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Abstract. In this work, we investigate the interaction of free and porous
media flow by large scale lattice Boltzmann simulations. We study the
transport phenomena at the porous interface on multiple scales, i.e.,
we consider both, computationally generated pore-scale geometries and
homogenized models at a macroscopic scale. The pore-scale results are
compared to those obtained by using different transmission models. Two-
domain approaches with sharp interface conditions, e.g., of Beavers–
Joseph–Saffman type, as well as a single-domain approach with a poros-
ity depending viscosity are taken into account. For the pore-scale sim-
ulations, we use a highly scalable scheme with a robust second order
boundary handling. We comment on computational aspects of the pore-
scale simulation and on how to generate pore-scale geometries. The two-
domain approaches depend sensitively on the choice of the exact position
of the interface, whereas a well-designed single-domain approach can lead
to a significantly better recovery of the averaged pore-scale results.

Keywords: Lattice Boltzmann method · Pore-scale simulation · Two
domain approach · Darcy Navier-Stokes coupling · Interface conditions

1 Introduction

Transport phenomena in porous materials are important in many scientific and
engineering applications such as catalysis, hydrology, tissue engineering and
enhanced oil recovery. In the past several decades, flow in porous media has
been studied extensively both experimentally and theoretically. We refer the
interested reader to the textbook [1] and the references therein. In porous media
flow, we usually distinguish between three scales: the pore-scale, the representa-
tive elementary volume (REV) scale and the domain scale. The REV is defined
as the minimal element for which macroscopic characteristics of a porous flow
can be observed. Because experimental setups for many practical questions may
be too expensive or even impossible to realize, numerical simulation of porous
media flow can be a useful complementary method to conventional experiments.

To describe the flow in the bulk of the porous medium, Darcy’s law is com-
monly used in the form

μK−1u = F − ∇p, (1)
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where μ is the dynamic viscosity of the fluid, K is the permeability tensor of
the porous medium, F is the body force, and u and p are averaged velocity and
pressure quantities, respectively. However, when a porous medium and a free
flow domain co-exist, e.g., in a river bed, there is no uniquely accepted model for
the transition between the Darcy model and the free flow. Different approaches
based on two-domain or on single-domain models are available. Using a single-
domain in combination with the Brinkman equation that modifies Darcy’s law
by a viscous term

− μeff∇2u + μK−1u = F − ∇p, (Br)

allows to model a smooth transition (see e.g. [2–4]). Here μeff is an effective
dynamic viscosity in the porous region. However, determining appropriate vis-
cosity parameters for the Brinkman model in the transient region is challenging
[4–6]. Furthermore, the penetration of the flow into the porous medium is found
to depend on the roughness coefficient of the surface; see e.g. [7–10].

Alternatively, one can use a two-domain approach in combination with a
sharp interface transmission condition. Considering the (Navier-)Stokes equation
in the free flow region and the Brinkman (or Darcy) equation in the porous
region, the interface plays an important role. Proceeding from the experimental
investigation of Poiseuille flow over a porous medium, Beavers and Joseph [11]
introduced an empirical approach that agreed well with their experiment; see
also [3]. They suggested to use a slip-flow condition at the interface, i.e., the
velocity gradient on the fluid side of the interface is proportional to the slip
velocity. For simplicity, we consider a domain for which the interface is aligned
with the flow direction. The Beavers–Joseph relation is formulated as

dU

dz

∣
∣
∣
∣
z=0+

=
α√
k

(Us − Um) , (BJ)

where z denotes the coordinate perpendicular to the interface, U = U(z) is the
mean velocity in flow direction, Us is the slip velocity at the interface z = 0+,
Um is the seepage velocity that is evaluated far from the plane z = 0 in the
porous region, k is the permeability, and α is a phenomenological dimensionless
parameter, only depending on the porous media properties that characterize the
structure of the permeable material within the boundary region which typically
varies between 0.01 and 5 [12,13]. We refer to [14,15] and the references therein
for the interface coupling of two-phase compositional porous-media flow and
one-phase compositional free flow.

