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Abstract
Bone involvement represented by osteolytic bone disease (OBD) or osteopenia
is one of the pathognomonic and defining characteristics of multiple myeloma
(MM). Nearly 90 % of patients with MM develop osteolytic bone lesions,
frequently complicated by skeletal-related events (SRE) such as severe bone
pain, pathological fractures, vertebral collapse, hypercalcemia, and spinal cord
compression. All of these not only result in a negative impact on quality of life
but also adversely impact overall survival. OBD is a consequence of increased
osteoclast (OC) activation along with osteoblast (OB) inhibition, resulting in
altered bone remodeling. OC number and activity are increased in MM via
cytokine deregulation within the bone marrow (BM) milieu, whereas negative
regulators of OB differentiation suppress bone formation. Inhibition of osteolysis
and stimulation of OB differentiation leads to reduced tumor growth in vivo.
Therefore, novel agents targeting OBD are promising therapeutic strategies not
only for the treatment of MM OBD but also for the treatment of MM. Several
novel agents in addition to bisphosphonates are currently under investigation for
their positive effect on bone remodeling via OC inhibition or OB stimulation.
Future studies will look to combine or sequence all of these agents with the goal
of not only alleviating morbidity from MM OBD but also capitalizing on the
resultant antitumor activity.
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1 Introduction

The past two decades have seen remarkable advances in our understanding of the
biology of multiple myeloma (MM) and in the introduction of novel therapies.
Novel treatments including thalidomide [1], lenalidomide [2], and the proteasome
inhibitor bortezomib [3] have led to significant improvements in 5-year relative
overall survival, from nearly 28.8 % in the early 1990s to 34.7 % in the previous
decade [4]. Although MM remains incurable, MM patients are living longer, and
the focus is centered on maximizing quality of life for patients with MM.

Bone involvement represented by osteolytic bone disease (OBD) or osteopenia
is one of the pathognomonic and defining characteristic of MM [5]. Although the
ratio of patients presenting with bone involvement is variable, nearly 90 % of
patients with MM develop osteolytic bone lesions, frequently complicated by
skeletal-related events (SRE) such as severe bone pain, pathological fractures,
vertebral collapse, hypercalcemia, and spinal cord compression, resulting in a need
for radiation or open reduction internal fixation (ORIF) [6–10]. Importantly, 40–
50 % of MM patients develop pathologic fractures, and it increases the risk of death
by more than 20 % compared with patients without fractures [8, 11]. These data
indicate how OBD negatively impact both patients’ quality of life and survival, and
highlight the importance of focusing on treatment strategies to alleviate OBD in
MM.

OBD results from the disruption of the delicate balance between osteoclasts
(OCs), osteocytes, osteoblasts (OBs), and bone marrow stromal cells (BMSCs)
activity. MM cells stimulate OC function and inhibit OB differentiation, resulting in
bone resorption and consequent OBD. The abnormal bone marrow (BM) mi-
croenvironment in OBD provides a permissive niche that enables MM cell growth
[9, 12–14]. Consequently, several novel agents and combinations are aimed at
restoring bone homeostasis by targeting either OC or/and OB activity. In fact,
inhibition of osteolysis and stimulation of OB differentiation leads to reduced tumor
growth in vivo [13, 15]. Therefore, novel agents targeting OBD are also promising
therapeutic strategies for the treatment of MM. Here, we discuss the pathogenesis of
OBD and focus on advances in our understanding of its biology and therapeutic
implications.

