric access control system that to be implemented by HSBC [4].

© Springer International Publishing Switzerland 2016
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HSBC rolls out facial recognition technology at its data centres to protect sensitive
information [4]. The fond of a facial biometric solution is due to its wide public accept‐
ance and its inheritably non-intrusive nature. There are four modules in the face recog‐
nition methodology, namely: (1) face detection, (2) preprocessing, (3) feature represen‐
tation, and (4) classification. During the phase of face detection, facial region is detected
and extracted. The image quality is enhanced by minimizing the induced noise, adjusting
the placement and orientation of the facial region for rotational and translational invar‐
iance, and normalizing the image intensity in the preprocessing step. Feature represen‐
tation module extracts the dominant information from the previously preprocessed data,
and also to discard the redundant data. Lastly, the computed feature representation is
evaluated by matching it with the stored feature templates. Feature representation
learning is essential for promising performance. Hence, numerous researchers have
putted forth major efforts on this area.

Recent literatures demonstrate the great potential of high dimensional feature repre‐
sentations in object recognition context. Chen et al. [5] made evident the ever-increasing
recognition accuracy along the feature dimensionality in Local Binary Pattern (LBP) [6],
Scale Invariant Feature Transform (SIFT) [7], Histograms of Oriented Gradients (HOG)
[8], Gabor [9] and Learning-based Descriptor (LE) [10]. Hussain et al. proposed a new
high dimensional face representation based on Local Quantized Patterns (LQP) [11].
LQP is a generalization of local pattern features that adopts vector quantization and
lookup table for more pixels and quantization levels in local pattern features. Further‐
more, Barkan et al. is another group of researchers that utilizes high dimensional feature
for face representation [12]. In their proposed technique, the calculation of LBP histo‐
grams is performed block-wise. To be specific, face images are segmented into multiple
overlapping blocks. Then, the histograms of all the segmented blocks are computed and
concatenated to form the final descriptor.

Kannala and Rahtu proposed a learning technique by encoding a binary code for
each pixel through thresholding the outputs of the linear projection of local image
patches onto an independent component subspace [13]. The basis vectors in the subspace
are learnt via Independent Component Analysis (ICA) from natural image resemble.
Empirical results demonstrate the superiority of the proposed Binarized Statistical Image
Features (BSIF) in texture classification and face recognition. Ylioinas et al. improved
BSIF for application specific learning. Filters are learnt from different face regions based
on training face image patches [14]. Besides, a simple matrix-vector production is intro‐
duced to smooth each region histogram.

2 Motivations and Contributions

The independent component model is one of the most ecologically inspired models for
understanding image representation in the array of simple cells in the human primary
cortex [15]. Hence, the contribution of independent component methodology in image
understanding is being notarized [13, 14]. In addition, binary feature descriptor is pref‐
erable for the sake of memory efficiency, speedy computation and local variation robust‐
ness [16]. The instances of binary code learners are works of [17, 18].
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In this paper, we propose a high dimensional face representation, coined as Binarized
Independent Component Pattern (BICP). It is a hybrid model of ICA model, feature
binarization and bitwise operation. The major contributions of this work includes:

1. A high dimensional face representation by exploiting ICA filters. In conjunction with
ICA characteristics, the face representation carries features that are similar to the
pattern of the human primary visual [15]. This feature could assure the performance
of BICP in face recognition at a certain level.

2. BICP consolidates ICA response invariance through feature binarizing, XOR bitwise
operation, block-wise histogramming and descriptor regularization. These processes
allow nonlinear operation in BICP which boosts the discriminating capability.
Besides, the histogramming tenders certain degree of translation invariance in the
features, and feature regularization suppresses those numerically dominating entries
caused by the zero padding in the block-wise histogramming, particularly at the cell
boundaries padded with zero.

3. Extensive experimental results are presented to study the performance of BICP in
face recognition under various scenarios such as variations in facial expression,
illumination, time span as well as facial makeup effect.

3 Binarized Independent Component Pattern

Figure 1 illustrates the framework of BICP. BICP training module integrates ICA meth‐
odology for generating ICA filters from natural image patches. Then, each face image
is convoluted with the ICA filters to construct the corresponding ICA responses. The
ICA responses, as well as their mean μ, will be further processed via feature binarization,
XOR operation and conversion to code map. Next, block-wise histogramming is
performed on each code map that corresponds to each face image. Concatenating the
regional histograms produces high dimensional BICP learned face representation.
Lastly, the representation is scaled using a signed square root normalization and
compressed via WPCA for better discriminating capability.

3.1 Constructing ICA Responses

The same ICA filters learnt from 13 natural images shared by authors of [19] is adopted.
ICA filters are in different filter sizes l × l. Each filter set is learnt using 50,000 image
patches. The procedure of ICA filter learning is as follows: (1) subtraction of patch
intensity mean, (2) dimension reduction and whitening via PCA, and (3) independent
component estimation. Figure 2 illustrates some samples of filters with 7 × 7 size and
number of filters, b = 3.
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Fig. 2. Samples of ICA Filters with 7 × 7 size and b = 3

Given an image Ij of size w × h and ICA filter Wi ∈ ℝ
l×l, ICA response Rj

i
 is,

R
j

i
=
{

Ij ∗ Wi

}
, i = 1,… , b and j = 1,… , N (1)

where * is convolution, N is the total images and b is the total filters.

3.2 Binarizing ICA Responses and XOR Bitwise Operation

There are b ICA responses Ri where i = 1, .., b for each image since there are b number

of ICA filters. ICA response mean is generated, i.e. 𝜇 =
1
b

∑b

i=1 Ri, then further binarized,
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Each response is binarized via 𝜏
(
Ri

)
=

{
1 ifRi > 𝜇

0 otherwise
 to obtain binary pattern. Next,

XOR operation is performed on the binarized ICA patterns and response mean 𝜏(𝜇).
After that, the resulting XOR-ed patterns are considered in the binary to decimal value
conversion to generate code map via 

∑b

i=1 𝜏
i
XOR

× 2i−1.

3.3 BICP Descriptor

In this step, blockwise histogramming is performed. In details, each of the code map is
segmented into B non-overlapping blocks. Histogram of each block is computed and
concatenated to construct a final descriptor. It is worth noting that the generated
descriptor is in high dimension. Hence, a compression is needed for computation effi‐
ciency. Prior to WPCA compression, the descriptor is regulated via a signed square root
normalization operation.

4 Experimental Results and Discussions

In this study, facial biometric authentication under various scenarios is considered for
performance evaluation. These include facial expression variation, illumination varia‐
tion, time span between the gallery and probe data as well as facial makeup effect.
Moreover, some state of the art learning techniques, including but not limited to LBP
[6], HOG [8], Gabor [9], LQP [11], BSIF [13], LGBPHS [20], DLBP [21] and DFD [22],
are considered for benchmarking. Here, we consider face identification mode. In other
word, rank-1 identification rate is measured as performance metric. As in [23], face
images are preprocessed accordingly for illumination normalization [24]. In the experi‐
ments, the size of block-wise histogram is set to 13 × 13 and the WPCA transform is
computed using all the gallery data. Nearest neighbour classifier with cosine distance
metric is adopted in the experiments.

4.1 Performance on Facial Expression, Illumination and Time Span Effects

We employ FERET database for the facial expression variation, illumination variation
and time span effect. FERET subset fa, containing 1196 images with regular facial
expression from 1196 subjects, is used as gallery data. For probes, FERET subsets: (1)
fb containing 1195 images with varying facial expressions, (2) fc containing 194 images
with varying illuminations, (3) dup1 containing 722 images taken between one minute
and 1031 days after their respective gallery matches and dup2 containing 234 images
taken at least 18 months after their gallery entries, are used to study the effects of facial
expression variation, illumination variation and time span effect respectively. All face
images in the gallery, which are 1196 images, are used to compute 1195-dimensional
WPCA transform.

Table 1 records the face identification performance on the effects of facial expression
(fb), illumination (fc) and time span between gallery and probe data (dup1 and dup2) of
BICP compared with other popular face learning techniques. BICP achieves state of the
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art accuracy in fb and fc subsets. This indicates that BICP is able to extract discriminative
clues for face authentication. In conjunction with a simple model of simple cells in the
human primary cortex (i.e. ICA filters), XOR operation, signed square root based histo‐
gram normalization and WPCA, BICP demonstrates its superiority to face appearance
variations, especially to aging effect. BICP could even sustain its performance to face
images taken at least one and a half years apart.

Table 1. Performance to the effects of facial expression, illumination and time span

Techniques Rank-1 Rate (%)
fb fc dup1 dup2 mean

LBP a. [6] 97 79 66 64 76.5
LQPa. [11] 99.2 69.6 65.8 48.3 70.7
BSIFa. [13] 97.9 100 84.3 82.9 91.3
LGBPHSa. [20] 98 97 74 71 85
DLBPa. [21] 99 99 86 85 92.25
DFDa. [22] 99.2 98.5 85 82.9 91.4
POEMa. [25] 97.6 95 77.6 76.2 86.6
LQP+WPCAa. [11] 99.8 94.3 85.5 78.6 89.55
POEM+WPCAa. [25] 99.6 99.5 88.8 85 93.3
BSIF+WPCAb. 98.91 100 91.83 90.6 95.33
BICP 99.16 100 93.49 92.31 96.24

aThe experimental results are extracted from the original papers.
bRe-implemented based on the optimal parameters, with illumination normalization [24]

4.2 Performance on Facial Makeup Effect

Facial makeup is a socially acceptable approach that could make a woman appears more
attractive and boosts her sense of confidence. Evidently, facial makeup alters the
perceived shape and texture of a face [26, 27]. Dantcheva et al. highlights the severe
negative impact of facial makeup towards the recognition performance of the existing
face matching methods [26, 28]. Hence, recently a group of researchers is endeavouring
for best solutions to address the issue of facial makeup [27, 29]. In this section, we study
the performance of BICP in facial makeup effect.

Youtube Makeup (YMU) database is adopted to study the facial makeup effect. YMU
is a publicly available makeup face repository. There are 151 Caucasian female subjects
in this database. Each subject consists of two (2) non-makeup images and two (2)
makeup images, resulting total of 604 face images. Two testing protocols are experi‐
mented in this paper: non-makeup (NM) versus makeup (M) and makeup (M) versus
non-makeup (NM) matchings. In the first protocol, NM set is used as gallery data and
M set as probes; and vice versa in the second protocol. All face images in the gallery
are used to compute 301-dimensional WPCA transform.

From Table 2, it is observed that BICP contributes a performance advantage as
observed in YMU experiments in both NM versus M and M versus NM matchings. To
conclude, despite achieving notable performance from facial biometric access control
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authentication with facial expression variation, illumination variation and time span, the
proposed BICP also endorses its discriminating capability in the facial makeup effect.

Table 2. Performance to the effects of makeup

Techniques Rank-1 Rate (%)
NM versus M M versus NM Mean

LBPc. [6] 54.64 54.97 54.81
HOGc. [8] 48.34 42.38 45.36
Gaborc. [9] 38.74 34.11 36.43
LGBPc. [20] 42.05 38.04 40.05
BSIF+WPCAc. 69.54 72.19 70.87
BICP 76.82 75.83 76.32

cRe-implemented based on the optimal parameters, with illumination normali‐
zation [24]

5 Conclusion

This paper presents a facial biometric access control system by using a high dimensional
face representation by exploiting ICA filters. The technique is dubbed as Binarized
Independent Component Pattern (BICP). In conjunction with ICA characteristics, the
proposed face representation carries features that are similar to the pattern of the human
primary visual. This feature guarantees the performance of BICP in face recognition at
a certain level. Besides, BICP consolidates ICA response invariance through feature
binarization, XOR bitwise operation, block-wise histogramming and descriptor regula‐
rization. Empirical results show the remarkable performance of BICP on facial expres‐
sion, illumination, time span and facial makeup effects.
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Abstract. Biometric identification (BI) is the task of searching a pre-
established biometric database to find a matching record for an enquir-
ing biometric trait sampled from an unknown individual of interest. This
has recently been aided with cloud computing, which brings a lot of con-
venience but simultaneously arouses new privacy concerns. Two cloud
aided BI schemes pursuing privacy preserving have recently been pro-
posed by Wang et al. in ESORICS ’15. In this paper, we propose several
elaborately designed attacks to reveal the security breaches in these two
schemes. Theoretical analysis is given to validate our proposed attacks,
which indicates that via such attacks the cloud server can accurately
infer the outsourced database and the identification request.

Keywords: Biometric identification · Cloud computing · Security
breaches · Privacy preserving

1 Introduction

Biometric identification (BI) is to identify an individual of interest by searching
a pre-established biometric database to find a matching record for an enquiring
user’s biometric trait sampled from an unknown individual. Due to the uni-
versality, uniqueness, and permanence of the biometric data [1], BI has been
wildly used in identifying an individual’s identity (e.g., in forensic scenarios).
There have been several kinds of BI systems in practical applications, such as
fingerprint, voice pattern, and facial pattern recognition systems [2].

As cloud computing is now gaining much momentum, individuals, companies,
and governments are motivated to outsource their data to the cloud to enjoy the
benefits of high flexibility and cost-saving feature of the cloud computing [3]. As
far as the BI system is concerned, the database owner may desire to outsource
the biometric database to the cloud and enjoy the cloud aided identification ser-
vice, which can relieve the database owner of the local storage burden and the
high computation overhead introduced by searching over the large-scale data-
base. However, the proliferation of cloud aided biometric identification (CABI)
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 446–453, 2016.
DOI: 10.1007/978-3-319-40367-0 29
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also attracts increasing concerns on its security [4] and privacy [5], since the
biometric data is highly sensitive and is impossible to be revoked and replaced
once leaked. Therefore, appropriate protection mechanism should be carefully
placed in CABI systems in order to combat unsolicited access and inadvertent
information disclosure.

Several CABI schemes [6,7] have recently been proposed but these schemes
are not appropriate for real-world cloud aided applications, since they will
be cracked down when there exists collusion between the system participants.
Focused on the collusion resistance, some other schemes have been proposed by
Yuan et al. [8] and Wang et al. [9]. Yuan et al. [8] claimed that their scheme is
secure under the known-plaintext attack (KPA) and even the chosen-plaintext
attack (CPA). However, Wang et al. [9] observed that it is not the case and pre-
sented some attacks to show that the scheme proposed in [8] can be broken by
KPA and CPA. As a following study, in ESORICS ’15 Wang et al. [9] proposed
two new CABI schemes considering the semi-honest participants. Wang et al.
claimed their schemes achieve higher security since the proposed basic scheme
is resilient to the known-sample attack (KSA), while the enhanced scheme can
additionally defend against the collusion attack of the cloud server and some
enquiring user. However, we observe that both schemes are vulnerable, even to
exactly the adversaries designated in [9]. Specifically, we present several elabo-
rately designed attacks that will completely break these schemes [9].

