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Abstract An interesting and important problem of how similar and/or dissimilar

voting procedures (social choice functions) are dealt with. We extend our previous

qualitative type analysis based on rough sets theory which make it possible to parti-

tion the set of voting procedures considered into some subsets within which the vot-

ing procedures are indistinguishable, i.e. (very) similar. Then, we propose an exten-

sion of those analyses towards a quantitative evaluation via the use of degrees of

similarity and dissimilarity, not necessarily metrics and dual (in the sense of sum-

ming up to 1). We consider the amendment, Copeland, Dodgson, max-min, plu-

rality, Borda, approval, runoff, and Nanson, voting procedures, and the Condorcet

winner, Condorcet loser, majority winner, monotonicity, weak Pareto winner, con-

sistency, and heritage criteria. The satisfaction or dissatisfaction of the particular

criteria by the particular voting procedures are represented as binary vectors. We

use the Jaccard–Needham, Dice, Correlation, Yule, Russell–Rao, Sockal–Michener,

Rodgers–Tanimoto, and Kulczyński measures of similarity and dissimilarity. This

makes it possible to gain much insight into the similarity/dissimilarity of voting pro-

cedures.
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1 Introduction

In this paper we deal with voting procedures, maybe the most intuitively appealing

examples of social choice function, which are meant to determine the winner of

some election in the function of individual votes—cf. for a comprehensive exposure

in particular Pitt et al. [1] but also Pitt et al. [2, 3], Arrow, Sen and Suzumura [4],

Kelly [5], Plott [6], Schwartz [7], etc.

Basically, we consider the following problem: we have n, n ≥ 2 individuals who

present their testimonies over the set of m, m ≥ 2, options. The testimonies can be

exemplified by individual preference relations which are often, also here, binary

relations over the set of options, orderings over the set of options. We look for social
choice functions, or—to be more specific—a voting procedure that would select a

set of options that would best reflect the opinions of the whole group, as a function

of individual preference relations.

A traditional line of research here has been whether and to which extent the par-

ticular voting procedures do or do not satisfy some plausible and reasonable axioms

and conditions, maybe best exemplified by the famous Arrows theorem, and so many

paradoxes of voting. We will not deal with this, for details cf. Arrow [8], Gibbard [9],

Kelly [10], May [11], Nurmi [12], Riker [13], Satterthwaite [14], etc.

We will deal with an equally important, or probably practically more impor-

tant, problem of how similar or dissimilar the particular voting procedures are. This

was discussed in Nurmi’s [12] book, cf. also Baigent [15], Elkind, Faliszewski and

Slinko [16], McCabe-Dansted and Slinko [17], Richelson [18], etc.

In this paper we will deal with the above mentioned problem of how to measure

the similarity and dissimilarity of voting procedures. First, we will take into account

only a subset of well known voting procedures. Then, we will employ the idea of

a qualitative similarity (and its related dissimilarity) analysis of voting procedures

proposed by Fedrizzi, Kacprzyk and Nurmi [19] in which Pawlak’s rough sets (cf.

Pawlak [20, 21], cf. also Pawlak and Skowron [22]), have been used. Then, we will

use the idea of the recent approach proposed by Kacprzyk, Nurmi and Zadrożny [23]

in which the above mentioned more qualitative rough sets based analysis has been

extended with a quantitative analysis by using the Hamming and Jaccard-Needham

similarity indexes.

This paper is a further extension of Kacprzyk, Nurmi and Zadrożny [23]. Basi-

cally, we consider some other more popular similarity (and their related dissimilar-

ity) measures:

∙ Jaccard-Needham (to repeat, for completeness, the results already obtained for this

measure in [23]),

∙ Dice,

∙ correlation,

∙ Yule,

∙ Russell–Rao,

∙ Sockal–Michener,
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∙ Rogers–Tanimoto, and

∙ Kulczyński—cf. Tubbs [24] for details.

Notice that these measure are just a small subset of a multitude of similarity mea-

sures known in the literature, cf. Choi, Cha and Tappert [25]. Moreover, in this paper

we limit our attention to those similarity measures which, first of all, take in values

in [0, 1], and the corresponding dissimilarity measures of which are dual in the sense

that their values add up to 1, which is not the case for all measures.