2 The Biology of Bone Metabolism

Under normal physiologic states, osteocytes, OCs and OBs result in balanced bone
resorption and formation maintaining normal homeostasis. In adult bone, 90–95 %
of all bone cells are represented by osteocytes while OCs and OBs are less than
10 % [16]. Osteocytes act as main regulators of bone homeostasis for OCs, con-
sidered bone resorption cells, and OBs considered bone formation cells. Osteocyte
viability and function is regulated by mechanical loading, several cytokines
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includes well as glucocorticoids [16–18]. Osteocytes secrete several cytokines
which regulate the activity of both OCs and OBs such as sclerostin, dickkopf-1
(Dkk-1), the receptor activator of nuclear factor-kappa B ligand (RANKL), and
osteoprotegerin (OPG) [16]. The receptor activator of nuclear factor-kappa B
(RANK), its ligand RANKL, and OPG, the decoy receptor of RANKL, play a
pivotal role as central regulators of OC function. RANK-RANKL signaling acti-
vates a variety of downstream signaling pathways required for OC development. It
plays a significant role in stimulating OC differentiation and maturation. Interest-
ingly, apoptotic osteocytes release apoptotic bodies expressing RANKL to stimu-
late OC differentiation [19]. These data suggest that osteocytes are able to recruit
OCs to sites of remodeling. Osteocytes also regulate OB differentiation via scle-
rostin and Dkk-1 which block canonical Wnt signaling by binding to low-density
lipoprotein receptor-related protein (LRP) 5 and 6 (Wnt receptors) on the surface of
OBs [16]. OBs and BMSCs also express OPG and RANKL, and regulate OC
differentiation. Because OPG is a Wnt canonical signaling target [20], osteocyte
also regulates OC differentiation via regulation of Wnt signaling activity in OBs.
On the other hand, OCs express semaphorin 4D (Sema4D) and inhibit OB differ-
entiation [21]. These processes are well balanced in healthy bones to maintain the
bones quality and mass (Fig. 1).

osteocytes

BMSCs
OBs

OCs

RANKL

Dkk-1
sclerostin

OPG

RANKL OPG

sema4D

differentiation

Dead osteocytes

Fig. 1 Healthy Bone metabolism. Osteocytes regulate OC (osteoclast) and OB (osteoblast)
differentiation. OBs also regulate OC differentiation. On the other hand, OCs can inhibit OB
differentiation. These mechanisms are well balanced in healthy bones to keep the bones quality and
mass
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3 MM Bone Disease

In MM, the osteocyte-OC-OB axis is disrupted, stimulating bone resorption and
inhibiting new bone formation with resultant development of pathognomonic
osteolytic lesions (Fig. 2).

3.1 Osteoclasts in Myeloma Bone Disease

The pathogenesis of OBD in MM is primarily associated with generalized OC
activation. BM biopsies from MM patients show a correlation between tumor
burden, OC numbers, and resorptive surface [22, 23]. Furthermore, OC activity has
positive correlation with disease activity [24, 25]. The main cytokines involved in
OC differentiation and activity in MM OBD are RANKL/OPG, decoy receptor 3
(DcR3), CCL3 (also known as macrophage inflammatory protein (MIP)-1α),
MIP-1β, tumour necrosis factor-alpha (TNFα), interleukin (IL)-3, IL-6, IL-11,
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Fig. 2 Myeloma Bone Disease. MM cells produce IL-3, DcR3, CCL3, MIP-1β, VEGF, TNFα,
and RANKL. MM cells also adhere to BMSCs via VLA-4 and VCAM-1 interaction, and lead to
the secretion of RANKL, SDF-1a, IL-6, BAFF, VEGF, and activin A. Moreover, MM cells
stimulate CCL3 and IL-11 expression in osteocytes. OCs secrete CCL3 and activin A by MM cells
stimulation. These cytokines stimulate OC differentiation and activity. MM cells also inhibit OPG
expression in BMSCs and OBs resulting in stimulation of OC differentiation. On the other hand,
MM cells produce IL-3, IL-7, TNFα, TGFβ, and Dkk-1. MM cells also stimulate activin A
expression in BMSCs. These cytokines inhibit OB differentiation. Stimulated OCs destroy bone
matrix, and release several tumor growth factor from bone. Moreover, OCs and BMSCs express
several cytokines. These cytokines mediate MM cell survival and proliferation
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Stromal derived factor-1 alpha (SDF-1a), B-cell activating factor (BAFF), activin
A, and VEGF.

