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To Professor Ronald R. Yager

This book is a token of appreciation to
Prof. Ronald R. Yager for his great scientific
and scholarly achievements, long-time
service to the fuzzy logic and more generally
to the artificial and computational
intelligence communities. It is appreciation
for his original novel thinking and his



groundbreaking ideas that have reshaped
many already well-established fields of
science and technology, and have initialized
and triggered interest and research in many
new ones. He has particularly motivated by
providing tools to enable the computerized
implementation of the various aspects of
human cognition for decision-making and
problem solving.

For many years he has been one of the
remarkable personalities in the world of
science, technology and applied mathematics.
His long-time career has been characterized
by the quest for scientific excellence and
unquestionable integrity. This is what has
characterized great minds, scholars and
mentors for centuries, following a long
academic tradition with roots that started in
the first universities in the Middle Ages, and
has been followed over the centuries by
academics all over the world who have been
aware that any compromise in quality,
integrity, good practices and tradition in the
academia can lead to detrimental effects,
finally to self-destruction.

Professor Yager has pioneered new
research directions in knowledge
representation and processing, handling of
all kinds of imperfect information,
imprecision, uncertainty and incompleteness.
He has ingeniously used tools and techniques
from both well-established areas, like the
traditional probability theory and statistics,
and many new emerging ones like fuzzy logic,
possibility theory, the Dempster–Shafer
theory and the theory of approximate
reasoning. He has started new research areas
that have, since his seminal papers,



developed rapidly and have become objects
of interest for hundreds or even thousands of
scientists and scholars from all over the
world. One can here mention, just to quote a
few, his famous works on the OWA (ordered
weighted averaging) operators, fuzzy
quantifier driven aggregation of pieces of
evidence, linguistic data summarization and
participatory learning. He has provided a
deeper understanding of fuzzy systems
modeling, and developed a framework for
using granular computing for modeling
social networks. He has done considerable
work in multi-criteria decision-making and
decision analysis in the face of uncertainty.
One must always be aware that even if his
models have been just conceptual or
theoretical at the first glance, this has been a
judgment simply based only on appearances
as they all have been profoundly based on
realistic assumptions, and—as a result of
those—have been applicable to a huge
variety of relevant real-world technological,
economic, financial, social and diverse
problems.

If one looks carefully at what contributions
Prof. Yager has made and when he has made
these contributions, one can clearly see him
as a visionary who has been able to earlier
than most understand what is going to play
an important role in science in the future, and
then being able to put the pieces of ideas,
tools and techniques together in an
innovative way that has initiated new things
and added value.

The world scientific and technology
community has fully appreciated his great
achievements and he has since the very



beginning of his research and scholarly
activities been awarded with the highest
honors, awards and prizes from the most
influential and opinion making institutions
and organizations from all over the world.
They are too many to mention but this has
culminated with the 2016 IEEE Frank
Rosenblatt Award, one of the most prestigious
distinctions for scientists and scholars
working in the field of computational
intelligence. The Rosenblatt Award
Committee has fully appreciated his
groundbreaking innovative ideas, but also his
role as a leader for the research community,
one who has been able to see and
communicate new vistas, challenges and
opportunities.

The scientific and scholarly virtues of
Prof. Yager mentioned above, as great and
important as they can be, are not rich enough
to fully characterize him. Behind every
human being—no matter who, and how
prominent or influential he or she is—is just a
human being with his or her personality.
Professor Yager is in this respect is a
remarkable person who has been known for
his consideration, generosity and respect,
and modesty that is characteristic of great
people. This all has always implied that there
has been a good atmosphere around him, and
has for sure contributed to his exceptional
ability to inspire people around him.

Some of the editors of this volume have
been privileged because they have had an
opportunity to stay with Prof. Yager for a
longer time, in different periods, starting from
the early 1980s, through the 1990s to the
2000s. They have fully appreciated how



inspiring contacts with him have been,
and how their professional development has
been shaped by discussions and daily
interactions with him. They have also been
able to feel his friendliness, integrity and
great personal qualities.

It is clear that this volume, meant to be just
a token of appreciation for Prof. Yager by our
entire community, is small in comparison
with what he has done in science, education,
and what he has done to virtually all of us by
both invaluable inspiration, but also
friendship. We are honored to have had the
opportunity to prepare this volume.

Janusz Kacprzyk
Dimitar Filev
Gleb Beliakov



Preface

This volume is a result of a special project the purpose of which was twofold. First
of all, from a substantial point of view, we wished to provide a bird’s view of some
novel directions in the broadly perceived “intelligent systems”, starting with more
philosophical and foundational considerations, through a bunch of promising
models for the analysis of data, decision-making, systems modeling, and control,
with a message that an approach on the broadly perceived granular computing, soft
computing and fuzzy logic can provide in this context some breakthrough views,
perspectives, and—as a consequence—solutions, not only relevant from a con-
ceptual and analytic points of view, but also practical, with a high implementation
potential.

This book is basically a token of appreciation to Prof. Ronald R. Yager for his
great scientific and scholarly achievements, long-time service to the fuzzy logic and
more generally to the artificial and computational intelligence communities. It is
appreciation for his original novel thinking and his groundbreaking ideas that have
reshaped many already well-established fields of science and technology, and have
initialized and triggered interest and research in many new ones. He has particularly
motivated by providing tools to enable the computerized implementation of the
various aspects of human cognition for decision-making and problem solving.

The second purpose of this volume has been to acknowledge the role and con-
tributions of Prof. Ronald R. Yager in all these areas of modern science and tech-
nology. In his illustrious research and scholarly career, that has spanned over some
decades, he has greatly contributed to the clarification of many foundational issues,
proposed new methodological and algorithmic solutions, and has also been instru-
mental in their real-world applications. His original results cover both contributions
in traditional well-established areas like probability theory and statistics, and many
new emerging ones like fuzzy logic, possibility theory, the Dempster-Shafer theory,
the theory of approximate reasoning, computing with words, to name a few. He has
triggered research in new areas related to aggregation and fusion of information,
linguistic data summarization, participatory learning, granular computing for
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systems modeling, etc. More information will be provided in the dedication part of
this volume.

The editors of this volume have a special relation to Prof. Yager because they
have spent many years with him as visiting professors and close collaborators. They
have been very much privileged to be able to work in the early years of their careers
with him, and enjoy both inspiration, wise advice, and also his friendship. This
volume is a token of appreciation for him. In fact, practically all authors of con-
tributions included in this volume have also had a very close and fruitful profes-
sional relation with Prof. Yager. He has also inspired them, and the dedication
of their papers to him is also a proof of their deep appreciation for his great results
and role in shaping their scientific interests and careers.

Of course, this volume, meant to be just a token of appreciation for Prof. Yager
by our entire community, is small in comparison with what he has done in science,
education, and what he has done to virtually all of us by both invaluable inspiration
and friendship.

An important part of this volume is “Dedication” in which the contributions,
research record, influence, etc. of Prof. Yager have been presented in more detail.

The volume starts with “Part I: Information theoretic and aggregation issues”
which contains more basic and foundational contributions of the authors to this
volume. They cover some most crucial problems and issues in the scope of this
volume.

Enric Trillas and Rudolf Seising (“On the meaning and the measuring of
‘probable’”) are concerned with some basic issues related to probability, from the
point of view of probability theory which is a mathematical theory that is an
important part of pure mathematics, and as a long and distinguished history of more
than 300 years. It has found a multitude of applications in almost all domains of
science and technology. Then, the authors relate this to a relatively short history of
fuzzy sets theory of just the lasts 50 years during which it has been theoretically
developed and successfully applied in many fields. Then the authors, being aware
of some controversies on the nature of fuzzy sets viewed in relation to probability.
The paper’s purpose is to provide a contribution to the clarification of some dif-
ferences between fuzzy sets and probabilities, as viewed by the authors.

Didier Dubois, Henri Prade and Agnès Ricó (“Organizing families of aggrega-
tion operators into a cube of opposition”) are concerned with the so-called cube of
opposition which is a structure that extends the traditional square of opposition,
known since the ancient times and widely employed in the study of syllogisms. The
cube of opposition, which has recently been generalized to non-Boolean, graded
statements, is shown in this paper to be applicable to well-known families of
idempotent, monotonically increasing aggregation operations, for instance, used in
multi-criteria decision-making, which qualitatively or quantitatively provide eval-
uations between the minimum and the maximum of the aggregated quantities. Some
notable examples are here the weighted minimum and maximum, and more gen-
erally the Sugeno integrals on the qualitative side, and the Choquet integrals, with
the important particular case of the OWA operators, on the quantitative side.
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The main advantage of the cube of opposition is its capability to display various
possible aggregation attitudes and to show their complementarity.

Bernadette Bouchon-Meunier and Christophe Marsala (“Entropy measures and
views of information”) consider various issues related to entropies and other
information measures, relating to some extent their analysis to what Prof. Yager has
done. They take into account the very concept of a particular type of a set in
question in order to point out a similarity between the quantities introduced
in various frameworks to evaluate a kind of entropy. They define the concept of an
entropy measure and we show its main characteristics, mainly in the form of
monotonicity which are satisfied by the ideas pioneered in this context by Yager.

H. Bustince, J. Fernandez, L. De Miguel, E. Barranechea, M. Pagola, and
R. Mesiar (“OWA operators and Choquet integrals in the interval-valued setting”)
use the notion of an admissible order between intervals to extend the definition
of the OWA operators and the Choquet integrals to the interval-valued setting.
Then, using this more general and comprehensive setting, the authors present an
algorithm for decision-making based on their new concepts and algorithms.

Paul Elmore and Frederick Petry (“Information Theory Applications in Soft
Computing”) provide an overview of information theoretic metrics and the ranges
of their values for extreme probability cases. They heavily relate their analysis to
imprecise database models including similarity-based fuzzy models and rough set
models. More specifically, they show various entropy measures for these database
models’ content and responses to querying. Moreover, they discuss the aggregation
of uncertainty representations, in particular the possibilistic conditioning of prob-
ability aggregation by using information measures to compare the resultant con-
ditioned probability to the original probability for three cases of possibility
distributions.

The second part of the volume, Part II: “Applications in modeling, decision
making, control, and other areas”, provides an account of various applications of
modern tools and techniques of broadly perceived intelligent systems, computer
science, decision analysis, etc., to formulate and solve many important practical
problems.

Uzay Kaymak (“On practical applicability of the generalized averaging operator
in fuzzy decision making”) provides a deep and constructive analysis of, first,
general issues related to the use of aggregation operators in decision-making, and
then—more specifically—to the us of the generalized averaging operator as deci-
sion functions in the modeling human decision behavior in the context of
decision-making. He uses real data to analyze the models discussed and provides a
comparison with the results obtained by using compensatory operators. The
numerical data suggests that the generalized averaging operator is well suited for
the modeling of human decision behavior.

Leandro Maciel, Rosangela Ballini and Fernando Gomide (“Evolving possi-
bilistic fuzzy modeling and application in value-at-risk estimation”) propose an
evolving possibilistic fuzzy modeling approach for value-at-risk modeling and
estimation. Their approach is based on an extension of the possibilistic fuzzy
c-means clustering and functional fuzzy rule-based systems. It employs
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memberships and typicalities to update clusters centers and forms new clusters
using a statistical control distance-based criteria. The paradigm of evolving possi-
bilistic fuzzy modeling (ePFM) also makes use of a utility measure to evaluate the
quality of the current cluster structure which implies the fuzzy rule-based model.
The authors are concerned with the market risk exposure which plays a key role for
financial institutions in risk assessment and management, and use as a means to
measure the risk exposure by evaluating the losses likely to incur when the prices
of the portfolio assets decline. The value-at-risk (VaR) estimate is one of the most
widely used measures of financial downside market risk, and the authors in the
computational experiments evaluate the ePFM for the value-at-risk estimation using
data of the main equity market indexes of United States (S&P 500) and Brazil
(Ibovespa) from January 2000 to December 2012, and the econometric models
benchmarks such as GARCH and EWMA, and state-of-the-art evolving approa-
ches, are also compared against the ePFM. The results suggest that the ePFM is a
potentially good candidate for the VaR modeling and estimation.

Janusz Kacprzyk, Hannu Nurmi and Sławomir Zadrożny (“Using similarity and
dissimilarity measures of binary patterns for the comparison of voting procedures”)
consider an interesting and important problem of how similar and/or dissimilar
voting procedures (social choice functions) are. They first extend their rough set
based qualitative-type approach which makes it possible to partition the set of
voting procedures considered into some subsets within which the voting procedures
are indistinguishable, i.e., (very) similar. Then, they propose an extension towards a
quantitative evaluation via the use of degrees of similarity and dissimilarity, not
necessarily metrics and dual. The authors consider the following voting procedures:
amendment, Copeland, Dodgson, max-min, plurality, Borda, approval, runoff and
Nanson, and the following criteria Condorcet winner, Condorcet loser, majority
winner, monotonicity, weak Pareto winner, consistency, and heritage. The satis-
faction or dissatisfaction of the particular criteria by the particular voting procedures
is represented as binary vectors. The similarity and dissimilarity measures of:
Jaccard–Needham, Dice, Correlation, Yule, Russell–Rao, Sokal–Michener,
Rodgers–Tanimoto, and Kulczyński are employed. The approach is shown to yield
much insight into the similarity/dissimilarity of voting procedures.

Gloria Bordogna, Simone Sterlacchini, Paolo Arcaini, Giacomo Cappellini,
Mattia Cugini, Elisabetta Mangioni, and Chrysanthi Polyzoni (“A geo-spatial data
infrastructure for flexible discovery, retrieval and fusion of scenario maps in pre-
paredness of emergency”) are concerned with the following problem. In order to
effectively plan both preparedness and response to emergency situations it is nec-
essary to access and analyze timely information on plausible scenarios of occur-
rence of dangerous events. They use the so-called scenario maps which represent
the estimated susceptibility, hazard or risk of occurrence of an event on a territory.
Their generalization to real time is unfortunately difficult. Moreover, the application
of physical or statistical models using environmental parameters representing
current dynamic conditions is time-consuming and numerically demanding. To
overcome these difficulties the authors propose an offline generation of scenario
maps under diversified environmental dynamic parameters, and a geo-Spatial Data
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Infrastructure (SDI) to allow people in charge of emergency preparedness and
response activities to flexibly discover, retrieve, fuse and visualize the most plau-
sible scenarios that may happen given some ongoing or forecasted dynamic con-
ditions influencing the event. The solution proposed is novel in that it provides an
ability to interpret flexible queries in order to retrieve risk scenario maps that are
related to the current situation and to show the most plausible worst and best
scenarios that may occur in each elementary area of the territory. A prototypical
implementation concerns the use of scenarios maps for wild fire events.

Dimitar Filev and Hao Ying (“The multiple facets of fuzzy controllers:
look-up-tables—A special class of fuzzy controllers”) deal with look-up table
(LUT) controllers which are among the most widely known and employed control
tools in practice due to their conceptual simplicity, ease of use, inexpensive hard-
ware implementation. Moreover, strong nonlinearity and multimodal behaviors can
easily be handled by such controllers in many cases, only by experimentally
measured data. The authors, in their previous paper, showed that the
two-dimensional (2D) LUT controllers and one special type of two-input Mamdani
fuzzy controllers are related as they have the identical input–output mathematical
relation, demonstrated how to represent the LUT controllers by the fuzzy con-
trollers, and showed how to determine the local stability of the LUT control
systems. In the present work, they extend these results to the n-dimensional LUT
controllers and the special type of the n-input Mamdani fuzzy controllers.

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta and José Luis Verdegay
(“FuzzyLP: an R package for solving fuzzy linear programming problems”)
consider fuzzy linear programming which is meant to overcome some inherent
limitation of the traditional, widely used linear programming in which we need to
know precisely all the conditions and parameters of the problem modeled. Since
this is not always possible, a suitable alternate solution can be fuzzy linear pro-
gramming which makes it possible to use imprecise data and constraints. The
authors try to overcome a serious deficiency in that, in spite of a three decade long
existence of fuzzy linear programming, there is still a serious difficulty in its pro-
liferation, namely a lack of software developed for free use. The authors present an
open-source R package to deal with fuzzy constraints, fuzzy costs and fuzzy
coefficients in linear programming. First, the theoretical foundations for solving
each type of problem are introduced, and then examples of the code. The package is
accompanied by a user manual and can be freely downloaded, used and modified by
any R user.

The last part of the volume, Part III: “Some bibliometric remarks”, is somewhat
unorthodox and special. It includes one paper which presents a detailed bibliometric
analysis of main contributions of Prof. Yager, and their influence on research
activities of many people from various areas who have been prolific and have
developed their field of interest, to a large extent thanks to Yager’s inspiration. This
unusual part of the volume is fully justified by an extraordinarily high publication
record and its wide recognition of Yager.

More specifically, José M. Merigó, Anna M. Gil-Lafuente and Janusz Kacprzyk
(“A bibliometric analysis of the publications of Ronald R. Yager”) present a
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bibliometric analysis of the vast publications record of Prof. Ronald R Yager. They
use the data available in the Web of Science where he has more than 500 publi-
cations. This bibliometric review considers a wide range of issues including a
specific analysis of his publications, collaborators and citations. A novel use of a
viewer software is used to visualize his publication and citation network though
bibliographic coupling and a co-citation analysis. The results clearly show his
strong influence in computer science, although it also shows his strong influence in
engineering and applied mathematics too.

We wish to thank all the contributors to this volume. We hope that their papers,
which consititute a synergistic combination of foundational and application-
oriented works, including relevant real-world implementations, will be interesting
and useful for a large audience.

We also wish to thank Dr. Tom Ditzinger, Dr. Leontina di Cecco, and
Mr. Holger Schaepe from Springer for their dedication and help to implement and
finish this publication project on time maintaining the highest publication standards.

Warsaw, Poland Janusz Kacprzyk
Dearborn, USA Dimitar Filev
Burwood, Australia Gleb Beliakov
April 2016
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On the Meaning and the Measuring
of ‘Probable’

Enric Trillas and Rudolf Seising

To Professor Ron.R. Yager, with deep affection.

Abstract Probability has, as a mathematical theory that is an important part of pure

mathematics, a long and distinguished history of more than 300 years, with fertile

applications in almost all domains of science and technology; but the history of fuzzy

sets only lasts 50 years, during which it was theoretically developed and successfully

applied in many fields. From the very beginning there was, and there still is, a contro-

versy on the nature of fuzzy sets viewed by its researchers far from randomness, and

instead close by probabilists. This paper only goal is nothing else than trying to con-

tribute to the clarification on the differences its authors see between fuzzy sets and

probabilities and through the representation, or scientific domestication, of meaning

by quantities.

Keywords Meaning’s representation ⋅ Probable ⋅ Imprecision ⋅ Uncertainty ⋅
Fuzzy probability

1 Introduction

The predicate P = probable, used in both Natural Language and Science, scarcely

deserved a careful and specific study of its linguistic meaning and its measuring

either by numbers, or by fuzzy sets. It is also scarcely studied the use of the words
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4 E. Trillas and R. Seising

not-probable and improbable, without whose use it is difficult, if not impossible,

to learn how the word probable [20] can be used, and that are sometimes confused

(also in dictionaries); how can it be recognized that something is probable without

recognizing that some other thing is improbable? People usually learn how to use

words by polarity, that is, by jointly learning the use of a word and that of either its

negation, or its antonym.

In the next section of this introduction we give some remarks on the history and

philosophy of the concept of probability and the calculus of probabilities. Then, after

the typically scientific ‘domestication of meaning’ by quantities, explained in some

papers by the first author [21], it seems possible to begin with a systematic study of

such goal. This is what this paper just tries to offer by considering the linguistic pred-

icate P = probable in a generic universe of discourse X, not previously endowed with

an algebraic structure, and provided it can be recognized the two arguments’ relation-

ship ‘less probable than’, naturally associated to all imprecise predicate, or linguistic

label. Recognizing this relationship is a right way for asserting that ‘probable’ is a

gradable predicate.

Let us designate such empirically perceived relationship by the binary relation

≤P ⊆ X × X ∶ x ≤P y ⇔ x is less probable than y.

With this relation the previously amorphous universe X is endowed with the graph

(X,≤P) structure, representing the qualitative meaning of P in X. Without knowing

this graph it is not possible to study up to which extent the elements in X are actually

probable, that is, the full meaning of P in X. It should be noticed that such relations

≤P only reduce to =P (equally ‘P’ than) provided the predicate ‘P’ is precise, or rigid,

in X [21].

1.1

When Pierre-Simon de Laplace (1749–1827) first published his Essai philosophique
sur les probabilités in the year 1814, he gave distinction to the philosophical world

view of strict physical determinism:

We may regard the present state of the universe as the effect of its past and the cause of

its future. An intellect which at a certain moment would know all forces that set nature in

motion, and all positions of all items of which nature is composed, if this intellect were

also vast enough to submit these data to analysis, it would embrace in a single formula the

movements of the greatest bodies of the universe and those of the tiniest atom; for such an

intellect nothing would be uncertain and the future just like the past would be present before

its eyes. [12, p. 4]

Laplace was inspired by the classical theory of mechanics, created by Isaac New-

ton (1642–1727), that allows us to predict the motions of all things based on knowl-

edge of their starting points, their velocities, and the forces between them. He also

knew the Principle of Sufficient Reason that Gottfried Wilhelm Leibniz (1646–1716)

had already postulated in 1695:



On the Meaning and the Measuring of ‘Probable’ 5

Everything proceeds mathematically … if someone could have a sufficient insight into the

inner parts of things, and in addition had remembrance and intelligence enough to consider

all the circumstances and take them into account, he would be a prophet and see the future

in the present as in a mirror. [13]

Already the ancient Greek philosopher Aristotle (384 BC 322 BC) had written:

“All men by nature desire knowledge” [2]. How do we do this?—First of all we

use our perceptions, he said, second we use retrospection, and third we use our

experiences. What we call arts, technique and science appears on the basis of our

experiences. However, scientific knowledge will never be perfect, as Laplace put

on record when he added the following sentence to the already quoted paragraph

to make clear that his assumed all-knowing intellect—later it was named Laplace’s
demon—cannot be a human:

The human mind offers, in the perfection which it has been able to give to astronomy, a

feeble idea of this intelligence. [12, p. 4]

Even all our scientific efforts, “in the search for truth”, as Laplace wrote, “tend to

lead it back continually to the vast intelligence which we have just mentioned, but

from which it will always remain infinitely removed” [12, p. 4].

Laplace was convinced that we need the concept of probability to bridge this

gap. Because we will never know “all forces that set nature in motion, and all posi-

tions of all items of which nature is composed” and therefore “the future just like

the past of all items of which nature is composed” will “never be present before our

human eyes”! In his already in 1878 published Memoire sur les probabilités, he illus-

trated this as follows: “Each event being determined by virtue of the general laws of

this universe, it is probable only relatively to us, and, for this reason, the distinc-

tion of its absolute possibility and of its relative possibility can seem imaginary.”

[11, p. 2] His thinking on a philosophical concept and a calculus of probabil-

ities was one milestone to this branch of mathematics. However, its history is

much older: we can trace it back at least until the works of Gerolamo Cardano

(1501–1576), Christiaan Huygens (1629–1695), Blaise Pascal (1623–1662) and

Pierre de Fermat (1601/7–1665). Today, we consider “Probability theory” to be an

axiomatized mathematical theory as it is in the 1933 published axiom system of

Andrey N. Kolmogorov (1903–1987) that provides a calculus to treat uncertainties

about the outcomes of random phenomena [9].

1.2

There are two basic philosophical views on classical probability, namely the frequen-

tist and the Bayesian [6]. The first, views probability as a limit long-run frequency of

outcomes occurrences, and the second, as a degree of belief in the occurrence of an

outcome. Both show advantages and disadvantages, but, anyway, the following two

linguistic components of fuzzy sets must be carefully considered in order to establish

a probability for them: the semantic and the syntactic components. The first corre-

sponds to the information on the objects necessary for specifying ‘events’ that can

be predicated as probable; it concerns to establish a suitable definition extending the

classical concept of measurable-space, or sigma-algebra, to a fuzzy set algebra [1].
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The second corresponds to the algebraic places in which probable events, or state-

ments, can be represented and probabilities assigned to such representations; for it,

the essential properties of such probabilities, that should allow computations with

them, must be established. For what concerns the ‘abstract’ definition of a proba-

bility, this paper basically only takes into account that of Kolmogorov, and as it is

presented by Kappos [8] in the setting of Boolean algebras, that has generated the

mathematical theory of probability in the form in which it is currently considered

nowadays, and to which the great successes reached in the last 80 years are in debt.

In general, and to scientifically domesticate any predicate, that is, representing it by

means of quantities [25], both semantic and syntactic aspects should be considered;

there is no scientific theory without a formal frame of representation, and theories

are empty if they do not refer to something meaningful in a well established ground.

2 The Measure of P = Probable

2.1

Let (L,≤) be a poset with extreme elements 0 (minimum), and 1 (maximum). An

L-measure for the graph (X,≤P) is a mapping p ∶ X → L, such that:

(a) If x ≤P y, then p(x) ≤ p(y)
(b) If z is a minimal for ≤P, then p(z) = 0
(c) If z is maximal for ≤P, then p(z) = 1.

Once an L-measure p is known, it is said that each triplet (X,≤P, p) reflects a meaning

of P in X, and L should be chosen accordingly with the purposes and limitations of the

subject into consideration. For what concerns the predicate ‘probable’ it is important

to consider the cases in which L is either the unit interval [0, 1] of numbers in the

real line (classical case), or the set [0, 1][0,1] of fuzzy sets, in the same interval (fuzzy

case). The first is totally ordered by the usual linear order of the real line, and the

second is only partially ordered by the pointwise order between fuzzy sets, extending

the first by,

𝜇 ≤ 𝜎 ⇔ 𝜇(x) ≤ 𝜎(x), for all x in [0, 1];

the extremes of the first are the numbers 0 and 1, and those of the second are the

fuzzy sets 0(x) = 0, and 1(x) = 1, for all x in [0, 1]; both are posets. In principle, the

universe of discourse X is any set to whose elements it is applicable the predicate

‘probable’ that from now on will be designated by P, and its measures by p; it should

be noticed that, in general, neither (X,≤P), nor (L,≤), are lattices.

The measures p of P = probable, are called probabilities, and if X is a set of fuzzy

sets, it is said that p is a ‘fuzzy-crisp’ or a ‘fuzzy-fuzzy’ probability, provided that,

respectively, L is the unit interval, or the set [0, 1][0,1] of ‘fuzzy numbers’.
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2.2

The classical mathematical theory of probability is developed under the Kolmogorov

idea, here shortened as the crisp-crisp probability, and on the hypotheses that the uni-

verse of discourse X is endowed with either the algebraic structure of an Orthomod-

ular lattice (Kolmogorov’s Quantum Probability [5]), or with the particular structure

of a Boolean algebra (strict Kolomogorov’s Probability [10]), but always suppos-

ing that the probability ranges in the unit interval, or in some special cases, in the

complex field. Let us stop in these cases for a while, and designing the algebraic

structure by 𝛺 = (X; 0, 1; ⋅,+,′ ), whose natural partial order corresponds to its lat-

tice [4] character: a ≤ b ⇔ a ⋅ b = a ⇔ a + b = b. With this ‘natural order’, 0 is the

minimum and 1 the maximum of X in 𝛺.

In both cases, it is always supposed that the relation ‘a is less probable than b’

coincides with a ≤ b [24], that is, ≤P =≤, and, that provided, in the Boolean algebra

case, ≤ is nothing else than the set’s contention ⊆. The idea behind this hypothesis

is that a set A is less probable than a set B if and only if the second is bigger or equal

to the first (has more elements), something that comes from the empirical fact that,

the more black balls an urn with a fixed number of other color balls has, the more

probable is to extract a black ball from it. This hypothesis corresponds to making

‘probable’ dependent from the cardinality of the set of elements to which it is applied,

and it is behind the first known definition of probability: prob (A) = (number of

elements in A/(total number of elements in X) or, as it is usually shortened, (favorable

cases)/(total cases). Obviously, if neither the elements in 𝛺 are crisp sets, nor the

problem is a kind of ‘counting’ type, it is difficult to adopt such hypothesis. For

instance, and as it is shown by the Sorites methodology [23], the linguistic predicate

‘tall’ cannot be represented by a crisp set, and in a statement like ‘John is tall’ no

way of counting seems to exist ‘a priori’; hence there is no a frequentistic way for

approaching the crisp-probability that John is tall, and the only that seems actually

possible is to describe the predicate ‘tall’ by its membership function in a given

universe of discourse, by making it dependent, for instance, on the centimeters of

tall of its inhabitants. If the shortest one measures 130 cm, the taller is 195 cm, and

John is 170 cm, it does not seem bizarre to comparatively say that John is tall up to

the degree 0.6.

2.3

A probability p in 𝛺 is not directly defined as a measure, as they are defined in “2.1”,

but is defined by the Kolmogorov’s basic axioms [8, 10],

1. p(X) = 1,

2. If a ≤ b′ (b is contradictory with a), then p(a + b) = p(a) + p(b), from which it

follows,

∙ p(a′) = 1 − p(a), since a′
is contradictory with a(a = a′′ = (a′)′), and hence

p(a + a′) = p(X) = 1 = p(a) + p(a′). Thus (0) = p(X′) = 1 − 1 = 0,

∙ If 𝛺 is a Boolean algebra, since it is a ⋅ b = 0 ⇔ a ≤ b′, (2) can be re-stated

by,

∙ 2∗. If a ⋅ b = 0, then p(a + b) = p(a) + p(b).
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Then, and provided it is a ≤ b ⇔ b = a + b ⋅ a′
(orthomodular law [4]), and

a ≤ (b ⋅ a′)′ = b′ + a, from p(b ⋅ a′) ≥ 0, it follows: p(b) = p(a) + p(b ⋅ a′) ≥ p(a).
Thus, p is a measure for P in 𝛺 in the sense of “2.1”. Of course, this does not mean

that all those measures are probabilities.

Remarks

I. It should be pointed out that, in Ortholattices, a ≤ b′ implies a ⋅ b ≤ b′ ⋅ b′ = 0,

that is, a ⋅ b = 0: contradiction implies incompatibility. The reciprocal is only

true in the particular case of Boolean algebras; only in this case, and for all a and

b, von Neumann’s law [4] of ‘perfect repartition’ holds: a = a ⋅ b + a ⋅ b′ [∗].

Than, if a ⋅ b = 0, it follows that a = a ⋅ b′ ⇔ a ≤ b′ and, hence, contradiction

and incompatibility are equivalent. In Boolean algebras there is no way of dis-

tinguishing both concepts. In Orthomodular lattices both concepts are equiva-

lent only for pairs of orthogonal elements a and b, that is, those that verify the

former equality [∗].

II. In the case of De Morgan algebras, of which Boolean algebras are also a par-

ticular case, and in general, there is no any implication between incompatibility

and contradiction, although there are cases in which one of them exists., as it

can be shown in [0, 1] if endowed with a t-norm, a t-conorm, and a strong nega-

tion [26]. In principle, they remain independent properties. Analogously, with

fuzzy sets and replaying what happens in language, contradiction and incom-

patibility are independent properties. Hence, if reproducing the axioms 1., 2.,

or 1., 2∗. with fuzzy sets, proving that a probability is a measure can be done

only in some particular cases and with those algebras of fuzzy sets allowing it.

III. Provided X is neither an Orthomodular lattice, nor a Boolean algebra, but, as it

is the case in language, a previously unstructured set of linguistic statements,

then, for instance, to state that ‘x is P is less probable than y is Q’, requires to

specify this binary relationship. Provided the statements can be represented by

fuzzy sets, it should be established the corresponding binary relation between

them that, were it not the typical pointwise order, makes impossible, or at least

very difficult, a formalization in algebras of fuzzy sets like the standard ones.

For this reason, and analogously to the classic case, it is also often supposed

that ≤P equals or, at least, is contained in the pointwise order of fuzzy sets;

anyway, in all cases this hypothesis should be checked with the actual problem’s

conditions. Notice that, in the sets’ case, A ⊆ B actually seems to imply that

A is less probable than B but, provided the sets were not finite, the reciprocal

does not seem always immediately clear and then the former hypothesis can be

doubtful.

IV. Any measure of probable requires a suitable definition of ‘conditional probabil-

ity’ [19] to compute which is the probability of an event which is conditioned

by another one or, plainly, the first is unthinkable without the previous occur-

rence of the second. That is, the case in which the measure of an event a only

has sense under another event b, through the conditional statement ‘if b, then

a’. In the Kolmogorov theory, conditional probability is defined by
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p(a∕b) = p(a ⋅ b)∕p(b) provided p(b) > 0,

that comes from the supposition that the conditional statement ‘if b, then a’

just means ‘a and b’, that is, it is represented in the conjunctive form ‘a ⋅ b’.

Since it is p(a∕b) = p(a ⋅ b∕b), the one-argument function p(⋅∕b) is actually a

measure of probability but only in the new algebra X∕b, whose elements are

x ⋅ b (x ∩ B, with sets), for all x in the given Boolean algebra X, with minimum

and maximum 0 = 0 ⋅ b (or ∅ = ∅ ∩ A), and b = 1 ⋅ b (B = X ∩ B), and whose

complement is a∗ = b ⋅ a′ (A∗ = B ∩ Ac). This new algebra can be called the

algebra ‘diaphragmed’ by b, and whose maximum and minimum are, respec-

tively, b and 0, where it is p(b∕b) = 1, p(0∕b) = 0, a ≤ c ⇒ p(a∕b) ≤ p(c∕b),
p(a∗∕b) = 1 − p(a∕b), etc. Notice that X∕b coincides with X if and only if it is

a′ = a′ ⋅ b ⇔ a′ ≤ b, for all a in X, that implies b = 1; there is only coincidence

if b = 1. From the linguistic point of view, to use the conditional probability as

defined before it is necessary that conditional statements accept a representation

in the ‘conjunctive’ form. From conditional probability it can said that an event a

is p-independent of another event b, provided p(a∕b) = p(a) ⇔ p(a ⋅ b) = p(a).
V. Objects (physical or not) to which the predicate ‘probable’ is applied and a mea-

sure of it can be found, are traditionally called ‘events’, a name coming from

the ‘eventuality’ of something, for instance, of obtaining ‘four’ in throwing a

dice. Events (a word whose etimology lies in the Latin ‘eventus’: something

coming from outside) are those elements in an Orthomodular lattice, sets in a

Boolean algebra, fuzzy sets in a set, or statements in a universe of discourse,

to which the predicate P = probable can be applied and measured; that is, for

which quantities (X,≤P, p) can be known. Probable should not be confused with

provable, that refers to conjecturing that something will admit a proof.

Something is eventual, or contingent, if it can be thought but in whose occur-

rence or reality there is no a total safety: Eventually, four could be obtained;

eventually, the variable could take values between 5 and 10; eventually, a foot-

ball player could be short, etc. What is eventual is but a conjecture that can be

probable, even if it is not known how to proceed to measure up to which extent

it is so. Also the concept of plausible is different, referring to the worthiness of

happening: It is plausible that such event is probable, it is plausible that such

mathematical conjecture could be proven false, etc.

VI. The three axioms defining a measure p, are insufficient to specify a single p;

more information is needed for obtaining each one of them. For instance, in the

experiment of throwing a dice, to know the measure, or probability, of an event,

for instance ‘getting five’, it is necessary either to know some characteristics of

the experiment, for instance, if the dice is a perfect cube, if the dice is internally

charged, if the launching surface is plane and not elastic, or it is with sand, etc.,

or, alternatively, to suppose the hypothesis that it is an ‘ideal’ dice. The two

axioms of a probability just conduct to the equality 1 = p1 + p2 +⋯ + p6, with

pi = measure of the event ‘getting i’, for i from 1 to 6, belonging to [0, 1], and

with which it is p5 = 1 − (p1 + p2 + p3 + p4 + p6) making necessary to know

the values of the pk in the parenthesis for actually knowing p5. Provided the
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dice is ‘ideal’, then all the pk equal 1∕6, but were the dice ‘charged to reach

p6 = 0.45’, the rest of the values of p are not yet determined even if they should

have a sum equal to 1 − 0.45 = 0.55 and, for instance, each of them supposed

equal to 0.55∕5 = 0.11. Hence, and concerning the probability measures p,

there are two different uncertainties being the specification of p the first one,

and the lack of exactness on the values of p the second one.

In short, the imprecise character of the predicate P is manifested through ≤P ≠

=P, the uncertainty in the occurrence, or reality, of all the statements or events

‘x is P’ through the contextually chosen measure p, and the amount of uncer-

tainty on the particular occurrence of each ‘x is P’ through the indeterminacy

associated to compute the particular numerical value of its measuring p (x is

P).

VII. Concerning the predicates P′
= Not-probable, and Pa

= improbable, it should

be recalled [21] that it is: ≤P′ ⊆ ≤
−1
P , and ≤Pa = ≤

−1
P , allowing to state that

both are measurable just provided P is so. Their measures, once accepted they

are expressible in the forms 𝜇P′ (x) = NP(𝜇P(x)), and 𝜇Pa(x) = 𝜇P(sP(x)), with

NP ∶ [0, 1] → [0, 1], and sP ∶ X → X, respectively a negation function and a

symmetry, are effectively measures for the corresponding graphs (X,≤P′ ) and

(X,≤Pa). For what respects to their character of ‘probabilities’, and when the

relations are coincidental with the inclusion ⊆ of crisp sets, it should be noticed

that 𝜇Pa is a probability since it just permutes the values of the probability 𝜇P,

as it can be easily checked with a finite X, but 𝜇P′ is not since, for instance,

𝜇P′ (X) = NP(𝜇P(X)) = NP(1) = 0. A scientific study of these predicates is, in

fact, an open subject in which, for instance, it could be interesting to find con-

ditions for the coincidence between 𝜇P′ and 𝜇Pa and in correspondence with

the often made confusion between the words not-probable and improbable and

that, in [20], is done in the very particular case in which X is a Boolean algebra.

3 Reflecting on Fuzzy Versus Probable

3.1
In 1965 Lotfi A. Zadeh founded the theory of Fuzzy sets and systems as a gener-

alization of System theory [28, 29].
1

His intended system was related to pattern

classification that was well-known from the field of statistics:

There are two basic operations: abstraction and generalization, which appear under various

guises in most of the schemes employed for classifying patterns into a finite number of

categories. [3, p. 1]

Abstraction was to be understood as the problem of identifying a decision function

on the basis of a randomly sampled set, and generalization referred to the use of the

1
For a detailed history of the theory of Fuzzy sets and its applications see the second author’s book

[17].
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decision function identified during the abstraction process in order to classify the

pattern correctly. Although these two operations could be defined mathematically

on sets of patterns, Zadeh proposed another way: “a more natural as well as more

general framework for dealing with these concepts can be constructed around the

notion of a “fuzzy” set - a notion which extends the concept of membership in a set to

situations in which there are many, possibly a continuum of, grades of membership.”

[3, p. 1]

For example, suppose that we are concerned with devising a test for differentiating between

handwritten letters O and D. One approach to this problem would be to give a set of handwrit-

ten letters and indicate their grades of membership in the fuzzy sets O and D. On performing

abstraction on these samples, one obtains the estimates 𝜇0 and 𝜇D of 𝜇0 and 𝜇D respectively.

Then given a letter x which is not one of the given samples, one can calculate its grades of

membership in O and D, and, if O and D have no overlap, classify x in O or D. [29, p. 30]

To get back to Laplace’s demon—“who knows it all and rarely tells it all”, as

Singpurwalla and Booker wrote in [18, p. 872], we refer to these authors’ idea to

bring this “genie” into “fuzzy” play: They wrote that this “genie is able to classify x
with precision, but D is unsure of this classification.” The authors of this “scenario”

mean by D “a wholeheartedly subjectivist analyst, say D (in honor of [Bruno] de

Finetti [1906–1985)])” [18, p. 872].

We do not agree with this view!—We think that there is no part to act for Laplace’s

demon in the fuzzy game! It is understood that the Laplacian demon would be able

to classify the pattern x, but what is supposed to mean: “with precision”?—In our

view, Zadeh’s pattern classification scenario is in contrast to Laplace’s mechanics

scenario wherein the demon knows the “true” values of forces and positions of all

items. In Zadeh’s scenario, there is no “true” classification of pattern x to be an O or

a D. A pattern x is a pattern x. Pattern classification means to classify patterns but

if there is only the alternative of “O or D” then the answer has to be O or D. Thus,

whenever a demon or a human or a machine classifies a pattern x to be an O or to be

a D, then this is a subjective decision and even if an “all-knowing” creature does this

classification it will still be imprecise, because the given pattern isn’t O or D but x.

In their 1995-paper on “Fuzzy Logic and Probability” Petr Hajek, Lluis Godo

and Francesc Esteva clarified the basic differences between fuzzy set theory and

probability theory by turning the problem to the field of logic:

Admitting some simplifications, we consider that fuzzy logic is a logic of vague, imprecise

notions and propositions that may be more or less true. Fuzzy logic is then a logic of par-

tial degree of truth. On the contrary, probability deals with crisp notions and propositions,

propositions that are either true or false; the probability of a proposition is the degree of

belief on the truth of that proposition. If we want to consider both as uncertainty degrees we

have to stress that they represent very different sorts of uncertainty. (Zimmermann calls them

linguistic and stochastic uncertainty, respectively).
2

If we prefer to reserve the word “uncer-

tainty” to refer to degrees of belief, then clearly fuzzy logic does not deal with uncertainty

at all. [7, p. 237]

2
The authors referred to the book Fuzzy Set Theory—and its Applications of the fuzzy-pioneer

Zimmermann [35].
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Here, we will use the word “uncertainty” to refer to probabilities and we will use

the term imprecision to refer to fuzzy sets.