Our technical contributions can be summarized as follows:

– We propose several elaborately designed attacks to reveal the inherent secu-
rity breaches in the two schemes proposed in [9].

– Theoretical analysis is given to validate our proposed attacks, which indicates
that via such attacks the cloud server can accurately infer the outsourced
database and the identification request.

The rest of the paper is organized as follows: In Sect. 2, we review Wang et
al.’s schemes [9]. We propose several attacks on these schemes [9] in Sect. 3. The
paper is concluded in Sect. 4.

2 Review of Wang et al.’s Two Schemes

Recently, Wang et al. [9] proposed two CABI schemes that focus on the finger-
print identification. Following [5,8], Wang et al. assumed that both the biometric
records in the database and the biometric trait submitted by the enquiring user
are represented by feature vectors. In this section, we will review these two
schemes by describing their main bodies.

2.1 CloudBI-I: The Basic Scheme

We first describe Wang et al.’s basic scheme CloudBI-I. For the fingerprints
collected from m individuals, the biometric database owner first generates the
corresponding biometric records denoted as {bi}mi=1, which form the biometric
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database D. Each bi is set to an n-dimensional vector, i.e., bi = (bi1, bi2, · · · , bin),
with each entry bij lying in a pre-determined domain. To facilitate the identi-
fication, bi will be extended to b̂i = (bi1, bi2, · · · , bin, bi,n+1, 1), where bi,n+1 =
−(b2i1+b2i2+ · · ·+b2in)/2. The database owner then accordingly generates a diag-
onal matrix Bi with the diagonal entries set to {bi1, bi2, · · · , bin, bi,n+1, 1} (i.e.,
the entries of b̂i).

Subsequently, the database owner randomly selects two (n + 2) × (n + 2)
invertible matrices M1 and M2 as the encryption keys, and encrypts each Bi

by computing
Ci = M1BiM2. (1)

After encryption, the database owner outsources the encrypted database
C = {Ci}mi=1 to the cloud server. When an enquiring user has a fingerprint
to be identified, he first locally generates the corresponding biometric trait
bt = (bt1, bt2, · · · , btn) that is also an n-dimensional vector, and then submits
it to the database owner who will select a random number rt and extend bt

to b̂t = (bt1, bt2, · · · , btn, 1, rt). The database owner then generates a diagonal
matrix Bt with the diagonal entries set to {bt1, bt2, · · · , btn, 1, rt} (i.e., the entries
of b̂t), and subsequently encrypts Bt by computing

CT = M−1
2 BtM

−1
1 .

Then CT is submitted to the cloud server for identification. Upon receiving CT ,
the cloud server compares the Euclidean distance between each bi and bt by
computing the trace (denoted as tr(·)) of the following matrix Pi:

Pi = CiCT = M1BiM2M
−1
2 BtM

−1
1 = M1BiBtM

−1
1 .

Due to the property of matrix similarity transformation [10], tr(Pi) is thus
equal to tr(BiBt), i.e., tr(Pi) equals (

∑n
j=1 bijbtj+bi,n+1+rt). The cloud server

then sorts these values {tr(Pi)}mi=1 and accordingly returns the candidate results
to the database owner. Here we omit other details of this scheme, since they are
irrelevant to our proposed attacks.

2.2 CloudBI-II: The Enhanced Scheme

Wang et al. claimed that CloudBI-I can resist KSA but will be broken by the
collusion between the cloud server and some enquiring user. Therefore, Wang et
al. proposed an enhanced scheme CloudBI-II. The main idea is to introduce more
randomness into the database encryption and the query encryption. Specifically,
for each Bi, the database owner additionally selects a random lower triangular
matrix Qi with the diagonal entries set to all 1’s, and then encrypts Bi by
computing

Ci = M1QiBiM2.

Similarly, the database owner generates the encrypted identification query
for the enquiring user as

CT = M−1
2 BtQtM

−1
1 , (2)
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where Qt is also a random lower triangular matrix with the diagonal entries set
to all 1’s. The remaining operations are the same as the basic scheme CloudBI-I.

3 Proposed Attacks

In this section, we will propose several elaborately constructed attacks by exploit-
ing the inherent structure of the biometric data and some important properties
of matrix transformation.

3.1 Modified Signature Linking Attack on CloudBI-I

Wang et al. [9] claimed that their basic scheme CloudBI-I is resilient to KSA
because the techniques they used for designing the scheme are not belong to
distance-preserving transformation (DPT) [11], i.e., the Euclidean distances
between any two plaintext biometric records will not be preserved after encryp-
tion. Therefore, according to the analysis presented in [12], the PCA attack
[13] and the signature linking attack [12] will fail to attack CloudBI-I. How-
ever, we observe that the above reasoning is not rigorous and we will demon-
strate a so-called modified signature linking attack (MSLA), which bypasses the
computation on the Euclidean distances, to recover the outsourced database in
CloudBI-I.

According to the definition of KSA, the adversary has some samples in the
plaintext database D. Without loss of generality, we assume that the knowledge
of the adversary is G = {bi}ki=1 ⊆ D so that he can naturally generate {Bi}ki=1

without knowing any of the corresponding encrypted values {Ci}ki=1. As shown
in Eq. 1, due to the property of matrix similarity transformation [10], we have

tr
(
C−1

i Cj

)
= tr

(
M−1

2 B−1
i BjM2

)
= tr

(
B−1

i Bj

)
. (3)

Although the Euclidean distances between the encrypted records are not pre-
served, we can define the signature of G as

sig(G) = {tr
(
B−1

1 B2

)
, · · · , tr

(
B−1

1 Bk

)
, tr

(
B−1

2 B3

)
, · · · , tr

(
B−1

k−1Bk

)}.

In MSLA, the adversary aims to find an ordered set of encrypted records H ⊆
C = {Ci}mi=1, such that H has the same size and gives the same signature as G.
Let H = {C1′ ,C2′ , · · · ,Ck′} so that the signature of H is

sig(H) = {tr
(
C−1

1′ C2′
)
, · · · , tr

(
C−1

1′ Ck′
)
, tr

(
C−1

2′ C3′
)
, · · · , tr

(
C−1

(k−1)′Ck′
)}.

If there is only one set H with a matching signature, the adversary can con-
clude that Ci′ is the encrypted value of bi. Then the adversary try to solve any
plaintext biometric record bj correspond to Cj by solving the following linear
equations:

tr(B−1
i Bj) = tr(C−1

i Cj), i = 1, · · · , k.
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Particularly, there are (n + 2) unknowns in each linear equation so that the
adversary will successfully recover Bj if k ≥ (n + 2) holds.

The main issue that the success of proposed MSLA rests on is whether there
exists a signature collision, i.e., whether it is likely to find another set, which is
not the encrypted values of G but happens to give the same signature as G. As
shown in the following theorem, the probability of the signature collision is very
small and we can well control it by increasing the size k of G.
Theorem 1. Let α be the probability of an n-dimensional vector contained in
D. Assume the knowledge of the adversary is G = {bi}ki=1 ⊆ D, ∀ε > 0, if
k ≥ n + 1 + ln ε/ lnα, then Pr

(
signature collision

)
< ε.

Due to the space limit, here we omit the proof. Note that MSLA will also
work for CloudBI-II [9] since Eq. 3 still holds. In conclusion, via MSLA the
adversary can obtain the corresponding relationships between the plaintext and
the encrypted biometric records, and further construct linear equations to get
the plaintext database. Next, we will show other two attacks on CloudBI-II.

3.2 Two Attacks on CloudBI-II

In the design of CloudBI-II [9], several random lower triangular matrices {Qi}mi=1

and Qc are introduced into the database encryption and the query encryption.
Wang et al. claimed that such randomness makes it impossible for the adver-
sary to figure out either the biometric records bi in D or the biometric traits bt

submitted by non-colluding enquiring users, even the adversary can collude with
some user and independently select the biometric traits submitted to the data-
base owner. Therefore, Wang et al. asserted that CloudBI-II can defend against
the collusion attack of the cloud server and some enquiring user.

Next we will demonstrate two attacks, which rely on the collusion ability
of the adversary designated in [9], to break the scheme CloudBI-II. Via these
two attacks, the adversary can obtain some certain information about the ran-
domness that are added into the database encryption and the query encryption,
and further recover the plaintext biometric records and the enquiring biometric
traits.

We begin by describing an attack to recover the biometric records in the
database. As defined in [9], the cloud server (i.e., the colluding adversary in
the BI system) can independently select several vectors as the biometric traits
to be identified. Without loss of generality, we assume that the cloud server
selects (n + 2) vectors {b

(i)
t }n+2

i=1 to be submitted to the database owner, where
b
(i)
t = (b(i)t1 , b

(i)
t2 , · · · , b

(i)
tn ). Upon receiving these vectors, the database owner will

encrypt them and send the encrypted values {C
(i)
T }n+2

i=1 to the cloud server, here
C

(i)
T = M−1

2 B
(i)
t Q

(i)
t M−1

1 as shown in Eq. 2. Notice that, the cloud server knows
all these {b

(i)
t }n+2

i=1 but does not know the randomness {r
(i)
t }n+2

i=1 that are added
into {C

(i)
T }n+2

i=1 by the database owner. However, the cloud server can obtain the
proportional relationships between {r

(i)
t }n+2

i=1 by computing
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tr
(
(C(i)

T )−1C
(j)
T

) − (1/b
(i)
t )(b(j)

t )T − 1

= tr(M1(Q
(i)
t )−1(B(i)

t )−1M2M
−1
2 B

(j)
t Q

(j)
t M−1

1 ) − (1/b
(i)
t )(b(j)

t )T − 1

= tr(M1(Q
(i)
t )−1(B(i)

t )−1B
(j)
t Q

(j)
t M−1

1 ) − (1/b
(i)
t )(b(j)

t )T − 1. (4)

Due to the property of matrix similarity transformation and the fact that the
inverse matrix of a unit lower triangular matrix is also a unit lower trian-
gular matrix [10], tr

(
M1(Q

(i)
t )−1(B(i)

t )−1B
(j)
t Q

(j)
t M−1

1

)
is therefore equal to

tr
(
(B(i)

t )−1B
(j)
t

)
. Since the matrix (B(i)

t )−1B
(j)
t has the following structure:

(B(i)
t )−1B

(j)
t =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b
(j)
t1 /b

(i)
t1 0 · · · · · · 0 0

0 b
(j)
t2 /b

(i)
t2 · · · · · · 0 0

...
...

. . .
...

...
...

0 · · · 0 b
(j)
tn /b

(i)
tn 0 0

0 · · · 0 0 1 0
0 · · · 0 0 0 r

(j)
t /r

(i)
t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

the result of Eq. 4 is thus equal to r
(j)
t /r

(i)
t denoted as rji. By such compu-

tations, the cloud server can get a set of ratios {rj1}n+2
j=2 , and further generate a

novel matrix D for attacking as

D =

⎛

⎜
⎜
⎜
⎜
⎝

b
(1)
t1 b

(1)
t2 · · · b

(1)
tn 1 1

b
(2)
t1 b

(2)
t2 · · · b

(2)
tn 1 r21

...
...

...
...

...
...

b
(n+2)
t1 b

(n+2)
t2 · · · b

(n+2)
tn 1 rn+2,1

⎞

⎟
⎟
⎟
⎟
⎠

.

With this matrix, the cloud server can figure out the biometric record bi

corresponding to Ci by solving the following linear equation:

Dy =
(
tr(CiC

(1)
T ), tr(CiC

(2)
T ), · · · , tr(CiC

(n+2)
T )

)T
. (5)

The biometric record bi corresponding to Ci actually consists of the first n
entries of the solution y to Eq. 5. In this way, the cloud server can recover all the
biometric records in the database. For the correctness, we present the following
theorem.

Theorem 2. If the matrix rank of D (denoted as rk(D)) equals (n + 2), then
bi consists of the first n entries of the solution y to Eq. 5.

Proof. Eq. 5 can be rewritten as Dy = γ, where the augmented matrix can
be denoted as D̃ = (D,γ). Since rk(D̃) = rk(D) = n + 2, we can con-
clude that there exists a unique solution to Eq. 5. We assume the correspond-
ing biometric record of Ci is bi = (bi1, bi2, · · · , bin), which will be extended to
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b̂i = (bi1, bi2, · · · , bin, bi,n+1, 1) for the encryption, where bi,n+1 = −(b2i1 + b2i2 +
· · ·+b2in)/2. We now consider the vector y∗ = (bi1, bi2, · · · , bin, bi,n+1, r

(1)
t )T, here

r
(1)
t is the random number added into the generation of C

(1)
T by the database

owner. As introduced in Sect. 2.1, we have
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...
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⎟
⎟
⎟
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= γ.

As shown above, we can conclude that y∗ is actually the unique solution to
Eq. 5. Therefore, bi consists of the first n entries of the solution to Eq. 5.

Based on the ratios rji calculated by Eq. 4, we can design another attack on
CloudBI-II so that the cloud server can recover all the biometric traits submit-
ted by non-colluding enquiring users. Specifically, the adversary can construct
another matrix A for attacking as

A =

⎛

⎜
⎜
⎜
⎜
⎝

1/b
(1)
t1 1/b

(1)
t2 · · · 1/b

(1)
tn 1

1/b
(2)
t1 1/b

(2)
t2 · · · 1/b

(2)
tn 1/r21

...
...

...
...

...
1/b

(n+1)
t1 1/b

(n+1)
t2 · · · 1/b

(n+1)
tn 1/rn+1,1

⎞

⎟
⎟
⎟
⎟
⎠

.

Upon receiving a new encrypted query C∗
T submitted by the database owner,

the cloud server can figure out the corresponding enquiring biometric trait b∗
t

by solving the following linear equation:

Ax =
(
tr((C(1)

T )−1C∗
T )− 1, tr((C(2)

T )−1C∗
T )− 1, · · · , tr((C(n+1)

T )−1C∗
T )− 1

)T
.

(6)
The vector that consists of the first n entries of the solution x to Eq. 6 is exactly
the b∗

t corresponding to C∗
T . Similarly, we have the following theorem.

Theorem 3. If rk(A) equals (n + 1), then b∗
t consists of the first n entries of

the solution x to Eq. 6.

The proof of Theorem3 is similar to that of Theorem2. Here we omit the
proof due to the space limit.