MM cells stimulate OC differentiation by producing IL-3 [26], DcR3 [27, 28],
CCL3, MIP-1β [29–31], VEGF [32], TNFα, [33, 34] and RANKL [35–38]. MM
cells also adhere to BMSCs via very late antigen (VLA)-4 and vascular cell
adhesion molecule (VCAM)-1 interaction leading to the secretion of cytokines
including RANKL, SDF-1a, IL-6, BAFF, VEGF, and activin A which in turn
positively affect OC differentiation and activation [9, 14, 32, 39–43]. MM cells
stimulate not only RANKL expression, but also inhibit OPG expression, leading to
an increase in RANKL/OPG ratio in BMSCs and OBs which in turn strongly
stimulate OC differentiation [24, 44]. In addition to BMSCs and OBs, MM cells
also stimulate CCL3 and pro-osteoclastogenic cytokine, IL-11 in osteocytes [45].
Moreover, OCs secrete CCL3 and activin A, and stimulate OC differentiation and
activation by themselves [9, 31]. BM macrophages stimulated by IL-3 also secrete
activin A [46]. All these cytokines stimulate OC differentiation and activity, and
contribute to the development of MM OBD.

3.1.1 CCL3
CCL3 is a pro-inflammatory cytokine belonging to the CC chemokine subfamily.
High CCL3 levels were found in MM patients’ BM serum and it correlates with
OBD and survival [30]. Interestingly, fibroblast growth factor receptor 3 (FGFR3)
overexpression in MM with t(4,14) results in upregulation of CCL3 expression
[47]. CCL3 modulates OC differentiation by binding to G-protein coupled recep-
tors, CCR1 and CCR5, and activating ERK and AKT signaling pathways. CCL3
has the ability to stimulate OC differentiation not only from monocytes but also
from immature dendritic cells by transdifferentiation [48]. In the tumor niche, MM
cells and OCs are the main source for CCL3 that promotes MM cell migration and
survival, along with stimulation of osteoclastogenesis [49, 50]. Vallet et al. also
showed that CCL3 reduces bone formation by inhibiting OB function by ERK
activation and followed by down regulation of the osteogenic transcription factor,
osterix [31]. Importantly, a small molecule CCR1 antagonist inhibits
CCL3-induced osteoclastogenesis and OC support of MM cells [51].

3.1.2 RANKL to OPG Ratio
Many of the cytokines which stimulate OC differentiation and activity act through
RANKL and OPG. Increase of the RANKL to OPG ratio results in bone loss in
several cancers and inflammatory diseases including rheumatoid arthritis [52–54].
In MM patients, BM plasma levels of RANKL are increased, whereas OPG
expression is decreased compared with normal volunteers and patients with MGUS
[35]. Importantly, low levels of OPG in serum correlate with advanced OBD in MM
[55]. The relevance of the RANKL/OPG pathway in mediating OC differentiation
and activation in MM has been further confirmed in several murine models of
MM OBD. Treatment with OPG or OPG-like molecules prevented both bone
destruction and MM growth in vivo [36, 56]. Interestingly, specific anti-MM
strategies such as thalidomide and autologous BM transplantation improved OBD

Bone Disease in Multiple Myeloma 255



by normalizing the RANKL to OPG ratio [57, 58]. Therefore, the RANKL-OPG
axis is one of the important targets in the development of novel therapeutic
strategies for MM bone disease.