In 1971, Saffman [16] found that the tangential interface velocity is propor-
tional to the shear stress. He proposed a modification of the BJ condition as

√
k

α

dU

dz

∣
∣
∣
∣
z=0+

= Us + O(k). (BJS)

More than two decades later, Ochoa-Tapia and Whitaker [17] proposed an alter-
native modification of the BJ condition which includes the velocity gradient on
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both sides of the interface as

μeff
dU

dz

∣
∣
∣
∣
z=0−

− μ
dU

dz

∣
∣
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z=0+

=
μ√
k

βUs. (OTW)

Here the jump-coefficient β is a free fitting parameter that needs to be deter-
mined experimentally [18]. Different expressions for the effective viscosity μeff

can be found in the literature. For instance, Lundgren [19] suggested a relation
of the form μeff = μ/ε, where ε is the porosity.

All of the interface conditions mentioned above require the a priori knowl-
edge of the exact position of the interface [20–22], which is for realistic porous
geometries often not the case. Additionally both, single-domain and two-domain,
homogenized models rely on assumptions whose validity is not automatically
guaranteed and depend on additional parameters. Traditional experiments to
validate and calibrate such models are often costly, time consuming and diffi-
cult to set up. On the other hand, modern high performance computers enable
the development of increasingly complex and accurate computational models
resolving pore-scale features. Designing highly efficient solvers for partial differ-
ential equations is one of the challenges of extreme scale computing. While finite
volume/element/difference schemes give rise to huge algebraic systems, lattice
Boltzmann methods are intrinsically parallel and attractive from the computa-
tional complexity point of view. Thus fully resolved direct numerical simulation
based on first principles modeling is not only feasible nowadays but also pro-
vides an attractive possibility for validation and calibration. The LBM is com-
monly used as a tool to investigate the small scale phenomena in porous media.
Prior work studied dense packing of spherical [25] and non-spherical particles
[26,30] and showed very good agreement between the numerical and experimen-
tal results.

As a next step in this direction, we here carry out a direct numerical sim-
ulation of free flow over a porous medium. The model porous media geometry
is constructed by generating a random sphere-packing using a parallel in-house
multi-body simulation framework called PE [23]. In the pore geometries con-
structed such, the flow equations are solved with full geometrical resolution. This
naturally leads to high computational cost requiring the use of high end paral-
lel computing. As we will show by performance analysis, the in-house lattice
Boltzmann solver waLBerla [24] exhibits excellent performance and parallel
scalability for these pore-scale simulations.

We use the results of the direct numerical simulation of flow over and through
the porous media as reference solution and evaluate several sharp-interface condi-
tions. As a further example, we also use a homogenized lattice Boltzmann model
as a REV scale simulation and show the capability of this model to reproduce
the pore-scale results with high accuracy.

2 Numerical Method

The lattice Boltzmann method (LBM) has been successfully applied to simulate
porous media flow [27–30]. The kinetic nature of the LBM enables it for fluid
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systems involving microscopic interactions, e.g., flow through porous media. Fur-
thermore, its computational simplicity, its amenability to a simple and efficient
implementation and parallelization, and its ability to handle geometrically com-
plex domains makes it an applicable tool to simulate porous media flow on the
pore-scale.

The LBM can also be applied to model the fluid flow in porous media at
the REV scale. The most commonly used models are the Darcy, the Brinkman-
extended Darcy and the Forchheimer-extended Darcy models. This last approach
accounts for the flow resistance in the standard LBM by modifying the body-
force or equilibrium terms, leading to the recovery of either Darcy-Brinkmans
equations or generalized Navier-Stokes equations [31–33]. The general model of
porous media flow should consider the fluid forces and the solid drag force in
the momentum equation [34]. Guo and Zhao [35] proposed a model to include
the porosity into the equilibrium distribution and added a force term to the
evolution equation to account for drag forces of the medium. The non-linear
inertial term is not included in the Brinkman model either, and thus, this model
is only suitable for low-speed flow. In this approach, the detailed structure of the
medium is ignored, and the statistical properties of the medium are included to
represent the porous effects.