3.2
In 1968 Zadeh pointed out that in probability theory “an event is a precisely specified

collection of points in the sample space. By contrast, in everyday experience one

frequently encounters situations in which an “event” is a fuzzy rather than a sharply

defined collection of points.” In those cases, where uncertainty and imprecision are

present in the same problem, he proposed to use probability theory and fuzzy set

theory in concert: “. . . the notions of an event and its probability can be extended in

a natural fashion to fuzzy events.” In that paper Zadeh gave the following definition

of a “fuzzy event” [30, p. 421f]:

Definition 1 Let (IRn
,A,P) be a probability space in which A is the 𝜎-field of Borel

sets in IRn
and P is a probability measure over IRn

. Then, a fuzzy event in IRn
is

a fuzzy set Ã in IRn
whose membership function 𝜇Ã

(
𝜇Ã ∶ IRn → [0, 1]

)
, is Borel

measurable. The probability of a fuzzy event Ã is defined by the Lebeque-Stieltjes

integral:

P(A) =
∫IRn

𝜇Ã(x)dP = E(𝜇Ã). (1)

Thus, [...] the probability of a fuzzy event is the expectation of its membership func-

tion.”

Singpurwalla and Booker referred to this definition when they proposed that a

“wholeheartedly subjectivist analyst” D would have “partial knowledge of the genie’s

actions” that may be “encapsulated” in D’s personal probability, PD(x ∈ Ã), that x is

in fuzzy set Ã. However, as we argued above, there is still imprecision! Every classi-

fication of x—whoever is classifying—is dependent of the definition of concepts—

here O or D—which are labelled with letters or words. Therefore it was named “lin-

guistic”, by Zimmermann [35] as Hajek et al. mentioned (see above).

In Zadeh’s view, probability theory provides a calculus to treat uncertainty about

knowledge but not a calculus to treat imprecision. In many of his later papers he

emphasized that fuzzy set theory should not replace probability theory; moreover he

regarded his new theory as an “add on”, e.g.:

. . . probability theory is not sufficient for dealing with uncertainty in real world settings. To

enhance its effectiveness, probability theory needs an infusion of concepts and techniques

drawn from fuzzy logic – especially the concept of linguistic variables and the calculus of

fuzzy if-then rules. In the final analysis, probability theory and fuzzy logic are complemen-

tary rather than competitive. [32, p. 271]

In the year 2013 Zadeh wrote in an e-mail to the BISC Group
3

that “it is suffi-

ciently important to warrant a brief revisit” concerning Bayesianism
4
:

3
BISC Group is the mailing list of the Berkeley Initiative in Soft Computing (Major-

domo@EECS.Berkeley.EDU).

4
Bayesianism or Bayesian probability theory is named after the English mathematician and Pres-

byterian Thomas Bayes (1701–1761) but it was popularized by Laplace.
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What is Bayesianism? Is it a valid doctrine? There are many misconceptions and many

schools of thought. The principal credo of Bayesianism is: Probability is sufficient for deal-

ing with any kind of uncertainty. Call this sufficienism. [34]

As many times before, he quoted the statement of the British statistician Dennis

Lindley:

The only satisfactory description of uncertainty is probability. By this I mean that every

uncertainty statement must be in the form of a probability; that several uncertainties must

be combined using the rules of probability; and that the calculus of probabilities is adequate

to handle all situations involving uncertainty … probability is the only sensible description

of uncertainty and is adequate for all problems involving uncertainty. All other methods are

inadequate … anything that can be done with fuzzy logic, belief functions, upper and lower

probabilities, or any other alternative to probability can better be done with probability. [14,

p. 20]

Then, Zadeh told his readers the following:

I was brought up on probability theory. My first published paper (1949) was entitled “Prob-

ability criterion for the design of servomechanisms.” My second paper (1950) was entitled

“An extension of Wiener’s Theory of Prediction.” Others followed. I was a sufficienist until

1964, when I converted to insufficienism. My 1965 paper on fuzzy sets reflected this conver-

sion. Since then, I have been involved in many discussions and debates in which I argued that

traditional probability theory has intrinsic limitations. My 2002 paper “Toward a perception-

based theory of probabilistic reasoning with imprecise probabilities,” described my general-

ization of probability theory–a generalization which involved combining probability theory

with possibility theory.
5

[34]

3.3

Under the view of fuzzy sets as quantities this paper holds, there is nothing against

the possibility that, in those cases in which the available information can be of a

statistical frequency-type, the numerical values 𝜇P(x) could be reached ‘through’

some probability. But this cannot be the general case, as it is argued by some prob-

abilists, and as it is easily shown by very simple examples with fuzzy sets in a

finite universe; for instance, in X = {x1,… , x4}, the fuzzy set 𝜇 = 1∕x1 + 1∕x2 +
0.6∕x3 + 0∕x4, cannot coincide with any probability since it is 1 + 1 + 0.6 = 2.6 ≠ 1,

and if dividing it by 2.6 it is obtained the fuzzy set 𝜇∗ = 𝜇∕2.6 that, even with

sum equal to 1, the total membership of x1 and x2 to 𝜇 changes to 1∕2.6 = 0.38
in 𝜇∗

. It should be pointed out that is not the same to state that a fuzzy set is

but a probability, than to state that their numerical values can be reached either

in some statistical way, or each one by a different probability. This happens, for

instance, with the former 𝜇 and the four probabilities in X, probi, 1 ≤ i ≤ 4, defined

by prob1(x1) = 1, and prob1(xk) = 0 for 2 ≤ k ≤ 4; prob2(x2) = 1, and prob2(x1)=
prob2(x3)= prob2(x4) = 0; prob3(x3) = 0.6, and prob3(x1)+ prob3(x2)+ prob3(x4) =
1 − 0.6 = 0.4; prob4(x4) = 0, and prob4(x1)+ prob4(x2)+ prob4(3) = 1. In the case X
is finite, it does not seem difficult to identify these families of probabilities allowing

to define 𝜇(x) = probx(x). In the finite case, each fuzzy set can be defined by a family

5
For the cited papers see: [16, 27, 33].



14 E. Trillas and R. Seising

of probabilities with, as much, n of them. That is, finite fuzzy sets can be viewed as

equivalent to finite families of probabilities. What is not so clear, is how these fam-

ilies of probabilities can be combined between them to reach the intersection, the

union, and the pseudo-complement of fuzzy sets. For instance, the fuzzy set 𝜇 ⋅ 𝜇 =
prod(𝜇, 𝜇) = 𝜇2 = 1∕x1 + 1∕x2 + 0.36∕x3 + 0∕x4, can keep prob1, prob2, and prob4,

but not prob3 whose square could not necessarily be, in addition, a probability.

3.4

In principle, fuzzy sets are linked with either the imprecision of their linguistic labels,

or with the non-random uncertainty they shown, but probabilities are linked with

the random, or repeatable, uncertainty of elements in some particular Ortholattice

(Orthomodular or Boolean). If the necessary additive law of probability behaves rea-

sonably with random events, like it is with length, surface, volume, weight, etc., it

is much less reasonable with imprecision and non-random uncertainty where some

‘interpenetrations’ between the events seems to be in their own nature and, hence,

the growing of the measure could perfectly be sub-additive, or super-additive as

it happens with Zadeh’s possibility measures, introduced to deal with non-random

uncertainty, whose distributions are fuzzy sets, and that are not coincidental with

probabilities.

3.5

Fuzzy sets should be definable in any universe of discourse, either previously struc-

tured or not, but crisp-probabilities do require that the universe of the discourse is

an Orthomodular lattice or, in particular, a Boolean algebra as in the Kolmogorov’s

strict case. They are, actually, very strong algebraic structures that, as it is known,

cannot hold with all fuzzy sets. Fuzzy sets are definable in universes whatsoever.

Provided the universe X is structured as a Boolean algebra, and two different

fuzzy sets in X were defined by 𝜇(x) = prob1(x), and 𝜎(x) = prob2(x), there is no

possibility of having 𝜇 ≤ 𝜎, since prob1(x) ≤ prob2(x) ⇒ prob2(x′) ≤ prob1(x′), for

all x′ in X, or 𝜎 ≤ 𝜇, and then 𝜇 = 𝜎. That is, two of these fuzzy sets can only be

identical, or not comparable under the usual pointwise ordering of fuzzy sets; this

ordering is not suitable for probabilities. In addition, the standard operations with

fuzzy sets are not preserved with probabilities; for instance, if f (x) = min (prob1(x),
prob2(x)) is a probability, it will follow probi ≤ f ⇒ f = prob1 = prob2. Hence, f is

not a probability unless both probabilities do coincide, and no algebra of fuzzy sets

seems to be definable with this particular kind of fuzzy sets. Notice that in the case

of a finite universe with n elements, the set of all fuzzy sets can be viewed as the full

unit cube [0, 1]n, but the set of all probabilities is just a polyhedral convex cone in

it, and the set of all possibility measures consists in all those n-dimensional points

(x1,… , xn)with, at least, one component xi equal to 1. There are more fuzzy sets than

possibilities and probabilities. Even more, a probability cannot be self-contradictory:

prob (x) ≤ 1 − prob(x) ⇒ prob(x) ≤ 0.5, for all x in X, that is absurd since it is, at

least, prob (X) = 1.
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3.6

If, as it is in almost all cases, in the universe X where the imprecise linguistic labels

are applied to, probabilities cannot be defined immediately by, for instance, a lack of

a suitable lattice structure, then it is yet possible to study what follows in order that

fuzzy sets can be probabilistically expressed. Let us pose the question in mathemat-

ical terms [15].

To compute fuzzy sets by probabilities like in the finite case, for all fuzzy set 𝜇P
and each x in X, it should exist a sigma-algebra 𝛺P(x) of subsets in some universe

UP(x), as well as probabilities pP
x , such that

𝜇P(x) = pP
x (A(x)), with a crisp set A(x) in 𝛺

P(x) [∗∗].

That is, and departing from X, it is necessary to prove a theorem showing the exis-

tence of triplets (UP(x), 𝛺P(x), pP
x ) for all x in X, verifying [**], and also analyzing

the preservation of all the basic laws required to allow an algebra of fuzzy sets with

them being pointwise ordered. This is a nice challenge for probabilities, even if the

proof is restricted to some particular case, but opening the possibility of characteriz-

ing those fuzzy sets than can be probabilistically defined in the form [∗∗], and, also,

the negative cases for it. In general, the universes UP
and the sigma-algebras 𝛺P

will

be not coincidental with X like in the former example. The strong case, advocated

by some researchers, is that in which all the probabilities pP
x are coincidental.

For instance, if 𝜇P andQ = 𝜇P ⋅ 𝜇Q (with the operation ⋅ intersection), it will require

to know a relation between three probabilities defined in different sigma-algebras

under which and for all x, the probability associated to P and Q should coincide

with some operation between the probabilities associated, respectively, to P and to

Q; an expression that, in principle, is not necessarily functionally expressible even

if it is so the intersection 𝜇P ⋅ 𝜇Q, given, for instance, by a continuous t-norm. It

should be analogously clarified what happens with the inclusion of fuzzy sets and

the respective sigma-algebras and probabilities, like it is commented in the former

paragraph when the universe itself is a sigma-algebra, and for all x in X, all 𝛺P(x)
are coincidental with it, and all the pP

x are just a single probability.

Nevertheless and for what has been said in “3.3”, it seems that the general and

structural relation [∗∗] asked for, is improbable to exist, and it is very risky to state

that all fuzzy sets are either probabilities, or that their numerical values come from

probabilities. It is better to cautiously refrain from asserting it before [∗∗], or some-

thing similar, is actually proven or disproven.

3.7

For what concerns fuzzy sets in themselves, they usually appear as measures of

a linguistic label, or predicate Q acting in a universe of discourse Y , and whose

meanings are represented by the corresponding quantities (Y ,≤Q, 𝜇Q). Nevertheless,

there is some other kind of problems also generating fuzzy sets as it is, for instance,

the following. If two rigid statements a and b are respectively represented by dif-

ferent crisp subsets A and B of X whose respective characteristic or membership
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functions are fA and fB, then there is no a rigid statement c acting in X and repre-

sented by the function F(x) = afA(x) + bfB(x), with numbers a and b in the real unit

interval such that a + b = 1. In fact, if b > 0 and x is in A, but it is not in B, then

F(x) = a ⋅ 1 + b ⋅ 0 = a ∈ (0, 1). It analogously happens if x is in B but not in A.

That is, the function F belongs to [0, 1][0,1] − {0, 1}X
and, hence, cannot represent

a crisp set, but a fuzzy set. Given a function F ∶ X → [0, 1], finding a predicate C
on X such that F = 𝜇C is the so-called problem of ‘linguistic approximation’; if, in

praxis and usually by comparison with previously known fuzzy sets, it is often found

one of such predicates even without the safety that its representation by a quantity

verifies F = 𝜇C, the problem is actually open, as it is with crisp sets, and possibly it

has neither a single solution, nor it exists a systematic method for specifying C. It

should be remembered that the axiom of specification states that a precise predicate

specifies a single subset, but not that to every subset it corresponds a single predicate

naming it.

4 Zadeh’s (Numerical) Crisp-Probability of Fuzzy Events

4.1

When a statement involving imprecise predicates can be represented by means of a

fuzzy set, and as it happens when a statement involving precise ones is represented

by a crisp set (for instance, the statements ‘obtaining odd’ in throwing a dice is rep-

resented by the set {1, 3, 5}, ‘between 4 and 7’ concerning a variable is represented

by the interval [4, 7] in the real line, etc.), its probability should be given through

the corresponding representation either in crisp, fuzzy or both kind of terms. As it is

always in Science, there is no way of establishing a formal theory without a suitable

setting representing what the theory involves. Hence, it is important to define what

can be understood by the probability of a ‘fuzzy event’, a fuzzy set translating a lin-

guistic statement; a probability that, according to language’s use, can be numerical

(the probability that John is short is 0.85), or linguistic (the probability that John

is short is high), in which case its values will be, at its turn, fuzzy sets (𝜇short, for

instance). That is, the numerical probability of fuzzy events, that we will shorten

respectively as the fuzzy-crisp or the fuzzy-fuzzy probability depending on where

the probability values range, should be respectively represented by crisp numbers or

by fuzzy numbers. In any case, the probability of fuzzy events in [0, 1]
X

, deserves to

be posed by either ranging in [0, 1], or in [0, 1][0,1]. Let us first consider the fuzzy-

crisp probability [15] for which, copying the previously presented tow axioms, is a

mapping p ∶ [0, 1][0,1] → [0, 1], such that:

1. Normalization property: p(𝜇1) = 1, with 𝜇1 the function constantly equal to 1,

that is, the membership function of the full crisp set [0, 1].
2. Additive property: If either 𝜇 ≤ 𝜎′

, or 𝜇 ⋅ 𝜎 = 𝜇0 (the function constantly equal

to 0, that is, the membership function of the empty set ∅), then p(𝜇 + 𝜎) = p(𝜇) +
p(𝜎).
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To being actually a measure of fuzzy events, such function should necessarily verify

the property: 𝜇 ≤ 𝜎 ⇒ p(𝜇) ≤ p(𝜎), and to reach it from 2, it is necessary to work in a

suitable algebra of fuzzy sets expressing the pseudo-complement (‘), the intersection

(⋅), and the union (+) of fuzzy sets, as well as to know when contradiction implies,

or is equivalent, to incompatibility.

In what follows only standard theories of fuzzy sets will be taken into account, that

is, those functionally expressible in which the intersection (⋅) is given by a continuous

t-norm T (𝜇 ⋅ 𝜎 = T ◦ (𝜇 × 𝜎)), the union (+) by a continuous t-conorm S (𝜇 + 𝜎 =
S ◦ (𝜇 × 𝜎)), and the pseudo-complement (′) by a strong negation N (𝜇′ = N ◦𝜇).

4.2

Concerning contradiction, two fuzzy sets 𝜇, and 𝜎, are contradictory—if and only

if—𝜇 ≤ 𝜎′ = N ◦ 𝜎 ≤ 𝜙−1(1 − 𝜙 ◦ 𝜎) ⇔ 𝜙(𝜇(x)) ≤ 1 − 𝜙(𝜎(x)) ⇔ 𝜙(𝜇(x)) + 𝜙(𝜎(x))
≤ 1, for all x, where 𝜙 is an order-automorphism of the unit interval, and provided it

is N ≤ N
𝜙

. It should be recalled [26] that it is N
𝜙
= 𝜙−1◦(1 − 𝜙), the strong negation

generated by 𝜙.

For what concerns incompatibility, the functional equation able to give 𝜇 ⋅ 𝜎 =
𝜇0, that is, T(𝜇(x), 𝜎(x)) = 0, for all x in X (T(a, b) = 0, in the unknown T) should

be solved for all the continuous t-norms. Since the only t-norms with zero divi-

sors are those in the Łukasiewicz family T = W
𝜃
= 𝜃−1◦W◦(𝜃 × 𝜃), a first result fol-

lows immediately: There is incompatibility between 𝜇 and 𝜎 under a Łukasiewicz’s

t-norm W
𝜃

if and only if max (0, 𝜃(𝜇(x)) + 𝜃(𝜎(x))) = 0 ⇔ 𝜃(𝜇(x)) + 𝜃(𝜎(x)) = 0 ⇔
𝜇(x) = 𝜎(x) = 0, for all x, that is, 𝜇 = 𝜎 = 𝜇0, in which case it is also contradiction

between both fuzzy sets. Only with T in the Łukasiewicz family there is equivalence

between contradiction and incompatibility.

For what concerns to T = min and T = prod
𝜃
, since T(a, b) = 0 ⇔ a = 0, or b =

0, it follows T(𝜇(x), 𝜎(x)) = 0 ⇔ Either 𝜇(x) = 0, or 𝜎(x) = 0, for all x. In both cases,

𝜇 ≤ 𝜎′
, and there is also contradiction.

To summarize: Without considering ordinal-sums as t-norms, in all cases in which

the t-norm belongs to the families of min, prod, and W, incompatibility between 𝜇

and 𝜎 is obtained whenever, at each point x, either 𝜇(x) = 0, or 𝜎(x) = 0, or both.

In all cases, incompatibility implies contradiction, but, in general, both concepts are

not equivalent except if the t-norm belongs to Łukasiewicz family, and then the situ-

ation is similar to that in Boolean algebras, but it is not like what it happens with the

quantum probability in Orthomodular lattices, where contradiction implies incom-

patibility. Consequently, to define a numerical probability for fuzzy sets, it should

be chosen how to define its additive property, either by means of contradiction, or

incompatibility.

Concerning the second main property the measure p should enjoy, that is, that

from 𝜇 ≤ 𝜎 follows p(𝜇) ≤ p(𝜎), it is necessary to count with a deduction process

analogous to that in Boolean algebras, that is, for instance, the validity of the func-

tional equation 𝜇 = 𝜇 ⋅ 𝜎 + 𝜇 ⋅ 𝜎′ ⇔ 𝜇(x) = S(T(𝜇(x), 𝜎(x)),T(𝜇(x),N(𝜎(x))))
⇔ S = W∗

𝜙
, T = W

𝜙
, and N = N

𝜙
, to actually knowing that the additive law of p

implies its numerical values actually grow when the events ‘grow’ in the pointwise

order.
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In these cases, and if there is in addition incompatibility (and hence contradic-

tion), from the last equation it does not follow 𝜇 ≤ 𝜎 ⇒ 𝜇 = 𝜇 ⋅ 𝜎, which only holds

provided either 𝜇(x) = 0, or 𝜎(x) = 1, and, hence, the same way to reach the conclu-

sion does not hold, and only holds the orthomodular law 𝜇 ≤ 𝜎 ⇔ 𝜎 = 𝜇 + 𝜎 ⋅ 𝜇′
,

always valid in the sense 𝜎 = 𝜇 + 𝜎 ⋅ 𝜇′ ⇒ 𝜇 ≤ 𝜎, but that reciprocally only holds

in the same case that the law of perfect repartition, that is, with S = W∗
𝜙

, T = W
𝜙

,

and N = N
𝜙

. Hence, it seems that a theory of probability for fuzzy sets can only be

developed in a form very close to the classical theory provided the algebra is given

by these S, T , and N.

4.3

Nevertheless, Zadeh reached a way to escape from this general view [30], by defining

a probability for fuzzy sets that avoids such problem, although it shows a shortcom-

ing with conditionality. Zadeh took the universe of discourse X as IRn
, that is good

enough for many applications. In it he considered those fuzzy sets 𝜇 ∶ IRn → [0, 1]
that are Borel measurable, and defines p(𝜇) (see (1) in “3.2”) as the ‘formal expec-

tation’ of 𝜇:

p(𝜇) =
∫IRn

𝜇 = E(𝜇),

the Lebesgue-Stieltjes integral of 𝜇, with which it immediately follows that 𝜇 ≤ 𝜎

implies p(𝜇) ≤ p(𝜎), regardless of the chosen algebra of fuzzy sets. What Zadeh

implicitly supposed is that the function 𝜇 acts as a random variable. Since it is also

obvious that p(IRn) = 1, and p(∅) = 0, p allows to measure the amount of P = prob-

able shown by the Borel measurable fuzzy sets in IRn
, and provided there is coin-

cidence between the pointwise order of fuzzy sets and the binary relation ≤P, ‘less

P than’. For all the continuous t-norms and t-conorms verifying T(a, b) + S(a, b) =
a + b (Frank’s family), it obviously follows,

p(𝜇 ⋅ 𝜎) + p(𝜇 + 𝜎) = p(𝜇) + p(𝜎),

and thus it also follows the additive law:

𝜇 ⋅ 𝜎 = 𝜇0 ⇒ p(𝜇 + 𝜎) = p(𝜇) + p(𝜎),

with which p can be seen like a probability in the classic Kolmogorov’s sense for

Boolean algebras. Hence, in the case in which the statements S on a universe of

discourse X can be represented by fuzzy sets 𝜇S in IRn
, it can be said that the measure

of how probable they are is p (𝜇S), provided we are in the setting of a standard theory

of fuzzy sets whose t-norm and t-conorm belong to the Frank’s family.

There is, notwithstanding, a shortcoming with this definition [15], since the cor-

responding conditional probability cannot be taken into account for all the t-norms

in the Frank’s family, but only with T = min. In fact, and for instance, with T = prod,

the typical definition
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p(𝜇∕𝜎) ∶= p(𝜇 ⋅ 𝜎)∕p(𝜎), with p(𝜎) > 0,

is not a probability among the fuzzy sets in the ‘diaphragmed’ subset whose elements

have the form 𝜇 ⋅ 𝜎, since p(𝜎∕𝜎) = p(𝜎2∕𝜎) is not always equal to one. Neither is it

with T = W, since p(𝜎∕𝜎) = p (max (0, 2𝜎 − 1))∕p(𝜎) = 1 will not always hold if 𝜎

is different from 𝜇1, and is 0 provided 𝜎 ≤ 𝜇1∕2. Obviously, with T = min and since

𝜎 ⋅ 𝜎 = min(𝜎, 𝜎) = 𝜎, it holds p (𝜎/𝜎)= 1, and since the corresponding t-conorm

in the Frank’s family is S = max, it is easy to prove p(𝜇 + 𝜋∕𝜎) + p(𝜇 ⋅ 𝜋∕𝜎) =
p(𝜇∕𝜎) + p(𝜋∕𝜎), and it results that p(⋅∕𝜎) is a probability in the ‘diaphragmed’ set.

Only with T = min and S = max, the conditional probability is actually a probability.

Hence, it seems that such pair of connectives are the only suitable ones for defining

a Kolmogorov’s probability with fuzzy sets.

Notice that only with T = min, and S = max, is [0, 1]X∕𝜎 = {𝜇 ⋅ 𝜎;𝜇 ∈ [0, 1]X}

closed by intersection and union: min(𝜇1 ⋅ 𝜎, 𝜇2 ⋅ 𝜎) in each point x is equal to one

of both and hence it is in [0, 1]X∕𝜎, and analogously with max. Only in this case

they belong to the ‘diaphragmed’ set. Hence, the set of fuzzy sets [0, 1]X∕𝜎, with

p(𝜎) > 0, and the couple (min, max) is also an Standard algebra of fuzzy sets.

Since, with T = prod (⋅), it is T(𝜇1 ⋅ 𝜎, 𝜇2 ⋅ 𝜎) = (𝜇1 ⋅ 𝜇2 ⋅ 𝜎) ⋅ 𝜎, and also with its

dual t-conorm S = sum-prod, S(𝜇1 ⋅ 𝜎, 𝜇2 ⋅ 𝜎) = (𝜇1 + 𝜇2 − 𝜇1 ⋅ 𝜇2 ⋅ 𝜎) ⋅ 𝜎, [0, 1]X𝜎
is also a standard algebra of fuzzy sets with the couple (prod, prod

∗
). Nevertheless,

it is not with T = W and S = W∗
, as it can be easily proven. Hence, with the couple

(prod, prod
∗
), p is a probability whose corresponding conditional probability is not

a probability.

Remarks

I. A probability for fuzzy events in IRn
can be defined at any standard algebra of

fuzzy sets ([0, 1]IRn
,T , S,N) with T and S in the Frank’s family, but, provided a

conditional probability is required, then it only can be obtained with T = min,

and S = max. Hence, to count with a conditional probability it is necessary to

extent the pair (T , S) to the quartet (T , S, min, max) that, only if T = min and

S = max is reduced to the pair (min, max). This is the only case fully mimicking

the classical Kolmogorov one.

II. It should be noticed that with quantum probability in Orthomodular lattices,

there is not a generally accepted way of introducing conditional probability [5].

III. The same results are obtained provided the fuzzy sets are taken to be [15]

Riemann integrable instead of Lebesgue integrable in IRn
. Even if this is some-

what restrictive it is sufficient for most of the practical cases. For instance, if X =
[0, 10], 𝜇(x) = x∕10 and 𝜎(x) = 1 − x∕10, it is p(𝜇) = 1∕100 ∫ 10

0 xdx = 0.5, and

p(B∕A) = p(𝜎 ⋅ 𝜇)∕0.5 = p(x∕10 − x2∕100)∕10 = 0.8333… When 𝜇 is a crisp

set, for instance the subinterval A = [1, 3] of [0, 10], the probability reduces to

p(A) = 1∕10 ∫ 3
1 dx = 0.2, only coincidental with the classical probability when

this is related to a uniform distribution.
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5 Some Comments on Fuzzy-Fuzzy Probabilities

5.1

To pose the concept of a ‘fuzzy-fuzzy probability’ [15], that is, when the events are

fuzzy sets, the probability is expressed linguistically, and that can be exemplified,

for instance, by “The probability that ‘John is tall’ is high”, represented by:

Prob (John is tall) = High, or, in fuzzy terms, p(𝜇tall(John)) = 𝜇high,

with 𝜇tall in [0, 1]X , and 𝜇high in [0, 1][0,1], it is required to count with a suitable

algebra in F(X) = [0, 1]X , and another one in I = [0, 1][0,1], since it should be p ∶
F(X) → I. In the same vein that before and with the aim of having a general theory

like it happens in classic crisp-probability with sets, it will be supposed that the

binary relation ≤P coincides with the pointwise ordering between fuzzy sets. It will

be analogously supposed that I is the poset given by the pointwise order and whose

minimum and maximum are, respectively, 𝜇0 and 𝜇1.

If X ⊆ IRn
, to generalize Zadeh’s fuzzy-crisp probabilities defined in “4.1”, it

could be presumed that if the values of p are ‘numbers’ Ar (fuzzy sets in [0, 1] con-

stantly equal to r ∈ [0, 1]), then p can be analogously defined but with values in I.

Hence, a fuzzy-fuzzy probability is a mapping p ∶ F(X) → I, such that:

∙ p(A1) = p(X) = 𝜇𝜇𝜇1
∙ 𝜇 ⋅ 𝜎 = 𝜇0 ⇒ p(𝜇 + 𝜎) = p(𝜇) + p(𝜎)
∙ If X = Rn

, and the values of p are numbers Ar in I, p is a Zadeh’s fuzzy-crisp

probability.

The triplet of operations (⋅,+,′ ), both in F(X) and in I, should be chosen in such a

way that:

∙ p(𝜇𝜇𝜇′) = 𝜇𝜇𝜇1 − p(A) ⇔ p(A) + p(A′) = 𝜇𝜇𝜇1
∙ 𝜇 ≤ 𝜎 ⇒ p(𝜇) ≤ p(𝜎)
∙ p(𝜇0) = 𝜇0,

for properly calling p a probability.

5.2

For what concerns the values of p in I, it could be sometimes suitable to take them

as ‘fuzzy numbers’ NNNr, that is, fuzzy sets in [0, 1][0,1] whose membership functions

are of the form [26],

∙ NNNr(x) = 0, if 0 ≤ × ≤ r − 𝜖, or r + 𝜖 ≤ × ≤ 1,

∙ NNNr(x) = L(x), if r − 𝜖 ≤ × ≤ r,

∙ NNNr(x) = R(x), if r ≤ × ≤ r + 𝜖,

provided 𝜖 > 0, and with functions L ∶ [r − 𝜖, r] → [0, 1], and R ∶ [r, r + 𝜖] →
[0, 1], verifying:
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∙ L is strictly non-decreasing between r − 𝜖 and r, with L(r − 𝜖) = 0, and L(r) = 1,

∙ R is strictly decreasing between r + 𝜖 and r, with R(r) = 1, and R(r + 𝜖) = 0,

Sometimes, L and R are supposed to be linear, that is, L(x) = (r − 𝜖 − x)∕r, and

R(x) = (r + 𝜖 − x)∕e.

In such cases, the set of fuzzy numbers {NNNr; r ∈ [0, 1]} could need to be endowed

with a suitable partial ordering with extreme elements of the types:

∙ NNN0(x) = R(x), in a (right) neighborhood of 0, and

NNN0(x) = 0 in its complement in [0, 1],

∙ NNN1(x) = L(x), in a (left) neighborhood of 1, and

NNN1(x) = 0 in its complement in [0, 1].

Notice that NNNr can represent, for instance, ‘around r’, and that to employ these fuzzy

numbers corresponds to problems like ‘the probability that John is rich is around 0,

6’. In these cases, not only the ordering should be adapted to fuzzy numbers, but also

the operations between them should be those of Fuzzy Arithmetic generalizing the

classical arithmetic operations through the Fuzzy Logic’s Extension Principle [26],

and to keep the classical arithmetic when NNNr can coincide with r.

5.3

It is important to carefully establish the operations in F(X) and in I. In general, and in

the same vein as when representing a dynamical system whose behaviour is linguisti-

cally described, they may not be universal, and different cases may require different

triplets of them, but justifications for using a particular triplet should be provided

at each case; modeling requires a careful design of the involved fuzzy terms [22].

The effectiveness of these operations will depend on the used types of fuzzy sets as

values of the fuzzy-fuzzy probability. Therefore and to fully establish a mathemat-

ically rigorous and fertile theory for fuzzy-fuzzy probabilities without going far from

Kolmogorov’s ideas, various components of fuzzy systems must be properly designed.

Of course, this is still a serious theoretical open problem that concerns to link what

is in language in the form ‘the probability of a is b’ with good enough mathematical

representations of the form prob (𝛼) = 𝛽, where the fuzzy set 𝛼 represents statement

a, the fuzzy set 𝛽 statement b, and prob is also a suitable representation of the word

‘probability’.

In fact, fuzzy-fuzzy probability is, as a mathematical subject, an open one that

is waiting for its development. A development that should be grounded on practical

cases previously studied, like classical probability was grounded on the study of

games of chance, and the errors in computation. In this case, it seems necessary

to know more on what happens in language with the qualitative interpretation of

the predicate probable with imprecise statements. The development of fuzzy logic

should evolve towards a science of imprecision and non-random uncertainty.
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6 Conclusions

6.1

From its very inception fuzzy sets kept a difficult and sometimes troublesome relation

with probability [31], often coming from a not clear enough view of the respective

grounds. Fuzzy sets mainly deal with linguistic imprecision and non-repetitive uncer-

tainty of predicates and in this view are nothing else, but nothing less, than measures

of their meaning, whilst probability just measures the uncertainty of the outcomes in

a given experiment, whose realization is presumed to be repeatable in a large num-

ber of times, and always under the same conditions. The ‘physical’ character of the

outcomes in a random experiment, those typically considered by probability theory,

like they are the extractions of balls in a urn, makes that probabilities grow, without

no doubt, additively, that is they enjoy the additive law, from which it can be deduced

that probabilities grow with the growing of events. Both probabilities and fuzzy sets

measure information, but different types of information.

To compare probability with fuzzy sets, it should be taken into account what they

apply to, which properties define each entity, and of course, what they respectively

measure. To define a fuzzy set it is not necessary to apply its linguistic label to a

universe previously endowed with any algebraic structure, but as it has been seen,

no probability can be defined without counting with a previous, and strong, structure

among the elements to which it is applied.

6.2

In the theory of fuzzy sets, there is a, sometimes not explicitly expressed, principle

forcing to keep what classically happens with crisp sets, that is, when the member-

ship function only takes the values 0 and 1. Such principle is that of ‘Preservation

of the Classical Case’ [26], and comes from the necessity of jointly working with

imprecise and precise concepts. For instance, if the universe is the unit interval [0, 1],
the mapping ∗ ∶ [0, 1] → [0, 1], defined by 𝜇∗(x) = 1 − 𝜇(1 − x), that verifies all the

properties of a negation between fuzzy sets, cannot be taken as a pseudo-complement

for fuzzy sets since although the image by it of a crisp set is a crisp set, it is not always

its crisp complement. The mapping ∗ does not preserve the classical case, and hence,

it cannot be accepted as a pseudo-complement for any algebra of fuzzy sets as it is,

for instance, the mapping 𝜇′(x) = 1 − 𝜇(x), for x in any universe X.

Analogously, and when the events are expressed by fuzzy sets, any definition of

their probability, either valued in [0, 1], or in [0, 1][0,1], should keep the universally

accepted basic laws of a classical crisp-crisp probability. Either fuzzy-crisp, or fuzzy-

fuzzy probability, should preserve the classical case since, in praxis, there are cases

in which flexible and rigid linguistic labels coexist in the linguistic description of the

same problem. It does not happen with Zadeh’s fuzzy-crisp probability; for instance,

in X = [0, 1], it is p(𝜇r) = ∫
1
0 rdx = r, contrarily to the fact that the probability of a

point under a continuous distribution is always nul.
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6.3

Although the existing lack information on the subject, it can be conjectured that the

word ‘probable’, or a synonymous of it, were used before mathematicians begin with

the study of ‘how much probable’ is to obtain an outcome in some random experi-

ments, like those (finite) with carts or dices, and that George Pólya did identify with

the extraction of balls from urns. In those experiments, the universe of the outcomes

that can be expected is finite and, consequently, it has sense to identify

‘statement a is less probable than statement b’ with ‘A ⊆ B’,

since the number of elements in B is greater or equal to that in A, and provided A and

B are the subsets representing the outcomes that correspond to a and b, respectively.

Nevertheless, when the statements are not referring to a perfectly isolable situation,

like they are, for instance, a question on the beauty of a work of art that can deserve

the answer ‘is with high probability that it is beautiful’, or ‘the probability that John

is tall is no less than 0.8’, or ‘it is with a low probability than a few black balls can

be extracted from a urn with much more blue tan black balls’, etc., it is not clear to

what the relation ≤probable can be identified with the goal of establishing a coherent

mathematical theory like, it is the classical one as it was described by Kolmogorov’s

axiomatics. Notwithstanding, if it can be stated that the three properties a measure

should necessarily enjoy must be satisfied, it is not so clear what should happen

with both the additive property and the probability of the negation. These are two

basic laws of the crisp-crisp probability not presenting a real problem in the case

of the fuzzy-crisp probabilities introduced by Zadeh, provided it is X = IRn
, with

an obvious problem existing if the universe of discourse X is not representable as a

part of some IRn
. When trying to model by fuzzy sets the linguistic or fuzzy-fuzzy

probability, it should be based in clear reasons that ≤probable can be identified with

the pointwise ordering between fuzzy sets.

6.4

To finish, the mathematical study of fuzzy-fuzzy probability as a continuation of the

classical theory of (crisp) probability still shows problems that should be clarified

before talking of a theory of fuzzy probability. For what concerns the fuzzy-crisp

probabilities in, at least, the definition of Zadeh, it seems that the algebras of fuzzy

sets, like the triplets giving the Standard ones are not enough, but that families of

more than three connectives are more suitable. Anyway, what it seems still lack-

ing is an experimental study concerning the use in language of the linguistic label

‘probable’.
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Organizing Families of Aggregation
Operators into a Cube of Opposition

Didier Dubois, Henri Prade and Agnès Rico

Abstract The cube of opposition is a structure that extends the traditional square

of opposition originally introduced by Ancient Greek logicians in relation with

the study of syllogisms. This structure, which relates formal expressions, has been

recently generalized to non Boolean, graded statements. In this paper, it is shown

that the cube of opposition applies to well-known families of idempotent, monoton-

ically increasing aggregation operations, used in multiple criteria decision making,

which qualitatively or quantitatively provide evaluations between the minimum and

the maximum of the aggregated quantities. This covers weighted minimum and max-

imum, and more generally Sugeno integrals on the qualitative side, and Choquet

integrals, with the important particular case of Ordered Weighted Averages, on the

quantitative side. The main appeal of the cube of opposition is its capability to dis-

play the various possible aggregation attitudes in a given setting and to show their

complementarity.

1 Introduction

The application of fuzzy sets [1] to multiple criteria decision making [2] has led to the

continued blossoming of a vast amount of studies on different classes of aggregation

operators for combining membership grades. This includes in particular triangular

norms and co-norms [3] on the one hand, and Sugeno and Choquet integrals [4, 5]

on the other hand. Ronald Yager, in his vast amount of important contributions to

fuzzy set theory on many different topics, has been especially at the forefront of
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creativeness regarding aggregation operators, with in particular the introduction of

a noticeable family of triangular norms and co-norms [6], of uninorms [7], and of

Ordered Weighted Averages (OWA) [8–10].

Sugeno and Choquet integrals are well-known families of idempotent, monoton-

ically increasing aggregation operators, used in multiple criteria decision making,

with a qualitative and a quantitative flavor respectively. They include weighted min-

imum and maximum, and weighted average respectively, as particular cases, and

provide evaluations lying between the minimum and the maximum of the aggregated

quantities. In such a context, the gradual properties corresponding to the criteria to

fulfill are supposed to be positive, i.e., the global evaluation increases with the partial

ratings. But some decisions or alternatives can be found acceptable because they do

not satisfy some (undesirable) properties. So, we also need to consider negative prop-

erties, the global evaluation of which increases when the partial ratings decreases.

This reversed integral is a variant of Sugeno integrals, called desintegrals [11, 12].

Their definition is based on a decreasing set function called anti-capacity. Then, a

pair of evaluations made of a Sugeno integral and a reversed Sugeno integral is use-

ful to describe acceptable alternatives in terms of properties they must have and of

properties they must avoid.

Besides, we can distinguish the optimistic part and the pessimistic part of any

capacity [13]. It has been recently indicated that Sugeno integrals associated to these

capacities and their associated desintegrals form a cube of opposition [14], the inte-

grals being present on the front facet and the desintegrals on the back facet of the

cube (each of these two facets fit with the traditional views of squares of opposition

[15]). As this cube exhausts all the evaluation options, the different Sugeno inte-

grals and desintegrals present on the cube are instrumental in the selection process

of acceptable choices. We show in this paper that a similar cube of opposition exists

for Choquet integrals, which can then be particularized for OWA operators.

The paper is organized as follows. Section 2 provides a brief reminder on the

square of opposition, and introduces the cube of opposition and its graded extension

in a multiple criteria aggregation perspective. Section 3 restates the cube of opposi-

tion for Sugeno integrals and desintegrals. Section 4 presents the cube for Choquet

integrals and then for OWA operators, and discusses the different aggregation atti-

tudes and their relations.

2 Background and Notations

We first recall the traditional square of opposition originally introduced by Ancient

Greek logicians in relation with the study of syllogisms. This square relates uni-

versally and existentially quantified statements. Then its extension into a cube of

opposition is presented, together with its graded version, in a qualitative multiple

criteria aggregation perspective.
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Fig. 1 Square of opposition

2.1 The Square and Cube of Opposition

The traditional square of opposition [15] is built with universally and existentially

quantified statements in the following way. Consider a statement (𝐀) of the form

“all P’s are Q’s”, which is negated by the statement (𝐎) “at least one P is not a Q”,

together with the statement (𝐄) “no P is a Q”, which is clearly in even stronger oppo-

sition to the first statement (𝐀). These three statements, together with the negation

of the last statement, namely (𝐈) “at least one P is a Q” can be displayed on a square

whose vertices are traditionally denoted by the letters 𝐀, 𝐈 (affirmative half) and 𝐄,

𝐎 (negative half), as pictured in Fig. 1 (where Q stands for “not Q”).

