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1 Institute of Computer Science, Academy of Sciences of the Czech Republic,
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Abstract. The aim of this study is to make a step towards optimal
design of photobleaching experiments. The photobleaching techniques,
mainly FRAP (Fluorescence Recovery After Photobleaching), are widely
used since 1970’s to determine the mobility of fluorescent molecules
within the living cells. While many rather empirical recommendations
for the experimental setup have been made in past decades, no rigorous
mathematical study concerning optimal design of FRAP experiments
exists. In this paper, we formulate and solve the inverse problem of data
processing of FRAP images leading to the underlaying model parame-
ter identification. The key concept relies on the analysis of sensitivity
of the measured outputs on the model parameters. It permits to repre-
sent the resulting parameter estimate as random variable, i.e., we can
provide both the mean value and standard error or corresponding confi-
dence interval. Based on the same sensitivity-based approach we further
optimize experimental design factors, e.g., the radius of bleach spot. The
reliability of our new approach is shown on a numerical example.

Keywords: FRAP · Optimal experimental design · Sensitivity analy-
sis · Parameter identification

1 Introduction

The image processing is certainly one of the fastest growing areas in informatics
and applied mathematics. Many new applications, e.g., in biology and medicine,
rise up every year. However, there is a gap between the level of sophistication
of equipment for the data acquisition and the quality of further data process-
ing. Particularly, discussion about the data noise propagation (from data to
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the resulting parameter estimates), i.e., the error or uncertainty analysis corre-
sponding to respective methods, is rare and whole concept of parameter defini-
tion as random variable is often misunderstood by the biological community, cf.
[9,10,15].

While in our previous papers we sought to elaborate reliable methods for
the processing of spatio-temporal images acquired by the so-called FRAP (Flu-
orescence Recovery After Photobleaching) method [6,7,11–13], the aim of the
present study is to make a step from the data processing to optimal design of
photobleaching experiments. Further we show how to find a specific “optimal”
experimental conditions maximizing a measure of sensitivity defined as the sum
of squares of partial derivatives of the measured output on the estimated para-
meter, cf. (11).

Both FRAP & FLIP (Fluorescence Loss In Photobleaching) are based on the
measuring the change in fluorescence intensity in a region of interest, e.g., in a
finite 2D domain representing the part of a membrane, in response to an external
stimulus (bleaching). A high-intensity laser pulse provided by the confocal laser
scanning microscopy (CLSM) causes a presumably irreversible loss in fluores-
cence in the bleached area and the subsequent recovery in fluorescence reflects
the mobility (related to diffusion) of fluorescent compounds from the area out-
side the bleach spot. CLSM allows to obtain high-resolution optical images with
deep selectivity, however, the small energy level emitted by the fluorophore and
the amplification performed by the photon detector introduces a measurement
noise making the subsequent parameter identification problem highly unstable
due to the ill-posedness in Hadamard’s sense [3,4].

The rest of this paper is organized as follows: In Sect. 2 we describe the
FRAP & FLIP data acquisition and structure. In Sect. 3 we formulate the inverse
problem of parameter identification and introduce the sensitivity analysis. Then,
in Sect. 4, we develop a new theoretical approach allowing the optimization of
FRAP experimental factors and provide one numerical example. The novelty of
our approach and outlooks for further research are discussed in the final Sect. 5.

2 Data Acquisition and Data Structure

The spatio-temporal FRAP data are graphically depicted in Fig. 1. Usually, the
images are made with certain time period (in our case every 8 s) before and
after the application of high-intensity laser pulse (so-called bleach). The pre-
bleach image (see the top left image in Fig. 1) shows a typical distribution of
phycobilisome fluorescence in a single cell. Application of high laser intensity
across the vertical axis (red rectangle in the second image in top row in Fig. 1)
reduced phycobilisome fluorescence to about 40 % of the initial value due to the
destruction of a portion of the phycobilin pigments. The observed fluorescence
recovery in the bleached zone is attributed to phycobilisome mobility in this red
alga, see e.g., [5] and references therein.
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Fig. 1. Left: representative FRAP image sequence for a single cell of red algae Por-
phyridium cruentum for phycobilisome fluorescence. First, a fluorescence image before
bleaching was detected (pre-bleach), then the phycobilisome fluorescence was bleached
out across the middle of the cell in the vertical direction (red dashed rectangle). The
sequence of five post-bleach images is shown. The length of the scale bar is 3 μm. Right:
experimental (noisy) data in form of one-dimensional bleach profiles for different time
instants after the bleach. The abscissa represents the position along the axis perpendic-
ular to the bleach stripe. In the ordinate there is the corresponding average fluorescence
(in arbitrary units) along the axis parallel to bleach. In the central region we see the
step-wise recovery of the signal: from the lowest value (first post-bleach) to the highest
pre-bleach (steady-state) values on the top (Color figure online).