2.1 The Lattice Boltzmann Equation

The LBM originates historically from the lattice-gas automata method and can
also be viewed as a special discrete scheme for the Boltzmann equation with
discrete velocities

f(x + ekΔt, t + Δt) − f(x, t) = Ω(x, t) + FkΔt (2)

where ek is the particle velocity, and Ω(x, t) is the collision operator. For the
three dimensional lattice model D3Q19, f(x, t) = (f0(x, t), f1(x, t), ..., f18(x, t))T

is a 19-dimensional vector of distribution functions. Fk is the force that acts as
a source term to drive the flow.

A common approach is to use the Bhatnagar-Gross-Krook (BGK) [36] model
that features a single-relaxation-time (SRT) approximation for the collision oper-
ator. However, it has been shown that using the SRT leads to a nonphysical
viscosity dependence of boundary locations and also suffers from poor stability
properties [37,38]. Here, we use the TRT collision operator in which the relax-
ation time of the symmetric and anti-symmetric components of the distribution
function are separated. For an in-depth discussion of the TRT model, we refer
to [39–41]. As proposed by Ginzburg [39], the TRT model uses two relaxation
rates ω+ and ω− where ω+ is used for even order moments, and ω− is used for
odd order moments

Ω(x, t) = −ω+
(

f+(x, t) − feq,+(x, t)
) − ω− (

f−(x, t) − feq,−(x, t)
)

, (3)

and
f+

k =
fk + fk̄

2
, f−

k =
fk − fk̄

2
. (4)
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Here k̄ denotes the opposite direction of the index k in the velocity set. The
first eigenvalue is related to the kinematic viscosity as 1/ω+ = 3ν + 0.5, and
the second eigenvalue ω− controls the anti-symmetric modes which do not enter
in the second order mass and momentum conservation equations, hence, it can
be assumed as a free parameter. Due to stability reasons, ω− has to be selected
in (0, 2) [39]. The equilibrium distribution function f eq(x, tn) for incompressible
flow is given by [42]

f eq
k (x, tn) = wk

{

δρ + ρ0

[

c−2
s ek · u + 1

2c−4
s (ek · u)2 − 1

2c−2
s u · u]}

, (5)

where wk is a set of weights normalized to unity, ρ = ρ0 + δρ. Here δρ is the
density fluctuation, and ρ0 is the mean density which we set to ρ0 = 1. cs =
Δx/(

√
3Δt) is the lattice speed of sound, while Δx denotes the lattice cell width.

The macroscopic values of density ρ and velocity u can be calculated from f as
zeroth and first order moments with respect to the particle velocity, i.e.,

ρ =
∑18

k=0
fk, u = ρ−1

0

∑18

k=0
ekfk. (6)

In a lattice Boltzmann scheme, we typically split the computation into a
collision and a streaming step that are given as

f̃k(x, tn) − fk(x, tn) = Ω(x, t) + FkΔt, (collision)

fk(x + ekΔt, tn+1) = f̃k(x, tn), (streaming)

respectively, for k = 0, . . . , 18. The execution order of these two steps is arbitrary
and may vary from code to code for implementation reasons.

In addition, for linear steady flow, it has been demonstrated [40] that most of
the macroscopic errors/quantities of the TRT depend on Λ =

(
1

ω+ − 1
2

) (
1

ω− − 1
2

)

the so-called magic parameter that includes the spatial error, stability, best
advection and diffusion. The choice Λ = 1

4 is suggested as a suitable value
for porous media simulations. Another choice, namely Λ = 3

16 , yields the exact
location of bounce-back walls in case of Poiseuille flow in a straight channel
[40,43].

2.2 Boundary Conditions

In this study, two types of boundary conditions are used for the pore-scale sim-
ulation. The first one is a no-slip wall condition and the second one is a periodic
pressure forcing that is applied to drive the flow by a pressure gradient. The sim-
plest scheme to imply no-slip boundary conditions in lattice Boltzmann is the
simple bounce-back (SBB) operator. In this scheme, the wall location is repre-
sented by a staircase approximation, and the no-slip boundary is satisfied by the
bounce-back phenomenon of a particle reflecting its momentum upon collision
with a wall. Hence, the unknown distribution function is calculated as:

fk̄(xf1 , tn+1) = f̃k(xf1 , tn). (7)
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where we take the values f̃k after collision but before streaming on the right
hand side. However, the staircase approximation is not appropriate for complex
geometries where more accurate results are required even for a low resolution of
the boundary. Hence, the central linear interpolation (CLI) scheme which yields
a higher accuracy at moderately increased computational cost is our preferred
choice.