As can be checked, noticeable relations hold in the square:

(i) A and O (resp. E and I) are the negation of each other;

(ii) A entails I, and E entails O (it is assumed that there is at least one P, to avoid

existential import problems);

(iii) together A and E cannot be true, but may be false;

(iv) together I and O cannot be false, but may be true.

Changing P into ¬P, and Q in ¬Q leads to another similar square of opposition

aeoi, where we also assume that the set of “not-P’s” is non-empty. Then the 8 state-

ments, A, I, E, O, a, i, e, o may be organized in what may be called a cube of oppo-
sition as in Fig. 2.

This cube first appeared in [16] in a renewed discussion of syllogisms, and was

reintroduced recently in an information theoretic perspective [17]. The structural

properties of the cube are:

Fig. 2 The cube of

opposition for quantified

statements
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∙ 𝐀𝐄𝐎𝐈 and 𝐚𝐞𝐨𝐢 are squares of opposition,

∙ 𝐀 and 𝐞; 𝐚 and 𝐄 cannot be true together,

∙ 𝐈 and 𝐨; 𝐢 and 𝐎 cannot be false together,

∙ 𝐀 entails 𝐢, 𝐄 entails 𝐨, 𝐚 entails 𝐈, 𝐞 entails 𝐎.

In the cube, if we also assume that the sets of “Q’s” and “not-Q’s” are non-empty,

then the thick non-directed segments relate contraries, the double thin non-directed

segments sub-contraries, the diagonal dotted non-directed lines contradictories, and

the vertical uni-directed segments point to subalterns, and express entailments.

Stated in set-theoretic notation, A, I, E, O, a, i, e, o, respectively mean P ⊆ Q, P ∩
Q ≠ ∅, P ⊆ Q, P ∩ Q ≠ ∅, P ⊆ Q, P ∩ Q ≠ ∅, P ⊆ Q, P ∩ Q ≠ ∅. In order to satisfy

the four conditions of a square of opposition for the front and the back facets, we need

P ≠ ∅ and P ≠ ∅. In order to have the inclusions indicated by the diagonal arrows in

the side facets, we need Q ≠ ∅ and Q ≠ ∅, as further normalization conditions.

Suppose P denotes a set of important properties, Q a set of satisfied properties

(for a considered object). Vertices A, I, a, i correspond respectively to 4 different

cases:

(i) all important properties are satisfied,

(ii) at least one important property is satisfied,

(iii) all satisfied properties are important,

(iv) at least one non satisfied property is not important.

Note also the cube is compatible with a bipolar understanding [18]. Suppose

that among possible properties for the considered objects, some are desirable (or

requested) and form a subset R and some others should be excluded (forbidden or

undesirable) and form a subset E. Clearly, one should have E ⊆ R. The set of prop-

erties of a given object is partitioned into the subset of satisfied properties S and the

subset S of not satisfied properties. Then vertex A corresponds to R ⊆ S and a to

R ⊆ S. Then a also corresponds to E ⊆ S.

2.2 A Gradual Cube of Opposition

It has been recently shown that the structure of the cube of opposition underlies

many knowledge representation formalisms used in artificial intelligence, such as

first order logic, modal logic, but also formal concept analysis, rough set theory,

abstract argumentation, as well as quantitative uncertainty modeling frameworks

such as possibility theory, or belief function theory [14, 19]. In order to accom-

modate quantitative frameworks, a graded extension of the cube has been defined in

the following way.

Let 𝛼, 𝜄, 𝜀, o, and 𝛼′
, 𝜄′, 𝜀′, o′ be the grades in [0, 1] associated to vertices A, I,E,O

and a, i, e, o. Then we consider an involutive negation n, a symmetrical conjunction

∗ that respects the law of contradiction with respect to this negation, and we interpret

entailment in the many-valued case by the inequality ≤: the conclusion is at least as
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true as the premise. The constraints satisfied by the cube of Fig. 2 can be generalized

in the following way [14]:

(i) 𝛼 = n(o), 𝜀 = n(𝜄) and 𝛼′ = n(o′) and 𝜀′ = n(𝜄′);
(ii) 𝛼 ≤ 𝜄, 𝜀 ≤ o and 𝛼′ ≤ 𝜄′, 𝜀′ ≤ o′;

(iii) 𝛼 ∗ 𝜀 = 0 and 𝛼′ ∗ 𝜀′ = 0;

(iv) n(𝜄) ∗ n(o) = 0 and n(𝜄′) ∗ n(o′) = 0;

(v) 𝛼 ≤ 𝜄′, 𝛼′ ≤ 𝜄 and 𝜀′ ≤ o, 𝜀 ≤ o′;
(vi) 𝛼′ ∗ 𝜀 = 0, 𝛼 ∗ 𝜀′ = 0;

(vii) n(𝜄′) ∗ n(o) = 0, n(𝜄) ∗ n(o′) = 0.

In the paper, we restrict to the numerical setting and let n(a) = 1 − a. It leads to

define ∗= max(0, ⋅ + ⋅ − 1) (the Łukasiewicz conjunction). In the sequel, we show

that the (gradual) cube of opposition is relevant for describing different families of

multiple criteria aggregation functions. We first illustrate this fact by considering

weighted minimum and maximum, together with related aggregations.

3 A Cube of Simple Qualitative Aggregations

In multiple criteria aggregation objects are evaluated by means of criteria i where i ∈
C = {1,… , n}. The evaluation scale L is a totally ordered scale with top 1, bottom

0, and the order-reversing operation is denoted by 1 − (⋅). For simplicity, we take

L = [0, 1], or a subset thereof, closed under the negation and the conjunction.

An object x is represented by a vector x = (x1,… , xn) where xi is the evaluation

of x according to the criterion i. We assume that xi = 1 means that the object fully

satisfies criterion i and xi = 0 expresses a total absence of satisfaction. Let 𝜋i ∈ [0, 1]
represent the level of importance of criterion i. The larger 𝜋i the more important the

criterion. We note 𝜋 = (𝜋1,… , 𝜋n).
In such a context, simple qualitative aggregation operators are the weighted min

and the weighted max [20]:

∙ The weighted min measures the extent to which all important criteria are highly

satisfied; it corresponds to the expression minni=1 max(1 − 𝜋i, xi),
∙ the weighted max, maxni=1 min(𝜋i, xi), is optimistic and only requires that at least

one important criterion be highly satisfied.

The weighted min and weighted max correspond to vertices A and I of the cube

on Fig. 3. As it can be noticed, the cube of Fig. 3 is just a multiple-valued counterpart

of the initial cube of Fig. 2.

Under the hypothesis of the double normalization (∃i, 𝜋i = 1 and ∃j, 𝜋j = 0) and

the hypothesis ∃r, xr = 1 and ∃s, xs = 0, which correspond to the non-emptiness of

P, P, Q, and Q in cube of Fig. 2, it can be checked that all the constraints (i–vii)

of the gradual cube hold. For instance, the entailment from A to I translates into
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Fig. 3 The cube of

weighted qualitative

aggregations

minni=1 max(1 − 𝜋i, xi) ≤ maxni=1 min(𝜋i, xi), which holds as soon as ∃i, 𝜋i = 1. For-

mally speaking, in terms of possibility theory [21, 22], it is nothing but the expres-

sion that the necessity of a fuzzy event N
𝜋
(x) is less or equal to the possibility

𝛱
𝜋
(x) of this event, provided that the possibility distribution 𝜋 is normalized. While

A and I are associated with N
𝜋
(x) and 𝛱

𝜋
(x) respectively, a is associated with a

guaranteed possibility 𝛥
𝜋
(x) (which indeed reduces to 𝛥

𝜋
(x) = mini | xi=1 𝜋i in case

∀i, xi ∈ {0, 1}). Note also that 𝛥
𝜋
(x) = N

𝜋
(1 − x), where 𝜋 = 1 − 𝜋i; lastly i is asso-

ciated with ∇
𝜋
(x) = 1 − 𝛥

𝜋
(1 − x). Moreover there is a correspondence between the

aggregation functions on the right facet of the cube and those on the left facet, replac-

ing x with 1 − x.

Let us discuss the different aggregation attitudes displayed on the cube. Suppose

that a fully satisfactory object x is an object with a global rating equal to 1. Then,

vertices 𝐀, 𝐈, 𝐚 and 𝐢 correspond respectively to 4 different cases: x is such that

(i) 𝐀: all properties having some importance are fully satisfied (if 𝜋i > 0 then xi =
1 for all i),

(ii) 𝐈: there exists at least one important property i fully satisfied (𝜋i = 1 and xi = 1),

(iii) 𝐚: all somewhat satisfied properties are fully important (if xi > 0 then 𝜋i = 1
for all i),

(iv) 𝐢: there exists at least one unimportant property i that is not satisfied at all (𝜋i = 0
and xi = 0).

These cases are similar to those encountered in the cube of Fig. 2.

Example 1 We consider C = {1, 2, 3} and 𝜋1 = 0, 𝜋2 = 0.5 and 𝜋3 = 1; see Fig. 4.

∙ on vertex A (resp. I) a fully satisfied object is such that x2 = x3 = 1 (resp. x3 = 1),

∙ on vertex a (resp. i) a fully satisfied object is such that x1 = x2 = 0 (resp. x1 = 0).

The operations of the front facet of the cube of Fig. 3 merge positive evaluations

that focus on the high satisfaction of important criteria, while the local ratings xi on

the back could be interpreted as negative ones (measuring the intensity of faults).

Then, aggregations yield global ratings evaluating the lack of presence of important

faults. In this case, weights are tolerance levels forbidding a fault to be too strongly

present. Then, the vertices a and i in the back facet are interpreted differently:
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Fig. 4 Example of a cube of

weighted qualitative

aggregations

∙ the evaluation associated to a is equal to 1 if all somewhat intolerable faults are

fully absent;

∙ the evaluation associated to i is equal to 1 if there exists at least one intolerable

fault that is absent.

This framework thus involves two complementary points of view, recently discussed

in a multiple criteria aggregation perspective [11].

4 The Cube of Sugeno Integrals

Weighted minimum and maximum (as well as ordered weighted minimum and max-

imum [23]) are particular cases of Sugeno integrals. The cube on Fig. 3 can indeed

be extended to Sugeno integrals and its associated so-called desintegrals. Before

presenting the cube associated with Sugeno integrals, let us recall some definitions

used in the following, namely the notions of capacity, conjugate capacity, qualitative

Moebius transform, and focal sets.

In the definition of a Sugeno integral the relative weights of the set of criteria are

represented by a capacity (or fuzzy measure) which is a set function 𝜇 ∶ 2C → L that

satisfies 𝜇(∅) = 0, 𝜇(C ) = 1 andA ⊆ B implies 𝜇(A) ≤ 𝜇(B). The conjugate capacity

of 𝜇 is defined by 𝜇c(A) = 1 − 𝜇(A) where A is the complement of A.

The inner qualitative Moebius transform of a capacity 𝜇 is a mapping 𝜇# ∶ 2C →
L defined by

𝜇#(E) = 𝜇(E) if 𝜇(E) > max
B⊂E

𝜇(B) and 0 otherwise.

A set E such that 𝜇#(E) > 0 is called a focal set. The set of the focal sets of 𝜇 is

denoted by F (𝜇).
The Sugeno integral of an object xwith respect to a capacity𝜇 is originally defined

by [24, 25]:

S
𝜇
(x) = max

𝛼∈L
min(𝛼, 𝜇({i | xi ≥ 𝛼})). (1)
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When Sugeno integrals are used as aggregation functions to select acceptable

objects, the properties of which are assumed to have a positive flavor: namely, the

global evaluation increases with the partial ratings. But generally, we may also have

negative properties, as already described in the introduction. In such a context we

can use a desintegral [11, 12] associated to the Sugeno integral. We now present this

desintegral.

In the case of negative properties, fault-tolerance levels are assigned to sets of

properties by means of an anti-capacity (or anti-fuzzy measure), which is a set func-

tion 𝜈 ∶ 2C → L such that 𝜈(∅) = 1, 𝜈(C ) = 0, and if A ⊆ B then 𝜈(B) ≤ 𝜈(A). The

conjugate 𝜈c of an anti-capacity 𝜈 is an anti-capacity defined by 𝜈c(A) = 1 − 𝜈(A),
where A is the complementary of A. The desintegral S↓

𝜈
(x) is defined from the cor-

responding Sugeno integral, by reversing the direction of the local value scales (x
becomes 1 − x), and by considering a capacity induced by the anti-capacity 𝜈, as

follows:

S↓
𝜈
(x) = S1−𝜈c (1 − x). (2)

In order to present the square of Sugeno integrals, we need to define the pes-

simistic part and the optimistic part of a capacity. They are respectively called assur-

ance and opportunity functions by Yager [26]. This need should not come as a sur-

prise. Indeed the entailment from A to I requires that the expression in A have a

universal flavor, i.e. here, is minimum-like, while the expression in I have an exis-

tential flavor, i.e. here, is maximum-like, but the capacity 𝜇, on which the considered

Sugeno integral is based, may have neither.

When we consider a capacity 𝜇, its pessimistic part is 𝜇∗(A) = min(𝜇(A), 𝜇c(A))
and its optimistic part is 𝜇∗(A) = max(𝜇(A), 𝜇c(A)) [13]. Observe that 𝜇∗ ≤ 𝜇∗

,

𝜇∗
c = 𝜇∗

and 𝜇∗c = 𝜇∗. So a capacity 𝜇 induces the following square of opposition

(see [27] for more details).

Note that S
𝜇∗
(1 − x) = S↓1−𝜇∗ (x) and S

𝜇∗ (1 − x) = S↓1−𝜇∗
(x), where 1 − 𝜇∗

and

1 − 𝜇∗ are anti-capacities.

Lastly, in order to build the cube associated to Sugeno integrals, just as 𝜋 is at work

on the back facet of the cube associated with weighted min and max, we also need the

opposite capacity 𝜇, defined as follows: 𝜇#(E) = 𝜇#(E) and 𝜇(A) = maxE⊆A 𝜇#(E).
A square of opposition 𝐚𝐢𝐞𝐨 can be defined with the capacity 𝜇. Hence, supposing

∃i ∈ C such that xi = 0 and ∃j ∈ C such that xj = 1, we can construct a cube of

opposition 𝐀𝐈𝐄𝐎 and 𝐚𝐢𝐞𝐨 as presented in Fig. 5 [14].
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Fig. 5 Cube of opposition

of Sugeno integrals

associated to a capacity 𝜇

The fact that all the constraints of a gradual cube hold in this case has been only

established under a specific type of normalization for capacities [27], i.e., ∃A ≠ C
such that 𝜇(A) = 1 and ∃B ≠ C such that 𝜇c(B) = 1; note that in such a context there

exists a non empty set, B, such that 𝜇(B) = 0. However, this does not cover another

particular case where the constraints of the cube also hold, namely the one where 𝜇

is only non zero on singletons. Finding the most general condition on 𝜇 ensuring the

satisfaction of all constraints (i–vii) in the cube of Sugeno integrals is still an open

question.

Let us now present the aggregation attitudes expressed by the cube of Sugeno

integrals. We can characterize situations where objects get a global evaluation equal

to 1 using aggregations on the side facet.

The global evaluations at vertices 𝐀𝐈𝐚𝐢 of a cube associated to a capacity 𝜇 are

maximal respectively in the following situations pertaining to the focal sets of 𝜇:

𝐀 The set of totally satisfied properties contain a focal set with weight 1 and over-

laps all other focal sets.

𝐈 The set of satisfied properties contains a focal set with weight 1 or overlaps all

other focal sets.

𝐚 The set of totally violated properties contains no focal set and its complement is

contained in a focal set with weight 1.

𝐢 The set of totally violated properties contains no focal set or its complement is

contained in a focal set with weight 1.

Example 2 Assume C = {1, 2, 3} and the following capacities

Capacity {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
𝜇 0 0 0 1 1 0 1
𝜇c 1 0 0 1 1 1 1
𝜇 0 1 1 1 1 1 1
𝜇
c 0 0 0 0 0 1 1

𝜇c ≥ 𝜇 so 𝜇∗ = 𝜇 and 𝜇∗ = 𝜇c

𝜇 ≥ 𝜇
c

so 𝜇
∗ = 𝜇 and 𝜇∗ = 𝜇

c

Note that 𝜇 is a possibility

measure.

The aggregation functions on the vertices are:
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𝐀∶ S
𝜇
(x) = max(min(x1, x2),min(x1, x3)), 𝐈∶ S𝜇c (x) = max(x1,min(x2, x3))

𝐚∶ S
𝜇
c(1 − x) = min(1 − x2, 1 − x3), 𝐢∶ S𝜇(1 − x) = max(1 − x2, 1 − x3).

∙ For vertex 𝐀, the two focal sets overlap when S
𝜇
(x) = 1.

∙ For vertex 𝐈, one can see that S
𝜇c (x) = 1 when x1 = 1 and {1} does overlap all

focal sets of 𝜇; the same occurs when x2 = x3 = 1.

∙ For vertex 𝐚, S
𝜇
c(1 − x) = 1 when x2 = x3 = 0, and note that the complement of

{2, 3} is contained in a focal set of 𝜇, while {2, 3} contains no focal set of 𝜇.

∙ For vertex 𝐢, S
𝜇
(1 − x) = 1 when, x2 = 0 or x3 = 0, and clearly, neither {2} not

{3} contain any focal set of 𝜇, but the complement of each of them is a focal set

of 𝜇.

5 The Cube of Choquet Integrals

When criteria evaluations are quantitative, Choquet integrals often constitute a suit-

able family of aggregation operators, which generalize weighted averages, and which

parallel, in different respects, the role of Sugeno integrals for the qualitative case.

Although the evaluation scale can be taken as the real line ℝ, we use the unit inter-

val [0, 1] in the following.

Belief and plausibility functions are particular cases of Choquet integrals, just as

necessity and possibility measures are particular cases of Sugeno integrals. This is

why we begin with the presentation of the cube of belief functions, before studying

the cube of Choquet integrals, of which another noticeable particular case is the

cube of ordered weighted averaging aggregation operators (OWA), which is then

discussed, before concluding.

5.1 The Cube of Belief Functions

In Shafer’s evidence theory [28], a belief function Belm is defined together with

a dual plausibility function Plm from a mass function m, i.e., a real set function

m ∶ 2C → [0, 1] such that m(∅) = 0,
∑

A⊆C m(A) = 1. Then for A ⊆ C , we have

Belm(A) =
∑

E⊆A m(E) and Plm(A) = 1 − Belm(A) =
∑

E∩A≠∅ m(E).
Viewing m as a random set, the complement m of the mass function m is defined

as m(E) = m(E) [29]. The commonality function Q and its dual

Q

are then defined

by Qm(A) =
∑

A⊆E m(E) and

Q

m(A) =
∑

E∩A≠∅ m(E) = 1 − Qm(A) respectively. The

normalization m(∅) = 0 forces m(C ) = 0. Then, Qm(A) = Belm(A) while

Q

m(A) =
Plm(A). It can be checked that the transformationm → m reduces to 𝜋 → 𝜋 = 1−𝜋 in

case of nested focal elements. All these set functions can be put on the following cube

of opposition [14]. See Fig. 6. Indeed, if m(∅) = 0, we have Belm(A) ≤ Plm(A) ⇔
Belm(A) + Belm(A) ≤ 1 ⇔ Plm(A) + Plm(A) ≥ 1, which gives birth to the square of
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Fig. 6 Cube of opposition

of evidence theory

opposition 𝐀𝐈𝐄𝐎. We can check as well that Belm(A) =
∑

E⊆A m(E) ≤

Q

m(A) =
1 −

∑
A⊆E m(E). Similar inequalities ensure that Qm(A) ≤ Plm(A) = 1 − Belm(A), or

Belm(A) + Qm(A) ≤ 1, for instance, which ensures that the constraints of the cube

hold.

Belief functions are a particular case of capacities. Note that the square can be

extended replacing Bel and Pl by a capacity 𝜇 and its conjugate 𝜇c(A) = 1 − 𝜇(A),
respectively. However, to build the cube, we also need inequalities such as Qm(A) ≤
Plm(A) to be generalized to capacities.

5.2 Extension to Choquet Integrals

Considering a capacity 𝜇 on C , the Moebius transform of 𝜇, denoted by m
𝜇
, is given

by m
𝜇
(T) =

∑
K⊆T (−1)|T∖K|𝜇(K). The Choquet integral with respect to 𝜇 is:

C
𝜇
(x) =

∑

T⊆C
m

𝜇
(T)min

i∈T
xi. (3)

Clearly, Belm(A) =
∑

E m(E) ⋅minu∈E 1A(u). We have the equality Belm𝜇
(A) =

C
𝜇
(1A) = 𝜇(A) if m

𝜇
represents the Moebius transform of a capacity 𝜇. This charac-

terisation is presented in [30]. More precisely, a real set function m is the Moebius

transform of a capacity 𝜇 if and only if m(∅) = 0,
∑

K⊆S m(i ∪ K) ≥ 0 for all i and

for all S ⊆ C ∖i and
∑

K⊆C m(K) = 1. And it is the Moebius transform of a belief

function if and only if it is non-negative. In general, m
𝜇
(E) can be negative for non-

singleton sets.

Under these conditions, Plm(A) = 1 − C
𝜇
(1A). But we have Qm(A) = Belm(A), so

Qm(A) = C
𝜇
(1A) if m satisfies the conditions to be a Moebius transform of a capacity

𝜇. In such a context,

Q

m(A) = Plm(A) = 1 − C
𝜇
(1A). It is worth noticing that there
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Fig. 7 Cube of opposition

of Choquet integral

exist Moebius transforms m such that m is not a Moebius transform since we need

to have the condition m(C ) = 0.

Hence one may consider the extension of the cube of Fig. 6 to general Choquet

integrals. In order to understand the proof of the following proposition we need the

other expression of the Choquet integral: C
𝜇
(x) =

∑n
i=1(xi − xi−1)𝜇(Ai) where we

suppose that x1 ≤ ⋯ ≤ xn, Ai = {i,… , n} and x0 = 0.

With this expression, it is easy to check that the Choquet integral is increasing

according to the capacity. Then the following holds (See Fig. 7).

Proposition 1 The cube of Choquet integral is a cube of opposition if and only if
𝜇 ≤ 𝜇c, 𝜇 ≤ 𝜇

c and 𝜇 + 𝜇 ≤ 1.

Proof We consider the evaluation scale [0, 1]. Without loss generality we can sup-

pose that x1 ≤ ⋯ ≤ xn.

A entails I iff C
𝜇
(x) + C

𝜇
(1 − x) ≤ 1. Considering x = 1A the characteristic func-

tion ofAwe need 𝜇(A) ≤ 𝜇c(A). If 𝜇 ≤ 𝜇c
thenC

𝜇
(x) ≤ C

𝜇c(x). We haveC
𝜇
(1 − x) =∑

T⊆C m
𝜇
(T)mini∈T (1 − xi) =

∑
T⊆C (m𝜇

(T) − m
𝜇
(T)maxi∈T xi) = 1 − C

𝜇c (x). So,

C
𝜇
(x) + C

𝜇
(1 − x) ≤ C

𝜇
(x) + C

𝜇c (1 − x) = 1.

By symmetry we have E entails O.

A and E cannot be equal to 1 together: C
𝜇
(x) = 1 entails C

𝜇c (x) = 1 since 𝜇 ≤ 𝜇c
,

i.e., C
𝜇
(1 − x) = 0. By duality I and O cannot be equal to 0 together.

So AEIO is a square of opposition.

Similarly 𝜇 ≤ 𝜇
c

is equivalent to making aeio a square of opposition.

If C
𝜇
(x) ≤ 1 − C

𝜇
(x) then considering x = 1A we have 𝜇(A) + 𝜇(A) ≤ 1. Con-

versely if we suppose that 𝜇 + 𝜇 ≤ 1 then C
𝜇
(x) + C

𝜇
(x) =

∑n
i=1(xi − xi−1)(𝜇(Ai) +

𝜇(Ai)) ≤
∑n

i=1(xi − xi−1) = xn ≤ 1. This last equivalence permits to conclude that the

considered cube is a cube of opposition.

The condition 𝜇 + 𝜇 ≤ 1 is valid for belief functions since Belm(A) = Belm(A) =
Qm(A), and Belm(A) + Qm(A) ≤ 1, but it needs to be investigated for more general

capacities since some masses may be negative. Note that, in its back facet, the cube

of Choquet integrals exhibits what maybe called desintegrals, associated to Choquet
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integrals. Namely, using C
𝜇
(1 − x), the global evaluation increases when partial rat-

ings decrease.

Let us discuss the aggregation attitudes when the evaluation scale is the real inter-

val [0, 1] and 𝜇 is a belief function. More precisely we are going to characterize the

situations where an object x gets a perfect global evaluation, i.e., a global evaluation

equal to 1, for the different vertices 𝐀𝐈𝐚𝐢. We denote F
𝜇

the family of the sets having

a Moebius transform not equal to 0.

∙ A:C
𝜇
(x) = 1 can be written

∑
F⊆C m

𝜇
(F) ⋅mini∈F xi = 1, which implies that ∀F ∈

F
𝜇
,∀i ∈ F, xi = 1. So the focal sets of 𝜇 are included in the set of totally satisfied

properties.

∙ I: 1 − C
𝜇
(1 − x) = 1 = C

𝜇c (x) is equivalent to
∑

F⊆C m
𝜇
(F) ⋅maxi∈F xi = 1. So in

this case ∀F ∈ F
𝜇
, ∃i ∈ F such that xi = 1. So each focal set of 𝜇 must intersect

the set of totally satisfied properties.

∙ a:C
𝜇
(1 − x)=

∑
F⊆C m

𝜇
(F) ⋅mini∈F(1 − xi)=

∑
F⊆C m

𝜇
(F) ⋅mini∈F(1 − xi). Then

C
𝜇
(1 − x) = 1 is equivalent to∀F ∈ F

𝜇
,mini∈F(1 − xi) = 1, or equivalently, ∀F ∈

F
𝜇
,maxi∈F xi = 0, which means ∀F ∈ F

𝜇
,∀i ∉ F, xi = 0.

So all properties outside each focal set of 𝜇 are violated. The only properties that

are satisfied are those in the intersection of the focal sets of 𝜇.

∙ i: we have 1 − C
𝜇
(x) =

∑
F⊆C m

𝜇
(F) ⋅maxi∈F(1 − xi). Then 1 − C

𝜇
(x) = 1 is

equivalent to ∀F ∈ F
𝜇
,maxi∈F(1 − xi) = 1, i.e., ∀F ∈ F

𝜇
,mini∈F xi = 0, which

means ∀F ∈ F
𝜇
, ∃i ∉ F such that xi = 0. So there must be at least one violated

property outside each focal set of 𝜇.

5.3 Example for the Cube of Choquet Integral

Let us consider the menu of a traditional restaurant in Lyon.
1

We leave it in French

(due to the lack of precise equivalent terms in English for most dishes):

Starter
Saladier lyonnais: museau, pieds de veau, cervelas, lentilles, pommes de terre,
saucisson pistaché, frisée, oreilles de cochon

1
This example is specially dedicated to Ron Yager in remembrance of a dinner in Lyon in a tradi-

tional restaurant, which took place at the occasion of the CNRS Round Table on Fuzzy Sets orga-

nized by Robert Féron [31] in Lyon on June 23–25, 1980 [32]. This Round Table was an important

meeting for the development of fuzzy set research, because most of the active researchers of the

field were there. Interestingly enough, Robert Féron had the remarkable intuition to invite Gustave

Choquet in the steering committee, at a time where no fuzzy set researcher was mentioning Cho-

quet integrals! This meeting also included, as usual, some nice moments of relaxation and good

humor. In particular, at the above-mentioned dinner, to which quite a number of people took part

(including two of the authors of this paper), Ron enjoyed very much a pigs feet dish. He was visibly

very happy with his choice, so Lotfi Zadeh told him, “Ron, you should have been a pig in another

life”, to which Ron replied “no, Lotfi, it is in this life”, while continuing to suck pigs’ bones with

the greatest pleasure.
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Oeuf meurette: oeuf poché, crotons, champignons, sauce vin rouge et lardons
Harengs pommes de terre à l’huile

Main course

Gratin d’andouillettes, sauce moutarde
Rognons de veau au Porto et moutarde
Quenelles de brochet, sauce Nantua et riz pilaf

Dessert

Gnafron: sorbet cassis et marc de Bourgogne
Baba au rhum et chantilly
Crème caramel

A tourist wants to eat some typical dishes of Lyon. His preferred dishes are “sal-

adier lyonnais” (which offers a great sampling of meats from the Lyon region) and

“gratin d’andouillettes” since he wants to eat some gourmet delicatessen products.

The evaluation scale is the real interval [0, 1], so the “saladier lyonnais” and “gratin

d’andouillettes” get the maximal rating 1. The other dishes receive a smaller rating.

The set of criteria is C = {s, c, d}, where s, c, d refer to starter, main course, and

dessert respectively. We consider the Möbius transform: m ∶ 2C → [0, 1] defined by

m(s) = m(s, c) = 0.5 and 0 otherwise. Such a weighting clearly stresses the impor-

tance of the starter, and acknowledges the fact that the main course is only of interest

with a starter, while dessert is not an issue for this tourist. A chosen menu is repre-

sented by a vector (xs, xc, xd) where xi is the rating corresponding to the chosen dish

for the criterion i. The Choquet integral of x with respect to the capacity 𝜇 associated

to m is:

C
𝜇
(x) = 0.5xs + 0.5 ⋅min(xs, xc).

m is the set function defined by m(d) = m(c, d) = 0.5 and 0 otherwise. It is easy to

check that m is a Möbius transform. The Choquet integral of x with respect to 𝜇, the

capacity defined with m is:

C
𝜇
(x) = 0.5xd + 0.5 ⋅min(xc, xd).

Let us look at the choices that get a perfect global evaluation on the cube of Choquet

integrals:

∙ A: C
𝜇
(x) = 1 iff xs = xc = 1: a menu with a maximal evaluation contains the

“saladier lyonnais” and the “gratin d’andouillette.”

∙ I: C
𝜇
(1 − x) = 0 iff xs = 1 or xs = xc = 1: a menu with a maximal evaluation con-

tains the “saladier lyonnais” and may contain the “gratin d’andouillette.”

∙ a: C
𝜇
(1 − x) = 1 iff xc = xd = 0: a menu with a maximal evaluation contains nei-

ther the “gratin d’andouillette”, nor the best dessert.

∙ i: C
𝜇
(x) = 0 iff xd = 0 ou xc = xd = 0: a menu with a maximal evaluation does not

contain the best dessert, but may contain the “gratin d’andouillette”.
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Without surprise, the Choquet integral in A is maximal if the menu includes both

the “saladier lyonnais” and the “gratin d’andouillette,” while I is maximal as soon

as the menu includes at least the “saladier lyonnais”. The maximality conditions

in a (and in i) are less straightforward to understand. Here we should remember

that already in cube of Fig. 2, a entails I provided that x is normalized (i.e., ∃i, xi =
1), which ensures that the expression attached to a is smaller or equal to the one

associated with I. The same condition is enough for having

C
𝜇
(1 − x) =

∑
F⊆C m

𝜇
(F) ⋅mini∈F 1 − xi ≤ 1- C

𝜇
(1 − x) =

∑
F⊆C m

𝜇
(F) ⋅

maxi∈F xi provided that
∑

F⊆C m
𝜇
(F) = 1. Indeed, let xi∗ = 1, then for all F ⊆ C ,

either xi∗ ∈ F or xi∗ ∈ F. Thus, either mini∈F 1 − xi = 0, or maxi∈F xi = 1, which

ensures the inequality.

Thus going back to the example, since the evaluation in a is maximal for xc = xd =
0, the normalization forces xs = 1, which means that the menu includes the “saladier

lyonnais”. Note also that xs = 1, xc = 0, xd = 0 is a minimal normalized evaluation

vector x, for which the desintegral associated with a is maximal. Considering the

evaluation in i the normalization entails that xs = 1 or xc = 1 so the menu includes

the “saladier lyonnais” or the “gratin d’andouillette”.

5.4 The Cube of OWA Operators

Ordered Weighted Averages (OWA) [8–10] and their weighted extension [33] have

been found useful in many applications. Since OWAs are a particular case of Cho-

quet integrals [34], one may wonder about a square, and then a cube of opposition

associated to OWAs as a particular case of the cube of Fig. 7. Let us first recall what

is an OWA.

An OWAw is a real mapping on C associated to a collection of weights w =
(w1,… ,wn) such that wi ∈ [0, 1] for all i ∈ {1,… , n},

∑n
i=1 wi = 1, and defined by:

OWAw(x) =
n∑

i=1
wi ⋅ x(i)

where x(1) ≤ ⋯ ≤ x(n).
This includes noticeable particular cases:

∙ w = (1, 0,… , 0) ⇒ OWAw(x) = minni=1 xi,
∙ w = (0,… , 0, 1) ⇒ OWAw(x) = maxni=1 xi,
∙ w = (1

n
,… ,

1
n
) ⇒ OWAw(x) =

∑n
i=1 xi
n

.

In [8], Yager also defines measures of orness and andness:

orness(OWAw) =
1

n − 1

n∑

i=1
(n − i) ⋅ wi; andness(OWAw) = 1 − orness(OWAw).
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Fig. 8 Square of opposition

of OWA

Note that orness(OWAw), andness(OWAw) ∈ [0, 1]. The closer the OWAw is to an

or (resp. and), the closer orness(OWAw) is to 1 (resp. 0).

In the same article, Yager also defines the measure of dispersion (or entropy) of

an OWA associated to w by

disp(OWAw) = −
n∑

i=1
wi lnwi.

The measure of dispersion estimates the degree to which we use all the aggregates

equally.

The dual of OWAw (see, e.g., [35]) is OWAŵ with the weight ŵ = (wn,… ,w1).
More precisely we have ŵi = wn−i+1. It is easy check that disp(OWAŵ) = disp(OWAw)
and orness(OWAŵ) = 1 − orness(OWAw) = andness(OWAw).

The following duality relation holds

OWAw(1 − x) =
∑n

i=1 wi(1 − x(n−i+1)) = 1 −
∑n

i=1 wn−i+1x(i)
= 1 − OWAŵ(x)

In particular, it changes min into max and conversely.

This corresponds to the expected relation for the diagonals of the square of oppo-

sition of Fig. 8 for OWAs. Then the entailment relations of the vertical sides require

to have
n∑

i=1
wi ⋅ x(i) ≤

n∑

i=1
wi ⋅ x(n−i+1)

This can be rewritten as

0 ≤ w1 ⋅ (x(n) − x(1)) + w2 ⋅ (x(n−1) − x(2)) +⋯ + wn ⋅ (x(1) − x(n))
= (w1 − wn) ⋅ (x(n) − x(1)) + (w2 − wn−1) ⋅ (x(n−1) − x(2)) +⋯

In order to guarantee that the above sum adds positive terms only, it is enough to

enforce the following condition for the weights:

w1 ≥ w2 ≥ ⋯ ≥ wn,
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which expresses a demanding aggregation. We are not surprised to observe that the

w associated to max violates the above condition. The situation is similar to the one

already encountered with Sugeno integrals where we had to display integrals based

on pessimistic or optimistic fuzzy measures depending on the vertices of the square

and similar to the situation of belief functions, which are pessimistic, which ensures

a regular square of opposition without any further condition.

Besides, in [34, 36–38] it is proved that a capacity 𝜇 depends only on the cardi-

nality of subsets if and only if there exists w ∈ [0, 1]n such that C
𝜇
(x) = OWAw(x).

Moreover we have the following relations. The fuzzy measure 𝜇 associated to OWAw
is given by: 𝜇(T) =

∑n
i=n−t+1 wi where t denotes the cardinality of T . It is worth

noticing that the Moebius transform is m(T) =
∑t−1

j=0

(
t − 1
j

)
(−1)t−1−jwn−j, so m

depends only on the cardinality of the subsets. It is worth noticing that while the

particular cases min and average are associated with simple positive mass functions

(m(C ) = 1, and m({i}) = 1∕n respectively), max is associated with a mass function

that has negative weights (remember that plausibility measures do not have a positive

Moebius transform).

Conversely we have wn−t = 𝜇(T ∪ i) − 𝜇(T) =
∑

K⊆T m(K ∪ i) i ∈ C T ⊆ C ∖i.
So if 𝜇 depends only on the cardinality of the subsets, 𝜇, the capacity associ-

ated to m, depends only on the cardinality of subsets (since the Moebius transform

depends only on the cardinality of subsets). The weight of the OWA associated to 𝜇:

wn−t = 𝜇(T ∪ i) − 𝜇(T). Moreover, note that m(T) involves weights from wn−t+1 to

wn, while m(T) =
∑n−t−1

j=0

(
n − t − 1
j

)
(−1)n−t−1−jwn−j involves weights from wt+1

town, and m̂(T) =
∑t−1

j=0

(
t − 1
j

)
(−1)t−1−jŵn−j involves weights fromw0 towt, since

ŵn−j = wj+1. This indicates that these mass functions are different.

Hence we obtain the cube associated to the OWA’s presented on Fig. 9.

A deeper investigation of this cube in relation with conditions ensuring entail-

ments from top facet to bottom facet, and the positivity of associated mass functions

is left for further research.

Fig. 9 The cube of

opposition for OWA

operators
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6 Concluding Remarks

This paper has first shown how the structure of the cube of opposition extends from

ordinary sets to weighted min- and max-based aggregations and more generally to

Sugeno integrals, which constitute a very important family of qualitative aggrega-

tion operators. Then, a similar construct has been exhibited for Choquet integrals and

OWA operators. The cube exhausts all the possible aggregation attitudes. Moreover,

as mentioned in Sect. 2, it is compatible with a bipolar view where we distinguish

between desirable properties and rejected properties. It thus provides a rich theoreti-

cal basis for multiple criteria aggregation. Still further research is needed for a better

understanding of the interplay of the vertices in the different cubes.
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Entropy Measures and Views of Information

Bernadette Bouchon-Meunier and Christophe Marsala

Abstract Among the countless papers written by Ronald R. Yager, those on

Entropies and measures of information are considered, keeping in mind the notion of

view of a set, in order to point out a similarity between the quantities introduced in

various frameworks to evaluate a kind of entropy. We define the concept of entropy

measure and we show that its main characteristic is a form of monotonicity, satisfied

by quantities scrutinised by R.R. Yager.

1 Introduction

Entropies and measures of information, fuzziness, specificity are key concepts in the

management of data, knowledge and information. R.R. Yager has pointed out their

importance from the early beginning of his work on fuzzy systems and soft comput-

ing. It is no coincidence that he co-founded the International Conference on Informa-

tion Processing and Management of Uncertainty in 1986, his area of interest being

clearly at the cross roads of both domains of uncertain knowledge representation

and information evaluation in digital media. Among the long list of his publications,

those related to quantities measuring information, entropy, measures of fuzziness,

constitute an important mine of tools to capture the uncertainty inherent in data and

knowledge management. We focus on some of these quantities and we show that

they are of different types, depending on their properties and the purpose of their

introduction. The same word of entropy has been used with different meanings and

we propose to consider properties enabling the user to choose an appropriate entropy

measure for a given problem.
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In Sect. 2, we introduce information as a view of a set and we consider solutions

to evaluate views. In Sect. 3, we define entropy measures and their associated pos-

sible properties of symmetry, 𝜓-recursivity, monotonicity and additivity. Section 4

presents classic examples of entropy measures, which leads to considering weakened

properties of recursivity and additivity, regarded as new forms of monotonicity. We

then consider these properties in the case of entropy measures introduced by R.R.

Yager, based on aggregation operators as detailed in Sect. 5, in the framework of the-

ory of evidence as described in Sect. 6, and in association with similarity relations as

presented in Sect. 7. In Sect. 8, we tackle entropy measures dealing with intuitionistic

fuzzy sets, which have attracted the interest of R.R. Yager, but not in what concerns

entropy or measures of information. We then conclude.

2 Information and Measure of Information

2.1 Information Is a View on a Set

Nowadays, measuring information is a very hot topic and one of the main challenges

is to define the concept of information, as it is done in the recent work by Lotfi

Zadeh [22]. In this paper, he considers two aspects of information: probabilistic, and

possibilistic, and their combination.

In this paper, we do not focus on defining information but we discuss on the mea-

surement of information and the evaluation of a measure of information.

Let us consider a set of objects (or, in particular cases, events) that represent a

physical representation of the real world. In this paper, for the sake of clarity, only

finite sets are considered but this work could be generalised to non-countable sets.

We consider a 𝜎-algebra B defined on a finite universe U. In order to formally manip-

ulate, or to make predictions, or to evaluate a subset X of B, a formal representation

of X, a measure, is usually used that identifies objects x ∈ X through a given view.

In Kampé de Fériet’s work, views are observers of the objects [10, 12].

In this paper, a view is a measure that reports a kind of information on the objects

of X. This measure is dependent on the particular objective that should be fulfilled

or the aim of the user. Typically:

Definition 1 A view is a mapping from 2X to ℝ+
.