Notice that this approach is different both conceptually and technically from

the approach by Kacprzyk and Zadrożny [26, 27] in which some distinct classes

of voting procedures are determined using the concept of Yager’s [28] ordered

weighted averaging (OWA) aggregation operator (cf. Yager and Kacprzyk [29],

Yager, Kacprzyk and Beliakov [30]), and the change of the order of variables to

be aggregated and the type of weights (i.e. the aggregation behavior) determines

various classes of voting procedures.

2 Foundations of the Theory of Rough Sets

Rough sets were proposed in the early 1980s by Pawlak [20], and then extensively

developed by Pawlak [21], Polkowski (e.g., [31]), Skowron (e.g., [22, 32, 33]), Słow-

iński (e.g., [34]), etc. and their collaborators. It is a conceptually simple and intu-

itively appealing tool for the representation and processing of imprecise knowledge

when the classes into which the objects are to be classified are imprecise but can be

approximated by precise sets, from the above and below.

Here we will just briefly recall some basic concepts and properties of rough sets

theory which may be useful for our purpose, and for more detail, cf. Pawlak [20],

[21], Polkowski (e.g., [31]), Skowron (e.g., [22], Pawlak and Skowron [32, 35],

Pawlak et al. [33]), and Greco et al. (e.g., [34]) etc. to just list a few.

Let U = {u} be a universe of discourse. It can usually be partitioned in various

ways into a family R of partitionings, or equivalence relations defined onU. A knowl-
edge base, denoted by K, is the pair K = (U,𝐑). Let now P be a non-empty subset of

R, 𝐏 ⊂ 𝐑,𝐏 ≠ ∅. Then, the intersection of all equivalence relations (or partitionings)

in P, which is also an equivalence relation, is called an indiscernibility relation over

P and is denoted by IND(𝐏).
The family of its equivalence classes is termed the P-basic knowledge about U in

K and it represents all that can be said about the elements of U under P. Therefore,

one cannot classify the elements of U any deeper than to the equivalence classes of

IND(𝐏). For instance, if for some U, 𝐏 = {R1,R2} such that R1 partitions the objects

into the classes labeled “heavy” and “lightweight”, and R2 partitions into the classes

labeled “black” and “white”, then all that can be said about any element of U is that it

belongs to one of: “heavy-and-black”, “heavy-and-white”,“lightweight-and-black”,

“lightweight-and-white”.
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Equivalence classes of IND(𝐏) are called the basic categories (concepts) of
knowledge P. If Q ∈ 𝐑, that is, Q is an equivalence relation on U, then its equiv-

alence classes are called the Q-elementary categories (concepts) of knowledge R.

If X ⊂ U, and R is an equivalence relation on U, then X is called R-definable
or R-exact if it is a union of some R-elementary categories (R-basic categories);

otherwise, it is called R-rough.

Rough sets can be approximately defined by associating with any X ⊂ U and any

equivalence relation R on U the following two sets (U∕R denotes the set of all equiv-

alence relations of R):

∙ a lower approximation of X:

RLX =
⋃

{Y ∈ U∕R ∣ Y ⊂ X} (1)

∙ an upper approximation of X:

RUX =
⋃

{Y ∈ U∕R ∣ Y ∩ X ≠ ∅} (2)

and a rough set is defined as the pair (RL,RU).
The lower approximation yields the classes of R which are subsets of X, i,e,

contains those elements which are necessarily also elements of X, while the upper

approximation yields those classes of R which have at least one common element

with X.

For our purposes two concepts related to the reduction of knowledge are crucial.

First, for a family of equivalence relations R on U, one of its elements, Z, is called

dispensable in R if

IND(𝐑) = IND(𝐑 ⧵ {Z}) (3)

and otherwise it is called indispensable. If each Z in R is indispensable, then R is

called independent.
For a family of equivalence relations, R, and its subfamily, 𝐐 ⊂ 𝐑, if:

∙ 𝐐 is independent, and

∙ IND(𝐐) = IND(𝐑),

then 𝐐 is called a reduct of R; clearly, it need not be unique.

The core of R is the set of all indispensable equivalence relations in R, and is the

intersection of all reducts of R—cf. Pawlak [20].