In the CLI scheme [40] three particle distribution functions are needed at
two fluid nodes adjacent to the solid node, i.e.,

fk̄(xf1 , tn+1) = 1−2q
1+2q f̃k(xf2 , tn) − 1−2q

1+2q f̃k̄(xf1 , tn) + f̃k(xf1 , tn). (8)

while q = |xf1 − xw|/|xf1 − xb| defines a normalized distance of the first fluid
node to the wall. xf1 and xf2 are the first and second fluid neighbor cells in the
direction of k̄, respectively. We use the value Λ = 3

16 for which the CLI scheme
is of second order accuracy [43].

3 Large Scale Simulations

In this study, we use the waLBerla software framework [24,44] that provides
a highly optimized implementation of the TRT model that is about as fast as
the SRT model. We refer to [45], where scalability of waLBerla to more than
1012 lattice cells and almost 500 000 cores has been demonstrated. Compared to
previous investigations, e.g., [45], we show results for the CLI scheme, which,
in contrast to the SBB scheme requires data exchange with two layers of neigh-
boring fluid cells. In waLBerla, this situation is handled by extra ghost-layer
exchanges, i.e., by communicating an extended set of distribution functions to
neighboring processors. This results in an additional communication in case of
massively parallel simulation runs.

To demonstrate the parallel scalability and efficiency of the waLBerla
framework in the context of a porous media simulation, we first perform a weak-
scaling study. Here we use a lattice of 1513 cells per core and embed into this grid
a sphere with a diameter of 90 lattice length. The results have been obtained
on the LIMA cluster at RRZE1 which has 500 compute nodes. Each node con-
sists of two Intel Xeon 5650 “Westmere” chips so that each node has 12 cores
running at 2.66 GHz. We conduct scalability tests ranging from one node to 64
nodes. This setup results in 2.64 × 109 cells for the largest run including 768
spherical obstacles. Figure 1(a) displays the weak-scaling results using the TRT
kernel. Figure 1(a) shows the mega lattice updates per second (MLUPS) for the
SBB and CLI boundary schemes. The results do not only confirm that the code
scales very well, but also that the MLUPS count per core compares favorably
with other state of the art LBM implementations [46–48].

We point out that achieving a good scaling behavior becomes more challeng-
ing when the node performance is already high, but that a high performance on
each node is a fundamental prerequisite for achieving good overall performance.
1 https://www.rrze.fau.de/dienste/arbeiten-rechnen/hpc/systeme.

https://www.rrze.fau.de/dienste/arbeiten-rechnen/hpc/systeme
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Thanks to both, the meticulously optimized waLBerla kernels on each node,
combined with the carefully designed communication routines, the MLUPS value
per core is high and stays nearly constant while the number of cores is increased.
Note that the CLI boundary conditions causes a slowdown of about 10 % in com-
parison to the SBB boundary condition, which is the fastest scheme. Figure 1(b)
displays the percentage of the total time spent for the MPI communication, the
percentage of the total time which is spent by the streaming and the collision
step, and the time for the boundary handling. The slowdown of the performance
while using the CLI is due to the additional time that is needed for the commu-
nication and the higher complexity of the boundary condition compared to SBB.
Although, the boundary handling of the CLI scheme also takes a little bit more
time than the SBB, the higher accuracy of the CLI compared to the SBB allows
in complex application to use a coarser resolution of the simulation domain.
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Fig. 1. Weak scaling on LIMA-Cluster using 1513 cells per core, (a) measured MLUPS
per core, (b) percentage of total time spent for MPI communication, streaming step
and the TRT kernel computation, and the boundary handling step.

3.1 Pore-Scale Simulation with a Porous Medium Generated
by a Particle Simulation

To construct a porous structure, we use the in-house multi-body dynamics frame-
work PE [23]. The PE can simulate the motion of rigid bodies and their interac-
tion by frictional collisions. Here we use this functionality to generate a random
sphere packing by letting random spheres fall into the simulation domain from
the top. After the spheres have come to a rest, their position is fixed and their
geometry defines the solid matrix of a porous structure. The pore space is then
resolved by a lattice Boltzmann grid.