For instance, in order to make a prediction, we are interested in obtaining some

information about the occurrence of the objects, and the classical view in this case is

to use a probability of the occurrence of each object x from X. Another example, in

order to define a vague category composed of objects, a useful view is a membership

function that defines this category as a fuzzy set of X.
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2.2 Evaluation of a View

Evaluating a view is an important way to gain more knowledge on X with regard to

the considered view. Such an evaluation is obtained by considering all the values of

the view in order to obtain a single value that expresses a global knowledge on the

view. Aggregating all the values is thus done by means of a measure of information.

In the literature, measures of information take various forms and we give the most

basic hereunder.

2.2.1 Fuzzy Measure

Depending on the information that should be handled through the view, the mea-

sure is associated with specific properties: monotonicity, maximality, minimality,

etc. Classically, when related to the occurrence of the objects, a view is a probabil-

ity. In fuzzy sets theory, a view is often a fuzzy measure.

Definition 2 A fuzzy measure is a mapping f ∶ 2X → [0, 1] such that

(i) f (∅) = 0,

(ii) f (X) = 1,

(iii) ∀A,B ∈ 2X , if A ⊆ B then f (A) ≤ f (B).

But a view could be any kind of measure. For instance, a view on X could be

defined as the association of a weight to each element of X. In evidence theory, mass

assignment is an example of such an association. But weights could be of any kind

(the age of each element xi, a given price, a duration, etc.).

Usually, a view enables us to help the ranking of elements from X in order to

select one, for instance, the most probable event from X, or the most representative

subset set of X.

2.2.2 Probabilistic Case

There exists several measures of information to value the global information brought

out by a probability distribution. The well-known Shannon entropy is such a measure

of information enabling the evaluation of a particular view. It is usually referred to

as a measure of the probabilistic disorder of the set X.

Definition 3 Let a 𝜎-algebra B be defined on a finite universe U, and let Xn =
{x1,… , xn} for n ∈ ℕ. Let p ∶ B → [0, 1], be a probability distribution over Xn, pi
being associated with xi. The Shannon entropy of p is defined as:

H(p) = −
n∑

i=1
pi log pi
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Here, the view on Xn is the probability p and the Shannon entropy H(p) offers a

value related to p such that [1]:

1. H(p) ≥ 0 for any probability distribution p (non negativity)
2. H(p) = 0 if ∃k ∈ {1,… , n}, pk = 1 and ∀i ≠ k, pi = 0 (minimality)
3. H(p) = 1 if p = (1

n
,… ,

1
n
) (normality)

4. H(pq) = H(p) + H(q) for any probability distributions p and q (additivity)

However, this kind of evaluation of the view is highly focused on the probabilistic

information based on p. In particular, the additivity property is a strong commitment

for the evaluation of the view.

In his work, J. Kampé de Fériet introduced a new way of aggregating information

by considering any operation of composition to construct H(pq) from H(p) and H(q)
[11].

2.2.3 Fuzzy Case

In some cases, the view is not a probability, but for instance a membership function

defining a fuzzy set.

For instance, De Luca and Termini have proposed an entropy measure of a fuzzy
set defined by its membership function 𝜇 ∶ X → [0, 1] as follows [7]:

1. H(𝜇) = 0 if and only if 𝜇 takes values 0 or 1
2. H(𝜇) is maximum if and only if 𝜇 assumes always the value

1
2

3. H(𝜇) ≥ H(𝜇∗) for any 𝜇∗
sharpened version of 𝜇, i.e. any fuzzy set such that

𝜇(x) ≤ 𝜇∗(x) if 𝜇(x) ≥ 1
2

and 𝜇(x) > 𝜇∗(x) if 𝜇(x) ≤ 1
2

2.2.4 Disorder and Homogeneity

Similarities between properties of measures of information in the probabilistic case

and the fuzzy case are evident as both enable the aggregation of a view on X.

As previously said, Shannon entropy is usually considered as a measure of the

disorder existing when a prediction of the occurrence of one element of X should be

done. The higher the entropy, the less predictable the event x from X to occur.

However, another interpretation could be used, that refers to the physical inter-

pretation of the Bolztmann entropy. In physics and thermodynamics, the entropy of

a system grows over time and is maximum when all the studied particles have the

same temperature.

Thus, we can view an entropy as a measure of homogeneity of the set X through

the considered view.
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It is easy to see that existing measures aim at evaluating homogeneity:

∙ Shannon entropy is maximum when all probabilities are equal

∙ De Luca and Termini entropy is maximum when all the elements of X have the

same membership degree of
1
2

that refers to an incomplete membership to the

fuzzy set.

3 Entropy Measures

The various evaluations of a view we have mentioned have very different proper-

ties, even though they intuitively belong to the same family. We propose a formal

approach of this family, introducing the concept of entropy measure which encom-

passes the previous quantities, pointing out major properties they may share. We then

study particular frameworks where such properties have been considered, pointing

out that some quantities introduced by R.R. Yager with the purpose of evaluating

views in specific environments such as evidence theory or similarities, as well as

the intuitionistic paradigm he was interested in, have mainly in common a general

property of monotonicity with regard to a kind of refinement of information. We will

then conclude that such a form of monotonicity is the most important property shared

by those very different entropy measures, the concept of refinement of information

being strongly dependent on the framework.

Starting from the seminal paper by Aczél and Daróczy on the so-called inset

entropy [2], we consider again a 𝜎-algebra B defined on a finite universe U.

For any integer n, we denote: Xn = {(x1,… , xn)|xi ∈ B,∀i = 1,… , n}, Pn =
{(p1,… , pn)|pi ∈ [0, 1]}, pi being associated with xi through a function p ∶ B →
[0, 1], a particular case being a probability distribution defined on (U,B), Wn =
{(wx1 ,… ,wxn )|wxi ∈ ℝ+,∀i = 1,… , n}, a family of n-tuples of weights

1
associ-

ated with n-tuples of B through a function f ∶ B → ℝ+n
, such that f (x1,… , xn) =

(wx1 ,… ,wxn ).
An entropy measure is a sequence of mappings En ∶ Xn × Pn ×Wn → ℝ+

satis-

fying several properties among the following ones.

3.1 Symmetry

For any permutation 𝜎 of 1,… , n, we have:

En

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
wx1 , … , wxn

⎞
⎟
⎟
⎠
= En

⎛
⎜
⎜
⎝

x
𝜎(1), … , x

𝜎(n)
p
𝜎(1), … , p

𝜎(n)
wx𝜎(1) , … , wx𝜎(n)

⎞
⎟
⎟
⎠

1
In the following, for the sake of simplicity, wxi will be denoted wi when the meaning of i is clear.
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3.2 𝝍-Recursivity

En

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
wx1 , wx2 … , wxn

⎞
⎟
⎟
⎠
=

En−1

⎛
⎜
⎜
⎝

x1 ∪ x2, x3 … , xn
p1 + p2, p3 … , pn
wx1∪x2 , wx3 … , wxn

⎞
⎟
⎟
⎠
+ 𝜓

⎛
⎜
⎜
⎝

x1, x2
p1, p2
wx1 , wx2

⎞
⎟
⎟
⎠
E2

⎛
⎜
⎜
⎝

x1, x2p1
p1+p2

,
p2

p1+p2
wx1 , wx2

⎞
⎟
⎟
⎠

(1)

for a function 𝜓 ∶ X2 × P2 ×W2 → ℝ+
.

The classic property of recursivity corresponds to:

𝜓0

⎛
⎜
⎜
⎝

x1, x2
p1, p2
wx1 , wx2

⎞
⎟
⎟
⎠
= p1 + p2,

weights not being taken into account.

3.3 Monotonicity

En

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
wx1 , … , wxn

⎞
⎟
⎟
⎠
≤ En

⎛
⎜
⎜
⎝

x′1, … , x′n
p′1, … , p′n
wx′1

, … , wx′n

⎞
⎟
⎟
⎠

if

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
wx1 , … , wxn

⎞
⎟
⎟
⎠
≺

⎛
⎜
⎜
⎝

x′1, … , x′n
p′1, … , p′n
wx′1

, … , wx′n

⎞
⎟
⎟
⎠

for some partial order ≺ on

⋃

n
Xn × Pn ×Wn.

Examples of monotonicity can be based on the following partial orders:

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
wx1 , … , wxn

⎞
⎟
⎟
⎠
≺

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
w′
x1
, … , w′

xn

⎞
⎟
⎟
⎠

if and only if, ∀i the following conditions (M1) or (M2) are satisfied:

(M1) ∙ w′
i ≤ wi ⇔ w′

i ≥
1
2
;

∙ w′
i ≥ wi ⇔ w′

i <
1
2
.

(M2) w′
i ≥ wi.

Other examples will be studied later.
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3.4 Additivity

Let us further consider a second finite universe U′
, a 𝜎-algebra B′

on U′
. In a way

similar to the situation on U, we consider

∙ X′
m = {(x′1,… , x′m)|x

′
i ∈ B′, ∀i};

∙ P′
m = {(p′1,… , p′m)|p

′
i ∈ [0, 1]}, p′i being associated with x′i through a function p′ ∶

B′ → [0, 1];
∙ W ′

m = {(w′
1,… ,w′

m)|w
′
i ∈ ℝ+; ∀i}, a family ofm-tuples of weights associated with

m-tuples of elements of B′
through a function f ′ ∶ B′ → ℝ+

, such that f ′(x′i) = w′
i .

We further suppose that there exist two combination operators ⋆ and ◦ enabling

us to equip the Cartesian product of U with similar distributions:

∙ P ⋆ P′
n×m = {(p1 ⋆ p′1,… , pi ⋆ p′j ,…)|pi ⋆ p′j ∈ [0, 1]}, pi ⋆ p′j being associated

with (xi, x′j) for any i and j through a function p ⋆ p′,
∙ W◦W ′

n×m = {(w1,1,… ,wi,j,…)|wi,j ∈ ℝ+, ∀i, j}, is defined through a function

f◦f ′ ∶ B × B′ → ℝ+
, such that: f◦f ′(x1, x′j)=wi,j for all i = 1,… , n and j = 1,… ,m.

The classic additivity property stands in the case where U and U′
are independent

universes, p and p′ being probability distributions on (U,B) and (U′,B′), weights

generally not being taken into account. It yields:

En×m

⎛
⎜
⎜
⎜
⎝

(x1, x′1), (x1, x
′
2), … , (xi, x′j), … , (xn, x′m)

p1 ⋆ p′1, p1 ⋆ p′2, … , pi ⋆ p′j , … , pn ⋆ p′m
wx1,x′1

, wx1,x′2
, … , wxi,x′j

, … , wxn,x′m

⎞
⎟
⎟
⎟
⎠

=

En

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
wx1 , … , wxn

⎞
⎟
⎟
⎠
+ Em

⎛
⎜
⎜
⎝

x′1, … , x′m
p′1, … , p′m
wx′1

, … , wx′n

⎞
⎟
⎟
⎠

(2)

4 Classic Examples of Entropy Measures

A particular case of entropy measures is the general class of inset entropies intro-

duced by Aczél and Daróczy [2], who restricted their study to Xn = {(x1,… , xn)|xi ∈
B, ∀i such that xi ∩ xj = ∅, ∀j} and considered sequences of mappings independent

of Wn ∀n: In ∶ Xn × Pn, where elements of Pn are probabilities. They consider such

mappings satisfying the 𝜓0-recursivity as well as the symmetry and measurability

with regard to the probability. They have proved that In is necessarily of the form:

In

(
x1, x2
p1, p2

)
= g(

⋃

i
xi) −

∑

i
pi g(xi) − K

∑

i
pi log pi

for a constant K and a function g ∶ B → ℝ
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A possibilistic inset entropy has then been introduced in [3] in the case where

f lies in [0, 1] and maxi wi = 1. It can be proved that a possibilistic inset entropy

satisfies properties of symmetry, measurability and 𝜓0-recursivity if and only if:

En

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
w1, w2, … , wn

⎞
⎟
⎟
⎠
= G(max

i
wi) −

∑

i
piG(wi) − K

∑

i
pi log pi

for a constantK and a functionG ∶ [0, 1] → ℝ+
, assuming thatwxi∪xj = max(wxi ,wxj ),

∀i, j.
One of the seminal papers on entropies involving elements different from proba-

bilities introduces [8] a weighted entropy as follows [8]:

Iwn
⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
w1, w2, … , wn

⎞
⎟
⎟
⎠
= −

∑

i
wi pi log pi.

This quantity is proportional to Shannon entropy Hn(p1,… , pn) when all weights

wi are equal. It is monotonic with regard to an order on the weights defined as follows:

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
w1, w2, … , wn

⎞
⎟
⎟
⎠
≺

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
w′
1, w

′
2, … , w′

n

⎞
⎟
⎟
⎠

with wi ≤ w′
i for all i. It is also 𝜓0-recursive:

En

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
w1, w2, … , wn

⎞
⎟
⎟
⎠
=

En−1

⎛
⎜
⎜
⎝

x1 ∪ x2, x3, … , xn
p1 + p2 p3, … , pn

f2(x1 ∪ x2), w3, … , wn

⎞
⎟
⎟
⎠
+ (p1 + p2) × E2

⎛
⎜
⎜
⎝

x1, x2p1
p1+p2

,
p2

p1+p2
w1, w2

⎞
⎟
⎟
⎠

(3)

with f2(x1 ∪ x2) =
(p1w1+p2w2)

(p1+p2)
, all other weights being unchanged.

As indicated in Sect. 2.2.3, another classic entropy measure has been introduced

by De Luca and Termini [7] as a measure of fuzziness, in the case where f is the

membership function of a fuzzy set on U:

EDLT
n

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
w1, w2, … , wn

⎞
⎟
⎟
⎠
= −

∑

i
wi logwi −

∑

i
(1 − wi) log(1 − wi).
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A major property of this quantity is its monotonicity with respect to the above

mentioned partial order (M1), called sharpness.
Let us remark that De Luca and Termini have also introduced the total entropy:

ETE
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
w1, … , wn

⎞
⎟
⎟
⎠
= −

∑

i
pi log pi −

∑

i
pi
(
wi logwi − (1 − wi) log(1 − wi)

)
.

taking into account probabilities pi and degrees of fuzziness wi associated with ele-

ments xi, i = 1,… n of U. It can be proved [3] that, in the case where maxi wi = 1,

the weights representing a normal possibility distribution, the total entropy is a pos-

sibilistic 𝜓0-recursive inset entropy, with K = 1 and G(x) = G(1) − x log x − (1 −
x) log(1 − x), ∀x ∈ [0, 1].

It appears that existing entropies or measures of fuzziness do not have the same

behaviour with regard to the major properties of 𝜓-recursivity, additivity or

monotonicity. Nevertheless, as pointed out by Ronald Yager in several of his papers

[17, 18], these quantities are roughly in the same category. An approach to support

such a claim is to observe that they evaluate an amount of information or a decrease

of uncertainty after a given observation, as mentioned by Renyi [15].

Therefore, we suggest to consider a common feature between all these quantities

existing in the literature under the name of entropy or taking a form similar to classic

entropies, the best known being obviously the Shannon entropy. This common factor

is the fact that a refinement of the tool to perform observations increases the entropy

measure. This approach can be compared to Mugur-Schächter’s works on the general

relativity of descriptions, considering that any process of knowledge extraction is

associated with epistemic operators called a delimiter and a view, representing the

influence of the context and the observation tool on the available information [14].

∙ Such a refinement can be obtained by means of a partial order on B, inducing a

monotonicity property as presented above.

∙ Another kind of refinement can be associated with a decrease of the coarseness

of a partition of the universe of discourse, and this corresponds to a property of

weak recursivity defined as follows:

(M3) En

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
w1, w2, … , wn

⎞
⎟
⎟
⎠
≥ En−1

⎛
⎜
⎜
⎝

x1 ∪ x2, x3, … , xn
p1 + p2, p3, … , pn
wx1∪x2 , w3, … , wn

⎞
⎟
⎟
⎠

∙ Another means to refine information is to consider a secondary universe of dis-

course providing more details on the observed phenomenon. Such a refinement

leads to a property of weak additivity stating the following:
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(M4) En×m

⎛
⎜
⎜
⎝

(x1, x′1), … , (xn, x′m)
p1 ⋆ p′1, … , pn ⋆ p′m
w1◦w′

1, w1◦w′
2, … , wn◦w′

m

⎞
⎟
⎟
⎠
≥

max
⎡
⎢
⎢
⎣
En

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
w1, … , wn

⎞
⎟
⎟
⎠
, Em

⎛
⎜
⎜
⎝

x1, … , xm
p1, … , pm
w′
1, … , w′

m

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

Coming back to the measure of fuzziness proposed by De Luca and Termini,

it can be observed that, in the case where the weights are possibility degrees, it is

also weakly recursive and then monotonic with regard to the refinement of granular

information:

EDLT
n

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
w1, w2, … , wn

⎞
⎟
⎟
⎠
≥ EDLT

n−1

⎛
⎜
⎜
⎝

x1 ∪ x2, x3, … , xn
p1 + p2, p3, … , pn

max(w1,w2), w3, … , wn

⎞
⎟
⎟
⎠

Let us remark that any entropy measure satisfying a property of 𝜓-recursivity is

also weakly recursive. If it satisfies the additivity property, it is also weakly additive.

5 Measures of Entropy Related to Aggregation Operators

Yager [18] considers measures of entropy based on OWA operators involving argument-

dependent weights. For a parameter 𝛼 ≥ 1, he considers:

EY ,𝛼
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
w1, … , wn

⎞
⎟
⎟
⎠
= 1 −

∑

i
wipi.

with probabilities pi and weights wi =
p𝛼i∑
i p

𝛼

i
, ∀i = 1,… , n. We can observe that

such quantities have basic properties similar to Shannon entropy, such as symme-

try and continuity. Nevertheless, no property of 𝜓-recursivity can be proved in the

general case. The general form:

EY ,𝛼
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
w1, … , wn

⎞
⎟
⎟
⎠
= 1 −

∑

i

p𝛼+1i∑
i p

𝛼

i
.

reduces to:

EY ,1
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
w1, … , wn

⎞
⎟
⎟
⎠
= 1 −

∑

i
p2i .
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in the case where 𝛼 = 1, which equals

1
2
ED,2
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
w1, … , wn

⎞
⎟
⎟
⎠
,

whereED,2
n denotes the Daroczy entropy of type 2 [6]. Therefore,EY ,1

n is𝜓2-recursive,

with:

𝜓2

⎛
⎜
⎜
⎝

x1, x2
p1, p2
p1, p2

⎞
⎟
⎟
⎠
= (p1 + p2)2.

We deduce that EY ,1
n is monotonic with regard to the refinement of information,

as follows:

EY ,1
n

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
p1, p2, … , pn

⎞
⎟
⎟
⎠
≥ EY ,1

n−1

⎛
⎜
⎜
⎝

x1 ∪ x2, x3, … , xn
p1 + p2, p3, … , pn
p1 + p2, p3, … , pn

⎞
⎟
⎟
⎠
.

An analogous form of entropy measure is also investigated [18] as:

EY ,p
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
w1, … , wn

⎞
⎟
⎟
⎠
= −

∑

i
wi(1 − wi)

where wi is a membership degree associated with xi, i = 1,… , n. It is clear that it is

the same form as EY ,1
n when weights are probabilities. In its general form, EY ,p

n is a

measure of fuzziness and satisfies monotonicity (M1).

6 Framework of Theory of Evidence

We consider a frame of evidence U, with a basic assignment m ∶ 2U → [0, 1], such

that m(∅) = 0 and

∑

x∈2U
m(x) = 1. Yager introduced [19, 20] the entropy associated

with this basic assignment as follows, for the family (x1,… , xn) of focal elements

associated with m:

EY
n

⎛
⎜
⎜
⎝

x1, … , xn
m1, … , mn
w1, … , wn

⎞
⎟
⎟
⎠
= −

∑

i
mi logwi

with mi = m(xi) and wi = Pl(xi) =
∑

{j|xj∩xi≠∅}
mj being the plausibility of xi, for all i =

1, 2….
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It is easy to see that EY
n satisfies the weak recursivity property:

EY
n

⎛
⎜
⎜
⎝

x1, x2, … , xn
m1, m2, … , mn
w1, w2, … , wn

⎞
⎟
⎟
⎠
≥ EY

n−1

⎛
⎜
⎜
⎝

x1 ∪ x2, x3, … , xn
m1 + m2, m3, … , mn
wx1∪x2 , w3, … wn

⎞
⎟
⎟
⎠

Proof: We note 𝜒x𝛼 ,x𝛽 = 1 if x
𝛼
∩ x

𝛽
≠ ∅, and 𝜒x𝛼 ,x𝛽 = 0 if x

𝛼
∩ x

𝛽
= ∅.

We have:

𝛥n−1 = EY
n−1

⎛
⎜
⎜
⎝

x1 ∪ x2, x3, … , xn
m1 + m2, m3, … , mn
wx1∪x2 , w3, … wn

⎞
⎟
⎟
⎠
=

−
∑

i=3,…,n
mi log

( ∑

j=3,…,n
𝜒xi,xjmj + 𝜒xi,x1∪x2 (m1 + m2)

)

− (m1 + m2) log
( ∑

j=3,…,n
𝜒x1∪x2,xjmj + m1 + m2

)
. (4)

Let us remark that: 𝜒xi,x1∪x2 (m1 + m2) ≥ 𝜒xi,x1m1 + 𝜒xi,x2m2 for any i = 3,… , n
and 𝜒xi,x1∪x2m1 ≥ 𝜒xi,x1m1 for any i = 3,… , n.

We get:

𝛥n−1 ≤ −
∑

i=3,…,n
mi log

( ∑

j=3,…,n
𝜒xi,xjmj + 𝜒xi,x1m1 + 𝜒xi,x2m2

)

−m1 log
( ∑

j=3,…,n
𝜒xj,x1mj + 𝜒x1,x1m1 + 𝜒x1,x2m2

)

− m2 log
( ∑

j=3,…,n
𝜒xj,x2mj + 𝜒x2,x2m2 + 𝜒x1,x2m1

)

and thus

𝛥n−1 ≤ −
∑

i=1,…,n
mi log

( ∑

i=1,…,n
𝜒xi,xjmj

)
.

We deduce that:

𝛥n−1 ≤ EY
n

⎛
⎜
⎜
⎝

x1, … , xn
m1, … , mn
w1, … , wn

⎞
⎟
⎟
⎠

7 Entropy Measures Under Similarity Relations

Following Yager’s suggestion [17], let us consider a similarity relation S on U =
{x1,… , xn}, reflexive, symmetric and min-transitive and let us define the entropy:
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En

⎛
⎜
⎜
⎝

x1, x2, … , xn
p1, p2, … , pn
S1, S2, … , Sn

⎞
⎟
⎟
⎠
= −

∑

xi∈U
pi log Si

with Si =
∑

xj∈U
pj S(xi, xj) for all i = 1,… n.

This quantity is an entropy measure satisfying the monotonicity property with

respect to the order on similarities S and S′ defined as follows:

S ≺ S′ ⇔ S(xi, xj) ≤ S′(xi, xj) ∀i, j.

This order provides an order on

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
S1, … , Sn

⎞
⎟
⎟
⎠
≤

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn
S
′
1, … , S

′
n

⎞
⎟
⎟
⎠

with S
′
i =

∑

xj∈U
pjS′(xi, xj).

Another monotonicity property of this entropy measure is the weak additiv-

ity (M4) [3], obtained by defining a joint similarity relation S × S′ on the Cartesian

product U × U′
as follows, for two similarity relations S defined on U and S′ defined

on U′
:

S × S′((xi, yj), (xk, yl)) = min
(
S(xi, xk), S′(yj, yl)

)

for any xi and xk in U, any yj and yl in U′
.

8 Intuitionistic Quantities

First of all, some basic recalls on intuitionistic fuzzy sets are presented here. Let X
be a universe, an intuitionistic fuzzy set (IFS) A of X is defined by:

A = {(x, 𝜇A(x), 𝜈A(x))|x ∈ X}

with 𝜇 ∶ X → [0, 1], 𝜈 ∶ X → [0, 1] and 0 ≤ 𝜇A(x) + 𝜈A(x) ≤ 1, ∀x ∈ X. Here, 𝜇A(x)
and 𝜈A(x) represent respectively the membership degree and the non-membership

degree of x in A.

Given an intuitionistic fuzzy set A of X, the intuitionistic index of x to A is defined

for all x ∈ X as: 𝜋A(x) = 1 − (𝜇A(x) + 𝜈A(x)). This index represents the hesitancy

lying on the membership of x in A.



60 B. Bouchon-Meunier and C. Marsala

There exists several works in IFS theory that propose an entropy of an intu-
itionistic fuzzy set A. In order to summarise their form, we need to extend our pre-

sented model (Sect. 3) to complex numbers by considering that weights belong to

Zn = {(zx1 ,… , zxn ) | zxi ∈ ℂ,∀i = 1,… , n}. It is justified by the fact that each x ∈ X
being associated with two values 𝜇A(x), 𝜈A(x), it could thus be associated with a point

in a two dimensional space. It is a classical representation in intuitionistic works even

if a 3D-representation could be used (as, for instance, in [16]).

Here, we define for each x ∈ X, zA(x) = 𝜇A(x) + i𝜈A(x), considering that 𝜇A(x) is

the real part of zx and 𝜈A(x) is its imaginary part.

Entropy of intuitionistic fuzzy sets are summarised as:

EIFS
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn

zA(x1) … , zA(xn)

⎞
⎟
⎟
⎠
.

For instance, the entropy defined in [16] is rewritten as:

ES
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn

zA(x1), … , zA(xn)

⎞
⎟
⎟
⎠
= 1 − 1

2n

n∑

i=1
|𝜇A(xi) − 𝜈A(xi)|

with 𝜇A(x) = ℜ(zA(x)) and 𝜈A(x) = ℑ(zA(x)) for all x ∈ X.

It could be interesting to see that ES
n is related to EY ,𝛼

n in the particular case where

ℜ(zA(x)) =
p𝛼+1i∑
i p

𝛼

i
and ℑ(zA(x)) = 0 for all x ∈ X. In this case, ES

n = 1 − 1
2n

+ 1
2n
EY ,𝛼
n

showing that ES
n and EY ,𝛼

n are linearly dependent.

Various definitions are recalled in [9]. In this paper, it can be seen that the

monotonicity property is ensured by definition. The authors present several defin-

itions that lie on the definition of a partial order on Wn and the concept of less fuzzy
than. For instance, we recall here two definitions that are used:

(M5)
EIFS
n (A) ≤ EIFS

n (B) if A is less fuzzy than B
i.e. 𝜇A(x) ≤ 𝜇B(x) and 𝜈A(x) ≥ 𝜈B(x) for 𝜇B(x) ≤ 𝜈B(x),∀x ∈ X,
or 𝜇A(x) ≥ 𝜇B(x) and 𝜈A(x) ≤ 𝜈B(x) for 𝜇B(x) ≥ 𝜈B(x),∀x ∈ X

and

(M6)
EIFS
n (A) ≤ EIFS

n (B) if A is less fuzzy than B
i.e. A ⊆ B for 𝜇B(x) ≤ 𝜈B(x),∀x ∈ X,
or B ⊆ A for 𝜇B(x) ≥ 𝜈B(x),∀x ∈ X.

Each definition of the monotonicity produces the definition of a particular form

of EIFS
. Thus, ES

n satisfies (M5).
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In [9], the following entropy that satisfies (M6) is introduced:

EG
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn

zA(x1), … , zA(xn)

⎞
⎟
⎟
⎠
= 1

2n

n∑

i=1

(
1 − |𝜇A(xi) − 𝜈A(xi)|

)
(1 + 𝜋A(xi))

with, ∀x ∈ X, 𝜇A(x) = ℜ(zA(x)), 𝜈A(x) = ℑ(zA(x)) and 𝜋A(x) = 1 −ℜ(zA(x)) −
ℑ(zA(x)).

Another way to define entropy is presented in [5] where the definition is based

on extensions of the Hamming distance and the Euclidian distance to intuitionistic

fuzzy sets. For instance, the following entropy is proposed:

EB
n

⎛
⎜
⎜
⎝

x1, … , xn
p1, … , pn

zA(x1), … , zA(xn)

⎞
⎟
⎟
⎠
=

n∑

i=1
𝜋A(xi).

with 𝜋A(x) = 1 −ℜ(zA(x)) −ℑ(zA(x)) for all x ∈ X.

As stated in [5], this definition satisfies the following (M7) property:

(M7) EIFS
n (A) ≤ EIFS

n (B) if A ≤ B
i.e. 𝜇A(x) ≤ 𝜇B(x) and 𝜈A(x) ≤ 𝜈B(x),∀x ∈ X,

Further work could be found in Yager’s paper [21]. In this paper, R.R. Yager has

expressed his interest in IFS in which he studies the concept of specificity, mention-

ing that the role of specificity in fuzzy set theory is analogous to the role that entropy

plays in probability theory. He then provides a deep analysis of the specificity of intu-

itionistic fuzzy sets.

9 Conclusion

Entropy and measures of information have been extensively studied for 40 years.

Extensions to fuzzy sets and other representation models of uncertainty and impre-

cision have been proposed in many papers. These extensions are often only based on

a formal similarity between the introduced quantities and classic entropies, in spite

of the fact that their purpose is different, entropies measuring the decrease of uncer-

tainty resulting from the occurrence of an event, while fuzzy set related measures

evaluate the imprecision of events.

General approaches have been proposed, for instance by [13] or [4]. In this paper,

we took advantage of the various quantities introduced by R. R. Yager in relation

with so-called entropy, to present a means to embed them in a common approach on

the basis of a view of sets and its evaluation. We introduced the notion of entropy

measure and properties they can satisfy. We focused on a common general property
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of monotonicity which can be regarded as the most consensual common factor of

most quantities introduced by R.R. Yager and others.

In the future, we propose to refine the concept of monotonicity and to use it as a

key concept each time a new entropy measure must be introduced. We will take the

example of evolving and dynamic systems, for which very few entropy measures have

been considered and which are fundamental in the framework of machine meaning

and data mining, for instance.
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OWA Operators and Choquet Integrals
in the Interval-Valued Setting

H. Bustince, J. Fernandez, L. De Miguel, E. Barrenechea,
M. Pagola and R. Mesiar

Abstract In this chapter, we make use of the notion of admissible order between

intervals to extend the definition of OWA operators and Choquet integrals to the

interval-valued setting. We also present an algorithm for decision making based on

these developments.

1 Introduction

Among the many contributions by Ronald Yager to Fuzzy Sets Theory, one of the

most outstanding ones is that of ordered weighted aggregation operators [22] (see

also [7]). These operators consider a weighting vector and carry out an ordering of

the alternatives, in such a way that in fact each of the components of the weighting

vector determines the relevance of each of the inputs according to its relative position

with respect to all the other ones.

Applications of OWA operators have been various and successful in fields such

as decision making [9, 22] or image processing [3]. However, a crucial property in
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order to build OWA operators is the fact that the usual order between real numbers

is linear, and hence every possible input is comparable to every other possible input.

When the corresponding algorithms are extended to other settings, such as that of

interval-valued fuzzy sets, for instance, this is not true anymore, since the commonly

used orders in this situation are just the partial orders.

In this chapter we present the results in [9] which allow for a consistent extension

of the OWA operators to the interval-valued setting. In order to do this, we first

introduce the notion of admissible order [8] and use these orders (which extend the

usual partial order between intervals) for ranking appropriately the inputs.

Besides, since OWA operators are just a particular case of Choquet integrals and

the construction of the latter also depends strongly on the existence of a linear order,

we take advantage of our developments and recover the algorithm for decision mak-

ing which was also discussed in [9]. This kind of extension is of great relevance due

to the huge importance that interval-valued fuzzy sets are gaining in recent years in

many applied fields [2, 5, 6, 11]. Note that approaches to this problem in the setting

of averaging functions have already been considered in papers such as [4].

The structure of the chapter is as follows. In the next Section we recall some

basic notions. Section 3 is devoted to the extension of OWA operators to the interval-

valued setting and Sect. 4, to the corresponding developments for Choquet integrals.

In Sect. 5 we recover the example in [9] to show the usefulness of the method. We

finish with some concluding remarks and references.

2 Preliminaries

In this section we recall some basic concepts and notations that will be necessary for

the subsequent developments. First of all we recall the notion of aggregation function

in the general setting of bounded partially ordered sets.

Let (L,⪯) be a bounded partially ordered set (poset) with a smallest element (bottom)

0L and a greatest element (top) 1L. A mapping A∶Ln → L is an n-ary (n ∈ ℕ, n ≥ 2)

aggregation function on (L,⪯) if it is ⪯-increasing, i.e.,

for all 𝐱 = (x1,… , xn), 𝐲 = (y1,… , yn) ∈ Ln,

A(𝐱) ⪯ A(𝐲) whenever x1 ⪯ y1,… , xn ⪯ yn,

and satisfies the boundary conditions

A(0L,… , 0L) = 0L, A(1L,… , 1L) = 1L.

Remark 1 Note that for L = [0, 1] and ⪯=≤ the standard order of reals, we recover

the usual definition of an aggregation function on the unit interval, see, e.g., [12, 15].

We denote by L([0, 1]) the set of all closed subintervals of the unit interval,

L([0, 1]) = {[a, b] ∣ 0 ≤ a ≤ b ≤ 1}.



OWA Operators and Choquet Integrals in the Interval-Valued Setting 67

In L([0, 1]) the standard partial order of intervals, i.e., the binary relation ≤2, is

defined by

[a, b] ≤2 [c, d] ⇔ a ≤ c ∧ b ≤ d . (1)

With this partial order, (L([0, 1]),≤2) is a poset with the bottom [0, 0] and top

[1, 1].

2.1 Admissible Orders Generated by Aggregation Functions

A crucial property for defining some types of aggregation functions on [0, 1], and in

particular OWA operators [22], is the possibility of comparing any two inputs. When

we need to deal with intervals, however, it comes out that the order ≤2 considered

in the previous section is only a partial order on L([0, 1]). In [8], linear extensions of

such orders, called admissible orders on L([0, 1]), were considered.

Definition 1 A binary relation ⪯ on L([0, 1]) is an admissible order if it is a linear

order on L([0, 1]) refining ≤2.

That is,⪯ is an admissible order if for all [a, b], [c, d] ∈ L([0, 1]), if [a, b] ≤2 [c, d]
then also [a, b] ⪯ [c, d].

In [8], the generation of admissible orders on L([0, 1]) using appropriate pairs of

aggregation functions on [0, 1] was considered. Let’s recall now how this was done.

Denote K([0, 1]) = {(a, b) ∈ [0, 1]2 ∣ a ≤ b}. It is clear that intervals from L
([0, 1]) are in a one-to-one correspondence with points from K([0, 1]) and a par-

tial (linear) order ⪯ on one of these sets induces a partial (linear) order on the other,

[a, b] ⪯ [c, d] ⇔ (a, b) ⪯ (c, d).
Then we can define admissible orders as follows.

Proposition 1 [8] Let A, B∶ [0, 1]2 → [0, 1] be two aggregation functions, such
that for all (x, y), (u, v) ∈ K([0, 1]), the equalities A(x, y) = A(u, v) and B(x, y) =
B(u, v) can hold only if (x, y) = (u, v). Define the relation ⪯A,B on L([0, 1]) by

[x, y] ⪯A,B [u, v] if and only if

A(x, y) < A(u, v)
or A(x, y) =A(u, v) and B(x, y) ≤ B(u, v). (2)

Then ⪯A,B is an admissible order on L([0, 1]).

A pair (A,B) of aggregation functions as in Proposition 1 which generates the admis-

sible order ⪯A,B is called an admissible pair of aggregation functions. In this work

we only consider admissible orders generated by continuous aggregation functions.

It can be proved [8] that if (A,B) is an admissible pair of continuous aggregation

functions, then there exists an admissible pair of continuous idempotent aggregation

functions (A′,B′) such that the orders generated by the pairs (A,B) and (A′,B′) are

the same.
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Example 1 The following relations are relevant examples of admissible orders in

L([0, 1]):

(i) [a, b] ⪯Lex1 [c, d] ⇔ a < c or (a = c and b ≤ d),
(ii) [a, b] ⪯Lex2 [c, d] ⇔ b < d or (b = d and a ≤ c).

The order ⪯Lex1 is generated by the pair (P1,P2), where Pi, i = 1, 2, is the projec-

tion to the ith coordinate, and similarly, ⪯Lex2 is generated by (P2,P1). These orders

⪯Lex1 and ⪯Lex2 are called the lexicographical orders with respect to the first or sec-

ond coordinate, respectively.

A particular way of obtaining admissible orders on L([0, 1]), is defining them by

means of the so-called Atanassov operators, K
𝛼
.

Definition 2 For 𝛼 ∈ [0, 1], the operator K
𝛼
∶ [0, 1]2 → [0, 1] is given by

K
𝛼
(a, b) = a + 𝛼(b − a). (3)

Note that K
𝛼
(a, b) = (1 − 𝛼)a + 𝛼b, thus K

𝛼
is a weighted mean. If for 𝛼, 𝛽 ∈

[0, 1], 𝛼 ≠ 𝛽, we define the relation ⪯
𝛼,𝛽

on L([0, 1]) by

[a, b] ⪯𝛼,𝛽 [c, d] ⇔ K𝛼(a, b) < K𝛼(c, d) or (K𝛼(a, b) = K𝛼(c, d) and K𝛽 (a, b) ≤ K𝛽 (c, d)), (4)

then it is an admissible order on L([0, 1]) generated by an admissible pair of aggre-

gation functions (K
𝛼
,K

𝛽
), [8].

Proposition 2 [8]

(i) Let 𝛼 ∈ [0, 1[. Then all admissible orders⪯
𝛼,𝛽

with 𝛽 > 𝛼 coincide. This admis-
sible order will be denoted by ⪯

𝛼+.
(ii) Let 𝛼 ∈]0, 1]. Then all admissible orders ⪯

𝛼,𝛽
with 𝛽 < 𝛼 coincide. This admis-

sible order will be denoted by ⪯
𝛼−.

Remark 2

(i) The lexicographical orders ⪯Lex1 and ⪯Lex2 are recovered by orders ⪯
𝛼,𝛽

as the

orders ⪯0,1 =⪯0+ and ⪯1,0 =⪯1−, respectively.

(ii) Xu and Yager defined the order ⪯XY on L([0, 1]) by

[a, b] ⪯XY [c, d] ⇔ a + b < c + d ∨ a + b = c + d ∧ b − a ≤ d − c,

see [21]. ⪯XY is an admissible order which corresponds to the order ⪯0.5+. From

the statistical point of view, this order corresponds to the ordering of random

variables based on the expected value as the primary criterion, and on the vari-

ance as the secondary criterion (in the case of uniform distributions this is a

linear order over their supports).
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3 Interval-Valued OWA Operators

As we have already discussed, we are interested in extending ordered weighted

aggregation (OWA) operators introduced by Yager in [22] to the interval-valued set-

ting. Recall that the definition of these operators strongly depends on the fact that

the interval [0, 1] with the usual order between real numbers is a linearly ordered set.

Definition 3 Let 𝐰 = (w1,… ,wn) ∈ [0, 1]n with w1 +⋯ + wn = 1 be a weighting

vector. An ordered weighted aggregation operatorOWA𝐰 associated with𝐰 is a map-

ping OWA𝐰∶ [0, 1]n → [0, 1] defined by

OWA𝐰(x1,… , xn) =
n∑

i=1
wix(i), (5)

where x(i), i = 1,… , n, denotes the i-th greatest component of the input (x1,… , xn).

However, if we make use of admissible orders, it is clear that this definition in the

case of real weights can be extended straightforwardly to the interval-valued setting.

Definition 4 [9] Let ⪯ be an admissible order on L([0, 1]) and 𝐰 = (w1,… ,wn)
∈ [0, 1]n, w1 +⋯ + wn = 1, a weighting vector. An interval-valued OWA operator

associated with ⪯ and 𝐰 is a mapping IVOWA⪯
𝐰∶ (L([0, 1]))

n → L([0, 1]) defined by

IVOWA⪯
𝐰([a1, b1],… , [an, bn]) =

n∑

i=1
wi ⋅ [a(i), b(i)], (6)

where [a(i), b(i)], i = 1,… , n, denotes the i-th greatest interval of the input intervals

with respect to the order ⪯.

Note that the arithmetic operations on intervals are given as follows:

w ⋅ [a, b] = [wa,wb] and [a, b] + [c, d] = [a + c, b + d].

Observe that IVOWA operators in Definition 4 are well defined, since

w1a(1) + … + wna(n) ≤ w1 +… + wn = 1,

and analogously for the upper bound. The increasing monotonicity of real-valued

weighted arithmetic means ensures that the resulting set on the right-hand side of

(6) is an interval [a, b], a ≤ b.

Moreover, though the choice of a permutation (.) in formula (6) need not be unique

(this may happen only if some inputs are repeated), the possible repetition of inputs

has no influence on the resulting output interval.

First of all, we show that Definition 4 does in fact extend the usual definition of

OWA operators.
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Proposition 3 [9] Let⪯ be an admissible order on L([0, 1]) and let𝐰 = (w1,… ,wn)
∈ [0, 1]n with w1 +⋯ + wn = 1 be a weighting vector. Then

OWA𝐰(x1,… , xn) = IVOWA⪯
𝐰([x1, x1],… , [xn, xn]).