3.2 Bone Marrow Stromal Cells and Osteoblasts
in Myeloma Bone Disease

Besides OCs, BMSCs and OBs derived from BMSCs, play an important role in the
development of OBD in the presence of MM cells. MM cells stimulate OC dif-
ferentiation directly by secreting OC-activating factors (OAFs) and, indirectly, by
stimulating OAFs secretion such as RANKL, Activin A and VEGF in BMSCs and
OBs [14, 35, 36, 59, 60]. Adhesion of MM to BMSCs leads to RANKL and VEGF
secretion by BMSCs via p38 MAPK activation [59, 60]. Moreover, the sequesto-
some 1, p62 is an upstream regulator of p38 MAPK and NF-κB signaling pathway,
activated in BMSCs by MM cell adhesion. Inhibition of p62 in BMSCs represses
OC differentiation and MM cell proliferation [61]. These data suggest that p62 is a
novel promising target in MM OBD. Adhesion of MM to BMSCs and immature
OBs also leads to IL-6 secretion via NF-κB signaling [42, 43, 62] and
X-box-binding protein 1 (XBP1) signaling [63] pathway. IL-6 stimulates MM cell
proliferation and inhibition of MM plasma cell apoptosis [64] in addition to OC
differentiation. Moreover, adhesion of MM cells also stimulates BAFF expression
in BMSCs via NF-κB signaling [41]. BAFF is a MM cell survival factor and it
rescues MM cells from apoptosis induced by IL-6 deprivation and dexamethasone
via activation of NF-κB, phosphatidylinosiol-3 (PI-3) kinase/AKT, and MAPK
pathways in MM cells and induction of a strong upregulation of Mcl-1 and Bcl-2
antiapoptotic proteins [65, 66]. Secreted IL-6 and BAFF also stimulates the
serine/threonine kinase Pim-2 expression in MM cells via activation of NF-κB and
JAK2/STAT3 pathway, resulting in MM cell survival [67]. Furthermore, MM cells
stimulate activin A expression in BMSCs via Jun N-terminal kinase-dependent
(JNK) activation [9]. Importantly, high activin A levels in MM patients are asso-
ciated with advanced bone disease and advanced features of MM [68]. Secreted
Activin A inhibits OB differentiation in addition to the growth stimulatory effects
on OCs. MM cells also stimulate Pim-2 expression in BMSCs/OBs by IL-3, IL-7,
TNF-a, TGF-β and activin A secretion, and inhibit OB differentiation [69].

3.2.1 Wnt Canonical Signaling in BMSCs and OBs
Wnt canonical signaling plays an important role in OB differentiation. Some Wnt
proteins bind to both Frizzled and LRP 5 and 6, and activate Wnt canonical sig-
naling. Activated Wnt signaling induces nuclear translocation of β-catenin protein
resulting in stimulation of OB differentiation by activation of major OB tran-
scription factors [70]. Wnt antagonists, such as Dkk-1, sclerostin and secreted
frizzled related proteins (sFRPs) inhibit Wnt canonical signaling activity by
blocking Wnt proteins binding to Wnt receptors. Thus, these Wnt antagonists act as
negative regulators for OB differentiation. In MM OBD, OB differentiation is
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strongly inhibited. MM cells secrete several Wnt antagonists such as Dkk-1 [71],
sFRP-2 [72], sFRP-3 [73] and inhibit Wnt canonical signaling. High Dkk-1 levels
have been detected in MM patients’ serum and have been correlated with MM bone
lesions [71]. Also high circulating levels of sclerostin, encoded by the SOST gene,
have been found in newly diagnosed MM patients, and correlates with MM disease
stage and fractures [74]. There is a report that MM cells produce sclerostin [75],
however, we and others [76] could detect very little sclerostin or SOST mRNA
expression in MM cell lines. The source and role of sclerostin in MM OBD
therefore remains to be defined. Importantly, Wnt antagonists inhibit OPG
expression as OPG is a target of Wnt canonical signaling [20], and increase the
RANKL to OPG ratio. They are responsible not only for suppression of OB dif-
ferentiation and activity but also for stimulation of OC differentiation and activity in
MM OBD.

3.3 Osteocytes in Myeloma Bone Disease

Osteocytes act as main regulators of bone homeostasis in healthy bone [16]. A re-
cent study showed that MM patients have a significantly lower number of viable
osteocytes than healthy controls, and that osteocyte death correlates with the
presence of bone lesions [45]. Besides a lower number of viable osteocytes has
been observed in the MM patients, no significant difference in the expression of
sclerostin, an osteocyte marker, in biopsies of MM patients bone and healthy
controls osteocyte was observed [45]. On the other hand, higher circulating levels
of sclerostin have been found in newly diagnosed MM patients as mentioned before
[74]. These data suggest that there might be other alternate sources of sclerostin in
addition to osteocytes in MM. Moreover, MM cells stimulate osteoclastogenic
cytokines, CCL3 and IL-11 expression in pre-osteocytes leading to increased OC
differentiation [45]. Further investigations regarding the role of osteocytes in
MM OBD are underway.