From the point of view of knowledge reduction, the core consists of those classi-

fications (equivalence relations) which are the most essential in the knowledge avail-

able in that no equivalence relation that belongs to the core can be discarded in the

knowledge reduction process without distorting the knowledge itself. A reduct yields

a set of equivalence relations which is sufficient for the characterization of knowl-

edge available without losing anything relevant.

In this paper our analysis is in terms of indiscernibility relations; for the concept

of a discernibility relation, cf. Yao and Zhao [36].
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3 A Comparison of Voting Procedures Using Rough Sets

The problem of comparison and evaluation of voting procedures (social choice func-

tions) is very important and has been widely studied in the literature, cf. Richel-

son [18], Straffin [37], Nurmi [12], to name a few.

A simple, intuitively appealing, rough set based approach, was proposed by

Fedrizzi, Kacprzyk and Nurmi [19]. It was more qualitative, and was extended to

include more quantitative aspects by Kacprzyk, Nurmi and Zadrożny [23]. We will

now briefly recall this approach since it will provide a point of departure for this

paper.

We assume that we have 13 popular voting procedures:

1. Amendment: proposals (options) are paired (compared) with the status quo. If

a variation on the proposal is introduced, then it is paired with this proposal

and voted on as an amendment prior to the final vote. Then, if the amendment

succeeds, the amended proposal is eventually paired with the status quo in the

final vote, otherwise, the amendment is eliminated prior to the final vote.

2. Copeland: selects the option with the largest so-called Copeland score which is

the number of times an option beats other options minus the number of times

this option loses to other options, both in pairwise comparisons.

3. Dodgson: each voter gives a rank ordered list of all options, from the best to

the worst, and the winner is the option for which the minimum number of pair-

wise exchanges (added over all candidates) is needed before they all become a

Condorcet winner, i.e. defeat all other options in pairwise comparisons with a

majority of votes.

4. Schwartz: selects the set of options over which the collective majority prefer-

ences are cyclic and the entire cycle is preferred over the other options; it is

the single element in case there is a Condorcet winner, otherwise it consists of

several options.

5. Max-min: selects the option for which the minimal support in all pairwise com-

parisons is the largest.

6. Plurality: each voter selects one option (or none in the case of abstention), and

the options with the most votes win.

7. Borda: each voter provides a linear ordering of the options which are assigned

a score (the so-called Borda score) as follows: if there are n candidates, n − 1
points are given to the first ranked option, n − 2 to the second ranked, etc., and

these numbers are summed up for each option to end up with the Borda score

for this option, and the option(s) with the highest Borda score win(s).

8. Approval: each voter selects a subset of the candidate options and the option(s)

with the most votes is/are the winner(s).

9. Black: selects either the Condorcet winner, i.e. an option that beats or ties with

all others in pairwise comparisons, when it exists, and the Borda count winner

(as described above) otherwise.

10. Runoff: the option ranked first by more than a half of the voters is chosen if

one exists. Otherwise, the two options ranked first by more voters than any
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other option are compared with each other and the winner is the one ranked

first (among the remaining options) by more voters than the other option.

11. Nanson: we iteratively use the Borda count, at each step dropping the candidate

with the smallest score (majority); in fact, this is sometimes called a modified

version of the Nanson rule, cf. Fishburn [38],

12. Hare: the ballots are linear orders over the set of options, and we repeatedly

delete the options which receive the lowest number of first places in the votes,

and the option(s) that remain(s) are declared as the winner(s).

13. Coombs: each voter rank orders all of the options, and if one option is ranked

first by an absolute majority of the voters, then it is the winner. Otherwise, the

option which is ranked last by the largest number of voters is eliminated, and the

procedure is repeated.

What concerns the criteria against which the above mentioned voting proce-

dures are compared, we use some basic and popular ones presented in the classic

Nurmi’s [12] book. More specifically, we will consider 7 criteria the voting proce-

dures are to satisfy:

1. A—Condorcet winner,

2. B—Condorcet loser,

3. C—majority winner,

4. D—monotonicity,

5. E—weak Pareto winner,

6. F—consistency, and

7. G—heritage,

the essence of which can be summarized as:

1. Condorcet winner: if an option beats each other option in pairwise comparisons,

it should always win.

2. Condorcet loser: if an option loses to each other option in pairwise comparisons,

it should always loose.

3. Majority winner: if there exists a majority (at least a half) that ranks a single

option as the first, higher than all other candidates, that option should win.