Remark 3 In general IVOWA operators do not preserve representability, that is, in

general, the identity

IVOWA⪯
𝐰([a1, b1],… , [an, bn]) =

[
OWA𝐰(a1,… , an),OWA𝐰(b1,… , bn)

]
, (7)

does not hold [9].

Example 2 Consider the weighting vector𝐰 = (1, 0, 0) and the lexicographical order

⪯Lex1. For the intervals

[
1
2
,
3
4

]
,

[
1
3
,
1
2

]
and

[
1
3
, 1
]

it holds

[1
3
,
1
2

]
⪯Lex1

[1
3
, 1
]
⪯Lex1

[1
2
,
3
4

]
.

Therefore

IVOWA⪯Lex1
𝐰

([1
2
,
3
4

]
,

[1
3
,
1
2

]
,

[1
3
, 1
])

=
[1
2
,
3
4

]
,

and on the other hand,

[
OWA𝐰

(1
2
,
1
3
,
1
3

)
,OWA𝐰

(3
4
,
1
2
, 1
)]

=
[1
2
, 1
]
.

Now, let us investigate several properties of IVOWA operators.

Example 3 [9] Consider the Xu and Yager order ⪯XY (i.e., the order ⪯0.5+), here

simply denoted by ⪯, and the weighting vector 𝐰 = (0.8, 0.2). Then for intervals

𝐱 = [0.5, 0.5], 𝐲 = [0.1, 1] and 𝐳 = [0.6, 0.6]

it holds 𝐱 ⪯ 𝐲 ⪯ 𝐳 and therefore

IVOWA⪯
𝐰(𝐱, 𝐲) = 0.8 ⋅ [0.1, 1] + 0.2 ⋅ [0.5, 0.5] = [0.18, 0.9],

IVOWA⪯
𝐰(𝐳, 𝐲) = 0.8 ⋅ [0.6, 0.6] + 0.2 ⋅ [0.1, 1] = [0.5, 0.68].

Observe that although 𝐱 = [0.5, 0.5] ≤2 [0.6, 0.6] = 𝐳 (i.e., we have increased the

first input interval with respect to the order ≤2), the obtained values of the IVOWA⪯
𝐰

operator are not comparable in the order ≤2, i.e., IVOWA⪯
𝐰 is not an aggregation

function with respect to ≤2.

The following examples and results are taken from [9].
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Example 4 Consider the order ⪯A,B generated by an admissible pair (A,B) of aggre-

gation functions, where A(x, y) = (
√
x +

√
y)∕2 and B(x, y) = y, and the IVOWA

operator associated with the weighting vector 𝐰 =
(

2
3
,
1
3

)
. Let

𝐱 = [0.25, 0.25], 𝐲 = [0, 1], 𝐳 = [0.25, 0.28].

Then 𝐱 ⪯A,B 𝐲 ⪯A,B 𝐳 and

IVOWA⪯A,B
𝐰 (𝐱, 𝐲) = 2

3
𝐲 + 1

3
𝐱 =

[ 1
12

,
3
4

]
,

IVOWA⪯A,B
𝐰 (𝐳, 𝐲) = 2

3
𝐳 + 1

3
𝐲 =

[1
6
, 0.52

]
.

Next, A
(

1
12
,
3
4

)
= 0.57735 and A

(
1
6
, 0.52

)
= 0.5646679, which means that

IVOWA⪯A,B
𝐰 (𝐱, 𝐲) ≻A,B IVOWA⪯A,B

𝐰 (𝐳, 𝐲) and this contradicts the ⪯A,B-increasing

monotonicity of IVOWA⪯A,B
𝐰 operator.

Let us write now K
𝛼
([a, b]) to mean that we have assigned to an interval [a, b] ∈

L([0, 1]) the same value as to the corresponding point (a, b) ∈ K([0, 1]) by the map-

ping K
𝛼
, i.e., K

𝛼
([a, b]) = a + 𝛼(b − a).

Proposition 4 Let ⪯ be an admissible order on L([0, 1]) generated by a pair (K
𝛼
,B)

and let IVOWA⪯
𝐰 be an interval-valued OWA operator defined by (6). Then

K
𝛼

(
IVOWA⪯

𝐰([a1, b1],… , [an, bn])
)
= OWA𝐰

(
K
𝛼
([a1, b1]),… ,K

𝛼
([an, bn]),

)
(8)

independently of B.

Corollary 1 Let ⪯
𝛼,𝛽

be an admissible order on L([0, 1]) introduced in (4). Then
the interval-valued OWA operator IVOWA⪯𝛼,𝛽

𝐰 is an aggregation function on L([0, 1])
with respect to the order ⪯

𝛼,𝛽
.

Due to the relation between interval-valued fuzzy sets and Atanassov intuitionistic

fuzzy sets, IVOWA operators can be seen as modified and special cases of intuition-

istic OWA operators, see, e.g. [17, 23]. However, the approaches in both mentioned

papers are different from the one presented here, as the aggregation of intervals is

split into the aggregation of their left bounds (membership functions of intuitionis-

tic fuzzy sets) and aggregation of right bounds (complements to non-membership

functions).

Besides, it is worth to mention that OWA operators have been recently extended

to complete lattices in [16]. As a particular case, OWA operators on intervals in the

form (7) are obtained.
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4 Interval-Valued Choquet Integral

4.1 Interval-Valued Choquet Integral Based on Aumann’s
Approach

Recall that OWA operators are a particular case of the so-called Choquet integrals.

Like the former, the latter can also be extended to the interval-valued case by means

of admissible orders. In this section we propose such extension for discrete interval-

valued Choquet integrals of interval-valued fuzzy sets based on admissible orders

⪯A,B. In the first subsection, we recall an extension of the Choquet integral to the

interval-valued setting, which has been discussed, e.g., in [13, 26]. A similar idea

led Aumann [1] to introducing his integral of set-valued functions. These concepts

are of the same nature as is the Zadeh extension principle [25].

Definition 5 Let U ≠ ∅ be a finite set. A fuzzy measure m is a set function m∶ 2U →
[0, 1] such that

m(∅) = 0, m(U) = 1, and m(A) ≤ m(B)whenever A ⊆ B.

Definition 6 The discrete Choquet integral (or expectation) of a fuzzy set f∶U →
[0, 1] with respect to a fuzzy measure m is defined by

Cm(f ) =
n∑

i=1
f (u

𝜎(i))
(
m
(
{u

𝜎(i),… , u
𝜎(n)}

)
− m

(
{u

𝜎(i+1),… , u
𝜎(n)}

))
,

where 𝜎∶ {1,… , n} → {1,… , n} is a permutation such that

f (u
𝜎(1)) ≤ f (u

𝜎(2)) ≤ … ≤ f (u
𝜎(n)),

and {u
𝜎(n+1), u𝜎(n)} = ∅, by convention.

Now we can make the extension of this definition to the interval-valued setting as

follows.

Definition 7 Let F∶U → L([0, 1]) be an interval-valued fuzzy set and m∶ 2U →
[0, 1] a fuzzy measure. The discrete Choquet integral 𝐂m(F) of an interval-valued

fuzzy set F with respect to m is given by

𝐂m(F) = {Cm(f ) ∣ f∶U → [0, 1], f (ui) ∈ F(ui)}. (9)

Remark 4 From the properties of the standard Choquet integral of fuzzy sets it fol-

lows that

𝐂m(F) =
[
Cm(f∗),Cm(f ∗)

]
, (10)

where f∗, f ∗∶U → [0, 1] are given by f∗(ui) = ai and f ∗(ui) = bi, and [ai, bi] = F(ui).
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Several properties of the discrete interval-valued Choquet integral 𝐂m are dis-

cussed in [13, 26]. For example, this integral is comonotone additive, i.e.,

𝐂m(F + G) = 𝐂m(F) + 𝐂m(G),

whenever F, G∶U → L([0, 1]) are such that interval F(ui) + G(ui) ⊆ [0, 1] for each

ui ∈ U, and F, G are comonotone, i.e.,

(f ∗(ui) − f ∗(uj))(g∗(ui) − g∗(uj)) ≥ 0

and

(f∗(ui) − f∗(uj))(g∗(ui) − g∗(uj)) ≥ 0

for all ui, uj ∈ U.

4.2 Interval-Valued Choquet Integral with Respect
to ⪯A,B-orders

The basic idea of the original Choquet integral [10] is based on the linear order of

reals allowing two different looks at functions. The vertical look is based on function

values and it is a background of the Lebesgue integral, while the horizontal look is

linked to level cuts and it is a basis not only for the Choquet integral, but also for

several other types of integrals, see [14], including among others, the Sugeno integral

[19]. In this subsection we introduce a discrete interval-valued Choquet integral of

interval-valued fuzzy sets based on an (admissible) order of intervals in L([0, 1])
directly, without using the notion of the Choquet integral of scalar-valued fuzzy sets.

Let ⪯A,B be an admissible order on L([0, 1]) given by a generating pair of aggre-

gation function (A,B) as explained in Proposition 1. The discrete interval-valued

Choquet with respect to the order ⪯A,B is defined as follows.

Definition 8 [9] Let F∶U → L([0, 1]) be an interval-valued fuzzy set and m∶ 2U →
[0, 1] a fuzzy measure. The discrete interval-valued Choquet integral with respect

to an admissible order ⪯A,B (⪯A,B-Choquet integral for short) of an interval-valued

fuzzy set F with respect to m, with the notation 𝐂⪯A,B
m (F), is given by

𝐂⪯A,B
m (F) =
n∑

i=1
F(u

𝜎A,B(i))
(
m
(
{u

𝜎A,B(i),… , u
𝜎A,B(n)}

)
−
(
m
(
{u

𝜎A,B(i+1),… , u
𝜎A,B(n)}

)
(11)
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where 𝜎A,B∶ {1,… , n} → {1,… , n} is a permutation such that

F(u
𝜎A,B(1)) ≤ F(u

𝜎A,B(2)) ≤ … ≤ F(u
𝜎A,B(n)),

and {u
𝜎A,B(n+1), u𝜎A,B(n)} = ∅, by convention.

Remark 5 Observe that if F(ui) = [ai, bi], i = 1,… , n, then (11) can be written as

𝐂⪯A,B
m (F) =

[
n∑

i=1
a
𝜎A,B(i)

(
m
({

u
𝜎A,B(i),… , u

𝜎A,B(n)

})
− m

({
u
𝜎A,B(i+1) − u

𝜎A,B(n)

}))
,

n∑

i=1
b
𝜎A,B(i)

(
m
({

u
𝜎A,B(i),… , u

𝜎A,B(n)

})
− m

({
u
𝜎A,B(i+1) − u

𝜎A,B(n)

})) ]

.

Next, for any fixed F∶U → L([0, 1]) such that the corresponding f∗ and f ∗ are

comonotone, i.e., for all ui, uj ∈ U,

(
f∗(ui) − f∗(uj)

) (
f ∗(ui) − f ∗(uj)

)
≥ 0,

it holds that for any admissible pair (A,B) of aggregation functions the Choquet

integrals of F introduced in Definitions 7 and 8 coincide, i.e., 𝐂⪯A,B
m (F) = 𝐂m(F).

Remark 6 The concept of an interval-valued Choquet integral 𝐂⪯A,B
m introduced in

Definition 8 extends the standard discrete Choquet integral given by (6). Indeed, if

F∶U → L([0, 1]) is singleton-valued, i.e., it is a fuzzy subset of U, then

𝐂⪯A,B
m (F) = 𝐂m(F) = Cm(F)

independently of A and B.

Moreover, observe that if m is a symmetric fuzzy measure [20] then, similarly to

the classical case, 𝐂⪯A,B
m = IVOWA⪯A,B

m , where 𝐰 = (w1,… ,wn),wn−i+1 = m({i, i +
1,⋯ , n}) − m({i + 1,⋯ , n}), i = 1,⋯ , n, with convention {n + 1, n} = ∅.

5 Application to Multi-expert Decision Making

In this section we recover the method explained in [9]. Consider n experts E =
{e1,… , en}, (n > 2) and a set of p alternatives X = {x1,… , xp}, (p ≥ 2). Our goal

is to find the alternative which is the most accepted one by the n experts.

Many times experts have difficulties to determine the exact value of the preference

of alternative xi against xj for each i, j ∈ {1,… , p}. When this happens, they usually

give their preferences by means of elements in L([0, 1]); that is, by means of intervals.

In these cases we say that the preference of the experts is given by a numerical value

inside the interval.
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5.1 Interval-Valued Preference Relations

An interval-valued fuzzy binary relation RIV on X is an interval-valued fuzzy subset

of X × X; that is, RIV ∶ X × X → L([0, 1]). The interval RIV (xi, xj) = RIVij
denotes the

degree to which elements xi and xj are related in the relation RIV for all xi, xj ∈ X.

Particularly, in preference analysis, RIVij
denotes the degree to which alternative xi is

preferred to alternative xj.
Each expert e provides his/her preferences by means of an interval-valued fuzzy

relation RIVe
with p rows and p-columns and where the elements in the diagonal are

not considered; that is,

RIVe
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 ⋯, ⋯, xp

x1 − [Re12
,Re12

] [Re13
,Re13

] ⋯, [Re1p
,Re1p

]

x2 [Re21
,Re21

] − [Re23
,Re23

] ⋯, [Re2p
,Re2p

]

⋯ ⋯ ⋯ − ⋯

xp [Rep1
,Rep1

] [Rep2
,Rip2

] ⋯ ⋯ −

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Then we can consider the following algorithm (Algorithm 1).

1. Choose a linear order ⪯ between intervals.

2. Choose a weighting vector 𝐰.

3. Calculate the interval-valued collective fuzzy relation RIVc using the operators

IVOWA⪯
𝐰.

4. For each row i in RIVc build the fuzzy measure mi:

mi({xij})i≠j =
( Rij + Rij
∑p

l=1
l≠i
(Ril + Ril)

)2

mi({xij, xik}) i≠j
i≠k
j<k

=
(Rij + Rij + Rik + Rik

∑p
l=1
l≠i
(Ril + Ril)

)2

(12)

...

that is, given i ∈ {1,… , p}, for every A ⊆ {1,… , n}∖{i}

mi({xij |j ∈ A}) =
( ∑

j∈A Rij + Rij
∑p

l=1
l≠i
(Ril + Ril)

)2

5. For each row of RIVc aggregate the intervals by means of the interval-valued Cho-

quet integral constructed with the order ⪯ chosen in step IVD1) and the measure

built in step IVD4).
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6. Take as solution the alternative corresponding to the row with the biggest interval

with respect to the order ⪯ chosen in step IVD1).

Note that steps (1)–(3) correspond to the aggregation phase whereas the other

steps correspond to the exploitation phase.

Remark 7 If the preference relations provided by the experts are numerical, then the

proposed algorithm recovers the classical methods for multi-expert decision making

which make use of Choquet integrals in the exploitation phase [24].

Proposition 5 The measure defined in Eq. (12) is superadditive; that is, for any two
nonintersecting subsets A,B ∈ X, A ∩ B = ∅,

mi(A ∪ B) ≥ mi(A) + mi(B) for each row i = 1,⋯ , p (13)

Proof The fact follows from the superadditivity of the quadratic function f (x) = x2
on [0, 1]. □

Remark 8 Note that we do not require that RIVe
is reciprocally additive; that is we

do not demand the following property:

Reij
+ Reji = 1 and Reji

+ Reij = 1

The advantage of not demanding this property is that we do not modify the prefer-

ences provided by the experts in order to ensure additivity.

The result of Algorithm 1 depends of the order ⪯ and the weighting vector 𝐰 that

we use. In both cases, the choice we make is linked to the application in which we are

working. Usually, the choice of the weighting vector is easier, since the weights are

often related to the quantifiers given in [22] and it is the application which determines

that we have to consider aggregations of the type : most of the experts say ... or at
least one half of the experts say ... etc.

The choice of the order is more complicate. Both the application and the experts

should be taken into account. For instance, if the experts are considered to be opti-

mistic, it may be logical to use the order ⪯Lex2. On the contrary, if they are considered

to be pessimistic, the order ⪯Lex1 might be more suitable. However, in many cases

we do not have this information. Clearly, if the application determines the order to

be used, we apply Algorithm 1 directly.

If we do not know which is the most appropriate order, we propose to run Algo-

rithm 1 with different orders; for instance, with s different orders. If for all the con-

sidered orders we obtain the same result, that is, the same alternative, then we have

finished and we choose as the winning alternative that one. However, if we obtain dif-

ferent winning alternatives, then we propose the following algorithm (Algorithm 2):
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1. Run Algorithm 1 for each of the s selected orders;

2. For each interval-valued collective fuzzy relationRIVc
l
with l = 1,… , s, calculate

the fuzzy preference relation such that each of its elements is obtained as the

midpoint of the corresponding interval in the relation RIVc
l
;

3. Calculate the arithmetic mean matrix MP of the s fuzzy matrices obtained in Step

SC2.

MP =
⎛
⎜
⎜
⎜
⎝

− a12 a13 ⋯ , a1p
a21 − a23 ⋯ , a2p
⋯ ⋯ ⋯ − ⋯
ap1 ap2 ⋯ ap(p−1) −

⎞
⎟
⎟
⎟
⎠

4. Build the measure:

m({xi}) =
(

ai1+⋯+ai(i−1)+ai(i+1)+⋯aip
a12+⋯+a1p+⋯+ai1+⋯+aip+⋯+ap1+⋯+ai(p−1)

)2

m({xi, xj}) =
(

ai1+⋯+ai(i−1)+ai(i+1)+⋯aip+aj1+⋯+aj(j−1)+aj(j+1)+⋯ajp
a12+⋯+a1p+⋯+ai1+⋯+aip+⋯+ap1+⋯+ai(p−1)

)2

(14)

⋯

that is, for each A ⊆ {1,… , p}

m({xi |i ∈ A}) =
(∑

i∈A
∑

j∈{1,…,p}∖{i} aij
∑n

i=1
∑

j∈{1,…,p}∖{i} aij

)2

5. Using the measure m from step SC4 calculate the Shapley value:

𝜑(xi) =
∑

A⊆X⧵{xi}

1

n
⎛
⎜
⎜
⎝

n − 1
|A|

⎞
⎟
⎟
⎠

(m(A ∪ {xi}) − m(A)) (15)

for each of the solutions obtained in step SC1.

6. Take as solution the alternative corresponding to the highest Shapley value.

Remark 9

(i) Once the winning alternatives xi have been calculated with Algorithm 1 (i =
1,⋯ , s), the Shapley value 𝜑(xi) measures the relevance of alternative xi in pos-

sible coalitions with other alternatives.

(ii) The advantage of using the measure given in Eq. (14) is that it takes into account

all the preference values provided by all the experts. In this way, the Shapley

value is calculated using the same matrix MP for all the winning alternatives.

This is the main difference between the measure given in Eq. (12) and the one

given in Eq. (14). Note that the measure in Eq. (14) is superadditive too.
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It may happen that with Algorithm 2 we get the same Shapley value for different

alternatives and we can not decide which is the best one. Then we can take as the

solution the one which appears most times as winner when we run Algorithm 1 with

the s different orders.

6 Concluding Remarks

In this work, we have reviewed the results in [9]. In particular, by means of the notion

of admissible order, we have extended OWA operators and Choquet integrals to the

interval-valued setting. The interest in this definition lies in the fact that admissible

orders enable us to build many different OWA operators, that, on one hand, extend

usual operators, but, on the other hand, leave some free space to choose the most

appropriate one for the problem under consideration. The question of determining

the most suitable linear order for a given problem is of great interest, as we have

exhibited for multi-expert decision making when we use intervals to represent the

alternatives.

Note that our approach can be further generalized. Indeed, instead of admissible

orders generated by a couple (A,B) of aggregation functions one can deal with a cou-

ple of two weak orders (≤∗,≤∗∗) compatible with the standard partial order≤2 (recall

that a weak order ≤ on L([0, 1]) is a reflexive and transitive relation such that for any

two intervals [a, b] and [c, d] from L([0, 1]), either [a, b] ≤ [c, d] or [c, d] ≤ [a, b];
moreover, ≤ is compatible with ≤2 if from the relation [a, b] ≤2 [c, d] follows that

[a, b] ≤ [c, d]), such that [a, b] =∗ [c, d] and [a, b] =∗∗ [c, d] only if [a, b] = [c, d].
Clearly, our (A,B) approach is a particular case of the proposed generalization, when

considering [a, b] ≤∗ [c, d] if and only if A(a, b) ≤ A(c, d), and [a, b] ≤∗∗ [c, d] if and

only if B(a, b) ≤ B(c, d).
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Information Theory Applications in Soft
Computing

Paul Elmore and Frederick Petry

Abstract An overview of information theory metrics and the ranges of their values
for extreme probability cases is provided. Imprecise database models including
similarity based fuzzy models and rough set models are described. Various entropy
measures for these database models’ content and responses to querying is provided.
Aggregation of uncertainty representations are also considered. In particular the
possibilistic conditioning of probability aggregation is examined. Information
measures are used to compare the resultant conditioned probability to the original
probability for three cases of possibility distributions.

Keywords Shannon entropy ⋅ Gini index ⋅ Fuzzy database ⋅ Rough
database ⋅ Possibility distribution ⋅ Possibilistic conditioning

1 Introduction

Information theory metrics have been utilized for various topics ranging from
biology to computer science. In communication theory, Shannon [1] introduced the
entropy concept which was used to characterize signal information content. Since
then, variations of these information theoretic measures have been successfully
applied to applications in many diverse fields. In particular, the representation of
imprecision with entropy metrics has been applied to all areas of databases,
including fuzzy database querying [2], data allocation [3], classification in
rule-based systems[4], and measuring uncertainty in rough and fuzzy rough rela-
tional databases [5].
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In this chapter we provide in Sect. 2 definitions of Shannon entropy, Gini index
and Renyi entropy. The ranges of possible values for these are developed. Next
uncertain database models including those based on fuzzy similarity relationships
and rough sets are described. Information measures for these models are then
provided. The last section describes the use of information measure to evaluate the
results of an aggregation approach, possibilistic conditioning of probability.

2 Information Theory Background

The term “information” has a number of various meanings, mostly imprecise,
depending on the exact context in which it is used. One very general definition is
that information is a measure of the value of data as used in decision making [6]. In
this section we will review information metrics that can be used to evaluate
uncertainty in databases and aggregation. Shannon’s entropy has been a commonly
accepted standard for information measures; however, the concept of information is
so rich and broad that multiple approaches to the quantification of information are
desirable [7, 8]. Thus in this section, we will also examine other measures, such as
the Gini index and Renyi entropy.

2.1 Shannon Entropy

Shannon entropy has been the most commonly applied measure of randomness for
information content [1]. For a probability distribution P = {p1, p2, … pn} this is
given as

S(P) = − ∑
n

i=1
piln pið Þ

The well-known minimum and maximum values for the Shannon entropy are
considered for the extreme probability cases of complete certainty and complete
uncertainty.

First, for complete certainty, Pcc, we have for some t, pt = 1, and so

S Pccð Þ= − ( 1 ln (1) + ∑
n

i=1, ≠ t
0 ln (0)) = 1 * 0+ ∑

n

i=1, ≠ t
0= 0

Note this follows as lim
p→ 0+

p ln p = 0. So if a probability distribution represents

complete certainty, there is no uncertainty, i.e. maximum information.
Next, for the case of complete uncertainty represented by an equi-probable

distribution, Pcu, where ∀i, pi = 1/n.
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S Pcuð Þ = − ∑
n

i=1

1
n
* ln

1
n

� �
= −

1
n
∑
n

i=1
ln(1)− ln(n)ð Þ= − n *

1
n

0 − ln(n)ð Þ= ln(n).

That is, when all probabilities are equi-probable, this is the most unpredictable,
uncertain situation, and so represents the minimum information. In summary, the
range of Shannon’s entropy for a given probability distribution P is:

0≤ S(P)≤ ln(n).

2.2 Gini Index

The Gini index, G(P), also known as the Gini coefficient, is a measure of statistical
dispersion developed by Gini [9], and it can be given as

G Pð Þ=1− ∑
n

i=1
p2i .

Some practitioners use G(P) versus S(P) since it does not involve a logarithm,
making analytic solutions simpler. The Gini index has been used in consideration of
inequalities in various areas such as economics, ecology and engineering [10].
A very important application of the Gini index is as a splitting criterion for the
decision tree induction in machine learning and data mining [11].

It is accepted in practice for diagnostic test selection that the Shannon and Gini
measures are interchangeable [12]. The specific relationship of Shannon entropy
and the Gini index has been discussed in the literature [13]. Theoretical support for
this practice is provided in Yager’s independent consideration of alternative mea-
sures of entropy [14] where he derives the same form for an entropy measure as the
Gini measure.

Now as it is done for Shannon entropy, we consider the maximum and minimum

values for G(P). Letting R= ∑
n

i=1
p2i

, then since 0 ≤ pi ≤ 1 (0 ≤ pi
2 ≤ 1) and at

least one pi > 0, 0 < R ≤ 1. R = 1 only if for some t, pt = 1. Thus, G(P) > 0
unless pt = 1 where G(P) = 0. This is the case for the distribution Pcc, since pt = 1,
pi = 0, i ≠ t. Specifically

G Pccð Þ=1− (p2t + ∑
n

i≠ 1
p2i ) = 1− 12 + 0

� �
=0

As for the Shannon entropy this corresponds to no uncertainty and has the same
value of 0.
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Next we examine the index for the equi-probable distribution, Pcu, where pi =
1/n for all i.

G Pcuð Þ=1− ∑
n

i=1
(1 n̸)2 = 1− n(1 n̸2) = 1− 1 n̸= n− 1ð Þ n̸

As n increases, n → ∞, G(Pcu) → 1. Thus, in the case of an equiprobable
distribution, we have increasing values for G(Pcu) with n, and in general the range
for G(P) is

0≤G Pð Þ≤ n− 1ð Þ n̸<1.

2.3 Renyi Entropy

Renyi introduced a parameterized family of entropies as a generalization of
Shannon entropy [15, 16] The intention was to have the most general approach that
preserved the additivity property and satisfied the probability axioms of Kol-
mogorov. Renyi entropy is

Sα Pð Þ= 1
1− a

*lnð∑
n

i=1
pαi Þ.

Cases of the parameter α:

α=0 : SðPÞ= ln Pj j—Hartley Entropy [17]

lim α→ 1 : S1ðPÞ= − ∑
n

i=1
pi * ln pið Þ—Shannon Entropy

α=2 : S2ðPÞ= − ln ∑
n

i=1
p2i

� �
—Collision, or quadratic entropy

α→∞: S∞ðPÞ= Min
n

i=1
ln pið Þ= − Max

n

i=1
ln pið Þ.

This last case is the smallest entropy in the Renyi family and so is the strongest
way to obtain an information content measure. It is never larger than the Shannon
entropy. Thus, the possible ranges of α capture the following:

High α: high probability events,
Low α: weight possible events more equally,
α = 0, 1 → Hartley or Shannon, respectively.
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3 Information-Theoretic Measures for Fuzzy and Rough
Database Models

The fuzzy and rough database models both have several features in common with
ordinary relational databases. Both represent data as a collection of relations con-
taining tuples. These relations are sets. The tuples of a relation are its elements, and
like elements of sets in general, are unordered and nonduplicated. A tuple ti takes the
form (di1, di2, …, dim), where dij is a domain or attribute value of a particular domain
set Dj. In the ordinary relational database, dij ∈ Dj. In the fuzzy and rough database,
however, as in other non-first normal form extensions to the relational model [18, 19]
dij ⊆ Dj, and although it is not required that dij be a singleton, dij ≠ Ø.

3.1 Fuzzy Databases

Fuzzy databases are found in areas which involve some imprecision or uncertainty
in the data and in decision-making utilization of the data [20]. In order to help
understand the impact of such imprecision, information-theoretic characterizations
have been developed which measure the overall uncertainty in an entire relation.
Additionally, a variation of fuzzy entropy has been used to determine how well a
fuzzy query differentiates among potential responses.

3.2 Fuzzy Similarity Model

The use of similarity relationships in a relational model was developed by Buckles
and Petry [21]. This approach attempts to generalize the concept of null and
multiple-valued domains for implementation within an environment consistent with
the relational algebra. In fact, the nonfuzzy relational database is a special case of
this fuzzy relational database approach.

A similarity relation, s(x, y), for given domain, D, is a mapping of every pair of
elements in the domain onto the unit interval:

sD(x, y) : D→ 0, 1½ �

There are three basic properties for a similarity relation, x, y, z ∈ D [22]:

1. Reflexive: sD (x, x) = 1
2. Symmetric: sD (x, y) = s D (y, x)
3. Transitive: sD (x, z) ≥ Max (Min [s D (x, y), sD(y, z)]) : (T1)

This particular max-min form of transitivity is known as T1 transitivity. Another
useful form is T2 also known as max-product:
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3′. Transitive: s D (x, z) = Max ([s D (x, y) � s D (y, z)]) : (T2)

where * is arithmetic multiplication.
An example of a similarity relation satisfying T2 transitivity, where β > 0 is an

arbitrary constant and x, y ∈ D, is:

sDðx, yÞ= e− β* y− xj j

The identity relation for crisp relational databases induces equivalence classes
(most frequently singleton sets) over a domain, D, which affect the results of certain
operations and the removal of redundant tuples. The identity relation is replaced in
this fuzzy relational database by explicitly declared similarity relations, of which an
identity relation is a special case.

Next the basic concepts of fuzzy tuples and interpretations must be described. As
discussed, a key aspect of most fuzzy relational databases is that domain values
need not be atomic. A domain value, di, where i is the index of the attribute in the
tuple, is defined to be a subset of its domain base set, Di. That is, any member of the
power set may be a domain value except the null set. Let P(Di) denote the power set
of Di − Ø.

A fuzzy relation R is a subset of the set cross product P(D1) × P(D2) × ⋅ ⋅ ⋅ ×
P(Dm). Membership in a specific relation, r, is determined by the underlying
semantics of the relation. For instance, if D1 is the set of major cities and D2 is the
set of countries, then (Paris, Belgium) ⊂ P(D1) × P(D2)—but is not a member of
the relation A (capital-city, country).

A fuzzy tuple, t, is any member of both r and P(D1) × P(D2) × ⋅ ⋅ ⋅ × P(Dm).
An arbitrary tuple is of the form ti = (di1, di2, …, dim) where dij ∈ Dj.

An interpretation α = [a1, a2, …, am] of a tuple ti = (di1, di2, …, dim) is any
value assignment such that aj ∈ dij for all j.

In summary, the space of interpretations is the set cross product D1 × D2 ×
⋅ ⋅ ⋅ × Dm. However, for any particular relation, the space is limited by the set of
valid tuples. Valid tuples are determined by an underlying semantics of the relation.
Note that in an ordinary relational database, a tuple is equivalent to its
interpretation.

3.3 Fuzzy Database Entropy

Fuzzy entropy may be measured as a function of a domain value or as a function of
a relation. Intuitively, the uncertainty of a domain value increases as its cardinality
|dij| increases, or when the similarity sj(x, y) decreases. So if a domain value, dij, in a
relational scheme, consisting of a single element represents exact information and
multiple elements are a result of fuzziness, then this uncertainty can be represented
by entropy. DeLuca and Termini [23] have devised formulas for uncertainty based
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on fuzzy measures. Adapting their result to a fuzzy database, the entropy Hfz (dij),
for a domain value dij ⊆ Dj would be [2]

Hfz dij
� �

= − ∑
fx, yg⊆dij

sj x, yð Þlog2 sj x, yð Þ� �
+ 1− sj x, yð Þ� �

log2 1− sj x, yð Þ� �� �
Note that Hfz (dij) is directly proportional to |dij| and inversely proportional to sj

(x, y) > 0.5.
This definition cannot be directly extended to tuples, so a probabilistic entropy

measure after Shannon is needed for an entire tuple. First recalling the interpretation
of a tuple, for the ith tuple, ti, there are αi possible interpretations, i.e., the cardi-
nality of the cross product of the domain values, |di1 × di2 × ⋅ ⋅ ⋅ × dim|. Viewing
all interpretations as a priori equally likely, the entropy of tuple ti can be given as

Hpb tið Þ= − ∑
ai

k =0
(1 α̸i)log2(1 α̸i) = log2(αi)

For a nonfuzzy database, clearly αi = 1 and Hpb (ti) = 0.
If the choice of a tuple in a relation r is independent of the interpretation of the

tuple, the joint probabilistic entropy Hpb(r, t) of a relation can be expressed as

Hpb r, tð Þ= − ∑
n

i=0
∑
ai

k =1
nαið Þ− 1log2 nαið Þ− 1

h i
where there are n tuples.

Also, a query response measure can be given for a Boolean query with linguistic
modifiers by using the membership value µQ(t) for each tuple in the relation r which
is the response to a query Q. This membership value is not static but represents the
best matching interpretation of the tuple t relative to the query. So the fuzzy entropy
of a relation r with n tuples is

Hfz r:Qð Þ= − ∑
n

i=1
μQ tið Þlog2 μQ tið Þ� �

+ 1− μQ tið Þ� �
log2 1− μQ tið Þ� �� �

Note that Hfz(r : Q) = 0 if and only if (µQ(ti) = 0) or (µQ(ti) = 1) for all i. In
every other case Hfz(r : Q) > 0 and is maximized when µQ(ti) = 0.5 for all i. This
maximization condition is achieved when a query fails to distinguish the dominant
truth value of any tuple.

3.4 Rough Set Relational Model

The rough relational database model [24] as for the fuzzy database is an extension
of the standard relational database model of Codd [25]. It captures all the essential
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features of rough set theory including indiscernibility of elements denoted by
equivalence classes and lower and upper approximation regions for defining sets
which are indefinable in terms of the indiscernibility. Here we relate the concepts of
information theory to rough sets and compare these information theoretic measures
to established rough set metrics of uncertainty. The measures are then applied to the
rough relational database model. Information content of both stored relational
schemas and rough relations are expressed as types of rough entropy.

3.4.1 Rough Set Theory

Rough set theory, introduced by Pawlak [26], is a technique for dealing with
uncertainty and for identifying cause-effect relationships in databases. An extensive
theory for rough sets and their properties has been developed and this has become a
well established approach for the management of uncertainty in a variety of
applications. Rough sets involve the following:

U is the universe, which cannot be empty,
R is the indiscernibility relation, or equivalence relation,
A = (U, R), an ordered pair, is called an approximation space,
[x]R denotes the equivalence class of R containing x, for any element x of U,
elementary sets in A—the equivalence classes of R,
definable set in A—any finite union of elementary sets in A.

Given an approximation space defined on some universe U that has an equiv-
alence relation R imposed upon it, U is partitioned into equivalence classes called
elementary sets that may be used to define other sets in A. A rough set X, where X ⊆
U, can be defined in terms of the definable sets in A by the following:

lower approximation of X in A is the set RX = {x ∈ U | [x]R ⊆ X}
upper approximation of X in A is the set R ̄X = {x ∈ U | [x]R ∩ X ≠ Ø}.

POSR(X) = RX denotes the R-positive region of X, or those elements which
certainly belong to the rough set. The R−negative region of X, NEGR(X) = U − R ̄X,
contains elements which do not belong to the rough set. The boundary or R-
borderline region of X, BNR(X) = R̄X − RX, contains those elements which may or
may not belong to the set. X is R-definable if and only if RX = R̄X. Otherwise,
RX ≠ R ̄X and X is rough with respect to R. A rough set in A is the group of subsets
of U with the same upper and lower approximations.

3.4.2 Rough Database Model

Every attribute domain is partitioned by some equivalence relation specified by the
database designer or user. Within each domain, those values that are considered
indiscernible belong to an equivalence class. This information is used by the query
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mechanism to retrieve information based on equivalence with the class to which the
value belongs rather than equality, resulting in less critical wording of queries.

Definition A rough relation R is a subset of the set cross product P(D1) × P(D2) ×
⋅ ⋅ ⋅ × P(Dm).

A rough tuple t is any member of R, which implies that it is also a member of P
(D1) × P(D2) × ⋅ ⋅ ⋅ × P(Dm). If ti is some arbitrary tuple, then ti = (di1,
di2, …, dim) where dij ⊆ Dj. Again a tuple in this model differs from that of ordinary
databases in that the tuple components may be sets of domain values rather than
single values.

Let [dxy] denote the equivalence class to which dxy belongs. When dxy is a set of
values, the equivalence class is formed by taking the union of equivalence classes
of members of the set; if dxy = {c1, c2, …, cn}, then [dxy] = [c1] ∪ [c2] ∪ ⋅ ⋅ ⋅ ∪
[cn].

Definition Tuples ti = (di1, di2, …, dim) and tk = (dk1, dk2, …, dkm) are redundant
if [dij] = [dkj] for all j = 1, …, m.

Again for the rough relational database, redundant tuples are removed in the
merging process since duplicates are not allowed in sets, the structure upon which
the relational model is based.

3.5 Rough Set Uncertainty Metrics

Rough set theory [26] inherently models two types of uncertainty. The first type of
uncertainty arises from the indiscernibility relation that is imposed on the universe,
partitioning all values into a finite set of equivalence classes. If every equivalence
class contains only one value, then there is no loss of information caused by the
partitioning. In any coarser partitioning, however, there are fewer classes, and each
class will contain a larger number of members. Our knowledge, or information,
about a particular value decreases as the granularity of the partitioning becomes
coarser.

Uncertainty is also modeled through the approximation regions of rough sets
where elements of the lower approximation region have total participation in the
rough set and those of the upper approximation region have uncertain participation
in the rough set. Equivalently, the lower approximation is the certain region and the
boundary area of the upper approximation region is the possible region.

Pawlak [27] discusses two numerical characterizations of imprecision of a rough
set X: accuracy and roughness. Accuracy, which is simply the ratio of the number of
elements in the lower approximation of X, RX, to the number of elements in the
upper approximation of the rough set X, R̄X, measures the degree of completeness
of knowledge about the given rough set X. It is defined as a ratio of the two set
cardinalities as follows:
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αR Xð Þ= cardðRXÞ c̸ardðR̄XÞ, where 0≤ αR Xð Þ≤ 1.

The second measure, roughness, represents the degree of incompleteness of
knowledge about the rough set. It is calculated by subtracting the accuracy from one
[10]:

ρR Xð Þ=1− αR Xð Þ.

These measures require knowledge of the number of elements in each of the
approximation regions and are good metrics for uncertainty as it arises from the
boundary region, implicitly taking into account equivalence classes as they belong
wholly or partially to the set. However, accuracy and roughness measures do not
necessarily provide us with information on the uncertainty related to the granularity
of the indiscernibility relation for those values that are totally included in the lower
approximation region. For example, let the rough set X be defined as follows:

X = A11, A12, A21, A22, B11, C1f g

with lower and upper approximation regions defined as

RX = A11, A12, A21, A22f g and RX = A11, A12, A21, A22, B11, B12, B13, C1, C2f g

These approximation regions may result from one of several partitionings.
Consider, for example, the following indiscernibility relations:

A1 = A11, A12, A21, A22½ �, B11, B12, B13½ �, C1, C2½ �f g,
A2 = A11, A12½ �, A21, A22½ �, B11, B12, B13½ �, C1, C2½ �f g,
A3 = A11½ �, A12½ �, A21½ �, A22½ �, B11, B12, B13½ �, C1, C2½ �f g.

All three of the above partitionings result in the same upper and lower
approximation regions for the given set X, and hence the same accuracy measure
(4/9 = 0.44) since only those classes belonging to the lower approximation region
were re-partitioned. It is obvious, however, that there is more uncertainty in A1 than
in A2, and more uncertainty in A2 than in A3. Therefore, a more comprehensive
measure of uncertainty is needed.

3.6 Rough Set Entropy

We derive such a measure from techniques used for measuring entropy in classical
information theory. Many variations of the classical entropy have been developed,
each tailored for a particular application domain or for measuring a particular type
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of uncertainty. Our rough entropy is defined such that we may apply it to rough
databases [5]. We define the entropy of a rough set X as follows:

Definition The rough entropy Er(X) of a rough set X is calculated by

Er Xð Þ= − (ρR Xð Þ) ½∑
n

i=1
Qilog Pið Þ� i=1, . . . , n equivalence classes

The term ρR(X) denotes the roughness of the set X. The second term is the
summation of the probabilities for each equivalence class belonging either wholly
or in part to the rough set X. There is no ordering associated with individual class
members. Therefore the probability of any one value of the class being named is the
reciprocal of the number of elements in the class. If ci is the cardinality of, or
number of elements in equivalence class i and all members of a given equivalence
class are equal, Pi = 1/ci represents the probability of one of the values in class i. Qi

denotes the probability of equivalence class i within the universe. Qi is computed by
taking the number of elements in class i and dividing by the total number of
elements in all equivalence classes combined. The entropy of the sample rough set
X, Er(X), is given below for each of the possible indiscernibility relations A1, A2,
and A3.

UsingA1: − (5 ̸9) (4 ̸ 9)log(1 ̸4) + (3 ̸9)log(1 ̸3) + (2 ̸9)log(1 ̸2)½ �=0.274

UsingA2: − (5 ̸9) (2 ̸9)log(1 ̸2) + (2 ̸9)log(1 ̸2) + (3 ̸9)log(1 ̸3) + (2 ̸9)log(1 ̸2)½ �=0.20

UsingA3: − (5 ̸9) (1 ̸9)log(1) + (1 ̸9)log(1) + (1 ̸9)log(1) + (1 ̸9)log(1) + (3 ̸9)log(1 ̸3) + (2 ̸9)log(1 ̸2)½ �=0.048

From the above calculations it is clear that although each of the partitionings
results in identical roughness measures, the entropy decreases as the classes become
smaller through finer partitionings.