4 Treatment of Myeloma—Related Osteolytic Bone
Disease

Current treatment strategies in MM have led to significant improvements in 5-year
relative overall survival, but patients continue to relapse, and no definitive cure has
been as yet achieved. Given the improved survival of MM patients, treatment of
OBD has taken on a new relevance as the focus is now largely on quality of life.
Until recently, therapeutic options for MMOBD-included bisphosphonates, radio-
therapy, and surgery. These therapies are aimed at reducing the development of new
osteolytic lesions and preventing SREs such as bone pain, pathological fractures,
vertebral collapse, hypercalcemia, and spinal cord compression. Interestingly,
several studies using novel bone-targeted agents suggest that restoring bone
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homeostasis may lead to tumor growth inhibition. These promising preclinical
results have set the stage for clinical evaluation of novel strategies targeting MM via
restoring bone homeostasis. Table 1 provides a list of bone-directed agents, their
roles, targets, and stage of clinical development.

4.1 Bisphosphonates

Bisphosphonates represent the standard of care for MM OBD. Nitrogen-containing
bisphosphonates such as pamidronate (PAM) or zoledronic acid (ZA), more potent
than PAM, reduce osteoclast activity through inhibiting farnesyl pyrophosphate
synthase (FPPS) [77]. Bisphosphonates prevent OB and osteocyte apoptosis with a
different mechanism from the effect on OCs [78–80]. Bisphosphonates induce ERK
activation without nuclear accumulation in OBs and osteocytes. Activated ERK
stimulates p90RSK and induces phosphorylation of the cytoplasmic substrates,
BAD and C/EBP, which are required for OB and osteocyte survival [81].

Table1 Bone-Directed Therapies for Multiple Myeloma
Target Clinical DevelopmentDrug

Bisphosphonates FPPS inhibition (in OC) OCs 

ERK activation 
(in OB and osteocyte)

OBs and osteocytes 

Approved

Pamidronate

Zoledronic acid

etc.

Denosumab Neutralizing antibody
for RANKL

slairt lacinilc III esahP sCO

RANKL antagonist

AMGN-0007

OPG agonist

OCs Phase I clinical trialsRecombinant OPG

CCR1 inhibitor

MLN3897 small-molecule CCL3 
receptor antagonist

OCs Preclinical studies

Dkk-1 antagonist

BHQ880 Neutralizing antibody 
for Dkk-1

OBs Phase II clinical trials

Sclerostin antagonist

Neutralizing antibody 
for sclerostin

romosozumab

blosozumab
OBs Preclinical studies

Proteasome inhibitor

bortezomib

carfilzomib

26s proteasome inhibition

20s proteasome inhibition

Anti-MM and OCs
OB stimulation 

Approved

Btk inhibitor

CC-292

PCI-32765

LFM-A13

Btk inhibition OCs Preclinical studies

Pim inhibitor Pim inhibition Anti-MM 
OB stimulation 

Preclinical studies

Role
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Bisphosphonates have a well-established role in the treatment of osteoporosis
[82, 83] and metastatic bone involvement from solid tumors [84–86]. In MM,
treatment with bisphosphonate significantly reduces pain related to OBD and pre-
vents SREs. Monthly infusion of PAM reduces bone pain and SREs compared with
placebo [87]. PAM also significantly improved quality of life, with decreases in
pain scores seen within a month. Moreover, Major et al. reported that ZA was
superior to PAM for the treatment of hypercalcemia of malignancy including MM
[88] although Rosen et al. reported the efficacy of ZA in preventing SREs in MM
was comparable to that of PAM [84].

In addition to their role in OBD, bisphosphonates may also have an antitumor
effect. The Austrian Breast and Colorectal Cancer Study Group 12 (ABCSG-12)
trial showed that the administration of zoledronic acid every 6 months for 3 years
reduced the risk of disease recurrence in estrogen-receptor—positive breast cancer
patients [89] although no improvement was seen in the rate of disease-free survival
in another study [90]. In MM, The MRC Myeloma IX trial compared ZA and oral
clodronate in newly diagnosed patients and found that ZA reduced mortality by
16 % and increased median overall survival from 44.5 to 50.0 months (P = 0.04)
[91]