4 Conclusion

In this paper, we have proposed several elaborately designed attacks to reveal
the inherent security breaches in the two CABI schemes proposed by Wang et
al. [9]. Additionally, theoretical analysis has been given to validate our proposed
attacks. As our future work, we will address the privacy-preserving CABI prob-
lem by constructing new encryption algorithms for the biometric data.
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Abstract. User interest profiles are of great importance for security
monitoring and forensic investigation. Once a specific topic becomes sen-
sitive or suspected, being able to quickly determine who has shown an
interest in that topic can assist investigators to focus their attention from
massive data and develop effective investigation strategies. To automat-
ically generate user interest profiles, we extend Author Topic model to
explicitly model user’s dynamic interest based on the text information
posted by the user. Our model is able to monitor the evolution of user
interest from time-stamped documents. Moreover, instead of modeling a
topic as a multinomial distribution over words, we develop a model that
can discover and output multi-word phrases to describe topics, which
facilitates the human interpretation of unorganized texts. Therefore, our
technique has the potential to reduce the cost of investigation and dis-
cover latent evidence that is often missed by expression-based searches.
We evaluate the effectiveness and performance of our algorithm on a real-
life forensic dataset Enron. The experiment results demonstrate that our
algorithm can effectively discover user’s dynamic interest. The generated
user interest profiles can further assist investigator to discover the latent
evidence effectively from textual forensic data and perform security mon-
itoring.

Keywords: User interest · Interest profiling · Forensic investigation ·
Security monitoring

1 Introduction

The development of information technology has led to an explosion of the evi-
dence set that may contain thousands of documents per suspect. However, only
a very small proportion of these documents are relevant. Given the limit of time,
it is hard for forensic investigator to discover actionable evidence manually from
thousands of text documents. On the other hand, social media provides a flexible
communication channel for individuals. It is crucial for law enforcement agencies
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 457–464, 2016.
DOI: 10.1007/978-3-319-40367-0 30
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to discover potential criminal activities before they occur, which can be done by
analyzing the suspect’s online documents.

User interest profiling is the process of acquiring and maintaining the knowl-
edge related to the interests or needs of a specific user [4,6,10,16,21]. User
interest profiles are of great importance for security monitoring and forensic
investigation. Once a specific topic becomes sensitive or suspected, being able
to quickly determine who has shown an interest in that topic can assist inves-
tigators to focus their attention from massive data, so that they can develop
effective investigation strategies. For example, to address the insider threat of
commercial and government organizations before it occurs, interest profiling of
the employees based on their emails can assist investigators filtering the number
of suspects to a manageable number [5].

Latent Dirichlet Allocation (LDA) [3] is a type of statistical model for discov-
ering the abstract “topics” that occur in a collection of documents. [15] extend
LDA to include authorship information to model the interests of users. Topic
models has the potential to discover latent evidences. Topic model is a type of
statistical model for discovering the abstract “topics” that occur in a collection
of documents.

In this paper, we propose a Multiword Dynamic Author Topic Model (M-
DATM) inspired by the work of [2,15] for modeling the dynamic evolution of
individual author’s interest. We first use a frequent phrase mining algorithm to
merge tokens within the document into human-interpretable phrases. Instead
of modeling a topic as a multinomial distribution over words, our model can
directly output phrases and the latent topic assignment in order to facilitate
the human interpretation of the large amount of unorganized texts. Second, we
extend Author Topic model [15] to include temporal information, which cap-
tures the evolution of topics in a sequentially organized corpus of documents.
The temporal information captured by M-DATM plays a very important role in
forming meaningful time-sensitive topics. Using such an approach, we can find
evidence faster, and spot evidence patterns that would not even have been found
otherwise.

We evaluate the effectiveness and performance of our algorithm on a real-life
forensic dataset Enron. The experiment results demonstrate that our algorithm
has the potential to assist security monitoring and forensic investigation.

2 Related Work

Attempting to understand the meaning of the forensic data, especially when the
user has limited insight into the collection, is a difficult task. In the past decades,
a various of text analysis approaches have been proposed for forensic investiga-
tion [11,14,18,19]. Among these methods, topic modeling has the potential to
discovery latent evidences and build user profiles. For example, Okolica et al. [14]
discern employees interests from email using an extended version of Probabilistic
Latent Semantic Indexing (PLSI). These interests are transformed into implicit
and explicit social network graphs, which are used to locate potential insiders
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by identifying individuals who have a hidden interest in a sensitive topic. In
another work [8], LDA is applied to forensic data. No evidence was discovered in
this specific case, but the analysis indicates that topic modeling can be very use-
ful in discovering the semantic context of text documents and for summarizing
document content.

As author’s personal interests are important for user-centric applications, a
variety of LDA extensions have been proposed to incorporate authorship infor-
mation into the text [15]. The Author-Topic model [15] is the first generative
model that simultaneously models the content of documents and the interests
of authors. To characterize topics and their changes over time, there are other
extensions of LDA which use information in the timestamps. Lei and Lafferty [2]
propose a dynamic topic model (DTM) which jointly models word co-occurrence
and time. Wang and McCallum [17] propose a non-Markov continuous-time
model, called ToT. These models are able to capture the evolution of topics,
but they do not consider authorship information.

There are recent works taking both the time stamp and the authorship of
documents into account, such as the Temporal-Author-Topic (TAT) model [7].
Nevertheless, these models do not characterize the drift of the individual author’s
interests. In addition, none of these methods consider outputting phrases to
represent latent topics.

3 Methodology

The amount of digital data associated with individuals users has grown tremen-
dously in recent years. Since user interests guide their activities, it plays an
important role in the assessment of whether an event is relevant to a particular
person. As a consequence, interest profiles can help to summarize a large amounts
of information available from a user. We propose M-DATM to build user interest
profiles by extending Author Topic model to extract topical phrases and include
temporal information. This model captures not only the topics of the data, but
also how the topics of interest change over time. In the rest of this section, we
formally present the M-DATM in details.

3.1 Frequent Phrase Mining

Most topic modeling algorithms simply lists the most probable topical terms,
but we notice that the human interpretation often relies on inherent grouping
of terms into phrase. In this subsection, we identify topic-representative phrases
instead of single words because single words usually cannot deliver sufficient
information for the topics and can sometimes even be ambiguous. For example,
a single word “California” or “crisis” alone cannot convey the full meaning of
the phrase “California crisis”.

Following the definition in [9], the valid candidate phrases need to have the
following properties: 1) A phrase that is important to a topic should be frequent



460 M. Yang et al.

within that topic; 2) The tokens in that phrase should have a co-occurrence
frequency that is significantly higher than the average.

Before performing topic modeling, we apply a phrase-mining algorithm [9] to
merges the tokens within the document into human-interpretable phrases. We
extract high-quality frequent phrases through collecting aggregate counts for all
contiguous words in a corpus that satisfy a certain minimum support threshold.
There are two properties for efficiently mining these frequent phrases, which
were first introduced for mining frequent patterns using the Apriori algorithm
[1]: (1) If a phrase P is not frequent, then any super-phrase of P is guaranteed
to be not frequent; (2) If a document contains no frequent phrases of length
n, the document does not contain frequent phrases of length ≥ n. Thus, if the
document we are considering has been deemed to contain no more phrases of a
certain length, then the document is guaranteed to contain no phrases of a longer
length. We can safely remove it from any further consideration. The readers can
refer to the paper [1,9] for the implementation details about frequent phrase
mining. Different from general frequent transaction pattern mining, we take an
increasing-size sliding window over the corpus to generate candidate phrases
since we only consider contiguous tokens.

3.2 M-DATM Model

LDA is a three-level hierarchical Bayesian model. Each document is modeled as
a finite mixture ϕd over an underlying set of topics. Each topic θk is, in turn,
modeled as an finite mixture over an underlying set of word probabilities. LDA is
not aware of the document timestamps and the authorship. It implicitly assumes
that the documents are drawn exchangeably from an invariant set of topics.
However, for many collections (e.g. emails, news articles and search query logs),
the timestamps and the authorship information associated with the documents
reflects an evolving set of topics. This is the motivation of our M-DATM model.

The M-DATM model is an extension of Author Topic model to incorporate
the temporal information, which monitors the evolution of author interest in
time-stamped documents. Below is a description of the generative model:

1. For each topic k ∈ [1,K]:
(a) Draw a topic-word distribution ϕk ∼ Dirichlet(β)

2. For each author a ∈ [1, A]:
(a) draw an author-topic distribution θa ∼ Dirichlet(α)

3. For each i-th token wdi in document d ∈ [1,D]:
(a) Draw an author a from an author set Ad uniformly
(b) Draw a topic zdi ∼ Multinomial(θa)
(c) Draw a token wdi ∼ Multinomial(θzdi)
(d) Draw a timestamp tdi ∼ Beta(ψzdi)

We use Gibbs Sampling [12] for parameter estimation. It provides a simple scheme
for obtaining parameter estimates under Dirichlet priors and allows combination
of estimates from several local maximas of the posterior distribution. The reader
may refer to [7,15,20] for a detailed derivation of the sampling procedure.
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With M-DATM, we can not only answer questions like “what is the topic
of a given document” and “what are the top words in a given topic”, but also
answer questions like “list the top words of a given topic in a certain time slice”
(by examining (θzd,n ,t) or “list the topics that reflect somebody’s interest over
time” (by examining the ϕxd,n

of different topics over time).

4 Experiments and Analysis

4.1 Data Sets Description

We use the Enron corpus as the experiment dataset. The Enron corpus is the only
publicly available large corpus of real-world email traffic. This data was published
by the Federal Energy Regulatory Commission during its investigation. The raw
Enron corpus contains 619,446 messages belonging to 158 user. Klimt et al.
[13] then cleaned it by removing certain folders. These removed folder did not
appear to be used directly by the users, but rather were computer generated.
In the cleaned Enron corpus, there are 200,399 messages belonging to 158 users
with an average of 757 messages per user1. Each message in the dataset includes:
the email addresses of the sender and receiver, date and time, the subject, the
body text.

4.2 Data Preprocessing

We preprocess the data before applying the M-DATM. The texts are first tok-
enized using the natural language toolkit NLTK2. Then, we remove non-alphabet
characters, numbers, pronoun, words with two characters or less, punctuation
and stop words3 (common words appearing frequently in the text) from the
text. Finally, the WordNet stemmer4 is applied to reduce the vocabulary size
and settle the issue of data spareness.

4.3 Experiment Results

Topic modeling can assist digital forensic investigators and security monitoring
in several ways. For large-scale dataset, performing topic modeling on natural
language data can provide analysts and investigators with valuable information
about the semantic context of the data. In this section, we present the topics
discovered by M-DATM and analyze the change curve of these topics over time.
We also demonstrate the ability of M-DATM algorithm to discover user’s interest
over time.

Our experiments use M-DATM as the topic model, in which the topic discov-
ery is affected by the temporal and authorship information. In this experiment,
1 http://www.cs.cmu.edu/enron/.
2 http://www.nltk.org.
3 http://www.ranks.nl/stopwords.
4 http://wordnet.princeton.edu/.

http://www.cs.cmu.edu/enron/
http://www.nltk.org
http://www.ranks.nl/stopwords
http://wordnet.princeton.edu/
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Fig. 1. Change curve of the selected topics (Color figure online)

the minsupport for frequent phrase mining is 150. We choose topic number
K = 50, and hyperparameters α = 0.1, β = 0.5 and λ = 0.25. The M-DATM
algorithm is implemented based on the publicly available code5.

Since the semantics of the topics can reflect peoples interests, the signifi-
cant change of the topics usually indicates the occurrence and the end of events.
Figure 1 presents the change curve of these four topics from January, 1999 to
December, 2001. As shown in Fig. 1, the Computer System topic has its peak
around October, 2000 and July, 2001. After examining relevant emails, it appears
that there are two serious outage around October, 2000 and July, 2001, respec-
tively. We can also infer these two events from the list of top words of the topic
of Computer System in October, 2000 and July, 2001. The word “outage” has
the highest priority in these timestamps. The California Crisis topic has its peak
around January, 2001 and August, 2001, since California governor Davis declares
a state of emergency in January and the energy prices normalized in September.
The peaks of the Business topic indicates two events: first, Enron’s Board of
Directors exempted CFO Fastow from the company’s code of ethics so that he
can run a private equity fund – LJM1 that will raise money for and do deals
with Enron in June, 1999. The LJM Funds become one of the key tools for
Enron to manage its balance sheet. Second, in March 2001, Enron scheduled
unusual analyst conference call to boost the stock. For the Management topic,
we cannot explain the change curve in details since we have no idea about the
personnel changes in Enron. Nevertheless, we know that Enron’s Board of Direc-
tors exempted CFO Fastow from the company’s code of ethics in June, 1999 and

5 http://web.engr.illinois.edu/∼elkishk2/.

http://web.engr.illinois.edu/~elkishk2/
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Table 1. Top five individuals who are interested in the selected topics

California crisis topic Management topic

James Steffes, VP, government affairs Sally Beck, Chief operating officer

Mary Hain, In house lawyer David Delainey, CEO (Enron
N.A. & E.energy)

Michelle Lokay, Administrative assistant Rick Buy, Chief risk management

Lindy Donoho, Employee TWMark McConnell, Manager, TW

Richard Shapiro, VP, regulatory affairs Louise Kitchen, President (Enron Online)

Lay retired as CEO and was replaced by Skilling in February, 2001. The change
curve of Management topic precisely reflects these two event.

We are interested in those individuals who have an interest in the selected
topics. This has potential to assist investigator finding criminal activities such as
insider threats. It is done by calculating the average interest in a topic (indicated
by p(topic|user)) and then finding those individuals who have an interest in the
topic greater than 95 % of the population. These individuals with the highest
interest in the selected topics are shown in Table 1. By examining the individ-
uals positions in Enron, most of their interests are interpretable. Taking the
Management topic as an example, almost all of the individuals listed are senior
management team members of Enron. Our model produces similar results for
California crisis topic.

5 Conclusions and Future Work

In this paper, we presented a Multiword Dynamic Author Topic model to dis-
cover user profiles (i.e. topics of interest), explicitly modeling time jointly with
word co-occurrence patterns. With M-DATM, we not only discover the hot top-
ics of interest from the whole dataset, but also find the individuals who have an
interest in a selected topic. We are able to observe user’s interest over time and
monitor the change of the user’s interest. We evaluate the performance of our
model on a real-life forensic dataset Enron. The experiment results demonstrate
that our algorithm has the potential to assist security monitoring and forensic
investigation.
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Abstract. We investigate eIDAS Token specification for Pseudonymous
Signature published recently by German security authority BSI, German
Federal Office for Information Security. We analyze how far the current
specification prevents privacy violations by the Issuer by malicious or
simply careless implementation. We find that, despite the declared design
goal of protecting privacy of the citizens, it is quite easy to convert the
system into a “Big Brother” system and enable spying the citizens by
third parties.

We show that there is a simple and elegant way for preventing all
attacks of the kind described. Moreover, we show that it is possible with
relatively small amendments to the scheme.

1 Introduction

Personal identity documents are more and more frequently equipped with an
electronic layer. The primary goal of this layer was to prevent forgeries by pro-
viding key data digitally signed by the document issuer. However, there is an
opportunity to use it for e-services such as authentication on a (remote) ter-
minal. This has attracted a lot of attention recently, see the eIDAS regulation
of European Union [6]. It aims to create common trust levels and fundamen-
tal mechanisms enabling interoperability of authentication services. It supports
many novel services and features, including use of pseudonyms.