3.7 Entropy and the Rough Relational Database

The basic concepts of rough sets and their information-theoretic measures carries
over to the rough relational database model. Recall that in the rough relational
database all domains are partitioned into equivalence classes and relations are not
restricted to first normal form. We therefore have a type of rough set for each
attribute of a relation. This results in a rough relation, since any tuple having a value
for an attribute that belongs to the boundary region of its domain is a tuple
belonging to the boundary region of the rough relation.

There are two things to consider when measuring uncertainty in databases:
uncertainty or entropy of a rough relation that exists in a database at some given
time and the entropy of a relation schema for an existing relation or query result.
We must consider both since the approximation regions only come about by set
values for attributes in given tuples. Without the extension of a database containing
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actual values, we only know about indiscernibility of attributes. We cannot consider
the approximation regions. We define the entropy for a rough relation schema as
follows:

Definition Rough Schema Entropy

The rough schema entropy for a rough relation schema S is

Es Sð Þ= − ∑
m

j=1
∑
n

i=1
Qilog Pið Þ

� 	
where there are n equivalence classes of domain j, and m attributes in the schema R
(A1, A2, …, Am).

This is similar to the definition of entropy for rough sets without factoring in
roughness, since there are no elements in the boundary region (lower approxima-
tion = upper approximation). However, because a relation is a cross product of the
domains, we must take the sum of all these entropies to obtain the entropy of the
schema. The schema entropy provides a measure of the uncertainty inherent in the
definition of the rough relation schema taking into account the partitioning of the
domains on which the attributes of the schema are defined.

We extend the schema entropy Es(S) to define the entropy of an actual rough
relation instance ER(R) of some database D by multiplying each term in the product
by the roughness of the rough set of values for the domain of that given attribute.

Definition Rough Relation Entropy

The rough relation entropy of a particular extension of a schema is

ER Rð Þ= − ∑
m

j=1
Dρj Rð Þ½∑

n

i=1
DQilog DPið Þ�

where Dρj(R) represents a type of database roughness for the rough set of values of
the domain for attribute j of the relation, m is the number of attributes in the
database relation, and n is the number of equivalence classes for a given domain for
the database.

We obtain the Dρj(R) values by letting the non-singleton domain values repre-
sent elements of the boundary region, computing the original rough set accuracy
and subtracting it from one to obtain the roughness. DQi is the probability of a tuple
in the database relation having a value from class i, and DPi is the probability of a
value for class i occurring in the database relation out of all the values which are
given.

Information theoretic measures again prove to be a useful metric for quantifying
information content. In rough sets and the rough relational database, this is espe-
cially useful since in ordinary rough sets Pawlak’s measure of roughness does not
seem to capture the information content as precisely as our rough entropy measure.
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In rough relational databases, knowledge about entropy can either guide the
database user toward less uncertain data or act as a measure of the uncertainty of a
data set or relation. As rough relations become larger in terms of the number of
tuples or attributes, the automatic calculation of some measure of entropy becomes
a necessity. Our rough relation entropy measure fulfills this need.

4 Probability-Possibility Aggregation and Information
Measures

Effective decision-making should be able to make use of all the available, relevant
information about such aggregated uncertainty. In this section we consider quan-
titative measures that can be used to guide the use of aggregated uncertainty. While
there are a number of possible approaches to aggregate the uncertainty information
that has been gathered, here we examine uncertainty aggregation by the soft
computing approach of possibilistic conditioning of probability distribution repre-
sentations using the approach by Yager [28].

To formalize the problem, let V be a discrete variable taking values in a space
X that has both aleatory and epistemic sources of uncertainty [29]. Let there be a

probability distribution P: X → [0, 1] such that pi ∈ [0, 1], ∑
n

i=1
pi =1 that models

the aleatory uncertainty. Then the epistemic uncertainty can be modeled by a
possibility distribution [30] such that Π:Ξ → [0, 1], where π(xi) gives the possi-
bility that xi is the value of V, where i = 1,2, …, n. A usual requirement here is the
normality condition, Max

x
½π xð Þ�=1, that is at least one element in X must be fully

possible. Abbreviating our notation so that πi = π(xi), etc. and πi = π (xi), etc., we
have P = {p1, p2, …, pn} and Π = {π1, π2, … ,πn}.

In possibilistic conditioning, a function f dependent on both P and Π is used to
find a new conditioned probability distribution such that

f ðP,ΠÞ→ bP
where P̂= fp1̂, p2̂, . . . , p ̂ng with p ̂i = piπi K̸; K = ∑

n

i=1
piπi

A strength of this approach using conditioned probability is that it also captures
Zadeh’s concept of consistency between the possibility and the original probability
distribution. Consistency provides an intuition of concurrence between the possi-
bility and probability distributions being aggregated. K is identical to Zadeh’s
possibility-probability consistency measure [30], CZ (Π, P); i.e. CZ (Π, P) = K.
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4.1 Information Measures of Conditioned Probability

In this section we apply the Shannon and Gini measures to the original and con-
ditioned probability distributions for the 3 possibility distribution cases shown
below, and compare the measures’ values [31]:

Complete Certainty:ΠCC = 1, 0, . . . , 0, 0f g
Complete Uncertainty:ΠCU = 1, 1, . . . , 1, 1, 1f g
Intermediate Uncertainty:ΠCI = 1, 1, ..1, 0, 0 . . . , 0f g

As both measures have increasing values with increasing uncertainty, the con-
ditioned probability will be more informative for decision-making if it’s measure
value is less than for the original probability. We can see that both measures
basically agree for the cases, although their specific values are in different ranges.

Case 1
For the completely certain possibility, we consider only where there is no

conflict and the conditioned probability is

P̂= 1, 0, ..0f g

Then we have first for both measures with the distribution Pcc

SðP̂Þ=GðP ̂Þ=0= S Pccð Þ=G Pccð Þ

But for the equi-probable initial distribution Pcu

S Pcuð Þ= ln(nÞ> SðP ̂Þ=0

G Pcuð Þ= n− 1
n

>GðP̂Þ=0

So the conditioned probability distribution is more informative in the second
case for the probability Pcu.

Case 2
Next for the case of complete possibilistic uncertainty, we have P̂ = P for all the

probability distributions and so we have

SðP̂Þ= S Pð Þ andGðP ̂Þ=G Pð Þ

We can conclude that the conditioned probability distribution P ̂ is no more
informative than the original probability P since the possibility distribution Π does
not contribute any information as it represents complete uncertainty.
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Case 3
For the intermediate possibility case and here we consider the probability, Pcc,

first for the Shannon measure and then the Gini index. Since for no conflict P̂ = {0,
0, …, 0, pt = 1, … 0} then as before for this distribution

SðP̂Þ= S Pccð Þ=0 andGðP̂Þ=G Pccð Þ=0

Next for the equi-probable distribution Pcu, the Shannon measure is

SðP̂Þ = − ∑
m

i=1

1
m

� �
ln

1
m

� �
+ ∑

n

i=m+1
0 ln(0Þ

� �
= −

1
m

∑
m

i=1
ln(1)− ln(m)ð Þ

= −
1
m

* −m ln(m)ð Þ= ln(m)
1
m

Now since Pcu is an equi-probable distribution and n > m

S Pcuð Þ= ln nð Þ> ln mð Þ= SðP ̂Þ

Next for the Gini measure

GðP̂Þ=1− ∑
m

i=1
p ̂2i + ∑

n

i=m+1
p ̂2i

� �
=1− ∑

m

i=1

1
m

� �2

+ ∑
n

i=m+1
0

 !
=1−m*

1
m2

Recall G(Pcu) = = 1 − 1/n and since 1 < m < n, 1/n < 1/m

GðP ̂Þ=1−
1
m

<1−
1
n
=G Pcuð Þ

Thus we see that by both measures the conditioned probability is more infor-
mative in this case.

5 Summary

Information measures such as Shannon and Gini have been shown to provide
valuable metrics for both database quantification as well assessments of aggregation
approaches. Advanced measures of information such as various parametric mea-
sures [32, 33] could also be considered for the applications described in this
chapter. Additionally there are other approaches to aggregation of probability and
possibility distributions being evaluated based on the transformations [34] of
possibility distributions to probability distributions. Then the probability distribu-
tions can be combined and the result assessed by information measures as discussed
in this chapter [35].
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On Practical Applicability of the Generalized
Averaging Operator in Fuzzy Decision
Making

Uzay Kaymak

Abstract Many different types of aggregation operators have been suggested as

decision functions for multicriteria fuzzy decision making. This paper investigates

the practical applicability of generalized averaging operator as decision functions in

modeling human decision behavior. Previously published numerical data is used in

the analysis and the results are compared with those obtained from compensatory

operators. The numerical data suggests that the generalized averaging operator may

be used for modeling human decision behavior.

1 Introduction

Decision making in a fuzzy environment has been introduced in [2] as the intersec-

tion of fuzzy sets representing the goals and the constraints of the decision problem.

The minimum operator was used to determine the intersection of fuzzy sets. Subse-

quent research has shown that other aggregation operators from the fuzzy set theory

can also be used to formulate the aggregation of information concerning the goals

and the constraints. In this respect, a lot of attention has been paid to fuzzy aggre-

gation operators and the aggregation of information modeled by fuzzy sets. Conse-

quently, the field of aggregation operators is recognized as an important cornerstone

of fuzzy systems research (see e.g. [1, 5, 6, 9, 15, 22]).

One of the important contributors to the field has been Ron Yager, who has intro-

duced weighted aggregation of fuzzy information [25], informational considerations

of aggregation [26] and new aggregation operators, such as Yager’s t-norm [27] and

the ordered weighted averaging operators [28]. Nowadays, it is widely accepted that

fuzzy decision making can use any appropriate aggregation of fuzzy goals and con-

straints, based one of the many fuzzy set aggregation operators. The selection of a

suitable decision function for a problem then reflects the aims of the decision maker.
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The decision maker may choose a decision function that suits his purposes best. Fur-

thermore, certain decision functions may be more suitable for certain types of deci-

sion problems. Hence, the selection of a suitable decision function involves some

uncertainty. Consequently, many possible decision functions have been suggested

in literature. The most common ones are the t-norms for modelling the conjunctive

(and-type) aggregation of the criteria and the t-conorms for modelling the disjunc-

tive (or-type) aggregation. Even though there has been an abundance of proposed

decision functions, the practical applicability of these functions in human decision

making has been empirically tested and shown only for a small number of them.

Studies carried out by Thole [23], Kovalerchuk [17] and Zimmermann [33] indicate

that the most commonly used t-norms (minimum and product operator) and their

associated t-conorms are not suitable for modelling human decision behaviour. It

seems that human beings do not aggregate criteria by t-norms or t-conorms alone,

but by a compensatory combination of the criteria. A general form of compensatory

operators has been defined by Mizumoto [21]. Some special compensatory operators

have been suggested and studied empirically by Zimmermann [33]. The numerical

results show that the investigated compensatory operators approximate the human

decision behaviour sufficiently well.

Another class of aggregation operators that allows compensation between criteria

is the quasi-linear averaging operators that have been studied by van Nauta Lemke

et al. [24] and by Dyckhoff and Pedrycz [8] in the fuzzy set setting. Although com-

mon in many areas of decision making, it is an open question whether the averaging

operators can be used to model the way humans aggregate information. In this sense,

thorough empirical studies are still necessary in order to assess to what extent gen-

eralized averaging operators model the human decision behaviour. In this paper we

want to give impulse for more empirical investigation of the use of averaging oper-

ators in fuzzy decision making, by comparing empirical results obtained with the

averaging operators with those obtained from the compensatory operators as sug-

gested by Zimmermann and Zysno [33]. To facilitate the comparison, we use pre-

viously published empirical data of Thole et al. [23], Kovalerchuk et al. [17] and

Zimmermann et al. [33].

The paper is organized as follows. Section 2 gives a summary of different types

of decision functions and gives a brief introduction to the decision functions used in

our study. An interpretation of various parameters used in these decision functions

is given. Section 3 summarizes the empirical studies conducted by Thole et al. [23],

Kovalerchuk et al. [17] and Zimmermann et al. [33], whose numerical results have

been used in this paper. It also lists the conditions upon which the suitability of

the generalized averaging operator for decision making has been tested. Section 4

gives the numerical results obtained through the use of the averaging operators and

compares them to the results obtained from the compensatory operators described

in [33]. The paper ends with the conclusions in Sect. 5.
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2 Decision Functions

As discussed in Sect. 1, decision making in a fuzzy environment has been defined

by Bellman and Zadeh [2] as the intersection of fuzzy sets representing the goals

and/or the constraints of the decision problem, but it is widely accepted, nowadays,

that any suitable aggregation of fuzzy sets may be used in fuzzy decision making.

Consequently, many aggregation operators have been proposed in the literature [2,

6–8, 21, 24, 25, 28, 29, 31, 33]. Because the decision is made as a result of this

aggregation, the functions which combine a number of fuzzy sets by using these

operators are known as decision functions.

Since different decision makers will have different aims in a decision problem, it

is expected that the fuzzy sets corresponding to the goals and the constraints may

be aggregated in different ways. The decision maker may choose a decision function

that best reflects the goals of the decision. Example 1 illustrates this.

Example 1 A young man is going to buy a bunch of flowers for his girl friend. He

may wish the flowers to be brightly coloured and smell nice. Another possibility

is that he wishes them to be brightly coloured or smell nice. Clearly, he has to use

different decision functions in each case (e.g. minimum operator as opposed to the

maximum operator).

It may also be the case that certain decision functions may inherently be more

suitable for certain types of decision problems. In this case, it is the boundary con-

ditions on the decision, rather than the personal preferences of the decision maker

that determines the choice of the decision function.

Example 2 A person wants to buy a car that is fast, economical (low fuel usage) and

inexpensive. It is probably not possible to satisfy all these criteria at the same time.

A fast car will not be economical and an inexpensive car probably will not be fast.

Hence, one is forced to make a trade-off between the criteria. Therefore, the decision

function must be chosen so as to allow for trade-off between criteria.

2.1 Common Aggregation Types

Clearly, the selection of a decision function is of central importance in the fuzzy

decision making model. If the decision maker chooses to satisfy all the criteria simul-

taneously, conjunction operators are used as decision functions. When the decision

maker allows full compensation between criteria (i.e. he is satisfied when at least

one criterion is satisfied), disjunction operators are used. T-norms and t-conorms

are used as conjunction and disjunction operators respectively [3]. For an axiomatic

definition of t-norms and t-conorms, the reader may refer to [6, 16, 20]. We want to
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mention here one property of t-norms and t-conorms that is of relevance in empirical

studies:

1. Minimum operator is the largest t-norm, i.e. T(a, b) ≤ min(a, b), a, b ∈ [0, 1];
2. Maximum operator is the smallest t-conorm, i.e. S(a, b) ≥ max(a, b), a, b ∈

[0, 1].

There has been indications in the literature [23, 30] that this property of t-norms

and t-conorms make them unsuitable for the modelling of aggregation by human

decision makers. It appears that human beings tend to partially compensate between

criteria instead of trying to satisfy them simultaneously or make complete compen-

sations. According to one interpretation, human beings use a mixture of conjunction

and disjunction in their decisions. To model this, compensatory operators have been

proposed, the general form of which has been defined by [21]:

Ĉ(a, b) = M (F(a, b),G(a, b)) (1)

where M(a, b) is an averaging operator, and F(a, b) and G(a, b) are t-norms, t-

conorms or averaging operators. Special forms of (1) have been suggested and inves-

tigated by Zimmermann and Zysno [33]. These have the form:

𝜇A𝛩B =
(
𝜇A∩B

)1−𝛾
⋅
(
𝜇A∪B

)𝛾
(2)

and

𝜇A𝛩B = (1 − 𝛾)𝜇A∩B + 𝛾𝜇A∪B (3)

where 𝛾 is interpreted as the ‘grade of compensation’. Different decision functions

may now be obtained by the suitable selection of 𝛾 and the intersection and the union

operator for the fuzzy sets. Usually the minimum and the maximum operators are

used for the intersection and the union respectively. However, [33] suggests the use

of the algebraic product and the algebraic sum as these operators allow interaction

between fuzzy sets.

2.2 Generalized Averaging Operator

Another class of operators that allows compensation between criteria is the averaging

operators. Averaging operators satisfy the following conditions:

1. a ∧ b ≤ M(a, b) ≤ a ∨ b,

2. M(a, b) = M(b, a),
3. a ≤ c ⟺ M(a, b) ≤ M(c, b).

Averaging operators are natural operators for decision problems where there is a

trade-off between criteria, because the solution is always intermediate between the

best and the worst satisfied criteria.
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Averaging operators are quite common in various fields of decision making. Min-

imum operator has been used in economics, for example, while arithmetic mean is

used, amongst others, in education. Quadratic mean is used in control theory and lies

at the basis of the least squares method. Harmonic mean is sometimes used while

the product operators are usually employed in probability analysis.

When all the criteria are equally important, these commonly used averaging oper-

ators, together with many others, can be brought under a parametric formula, which

is

Di(s) =

{
1
m

m∑

j=1
𝜇

s
ij

}1∕s

s ∈ ℝ∖{0}, 𝜇ij ∈ [0, 1] (4)

with

Di(0) ≜
m∏

j=1
𝜇
1∕m
ij . (5)

Herein s is a parameter that may take any real value, m is the total number of criteria

considered, while 𝜇ij is the degree with which alternative ai satisfies the criterion

cj. Di(s) is the overall evaluation for alternative ai. By changing the value of the

parameter s, one obtains different decision functions, such as the minimum (for s →
−∞), harmonic mean (for s = −1), geometric mean (for s = 0), arithmetic mean (for

s = 1), quadratic mean (for s = 2) or the maximum (for s → ∞).

Equation (4) satisfies a number of general properties.

1. Di(s) is a continuous function of parameter s.

2. Di(s) is monotonic and non-decreasing as a function of s.

3. Provided that 𝜇ij ∈ [0, 1], Di(s) ∈ [0, 1].
4. Di(s) is an increasing function of 𝜇ij.

The proofs for property 1 and property 2 can be found in [8, 11]. Property 3

follows from the boundary conditions (minimum and maximum) and property 1.

Property 4 is a necessary condition for (4) to be an averaging operator and has been

studied in [12] in the fuzzy sets context.

The parameter s allows the generalized mean to be customized for a given setting

(preference of the decision maker). In the literature, it has been shown that s can be

interpreted as a characteristic index of optimism of the decision maker [13, 24]. By

changing the value of the parameter s, the decision function can be adapted to the

context, so that it fits the decision problem as good as possible. This adaptation also

corresponds to determining the characteristic degree of optimism of the decision

maker.

2.3 Hurwicz Criterion

The optimism-pessimism criterion of Hurwicz is sometimes used in the decision

making literature [14, 19]. This is a decision function with an optimism index 𝜎.

Hurwicz criterion is given in (6).
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DH = (1 − 𝜎)
m⋀

j=1
𝜇ij + 𝜎

m⋁

j=1
𝜇ij 𝜎 ∈ [0, 1]. (6)

For 𝜎 = 0 one obtains the minimum operator and for 𝜎 = 1 one obtains the max-

imum operator. The disadvantage of this criterion and 𝜎 as an index of optimism is

that it depends only on the minimum and the maximum of the membership values.

The criterion is insensitive to membership values between the two extremes. The

decision function (4) with s as the index of optimism does not suffer from this dis-

advantage. Equation (4) makes it possible that all the membership values contribute

towards the value of the decision function in amounts that are determined, amongst

others by the value of the optimism index.

Note that the Hurwicz criterion is a linear combination of the minimum and the

maximum of the membership values. It is a special case of (3) with

𝜇∩ =
m⋂

j=1
𝜇ij =

m⋀

j=1
𝜇ij, (7)

and

𝜇∪ =
m⋃

j=1
𝜇ij =

m⋁

j=1
𝜇ij. (8)

2.4 Zimmermann Operator

In [33], the authors propose to use (2) with

𝜇∩ =
m⋂

j=1
𝜇ij =

m∏

j=1
𝜇ij. (9)

and

𝜇∪ =
m⋃

j=1
𝜇ij = 1 −

m∏

j=1

(
1 − 𝜇ij

)
. (10)

The product operator and the algebraic sum are preferred as the t-norm and the

t-conorm, respectively, because, these operators allow for interaction amongst the

criteria. In this case one obtains the following decision function:

DZ =

( m∏

j=1
𝜇ij

)1−𝛾 (

1 −
m∏

j=1

(
1 − 𝜇ij

)
)𝛾

. (11)
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Therefore, Zimmermann prefers a logarithmical linear combination. Note that,

these operators take a weighted average of a t-norm and a t-conorm. Hurwicz takes

the arithmetic mean while Zimmermann takes the geometric mean. Zimmermann

interprets the parameter 𝛾 as the grade of compensation between the criteria. When

𝛾 = 0, there is no compensation between criteria and one obtains a t-norm. When 𝛾 =
1, there is full compensation between the criteria and one obtains a t-conorm. The

grade of compensation is similar to the optimism index but they are not equivalent.

The optimism index is an indication of the decision maker’s bias towards highly or

badly satisfied criteria while the grade of compensation is an indication of how much

compensation there should be between various (linguistic) combinations of criteria.

In other words, the grade of compensation indicates the importance that the decision

maker attaches to a conjunctive or disjunctive combination of criteria.

Using (6) or (11) is equivalent to using (4) with a t-norm and a t-conorm as its

inputs, i.e.

D̃ =
{
(1 − 𝛾)𝜇s

t−norm + 𝛾𝜇
s
t−conorm

}1∕s
. (12)

By choosing s equal to 1 in (12), one obtains the Hurwicz criterion and by choosing

s equal to 0, one obtains the Zimmermann aggregation.

3 Empirical Studies

In this section we describe the experiments conducted by Thole et al. [23], Kovaler-

chuk et al. [17] and Zimmermann et al. [33] (designated respectively by Thole79,
Koval92 and Zimmer80 in the rest of the paper) and reproduce their numerical results.

We formulate the conditions which must be satisfied for accepting that the considered

decision function can model human decision behaviour. The results are later used for

testing the practical suitability of the generalized averaging operator in decision mak-

ing and they are compared with the results obtained by using (6) and (11) as decision

functions. The experimental studies consider conjunctive aggregation and they are

designed for determining which aggregation operators are suitable for modelling the

conjunctive aggregation as perceived by humans.

3.1 Experimental Design

The experiments from [17, 23, 33] have been used by various authors to demonstrate

the power of various decision functions for modeling the aggregation behavior in

human decision making [10, 18]. Hurwicz’ optimism-pessimism operator and the

generalized averaging operator have not been studied in this context, yet. We provide

this analysis in the following based on the three sets of experiments.
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In Thole79 the subjects were presented with 20 different objects and asked to what

degree they considered the objects to be

1. metallic,

2. container,

3. metallic container.

The objects were selected such that, they represented the membership grades from

0 to 1 rather evenly. Corrections were made for possible experimental errors (distor-

tion, end-effect etc.). For a detailed explanation of the experimental setup the reader

should refer to [23].

In Koval92 the subjects were asked to what extent they considered various objects

to be

1. heavy,

2. balls,

3. heavy balls.

For a detailed explanation of the experiment, the reader may refer to [17].

Because of the fact that an object is a metallic container when it is both metallic

and container, or it is a heavy ball when it is both heavy and a ball, these experiments

are expected to model an and-type combination of arguments with no compensation

between them.

In Zimmer80 the subjects had to consider a number of tiles by their

1. dovetailing,

2. solidity (indicated by a light grey colour) and

3. quality.

The quality of the tiles is determined both by dovetailing and by their solidity. How-

ever, a good dovetailing can compensate poor solidity up to a point and vice versa.

Hence, compensation between criteria is possible. The reader may refer to [33] for a

detailed description of the experiment. Table 1 shows the membership values mea-

sured in the three experiments.

3.2 Evaluating the Goodness of Fit

Zimmermann proposes eight criteria that can be used for selecting a decision func-

tion [32]. These include axiomatic strength, empirical fit, adaptability, numerical
efficiency, compensation, range of compensation, aggregating behavior and required
scale level of membership functions. The criteria describe different aspects that play

a role in the selection of decision functions, but they are not totally independent of

one another. In this paper, we focus on the empirical fit and are interested in which

operators are able to reproduce the empirical results obtained from the aggregation

of humans. For this purpose, the measured membership values for items (1) and (2)
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are combined together, for each experiment, using a number of operators. The val-

ues calculated by these operators are then compared with the observed membership

values for item (3).

An aggregation operator is not to be rejected as a suitable aggregation operator

that models human decision behavior, if it satisfies the following two conditions [23]:

1. the mean of the difference between the observed and the calculated values (𝜇M∩C,

𝜇H∩B and 𝜇D∩S) is not significantly different from zero (Student’s t-test with 𝛼 =
0.025, two-tailed),

2. the correlation between the observed and the calculated values is similar to 1.

In accordance with [23], we use a crisp threshold of 0.95, and require that the corre-

lation between the observed values and the calculated values is greater than or equal

to 0.95. The selection of 0.95 as the threshold value is arbitrary, but it is chosen here

since it is one of the most commonly used thresholds in statistics. Another possibility

could be defining a membership function which shows the level of acceptance for

an operator as a function of the correlation. In that case there is a gradual transition

from the non-acceptable correlation values to the acceptable correlation values.

We should make here a remark concerning condition 1. An important assumption

for condition 1 is that all the means that are considered are distributed normally. The

assumption has indeed been tested in a pre-test [23]. Further, if a hypothesis cannot

be rejected by Student’s t-test, it does not mean automatically that it can be accepted.

However, if the t-test does not reject an operator and the correlation between the

observed and the calculated values is larger than 0.95, we will consider the operator

to be acceptable.

4 Numerical Results

It has been shown in [23] that, the minimum and the product operators are not suit-

able for modelling human decision behaviour (in connection with the and operator).

We consider the decision function (4) in this analysis, and compare the results with

those obtained by the use of Hurwicz criterion (6) and Zimmermann connective (11)

to see whether they can model human decision behaviour. We investigate whether the

conditions specified in the previous section are satisfied for some value of the para-

meter corresponding to each decision function. In order to see whether the decision

functions satisfy the conditions for some value of their corresponding parameter, we

plotted the graphs of the parameter t of the t-test and the correlation coefficient as

a function of the parameters of the decision functions. This was done for all sets of

data.

Figure 1 shows the results for the optimism index s. Note that below t = 2, the

null-hypothesis cannot be rejected and hence condition 1 is satisfied. Condition 2 is

satisfied when the value of the correlation coefficient exceeds 0.95. It is seen from

the figure that it is possible to find values for the index of optimism for which both
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Fig. 1 Parameter t and the

correlation coefficient

plotted as a function of the
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-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 2

 4

 6

index of optimism

t-
pa

ra
m

et
er

Thole79

Zimmer80

Koval92

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0.8

 0.9

   1

index of optimism

co
rr

. c
oe

ff
. Thole79

Zimmer80

Koval92

conditions are satisfied simultaneously. Hence, provided that one can find a satis-

factory method for the correct determination of the decision maker’s optimism, (4)

can be used for modelling human decision behaviour. Similar results may also be

obtained by the Hurwicz criterion (6) and the Zimmermann connective (11).

Figure 2 shows the results for (11), while Fig. 3 depicts the results for (6). Thus,

the compensatory operators are adequate tools for modelling human decision behav-

iour.

Having concluded that the averaging operators and the compensatory operators

(as expected) may be used for modelling human decision behaviour, one may wonder

Fig. 2 Parameter t and the

correlation coefficient

plotted as a function of the

grade of compensation 𝛾
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Fig. 3 Parameter t and the

correlation coefficient

plotted as a function of

Hurwicz index of

optimism 𝜎
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Fig. 4 Values calculated by

Di(0.358) versus the

observed values for

Zimmer80. The solid line is

the line of perfect fit
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for which value of the parameters one obtains the ‘best’ fit such that the conditions

of Sect. 3 are satisfied. The optimal choice for the parameters may be determined by

the minimization of a suitable criterion. One commonly used criterion is the sum of

squared errors

LS =
N∑

i=1
(Yi

p − Yi)2 (13)

where Yi
p

denotes the calculated values using an aggregation operator, and Yi denotes

the observed values for the and-type combination. For Zimmer80 the optimal s-value

becomes sopt = 0.358. Even though this value minimizes the squared errors, the

mean of the difference between the observed and the calculated values is signifi-
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Fig. 5 Calculated values versus observed values for the optimal values of the parameters. a
Thole79, b Thole79, c Thole79, d Koval92, e Koval92, f Koval92, g Zimmer80, h Zimmer80 and

i Zimmer80

cantly different from zero, as Fig. 4 shows. This has also been tested with a t-test.

Hence, the sum of squared errors is not a good criterion for estimating s. Given the

conditions of Sect. 3.2, we have then chosen

LQ =
||||||

N∑

i=1

(
Yi

p − Yi
) ||Yi

p − Yi
||

||||||
(14)
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as the criterion because, it minimizes the squared errors as much as possible while

also keeping a symmetric distribution of points about the observed values. Therefore,

condition 1 and condition 2 are both represented in this criterion. One now obtains

results which satisfy both of the specified conditions. Table 2 summarizes the results.

For comparison, the obtained values for (13) are also given.

Figure 5 depicts the calculated values against the observed values for the opti-

mal values of the parameters. The diagonal line y = x indicates where ideal results

should lie. As seen from Fig. 5, the generalized averaging operator (4) gives results

comparable to those of other decision functions.

Note that, the range within which (4) satisfies both of the conditions is in the nega-

tive s-region for Thole79 and Koval92, and around s = 0 for Zimmer80. This is inter-

esting as Thole79 and Koval92 are assumed to describe a problem where both criteria

must be satisfied simultaneously (cautious behaviour), while Zimmer80 describes a

problem where trade-off between criteria is possible (neutral behaviour). This agrees

with an interpretation of the values of the index of optimism [13]. The results also

agree with a study which shows that 98 % of the decisions take place in the range

s ∈ [−25, 25] [4].

5 Conclusions

The practical applicability of a special class of aggregation operators, the quasi-linear

averaging operators, has been investigated in this paper. For purposes of comparison

with several earlier suggestions for decision operators, the experimental data of pre-

vious studies [17, 23, 33] have been employed. Thole et al. in [23] and Kovalerchuk

et al. in [17] study a decision problem in which a conjunctive aggregation of criteria

with no compensation amongst criteria is expected. Zimmermann et al., however,

consider a decision problem where compensation amongst criteria is required [33].

It may be concluded that the averaging operator investigated in this paper is suffi-

ciently able to model the decision behaviour exhibited by the subjects in all cases.

The parameter s of the averaging operator may be interpreted as the characteristic

optimism index of the decision maker and needs to be determined separately. We

have observed that the optimal parameter value of s is in a range that corresponds to

what can be expected from the type of aggregation.

Another class of operators that have been shown to model human decision behav-

iour sufficiently well are the compensatory operators such as those suggested by

Zimmermann and Hurwicz [33]. These are actually weighted averages of a conjunc-

tion operator and a disjunction operator. The criteria only have influence on the value

of the decision function through the conjunction and the disjunction operators. The

membership values do not have direct influence on the value of the decision func-

tion as is the case with the averaging operators. This points to an advantage of the

averaging operators as the influence of a certain criterion on the decision function

may be studied relatively easily, without first taking its interaction into account, with

other criteria through the conjunction and disjunction operators.
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This paper gives an indication that the averaging operator (4) may be used for

modelling human decision behaviour. However, more empirical studies are neces-

sary for fully investigating the scope of its practical applicability. We hope that the

results presented in this paper will stimulate researchers to further investigate the

practical applicability of the averaging operators in decision making.
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Evolving Possibilistic Fuzzy Modeling
and Application in Value-at-Risk
Estimation

Leandro Maciel, Rosangela Ballini and Fernando Gomide

Abstract This chapter suggests an evolving possibilistic fuzzy modeling approach

for value-at-risk modeling and estimation. The modeling approach is based on an

extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-

based systems. It employs memberships and typicalities to update clusters centers

and creates new clusters using a statistical control distance-based criteria. Evolv-

ing possibilistic fuzzy modeling (ePFM) also uses an utility measure to evaluate the

quality of the current cluster structure. The fuzzy rule-based model emerges from

the cluster structure. Market risk exposure plays a key role for financial institutions

in risk assessment and management. A way to measure risk exposure is to evaluate

the losses likely to incur when the prices of the portfolio assets decline. Value-at-risk

(VaR) estimate is amongst the most prominent measure of financial downside market

risk. Computational experiments are conducted to evaluate ePFM for value-at-risk

estimation using data of the main equity market indexes of United States (S&P 500)

and Brazil (Ibovespa) from January 2000 to December 2012. Econometric models

benchmarks such as GARCH and EWMA, and state of the art evolving approaches

are compared against ePFM. The results suggest that ePFM is a potential candi-

date for VaR modeling and estimation because it achieves higher performance than

econometric and alternative evolving approaches.
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1 Introduction

Nowadays Value-at-Risk (VaR) is accepted as one of the most prominent measure of

financial downside market risk. One of the major decisions after the Basel Commit-

ted on Banking Supervision creation was the use of VaR as a standard mechanism to

measure market risk. It recommends commercial banks with significant trade activ-

ity to use their own VaR measure to find how much capital they should set aside to

cover their market risk exposure, and U.S. bank regulatory agencies to audit the VaR

methodology employed by the banks [32, 35].

Despite its theoretical and numerical weakness, such as nonsubadditive and non-

convexity [14], VaR is the most widely used risk measure in practice. Accurate com-

putation of VaR is fundamental for quantile-based risk measures estimation such as

expected shortfall [21]. Although VaR is a relatively simple concept, robust estima-

tion of its values is often neglected. Currently, the generalized autoregressive con-

ditional heteroskedasticity (GARCH) family model [17], a type of non-linear time

series model, became a standard approach to estimate the volatility of financial mar-

ket data [35], the key input for parametric VaR computation.

The literature has shown a growing interest on the use of distinct methods for

VaR modeling and estimation. Examples include extreme value theory [40], quan-

tile regression models [17], Bayesian approaches [10], and Markov switching tech-

niques [20]. Kuester et al. [26] gives an overview of these and other models for VaR

estimation.

In spite of the recent advances, current econometric models exhibit some limita-

tions. The most important concerns the restrictive assumptions on the distribution

of assets returns. There has been accumulated evidence that portfolio returns (or log

returns) usually are not normally distributed. In particular, it is frequently found that

market returns display structural shifts, negative skewness and excess kurtosis in the

distribution of the time series [35].

To address these limitations, recent studies have suggested the use of evolving

fuzzy systems (eFS) for volatility modeling and forecasting in VaR estimation [7,

35, 41, 52, 53]. More recent, [39, 46] suggested the use of a cloud-based evolving

fuzzy model and a hybrid neural fuzzy network for volatility forecasting. The authors

show that evolving fuzzy modeling approaches outperform econometric techniques,

and appear as a potential tool to deal with volatility clustering.

Evolving fuzzy systems are an advanced form of adaptive systems because they

have the ability to simultaneous learn the model structure and functionality from

flows of data. eFS has been useful to develop adaptive fuzzy rule-based models,

neural fuzzy, and fuzzy tree models, to mention a few. Examples of the different

types of evolving fuzzy rule-based and fuzzy neural modeling approaches include

the pioneering evolving Takagi-Sugeno (eTS) modeling [3] approach and extensions

(e.g. Simpl_eTS [4], eXtended eTS (xTS) [5]). An autonomous user-free control

parameters modeling scheme called eTS+ is given in [2]. The eTS+ uses criteria

such as age, utility, local density, and zone of influence to update the model structure.
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Later, ePL+ [36] was developed in the realm of participatory learning clustering

[50, 51]. ePL+ extends the ePL approach [30] and uses the updating strategy of

eTS+.

An alternative method for evolving TS modeling is given in [13] based on a recur-

sive form of the fuzzy c-means (rFCM) algorithm. Clustering in evolving modeling

aims at learning the model structure. Later, the rFCM method was translated in a

recursive Gustafson-Kessel (rGK) algorithm. Similarly the original off-line GK, the

purpose of rGK is to capture different cluster shapes [12]. Combination of the rGK

algorithm and evolving mechanisms such as adding, removing, splitting, merging

clusters, and recursive least squares became a powerful evolving fuzzy modeling

approach called eFuMo [11].

A distinct, but conceptually similar approach for TS modeling is the dynamic

evolving neural fuzzy inference system model (DENFIS) [22]. DENFIS uses

distance-based recursive clustering to adapt the rule base structure. The weighted

recursive least squares with forgetting factor algorithm updates the parameters of

rule consequents. A recursive clustering algorithm derived from a modification of the

vector quantization technique, called evolving vector quantization, is another effec-

tive way to construct flexible fuzzy inference systems (FLEXFIS) [33].

An on-line sequential extreme learning (OS-ELM) algorithm for single hidden

layer feedforward neural networks with either additive or radial basis function hidden

nodes in a unified framework was developed in [29]. Computational experiments

using stream data of benchmark problems drawn from the regression, classification,

and time series forecasting has shown that OS-ELM is an efficient tool, with good

generalization and computational performance.

An evolving fuzzy modeling approach using tree structures, namely, evolving

fuzzy trees (eFT) was introduced in [27]. The eFT model is a fuzzy linear regression

tree whose topology can be continuously updated through a statistical model selec-

tion test. A fuzzy linear regression tree is a fuzzy tree with a linear model in each

leaf. Experiments in the realm of time series forecasting have shown that the fuzzy

evolving regression tree is a promising approach for adaptive system modeling.

The fuzzy self-organizing neural network [28] is an alternative recursive model-

ing scheme based on an error criterion, and on the generalization performance of the

network. Similarly, [49] suggests a self-adaptive fuzzy inference network (SaFIN)

using a categorical learning-induced partitioning mechanism to cluster data. The key

is to avoid the need of prior knowledge on the number of clusters for each dimen-

sion of the input-output space. Similar mechanisms to learn model structure and

parameters include the self-organizing fuzzy neural network (SOFNN) [43], and the

generalized adaptive neural fuzzy inference system (GANFIS) [6]. Other important

instance of evolving mechanism includes [45]. A comprehensive source of the evolv-

ing approaches can be found in [34].

Recently [37] developed a recursive possibilistic fuzzy modeling (rPFM) approach

whose purpose is to improve model robustness against noisy data and outliers. The

ePFM uses a recursive form of the possibilistic fuzzy c-means (PFCM) clustering

algorithm suggested by [42] to develop TS fuzzy rule-based model structure, and

employs the weighted recursive least squares algorithm to estimate the parameters of
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affine functions of the rule consequents. The PFCM simultaneously produces mem-

berships and typicalities to alleviate outliers and noisy data sensitivity of traditional

fuzzy clustering approaches, yet avoids coincident clusters [25, 42]. The advantages

of PFCM have been emphasized in the literature [9, 18, 48]. Using traditional bench-

marks of time series forecasting problems, [37] showed the potential of rPFM to deal

with nonlinear and nonstationary systems whose data affected by noise and outliers.

Despite the potential of the rPFM modeling approach to handle noisy data and

outliers, it assumes that the model structure, i.e. the number of clusters or, equiva-

lently, the number of TS fuzzy rules, is defined by the user. This is a major limita-

tion in adaptive system modeling, especially when handling nonstationary data. To

overcome this limitation, [38] suggested an evolving possibilistic fuzzy modeling

(ePFM) for data streams. ePFM adapts its structure with a possibilistic extension of

the evolving Gustafson-Kessel-Like algorithm (eGKL) suggested in [19]. Like [19],

creation of new clusters is determined by a statistical control distance-based crite-

ria, but cluster structure update uses both memberships and typicalities. The model

incorporates the advantages of the GK clustering algorithm by identifying clusters

with different shape and orientation while processing data streams. ePFM also uses

an utility measure to evaluate the quality of the current cluster structure. The utility

measure allows the rule base to shrink by removing rules with low utility (the data

pattern shifted away from the domain of the rule) and gives a simpler and more rel-

evant rule base to encapsulate the current state of the process as mirrored by recent

data.

Further, the aim of the chapter is to address evolving possibilistic fuzzy modeling

and value-at-risk estimation. The possibilistic approach is important because finan-

cial markets are often affected by news, expectations, and investors psychological

states, which induce volatility, noisy information, and cause outliers. In this situ-

ation, possibilistic modeling has the potential to attenuate the effect of noise and

outliers when building financial volatility forecasting models. Moreover, ePFM is

able to handle nonlinear and time-varying dynamics such as assets returns volatility

using data streams, which is essential for real-time decision making in risk manage-

ment. Computational experiments were performed to compare ePFM against current

econometric benchmarks and alternative state of the art evolving fuzzy and neuro-

fuzzy models for VaR estimation using daily data from January 2000 to December

2012 of the main equity market indexes in the United States (S&P 500) and Brazil

(Ibovespa).