The particles have different sizes and their radius is uniformly distributed
in a range [0.5Dm, 1.5Dm] where the parameter Dm denotes a mean diameter.
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For the fluid flow simulation using the LBM, the TRT collision operator and
the CLI solid boundary condition are used. This combination is fast, has second
order accuracy, and shows no viscosity-dependency.

First, we test the influence of the cell size on the averaged stream-wise veloc-
ity. To do so we increase the diameter D of the spheres from 4 to 48 and keep
ReD = UmaxD

ν constant. The domain has two walls at the top and bottom, and
periodic boundary conditions are applied at stream-wise and span-wise direc-
tions. A constant pressure drop drives the flow, and the data are set such that
ReD � 2. The simulation result is presented as a planar average of the stream-
wise velocity in Fig. 2 while it is normalized using the maximum velocity and the
height of the channel as a reference value. The results show that beyond D = 32
(lattice cells) a further increase of the resolution does not significantly change
the results. It is worth to note that in the porous region a coarse lattice can be
used and that only the transient region requires a higher resolution.
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Fig. 2. Planar average stream-wise velocity for different grid sizes, ReD � 2.

Figure 3(b) shows the planar average stream-wise velocity for different Re
numbers. To change the Re number, the viscosity and particles diameter are kept
constant while the pressure gradient is changed to adjust the flow velocity. The
results show that for slow flow, the velocity in the porous region is considerably
higher than for fast flow. When the Re number of the flow increases, the position
of the maximum velocity shifts toward to the top wall. This phenomena is due
to the boundary layer effect; when the flow velocity is high in the free flow, the
penetration to the porous region is less, therefore, the position of the maximum
velocity changes.

In Fig. 3(b), we observe a small deviation in the velocity profile close to the
bottom wall in the porous region. This is because of the high porosity close
to the wall, where the spherical particles are in contact with a flat plane, see
Fig. 3(a). Consequently a higher permeability can be found in this region, and
the flow will accelerate because the resistance against the pressure difference
is lower than in the interior of the porous medium. Therefore, to evaluate the
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Streamwise velocity

Porosity

H
ei

gh
 o

f 
th

e 
ch

an
ne

l

0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Porosity
Re=0.013
Re=0.13
Re=1.3
Re=13
Re=130
Re=1300

(b) planar average of stream-wise velocity

Fig. 3. Flow over mono-sized particles for different Re numbers.

existing models without this effect and having a more uniform porosity in the
porous region, a different set-up structure is chosen. The bottom plate of the
particle simulation is placed about one particle size below the bottom wall of
the fluid flow simulation. With this structure the porosity does not have the
effect of placing a sphere on the wall, and therefore we create an approximately
uniform permeability distribution in the porous medium.

The results of this pore-scale simulation are taken as a reference solution.
Here, we use 1274 particles with radius in the range of 16–48 cells. The flow is
driven by a pressure difference of 10−6 (in lattice units), and the simulation is
run until the flow reaches the steady state. The planar average of the stream-wise
velocity is depicted in Fig. 4.
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Fig. 4. pore-scale simulation of free flow over porous media.
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3.2 Evaluation of Different Interface Conditions

In this subsection, we evaluate different two-domain approaches. All interface
conditions under consideration have parameters for which no explicit relation
is known. In the BJ and BJS models, the slip coefficient, α, is unknown, while
in the OTW model, the jump coefficient β and the effective viscosity μeff are
unknown and in the Br model, the effective viscosity μeff is unknown.

By using the DNS solution, we calculate the optimal value for the unknown
parameters. The domain that is used is a channel which is periodic in stream-wise
and span-wise directions (Fig. 5). A free fluid flows on the top of a porous media.
To make the comparison independent of the setup, all of the flow properties are
non-dimensionalized.

Fig. 5. Schematic of the simulation domain and averaged velocity profile in the open
and porous regions.