Privacy-by-design principle introduced by new personal data protection law is
another driving force in Europe. It says that the information processing systems
must be based on technical security (the former approach was based on penalties
for unauthorized data processing).

Privacy Protection via Unlinkability. One of the ideas to achieve privacy-
by-design is to eliminate unnecessary data disclosure via authentication. In the
traditional setting we authenticate ourselves with full identity and then our rights
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are determined based on this identity. In many cases a pseudonymous identity
would be enough. However, it is not just replacing the regular identity with a
pseudonymous one. The problem is that:

• in many cases the user must not be able to appear under two pseudonyms in
the same system (i.e. Sybil attacks must be impossible),

• user’s activities in different systems must not be linkable – the colluding
systems cannot link the pseudonyms of the same person.

Restricted Identification [5] is a mechanism that aims to replace the insecure
login-password mechanism and has been implemented on the German personal
identity card. It creates a unique password for each sector in a strong crypto-
graphic way.

Pseudonymous Signature. This is one of the mechanisms on the eIDAS
Token, which has been designed presumably as a replacement for Restricted
Identification. It has certain advantages:

• it does not enable to impersonate a user by an adversary knowing a so-called
group key (see [7]),

• it enables Chip Authentication in a way that creates an undeniable evidence
for later disputes.

There are also some disadvantages:

• the last property can be regarded as a disadvantage as well. Previously
simultability was frequently declared as a strong privacy protection feature –
an authentication proof was not transferable and therefore useless for illegal
data trade,

• the seclusiveness problem has not been solved so far.

The Problem. There are two critical security assumptions behind the design
of [5]: the eID chips are tamper resistant,and the Issuer of eID is trustworthy.
The first assumption is critical in the sense that it is not known how to improve
the scheme to make it immune against chip compromise. Some authors provide
the same functionality resistant to compromise of eID chips (see e.g. [4] or [8]),
but completely new protocols are used (with other disadvantages, like use of
pairings). In this paper we focus on the second assumption and ask how secure
are the citizens using eIDAS token from [5] in case of rogue authorities?

Even if in many cases the authorities and manufacturers are trustworthy, the
eIDAS token solution might become an international standard. Therefore we
cannot exclude an application of this technology in case where the Issuer cannot
be trusted.
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Paper Overview. In Sect. 2 we recall the technical specification of Pseudony-
mous Signature from [5]. In Sect. 3 we present some scenarios for rogue imple-
mentation of the Issuer in such a way that not only the Issuer can deanonymize
users, but also may delegate these possibilities to third parties without giving the
private keys of the users. In Sect. 4 we show a relatively simple and elegant solu-
tion to prevent all attacks of this kind in a way compliant with the specification
of Pseudonymous Signatures from [5].

2 Pseudonymous Signature on eIDAS Token

Here we recall the Pseudonymous Signature from [5]. We follow the notation
from [5] in order to make a direct reference to this de facto standard.

System Setup. The system is based on a cyclic group G of a prime order p
(the specification also refers to EC groups). Let g denote a fixed generator of
G. There is a pair of keys: the secret key SKM and the matching public key
PKM = gSKM .

Group Setup. For a group of eID documents the Issuer uses a pair of keys: a
secret key SKICC and the public key PKICC = gSKICC . The size of a group is
a compromise between the size of anonymity set (the number of eIDs based on
the same PKICC) and the cost of revocation of all eIDs using PKICC in case of
leaking SKICC.

Domain Setup. For a domain sector there is a public key PKsector generated
by a trusted third party. For application scenarios requiring that the trusted
authority can be asked to deanonymize a domain pseudonym of a user, the
trusted authority generates PKsector as gSKsector . Otherwise, “the third party
SHALL generate Sector Public Keys in a way that the corresponding private
keys are unknown”. A common way to achieve this is to create PKsector via a
hash function from the domain identifier.

Issuing an ID Document. For the sake of Pseudonymous Signatures of user
U the Issuer generates at random a key SKICC,2,U < p1. The second private key
SKICC,1,U is

SKICC := SKICC,1,U + SKM · SKICC,2,U mod p

The corresponding public keys PKICC,1,U = gSKICC,1,U and PKICC,2,U =
gSKICC,2,U might be stored by the Issuer for the sake of deanonymization. The keys
SKICC,1,SKICC,2 are stored on the eID document. (The keys PKICC,1,PKICC,2

need not to be stored there.)

Creation of Pseudonyms for a Domain. An eID document holding the
private keys SKICC,1,U , SKICC,2,U creates the pseudonyms for the sector with
the public key PKsector:

IsectorICC,1,U := PKSKICC,1,U
sector and IsectorICC,2,U := PKSKICC,2,U

sector .

1 We change the notation from [5] and indicate explicitly the key owner.
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Creation of a Pseudonymous Signature for a Domain. (We present a
simplified version without some irrelevant implementation details.)

The following steps are executed by user M for signing a message M :

1. choose k1, k2 at random,
2. compute Q1 := gk1 · PKk2

M ,
3. [optional] compute A1 := PKk1

sector,
4. [optional] compute A2 := PKk2

sector,
5. compute c := Hash(Q1, I

sector
ICC,1,U , A1, I

sector
ICC,2,U , A2, PKsector,params,M).

(the parameters IsectorICC,1,U , A1 and IsectorICC,2,U , A2 are optional and omitted when,
respectively, A1 or A2 are not computed). The argument params stands for
some additional parameters which are not important from our point of view.

6. compute s1 := k1−c·SKICC,1,U mod p and s2 := k2−c·SKICC,2,U mod p .
7. output the signature (c, s1, s2).

Signature Verification. Given a signature (c, s1, s2), the pseudonyms IsectorICC,1,U ,
IsectorICC,2,U are to be attached, if A1 and, respectively, A2 have been used for sig-
nature creation.

The verification procedure looks as follows:

1. recompute Q1 as Q′
1 := PKc

ICC · gs1 · PKs2
M ,

2. [optional] recompute A1 as A′
1 := (IsectorICC,1,U )c · PKs1

sector,
3. [optional] recompute A2 as A′

2 := (IsectorICC,2,U )c · PKs2
sector,

4. recompute c as c′ := Hash(Q′
1, I

sector
ICC,1,U , A

′
1, I

sector
ICC,2,U , A

′
2, PKsector,

params,M) (if some arguments are omitted during signature creation, then
the same arguments should be omitted here).

5. accept if c′ = c.

Note that the verification will yield the positive result, if the signer follows the
protocol:

Q′
1 = PKc

ICC · gs1 · PKs2
M = PKc

ICC · gk1−c·SKICC,1,U · PKk2−c·SKICC,2,U
M

= gk1 · PKk2
M · (

PKICC · g−SKICC,1,U · PK−SKICC,2,U
M

)c

= Q1 · (
gSKICC · g−(SKICC,1,U+SKM ·SKICC,2,U )

)c = Q1 · 1c = Q1 .

A′
1 = (IsectorICC,1,U )c · PKs1

sector = PKc·SKICC,1,U
sector · PKk1−c·SKICC,1,U

sector = PKk1
sector = A1 ,

A′
2 = (IsectorICC,2,U )c · PKs2

sector = PKc·SKICC,2,U
sector · PKk2−c·SKICC,2.U

sector = PKk2
sector = A2 .

Differences with the Protocol from [2]. The version presented in [2] is the
protocol described above with the following choice of options2:

2 The description of NymVf contains a misprint: y should be replaced by g2, which
corresponds to PKM in [5].
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• the optional parameters IsectorICC,1,U , A1 are used,
• the optional parametersIsectorICC,2,U , A2 are not used,
• the discrete logarithm of PKsector is always known to the Issuer.

For the protocol described in [2] certain security proofs have been given (there
are some problems with them [9]). The recommendation [5] contains neither
formal security proofs nor a design rationale.

3 Rogue Issuing Authority

The main purpose of Pseudonymous Signature is to protect signer’s privacy.
Definitely, we have to trust the Issuer, as according to [5] it creates the secret keys
of each single user. The Issuer can retain these keys and use later to deanonymize
the users. A silent assumption in [5] as well as in [2,3] is that this is inevitable.
In Sect. 4 we show that this is not the case as we can secure the users against
the Issuer.

The main problem that we discuss in this section is “delegation” of the ability
to deanonymize the users. Is it easy to reveal some data to a third party, called
Tracer, so that it can deanonymize as well? The volume of data forwarded to
the Tracer counts very much, since the leakage can be created by rogue software
installed by the honest Issuer, who himself becomes a victim of the attack: it is
much easier to leak a few keys than to hand over the whole database.

In certain situations the Issuer might be forced to provide deanonymization
tools to the Tracer. In this case it is important to limit the possibilities of the
Tracer. For instance, it should be impossible for the Tracer to create valid secret
keys for new users or to forge signatures of the existing users.

The situation described above may concern the state authorities: the Issuer
of a country A might be forced to provide deanonymization tools for the security
authorities of a country B due to political dependence or in course of trading
secrets. However, we have to be aware that a leakage may also concern data
transfer to the organized crime. This is particularly dangerous, since the signers
may falsely assume that their anonymity is well protected, while it might be
not true in case of their biggest foes. Protection against authorities should also
be considered. For instance, if Pseudonymous Signatures are used for the sake
of electronic voting, some regimes might be tempted to deanonymize the voter
supporting the opposition.

Below we show methods for tracing the users of Pseudonymous Signatures.

3.1 Scenario 1: The Issuer Creates Users’ Private Keys according
to the Protocol

The protocol description in [5] says that the user may authenticate himself
with only one pseudonym (or none of them). First let us make the following
observation:
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Proposition 1. Assume that the Tracer knows SKM and holds at least one
identity document. Then given one pseudonym of a user U in a domain, he can
compute the second pseudonym of U in this domain.

Proof. First the Tracer can compute PKSKICC
sector . Namely, he generates own

pseudonyms IsectorICC,1,T , IsectorICC,2,T and computes IsectorICC,1,T · (IsectorICC,2,T )SKM . Note that

IsectorICC,1,T · (IsectorICC,2,T )SKM = (PKsector)
SKICC,1,T · (PKsector)

SKICC,2,T ·SKM = (PKsector)
SKICC

Now, given the pseudonym IsectorICC,1,U , the Tracer can derive IsectorICC,2,U as

(PKsector)SKICC/IsectorICC,1,U )SK
−1
M mod p

Similarly, one can derive IsectorICC,1,U from IsectorICC,2,U as

(PKsector)SKICC/(IsectorICC,2,U )SKM .

��
By Proposition 1 separation of user’s signatures based on the pseudonym IsectorICC,1,U

and the signatures based on the pseudonym IsectorICC,2,U is not strict, even if the user
never creates signatures based on both pseudonyms.

Remark 1. The proof does not work if we replace SKM by SKICC in
Proposition 1.

It seems that in order to trace a user U , the Issuer has to give the Tracer either
SKICC,1,U or SKICC,2,U . Since the key SKICC,2,U has to be chosen at random,
the Issuer has to leak the key separately for each user. This is somewhat difficult,
leaking a single secret key is much easier, e.g. it can be copied to a piece of paper
and taken away.

Note that revealing both private keys for 2 different users would mean reveal-
ing the system keys SKM and SKICC and thereby would delegate the right to
issue eID documents as well – which is perhaps much more than the Issuer might
agree upon. Unfortunately, it is hard to exclude that the Tracer has broken two
different identity documents and therefore was able to derive SKM and SKICC .
In this case leaking one of the keys SKICC,1,U and SKICC,2,U is enough to leak
both keys. Then the Tracer would be able to impersonate a given user as well.
So this kind of leakage is probably unacceptable for the Issuer.

3.2 Scenario 2: The Issuer Creates the Users’ Private keys with
a PRNG

Generation of private keys by the Issuer can be implemented in the follow-
ing way. The Issuer holds a secret random seed s for a cryptographically
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secure Pseudorandom Number Generator (PRNG) creating numbers in the range
[0, p − 1]. Then the Issuer computes SKICC,2,U := PRNG(s, IDU ), where IDU is
the identifier of U .

Note that having s alone enables the third party to recompute SKICC,2,U

for each user U and thereby to compute the second pseudonym IsectorICC,2,U =

PK
SKICC,2,U
sector of U in the sector with the public key PKsector.
An implementation based on Scenario 2 can be well justified. Namely, it elim-

inates problems related to weak sources of randomness. (Note that if the ran-
domness is weak and SKICC,2,U predictable in some sense, then a party knowing
the weakness can extract the candidate keys SKICC,2,U and check them against
the pseudonyms.) Deploying an PRNG is also recommended by NIST [10] – no
nondeterministic RNG is recommended for use (of course, the FIPS specification
of DRNG requires input of entropy bits, but an external observer cannot test
whether these entropy bits are really used).

Such a scenario is still problematic, as the Tracer getting s can compute
SKICC,2,U for any user U . A much better choice would be to enable to trace
selectively some users.

3.3 Scenario 3: SKICC,1,U and SKICC,2,U with a hidden relationship.

For each user U there are parameters xU and sU generated in pseudorandom
way. Then

{
xU = SKICC,1,U + SKICC,2,U · sU modp,
SKICC = SKICC,1,U + SKICC,2,U · SKM modp, (1)

The service dependent trapdoor is Tsector,U = PKxU
sector. The Tracer gets

Tsector,U and sU from the Issuer in order to trace the user U in this sector.
The test is:

Tsector,U
?= IsectorICC,1,U · (IsectorICC,2,U )sU

Note that even if the Tracer learns SKM , SKICC, sU and Tsector,U , then he still
cannot solve the above system of linear Eq. (1) as there are three unknowns:
SKICC,1,U , SKICC,2,U and xU (note that xU cannot be extracted from Tsector,U ).

The question is whether additional input would ease forging pseudonymous
signatures. This seems not to be the case by the following argument:

given an instance – an input given to an adversary in a standard case, then
the adversary can choose an a at random, put

Tsector,U := IsectorICC,1,U · (IsectorICC,2,U )a

and perform the attack using such Tsector,U . There are two cases: If for Tsector,U

constructed in this way the attack yields noticeably different results than in the
real case, then we can easily build a distinguisher between the output of the
PRNG and random numbers. Of course, if we apply a good PRNG, this should
not be the case. The other option is that the attack based on such Tsector,U works
like for the real case. So we see that if it is possible to mount a forgery based on
enhanced data, then we can mount a similar attack for the regular case.
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Remarks. Note that the leakage could be selective (the Issuer betrays sU , xU

for some users) or a global one (the Issuer betrays the secret seed s for all of
them). Moreover, we may arrange the process of creating the secrets sU in a
tree-like fashion so that one can betray only the secrets from a subtree.