A FRAP data structure usually consists of a time sequence of rectangular
matrices, where each entry quantifies the fluorescence intensity u at a particular
spatial point in a finite 2D domain (e.g., by a number between 0 and 255):

u(xkl, tj)Nt
j=0, k = 1 . . . Nx, l = 1 . . . Ny,

where k, l are the spatial indexes uniquely identifying the pixel position where the
signal u is measured, and j is the time index (the initial condition corresponds
to j = 0), cf. [6,7,11]. Usually, the data points are uniformly distributed both in
time (the time interval Δt between two consecutive measurements is constant)
and space, i.e., on an equidistant 1D or 2D mesh. Let see the right part of Fig. 1,
where we observe an example of 1D fluorescence intensity profiles (in arbitrary
units) for different time instants t0 . . . tNt

.
Further, in sake of simplicity, we shall infer about the parameter D by using

direct measurements of discrete data in a space-time domain when only one
index is employed, i.e., we use the following form of data

u(xi, ti)Ndata
i=1 ∈ R

Ndata .

3 Problem Formulation

Let us consider the isotropic diffusion process characterized by one single scalar
parameter: a diffusion coefficient D (constant in space). Right now we assume
that D is time-dependent, i.e., an anomalous diffusion is allowed. The governing
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equation for the spatio-temporal fluorescence signal u(x, t), proportional to the
fluorescent particles concentration, is Fick’s diffusion equation as follows

∂

∂t
u(x, t) = DΔu(x, t) x ∈ Ω, t ∈ [0, T ] (1)

u(x, 0) = u0(x) x ∈ Ω (2)
boundary conditions ∂Ω × [0, T ]. (3)

Boundary conditions could be, e.g.,

u(x, t) = 0 or
∂

∂n
u(x, t) = 0 on ∂Ω × [0, T ].

We also consider the simplest case of unbounded domains Ω = R
n, in which

case we set appropriate decay conditions at |x| → ∞, t ∈ [0, T ]. The above
formulation (1)–(3) (and variants) is the basis for all the further analysis.

In the case of constant coefficient D, the solution to this problem can be
expressed by means of the Green function G(x, t; y) for the heat equation

∂

∂t
G(x, t; y) = ΔG(x, t; y) x ∈ Ω, t ∈ [0, T ]

G(x, 0; y) = δ(x − y) x ∈ Ω

boundary conditions for G(x, t; y) ∂Ω × [0, T ].

Some frequently used cases are that of a diffusion in free space, e.g., in the
one-dimensional domain R without boundary conditions, the Green function is
the heat kernel

G(x, t; y) =
1√
4πt

exp
[
− (x − y)2

4t

]
x, y ∈ R.

In FRAP experiments, the initial condition, i.e., the first post-bleach profile
(with the background or pre-bleach signal subtracted) is often modeled as a
Gaussian, cf. Fig. 1, which leads in the one-dimensional case to initial condition
of the form

u0(x) = u0,0 exp
(

−2x2

r20

)
, (4)

where u0,0 ≥ 0 is the maximum depth at time t0 for x = 0, r0 > 0 is the half-
width of the bleach at normalized height (depth) exp(−2), i.e., u0(r0)

u0,0
= exp(−2),

cf. [11]. An explicit solution for u in the one-dimensional free space case is then
given by

u(x, t) = u0,0
r0√

r20 + 8Dt
exp

(
− 2x2

r20 + 8Dt

)
. (5)
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Parameter Identification Problem Based on FRAP data

Define a forward map (also called a parameter-to-data map)

F : R → R
Ndata (6)

(D) → u(xi, ti)Ndata
i=1 . (7)

Our regression model is now

F (D) = data, (8)

where the data are modeled as contaminated with additive white noise

data = F (DT ) + e = u(xi, ti)Ndata
i=1 + (ei)Ndata

i=1 . (9)

Here DT denotes the true coefficient and e is a data error vector which we assume
to be normally distributed with variance σ2

(ei)Ndata
i=1 ∈ R

Ndata , ej = N (0, σ2), j = 0, . . . , Nt.