4. Monotonicity: it is impossible to cause a winning option to lose by ranking it

higher, or to cause a losing option to win by ranking it lower.

5. Weak Pareto winner: whenever all voters rank an option higher than another

option, the latter option should never be chosen.

6. Consistency criterion: if the electorate is divided in two and an option wins in

both parts, it should win in general.

7. Heritage: if an option is chosen from the entire set of options using a particular

voting procedure, then it should also be chosen from all subsets of the set of

options (to which it belongs) using the same voting procedure and under the same

preferences.

We start with a illustrative account of which voting procedure satisfies which

criteria(‘0” stands for “does not satisfy”, and “1” stands for “satisfies”) which is
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Table 1 Satisfaction of 7 criteria by 13 voting procedures

Voting

procedure

Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0

Copeland 1 1 1 1 1 0 0

Dodgson 1 0 1 0 1 0 0

Schwartz 1 1 1 1 0 0 0

Max-min 1 0 1 1 1 0 0

Plurality 0 0 1 1 1 1 0

Borda 0 1 0 1 1 1 0

Approval 0 0 0 1 0 1 1

Black 1 1 1 1 1 0 0

Runoff 0 1 1 0 1 0 0

Nanson 1 1 1 0 1 0 0

Hare 0 1 1 0 1 0 0

Coombs 0 1 1 0 1 0 0

presented in Table 1; the 13 voting procedures correspond to the rows while the 7

criteria correspond to the columns, here and in next tables.

Though the data shown in Table 1 can be immediately used for the comparison

of the 17 voting procedures against the 7 criteria by a simple pairwise comparison

of rows, a natural attempt is to find first if, under the information available in that

table, all the 17 voting procedures are really different, and if all the 7 criteria as really

needed for a meaningful comparison.

Quite a natural, simple and intuitively appealing approach was proposed in this

respect by Fedrizzi et al. [19] using rough sets. We will present below its essence.

4 Simplification of Information on the Voting Procedures
and Criteria to Be Fulfilled

We will now show the essence of Fedrizzi et al. [19] approach based on the applica-

tion of some elements of rough sets theory, briefly presented in Sect. 2, to simplify

information in the source Table 1. We will basically consider crucial properties or

attributes of the voting procedures that will make it possible to merge them into

one (class of) voting procedure under a natural condition that they satisfy the same

properties, i.e. the criteria assumed.

First, one can see that the amendment procedure and Schwartz’ choice func-

tion have identical properties in Table 1, so one can be deleted and similarly for

Copeland’s and Black’s choice functions, the runoff, Hare’s and Coombs’ choice

functions. We obtain therefore Table 2.
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Table 2 Satisfaction of 7 criteria by 9 equivalent (classes of) voting procedures

Voting

procedure

Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0

Copeland 1 1 1 1 1 0 0

Dodgson 1 0 1 0 1 0 0

Max-min 1 0 1 1 1 0 0

Plurality 0 0 1 1 1 1 0

Borda 0 1 0 1 1 1 0

Approval 0 0 0 1 0 1 1

Runoff 0 1 1 0 1 0 0

Nanson 1 1 1 0 1 0 0

So that we have 9 “really different” (classes of) voting procedures:

1. Amendment (which stands now for Amendment and Schwartz),

2. Copeland (which stands now for Copeland and Black),

3. Dodgson,

4. Max-min,

5. Plurality,

6. Borda,

7. Approval,

8. Runoff (which stands now for Runoff, and Hare and Coombs).

9. Nanson.

Now, we look for the indispensable criteria, cf. Sect. 2 which boils down to that

if we take into account that each attribute (which corresponds to a criterion) gener-

ates such an equivalence relation, then to the same class there belong those voting

procedures that fulfill those criteria, and to another class those which do not. This

can be done by eliminating the criteria one by one and finding out whether the voting

procedures can be discerned from each other in terms of the remaining criteria.

Therefore, if we start from Table 2, by eliminating criterion A we get Table 3.

The two last rows of Table 3 are identical and to distinguish those two last rows,

i.e. Runoff and Nanson, criterion A is necessary, i.e. criterion A is indispensable.

And, analogously, we delete criterion B and obtain Table 4.