The value of the interface velocity Uint, can be directly obtained from the
averaged velocity profile of the DNS. In order to obtain the velocity gradient on
the free flow and porous sides, curve fitting techniques are used to approximate
the velocity profile close to the interface. The velocity profile on the free flow
side can be well approximated by a polynomial curve and on the porous side,
the velocity profile can be approximated by an exponential curve. Permeability
and seepage velocity (Darcy velocity) can be calculated from the velocity profile
far from the interface in the porous medium. Given this, the unknown variables
can be calculated from the Eqs. (BJ), (BJS) and (OTW). However, to do so, the
exact position of the interface should be defined which in real applications is
nearly impossible.

To find out how the additional parameters of the interface conditions affect
the results, a two-domain approach is chosen and the equations are solved ana-
lytically. For the free flow region, the Stokes equation is used and for the porous
region, the Brinkman equation is chosen. The permeability is calculated from
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the DNS result far enough from the interface inside the porous region. In Fig. 6,
we depict the planar average stream-wise velocity which is normalized based on
the maximum velocity in the DNS solution.

As it can be seen in Fig. 6(a), in the Brinkman model by increasing the viscos-
ity ratio, J = μeff

μ , the maximum velocity decreases and produces a discontinuity
in the shear stress over the interface. In the OTW model (Fig. 6(b)), negative
values of β do not influence the result significantly, however, positive values of
β have a strong impact on the maximum velocity as well as on the slip velocity
on the interface. Figure 6(c, d) show the results for the BJ and the BJS interface
conditions. It can be observed that there is almost no difference between these
two models for low Re number flows. In both these cases, the maximum veloc-
ity decreases if α increases. A small value of α results in a considerably larger
maximal velocity than in the two other cases.

Quite often two-domain models result in discontinuities in the stress at the
interface. Thus the a priori knowledge of the position of the interface is crucial.
One possibility to fix the position of the interface is to take the location where
the porosity reaches the limit value one, i.e., y = 0.756. However fitting of the
DNS velocity profile shows that only up to y = 0.722, the curve is fitted well
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velocity of the DNS solution, by different interface models.
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by an exponential function. More precisely, u(h) = 0.48423 · exp(0.31195h) −
0.48236 · exp(0.3131h) yields a root mean squared error of 5.736 · 10−6. The
pure fluid flow velocity profile is fitted to a 2nd order polynomial resulting in
u(h) = (1.9593e−3)+(2.78421e−4)h−(4.48066e−6)h2 with a root mean squared
error of 9.5815 · 10−6. This observation motivates an alternative choice of the
interface position where the corresponding governing equations will be fulfilled.
Calculating the slip coefficient and the jump coefficient for these two positions,
we find for y = 0.756, α = 0.3163, β = −2.8397 and for y = 0.722, α = 0.31645
and β = −2.8397. However, as it can be seen in Fig. 7, even with the parameters
which are extracted from the DNS results, the considered two-domain approaches
cannot represent accurately the DNS solution. Comparing Fig. 7(a, b) shows that
the two-domain approaches depend strongly on the interface position and more
sophisticated criteria for defining the interface location are required to obtain
better matching results.
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Fig. 7. Normalized velocity profile of the one-domain approaches in compare to the
DNS solution; (a) interface at y = 0.756, (b) interface at y = 0.722.

4 Comparsion of a Homogenized LBM
with the Pore-Scale LB Simulation

Different models for isothermal incompressible fluid flow in porous media are
proposed by several groups. In this work, we use the generalized lattice Boltz-
mann model (GLBM) for porous media introduced in [35], which is applicable
for a medium with both a constant and a variable porosity. The model can be
expressed by the following generalized Navier-Stokes equation:

∇ · u = 0 (9)

∂u
∂t

+ (u · ∇)
(u

ε

)

= −1
ρ
∇ (εp) + νeff∇2u + F, (10)
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where ρ is the fluid density, u and p are the volume-averaged velocity and pres-
sure, respectively, νeff is the effective viscosity, and ε is the porosity. The total
body force F caused by the presence of a porous medium and other external
force fields is given by

F = −εν

K
u − εcF√

K
|u|u + εG, (11)

where ν is the shear viscosity of the fluid that is not necessarily the same as
νeff , G is the body force induced by an external force, cF is the Forchheimer
coefficient that depends on the porous structure, and K is the permeability
of the porous media. The first and the second terms on the right hand side of
Eq. (11) are the linear Darcy and non-linear Forchheimer drags due to the porous
medium, respectively. The quadratic nature of the non-linear resistance makes
it negligible for low-speed flows, but is more noteworthy in hindering the fluid
motion for high-speed flows, i.e., high Re number and high Da number flows.