Given some data, the aim of the parameter identification problem is to find D
such that (8) is satisfied in some appropriate sense. Since (8) usually consists of
an overdetermined system (there are more data points than unknowns), it cannot
be expected that (8) holds with equality, but instead an appropriate notion of
solution (which we adopt for the rest of the paper) is that of a least-squares
solution Dc (with ‖.‖ denoting the Euclidean norm on R

Ndata):

‖F (Dc) − data‖2 = min
D>0

‖F (D) − data‖2. (10)

The above defined parameter identification problem is usually ill-posed for
nonconstant coefficients, so that regularization has to be employed; see, e.g., [4].
A solution of practical example based on FRAP data was presented in [11].

Sensitivity Analysis and Confidence Intervals

For the sensitivity analysis, cf. [2,7], we require the Fréchet-derivative F ′(D) ∈
R

Ndata×1 of the forward map F , that is

F ′(D) =
∂

∂D
F (D) =

⎛
⎜⎜⎝

∂
∂Du(x1, t1)

. . .

. . .
∂

∂Du(xNdata , tNdata)

⎞
⎟⎟⎠ .

A corresponding quantity used further as our key sensitivity measure is a number

M(D) = F ′(D)T F ′(D) ∈ R. (11)
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Based on the book of Bates and Watts [1], we can estimate confidence intervals.
Suppose we have computed Dc as least-squares solutions in the sense of (10).
Let us define the residual as

res2(Dc) = ‖F (Dc) − data‖2 =
Ndata∑
i=1

[datai − uDc
(xi, ti)]

2
, (12)

where uDc
is computed from (1)–(3) for the parameter value Dc. Then according

to [1], it is possible to quantify the error between computed parameter Dc and
true parameter DT . In fact, we have an approximate 1 − α confidence interval

(Dc − DT )2
Ndata∑
i=1

[
∂

∂D
u(xi, ti)

]2

≤ res2(Dc)
Ndata − 1

f1,Ndata−1(α). (13)

In equation (13), several simplifications are possible. Note that according to
our noise model, the residual term res2(Dc)

Ndata−1 is an estimator of error variance such
that an approximation

res2(Dc)
Ndata − 1

∼ σ2 (14)

holds for Ndata being large [1]. The term res2(Dc)
Ndata−1 in (13) can be viewed as

rather independent of Dc or Ndata. Moreover, we remember the reader that the
Fisher distribution with 1 and Ndata − 1 degrees of freedom converges to the
χ2-distribution as Ndata → ∞. Hence, the term f1,Ndata−1(α) can approximately
be viewed as independent of Ndata as well and of moderate size.

4 Optimizing Experimental Design Variables

There are many rather empirical recommendations related to the design of a
photobleaching experiment, e.g., the bleach spot shape and size (design factor
r0), the region of interest location and size (design factor L), total time of mea-
surement (T ), see [7,15] and references therein. However, we should have a more
rigorous tool for the choice of experimental design factors. Based on the process
model (1)–(3) and just introduced sensitivity analysis, we can define an opti-
mization problem residing in the maximization of the sensitivity measure (11).

The key parameter in FRAP measurements is the size (and shape) of bleach
spot, e.g., the characteristic radius r0 in case of a circular bleach. If the size
of bleach spot can be varied (at the same time keeping the bleach depth u0,0

fixed), we should ask the question if there is an optimal bleach size that can
be used. Thus, we can try to look for such a bleach radius r0 which leads to
maximal sensitivity since this corresponds to minimal confidence intervals (for
comparable experiments).

More precisely, in the one-dimensional case of the Fick diffusion on a line,
having the set of observations on a space-time cylinder Q = [−L,L] × [0, T ], we
try to infer about the optimal bleach radius ropt yielding maximal sensitivity.
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We introduce a function

S(r0) =
Ndata∑
i=1

[
∂

∂D
u(xi, ti)

]2

=
Nx∑
k=1

Nt∑
j=1

[
∂

∂D
u(xk, tj)

]2

, (15)

where Nx = 2L
Δx + 1 and Nt = T

Δt , and we try to find out a maximal value

S(ropt) = max
r0>0

S(r0).

Note that S(r0) is equal to M from (11).

Numerical Example

In the following example we compute a least-squares estimate Dc and the sensi-
tivity S(r0), cf. (15). We consider a rectangular spatio-temporal data grid with
space interval xi ∈ [−6, 6], i.e., L = 6, and time interval ti ∈ [0, T ] for various
T . For our test purposes we used various grid sizes Δx and Δt and also various
exact diffusion coefficient DT . We simulated data by assuming DT with different
bleach radii r0 and computed the data for the 1D case by (5). Based on these
data we computed a least-squares estimate Dc of the diffusion coefficient using
a procedure described in [11]. It is a one-dimensional minimization problem (10)
for D. To obtain a solution, we used variable metric method implemented in our
optimization system [8]. The values M = S(r0) were then computed numerically
using central differences.