The Copeland and Max-Min procedures become indistinguishable so that crite-

rion B is indispensable.

Next, the elimination of criterion C leads to Table 5.

All rows in Table 5 are different so that criterion C is unnecessary to differentiate

between those voting functions, and we can conclude that C is dispensable.
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Table 3 Elimination of criterion A from Table 2

Voting

procedure

Criteria

B C D E F G

Amendment 1 1 1 0 0 0

Copeland 1 1 1 1 0 0

Dodgson 0 1 0 1 0 0

Max-min 0 1 1 1 0 0

Plurality 0 1 1 1 1 0

Borda 1 0 1 1 1 0

Approval 0 0 1 0 1 1

Runoff 1 1 0 1 0 0

Nanson 1 1 0 1 0 0

Table 4 Elimination of criterion B from Table 2

Voting

procedure

Criteria

A C D E F G

Amendment 1 1 1 0 0 0

Copeland 1 1 1 1 0 0

Dodgson 1 1 0 1 0 0

Max-min 1 1 1 1 0 0

Plurality 0 1 1 1 1 0

Borda 0 0 1 1 1 0

Approval 0 0 1 0 1 1

Runoff 0 1 0 1 0 0

Nanson 1 1 0 1 0 0

Further, we delete criterion D and obtain Table 6. The Copeland and Nanson

choice functions are now indistinguishable which means that criterion D is indis-

pensable.

Now, we eliminate criterion E and get Table 7.

Two uppermost rows are now identical so that criterion E is needed, i.e. it is

indispensable.

Next, criterion F is eliminated as shown in Table 8 in which no pair of rows is

identical so that criterion F is dispensable.

Finally, criterion G is eliminated which is shown in Table 9. We can see that all

rows are different so that we can conclude that criterion G is dispensable.

It is easy to notice that the core is the set of indispensable criteria, i.e. {A, B, D,

E}, and the reduct is in this case both unique and also equal to {A, B, D, E}. That is,
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Table 5 Elimination of criterion C from Table 2

Voting

procedure

Criteria

A B D E F G

Amendment 1 1 1 0 0 0

Copeland 1 1 1 1 0 0

Dodgson 1 0 0 1 0 0

Max-min 1 0 1 1 0 0

Plurality 0 0 1 1 1 0

Borda 0 1 1 1 1 0

Approval 0 0 1 0 1 1

Runoff 0 1 0 1 0 0

Nanson 1 1 0 1 0 0

Table 6 Elimination of criterion D from Table 2

Voting

procedure

Criteria

A B C E F G

Amendment 1 1 1 0 0 0

Copeland 1 1 1 1 0 0

Dodgson 1 0 1 1 0 0

Max-min 1 0 1 1 0 0

Plurality 0 0 1 1 1 0

Borda 0 1 0 1 1 0

Approval 0 0 0 0 1 1

Runoff 0 1 1 1 0 0

Nanson 1 1 1 1 0 0

we need just that set of criteria to distinguish the particular voting procedures from

each other (naturally, under the set of criteria assumed).

We can then consider the reduct (or core). In Table 10 we show which criteria

are indispensable in the sense that if we do not take them into account, the two

or more rows (corresponding to the respective voting procedures) become indis-

tinguishable. For example, without criterion E, Amendment and Copeland would

be indistinguishable, without D, Copeland and Nanson would be indistinguishable,

without B, Copeland and Max-Min would be indistinguishable, etc.

Table 10 expresses the most crucial properties or criteria of the voting procedures

in the sense that the information it conveys would be sufficient to restore all infor-

mation given in the source Table 2. Therefore, for an “economical” characterization

of the voting procedures, we can use the values of the criteria given in Table 10 and

present the results as in Table 11 where the subscripts of the particular criteria stand



Using Similarity and Dissimilarity Measures . . . 151

Table 7 Elimination of criterion E from Table 2

Voting

procedure

Criteria

A B C D F G

Amendment 1 1 1 1 0 0

Copeland 1 1 1 1 0 0

Dodgson 1 0 1 0 0 0

Max-min 1 0 1 1 0 0

Plurality 0 0 1 1 1 0

Borda 0 1 0 1 1 0

Approval 0 0 0 1 1 1

Runoff 0 1 1 0 0 0

Nanson 1 1 1 0 0 0

Table 8 Elimination of criterion F from Table 2

Voting

procedure

Criteria

A B C D E G

Amendment 1 1 1 1 0 0

Copeland 1 1 1 1 1 0

Dodgson 1 0 1 0 1 0

Max-min 1 0 1 1 1 0

Plurality 0 0 1 1 1 0

Borda 0 1 0 1 1 0

Approval 0 0 0 1 0 1

Runoff 0 1 1 0 1 0

Nanson 1 1 1 0 1 0

for the values they take on, for instance, to most economically characterize Amend-

ment, the A, B and D should be 1 and E should be 0, etc.