The GLBM considers Eq. (11) as a source term in Eq. (2) and also modi-
fies the equilibrium distribution function (Eq. (5)) based on the porosity. The
detailed formulation can be found in [35].

Firstly to validate the generalized model for flow over a porous medium,
we choose a simple Couette flow. The lower-half of the channel of width H is
filled with a porous medium with a porosity of ε, the stream-wise and span-
wise boundaries are periodic, and the top wall of the channel is moving with a
constant velocity of u0. Then, the steady state velocity in this channel satisfies

νeff∇2u − εν

K
u − εcF√

K
|u|u + εG = 0, (12)

while the walls of the channel are modeled by a no-slip condition.
Figure 8 shows the velocity profile for the Couette flow with different viscosity

ratios J (= μe/μ) and compared to a semi-analytical solution for Re = 0.1 and
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Fig. 8. Velocity profile of the Couette flow for different viscosity ratios J = µe/µ, in
comparison with the approximate analytical solution of Eq. (13), (a) global system; (b)
zoom into the region near the interface
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Da = 0.00012. In the Stokes regime for a low Da number, [18] reported that
the velocity profile in the free flow is linear and exponentially decaying in the
porous region. More precisely the semi-analytic solution can be written as:

ux(y) =

{

rKa + εa (y − H/2) H/2 ≤ y ≤ H

rKaer(y−H/2) 0 ≤ y ≤ H/2
(13)

where

a =
2u0

2rK + εH
, r =

√
νε√

νeffk
, (14)

and u0 is the lid’s velocity. The simulation result shows excellent agreement with
the analytical solution for both viscosity ratios.

Secondly, we apply the generalized model to a problem with no sharp interface
and a significant porosity change close to the interface. We use the planar average
of the porosity as it is obtained in the DNS, therefore, there is no need to
explicitly set the interface position. Since the flow is within the Stokes regime,
the Forchheimer term in Eq. (11) is neglected.

Figure 9 shows the results of the planar average stream-wise velocity for the
DNS solution and the GLBM. Although the porosity, permeability, fluid prop-
erties and driving forces are the same, the standard GLBM homogenized model
over-predicts the velocity in the transition zone. The dashed line shows the
homogenized model that only takes the Darcy force into account. These two
mentioned homogenized models use a viscosity in the porous region which is
equal to the free flow region. We propose to use the GLBM homogenized model
but with a viscosity in the porous region depending on the porosity by μeff = μ/ε.
As we can observe in the porous region, the latter model can perfectly predict
the DNS result.
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by DNS and the homogenized model, ReD � 2.
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5 Conclusion

We presented three different approaches to simulate the interaction of free
flow with porous media flow, namely, direct pore-scale simulations, as well as
homogenized single-domain and two-domains approaches. The lattice Boltzmann
method is employed both, for obtaining the pore-scale reference solution, and
for solving the computationally more appealing homogenized problems.

For the two-domain approaches, four different interface conditions for deal-
ing with the physical transport through a sharp interface have been evaluated.
Our comparison yields that the two-domain techniques are quite sensitive to the
interface position. To further investigate this effect, we examined two definitions
for the interface position, i.e., the exact and the apparent position assumptions.
However, as our results indicate, both approaches fall short with respect to accu-
racy in the vicinity of the interface if the exact interface geometry is unknown.
As an alternative approach we consider a homogenized one-domain model that
is based on the idea of a smooth transition zone between the free flow and porous
media models. A simple porosity-dependent rescaling of the viscosity allows us to
accurately reproduce the results obtained by averaging the pore-scale solution.

In future work we aim to investigate the combination of both approaches to
allow for the treatment of more general situations in a two-scale fashion. Since the
discussed lattice Boltzmann schemes are suitable for REV-scale computations,
and are also highly scalable for pore-scale simulations, they lend themselves well
for leveraging the power of massively parallel computing architectures.
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