4.1.1 Osteonecrosis of the Jaw
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is one of the most
serious complications of bisphosphonates [92, 93]. BRONJ is traditionally defined
as exposed, necrotic bone in the jaw that does not heal after 8 weeks and is
generally painful. Histologically, several tissue alterations such as
honeycombed-like necrotic bone with residual vital bone, inflammatory cellular
elements, and hypernucleated osteoclasts are observed in BRONJ [94–96]. ZA is
associated with the highest risk of BRONJ, attributed to its increased potency, and
earlier studies suggested an incidence of 4–11 %, correlating with duration of
exposure [97, 98]. In the MRC Myeloma IX trial, the cumulative incidence of
BRONJ was 3–4 % at a median follow-up of 3.7 years [99]. It is clear that trauma,
infection, and reduced vascularity including dental extractions play important roles,
however, the exact etiopathogenetic mechanism of BRONJ still remains unclear.
Further studies are necessary to evaluate the detailed mechanism of BRONJ
development.

4.2 Denosumab

Denosumab is an OC inhibitor that plays a role in the supportive care of MM OBD.
It is a monoclonal antibody, given subcutaneously, that inhibits OC activity through
targeting RANKL. Denosumab is approved for increasing bone density in patients
with osteoporosis and for preventing SREs in patients with metastatic bone disease
[100]. It has been recently reported that denosumab causes osteosclerosis [101], and
hypercalcemia has been observed following discontinuation of denosumab [102] in
children. In MM, although a favorable trend was observed, denosumab was
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equivalent to ZA in delaying time to first on-study SRE [103]. Denosumab is not
currently FDA approved for use in patients with MM; a larger, ongoing phase III
study (ClinicalTrials.gov identifier: NCT01345019) is comparing it with ZA in this
disease setting.

4.3 OPG Agonists

OPG is a decoy receptor for RANKL, and it blocks OC differentiation and acti-
vation. In MM patients, BM plasma levels of OPG is decreased compared with
normal volunteers and patients with MGUS [35]. Importantly, low levels of OPG in
serum correlate with advanced OBD in MM [55]. Treatment with OPG or OPG-like
molecules prevented both bone destruction and MM growth in vivo [36, 56].
A Phase I study of a recombinant OPG construct (AMGN-0007) was conducted in
MM patients with OBD, and decreased NTX/creatinine levels was observed [104].

4.4 CCR1 Inhibitors

The CCL3/CCR1 pathway stimulates OC differentiation, MM cell survival and
migration, and inhibits OB differentiation suggesting that CCL3/CCR1 is a relevant
target in MM OBD. Both antisense sequence and neutralizing antibody against
CCL3 effectively inhibited tumor growth and restored bone remodeling in a mouse
model of MM OBD [15, 105]. Similar results have been shown with a clinical grade
small molecule CCR1 antagonist, MLN3897 (Millennium Pharmaceuticals) [51]. In
addition to these molecules, several CCR1 antagonists were evaluated for
MM OBD [106, 107]. Future clinical trials using CCR1 inhibition strategies in
patients with MM OBD will help to confirm these promising preclinical results.

4.5 Anti-BAFF—Neutralizing Antibody

In MM, BAFF is expressed by monocytes, macrophages, dendritic cells, T cells,
neutrophils, MM cells, and OCs [65, 108–111]. BAFF is a MM cell survival factor
and rescues MM cells from apoptosis induced by IL-6 deprivation and dexam-
ethasone via activation of NF-kB, PI-3 kinase/AKT, and MAPK kinase pathways
and induction of a strong upregulation of the Mcl-1 and Bcl-2 antiapoptotic proteins
[65]. In vivo—neutralizing antibodies against BAFF (LY2127399, Eli Lilly) sig-
nificantly inhibit tumor burden and, importantly, reduce OBD and OC differenti-
ation in preclinical setting [66]. On the basis of these results, a clinical trial
combining BAFF-neutralizing antibody with proteasome inhibitor, bortezomib is
currently ongoing, preliminary results from Raje et al. reported the treatment was
well tolerated and 22 of the 48 patients enrolled achieved a partial remission or
better (https://ash.confex.com/ash/2012/webprogram/Paper52052.html).