After this introduction, the chapter proceeds as follows. Section 2 briefly recalls

TS modeling and possibilistic fuzzy c-means clustering. Next, Sect. 3 details the

evolving possibilistic fuzzy modeling approach. Section 4 evaluates the performance

and compares ePFM against GARCH, EWMA, and evolving approaches such as

eTS+, ePL+, DENFIS, eFuMo, and OS-ELM. Section 5 concludes the chapter and

lists issues for further investigation.
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2 TS Model and Possibilistic Fuzzy C-means

This section briefly describes the basic constructs of Takagi-Sugeno modeling and its

identification tasks, as well as the possibilistic fuzzy c-means clustering algorithm.

2.1 Takagi-Sugeno Fuzzy Model

Takagi-Sugeno (TS) fuzzy model with affine consequents consists of a set of fuzzy

functional rules of the following form:

Ri ∶ IF 𝐱 is Ai THEN yi = 𝜃i0 + 𝜃i1x1 +⋯ + 𝜃imxm, (1)

where Ri is the ith fuzzy rule, i = 1, 2,… , c, c is the number of fuzzy rules,

𝐱 = [x1, x2,… , xm]T ∈ ℜm
is the input, Ai is the fuzzy set of the antecedent of the ith

fuzzy rule and its membership function Ai(𝐱) ∶ ℜm → [0, 1], yi ∈ ℜ is the output

of the ith rule, and 𝜃i0 and 𝜃ij, j = 1,… ,m, are the parameters of the consequent of

the ith rule.

Fuzzy inference using TS rules (1) has a closed form as follows:

y =
c∑

i=1

(
Ai(𝐱)yi∑c
j=1 Aj(𝐱)

)

. (2)

The expression (2) can be rewritten using normalized degree of activation:

y =
c∑

i=1
𝜆iyi =

c∑

i=1
𝜆i𝐱Te 𝜃i, (3)

where

𝜆i =
Ai(𝐱)∑c
j=1 Aj(𝐱)

, (4)

is the normalized firing level of the ith rule, 𝜃i = [𝜃i0, 𝜃i1,… , 𝜃im]T is the vector of

parameters, and 𝐱e = [1 𝐱T ]T is the expanded input vector.

The TS model uses parametrized fuzzy regions and associates each region with

an affine (local) model. The non-linear nature of the rule-based model emerges from

the fuzzy weighted combination of the collection of the multiple local affine models.

The contribution of a local model to the model output is proportional to the degree

of firing of each rule.

TS modeling requires to learn the antecedent part of the model using e.g. a fuzzy

clustering algorithm, and to estimate the parameters of the affine consequents.
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2.2 Possibilistic Fuzzy C-means Clustering

The possibilistic fuzzy c-means clustering algorithm [42] can be summarized as fol-

lows. Let 𝐱k = [x1k, x2k,… , xmk]T ∈ ℜm
be the input data at k. A set of n inputs is

denoted by X = {𝐱k, k = 1,… , n}, X ⊂ ℜm×n
. The aim of clustering is to partition

the data set X into c subsets (clusters).

A possibilistic fuzzy partition of the set X is a family {Ai, 1 ≤ i ≤ c}. Each Ai is

characterized by membership degrees and typicalities specified by the fuzzy and typ-

icality partition matrices U = [uik] ∈ ℜc×n
and T = [tik] ∈ ℜc×n

, respectively. The

entries of the ith row of matrix U (T) are the values of membership (typicalities)

degrees of the data 𝐱1,… , 𝐱n in Ai.

The possibilistic fuzzy c-means (PFCM) clustering algorithm produces c vectors

that represent c cluster centers. The PFCM algorithm derives from the solution of

the following optimization problem:

min
U,T ,V

{

J =
n∑

k=1

c∑

i=1
(au𝜂fik + bt𝜂pik )D

2
ik +

c∑

i=1
𝛾i

n∑

k=1
(1 − tik)𝜂p

}

, (5)

subject to

c∑

i=1
uik = 1 ∀ k,

0 ≤ uik, tik ≤ 1. (6)

Here a > 0, b > 0, and 𝜂f > 1, 𝜂p > 1, 𝛾i > 0 are user defined parameters, and D2
ik

is the distance of 𝐱k to the ith cluster centroid 𝐯i. The constants a and b define the rela-

tive importance of fuzzy membership and typicality values in the objective function,

respectively. V = [𝐯1, 𝐯2,… , 𝐯c]T ∈ ℜc×m
is the matrix of cluster centers, 𝜂f and 𝜂p

are parameters associated with membership degrees and typicalities, respectively,

with default value 𝜂f = 𝜂p = 2.

If D2
ik > 0 for all i, and X contains at least c distinct data points, then (U,T ,V) ∈

Mf ×Mp ×ℜc×n
minimizes J, with 1 ≤ i ≤ c and 1 ≤ k ≤ n, only if [42]:

uik =

( c∑

j=1

(
Dik

Djk

)2∕(𝜂f−1)
)−1

, (7)

tik =
1

1 +
(

b
𝛾i
D2

ik

)1∕(𝜂p−1)
, (8)

𝐯i =
∑n

k=1 (au
𝜂f

ik + bt𝜂pik )𝐱k
∑n

k=1 (au
𝜂f

ik + bt𝜂pik )
, (9)
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where

Mp =
{
T ∈ ℜc×n ∶ 0 ≤ tik ≤ 1,∀ i, k; ∀ k ∃ i ∋ tik > 0

}
, (10)

Mf =

{

U ∈ Mp ∶
c∑

i=1
uik = 1 ∀ k;

n∑

k=1
uik > 0 ∀ i

}

, (11)

are the sets of possibilistic and fuzzy partition matrices, respectively.

Originally, [42] recommends to choose parameters 𝛾i as follows:

𝛾i = K
∑n

k=1 u
𝜂f

ikD
2
ik

∑n
k=1 u

𝜂f

ik

, 1 ≤ i ≤ c, (12)

where K > 0 (usually K = 1), and uik are entries of a terminal FCM partition of X.

3 Evolving Possibilistic Fuzzy Modeling

The evolving possibilistic fuzzy modeling approach (ePFM), suggested by [38],

extends the evolving Gustafson-Kessel-Like clustering algorithm (eGKL), suggested

in [19]. ePFM considers both membership and typicalities to update the cluster struc-

ture, i.e. the antecedents of TS fuzzy rule-based model, and incorporates a utility

measure to avoid unused clusters.

3.1 Antecedents Identification

ePFM proceeds based on the underlying objective function for possibilistic fuzzy

clustering algorithm as in (5). In such case, the distance Dik is the same as used by

the Gustafson-Kessel algorithm, i.e. the Mahalanobis distance, which is a squared

inner-product distance norm that depends on a positive definite symmetric matrix

Aik as follows:

D2
ik = ||𝐱k − 𝐯i||2Aik

= (𝐱k − 𝐯i)TAik(𝐱k − 𝐯i). (13)

The matrix Aik, i = 1,… , c, determines the shape and orientation of the cluster

i, i.e., it is an adaptive norm unique for every cluster, calculated by estimates of the

data dispersion:

Aik =
[
𝜌idet(Fik)

]1∕m F−1
ik , (14)
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where 𝜌i is the cluster volume of the ith cluster (usually 𝜌i = 1 for all clusters) and

Fik is the fuzzy dispersion matrix:

Fik =
∑n

k=1 u
𝜂f

ik

(
𝐱k − 𝐯i

) (
𝐱k − 𝐯i

)T

∑n
k=1 u

𝜂f

ik

. (15)

Most of the fuzzy clustering algorithms assume clusters with spherical shapes.

Actually, in real world applications clusters often have different shapes and orien-

tations in the data space. A way to distinguish cluster shapes is to use information

about the dispersion of the input data as the Mahalanobis distance does.

The antecedents identification of ePFM extends possibilistic fuzzy clustering

algorithm using Mahalanobis distance to deal with streams of data. The evolv-

ing mechanisms, i.e. creation and update of clusters, are based on the evolving

Gustafson-Kessel-Like clustering algorithm principles [19], which are inspired by

two common recursive clustering algorithm: the k-nearest neighbor (k-NN) [23] and

the linear vector quantization (LVQ) [24].

Suppose 𝐱k is a input data at step k. Two possibilities should be considered to

update the current cluster structure. First, the data may belong to an existing cluster,

within the cluster boundary, which requires just a cluster update. Otherwise, it may

define a new cluster. These scenarios are considered in detail in what follows.

Suppose that we have c clusters when the kth data is input. The similarity between

the new data 𝐱k and each of the existing c clusters is evaluated using the Mahalanobis

distance (13). The similarity relation is evaluated by checking the following condi-

tion:

D2
ik < 𝜒

2
m,𝛽 , i = 1,… , c, (16)

where 𝜒
2
m,𝛽 is the (1 − 𝛽)th value of the chi-squared distribution with m degrees of

freedom and 𝛽 is the probability of false alarm.

Relation (16) comes from statistical process control to identify variations in sys-

tems that are due to actual input changes rather than process noise. For details on

criteria (16) see [19].

If the condition (16) holds, then the process is under control. The minimal distance

Dik determines the closest cluster p as

p = arg min
i=1,…,c

(Dik), D2
ik < 𝜒

2
m,𝛽 , i = 1,… , c. (17)

In this case, the vector 𝐱k is assigned to the pth cluster and

Mp,new = Mp,old + 1, (18)

where Mi counts the number of data points that fall within the boundary of cluster i,
i = 1,… , c.
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As [19] suggests for the eGKL algorithm, the pth cluster center could be updated

using the Kohonen-like rule [24]:

𝐯p,new = 𝐯p,old + 𝛼(𝐱k − 𝐯p,old), (19)

where 𝛼 is a learning rate, 𝐯p,new and 𝐯p,old denote the new and old values of the

cluster center. Notice that 𝛼(𝐱k − 𝐯p,old) may be viewed as a term proportional to

the gradient of an Euclidean distance based objective function, such as in FCM.

The evolving possibilistic fuzzy modeling suggested in this chapter updates the pth

cluster center taking into account a term proportional the gradient of the possibilistic

fuzzy clustering objective function in (5). Thus, the pth cluster center is updated as

follows:

𝐯p,new = 𝐯p,old + 𝛼(au𝜂fpk + bt𝜂ppk)Apk(𝐱k − 𝐯p,old). (20)

The determinant and the inverse of the dispersion matrix of the pth cluster is

updated as follows
1
:

F−1
p,new = (I − Gp(𝐱k − 𝐯p,old))F−1

p,old
1

1 − 𝛼
, (21)

det(Fp,new) = (1 − 𝛼)m−1det(Fp,old)(1 − 𝛼 + 𝛼(𝐱k − 𝐯p,old)TF−1
p,old(𝐱k − 𝐯p,old), (22)

where

Gp = F−1
p,old(𝐱k − 𝐯p,old)

𝛼

1 − 𝛼 + 𝛼(𝐱k − 𝐯p,old)TF−1
p,old(𝐱k − 𝐯p,old)

, (23)

and I is an identity matrix of order m.

Simultaneously the remaining clusters centers are updated in the opposite direc-

tion to move them away from the pth cluster:

𝐯q,new = 𝐯q,old − 𝛼(au𝜂fqk + bt𝜂pqk)Aqk(𝐱k − 𝐯q,old), q = 1,… , c, q ≠ p. (24)

The parameter Mi, i = 1,… , c, assesses the credibility of the estimated clusters.

According to [19], its minimal value Mmin corresponds to the minimal number of

data points needed to learn the parameters of the ith inverse dispersion matrix F−1
ik ,

that is estimated by the dimension m of the data vector:

Mmin = Qm(m + 1)∕2, (25)

where Q is the credibility parameter, with default value Q = 2.

1
The computation details are found in [19].
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On the other hand, if (16) does not hold, then 𝐱k is not similar to any of the cluster

centers. Thus, the natural action is to create a new cluster. However, one must check

whether that fact is not due to the lack of credible clusters surrounding 𝐱k, that is,

whether the condition:

Mp < Mmin, (26)

applies, p = argmini=1,…,c (Dik). If this is the case, then the closest cluster p is

updated using (20)–(23). Otherwise, a new cluster is created, cnew = cold + 1, with

the following initialization:

𝐯c,new = 𝐱k, F−1
c,new = F−1

0 = 𝜅I, det(Fc,new) = det(F0), Mc,new = 1, (27)

where I is an identity matrix of size m and 𝜅 is a sufficient large positive number.

The initialization in (27) is also used if there is no initially collected data set, sup-

posing that 𝐱1 represents the very first data point of the data streams 𝐱k,
k = 1, 2,….

3.2 Cluster Quality Measurement

In this paper, the quality of the cluster structure is monitored at each step consider-

ing the utility measure introduced in [2]. The utility measure is an indicator of the

accumulated relative firing level of a corresponding rule:

Uik =
∑k

l=1 𝜆i

k − Ki∗ , (28)

where Ki∗
is the step that indicates when cluster i ∗ was created.

Once a rule is created, the utility indicates how much the rule has been used. This

quality measure aims at avoiding unused clusters kept in the structure. Clusters cor-

responding with low quality fuzzy rules can be deleted. Originally, [2] suggested,

at each step k, the following criteria: if Uik is less or equal than a threshold, speci-

fied by the user, then the ith cluster is removed. To turn the ePFM algorithm more

autonomous, the following criteria to remove low quality clusters is suggested:

If Uik ≤ (Ūi − 2𝜎Ui
) Then cnew = cold − 1, (29)

where Ūi and 𝜎Ui
are the sample average and the standard deviation of the utility of

cluster i values.

This condition means that if the utility of cluster i at k is less or equal than 2
standard deviation of the average utility of cluster i, then cluster i has low utility and

it is removed. This idea relates to the 2𝜎 process control band in statistical process

control but considering the tail of the left side of utility distribution, since it is asso-
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ciated with the most unused clusters (lower utility). This principle guarantees high

relevance cluster structure and corresponding fuzzy local models. Alternative quality

measures such as age, support, zone of influence and local density may be adopted.

3.3 Consequent Parameters Estimation

Estimation of the parameters of the affine rule consequents is done using weighted

recursive least squares algorithm (wRLS) [31] as in [2]. Expression (3) can be rewrit-

ten as:

y = 𝛬
T
𝛩, (30)

where 𝛬 =
[
𝜆1𝐱Te , 𝜆2𝐱

T
e ,… , 𝜆c𝐱Te

]T
is the fuzzily weighted extended input,

𝐱e =
[
1 𝐱T

]T
the expanded data vector, and 𝛩 =

[
𝜃
T
1 , 𝜃

T
2 ,… , 𝜃Tc

]T
the parameter

matrix, 𝜃i = [𝜃i0, 𝜃i1,… , 𝜃im]T .

Given that the actual output can be obtained at each step, the parameters of the

consequents can be updated using the recursive least squares (RLS) algorithm con-

sidering local or global optimization. In this chapter we use the locally optimal error

criterion wRLS:

min
𝜃i

Ei
L = min

𝜃i

n∑

k=1
𝜆i
(
yk − 𝐱Tek𝜃i

)2
. (31)

Therefore, parameters of the rule consequents are updated as follows [2, 31]:

𝜃i,k+1 = 𝜃ik + Σik𝐱ek𝜆ik
(
yk − 𝐱Tek𝜃ik

)
, 𝜃i0 = 0, (32)

Σi,k+1 = Σik −
𝜆ikΣik𝐱ek𝐱TekΣik

1 + 𝜆ik𝐱TekΣik𝐱ek
, Σi0 = 𝛺I, (33)

where I is an identity matrix of size m, 𝛺 a large number (usually 𝛺 = 1000), and

Σ ∈ ℜm×m
the dispersion matrix.

3.4 EPFM Algorithm

The evolving possibilistic fuzzy modeling (ePFM) approach is summarized next.

The steps of the algorithm are non-iterative. The procedure adapts an existing model

whenever the pattern encoded in data changes. Its recursive nature means that, as far

as data storage is concerned, it is memory efficient.
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Evolving possibilistic fuzzy modeling
1. Compute 𝛾i and 𝐯i0 as terminal FCM partition, and Mmin = Qm(m + 1)∕2
2. Choose control parameters a, b, 𝛼, 𝛽, 𝜅, and initialize F−1

0 = 𝜅I
3. for k = 1, 2,… do
4. read the next data 𝐱k
5. check the similarity of 𝐱k to existing clusters: D2

ik < 𝜒
2
m,𝛽 , i = 1,… , c

6. identify the closest cluster: p = argmini=1,…,c (Dik)
7. if D2

ik < 𝜒
2
m,𝛽 or Mp < Mmin then:

8. update the parameters of the pth cluster using (20)–(23)

9. move away the centres of remaining cluster using (24)

10. else
11. create a new cluster: cnew = cold + 1
12. initilialize the new cluster using (27)

13. end if
14. if Uik ≤ (Ūi − 2𝜎Ui

) then delete cluster i:
15. cnew = cold − 1
16. end if
17. compute rule consequent parameters using the wRLS

18. compute model output yk+1
19. end for

4 Computational Experiments

The ePFM approach introduced in this chapter gives a flexible modeling procedure

and can be applied to a range of problems such as process modeling, time series

forecasting, classification, system control, and novelty detection. This section eval-

uates the performance of ePFM for Value-at-Risk modeling and estimation of S&P

500 and Ibovespa indexes in terms of volatility forecasting. The results of ePFM

are compared with GARCH and EWMA models, and with state of the art evolving

fuzzy, neuro and neuro-fuzzy modeling approaches, the eTS+ [2], ePL+ [36], rFCM

[13], DENFIS [22], eFuMo [11], and OLS-ELM [29].

4.1 VaR Estimation

Value-at-Risk (VaR) has been adopted by practitioners and regulators as the standard

mechanism to measure market risk of financial assets. It encapsulates in a single

quantity the potential market value loss of a financial asset over a time horizon h, at

a significance or coverage level 𝛼VaR. Alternatively, it reflects the asset market value
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loss over the time horizon h, that is not expected to be exceeded with probability

(1 − 𝛼VaR), i.e.:

Pr
(
rk+h ≤ VaR𝛼VaR

k+h
)
= 1 − 𝛼VaR (34)

where

rk+h =
ln(Pk+h)
ln(Pk)

, (35)

is the asset log return over the period h and Pj is the asset price at j.
Hence, VaR is the 𝛼VaRth quantile of the conditional returns distribution defined

as: VaR
𝛼VaR

= CDF−1
k+h(𝛼VaR), where CDF(⋅) is the returns cumulative distribution

function and CDF−1(⋅) denotes its inverse. Here, we concentrate at h = 1 as it bears

the greatest practical interest.

Let us assume that the daily conditional heteroskedastic returns in (35) of a finan-

cial asset can be described by the following process:

rk = 𝜎kzk, (36)

where zk ∼ i.i.d(0, 1) and 𝜎k is the asset volatility at k.

Therefore, the VaR at k + 1 is given by:

VaR𝛼VaR
k+1 = 𝜎k+1CDF−1

z (𝛼VaR), (37)

where CDF−1
z (𝛼VaR) is the critical value from the normal distribution table at 𝛼VaR

confidence level. In this section 𝛼VaR = 5% confidence level is assumed for all mod-

els.

In a VaR forecasting context, volatility modeling plays a crucial role and thus it

should place emphasis on the volatility models implemented. This work chooses to

model the conditional variance of the returns process with two econometric volatility

models and some evolving methods.

4.2 Econometric Benchmarks

Two benchmark econometric approaches, GARCH and EWMA, are adopted to esti-

mate the VaR given a 𝛼VaR confidence level in (37). The GARCH(r, s) model is as

follows [16]:

𝜎
2
k = 𝛿0 +

r∑

j=1
𝛿jr2k−j +

s∑

l=1
𝜇l𝜎

2
k−l, (38)

where 𝛿j, j = 0, 1,… , r, and 𝜇l, l = 1, 2,… , s, are model parameters.
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The exponentially weighted moving average (EWMA) model of Riskmetrics has

the following form [44]:

𝜎
2
k+1 = 𝜆

E
𝜎
2
k + (1 − 𝜆

E)r2k , (39)

where 𝜆E is the forgetting factor with default value 𝜆E = 0.94.

The evolving models use the following representation to estimate VaR:

𝜎
2
k+1 ≅ r2k+1 = f (r2k , r

2
k−1,… , r2k−p), (40)

where p is the number of lags considered as input of the evolving models. The num-

ber of lags is chosen looking at the partial autocorrelation function of the squared

indexes returns.

4.3 Performance Evaluation

The performance of the models is evaluated using two loss functions: the violation

ratio and the average square magnitude function. The violation ratio (VR) is the

percentage occurrence of an actual loss greater than the estimated maximum loss in

the VaR framework. VR is computed as follows:

VR = 1
n

n∑

k=1
𝛷k, (41)

where 𝛷k = 1 if rk < VaRk and 𝛷k = 0 if rk ≥ VaRk, where VaRk is the one step

ahead forecasted VaR for day k, and n is the number of observations in the test set.

The average square magnitude function (ASMF) [15] considers the amount of

possible default measuring the average squared cost of exceptions. It is computed

using:

ASMF = 1
𝜗

𝜗∑

j=1
𝜉j, (42)

where 𝜗 is the number of exceptions of the respective model, 𝜉j = (rj − VaRj)2
when rj < VaRj and 𝜉j = 0when rj ≥ VaRj. The average squared magnitude function

enables us to distinguish between models with similar or identical hit rates [35].

All modeling approaches are also characterized in terms of the average num-

ber of rules/nodes and the (CPU) time needed to process test data. All algorithms

were implemented and run using Matlab
®

on a laptop equipped with 4 GB and

Intel
®

i3CPU.



Evolving Possibilistic Fuzzy Modeling and Application in Value-at-Risk Estimation 133

Table 1 Statistics of S&P 500 and Ibovespa index returns

Statistic S&P 500 Ibovespa

Mean 0.0002 0.0004

Std. dev. 0.0136 0.0191

Skewness −0.1578 −0.1177

Kurtosis 10.2670 6.7847

Max. 0.1096 0.1368

Min. −0.0947 −0.1210

JB 7094.1 1928.0

p-value 0.0010 0.0010

4.4 Data

The computational results were produced using daily values of the S&P 500 and

Ibovespa indexes from January 2000 to December 2012.
2

This period was selected

because both equity markets were under stable movements and volatile dynamics due

to the international crisis that occurred in that period. The Ibovespa index illustrates

how the models perform in emergent economies like the Brazilian. The data was

split in two sets. The training set includes the period from January 2000 to December

2003. The remaining data comprises the test set.

4.5 Results

Summary statistics of S&P 500 and Ibovespa index returns are presented in Table 1.

For both index returns series the mean are close to zero, and the Ibovespa index has

the higher standard deviation. The series also presented a negative skewness, which

indicates left a side fat tail, a stylized fact of financial assets returns. The series also

show high kurtosis coefficients. The Jarque-Bera statistics (JB) [8] reveal that the

return series are non-normal with a 99 % confidence interval. Figure 1 shows the

returns series of S&P 500 and Ibovespa. In both markets the volatility clusters are

presented, mainly in cases of more unstable periods, such as during the recent crisis

that started in 2008 in the USA and then affected other economies like the Brazilian.

Moreover, the returns of the Brazilian equity market index are more volatile than the

S&P 500, which is expected in emergent economies.

The parameters r and s of the GARCH(r, s) model were selected according to the

Bayesian Information Criteria (BIC) [47]. The final GARCH models, GARCH(1, 2)
and GARCH(1, 1) for S&P 500 and Ibovespa index returns, respectively, are:

2
The data was provided by Bloomberg.
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Fig. 1 Daily S&P 500 (top) and Ibovespa (bottom) index returns from January 2000 to December

2012

𝜎
2
k = 0.0216r2k−1 + 0.0029𝜎2

k−1 + 0.1031𝜎2
k−2, (43)

𝜎
2
k = 0.5029r2k−1 + 0.4230𝜎2

k−1. (44)

The GARCH models indicate that Ibovespa returns volatility is more persistent

than S&P 500 due to its estimated coefficients (𝛿1 + 𝜇1 = 0.5029 + 0.4230 = 0.9592
for Ibovespa and 𝛿1 + 𝜇1 + 𝜇2 = 0.0216 + 0.0029 + 0.1031 = 0.1276 for S&P 500),

which is in line with the literature for volatility behavior in emergent economies [1].

For the evolving methods, the analysis of the partial autocorrelation function of

the squared index returns indicated p = 2 and p = 4 for S&P 500 and Ibovespa,

respectively:

𝜎
2
k+1 ≅ r2k+1 = f (r2k , r

2
k−1, r

2
k−2), (45)

for S&P 500 and

𝜎
2
k+1 ≅ r2k+1 = f (r2k , r

2
k−1, r

2
k−2, r

2
k−3, r

2
k−4), (46)

for Ibovespa.

The control parameters of ePFM were chosen based on experiments conducted

to find the best performance in terms of VR and ASMF measures. ePFM modeling

uses a = 2, b = 3, 𝛼 = 0.08 and 𝜅 = 50 for S&P 500; and a = 1, b = 2, 𝛼 = 0.13 and

𝜅 = 50 for Ibovespa. Initialization uses the FCM algorithm to choose 𝛾i and 𝐯i0.

One must note that is necessary to choose the probability of a false alarm 𝛽 and to

define 𝜒
2
m,𝛽 . This work considers a default probability of false alarm 𝛽 = 0.0455 that

relates to the 2𝜎 process control band in the single-variable statistical process control

as [19]. Table 2 show the 𝜒
2
m,0.0455 for different values of m. Therefore, ePFM uses

𝜒
2
3,0.0455 = 8.0249 for S&P 500 and 𝜒

2
5,0.0455 = 11.3139 for Ibovespa. Control para-

meters of the alternative evolving methods were also chosen based on simulations to

find the best VR and ASMF values.
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Table 2 𝜒
2
m,0.0455 for different values of m

m 2 3 4 5 6 7 8 9 10

𝜒
2
m,0.0455 6.1801 8.0249 9.7156 11.3139 12.8489 14.3371 15.7891 17.2118 18.6104

Table 3 Performance evaluation for S&P 500 index VaR estimation

Method VR (%) ASMF (%) # rules (aver.) Time (s)

GARCH 3.635 0.165 – 44.87

EWMA 3.598 0.160 – 5.211

eTS+ 1.814 0.089 3.870 1.774

ePL+ 1.992 0.091 4.192 1.801

rFCM 2.075 0.107 4.227 1.967

DENFIS 2.980 0.180 11 18.92

eFuMo 1.712 0.069 3.711 1.700

OS-ELM 2.862 0.173 9 15.30

ePFM 1.690 0.067 3.908 1.882

Table 4 Performance evaluation for Ibovespa index VaR estimation

Method VR (%) ASMF (%) # rules (aver.) Time (s)

GARCH 4.367 0.214 – 46.34

EWMA 4.567 0.279 – 7.019

eTS+ 1.982 0.106 4.871 1.876

ePL+ 2.014 0.117 6.740 1.994

rFCM 2.276 0.098 5.306 2.035

DENFIS 3.009 0.192 15 21.48

eFuMo 1.874 0.079 4.652 1.715

OS-ELM 2.933 0.164 13 16.30

ePFM 1.667 0.085 4.891 1.894

Tables 3 and 4 show the violation ratio VR and average square magnitude func-

tion ASMF values of the ePFM against the remaining approaches for S&P 500 and

Ibovespa VaR estimation using test data, respectively. The results are similar for both

indexes. The ePFM model achieves competitive results in terms of VR and ASMF

when compared against eFuMo and remaining evolving models for S&P 500 and

Ibovespa VaR estimation. The GARCH and EWMA models achieve the worst per-

formance, with higher values of violation ratio and average squared magnitude func-

tion for both indexes. For S&P 500 VaR estimation, the evolving possibilistic fuzzy

approach reduces the VR and ASMF values in approximately 53.27 % and 58.77 %,

respectively, when compared against the econometric benchmark models, GARCH

and EWMA (Table 3). Similarly, ePFM reduces the VR and ASMF values in approx-
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imately 62.17 % and 72.82 %, respectively, when compared against GARCH and

EWMA (Table 4) for Ibovespa VaR estimation. The gain of performance of using

ePFM modeling approach is even higher when Ibovespa VaR estimation is consid-

ered. These results are in line with [39, 46] which suggest that clustering based tech-

niques perform better for volatility modeling and forecasting by handling volatility

clustering, since in this empirical study eTS+, ePL+, rFCM, eFuMo and ePFM show

the lowest values of VR and ASMF against the other models.

Except for GARCH, EWMA, DENFIS and OS-ELM, the computational perfor-

mance of the evolving approaches are similar in terms of CPU time, considering all

test data processing. eFuMo develops the smallest average number of rules among

all approaches. A smaller number of rules reduces model complexity and enhances

interpretability. Generally speaking, all evolving approaches are qualified to deal

with on-line stream data processing for VaR estimation in risk management decision

making.

Figures 2 and 3 show the return and VaR estimates produced by ePFM modeling

approach for S&P 500 and Ibovespa, respectively. Notice the high adequacy of ePFM

to capture volatility dynamics in terms of VaR estimates in both economies.
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−0.05
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Fig. 2 Daily S&P 500 returns and VaR estimates using ePFM
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Fig. 3 Daily Ibovespa returns and VaR estimates using ePFM
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5 Conclusion

This chapter has suggested an evolving possibilisitc fuzzy modeling approach for

Value-at-Risk (VaR) estimation. The approach combines recursive possibilistic fuzzy

clustering to learn the model structure, and a weighted recursive least squares to esti-

mate the model parameters. The idea is to adapt the model structure and parameter

whenever required by new input data. ePFM creates new clusters using a statisti-

cal control distance-based criteria, and clusters are updated using memberships and

typicalities. The model incorporates the advantages of the Gustafson-Kessel clus-

tering algorithm of identifying clusters with different shape and orientation while

processing data streams. ePFM also uses an utility measure to evaluate the quality

of the current cluster/model structure. Computational experiments addressed ePFM,

econometric GARCH and EWMA benchmarks, and state of the art evolving fuzzy

and neuro-fuzzy models for VaR estimation using daily data from January 2000 to

December 2012 of the main equity market indexes in the United States (S&P 500)

and Brazil (Ibovespa). Results indicate the superior performance of ePFM and all

the evolving techniques against GARCH and EWMA benchmarks in both economies

considered. Further work shall generalize ePFM to handle mixture of cluster shapes,

to make the ePFM algorithm fully autonomous, and to evaluate the ePFM model in

risk management strategies.
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Using Similarity and Dissimilarity Measures
of Binary Patterns for the Comparison
of Voting Procedures

Janusz Kacprzyk, Hannu Nurmi and Sławomir Zadrożny

Abstract An interesting and important problem of how similar and/or dissimilar

voting procedures (social choice functions) are dealt with. We extend our previous

qualitative type analysis based on rough sets theory which make it possible to parti-

tion the set of voting procedures considered into some subsets within which the vot-

ing procedures are indistinguishable, i.e. (very) similar. Then, we propose an exten-

sion of those analyses towards a quantitative evaluation via the use of degrees of

similarity and dissimilarity, not necessarily metrics and dual (in the sense of sum-

ming up to 1). We consider the amendment, Copeland, Dodgson, max-min, plu-

rality, Borda, approval, runoff, and Nanson, voting procedures, and the Condorcet

winner, Condorcet loser, majority winner, monotonicity, weak Pareto winner, con-

sistency, and heritage criteria. The satisfaction or dissatisfaction of the particular

criteria by the particular voting procedures are represented as binary vectors. We

use the Jaccard–Needham, Dice, Correlation, Yule, Russell–Rao, Sockal–Michener,

Rodgers–Tanimoto, and Kulczyński measures of similarity and dissimilarity. This

makes it possible to gain much insight into the similarity/dissimilarity of voting pro-

cedures.
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1 Introduction

In this paper we deal with voting procedures, maybe the most intuitively appealing

examples of social choice function, which are meant to determine the winner of

some election in the function of individual votes—cf. for a comprehensive exposure

in particular Pitt et al. [1] but also Pitt et al. [2, 3], Arrow, Sen and Suzumura [4],

Kelly [5], Plott [6], Schwartz [7], etc.

Basically, we consider the following problem: we have n, n ≥ 2 individuals who

present their testimonies over the set of m, m ≥ 2, options. The testimonies can be

exemplified by individual preference relations which are often, also here, binary

relations over the set of options, orderings over the set of options. We look for social
choice functions, or—to be more specific—a voting procedure that would select a

set of options that would best reflect the opinions of the whole group, as a function

of individual preference relations.

A traditional line of research here has been whether and to which extent the par-

ticular voting procedures do or do not satisfy some plausible and reasonable axioms

and conditions, maybe best exemplified by the famous Arrows theorem, and so many

paradoxes of voting. We will not deal with this, for details cf. Arrow [8], Gibbard [9],

Kelly [10], May [11], Nurmi [12], Riker [13], Satterthwaite [14], etc.

We will deal with an equally important, or probably practically more impor-

tant, problem of how similar or dissimilar the particular voting procedures are. This

was discussed in Nurmi’s [12] book, cf. also Baigent [15], Elkind, Faliszewski and

Slinko [16], McCabe-Dansted and Slinko [17], Richelson [18], etc.

In this paper we will deal with the above mentioned problem of how to measure

the similarity and dissimilarity of voting procedures. First, we will take into account

only a subset of well known voting procedures. Then, we will employ the idea of

a qualitative similarity (and its related dissimilarity) analysis of voting procedures

proposed by Fedrizzi, Kacprzyk and Nurmi [19] in which Pawlak’s rough sets (cf.

Pawlak [20, 21], cf. also Pawlak and Skowron [22]), have been used. Then, we will

use the idea of the recent approach proposed by Kacprzyk, Nurmi and Zadrożny [23]

in which the above mentioned more qualitative rough sets based analysis has been

extended with a quantitative analysis by using the Hamming and Jaccard-Needham

similarity indexes.

This paper is a further extension of Kacprzyk, Nurmi and Zadrożny [23]. Basi-

cally, we consider some other more popular similarity (and their related dissimilar-

ity) measures:

∙ Jaccard-Needham (to repeat, for completeness, the results already obtained for this

measure in [23]),

∙ Dice,

∙ correlation,

∙ Yule,

∙ Russell–Rao,

∙ Sockal–Michener,
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∙ Rogers–Tanimoto, and

∙ Kulczyński—cf. Tubbs [24] for details.

Notice that these measure are just a small subset of a multitude of similarity mea-

sures known in the literature, cf. Choi, Cha and Tappert [25]. Moreover, in this paper

we limit our attention to those similarity measures which, first of all, take in values

in [0, 1], and the corresponding dissimilarity measures of which are dual in the sense

that their values add up to 1, which is not the case for all measures.

Notice that this approach is different both conceptually and technically from

the approach by Kacprzyk and Zadrożny [26, 27] in which some distinct classes

of voting procedures are determined using the concept of Yager’s [28] ordered

weighted averaging (OWA) aggregation operator (cf. Yager and Kacprzyk [29],

Yager, Kacprzyk and Beliakov [30]), and the change of the order of variables to

be aggregated and the type of weights (i.e. the aggregation behavior) determines

various classes of voting procedures.

2 Foundations of the Theory of Rough Sets

Rough sets were proposed in the early 1980s by Pawlak [20], and then extensively

developed by Pawlak [21], Polkowski (e.g., [31]), Skowron (e.g., [22, 32, 33]), Słow-

iński (e.g., [34]), etc. and their collaborators. It is a conceptually simple and intu-

itively appealing tool for the representation and processing of imprecise knowledge

when the classes into which the objects are to be classified are imprecise but can be

approximated by precise sets, from the above and below.

Here we will just briefly recall some basic concepts and properties of rough sets

theory which may be useful for our purpose, and for more detail, cf. Pawlak [20],

[21], Polkowski (e.g., [31]), Skowron (e.g., [22], Pawlak and Skowron [32, 35],

Pawlak et al. [33]), and Greco et al. (e.g., [34]) etc. to just list a few.

Let U = {u} be a universe of discourse. It can usually be partitioned in various

ways into a family R of partitionings, or equivalence relations defined onU. A knowl-
edge base, denoted by K, is the pair K = (U,𝐑). Let now P be a non-empty subset of

R, 𝐏 ⊂ 𝐑,𝐏 ≠ ∅. Then, the intersection of all equivalence relations (or partitionings)

in P, which is also an equivalence relation, is called an indiscernibility relation over

P and is denoted by IND(𝐏).
The family of its equivalence classes is termed the P-basic knowledge about U in

K and it represents all that can be said about the elements of U under P. Therefore,

one cannot classify the elements of U any deeper than to the equivalence classes of

IND(𝐏). For instance, if for some U, 𝐏 = {R1,R2} such that R1 partitions the objects

into the classes labeled “heavy” and “lightweight”, and R2 partitions into the classes

labeled “black” and “white”, then all that can be said about any element of U is that it

belongs to one of: “heavy-and-black”, “heavy-and-white”,“lightweight-and-black”,

“lightweight-and-white”.
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Equivalence classes of IND(𝐏) are called the basic categories (concepts) of
knowledge P. If Q ∈ 𝐑, that is, Q is an equivalence relation on U, then its equiv-

alence classes are called the Q-elementary categories (concepts) of knowledge R.

If X ⊂ U, and R is an equivalence relation on U, then X is called R-definable
or R-exact if it is a union of some R-elementary categories (R-basic categories);

otherwise, it is called R-rough.

Rough sets can be approximately defined by associating with any X ⊂ U and any

equivalence relation R on U the following two sets (U∕R denotes the set of all equiv-

alence relations of R):

∙ a lower approximation of X:

RLX =
⋃

{Y ∈ U∕R ∣ Y ⊂ X} (1)

∙ an upper approximation of X:

RUX =
⋃

{Y ∈ U∕R ∣ Y ∩ X ≠ ∅} (2)

and a rough set is defined as the pair (RL,RU).
The lower approximation yields the classes of R which are subsets of X, i,e,

contains those elements which are necessarily also elements of X, while the upper

approximation yields those classes of R which have at least one common element

with X.

For our purposes two concepts related to the reduction of knowledge are crucial.

First, for a family of equivalence relations R on U, one of its elements, Z, is called

dispensable in R if

IND(𝐑) = IND(𝐑 ⧵ {Z}) (3)

and otherwise it is called indispensable. If each Z in R is indispensable, then R is

called independent.
For a family of equivalence relations, R, and its subfamily, 𝐐 ⊂ 𝐑, if:

∙ 𝐐 is independent, and

∙ IND(𝐐) = IND(𝐑),

then 𝐐 is called a reduct of R; clearly, it need not be unique.

The core of R is the set of all indispensable equivalence relations in R, and is the

intersection of all reducts of R—cf. Pawlak [20].

From the point of view of knowledge reduction, the core consists of those classi-

fications (equivalence relations) which are the most essential in the knowledge avail-

able in that no equivalence relation that belongs to the core can be discarded in the

knowledge reduction process without distorting the knowledge itself. A reduct yields

a set of equivalence relations which is sufficient for the characterization of knowl-

edge available without losing anything relevant.

In this paper our analysis is in terms of indiscernibility relations; for the concept

of a discernibility relation, cf. Yao and Zhao [36].
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3 A Comparison of Voting Procedures Using Rough Sets

The problem of comparison and evaluation of voting procedures (social choice func-

tions) is very important and has been widely studied in the literature, cf. Richel-

son [18], Straffin [37], Nurmi [12], to name a few.

A simple, intuitively appealing, rough set based approach, was proposed by

Fedrizzi, Kacprzyk and Nurmi [19]. It was more qualitative, and was extended to

include more quantitative aspects by Kacprzyk, Nurmi and Zadrożny [23]. We will

now briefly recall this approach since it will provide a point of departure for this

paper.

We assume that we have 13 popular voting procedures:

1. Amendment: proposals (options) are paired (compared) with the status quo. If

a variation on the proposal is introduced, then it is paired with this proposal

and voted on as an amendment prior to the final vote. Then, if the amendment

succeeds, the amended proposal is eventually paired with the status quo in the

final vote, otherwise, the amendment is eliminated prior to the final vote.

2. Copeland: selects the option with the largest so-called Copeland score which is

the number of times an option beats other options minus the number of times

this option loses to other options, both in pairwise comparisons.

3. Dodgson: each voter gives a rank ordered list of all options, from the best to

the worst, and the winner is the option for which the minimum number of pair-

wise exchanges (added over all candidates) is needed before they all become a

Condorcet winner, i.e. defeat all other options in pairwise comparisons with a

majority of votes.

4. Schwartz: selects the set of options over which the collective majority prefer-

ences are cyclic and the entire cycle is preferred over the other options; it is

the single element in case there is a Condorcet winner, otherwise it consists of

several options.

5. Max-min: selects the option for which the minimal support in all pairwise com-

parisons is the largest.

6. Plurality: each voter selects one option (or none in the case of abstention), and

the options with the most votes win.

7. Borda: each voter provides a linear ordering of the options which are assigned

a score (the so-called Borda score) as follows: if there are n candidates, n − 1
points are given to the first ranked option, n − 2 to the second ranked, etc., and

these numbers are summed up for each option to end up with the Borda score

for this option, and the option(s) with the highest Borda score win(s).

8. Approval: each voter selects a subset of the candidate options and the option(s)

with the most votes is/are the winner(s).

9. Black: selects either the Condorcet winner, i.e. an option that beats or ties with

all others in pairwise comparisons, when it exists, and the Borda count winner

(as described above) otherwise.