The above attack does not work for the former version described in [2,3], as
in this case IsectorICC,2,U is not available.

Note that the Tracer cannot learn the pseudonym of a user in a sector, if
the user does not create it. The capability of the Tracer seems to be limited to
deanonymization of the users which are active in a sector.

3.4 Scenario 4: Tracing with One Pseudonym

The attacks described above require both domain pseudonyms to deanonymize
a user. So one may hope that if we retreat to the setting from [2], then we
are again secure against deanonymization attacks enabled by a rogue Issuer.
Unfortunately, we show that this is not the case.

In order to enable tracing a user U , the Tracer gets a special shadow eID,
say for a user U ′. Namely, the Issuer creates SKICC,1,U ′ , SKICC,2,U ′ so that:

{
SKICC,1,U = sU · (SKICC,1,U ′)2 modp ,
SKICC = SKICC,1,U ′ + SKICC,2,U ′ · SKM modp .

(2)

Now, given PKsector, the user U ′ can compute the pseudonym IsectorICC,1,U of the
user U in the following way:

1. compute its own pseudonym I ′′ = IsectorICC,1,U ′ for PKsector,
2. compute I ′ := (I ′′)sU ,
3. feed own eID with I ′ as the public key of a sector, consequently the eID

returns I = (I ′)SKICC,1,U′ ,
4. output I.

Note that the output is correct, since

(I ′)SKICC,1,U′ = PK
sU ·(SKICC,1,U′ )2

sector = PKSKICC,1,U
sector = IsectorICC,1,U .

In the above procedure the role of sU is to prevent detection that the eID U ′

is rogue. Indeed, for sU = 1 an inspector holding the eID of user U ′ could run
the above procedure and check the results. The secret sU guarantees that such
an inspection is infeasible - the holder of eID U ′ may deny to know any such
secret.

On the other hand, even if IsectorICC,1,U ′ and sU are known, it is infeasible to

compute PK
sU ·(SKICC,1,U′ )2

sector without knowing SKICC,1,U ′ . Indeed, this is equiv-
alent to Square Diffie-Hellman problem, which is equivalent to CDH [1]. So if
the shadow user U ′ is behaving in a regular way, it is infeasible to derive the
pseudonym of U .
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It is also worth to note that SKICC,1,U ′ can be chosen at random – then sU is
derived as SKICC,1,U/(SKICC,1,U ′)2. So the probability distribution of the keys
for the shadow user U ′ is the same as for the case when it is not used for tracing
U . Of course, U ′ can trace many users: the Issuer gives U ′ the secret sU for each
traced user U .

4 Protection Against Rogue Issuers

If the Issuer creates the users’ secret keys, we cannot exclude leaking them.
Therefore, the only really effective solution would be to prevent the Issuer to
know the private keys of the users. Below we propose a method that achieves
this goal.

Secure Setup of Pseudonymous Signatures.
Secure initialization of the eID of a user U consists of the following steps:

1. After manufacturing time the eID chip stores two pairs of prekeys: (x1,1, x2,1)
and (x1,2, x2,2). They satisfy the equations
SKICC = x1,i + x2,i · SKM for i = 1, 2.

2. The eID document reaches the user U in the initialization mode. In the first
step the eID document presents the following pre-identifiers to the document
owner U :

IN1,1 = gx1,1 , IN2,1 = gx2,1 , IN1,2 = gx1,2 , IN2,2 = gx2,2 .

3. The eID document owner U chooses a, b such that a + b = 1 mod p and
presents them to the eID document. Thereby he requests the eID chip to
hold

SKICC,1,U := a · x1,1 + b · x1,2 mod p ,

SKICC,2,U := a · x2,1 + b · x2,2 mod p

as the private key for Pseudonymous Signature. Note that

SKICC,1 + SKICC,2 · SKM = a · x1,1 + b · x1,2 + (a · x2,1 + b · x2,2) · SKM

= a · (x1,1 + x2,1 · SKM ) + b · (x1,2 + x2,2 · SKM )
= a · SKICC + b · SKICC = SKICC ,

so the derived private keys are correct. Also, for any y1, y2 satisfying SKICC =
y1 + y2 · SKM , there is exactly one pair (a, b) such that

{
y1 = a · x1,1 + b · x1,2 mod p,
y2 = a · x2,1 + b · x2,2 mod p,

(3)

and a + b = 1 mod p. Indeed,
∣
∣
∣
∣
x1,1 x1,2

x2,1 x2,2

∣
∣
∣
∣ =

∣
∣
∣
∣
x1,1 + x2,1 · SKM x1,2 + x2,2 · SKM

x2,1 x2,2

∣
∣
∣
∣

=
∣
∣
∣
∣
SKICC SKICC

x2,1 x2,2

∣
∣
∣
∣ = SKICC · (x2,2 − x2,1) �= 0 mod p
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so there are a and b that satisfy (3). Moreover,

SKICC = y1 + SKM · y2 = (a · x1,1 + b · x1,2) + SKM · (a · x2,1 + b · x2,2)

= a · (x1,1 + SKM · x2,1) + b · (x1,2 + SKM · x2,2) = a · SKICC + b · SKICC mod p

Hence a + b = 1 mod p. Finally we may conclude that the key pair
(SKICC,1,U ,SKICC,2,U ) is uniformly distributed in the set of all private key
pairs.

4. For the future use the eID document owner retains

I1 := INa
1,1 · INb

1,2, I2 := INa
2,1 · INb

2,2 .

5. At this moment the eID document erases the pre-keys, the initialization pro-
cedure terminates and the eID document can create pseudonymous signatures
with the keys SKICC,1,U , SKICC,2,U .

Anytime the user U can test whether the keys SKICC,1,U , SKICC,2,U are really
used by his eID document. For this purpose the user U asks for identifiers for
a sector with PKsector = gh, where h is known to him. The pseudonyms IsectorICC,1 ,
IsectorICC,2 returned by the eID chip should satisfy the following equalities:

IsectorICC,1,U = PK
SKICC,1,U
sector = PK

a·x1,1+b·x1,2
sector = gh·a·x1,1 · gh·b·x1,2 = INh·a

1,1 · INh·b
1,2 = Ih1

IsectorICC,2,U = PK
SKICC,2,U
sector = PK

a·x2,1+b·x2,2
sector = gh·a·x2,1 · gh·b·x2,2 = INha

2,1 · INhb
2,2 = Ih2

So the document owner performs the test

IsectorICC,1
?= Ih1 and IsectorICC,2

?= Ih2 (4)

If the test fails, then the eID chip is cheating about the choice of the private key.
The eID chip may attempt to guess the moment of the test. However, this

would be equivalent to guessing whether the document owner knows the dis-
crete logarithm of the element presented as the public key of a sector. Since
deanonymization requires that somebody knows this discrete logarithm, it is
infeasible to demand from the owner a proof that he does not know the discrete
logarithm.

Note that the above method works also for the original scheme from [3]. Then
the test concerns only one equality.

The only problem with the above approach is that it precludes deanonymiza-
tion. In order to enable it, one can extend the protocol so that the life-cycle of
an eID document consists of the configuration phase and the application phase.
After the configuration phase the eID document enters the application phase
and there is no way back to the configuration phase. The configuration phase
consists of the following steps:

• generate the private keys SKICC,1,U , SKICC,2,U as described above,
• generate the pseudonyms P1 = gSKICC,1,U , P2 = gSKICC,2,U and a Pseudony-

mous Signature for PKsector = g, send the pseudonyms and the signature to
the Issuer over a secure channel,
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• enter the application phase after receiving an acknowledgement of the Issuer
confirming P1 and P2.

Given P1, P2, deanonymization may be executed as for the original eIDAS
token [5].

5 Conclusions

Despite the careful design of [5], it turns out that some details of the specifi-
cation need to be carefully reviewed. We need a complete system description
with a corresponding security model taking into account malicious behavior of
protocol participants. Potential mistakes may have deep impact, as decisions
concerning electronic identity documents have their long term consequences due
to the typical exchange period of 10 years.
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Abstract. Root is the administrative privilege on Android, which is
however inaccessible on stock Android devices. Due to the desire for priv-
ileged functionalities and the reluctance of rooting their devices, Android
users seek for no-root approaches, which provide users with part of root
privileges without rooting their devices. In this paper, we newly discover
a feasible no-root approach based on the ADB loopback. To ensure such
no-root approach is not misused proactively, we examine its dark side,
including privacy leakage via logs and user input inference. Finally, we
discuss the solutions and suggestions from different perspectives.

Keywords: No-Root approach · Android Debug Bridge (ADB) ·
Privacy leakage · Exploit analysis

1 Introduction

Android is a Linux based system with discretionary access control enforcement.
Root access, which is part of traditional Linux systems, is blocked on stock
Android devices for security reasons. If users would like to gain complete control
over their Android devices with administrative permissions, they could root their
devices at their own risks, such as device bricking and warranty turning void.

To avoid the risks of rooting their Android devices, users turn to no-root
approaches which enable them to attain their desired permissions but with-
out rooting their devices. The motivation of using no-root approaches might
be strong since Android do not always provide all easy-to-use but desperately
needed features. Some popular no-root applications [1,2], even paid ones [3],
have achieved millions of downloads and high reputations in Google Play.

The existing no-root applications (“apps”) primarily use Android Debug
Bridge (ADB) [4] to launch a separate privileged executable program as back-
ground service on the target device. The background service is designed to
respond to user’s requests made from the no-root app and perform certain priv-
ileged tasks which the no-root app is not authorized to perform.

In this paper, we newly discover a feasible no-root approach leveraging the
new ADB functionality provided on Android versions 4.x and 5.x which take
up to 95.7 % in the distribution of Android devices according to the official
statistics [5]. To our best knowledge, we are the first to discover such no-root

c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 481–489, 2016.
DOI: 10.1007/978-3-319-40367-0 32



482 Y. Cheng et al.

approach. This no-root approach has its advantage compared to the other no-
root approaches in that it creates an ADB loopback instead of introducing a
separate service. After the ADB loopback is created, a no-root app on the target
device can run as a debugger to execute ADB commands to accomplish the
privileged operations.

Though, we have not found any wild samples using this no-root approach
yet, they may appear in the market at any time in any form, e.g., malicious
apps pretending to be no-root apps. To ensure that such no-root approach is
not misused in a proactive instead of reactive manner, we examine the dark side
of this approach and reveal that the attacks leveraging this no-root approach
can be launched from an app on a standalone victim device instead of on a
development computer connected to the victim device. We reported the issue to
Android. The latest Android 6.0 takes action to remove ADB client and ADB
server on the latest Android 6.0 to avoid the attacks.

2 A Feasible No-Root Approach

2.1 ADB

ADB [4] is a debug system for Android that allows developers to connect develop-
ment computers and Android devices/emulators. Developers can debug Android
devices on separate development computers via ADB. ADB includes three com-
ponents as shown in Fig. 1 (the components not in red), i.e., ADB client, ADB
server1, and ADB daemon. A developer issues an ADB command via an ADB
client on a development computer. An ADB server on the development com-
puter, passes the command from ADB client to an ADB daemon which runs
on a target Android device. The response to the command is passed back to
the developer along the same route. Before debugging, there is a switch to be
enabled in the Settings→Developer options. Since Android 4.2.2, at the first time
a development commuter connects the target Android device, a confirmation dia-
log showing the MD5 hash of an RSA public key of the development computer
is prompted to obtain the explicit confirmation from the device owner.

Fig. 1. ADB architecture.

1 In practice, ADB server is implemented in the same binary as ADB client.
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After the connection established, two categories of commands can be issued
from the developer computer to the connected Android device, i.e., ADB com-
mands and shell commands. ADB commands fulfil the functionalities for debug-
ging purpose, such as device connection, app (un)installing, data transfer, and
shell starting. Shell commands can be used after the shell starting, when a shell
user, whose UID is 2000 on Android, is born with shell permissions. The majority
of shell permissions [6] have protection levels equal to or higher than “danger-
ous”. Note that any permissions higher than “dangerous” level are either hidden
or not for use by third-party apps.

2.2 The Existing No-Root Approach

The existing no-root apps adopt ADB to launch a separate service in their pre-
processing, and delegate the privileged tasks to this service during runtime. The
preprocessing usually includes two manual operations. The first is to connect
a mobile device to a development computer and switch on the debug mode.
The second is to run a provisioned enabler on the development computer which
has been downloaded separately from a no-root app’s website. To understand
the purpose of using an enabler, we introduce a typical enabler script as shown
in Listing 1. In Listing 1, “svc” denotes the native service that performs a tar-
get task which requires certain high-level permissions. The executable service is
pushed to the device (Line 1) and started by ADB shell (Line 3) so that it inher-
its the shell permissions for exercising some privileged functionalities. After that,
the no-root app which directly interacts with users, is able to work by delegating
some of its tasks to the running service through sockets. The service needs to be
restarted once the Android device is rebooted, i.e., to run the enabler again.

2.3 A Feasible No-Root Approach Based on ADB Loopback

Different from the existing approach, whose privilege resides in a separate service,
we newly discover a feasible no-root approach based on ADB loopback and
requiring no separate service.

An Android device of versions from 4.x to 5.x can debug another Android
device, because these new versions have introduced the ADB components, which
are originally on development computers, to Android systems, i.e., ADB client
and ADB server (the dashed components in Fig. 1). In addition, the connection
mode is not limited to USB cable. A new TCP mode allows a development
computer using TCP links to connect to the target Android device. However, an
inconspicuous side consequence is that an Android device gains the capability
of debugging itself by connecting its ADB server to its local ADB daemon via
TCP mode (the loopback in Fig. 1). Based on such ADB loopback, we discover
a new feasible no-root approach.
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Listing 1. The existing no-root script.

1 adb push ./svc /data/local/svc
2 adb shell chmod 777 /data/local/svc
3 adb shell /data/local/svc &

Listing 2. The core snippet of Looper.

1 adb tcpip 5555
2 adb shell adb kill -server
3 adb shell HOME=/ sdcard adb start -

↪→ server &

It takes a simple preprocessing to establish the ADB loopback. What a user
needs to do in this preprocessing is to run a script, which we name as “Looper”,
on a development computer connected to the target Android device. Listing 2
shows the core snippet of Looper. Looper turns on the TCP mode at port 5555
on the target Android device (Line 1). Then, it restarts the ADB server setting
“/sdcard” as HOME folder (Line 2 and Line 3). The purpose of changing HOME
folder is to guarantee that Looper could work as well on Android 4.2.2 and higher.
This is because since Android 4.2.2, ADB introduces the RSA authentication
that stores its key pair in the HOME folder. Looper changes the HOME folder
to a shell-user-accessible folder, so that the RSA key pair of the ADB server
can be stored successfully for later authentication. After confirming the dialogs
requiring the explicit confirmation from the device owner, the ADB loopback is
established, and its effect lasts till the Android device is rebooted.