260 H. Eda et al.

https://ash.confex.com/ash/2012/webprogram/Paper52052.html


4.6 Activin A Antagonists

Activin A is secreted by BMSCs and OCs in MM OBD. Activin A stimulates OC
differentiation and inhibits OB formation in MM OBD. Activin A can be targeted
by a chimeric antibody RAP-011 (Acceleron Pharma), derived from the fusion of
the extracellular domain of type II activin receptor (ActRIIA) and the constant
domain of the murine IgG2a [112]. RAP-011 enhances OB mineralization and
increases bone density in an osteoporotic mouse model. In MM, RAP-011 reversed
OB inhibition, improved MM bone disease, and inhibited tumor growth in an
in vivo humanized MM model [9]. In human, ACE-011 which is the humanized
counterpart of RAP-011 effectively decreased bone resorption markers, C-terminal
type 1 collagen telopeptide (CTX) and TRACP-5b and increased bone formation
marker, serum levels of bone-specific alkaline phosphatase (BSALP) in post-
menopausal women [113]. It has been shown in vitro that lenalidomide, a well
known and approved treatment strategy for relapsed MM, stimulates activin A
secretion on BMSCs via an Akt-mediated increase in JNK signaling [14]. Clinical
trials for ACE-011 with Lenalidomide + Dexamethasone are ongoing and evalu-
ating its role in MM (ClinicalTrials.gov identifier: NCT01562405).

4.7 Dkk-1 Antagonists

Dkk-1 plays one of the key roles in mediating OB inhibition in MM [71]. There-
fore, treatment strategies to block Dkk-1 activity have been developed. In vitro
assays show that inhibition of Dkk-1 via a specific neutralizing antibody promotes
OB differentiation and function and reverses the negative effect of MM cells on OB
differentiation [114, 115]. Moreover, in vivo studies using both murine and
humanized murine models of MM-induced bone disease showed increased bone
formation, OB numbers, and improvement of osteolytic lesions by Dkk-1 inhibition
[115–117]. Importantly, blocking Dkk-1 also resulted in reduction of tumor growth,
mainly as an indirect effect via modification of the tumor microenvironment [115].
Therefore, Dkk-1 inhibition via a neutralizing antibody restores bone homeostasis
and may have an inhibitory effect on tumor growth. Currently, ongoing clinical
trials combining Dkk-1 neutralizing antibody and bisphosphonates will test these
promising preclinical results. In particular, ZA in combination with the proanabolic
agent BHQ880, a fully human anti-Dkk-1 monoclonal antibody, has being studied
in a phase I clinical trial (ClinicalTrials.gov identifier: NCT00741377). BHQ880
was also tested in a phase II clinical trial in smoldering MM (ClinicalTrials.gov
identifier: NCT01302886) and preliminary results showed that BHQ880 signifi-
cantly stimulated the vertebral strength by qCT from a baseline of 3 % (P = 0.002)
(https://ash.confex.com/ash/2012/webprogram/Paper48568.html).
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4.8 Sclerostin Neutralizing Antibody

Several studies have already demonstrated the importance of sclerostin in osteo-
porosis [118, 119], and inhibition of sclerostin represents an important strategy in
the treatment of bone conditions with high catabolism. In fact, clinical trials with
sclerostin neutralizing antibodies, romosozumab and blosozumab for the treatment
of postmenopausal osteoporosis are ongoing and preliminary results have shown
increase of bone mineral density [120–122]. In MM, higher circulating levels of
sclerostin have been found in newly diagnosed MM patients, and it correlated with
MM disease stage and fractures [74]. These data underscore the importance of
targeting sclerostin for treatment of MM OBD. However, the source and role of
sclerostin in MM OBD still remains unclear. Further studies about sclerostin’s role
in MM and application of sclerostin neutralizing antibody to MM OBD are
expected.