This is, however, not yet the most economical characterization but this issues will

not be dealt with here and we refer the interested reader to Fedrizzi, Kacprzyk and

Nurmi [19] or Kacprzyk, Nurmi and Zadrożny [23] to find that the minimal (most

economical) characterization of the voting procedures in term of information given

in Table 2 can be portrayed as shown in Table 12.

This is a very compact representation which is due to the very power of rough

sets theory.
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Table 9 Elimination of criterion F from Table 2

Voting

procedure

Criteria

A B C D E F

Amendment 1 1 1 1 0 0

Copeland 1 1 1 1 1 0

Dodgson 1 0 1 0 1 0

Max-min 1 0 1 1 1 0

Plurality 0 0 1 1 1 1

Borda 0 1 0 1 1 1

Approval 0 0 0 1 0 1

Runoff 0 1 1 0 1 0

Nanson 1 1 1 0 1 0

Table 10 Satisfaction of the criteria belonging to the core by the particular voting procedures

Voting procedure Criteria

A B D E

Amendment 1 1 1 0

Copeland 1 1 1 1

Dodgson 1 0 0 1

Max-min 1 0 1 1

Plurality 0 0 1 1

Borda 0 1 1 1

Approval 0 0 1 0

Runoff 0 1 0 1

Nanson 1 1 0 1

Table 11 An economical characterization of the voting procedures shown in Table 10

A1B1D1E0 ⟶ Amendment

A1B1D1E1 ⟶ Copeland

A1B0D0E1 ⟶ Dodgson

A1B0D1E1 ⟶ Max-min

A0B0D1E1 ⟶ Plurality

A0B1D1E1 ⟶ Borda

A0B0D1E0 ⟶ Approval

A0B1D0E1 ⟶ Runoff

A1B1D0E1 ⟶ Nanson
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Table 12 The minimal (most economical) characterization of the voting procedures shown in

Table 10

A1E0 ⟶ Amendment

A1B1D1E1 ⟶ Copeland

B0D0 ⟶ Dodgson

A1B0D1 ⟶ Max-min

A0B0E1 ⟶ Plurality

A0B1D1 ⟶ Borda

A0E0 ⟶ Approval

A0D0 ⟶ Runoff

A1B1D0 ⟶ Nanson

5 Similarity and Dissimilarity of the Voting Procedures:
A Quantitative Approach Based on Similarity
and Dissimilarity Measures for Binary Patterns

As it could be seen from the previous section, a rough sets based analysis has made

it possible to find a smaller subset of all the choice functions considered such that

choice functions merged could have been meant as similar. This, rather qualitative

result, is clearly the first step. The next steps towards a more quantitative analysis can

be made, using elements of rough sets theory, by using some indiscernibility analy-

ses. This was proposed by Fedrizzi, Kacprzyk and Nurmi [19], and then extended by

Kacprzyk, Nurmi and Zadrożny [23]. We will not deal with this approach and refer

the interested reader to the above mentioned papers.

In this paper we will approach the problem of measuring the similarity and dis-

similarity in a more quantitative way, using some similarity and dissimilarity mea-

sures, but going beyond the classic Hamming and Jaard-Needham measures used in

Kacprzyk, Nurmi and Zadrożny [23].

We take again as the point of departure the characterization of the voting pro-

cedures as shown in Table 2, that is, just after the reduction of identical rows in

Table 1, but—to better show the generality of our approach—without all further

reductions (or a representation size reduction) as proposed later on and presented in

Tables 3–10.

The data sets involved are in fact binary patterns and there is a multitude of simi-

larity/dissimilarity measures for binary patterns but we will here concentrate on the

measures given by Tubbs [24] which are useful in matching binary patterns in pattern

recognition. We will follow to a large extent Tubb’s notation.