After ADB loopback is established, a no-root app with the permission to
connect to local TCP ports can play the role of a debugger. The permissions of
ADB that are intended for remote development computers are now available on
stand-alone Android devices. As a result, by using ADB loopback, no-root apps
can perform privileged tasks as intended.

3 Exploits on the Dark Side

No-root has always been a double-edged sword2. It is important to explore its
dark side proactively. In this section, we demonstrate two typical exploits on
such no-root approach.

3.1 Adversary Model

The scenario of our investigation is that a user has an Android device which is not
rooted. (S)he has installed a no-root app that adopts the newly-discovered no-
root approach on his/her device for the purpose of enjoying privileged functions
without rooting the device. We investigate the potential threats causing by a
malicious app only with the internet permission, which can be the no-root app
itself or other apps on the same device.

2 The existing no-root approach could lead to privacy leakage due to the insecure
socket communication between the no-root app and its native service [7].
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3.2 Privacy Leakage via Application Logs

Android provides a logging system for inspecting debugging outputs. The access
to log messages is regulated by callers’ UIDs. Normal users, i.e., third-party apps
without root privilege, can only access the logs related to themselves. However,
an app, leveraging the no-root approach we discover, can get system-wide logs
using “logcat” which is the official tool for dumping log messages.

If there is no sensitive information being logged, there should be no infor-
mation leakage via logs. Android documents have suggested that logs should be
managed, e.g., removed in release versions, according to their types [8]. Even
though, it happened that some informative data is logged [9]. We are interested
in whether developers manage sensitive logs properly nowadays, since private
log may become readable to other apps in this scenario.

The sensitive information on mobile devices is classified into four categories.
The device parameters reflect the characteristics of devices, including Android
version, device model, manufacturer, root status, and phone service information
(phone number, IMEI, and IMSI). The app account information is on the appli-
cation level, which includes account ID, account credential, and personal profile.
The user interaction indications indicate the operations a user performs, such as
opening an activity and inputting a password. Finally, geographic data, network
information, and others are classified into the last category.

The top-ranked 10 account-sensitive free apps from Google Play and Anzhi
Market are examined, respectively. The observation shows that 11 of the 20
top-ranked apps log some sensitive data in Table 1.

Table 1. The sensitive information collected from log messages.

Applications Device params Account info User interaction Others

org.mozilla.firefox (G) � � - -

com.tencent.mtt (A) - � - -

com.taobao.taobao (A) � � - -

com.sinovatech.unicom.ui (A) � � � � Location

com.skype.polaris (G) � - - � User agent

string, country

code

com.tencent.mobileqq (A) - - - � Gateway IP,

SQL statement,

established

connections,

network info

and quality test

com.google.android.youtube (G) � - - � Country code,

network info

com.facebook.katana (G) - � - � Gateway IP,

GPS data

com.cleanmaster.mguard (A) � - � -

com.snapchat.android (G) - - � -

co.vine.android (G) - - � -
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One interesting example is due to the improper use of third-party SDK.
Snapchat [10] uses Flurry [11] SDK to help its developers obtain the usage ana-
lytics. Flurry defines log APIs for developers to monitor the runtime behaviours
of apps during developing and debugging. It is observed that some real-time
user operations are logged using Flurry APIs in the release version. One of such
cases, which happens during registration, is demonstrated in Listing 3. It can be
inferred that Snapchat first focuses on the email field (Line 2), and then the edit
on this filed begins (Line 3). After that, it focuses on the password filed waiting
for inputs (Line 4). Once a user starts inputting his/her password, it immedi-
ately outputs the corresponding log (Line 5). Even there is no direct leakage
of email or password, the information about focusing and editing can be used
maliciously to launch other attacks such as keylogger attacks.

Listing 3. FlurryAgent logs in Snapchat showing user interactions during registration.

1 W/FlurryAgent (20495): Event count started: R01_BEGIN_REGISTRATION
2 W/FlurryAgent (20495): Event count started: R01_FOCUS_ON_EMAIL
3 W/FlurryAgent (20495): Event count started: R01_EDITED_EMAIL
4 W/FlurryAgent (20495): Event count started: R01_FOCUS_ON_PASSWORD
5 W/FlurryAgent (20495): Event count started: R01_EDITED_PASSWORD

3.3 User Input Inference

User input inference is a way to obtain users’ private information such as account
credential by capturing their input. An attacker can apply the input inference to
surmise the credential at the time of user inputting. Unfortunately, if the no-root
approach is misused, both input timing and input characters are available.

Good Timing of Credential Input. Normally, when a login activity is shown
on screen, if the keyboard is invoked at the same time, there is a higher chance
that a user is going to input account credential to this activity.

Login activities usually share a common pattern which can be used to detect
them. A login activity normally consists of at least two EditText fields for
inputting the username and password, respectively. Among the two, the sec-
ond EditText field conceals the password by representing each input character
in a black dot or asterisk. This pattern is reflected in the activity layout which
can be obtained in XML format using the shell command “uiautomator”. And
the keyboard appearance can be captured using the shell command “dumpsys”.

We test the good timing detection algorithm with the top 20 finance apps
in Google Play. Experiments show that the algorithm can capture all the login
activities in 15 apps. The other 5 apps are verified to have no login activities.

Inference of Input Characters. The characters that a user inputs on a touch-
screen can be inferred from knowing both of the touch position on screen and
the software keyboard layout.

First, let us consider the touch positions. The dispatch destination of each
click position is supposed to be the app running on screen only. However, with
the dark side of the no-root approach, a malicious app on the same device can
access directly the touch coordinates using the shell command “getevent” no
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matter it is running on screen or not. In this way, the accurate touch position is
known by parsing these raw events [12] returned by this command straightly.

Second, let us consider the keyboard layout. The position of each key varies
according to different layouts, e.g., “QWERTY” layout. Even for the same lay-
out, the position might be different due to the adjustment by vendors. The
information about the input method, e.g., its vendor name and whether it is
invoked, is available using “dumpsys”. As a result, the combination of touch
positions and the keyboard layout can further surmise the input characters.

4 Discussion

After we verify that the no-root approach can work on Android versions from
4.x to 5.x, we reported it to Android in August 2015. Android admitted soon
that the no-root approach can work as intended, and so do the exploits on its
dark side. Later in October 2015, Android adopted a straightforward solution by
removing the ADB client and ADB server, i.e., the ADB binary from the newly
released Android 6.0. These two components are responsible for accepting debug-
ging commands and communicating with the ADB daemon, respectively. As a
consequence, an Android device can no long be used to debug other Android
devices. While it is a simple solution to remove the debug functionality, it is
not ideal due to sacrificing much benefit/convenience provided by ADB debug-
ging and no-root apps. A preferred solution should mitigate the ADB loopback
exploits while still make it work for benign no-root apps, such as extending the
existing permission-based mechanism. We leave this to the future work.

On the other hand, the ignorance of developers and markets is another
important cause of the exploits. On the app developers’ side, proper coding and
configuration would help to protect apps against some malicious exploits. It is
important for app developers to clean up sensitive logs when producing release
versions. On the app markets’ side, it is suggested that app markets enforce
effective and specific vetting processes. Google Play has set up an example of
using its bouncer [13], which checks for malicious operations and certain vul-
nerabilities in each app submitted to Google Play and suggests whether or not
accept the app in the market. We suggest that Android markets, both official
and third-party ones, should check for the usage of logging code, e.g., debug or
verbose level log, so as to avoid leaking sensitive information in logs.

5 Related Works

Several ADB based attacks have been identified before. Vidas et al. [14] men-
tioned in their survey that an untrusted ADB connection via USB could result
in security breaches when an attacker is physically close to the target device.
Recently, Symantec detected a Windows malware which may infect Android
devices with ADB [15] via USB connections. Hwang et al. [16] presented some
feasible stealthy attacks which can be performed with ADB capabilities. In this



488 Y. Cheng et al.

paper, we firstly discover a feasible no-root approach that based on ADB loop-
back to achieve extra privilege in Android system without root. The dark-side
exploits of this no-root approach and the evaluation on real-world apps are com-
plementary to the ADB based attacks identified before in terms of providing a
better understanding on how ADB can be misused.

Previous research has shown that some existing no-root applications can be
misused. Lin et al. [7] attacked some existing no-root screenshot apps and abused
their screenshot functionalities. It was shown that user input can be inferred by
analysing the screenshots taken by these apps. In order to prevent the newly-
discovered no-root approach from being misused or attacked, we proactively
explore its dark side.

Developers’ negligence in code regulation was pointed out that a malicious
app can read SMS, obtain contacts and access location by selectively reading
the system logs in earlier versions of Android [9]. However, since Android 4.1,
an app is restricted to read its own logs only. Nonetheless, it is still not a secure
way to log sensitive information. Because like one of the dark-side exploits in
this paper, the system-wide logs may become available to an installed malicious
app. The evaluation on the top-ranked real-world apps shows that many of them
still log informative data, which leads to severe privacy leakage.

6 Conclusions

In this paper, we discover a feasible no-root approach leveraging ADB loopback
working on Android devices of versions 4.x and 5.x for the first time. To ensure
that this no-root approach is not misused in a proactive manner, we investigate
its typical dark-side exploits and evaluate them with real-world apps. Finally,
we discuss the mitigation that could be adopted by different parties.
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Abstract. Modern network traffic classification approaches apply machine
learning techniques to statistical flow properties, allowing accurate classification
even when traditional approaches fail. We base our approach to the task on a state-
of-the-art semi-supervised classifier to identify known and unknown flows with
little labelled training data. We propose a new algorithm for mapping clusters to
classes to target classes that were previously difficult to classify. We also apply
alternative statistical features. We find our approach has an accuracy of 95.10 %,
over 17 % above the technique on which it is based. Additionally, our approach
improves the classification performance on every class.

1 Introduction

Network traffic classification is an important task for a range of network-related areas,
including network management, surveillance, and security. Traffic classification has
traditionally been performed by inspecting port numbers. However, this is often inef‐
fective due to the number of applications using non-unique and non-standard port
numbers [1]. Deep-packet inspection avoids reliance on port numbers, but demands an
up-to-date database of application signatures and has significant computational
complexity, often making the approach unfeasible for real-world use [2, 3].

Machine learning techniques have been gaining popularity for their ability to effec‐
tively classify network applications using only statistical flow features [1–3] and without
the drawbacks of more traditional approaches. The open problem we address is how to
improve the accuracy of traffic classification from applications that have been difficult
to classify using only statistical traffic flow properties.

In this paper, we apply a semi-supervised machine learning technique to automati‐
cally identify network applications using only statistical traffic flow properties. Our
approach is based on a leading semi-supervised traffic classification approach [4], which
can handle flows generated by unknown applications. We propose two innovations to
this method in order to further increase its effectiveness. First, our approach introduces
an alternate algorithm for identifying applications, Second, we propose introducing
feature selection into the system model. Based on an empirical evaluation on a standard
benchmark dataset, we show that our approach has an accuracy of 95.10 %, an increase
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of over 17 % against the technique on which it is based [4]. Additionally, our approach
improves the classification performance on every class.

2 Related Work

Current research into traffic classification has shown various supervised, unsupervised,
and semi-supervised machine learning techniques to be viable approaches. Supervised
machine learning approaches [5, 6] have been shown to achieve particularly high clas‐
sification effectiveness. However, these approaches can only predict predefined classes
found in the training data. Unsupervised learning approaches [7, 8] classify from clusters
of unlabelled training flows. While using unlabelled data means they can handle known
and unknown classes, mapping clusters to classes remains a key challenge.

Semi-supervised approaches aim to address the problems of both supervised and
unsupervised approaches. Erman et al. [2] developed an effective semi-supervised
approach for classifying network applications, combining K-Means clustering with
probabilistic assignment. Using a small set of labelled flows with a larger unlabelled set,
clusters with labelled flows can automatically be mapped to classes. Clusters without
labelled flows represent unknown classes. The key advantage of this technique is simple
class mapping and handling of unknown classes. With few labelled instances, however,
clusters are often incorrectly labelled “unknown”. A recent extension to this approach
by Zhang et al. [4] countered this weakness by automatically extending the labelled
portion of training data. This was done by identifying correlated flows – flows sharing
the same destination IP address and port, and protocol – and sharing labels between
them. This approach was shown to significantly increase the labels available and thus
better label clusters. Furthermore, applying compound classification to correlated test
flows further improved effectiveness. It was shown to outperform standard and state-of-
the-art machine learning algorithms, including decision trees, K nearest neighbours,
Bayesian networks, and the Erman et al. approach.

While the Zhang et al. approach is a leading semi-supervised approach for traffic
classification, certain traffic classes still proved challenging to identify. We aim to target
these classes for an overall more consistently effective classifier.

3 Problem Statement

We are given a set of training flows T = {ti | i = 1, 2,… n} and a set of testing flows
X = {xj | j = 1, 2,… m}, generated on a single network. Each flow represents a bidirec‐
tional series of packets between two hosts, sharing the same source and destination
addresses, port numbers, and protocol. Each flow has been generated by some known
or unknown traffic class c. For each known class c, a subset of T exists such that Tc = {Lc
∩ Uc} and || Lc || < < || Uc ||, where Lc is the set of pre-labelled flows of class c and Uc
is the set of unlabelled flows of class c. For any unknown class c, the subset of T
containing flows of class c is Tc = {Uc}. That is, none of its flows are pre-labelled.
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From T, we aim to create classifier f (x) = c such that when a flow x is given, a traffic
class c is predicted. The traffic class c indicates that flow x was generated by a specific
known class, or that it was generated by some unknown classes.

4 Our Proposed Approach

Figure 1 illustrates the details of our approach. The flow label propagation algorithm is
first applied to a large training set containing a small number of labelled flows per class.
The flow label propagation algorithm uses the correlated flows property of network
traffic described in Sect. 2 to automatically increase the number of labelled flows. Feature
selection algorithms are then applied to this larger labelled set to identify the strongest
features. Next, clustering is performed on all training data, and then labelled flows are
used to identify clusters as classes. Finally, the nearest cluster classifier predicts flow
classes.

Fig. 1. System model.

This system model is based on Zhang et al. [4], with some key alterations. Like [4],
this model’s main advantage is its ability to appropriately handle flows generated by
unknown applications. Creating and identifying “unknown” clusters achieves this.
However, we propose an alternative cluster labelling algorithm for increased effective‐
ness. After flow label propagation, we also introduce feature selection to identify a
stronger feature set. Label propagation can greatly increase the amount of labelled data
available, allowing feature selection algorithms to work more effectively. Thus this step
can again increase the classification success. Below we describe our alternative cluster
labelling algorithm, followed by our feature selection approach.