To see what may influence a value of optimal bleach radius ropt, we considered
different values of DT , T,Δx,Δt defined in Table 1.

Table 1. Input values for numerical experiments.

Data set DT Δx Nx Δt Nt T

Data 1 1 0.1 121 0.1 40 4

Data 2 1 0.1 121 0.01 400 4

Data 3 1 0.01 1201 0.1 40 4

Data 4 2 0.1 121 0.01 200 2

Data 5 1 0.1 121 0.01 200 2

Data 6 2 0.1 121 0.01 100 1

Typical behaviors of dependence of M = S(r0) on r0 and computed values
Dc on r0 are shown in Fig. 2. For this purpose we used the results for data set
Data 1. One can see that there exists a unique maximum of function S(r0) which
is marked with a black circle. There exists an optimal bleach radius ropt leading
to maximal sensitivity.
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Fig. 2. Values M = S(r0) and Dc vs. bleach radius r0 for data set Data 1.

Optimal bleach radii for all data sets together with computed values Dc are
presented in Table 2. We found out that the optimal bleach radius is the same for
data sets Data 1 – Data 4 and for data sets Data 5 – Data 6. The value of ropt

is influenced by exact diffusion coefficient DT and time interval of measurement
T . The function value S(ropt) depends on the number of spatio-temporal points.
For example, this value is approximately 10 times larger for data sets Data 2
and Data 3 in comparison with data set Data 1 because the number of points is
10 times larger (10 times larger number of NxNt), see the sums in (15).

Table 2. Results of numerical experiments.

Data set ropt S(ropt) Dc |Dc − DT |
Data 1 3.2 40.13 1.000528 5.28E–4

Data 2 3.2 395.36 1.000343 3.43E–4

Data 3 3.2 399.77 0.999999 1.00E–6

Data 4 3.2 198.08 2.001091 1.09E–3

Data 5 2.4 149.83 1.000810 8.10E–4

Data 6 2.4 75.21 2.001912 1.91E–3

The obtained results correspond quite well with our theoretical findings pub-
lished in [14], where we argue that the value ropt depends on the square root
of the product of time interval of measurement T and exact diffusion coefficient
DT . Indeed, the optimal value ropt is the same for the same product TDT .
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5 Conclusion

In this paper, we propose the interconnection of two important activities in per-
forming experiments: (i) experimental design, i.e., optimal or near-optimal set-
ting of experimental factors, and (ii) data processing based on a mathematical
model containing the specific experimental conditions as parameters. Although
our idea is illustrated only on a widely used case of photobleaching experiment,
our approach is more general. We formulate the problem of parameter iden-
tification in precise terms of parameter-to-data map, parameter estimates and
their confidence intervals. Then, we introduce the key concept of sensitivity of
measured data on estimated parameters.

Despite the fact that some recommendations and findings concerning the
FRAP experimental protocol exist, cf. [10], their applicability is limited because
they are based on very specific experimental conditions. Our approach is more
general and accurate (always when the process model is reliable).

In order to validate our idea of the model-based optimization of experimen-
tal conditions, we provide one numerical example. We prove that one of the
most important experimental design factors in photobleaching experiments, the
bleach size r0, can be actually optimized, i.e., there exists a value ropt for which
the sensitivity measure S(ropt) reaches the maximal value, hence assuring the
shortest confidence interval, cf. (13).

Our findings are expected to be incorporated into a process of FRAP exper-
imental protocol development – it is not computationally expensive and the
enhancement of the parameter estimation process can be substantial, e.g., a
four times higher S(r) assures half upper bound for the standard error of the
estimated parameter, cf. Fig. 2.

Certainly, the more realistic model formulation should be conceived in order
to get reliable results, e.g., taking into account the anisotropic diffusion on finite
2-dimensional domain, binding reaction, bleaching during scanning, more gen-
eral bleaching shapes and topologies. All these issues are only some extension
of the presented study and do not question neither the governing Fick diffusion
PDE nor the nature of the computation domain Ω (if it is a Euclidean domain
or a fractal set modelling the molecular crowding). This is the subject of our
ongoing research together with an ambitious goal consisting of the computa-
tionally effective on-line model-based sensitivity analysis. The appealing idea is
to suggest the optimal values of experimental design variables on-line, i.e., to
perform the experimental protocol modification (or tuning) during FRAP mea-
surements. The main drawback of this very last idea is neither mathematical nor
technical difficulty but the complicated communication between the members of
mathematical and biological community.
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