4.9 Bortezomib

Bortezomib is a proteasome and NF-kB signaling pathway inhibitor with potent
anti-MM activity. Bortezomib also inhibits MM-BMSC interactions, impairs
osteoclastogenesis, and stimulates mesenchymal stem cell differentiation to OB
and, therefore, actively modulates bone remodeling in MM [123–125]. The ana-
bolic effects of bortezomib are associated with Runx2 upregulation via inhibition of
proteasomal degradation. Runx2 is a critical transcription factor in early OB dif-
ferentiation and modulates the expression of the OB-specific transcription factor
osterix [125, 126]. The anti-OC effects of bortezomib are mediated by p38 inhi-
bition at early time points and, at later time points, by impairment of NF-kB
signaling and AP1 inhibition [123]. These effects have been confirmed in the
clinical setting by upregulation of OB activation markers (BSALP and osteocalcin)
and downregulation of bone resorption markers (CTX and TRACP-5b) as well as
decrease of Dkk-1 and sRANKL in patients treated with bortezomib [127].

4.10 Carfilzomib

In contrast to bortezomib, carfilzomib is a new proteasome inhibitor that is asso-
ciated with a very low incidence of peripheral neuropathy. Carfilzomib is a struc-
tural analog of the microbial natural product epoxomicin that selectively inhibits the
chymotrypsin-like activity of both the constitutive proteasome and the immuno-
proteasome [128]. It was recently approved in July 2012 for patients with MM
experiencing disease progression after prior therapy with bortezomib and an
immunomodulatory drug. Carfilzomib strongly stimulates OB calcification and
inhibits OC differentiation in addition to the antitumor effect [129–131]. Moreover,
we showed carfilzomib reversed OB inhibition, improved MM bone disease, and
inhibited tumor growth in an in vivo disseminated MM model [131]. Interestingly,
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we could not see upregulation of OB differentiation marker in OBs in the presence
of higher concentration of carfilzomib although the concentration of carfilzomib
strongly stimulates OB calcification. Further studies are necessary to evaluate the
detailed mechanism of carfilzomib effect on OBs.

4.11 Bruton’s Tyrosine Kinase Inhibitors

Bruton’s tyrosine kinase (Btk) belongs to the Tec family of tyrosine kinases. The
activation of Btk regulates B-cell development and antibodies production. Thus,
Btk pathway is a potential therapeutic target in a variety of B-cell malignancies,
including Waldenström’s macroglobulinemia, diffuse large B-cell lymphoma, fol-
licular lymphoma, mantle cell lymphoma and chronic lymphocytic leukemia [132].
In MM, we showed that Btk inhibitor, CC-292 strongly inhibits OC activity and
improves MM OBD [131]. It decreased only INA-6 MM cell line viability in higher
concentration, however, had negligible direct in vitro effects on other MM cells
viability or in animal models. On the other hand, the other Btk inhibitors,
PCI-32765 (ibrutinib) and LFM-A13 have shown to display some antitumor effect
in MM xenograft mouse model when INA-6 MM cells were used [133, 134]. More
investigations are needed to reveal the role of Btk inhibitors in the MM OBD.

4.12 Pim Inhibitor

MM cells upregulate Pim-2 expression in BMSCs/OBs and inhibit OB differenti-
ation [69]. Meanwhile, IL-6, produced by BMSCs, BAFF, and APRIL, produced
by OCs, stimulate Pim-2 expression in MM cells via activation of NF-κB and
JAK2/STAT3 pathway, resulting in MM cell survival [67]. Importantly, Pim
inhibitor prevents bone destruction while suppressing MM tumor burden in MM
model mouse [69]. Pim-2 may become a new target for not only MM OBD but also
MM treatment.

5 Conclusion

Our understanding of the biology of MM OBD was remarkably advanced in these
decades. Although OCs are a critical player in the pathogenesis of bone disease,
other BM microenvironmental cells such as osteocytes, OBs, and BMSCs are
affected in MM and contribute to the development of MM OBD. Many novel
targets for MM OBD have been discovered following these insights. Effective
therapeutic strategies to overcome MM-induced OBD should target the
osteocyte-OB-OC axis, combining bone-anabolic with anticatabolic agents. Such
novel agents for MM OBD restoring bone balance in MM represent a novel strategy
to overcome osteolytic disease and, more provocatively, to create a hostile niche for
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MM tumor growth. Although there are still many unknown parts in MM OBD,
further investigations will reveal these and a wide range of targeted therapies may
become available to treat MM OBD more effectively in the near future.
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