A binary vector Z of dimension N is defined as:

Z = (z1, z2,… , zN) (4)

where zi ∈ {0, 1}, ∀i ∈ {1, 2,… ,N}.



154 J. Kacprzyk et al.

The set of all N-dimensional binary vectors is denoted by 𝛺, the unit binary vec-
tor, I ∈ 𝛺, is a binary vector such that zi = 1,∀i ∈ {1, 2,… ,N}, and the complement
of a binary vector Z ∈ 𝛺 is Z = I − Z.

The magnitude of a binary vector Z ∈ 𝛺 is

∣ Z ∣=
N∑

i=1
zi (5)

that is, the number of elements which are equal to 1.

If we have two binary vectors, X,Y ∈ 𝛺, then we denote by Si,j(X,Y) the number

of matches of i in vector X and j in vector Y , i, j ∈ {0, 1}. That is, if we have two

vectors:

X = [0, 1, 1, 0, 1, 0, 0, 1, 1, 0]

Y = [1, 1, 0, 0, 1, 1, 0, 0, 1, 0]

then we have:

S00(X,Y) = 3
S01(X,Y) = 2
S10(X,Y) = 2
S11(X,Y) = 3

Formally, we can define those measures as follows. First, for vectors X = (x1,
x2,… , xN) and Y = (y1, y2,… , yN):

vij =
{

1 if xi = yj
0 otherwise

(6)

vkij(X,Y) =
{

1 if xk = i and yk = j
0 otherwise

(7)

then

Sij(X,Y) =
N∑

k=1
(vk00(X,Y) + vk01(X,Y) + vk10(X,Y) + vk11(X,Y)) (8)

One can easily notice that

S00(X,Y) = X × Y
T

(9)

S11(X,Y) = X × YT
(10)

where “×” denotes the product of the matrices.
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Following the notation of Tubbs [24], the Sij’s, i, j ∈ {0, 1}, can be used to define

many well known measures of similarity and dissimilarity, and we will consider here

the following ones (we follow here the source terminology from that paper but in the

literature sometimes slightly different names are used):

∙ Jaccard-Needham,

∙ Dice,

∙ correlation,

∙ Yule,

∙ Russell–Rao,

∙ Sockal–Michener,

∙ Rodgers–Tanimoto, and

∙ Kulczyński.

These measures, both of similarity S
.

(X,Y), and their corresponding measures

of dissimilarity, D
.

(X,Y), are defined in terms of Sij(X,Y) as follows (we omit the

arguments (X,Y), for brevity):

∙ Jaccard–Needham:

SJ−N =
S11

S11 + S10 + S01
(11)

DJ−N =
S10 + S01

S11 + S10 + S01
(12)

∙ Dice

SD =
2S11

2S11 + S10 + S01
(13)

DD =
S10 + S01

2S11 + S10 + S01
(14)

∙ Correlation

SC = 1
𝜎

(S11S00 − S10S01) (15)

DC = 1
2
− 1

2𝜎
(S11S00 − S10S01) (16)

where

𝜎 =
√
(S10 + S11)(S01 + S00)(S11 + S01)(S00 + S10); (17)
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∙ Yule

SY =
S11S00 − S10S01
S11S00 + S10S01

(18)

DY =
S10S01

S11S00 + S10S01
(19)

∙ Russell–Rao

SR−R =
S11
N

(20)

DR−R =
N − S11

N
(21)

∙ Sokal–Michener

SS−M =
S11 + S00

N
(22)

DS−M =
S10 + S01

N
(23)

∙ Rogers–Tanimoto

SR−T =
S11 + S00

S11 + S00 + 2S10 + 2S01
(24)

DR−T =
2S10 + 2S01

S11 + S00 + 2S10 + 2S01
(25)

∙ Kulczyński

SK =
S11

S10 + S01
(26)

DK =
S10 + S01 − S11 + N

S10 + S01 + N
(27)

Notice that though not all similarity measures employed are normalized, their

respective dissimilarity measures are all normalized to the unit interval [0, 1] which

is usually welcome in applications, also in our context. On the other hand, not all the

measures exhibit the metric property but this will not be discussed in this paper as

the importance of this property is not clear from a practical point of view.