4.1 Fuzzy Cluster Labelling Algorithm

The cluster labelling algorithm introduced below is our proposed alternative to the algo‐
rithm used in [2, 4]. Their algorithm is a simple majority vote; the label for some cluster
i is the most common label in i. If i has no labelled flows, then it is an unknown cluster.
We follow the same principle, but our algorithm has two key differences. First,
“unknown” is treated as a traffic class. Second, clusters can be labelled as multiple traffic
classes. For this reason we dub the algorithm fuzzy cluster labelling.

Improved Classification of Known and Unknown Network Traffic Flows 495



Input: training flows T; set of k clusters trained on T

Output: traffic class labels, labelsi, for each cluster ci
for i = 1 k 

  cij = number of flows labelled as class j in cluster ci
  labelsi = [argmaxj(cij)]

foreach traffic class j 

if j not in labelsi and cij * threshold > y:

    append j to labelsi 

Algorithm 1.  Fuzzy Cluster Labelling  

The algorithm requires a reasonable number of pre-labelled flows per class, which
is achieved in our model by first applying the label propagation from [4]. The threshold
ensures we assign additional cluster labels in the case of no clear majority. Otherwise
we give it just one label. The labels are then naturally decided between during compound
classification. The compound classification stage classifies all correlated test flows
together via a majority vote of class labels. Using this algorithm, each test flow can
therefore vote for multiple potential classes.

4.2 Feature Selection

Irrelevant or unnecessary features can negatively impact the success of machine learning
algorithms [9]. Thus, feature selection methods aim to reduce the feature set to the most
relevant subset. For classifying network flows, it is standard for statistical features to be
used [3]. However, in our semi-supervised context, we have too few pre-labelled flows
for feature selection to be effective. This problem is alleviated by first applying flow
label propagation to the dataset. Once this is applied, there is a more reasonable pool of
labelled data for feature selection algorithms to use. We reduce an initial set of 40 stat‐
istical features by applying the extra trees classifier algorithm [10], selected for its
efficiency and simplicity, to identify a feature subset.

5 Experimental Evaluation

This section evaluates our proposed method against the Zhang method on which it is
based, as this method has been shown to outperform other standard and state-of-the-art
approaches.

5.1 Data Set Description

The data used in this experiment originates from a publicly available wide (http://
mawi.wide.ad.jp/mawi/) network traffic trace. The data used is a sample from traffic
captured in March 2008. NetMate [11] is used to convert packets into flows and compute
various features. This dataset was then separated into a training set of approximately
114,000 flows and a testing set of approximately 28,500 flows. While we acknowledge
identifying ground truth classes through standard port numbers will introduce some
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error, this is a common labelling approach used in the literature, and the error introduced
is expected to be small [12]. A maximum of 24,000 training flows and 6,000 testing
flows were selected at random per class to prevent over-representation. Table 1 shows
a complete breakdown of classes used.

Table 1. Traffic class breakdown in the sample of the wide dataset used.

Traffic class # of training flows # of testing flows
HTTP 24,000 6,000
BitTorrent 2,448 613
DNS 24,000 6,000
SMTP 24,000 6,000
SSH 24,000 6,000
HTTPS 15,370 3,843

5.2 Evaluation Metrics

Two standard metrics are used to evaluate the performance of the proposed method. The
first method is accuracy, i.e., the number of correctly classified flows out of all classi‐
fications made. This metric is used to evaluate overall classifier performance.

Accuracy =
CorrectlyClassifiedFlows

TotalNumberofFlows
(1)

The second metric used is F-measure, i.e., the weighted harmonic mean of precision
and recall. Precision is defined as the ratio of flows correctly classified as a class to all
flows classified as that class. Recall is defined as the ratio of flows classified as some
class to all flows truly belonging to that class.

F − Measure =
2 × Precision × Recall

Precision + Recall
(2)

The F-Measure is used to evaluate the performance for each class individually.

5.3 Experimental Setup

For each experiment, we use 100 pre-labelled flows per known traffic class (HTTP,
BitTorrent, SSH, and HTTPS). We select DNS and SMTP as unknown classes with no
pre-labelled flows. We use k-Means as our clustering algorithm. The number of clusters
for both Zhang’s method and the proposed method is set to k = 500, and each experiment
is repeated 5 times with results averaged. The large k chosen is appropriate since using
a large number of clusters has been shown to result in pure clusters for network traffic
[8], and the Zhang et al. method has been shown to be robust when varying the number
of clusters [4]. The features used in our implementation of the Zhang approach are 20
statistical features described in [4].
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5.4 Results of Fuzzy Cluster Labelling

The results of the fuzzy cluster labelling algorithm (with a threshold of 2.5) against the
original Zhang et al. labelling can be seen in Fig. 2. The same statistical features from
[4] were used in both experimental setups. The labelling threshold parameter was varied
between 2.0 and 3.0 and the impact was largely negligible.

Fig. 2. F-Measure per traffic class when applying alternate cluster labelling methods. (Color
figure online)

Our proposed labelling algorithm resulted in an increase in F-Measure for every
class. For classes where the Zhang approach performed well, there was always a slight,
albeit sometimes insignificant, improvement. For example, the algorithm produced an
increase in F-Measure of just 0.071 and 0.021 for HTTP and HTTPS classes respec‐
tively. For classes where the Zhang approach did not perform as well, our algorithm
made more noticeable improvement. The unknown class improved from 0.733 to 0.980,
an increase of 0.247. The BitTorrent class improved from 0.222 to 0.750, an increase
of 0.528. We note that the BitTorrent class performed much better in [4] than in our
implementation of the Zhang’s approach. We attribute this to using different samples of
the same dataset and having few training and test instances for this class.

5.5 Results of Fuzzy Labelling and Feature Selection

Applying feature selection reduced an initial set of 40 statistical features to the 17
described in Table 2. Applying both the new feature subset and the proposed clustering
algorithm together completes our approach. The combined impact can be seen in Fig. 3.
Figure 3(a) shows the overall accuracy found is an increase from 77.77 % to 95.10 %, a
significant increase of over 17 % against [4].

The effect on F-Measure in Fig. 3(b) shows that our approach improved the F-
Measure for each class when again compared against [4]. The HTTP class increased by
0.087 to an F-Measure of 0.913. The F-Measure for the SSH class was 0.997, and 0.860
for HTTPS. These rose by a very minor 0.002 and 0.043 respectively. The unknown
class grew from 0.733 to 0.980, and BitTorrent from 0.225 to 0.821.
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Table 2. Final feature set used after feature selection.

Feature category Description # of features
Bytes (Forwards) Minimum, maximum, and standard deviation

of packets.
3

Bytes (Backwards) Mean, maximum, and standard deviation of
packets.

3

Inter Packet Time (Forwards) Minimum, mean, maximum, and standard
deviation of inter packet time in the forward
direction.

4

Inter Packet Time (Backwards) Mean, maximum, and standard deviation of
inter packet time in the reverse direction.

3

Duration Duration of the flow. 1
Flag Whether there was a PSH flag in the forward

direction.
1

Headers Total size of the headers in each direction. 2

Using our alternative feature improved only marginally over the Zhang feature set.
However, each class performed as well or better than before. Most significantly, the
BitTorrent class grew by a further 0.070. The HTTP and HTTPS classes found minor
improvements of 0.013 and 0.016 respectively. The other classes remained as before.

Fig. 3. Overall accuracy and F-Measures of the Zhang et al. approach against our approach.
(Color figure online)

6 Analysis and Discussion

The results in Sect. 5 demonstrate that our approach can significantly improve traffic
classification effectiveness against a state-of-the-art method. The overall accuracy
improvement of over 17 % demonstrates the potential of our approach.

The proposed fuzzy cluster labelling algorithm made the most significant impact.
There are two reasons for this. First, the Zhang approach ignores unlabelled flows when
labelling, while we make use of them. Many of the unlabelled instances are truly of the
unknown class, hence our cluster labelling accounts for this. Otherwise there is strong
bias towards known classes, even when clusters are overwhelmingly unknown. While
this incorrectly treats some unlabelled known class flows as unknown, we counter this
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error with label propagation, multiple labels, and compound classification. The second
reason for improvement is to allow multiple labels per cluster. The labelling method in
[2, 4] would label entire clusters based on its most common labelled class. However,
there are circumstances when it does not make sense to apply this method. While we
expect pure clusters in this domain with a large k [8], a brief analysis showed some
clusters had as low as 35 % purity. In these cases, majority labelling fails to represent
the cluster, and thus explains why multiple labels allow such improvement. Our results
show that a good choice of threshold can improve the performance of every class. This
parameter ensures that pure clusters confidently vote once, while less pure clusters are
given multiple class votes. The classes that were already classified effectively remained
successful. Meanwhile, classes that were previously frequently mislabelled exhibited
more significant improvement. Additionally, fuzzy clustering labelling is seen as effi‐
cient in terms of computational complexity. Let n represent the number of flows in a
cluster, and c represent the number of traffic classes. The total time complexity for our
labelling algorithm is thus O(n + c). There are typically very few classes c compared to
flows n. Thus, this is approximately equivalent to the O(n) of the method from [2, 4].

7 Conclusion

This paper presented a new take on an existing semi-supervised approach for network
traffic classification. An overall accuracy of approximately 95 % demonstrated the
effectiveness of our approach to traffic classification. Furthermore, an improvement in
F-Measure for every class demonstrated the effectiveness of fuzzy cluster labelling. This
allowed our approach to consistently outperform the state-of-the-art method on which
it is based. The alternative feature set considered also demonstrated how stronger feature
subsets could be considered to further improve effectiveness.
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Abstract. Key-homomorphic pseudo random functions (KH-PRF)
have many practical applications including proxy re-encryption, distrib-
uted credential protection systems and updatable encryption. We present
a key-homomorphic pseudo random function that is homomorphic with
respect to a significant part of the secret key and analyse its security.
Previous constructions rely on the learning with errors problem which
adds some small error to the homomorphic operations due to the noisy
outputs. Our construction, based on elliptic curves, removes the need
of adding this noise at the cost of adding a few bits to the secret key
for which homomorphism does not follow. The main advantage of our
construction is that homomorphism can be applied several times with-
out incurring into errors. In particular, we show how our KH-PRF can
be used to provide key updatable encryption to distributed storage net-
works. Also, by relaxing the security assumptions, our PRF can be mod-
ified to be homomorphic with respect to the entire key.

Keywords: Distributed storage systems · Elliptic curves ·
Key-homomorphic PRFs

1 Introduction

One of the most important cryptographic primitives are the pseudo random
functions (PRF). A PRF is a function for which X , S and Y are the input, key
and output spaces respectively. A PRF G : X × S → Y is secure if knowing X
but not S, G(X,S) is computationally indistinguishable from random [1]. In this
paper we will study a kind of PRF with the following property: If S3 = S1 + S2,
then G(X,S3) = G(X,S1) + G(X,S2). This is a special case of the definition
of key-homomorphic PRF (KH-PRF) given in [2, Definition 3.1]. It was also
shown in [2, Section 1.2] that KH-PRFs can be used to implement important
cryptographic functions such as secure distributed PRFs, proxy re-encryption
and updatable encryption.

This work was supported in part by ARC Discovery Project DP150103658.
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The wide range of applications of KH-PRFs has motivated the construction
of several candidates for which security has been proven [2,3]. Most of these
schemes are based on the learning with errors problem (LWE) [4] which naturally
adds some ‘noise’ to the outputs leading to an ‘almost’ KH-PRF. To be specific,
for some small error e (different in every case), G(X,S1 + S2) = G(X,S1) +
G(X,S2) + e. Namely, for some n ∈ Z and a large integer q, the outputs are
vectors in Zn

q and e ∈ Zn
3 . Since this error is small, the homomorphism can be

used at the cost of ignoring the least significant bits of the output. However, in
some applications such as distributed storage systems (DSS), the homomorphism
might need to be applied several times and it is desirable to have e = 0 to avoid
eventual errors. Our PRF removes the need of adding noise to provide security
at the cost of having a small part of the secret key for which homomorphism
does not follow. However, by relaxing the security assumptions, we can obtain a
KH-PRF for which homomorphism follows for the whole key.

We show how the noiseless property of our PRF allows to remotely change
the key of data stored in a DSS by transmitting only a small token. Notice that
the naive approach will require to download the data, de-encrypt it, re-encrypt it
with the new key and upload it to the storage network again. We also would like
to mention that the noiseless property of our PRF allows to increase the number
of key servers in the distributed credential protection system with distributed
PRFs described in [2, Sect. 1.2]. We describe our PRF and analyse its security
in Sect. 2. Section 3 shows how the noiseless property allows key update in DSS.
Finally, conclusion and future work are presented in Sect. 4.

2 Main Results

2.1 Backgrounds

Our contribution is a KH-PRF based on elliptic curves for which homomorphism
follows for a significant part of the key. Furtheremore, by relaxing the security
assumptions, we can obtain a KH-PRF where homomorphism applies to the
whole key. We start by recalling some facts about elliptic curves. Let P denote
the set of valid points in the curve. P is a cyclic group in which addition is
defined by the chord and tangent method (see [5]). We use ⊕ to denote addition
in P. We let b denote the order of the curve. That is, |P| = b. For a ∈ Zb, and
P ∈ P we use [a]P to denote adding P to itself a times. Then, it follows that,

[a]P ⊕ [c]P = [a + c]P (1)

The identity is the point to infinity O. We have that [b]P = O and for a ∈ Zb,

[a]P ⊕ [a]Q = [a](P ⊕ Q) (2)

In the following we introduce some required notations:
Points to Vectors: For an elliptic curve defined over GF (qα), P = (X̄, Ȳ )

is a valid point if X̄ ∈ GF (qα) and Ȳ ∈ GF (qα) are such that

Ȳ 2 = X̄3 + AX̄ + B (3)
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for previously defined constants A and B. Recall that X̄ and Ȳ are polynomials
with some coefficients {β1, . . . , βα} ∈ Zq and {γ1, . . . , γα} ∈ Zq, respectively.
Then, there is a trivial map ζ : P �→ Z2α

q defined as

ζ(P = (X̄, Ȳ )) � [β1, . . . , βα, γ1, . . . , γα].

To simplify our notations, we may use the bold-face symbol P to denote ζ(P ).

Map to N : For an integer u, let π : Zu → N be a mapping that takes inputs
from Zu and treats them as natural numbers. Namely, for 1 ≤ i ≤ u − 1,
π : Zu → N is the mapping from the (ordered) set A = {0, . . . , u − 1} ∈ Zu to
the set B = {0, . . . , u− 1} ∈ N defined as π(Ai) = Bi. When applied to a vector
or matrix T ∈ Zm×n

u , the map π is independently applied to each entry of T .

Function ω: For any A ∈ Z2α
q , we define a metric ||A|| �

∑2α
i=1 q2α−iπ(Ai).

Let − be subtraction in the integers. The map ω : Z2α
q → P is the map that

returns the element P ∈ P such that ||(|ζ(P ) − A|)|| is the smallest.
In the following we provide one implementation for ω based on the obser-

vation that the metric || · || gives more weight to X̄ (The first α entries of
the vector) than to Ȳ . Then, this implementation sets X̄ first. Given a vector
A = (A1, . . . , A2α) with entries in Zq, set i = 0.