Now, we will use these measures to the evaluation of similarity and dissimilarity

of the voting procedures employed in our paper.

We will use as the point of departure the binary matrix given in Table 2 which

shows the satisfaction (= 1) or a lack of satisfaction (= 0) of the A,B,C,D,E,F,G
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Table 13 Satisfaction of 7 criteria by 9 equivalent (classes of) voting procedures, cf. Table 2

Voting

procedure

Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0

Copeland 1 1 1 1 1 0 0

Dodgson 1 0 1 0 1 0 0

Max-min 1 0 1 1 1 0 0

Plurality 0 0 1 1 1 1 0

Borda 0 1 0 1 1 1 0

Approval 0 0 0 1 0 1 1

Runoff 0 1 1 0 1 0 0

Nanson 1 1 1 0 1 0 0

criteria by the 9 (classes of) voting procedures, and this table will be repeated for

convenience in Table 13.

Now, we will calculate Sij, i, j ∈ {0, 1}, according to (6)–(8), for the particular

pairs of 9 voting procedures which will be presented in Table 14 the entries of which

are given as [S00, S01, S10, S11], for each pair.

Following (11)–(27) and taking as the point of departure the values of [S00, S01,
S10, S11] shown in Table 14, we can calculate the values of the particular similarity

and dissimilarity indexes calculated using the methods of:

∙ Jaccard-Needham,

∙ Dice,

∙ Correlation,

∙ Yule,

∙ Russell–Rao,

∙ Sockal–Michener,

∙ Rodgers–Tanimoto, and

∙ Kulczyński,

which are shown in the consecutive Tables 15, 16, 17, 18, 19, 20, 21 and 22.

The results concerning the similarity and dissimilarity of the voting procedures

with respect to 7 widely accepted criteria that have been obtained by using a set of

popular and highly recommended similarity and dissimilarity measures for binary

patterns, presented in Tables 15–22, provide a lot of insight that can be very much

useful for both social choice and voting theorists. They can also be of relevance

for people involved in a more practical task of choosing or even developing a proper

voting system in a particular situation. Such an analysis would have been too specific

for the purpose of this paper in which a new method is proposed.

To briefly summarize the results obtained, we can say that the quantitative analy-

sis of similarity and dissimilarity via the measures employed in this section, i.e.
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(11)–(27), does confirm the very essence of results obtained by employing the more

qualitative approach proposed in Sect. 3.

Namely, one can notice again that, not surprisingly, Copeland, Max-Min, Dodg-

son and Nanson form a group of voting procedures that have a high similarity and

a low dissimilarity. Quite closely related to that group are Runoff and Amendment.

By the way, except for Runoff, all these procedures are the Condorcet extensions, i.e.

they result in the choice of the Condorcet winner if it exists. The so-called positional

methods, that is, Plurality, Borda and Approval, seem to be rather far away from the

rest of the procedures. This holds particularly for Approval. It can also be noticed

that it is not very relevant which particular similarity and dissimilarity measure is

actually used. The values obtained can be different but the order and proportions are

maintained.

6 Concluding Remarks

We have presented a more comprehensive approach to a quantitative analysis of sim-

ilarity and dissimilarity of voting procedures. We assumed a set of well known voting

procedures and criteria which they should satisfy, which are known in political sci-

ence (cf. Nurmi’s [12] book). More specifically, we have considered the amendment,

Copeland, Dodgson, max-min, plurality, Borda, approval, runoff, and Nanson, voting

procedures, and the Condorcet winner, Condorcet loser, majority winner, monotonic-

ity, weak Pareto winner, consistency, and heritage criteria. The satisfaction or dissat-

isfaction of the particular criteria by the particular voting procedures are represented

as binary vectors. We used first rough sets to obtain a smaller number of voting proce-

dures (9 instead of 13), following Fedrizzi, Kacprzyk and Nurmi [19], and then used

the idea of Kacprzyk, Nurmi and Zadrożny [23] in which the use of some measures

of similarity and dissimilarity for binary patterns has been proposed and the Jaccard–

Needham measures have been used. In this paper we extend the above approach by

using in addition to those, the similarity and dissimilarity measures of: Dice, Corre-

lation, Yule, Russell–Rao, Sockal–Michener, Rodgers–Tanimoto, and Kulczyński.
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