1. Define X̄1 = (A1, . . . , Aα + i) and X̄2 = (A1, . . . , Aα − i) in GF (qα). Then,
following (3) compute Ȳ ∗

1 = X̄3
1 +AX̄1 +B and Ȳ ∗

2 = X̄3
2 +AX̄2 +B. Notice

that, for i = 1, 2, a point in the curve P (X̄, Ȳ ) such that X̄ = X̄i only
exists if Ȳ ∗

i is a quadratic residue in GF (qα). Let V be the set of quadratic
residues in GF (qα) (We know that approximately half the elements in GF (qα)
belong to V. Also V is expected to be randomly ‘spread’ over GF (qα)). Set
U = {Ȳ ∗ ∈ {Ȳ ∗

1 , Ȳ ∗
2 } : Ȳ ∗ ∈ V}. If U is empty, increase i and repeat step 1.

Otherwise go to step 2.
2. Every element Ȳ ∗ ∈ U can create two points in the curve. One point for each

root of Ȳ ∗ and the already known coordinate from {X̄1, X̄2}. Let R be the
set of these candidate points (Notice that |R| ≤ 4). Then,

ω(A) = arg min
P∈R

||ζ(P ) − A||

Special dot product: Let b ≥ q. For two vectors A ∈ Zn
b and B ∈ Zn

q define
〈A,BT 〉b as the dot product where all entries in A and B are treated as natural
numbers and the result is reduced module b. In other words,

〈A,B〉b � (π(A) · π(BT )) mod b.

2.2 Our Construction

Our construction uses an elliptic curve EC defined over GF (qα). We let P denote
the set of points in EC and |P| = b. First, we define the key of our PRF.
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For a public small paramter λ > 0, the secret key is defined as:

S � (A ∈ Z(2α+1)λ
b , θ ∈ Zq, Q ∈ P).

We first describe 3 values required for the evaluation of our PRF:

1. For X ∈ N , a public full rank matrix T ∈ Z2α×2α
q and a public point P̂ ∈ P,

P (X) � ω(R) where R = 〈ζ([X]P̂ ),T 〉q (4)

2. We let P(X) � ζ(P (X)). Let P(X) be an expansion of P(X) to Z(2α+1)λ
q .

For i = 1, . . . , 2α and j = 1, . . . , λ, the first 2αλ entries are computed as

P(X)(j−1)2α+i �
{
P(X)i if (P(X)i mod λ) + 1 = j

0 Otherwise,
(5)

and, for a non-homomorphic PRF σ : Zq × Zq → Zq, and i = 1, . . . , λ, the
last λ elements are defined as

P(X)2αλ+i �
{

σ(X, θ) if (σ(X, θ) mod λ) + 1 = i

0, Otherwise,
(6)

3. f(P(X)) is a function f : Z2α
q → Zb\{0} defined as:

f(P(X)) �
{

σ(〈P(X),V 〉q, J) → Zb if σ(〈P(X),V 〉q, J) 
= 0
1 Otherwise,

(7)

where J and V are public elements in Zq and Z2α
q , respectively.

Finally, our PRF is computed as a function G : N × S → P defined as

G(X,S) � [〈A,P(X)〉b]P (X) ⊕ [f(P(X))]Q (8)

In the following, we will use
⊕

to denote the sum of points in the curve. That
is,

⊕n
i=1 Pi = P1⊕, . . . ,⊕Pn. Before proving the homomorphism of our PRF, we

define the addition operation in S (The set of keys):

Definition 1 (Key Addition). For i = 1, . . . , n, let Si = (Ai, θi, Qi) be n
different keys. We say that Sm = S1+, . . . ,+Sn if

Am =
n∑

i=1

Ai, Qm =
n⊕

i=1

Qi and θ1 = . . . = θm

Also, for S ∈ S and n ∈ N , then nS =
∑n

i=1 S.

Lemma 1 (Key-Homomorphism). For S1, . . . , Sn, Sm such that Sm =
∑n

i=1 Si

as in Definition 1

G(X,Sm) =
n⊕

i=1

G(X,Si) (9)



A Noiseless KH PRF: Application on Distributed Storage Systems 509

Proof. From the definition of our special dot product. If A1, . . . ,Am have entries
in Zb, and if Am =

∑n
i=1 A

i, then

〈Am,P(X)〉b =
n∑

i=1

〈Ai,P(X)〉b (10)

Also, since Qm =
⊕n

i=1 Qi and f(P(X)) is fixed, from (2) we have that

[f(P(X))]Qm = [f(P(X))]
n⊕

i=1

Qi. (11)

From (1) and (2),
⊕n

i=1 G(X,Si) =
⊕n

i=1[〈Ai,P(X)〉b]P (X)⊕⊕n
i=1[f(P(X))]Qi becomes

n⊕

i=1

G(X,Si) = [
n∑

i=1

〈Ai,P(X)〉b]P (X) ⊕ [f(P(X))](
n⊕

i=1

Qi)

= [〈Am,P(X)〉b]P (X) ⊕ [f(P(X))]Qm. (12)

Corollary 1. Let {α1, . . . , αn} ∈ Zb and X ∈ N . If Sm =
∑n

i=1 αiS
i (sum and

multiplication as in Definition 1), then G(X,Sm) =
∑n

i=1[αi]G(X,Si)

2.3 Security Analysis

We use the hardness of the elliptic curve discrete logarithm problem (ECDLP)
in order to provide security. ECDLP is defined as follows: Given a point P ∈ P
and a point Q = [X]P , find X. The hardness of the ECDLP has been widely
used in security protocols such as key exchange and digital signatures [5]. Due
to space constraints, we only provide evidence of the security of our PRF. A
more detailed analysis can be found in the full version. From (8), the evaluation
of our PRF is:

G(X,S) = [〈A,P(X)〉b]P (X) ⊕ [f(P(X))]Q (13)

where the attacker knows P (X) and f(P(X)). Consider the ith query from
the attacker in a CPA (Chosen plain text attack) security game. Let P ∗ be a
generator of P. Therefore, there exist Ωi

1 and Ωi
2 such that P (X) = [Ωi

1]P
∗ and

Q = [Ωi
2]P

∗. Using P ∗ we can rewrite the evaluation of query i as

G(X,S) = [Ωi
1(〈A,P(X)〉b) + Ωi

2f(P(X))]P ∗ (14)

Notice that Ωi
1 and Ωi

2 are solutions to the ECDLP for (P ∗, P (X)) and (P ∗, Q),
respectively. Since Ωi

1 depends on P (X), it will be different for each evaluation
of the PRF. Let Ωi denote the value inside the brackets in (14) for query i. The
evaluations of points X1, . . . , Xn return [Ω1]P ∗, . . . , [Ωn]P ∗ where Ω1, . . . , Ωn

depend (no linearly) on different values Ω1
1 , . . . , Ω

n
1 that are solutions to different

instances of the ECDLP. Therefore, the attacker will not be able to efficiently
find a relationship between Ω1, . . . , Ωn.
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Consider the situation in which the attacker tries to select queries X1, . . . , Xn

such that P (X1), . . . , P (Xn) allow to find Ω1
1 , . . . , Ω

n
1 for some generator P ∗.

First, notice that due to the computation of (4), the attacker still needs to
solve an instance of the ECDLP if he or she wants to obtain a specific P (X).
Furthermore, even if such P (X1), . . . , P (Xn) are found, P(X) is not known
to the attacker due to the non-homomorphic component θ. Notice that since
P (X1), . . . , P (Xn) are difficult to find. The size of θ can be small compared to
the size of A. By keeping θ fixed and public, our PRF is homomorphic with
respect to the whole key.

3 Application to Distributed Storage Systems

In this section we show how our noiseless PRF can be used to encrypt content in
distributed storage systems (DSS) such that the encryption key can be remotely
changed. First, we describe the general DSS paradigm. For specific details, con-
structions and analysis, we refer to [6].

Assume we want to store a file F in a storage network. Since individual
nodes may fail, backup mechanisms are needed. An easy solution is to store
exact copies of F in several nodes. However, this approach implies a high storage
cost to achieve failures resiliance: Let |F | be the size of F in bits. To guarantee
recovery after any r failures, a total of (r + 1)|F | bits need to be stored in the
storage network. Linear codes for DSS reduce this storage cost as follows: To
store F in n nodes, we will let N = [N1, . . . , Nn] be a column vector in which
for i = 1, . . . , n, Ni denotes the content to be stored in node i. For r < n, F is
divided into r blocks. Let M = [M1, . . . ,Mr] be the column vector where every
element represents one block. We require that for i = 1, . . . , r, Mi ∈ M where
M is a group under addition and for which scalar multiplication is defined. For a
public n × r matrix W with entries in Z|M|, N (i.e., the content of all r nodes)
is defined by

W · M = N . (15)

Certainly, in order to be able to recover F from any r nodes, we require any r
rows of W to be linearly independent. Notice that by varying n and r, we will
get different storage costs. The authors in [6] present a complete analysis of the
tradeoffs between storage cost and the information to be transferred to repair a
failed node (bandwidth cost). For 1 ≤ i ≤ n, let {αi,1, . . . , αi,r} be the ith row
of W . From the above definition of the code

Ni =
r∑

j=1

αi,jMj (16)

Notice that every element M1, . . . ,Mr can be a vector itself and we will always
be able to recover M (from (15)).

We now consider the case where secrecy is required: Let Eve be a unau-
thorised user (adversary). Having Ni, Eve can get information about F . For
instance, assume Eve knows that either file F1 or F2 has been stored in the DSS.
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Since W is public, Eve can compute (16) for both F1 and F2 and compare her
results with Ni. Then, Eve will be able, with high probability, to tell which file
was stored. To prevent this from happening, we use encryption.

We will assume that counter mode encryption (CTR) is used to provide
secrecy to the DSS. CTR represents the messages to be encrypted as vectors. As
it was said before, M1, . . . ,Mr can be vectors themselves, say of length �. Let M�

denote the set of vectors of length � with entries in M. Thus, F can be written as
a r × � matrix where {M 1, . . . ,M r} are the rows. Let E : M� × S → M� be an
encryption function that implements CTR with Underlying PRF Ĝ : X × S →
M. For i = 1, . . . , r,

E(M �
i , S) = [Mi,1 ⊕ Ḡ(X1, S), . . . , Mi,� ⊕ Ḡ(X�, S)] (17)

for some publicly known {X1, . . . , X�}. Since our PRF has outputs in P, we
require {M 1, . . . ,M r} to be elements in P�. There are several maps from the
integers to points in elliptic curves that can be used for this purpose.

Definition 2. Let G : N � × S → P� be the generalisation of our PRF G to
vectors. That is, for X� ∈ N � and S ∈ S, G(X�, S) = [G(X1, S), . . . , G(X�, S)]

Remark 1. Since addition in P� is component wise, corollary 1 extends to G.

To provide secrecy to the DSS, instead of providing M in (15) to the storage
network, the owner of the file selects a public vector X � ∈ X �, together with a
set of seeds {S1, . . . , Sr} and computes C ∈ Pr×� where for i = 1, . . . , r

C i = M i ⊕ G(X �, Si).

Notice that making Si = Sj for all i < j ≤ r will imply using the same random
pad to encrypt several messages which is well known to lead to insecure systems.
Therefore, we require that for i < j ≤ r, Si 
= Sj . These seeds can be shared
between the source and the authorised users using a common secret K. We will
call this key K, the ‘general key’. Having computed C , the owner of the file
sends C to the DSS. Having C , the DSS uses W ∈ Zn×r

b to compute

W · C = N (18)

where multiplication is replaced by scalar multiplication of points in P. From
(18), the content of node Ni (which is a vector in P�) will be given by

Ni =
r⊕

j=1

[αi,j ](M j ⊕ G(X �, Si)) =
r⊕

j=1

[αi,j ]M j ⊕
r⊕

j=1

[αi,j ]G(X �, Si) (19)

Let {S1, . . . , Sr} and {Ŝ1, . . . , Ŝr} be the seeds generated by general keys K
and K̂, respectively. Assume that we want to change K for K̂. The source will
compute {S̄1, . . . , S̄r} such that for i = 1, . . . , r, Ŝi = Si + S̄i and will send the
token SΔ =

∑r
j=1 αi,jS̄

i to the storage node. The node computes G(X �, SΔ)
and changes its content from Ni to N̂i (the updated content) as follows:
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N̂i = Ni ⊕ G(X �, SΔ).

=
r⊕

j=1

[αi,j ]M j ⊕
r⊕

j=1

[αi,j ]G(X �, Si) ⊕
r⊕

j=1

[αi,j ]G(X �, S̄i)

=
r⊕

j=1

[αi,j ]M j ⊕
r⊕

j=1

[αi,j ](G(X �, Si) ⊕ G(X �, S̄i))

=
r⊕

j=1

[αi,j ]M j ⊕
r⊕

j=1

[αi,j ](G(X �, Ŝi)) (20)

As it can be seen, the node was able to change the encryption key without
knowing the individual components of C . Also, since SΔ is independent from
the plain-text (i.e., M ), SΔ tells nothing about the plain-text. Notice also that
SΔ is pair wise independent with {S1, . . . , Sr} and {Ŝ1, . . . , Ŝr}.

Remark 2. After decryption, the users will still need to solve (15) for M . The
users may use Gaussian ellimination. If for a known a, Q = [a]P needs to be
solved for P ∈ P in the last step, the users can look for an integer a−1 such
that aa−1 ≡ 1 mod b and do P = [a−1]Q. If such an integer does not exist (can
happen if b is not prime), they might need to download Mi from one of the nodes
that store systematic parts. It is interesting to find structures for W to prevent
this from happening.

4 Conclusion and Future Work

We have created the first key-homomorphic PRF without noisy outputs. This
KH-PRF has many practical applications for key management including distrib-
uted PRFs, proxy re-encryption and updatable encryption. We also showed the
benefits of the ‘noiseless’ property when changing the encryption key of data
stored in a a remote distributed storage system. In order to provide security, we
added a few bits to the secret key (Namely, θ) for which homomorphism does
not follow. However, by relaxing the security assumptions, we can keep θ fixed
and our PRF becomes homomorphic with respect to the entire key. When using
θ as part of the secret key, it is necessary to keep track of the values of θ as the
keys are changed. However, specially for large files, the size of θ is negligible.

Our PRF is based on elliptic curves and therefore, it is slow compared to
block ciphers such as AES. However, the homomorphic property allows saving a
resource that in some situations, is at least as important as computing power:
bandwidth. Our PRF will benefit from any improvements on the efficiency of
computations over elliptic curves. Also, it is interesting to know different ways
to generate the matrix W such that the decoding is more efficient.
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