10. Runoff: the option ranked first by more than a half of the voters is chosen if

one exists. Otherwise, the two options ranked first by more voters than any
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other option are compared with each other and the winner is the one ranked

first (among the remaining options) by more voters than the other option.

11. Nanson: we iteratively use the Borda count, at each step dropping the candidate

with the smallest score (majority); in fact, this is sometimes called a modified

version of the Nanson rule, cf. Fishburn [38],

12. Hare: the ballots are linear orders over the set of options, and we repeatedly

delete the options which receive the lowest number of first places in the votes,

and the option(s) that remain(s) are declared as the winner(s).

13. Coombs: each voter rank orders all of the options, and if one option is ranked

first by an absolute majority of the voters, then it is the winner. Otherwise, the

option which is ranked last by the largest number of voters is eliminated, and the

procedure is repeated.

What concerns the criteria against which the above mentioned voting proce-

dures are compared, we use some basic and popular ones presented in the classic

Nurmi’s [12] book. More specifically, we will consider 7 criteria the voting proce-

dures are to satisfy:

1. A—Condorcet winner,

2. B—Condorcet loser,

3. C—majority winner,

4. D—monotonicity,

5. E—weak Pareto winner,

6. F—consistency, and

7. G—heritage,

the essence of which can be summarized as:

1. Condorcet winner: if an option beats each other option in pairwise comparisons,

it should always win.

2. Condorcet loser: if an option loses to each other option in pairwise comparisons,

it should always loose.

3. Majority winner: if there exists a majority (at least a half) that ranks a single

option as the first, higher than all other candidates, that option should win.

4. Monotonicity: it is impossible to cause a winning option to lose by ranking it

higher, or to cause a losing option to win by ranking it lower.

5. Weak Pareto winner: whenever all voters rank an option higher than another

option, the latter option should never be chosen.

6. Consistency criterion: if the electorate is divided in two and an option wins in

both parts, it should win in general.

7. Heritage: if an option is chosen from the entire set of options using a particular

voting procedure, then it should also be chosen from all subsets of the set of

options (to which it belongs) using the same voting procedure and under the same

preferences.

We start with a illustrative account of which voting procedure satisfies which

criteria(‘0” stands for “does not satisfy”, and “1” stands for “satisfies”) which is
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Table 1 Satisfaction of 7 criteria by 13 voting procedures

Voting

procedure

Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0

Copeland 1 1 1 1 1 0 0

Dodgson 1 0 1 0 1 0 0

Schwartz 1 1 1 1 0 0 0

Max-min 1 0 1 1 1 0 0

Plurality 0 0 1 1 1 1 0

Borda 0 1 0 1 1 1 0

Approval 0 0 0 1 0 1 1

Black 1 1 1 1 1 0 0

Runoff 0 1 1 0 1 0 0

Nanson 1 1 1 0 1 0 0

Hare 0 1 1 0 1 0 0

Coombs 0 1 1 0 1 0 0

presented in Table 1; the 13 voting procedures correspond to the rows while the 7

criteria correspond to the columns, here and in next tables.

Though the data shown in Table 1 can be immediately used for the comparison

of the 17 voting procedures against the 7 criteria by a simple pairwise comparison

of rows, a natural attempt is to find first if, under the information available in that

table, all the 17 voting procedures are really different, and if all the 7 criteria as really

needed for a meaningful comparison.

Quite a natural, simple and intuitively appealing approach was proposed in this

respect by Fedrizzi et al. [19] using rough sets. We will present below its essence.

4 Simplification of Information on the Voting Procedures
and Criteria to Be Fulfilled

We will now show the essence of Fedrizzi et al. [19] approach based on the applica-

tion of some elements of rough sets theory, briefly presented in Sect. 2, to simplify

information in the source Table 1. We will basically consider crucial properties or

attributes of the voting procedures that will make it possible to merge them into

one (class of) voting procedure under a natural condition that they satisfy the same

properties, i.e. the criteria assumed.

First, one can see that the amendment procedure and Schwartz’ choice func-

tion have identical properties in Table 1, so one can be deleted and similarly for

Copeland’s and Black’s choice functions, the runoff, Hare’s and Coombs’ choice

functions. We obtain therefore Table 2.
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Table 2 Satisfaction of 7 criteria by 9 equivalent (classes of) voting procedures

Voting

procedure

Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0

Copeland 1 1 1 1 1 0 0

Dodgson 1 0 1 0 1 0 0

Max-min 1 0 1 1 1 0 0

Plurality 0 0 1 1 1 1 0

Borda 0 1 0 1 1 1 0

Approval 0 0 0 1 0 1 1

Runoff 0 1 1 0 1 0 0

Nanson 1 1 1 0 1 0 0

So that we have 9 “really different” (classes of) voting procedures:

1. Amendment (which stands now for Amendment and Schwartz),

2. Copeland (which stands now for Copeland and Black),

3. Dodgson,

4. Max-min,

5. Plurality,

6. Borda,

7. Approval,

8. Runoff (which stands now for Runoff, and Hare and Coombs).

9. Nanson.

Now, we look for the indispensable criteria, cf. Sect. 2 which boils down to that

if we take into account that each attribute (which corresponds to a criterion) gener-

ates such an equivalence relation, then to the same class there belong those voting

procedures that fulfill those criteria, and to another class those which do not. This

can be done by eliminating the criteria one by one and finding out whether the voting

procedures can be discerned from each other in terms of the remaining criteria.

Therefore, if we start from Table 2, by eliminating criterion A we get Table 3.

The two last rows of Table 3 are identical and to distinguish those two last rows,

i.e. Runoff and Nanson, criterion A is necessary, i.e. criterion A is indispensable.

And, analogously, we delete criterion B and obtain Table 4.

The Copeland and Max-Min procedures become indistinguishable so that crite-

rion B is indispensable.

Next, the elimination of criterion C leads to Table 5.

All rows in Table 5 are different so that criterion C is unnecessary to differentiate

between those voting functions, and we can conclude that C is dispensable.
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Table 3 Elimination of criterion A from Table 2

Voting

procedure

Criteria

B C D E F G

Amendment 1 1 1 0 0 0

Copeland 1 1 1 1 0 0

Dodgson 0 1 0 1 0 0

Max-min 0 1 1 1 0 0

Plurality 0 1 1 1 1 0

Borda 1 0 1 1 1 0

Approval 0 0 1 0 1 1

Runoff 1 1 0 1 0 0

Nanson 1 1 0 1 0 0

Table 4 Elimination of criterion B from Table 2

Voting

procedure

Criteria

A C D E F G

Amendment 1 1 1 0 0 0

Copeland 1 1 1 1 0 0

Dodgson 1 1 0 1 0 0

Max-min 1 1 1 1 0 0

Plurality 0 1 1 1 1 0

Borda 0 0 1 1 1 0

Approval 0 0 1 0 1 1

Runoff 0 1 0 1 0 0

Nanson 1 1 0 1 0 0

Further, we delete criterion D and obtain Table 6. The Copeland and Nanson

choice functions are now indistinguishable which means that criterion D is indis-

pensable.

Now, we eliminate criterion E and get Table 7.

Two uppermost rows are now identical so that criterion E is needed, i.e. it is

indispensable.

Next, criterion F is eliminated as shown in Table 8 in which no pair of rows is

identical so that criterion F is dispensable.

Finally, criterion G is eliminated which is shown in Table 9. We can see that all

rows are different so that we can conclude that criterion G is dispensable.

It is easy to notice that the core is the set of indispensable criteria, i.e. {A, B, D,

E}, and the reduct is in this case both unique and also equal to {A, B, D, E}. That is,
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Table 5 Elimination of criterion C from Table 2

Voting

procedure

Criteria

A B D E F G

Amendment 1 1 1 0 0 0

Copeland 1 1 1 1 0 0

Dodgson 1 0 0 1 0 0

Max-min 1 0 1 1 0 0

Plurality 0 0 1 1 1 0

Borda 0 1 1 1 1 0

Approval 0 0 1 0 1 1

Runoff 0 1 0 1 0 0

Nanson 1 1 0 1 0 0

Table 6 Elimination of criterion D from Table 2

Voting

procedure

Criteria

A B C E F G

Amendment 1 1 1 0 0 0

Copeland 1 1 1 1 0 0

Dodgson 1 0 1 1 0 0

Max-min 1 0 1 1 0 0

Plurality 0 0 1 1 1 0

Borda 0 1 0 1 1 0

Approval 0 0 0 0 1 1

Runoff 0 1 1 1 0 0

Nanson 1 1 1 1 0 0

we need just that set of criteria to distinguish the particular voting procedures from

each other (naturally, under the set of criteria assumed).

We can then consider the reduct (or core). In Table 10 we show which criteria

are indispensable in the sense that if we do not take them into account, the two

or more rows (corresponding to the respective voting procedures) become indis-

tinguishable. For example, without criterion E, Amendment and Copeland would

be indistinguishable, without D, Copeland and Nanson would be indistinguishable,

without B, Copeland and Max-Min would be indistinguishable, etc.

Table 10 expresses the most crucial properties or criteria of the voting procedures

in the sense that the information it conveys would be sufficient to restore all infor-

mation given in the source Table 2. Therefore, for an “economical” characterization

of the voting procedures, we can use the values of the criteria given in Table 10 and

present the results as in Table 11 where the subscripts of the particular criteria stand
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Table 7 Elimination of criterion E from Table 2

Voting

procedure

Criteria

A B C D F G

Amendment 1 1 1 1 0 0

Copeland 1 1 1 1 0 0

Dodgson 1 0 1 0 0 0

Max-min 1 0 1 1 0 0

Plurality 0 0 1 1 1 0

Borda 0 1 0 1 1 0

Approval 0 0 0 1 1 1

Runoff 0 1 1 0 0 0

Nanson 1 1 1 0 0 0

Table 8 Elimination of criterion F from Table 2

Voting

procedure

Criteria

A B C D E G

Amendment 1 1 1 1 0 0

Copeland 1 1 1 1 1 0

Dodgson 1 0 1 0 1 0

Max-min 1 0 1 1 1 0

Plurality 0 0 1 1 1 0

Borda 0 1 0 1 1 0

Approval 0 0 0 1 0 1

Runoff 0 1 1 0 1 0

Nanson 1 1 1 0 1 0

for the values they take on, for instance, to most economically characterize Amend-

ment, the A, B and D should be 1 and E should be 0, etc.

This is, however, not yet the most economical characterization but this issues will

not be dealt with here and we refer the interested reader to Fedrizzi, Kacprzyk and

Nurmi [19] or Kacprzyk, Nurmi and Zadrożny [23] to find that the minimal (most

economical) characterization of the voting procedures in term of information given

in Table 2 can be portrayed as shown in Table 12.

This is a very compact representation which is due to the very power of rough

sets theory.
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Table 9 Elimination of criterion F from Table 2

Voting

procedure

Criteria

A B C D E F

Amendment 1 1 1 1 0 0

Copeland 1 1 1 1 1 0

Dodgson 1 0 1 0 1 0

Max-min 1 0 1 1 1 0

Plurality 0 0 1 1 1 1

Borda 0 1 0 1 1 1

Approval 0 0 0 1 0 1

Runoff 0 1 1 0 1 0

Nanson 1 1 1 0 1 0

Table 10 Satisfaction of the criteria belonging to the core by the particular voting procedures

Voting procedure Criteria

A B D E

Amendment 1 1 1 0

Copeland 1 1 1 1

Dodgson 1 0 0 1

Max-min 1 0 1 1

Plurality 0 0 1 1

Borda 0 1 1 1

Approval 0 0 1 0

Runoff 0 1 0 1

Nanson 1 1 0 1

Table 11 An economical characterization of the voting procedures shown in Table 10

A1B1D1E0 ⟶ Amendment

A1B1D1E1 ⟶ Copeland

A1B0D0E1 ⟶ Dodgson

A1B0D1E1 ⟶ Max-min

A0B0D1E1 ⟶ Plurality

A0B1D1E1 ⟶ Borda

A0B0D1E0 ⟶ Approval

A0B1D0E1 ⟶ Runoff

A1B1D0E1 ⟶ Nanson
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Table 12 The minimal (most economical) characterization of the voting procedures shown in

Table 10

A1E0 ⟶ Amendment

A1B1D1E1 ⟶ Copeland

B0D0 ⟶ Dodgson

A1B0D1 ⟶ Max-min

A0B0E1 ⟶ Plurality

A0B1D1 ⟶ Borda

A0E0 ⟶ Approval

A0D0 ⟶ Runoff

A1B1D0 ⟶ Nanson

5 Similarity and Dissimilarity of the Voting Procedures:
A Quantitative Approach Based on Similarity
and Dissimilarity Measures for Binary Patterns

As it could be seen from the previous section, a rough sets based analysis has made

it possible to find a smaller subset of all the choice functions considered such that

choice functions merged could have been meant as similar. This, rather qualitative

result, is clearly the first step. The next steps towards a more quantitative analysis can

be made, using elements of rough sets theory, by using some indiscernibility analy-

ses. This was proposed by Fedrizzi, Kacprzyk and Nurmi [19], and then extended by

Kacprzyk, Nurmi and Zadrożny [23]. We will not deal with this approach and refer

the interested reader to the above mentioned papers.

In this paper we will approach the problem of measuring the similarity and dis-

similarity in a more quantitative way, using some similarity and dissimilarity mea-

sures, but going beyond the classic Hamming and Jaard-Needham measures used in

Kacprzyk, Nurmi and Zadrożny [23].

We take again as the point of departure the characterization of the voting pro-

cedures as shown in Table 2, that is, just after the reduction of identical rows in

Table 1, but—to better show the generality of our approach—without all further

reductions (or a representation size reduction) as proposed later on and presented in

Tables 3–10.

The data sets involved are in fact binary patterns and there is a multitude of simi-

larity/dissimilarity measures for binary patterns but we will here concentrate on the

measures given by Tubbs [24] which are useful in matching binary patterns in pattern

recognition. We will follow to a large extent Tubb’s notation.

A binary vector Z of dimension N is defined as:

Z = (z1, z2,… , zN) (4)

where zi ∈ {0, 1}, ∀i ∈ {1, 2,… ,N}.
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The set of all N-dimensional binary vectors is denoted by 𝛺, the unit binary vec-
tor, I ∈ 𝛺, is a binary vector such that zi = 1,∀i ∈ {1, 2,… ,N}, and the complement
of a binary vector Z ∈ 𝛺 is Z = I − Z.

The magnitude of a binary vector Z ∈ 𝛺 is

∣ Z ∣=
N∑

i=1
zi (5)

that is, the number of elements which are equal to 1.

If we have two binary vectors, X,Y ∈ 𝛺, then we denote by Si,j(X,Y) the number

of matches of i in vector X and j in vector Y , i, j ∈ {0, 1}. That is, if we have two

vectors:

X = [0, 1, 1, 0, 1, 0, 0, 1, 1, 0]

Y = [1, 1, 0, 0, 1, 1, 0, 0, 1, 0]

then we have:

S00(X,Y) = 3
S01(X,Y) = 2
S10(X,Y) = 2
S11(X,Y) = 3

Formally, we can define those measures as follows. First, for vectors X = (x1,
x2,… , xN) and Y = (y1, y2,… , yN):

vij =
{

1 if xi = yj
0 otherwise

(6)

vkij(X,Y) =
{

1 if xk = i and yk = j
0 otherwise

(7)

then

Sij(X,Y) =
N∑

k=1
(vk00(X,Y) + vk01(X,Y) + vk10(X,Y) + vk11(X,Y)) (8)

One can easily notice that

S00(X,Y) = X × Y
T

(9)

S11(X,Y) = X × YT
(10)

where “×” denotes the product of the matrices.
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Following the notation of Tubbs [24], the Sij’s, i, j ∈ {0, 1}, can be used to define

many well known measures of similarity and dissimilarity, and we will consider here

the following ones (we follow here the source terminology from that paper but in the

literature sometimes slightly different names are used):

∙ Jaccard-Needham,

∙ Dice,

∙ correlation,

∙ Yule,

∙ Russell–Rao,

∙ Sockal–Michener,

∙ Rodgers–Tanimoto, and

∙ Kulczyński.

These measures, both of similarity S
.
(X,Y), and their corresponding measures

of dissimilarity, D
.
(X,Y), are defined in terms of Sij(X,Y) as follows (we omit the

arguments (X,Y), for brevity):

∙ Jaccard–Needham:

SJ−N =
S11

S11 + S10 + S01
(11)

DJ−N =
S10 + S01

S11 + S10 + S01
(12)

∙ Dice

SD =
2S11

2S11 + S10 + S01
(13)

DD =
S10 + S01

2S11 + S10 + S01
(14)

∙ Correlation

SC = 1
𝜎
(S11S00 − S10S01) (15)

DC = 1
2
− 1

2𝜎
(S11S00 − S10S01) (16)

where

𝜎 =
√
(S10 + S11)(S01 + S00)(S11 + S01)(S00 + S10); (17)
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∙ Yule

SY =
S11S00 − S10S01
S11S00 + S10S01

(18)

DY =
S10S01

S11S00 + S10S01
(19)

∙ Russell–Rao

SR−R =
S11
N

(20)

DR−R =
N − S11

N
(21)

∙ Sokal–Michener

SS−M =
S11 + S00

N
(22)

DS−M =
S10 + S01

N
(23)

∙ Rogers–Tanimoto

SR−T =
S11 + S00

S11 + S00 + 2S10 + 2S01
(24)

DR−T =
2S10 + 2S01

S11 + S00 + 2S10 + 2S01
(25)

∙ Kulczyński

SK =
S11

S10 + S01
(26)

DK =
S10 + S01 − S11 + N

S10 + S01 + N
(27)

Notice that though not all similarity measures employed are normalized, their

respective dissimilarity measures are all normalized to the unit interval [0, 1] which

is usually welcome in applications, also in our context. On the other hand, not all the

measures exhibit the metric property but this will not be discussed in this paper as

the importance of this property is not clear from a practical point of view.

Now, we will use these measures to the evaluation of similarity and dissimilarity

of the voting procedures employed in our paper.

We will use as the point of departure the binary matrix given in Table 2 which

shows the satisfaction (= 1) or a lack of satisfaction (= 0) of the A,B,C,D,E,F,G
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Table 13 Satisfaction of 7 criteria by 9 equivalent (classes of) voting procedures, cf. Table 2

Voting

procedure

Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0

Copeland 1 1 1 1 1 0 0

Dodgson 1 0 1 0 1 0 0

Max-min 1 0 1 1 1 0 0

Plurality 0 0 1 1 1 1 0

Borda 0 1 0 1 1 1 0

Approval 0 0 0 1 0 1 1

Runoff 0 1 1 0 1 0 0

Nanson 1 1 1 0 1 0 0

criteria by the 9 (classes of) voting procedures, and this table will be repeated for

convenience in Table 13.

Now, we will calculate Sij, i, j ∈ {0, 1}, according to (6)–(8), for the particular

pairs of 9 voting procedures which will be presented in Table 14 the entries of which

are given as [S00, S01, S10, S11], for each pair.

Following (11)–(27) and taking as the point of departure the values of [S00, S01,
S10, S11] shown in Table 14, we can calculate the values of the particular similarity

and dissimilarity indexes calculated using the methods of:

∙ Jaccard-Needham,

∙ Dice,

∙ Correlation,

∙ Yule,

∙ Russell–Rao,

∙ Sockal–Michener,

∙ Rodgers–Tanimoto, and

∙ Kulczyński,

which are shown in the consecutive Tables 15, 16, 17, 18, 19, 20, 21 and 22.

The results concerning the similarity and dissimilarity of the voting procedures

with respect to 7 widely accepted criteria that have been obtained by using a set of

popular and highly recommended similarity and dissimilarity measures for binary

patterns, presented in Tables 15–22, provide a lot of insight that can be very much

useful for both social choice and voting theorists. They can also be of relevance

for people involved in a more practical task of choosing or even developing a proper

voting system in a particular situation. Such an analysis would have been too specific

for the purpose of this paper in which a new method is proposed.

To briefly summarize the results obtained, we can say that the quantitative analy-

sis of similarity and dissimilarity via the measures employed in this section, i.e.
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(11)–(27), does confirm the very essence of results obtained by employing the more

qualitative approach proposed in Sect. 3.

Namely, one can notice again that, not surprisingly, Copeland, Max-Min, Dodg-

son and Nanson form a group of voting procedures that have a high similarity and

a low dissimilarity. Quite closely related to that group are Runoff and Amendment.

By the way, except for Runoff, all these procedures are the Condorcet extensions, i.e.

they result in the choice of the Condorcet winner if it exists. The so-called positional

methods, that is, Plurality, Borda and Approval, seem to be rather far away from the

rest of the procedures. This holds particularly for Approval. It can also be noticed

that it is not very relevant which particular similarity and dissimilarity measure is

actually used. The values obtained can be different but the order and proportions are

maintained.

6 Concluding Remarks

We have presented a more comprehensive approach to a quantitative analysis of sim-

ilarity and dissimilarity of voting procedures. We assumed a set of well known voting

procedures and criteria which they should satisfy, which are known in political sci-

ence (cf. Nurmi’s [12] book). More specifically, we have considered the amendment,

Copeland, Dodgson, max-min, plurality, Borda, approval, runoff, and Nanson, voting

procedures, and the Condorcet winner, Condorcet loser, majority winner, monotonic-

ity, weak Pareto winner, consistency, and heritage criteria. The satisfaction or dissat-

isfaction of the particular criteria by the particular voting procedures are represented

as binary vectors. We used first rough sets to obtain a smaller number of voting proce-

dures (9 instead of 13), following Fedrizzi, Kacprzyk and Nurmi [19], and then used

the idea of Kacprzyk, Nurmi and Zadrożny [23] in which the use of some measures

of similarity and dissimilarity for binary patterns has been proposed and the Jaccard–

Needham measures have been used. In this paper we extend the above approach by

using in addition to those, the similarity and dissimilarity measures of: Dice, Corre-

lation, Yule, Russell–Rao, Sockal–Michener, Rodgers–Tanimoto, and Kulczyński.

References

1. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in multi-agent systems. Comput. J. 49(2),

156–170 (2006)

2. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Formalization of a voting protocol for virtual orga-

nizations. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M., Wooldridge, M. (eds.)

Proceedings of 4th AAMAS05, pp. 373–380. ACM (2005)

3. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in online deliberative assemblies. In: Gard-

ner, A., Sartor, G. (eds) Proceedings of 10th ICAIL, pp. 195204. ACM (2005)

4. Arrow, K.J., Sen, A.K., Suzumura, K (eds.): Handbook of Social Choice and Welfare, vol. 1.

Elsevier (2002)



168 J. Kacprzyk et al.

5. Kelly, J.S.: Social Choice Theory. Springer, Berlin (1988)

6. Plott, C.R.: Axiomatic social choice theory: an overview and interpretation. Am. J. Polit. Sci.

20, 511–596 (1976)

7. Schwartz, T.: The Logic of Collective Choice. Columbia University Press, New York (1986)

8. Arrow, K.: A difficulty in the concept of social welfare. J. Polit. Econ. 58(4), 328346 (1950)

9. Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41(4), 587601

(1973)

10. Kelly, J.S.: Arrow Impossibility Theorems. Academic Press, New York (1978)

11. May, K.: A set of independent, necessary and sufficient conditions for simple majority decision.

Econometrica 20(4), 680684 (1952)

12. Nurmi, H.: Comparing Voting Systems. D. Reidel, Dordrecht (1987)

13. Riker, W.H.: Liberalism against Populism. W. H. Freeman, San Francisco (1982)

14. Satterthwaite, M.A.: Strategy-proofness and arrows conditions: existence and correspondence

theorems for voting procedures and social welfare functions. J. Econ. Theory, 10, 187217

(1975)

15. Baigent, M.: Metric rationalisation of social choice functions according to principles of social

choice. Math. Soc. Sci. 13(1), 5965 (1987)

16. Elkind, E., Faliszewski, P., Slinko, A.: On the role of distances in defining voting rules. In:

van der Hoek, W., Kaminka, G.A., Lesprance, Y., Luck, M., Sen, S., (eds.) Proceedings of 9th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),

pp. 375–382 (2010)

17. McCabe-Dansted, J.C., Slinko, A.: Exploratory analysis of similarities between social choice

rules. Group Decis. Negot. 15(1), 77–107 (2006)

18. Richelson, J.: A comparative analysis of social choice functions I, II, III: a summary. Behav.

Sci. 24, 355 (1979)

19. Fedrizzi, M., Kacprzyk, J., Nurmi, H.: How different are social choice functions: a rough sets

approach. Qual. Quant. 30, 87–99 (1996)

20. Pawlak, Z.: Rough sets. Int. J. Inf. Comput. Sci. 11, 341–356 (1982)

21. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht

(1991)

22. Pawlak, Z., Skowron, A.: 2007a. Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (1988)

23. Kacprzyk, J., Nurmi, H., Zadrożny, S.: Towards a comprehensive similarity analysis of voting

procedures using rough sets and similarity measures. In: Skowron, A., Suraj, Z. (eds.) Rough

Sets and Intelligent Systems—Professor Zdzislaw Pawlak in Memoriam, vol. 1, pp. 359–380.

Springer, Heidelberg and New York (2013)

24. Tubbs, J.D.: A note on binary template matching. Pattern Recogn. 22(4), 359–365 (1989)

25. Choi, S.-S., Cha, S.-H., Tappert, ChC: A survey of binary similarity and distance measures. J.

Syst. Cybern. Inf. 8(1), 43–48 (2010)

26. Kacprzyk, J., Zadrożny, S.: Towards a general and unified characterization of individual and

collective choice functions under fuzzy and nonfuzzy preferences and majority via the ordered

weighted average operators. Int. J. Intell. Syst. 24(1), 4–26 (2009)

27. Kacprzyk, J., Zadrożny, S.: Towards human consistent data driven decision support systems

using verbalization of data mining results via linguistic data summaries. Bull. Pol. Acad. Sci.,

Tech. Sci. 58(3), 359–370 (2010)

28. Yager, R.R.: On ordered weighted averaging operators in multicriteria decision making. IEEE

Trans. Syst. Man Cybern. SMC-18, 183–190 (1988)

29. Yager, R.R., Kacprzyk, J. (eds.): The Ordered Weighted Averaging Operators: Theory and

Applications. Kluwer, Boston (1997)

30. Yager, R.R., Kacprzyk, J., Beliakov, G. (eds): Recent Developments in the Ordered Weighted

Averaging Operators: Theory and Practice. Springer (2011)

31. Polkowski, L.: A set theory for rough sets. Toward a formal calculus of vague statements. Fund.

Inform. 71(1), 49–61 (2006)

32. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007b)



Using Similarity and Dissimilarity Measures . . . 169

33. Peters, J.F., Skowron, A., Stepaniuk, J.: Rough sets: foundations and perspectives. In: Meyers,

R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7787–7797. Springer, Berlin

(2009)

34. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis.

Eur. J. Oper. Res. 129(1), 1–47 (2001)

35. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inf. Sci. 177, 41–73 (2007c)

36. Yao, Y.Y., Zhao, Y.: Discernibility matrix simplification for constructing attribute reducts. Inf.

Sci. 179, 867–882 (2009)

37. Straffin, P.D.: Topics in the Theory of Voting. Birkhäuser, Boston (1980)

38. Fishburn, P.C.: Condorcet social choice functions. SIAM J. Appl. Math. 33, 469–489 (1977)



A Geo-Spatial Data Infrastructure
for Flexible Discovery, Retrieval
and Fusion of Scenario Maps
in Preparedness of Emergency

Gloria Bordogna, Simone Sterlacchini, Paolo Arcaini,
Giacomo Cappellini, Mattia Cugini, Elisabetta Mangioni
and Chrysanthi Polyzoni

Abstract In order to effectively plan both preparedness and response to emergency
situations it is necessary to access and analyse timely information on plausible
scenarios of occurrence of ongoing events. Scenario maps representing the esti-
mated susceptibility, hazard or risk of occurrence of an event on a territory are
hardly generated real time. In fact the application of physical or statistical models
using environmental parameters representing current dynamic conditions is time
consuming on low cost hardware equipment. To cope with this practical issue we
propose an off line generation of scenario maps under diversified environmental
dynamic parameters, and a geo-Spatial Data Infrastructure (SDI) to allow people in
charge of emergency preparedness and response activities to flexibly discover,
retrieve, fuse and visualize the most plausible scenarios that may happen given
some ongoing or forecasted dynamic conditions influencing the event. The novelty
described in this chapter is related with both the ability to interpret flexible queries
in order to retrieve risk scenario maps that are related to the current situation and to
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1 Introduction

The European Civil Protection Agency,1 in its program regarding risk prevention,
preparedness and emergency response states that the main activities for the
reduction of impacts due to natural disasters are two: specifically, the improvement
of methods of communication and information sharing between authorities, tech-
nicians, volunteers and the public, during the preparation of emergency response,
and the increase of the level of information and education of the population that
lives daily with the risks, in order to increase its awareness.

On the other side, the World Conference on Disaster Reduction (2005) has
promoted initiatives to improve early warning systems aimed at identifying, esti-
mating and monitoring risk levels, based on a direct involvement of the population
(people-centered early warning systems): the main purpose of such initiatives is to
increase the resilience of the community by both encouraging pro-active attitudes
and reducing the potential damage.

Following these ideas, we have designed a geo-Spatial Data Infrastructure
(SDI) with the ambition to increase the efficiency of preparedness and response
activities to emergencies related to natural disasters carried out by local actors
(authorities, civil protection, technicians and volunteers at the municipal level)
having as main constraint the containment of the costs for the needed hardware and
software equipment. We target local administrations, often small municipalities in
Italy, located on the mountains, the most frequently touched by critic environmental
crisis, which can hardly effort big investments. For such reasons we developed a
flexible SDI by exploiting open source standard packages (namely, GrassGIS,
PostgreSQL, Geonetwork, Ushahidi, and Geoserver) that can run on common PCs.

The basic core idea of the SDI is a catalogue service of susceptibility, hazard and
risk scenario maps, that enables operators of the civil protection to discover the
most plausible scenarios that may occur during an emergency management pro-
cedure. Since modelling susceptibility scenario maps, and consequently also hazard
and risk maps depending on them, is a computationally time consuming activity
with low cost hardware equipment, it is really difficult or even impossible to cal-
culate them real-time when needed in order to face possible emergencies. In our
case study, modelling a susceptibility map to wild fire at regional scale of an area of
about 3000 square km can take up to half an hour on a common PC with a few
gigabytes of memory. For this reason, in order to provide real-time information to
the operators in charge of managing the pre-alarm/alarm phase, we decided to store
many susceptibility maps, each one generated off-line with diversified conditions
described by distinct values of the static and dynamic parameters that influence the
occurrence of the phenomenon. These maps can be retrieved by the operator during
an emergency preparedness or management phase by querying the catalogue ser-
vice of the SDI. On the basis of these premises the SDI has been designed with
several components connected via the Internet to perform the following tasks:

1http://ec.europa.eu/echo/civil_protection/civil/prote/cp14_en.htm.
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• Generation of hazard and risk maps: this off-line component (depicted in Fig. 1
as “generation of scenario maps”) is made available to a pool of experts for the
generation of susceptibility, hazard and risk scenario maps of the area being
monitored. In our approach the modelling of forest fire (ignition and spread) and
the identification of expected risk scenario maps is performed offline, usually in
times of peace, and provides input information to the SDI system components.
Distinct modelling techniques are applied depending on the type of phenomenon
and on the representation scale [1, 2]. Each map shows areas of the monitored
territory characterized by different values of probability of initiation and spread
of the event based on the parameters used in the analysis phase. At the end of the
modeling phase, each map is compared with the spatial distribution of the
vulnerable elements (with the corresponding descriptors, including the eco-
nomic value) in order to lead to the identification of a series of risk scenarios
useful to provide information about the potential impact of direct/indirect related
occurrence of the modelled event. This last phase may require the manual
intervention of the expert.

• Flexible discovery and retrieval of hazard and risk maps: this component, the
core of which is the catalogue service of the SDI (depicted in Fig. 1 comprising
the “metadata of scenario maps”, and the “susceptibility maps querying and
retrieval portal”) is made available to an operator of the civil protection to
search, and retrieve real-time scenario maps stored in the geo-spatial database
[3]. To allow the retrieval of the most plausible risk scenario maps that suit the
current dynamic conditions, in an off-line procedure, metadata are associated to
the scenario maps to represent the lineage of the maps, i.e., to describe the
models and parameters used to generate them. Subsequently, an online proce-
dure makes available a flexible query language to search the metadata. To model

Fig. 1 Components of the geo-spatial data infrastructure for flexible discovery, retrieval and
fusion of scenario maps during preparedness and emergency management
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flexible querying we rely on the framework of fuzzy databases [4–6]. The
system searches and selects the “most plausible scenario maps”, i.e. those that
have been generated with parameter values that best meet the current soft
constraints expressed in the flexible query by the operator. Then, it proposes
either a ranked list of the stored scenarios maps ordered according to the degree
of fulfilment of the soft constraints, or two virtual maps representing the best and
worst scenarios that can be determined based on the fusion of the ranked
retrieved maps [7, 8]. The pessimistic and optimistic plausible scenario maps are
computed by applying an Induced Ordered Averaging Operator (IOWA) by the
component named “fusion of retrieved scenario maps” depicted in Fig. 1 [9].

• Volunteer Geographic Information Exploitation: the SDI also manages Vol-
unteered Geographic Information (VGI) (see VGI acquisition and VGI query
and retrieval portal in Fig. 1). This information can be created by different
categories of reporters (citizens, Civil Defence Volunteers, technicians, etc.)
who may point out risky situations actually observed in a territory by connecting
to an installation of the Ushahidi tool for VGI creation [10]. The SDI indexes
the VGI reports and allows the operators to analyse them, to modify, to cancel or
to publish them on the internet as open data [11].

• Spatial Decision Support for Emergency Management: this component, named
“passive SDSS” in Fig. 1, is a passive Decision support System that can be
activated by the operator of a municipality once an area in which either a
dangerous situation has been reported or when a critical event in progress is
identified. The SDSS allows guiding the operator through the flow of operations
that the regulatory framework, laws in force at national and regional level,
prescribe for that particular emergency situation. The regulation is formalized by
a Petri net [12] which is executed step by step by the operator who can choose to
perform only the actions in the process prescribed by the laws at each step, such
as communicating with authorities, accessing resources to manage the situation
(vehicles, equipment, etc.), directing on field operators to vulnerable and/ or
strategic structures (hospitals, schools, industries, populated areas, etc.).

The innovation of this framework are several among which the ones we present
in this chapter, that is, the off-line computation of several risk scenario maps by
taking into account the influence of diversified dynamic parameters and their
storage and content representation within a flexible SDI; the incorporation within an
SDI for emergency management of a fuzzy database for flexibly querying metadata
of scenarios maps; and finally the geo-spatial fusion mechanism that generates the
best and worst scenario maps of the monitored territory as a result of a flexible
query.

In the following sections we will describe, the procedure for the generation of
hazard and risk scenario maps, the flexible query component, and the geo-spatial
fusion mechanism.
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2 Hazard and Risk Scenario Maps Generation

The aim of the hazard and risk scenario map generation component is to provide the
end-users with several possible scenarios of occurrence of hazard and risk depending
on different conditions of the parameters that influence the modelled phenomenon.
Preliminary to the generation of hazard and risk scenario maps is the generation of
probability-based susceptibility maps. In our case study we modelled wildfire sus-
ceptibility maps at a regional scale, considering different types of geo-environmental
and meteo-climatic variables which are the conditions influencing wildfires outbreak
and spreading. The study area is located in the central-eastern part of the Sardinia
Island (Nuoro Province, Italy) with a geographical extension of about 3.934 km2.
Data concerning the triggering points, temporal occurrence of events and
geo-environmental variables have been downloaded from the Nuoro Province
geoportal (www.sardegnageoportale.it/catalogodati/website); meteorological
parameters have been made available by Epson-Meteo, an Italian weather fore-
casting agency.

In this study, the hazard modeling procedure has not been completely performed:
a hazard map should classify the study area according to different wildfire spatial
occurrence probabilities (concerning the triggering points and the distance and
direction of propagation of the fire), temporal occurrence probabilities (return
periods) and the magnitude of the expected events. Given the regional scale adopted
in this study, the final maps only provide the end-users with the spatial probability
of the expected damaging events; no information concerning the magnitude and the
temporal probability of the events is made available (although this information has
been derived qualitatively by analyzing past events). For this reason, such maps are
indeed wildfire susceptibility maps and allow identifying areas characterized by
different proneness to wildfire in terms of ignition (triggering points) and propa-
gation. This information is crucial during the emergency preparedness phase to let
the disaster manager be aware of the expected number of people that could be
affected by fire propagation and the expected level of damage to infrastructure.

In Fig. 2 the process of generation of susceptibility maps is depicted.

Fig. 2 Generation of susceptibility maps by the supervised learning method (Weight oF
Evidence)
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Concerning the modeling techniques applied in this study, a data-driven
Bayesian method, Weights of Evidence (WofE) has been successfully applied to
identify the most susceptible areas to ignition [1, 2].

WofE is the log-linear form of the well-known data-driven Bayesian learning
method; it uses known wildfire occurrences as training points and evidential
themes, representing explanatory variables, to calculate prior (unconditional) and
posterior (conditional) probabilities. The prior probability is the probability that a
pixel contains a wildfire occurrence considering only the number of the training
points, and not taking into account neither their location nor any evidential themes
available for the study. On the contrary, the posterior probability is the probability
that a pixel contains a wildfire occurrence based on explanatory variables, provided
by the evidential themes. WofE calculates the degree of spatial association among
training points and each explanatory variable class by means of positive (W+) and
negative (W−) weights [13]. A positive correlation shows W+ positive and W
− negative; a negative correlation is represented by W− positive and W+ negative.

W+ = W− = 0 calls for a lack of correlation between the wildfire occurrence
and the explanatory variable class and in such case the posterior probability equals
the prior probability.

Concerning the triggering points in the study area of Nuoro province in Sardinia
island, all past events since 2005–2012 have been used. Each triggering point is
described spatially (in terms of its geographical position) and temporally (in terms
of day, month and year of occurrence). Then, a wildfire inventory has been com-
piled by identifying a total number of 1.698 events: only those whose area is less
than 2 ha have been considered in the analysis (about 60 % of the total burnt area)
and represented by using a single point. After that, the 986 ignition points have
been randomly subdivided into two mutually exclusive subsets (each containing
50 % of the total number of wildfires): the success subset (training points set) and
the prediction subset (test set). The former (including 493 initiation points) has been
used to calibrate the model while the latter (including 493 initiation points) to
validate the model. These subsets have allowed success and prediction rate curves
to be computed for assessing the robustness of the model [2, 13, 14]. By computing
the Success Rate Curve (SRC) we estimated how much the results of the models fit
the occurrence of wildfires used for the training of the models (success subset) in
each experiment, while the Prediction Rate Curve (PRC) was computed to validate
the models since it estimates how much the model correctly predicts the occurrence
of wild fires in the validation set (prediction subset) not used in the experiments.

Explanatory variables have been subdivided into two broad categories: static and
dynamic [15]: the former comprises variables that could be considered invariant
within the entire period of the study: altitude, slope, aspect, land use, vegetation,
distance from roads, population density. The latter, on the contrary, includes
parameters that could change in time following different rules from zone to zone:
wind speed and direction; rainfall and temperature. Grid maps concerning tem-
perature and rainfall refer to different periods: one-day, one-week and one-month
before the day of occurrence. For wind speed and directions, only one-day grid
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maps before the date of occurrence were available. All explanatory variables have
been tasselled by using a pixel size of 25 m2.

The WofE has been applied several times by using the Spatial Data Modeller
[16] and by changing the combination of explanatory variables so as to produce
several susceptibility maps. First, only static parameters have been analysed; after
that, the role of meteo-climatic variables on the final wildfire “static” susceptibility
maps have been assessed by including them in the analysis.

Since in the case of susceptibility prediction it is important to evaluate the ability
of the model to detect wildfire occurred in reality with respect to all its positive
detections, the Positive Success Rate values (PSR) and Positive Prediction Rate
values (PPR) shown in Table 1 have been computed.

It can be seen that the PSR increases by considering the dynamic variables in the
modelling procedure.

The results of a modelling phase is a wildfire susceptibility map that represents
the spatial domain under analysis by probability values on a continuous scale [0, 1].

In our case study, at the end of the modelling phase, a collection of 100 wildfire
susceptibility maps are available, each of which modelled considering different
subsets of variables and constraints. These maps are the scenarios maps. The
information on the explanatory values used and modelling parameters are stored in
metadata so that different civil protection operators may query and retrieve maps on
the basis of relevant criteria mainly consisting in observed/measured values con-
cerning both static geo-environmental variables and dynamic meteorological
parameters. This operation can be performed both in preparedness and emergency
response phases.

The results of this first part of the analysis is the main input of the following step
concerning the identification of areas characterized by the presence of vulnerable
elements that are located in the most wildfire susceptible zones or along the most
probable fire directions. Each risk scenario will provide the end-users with an
exposure value expressed in monetary terms and concerning the market values for
public and private buildings or the reconstruction costs for infrastructures. In this
way, in the framework of a long-term spatial planning overview, a list of priorities
of intervention can be drawn up on the basis of the economic values exposed and
the number of people living in each risk scenario.

Table 1 Table presents the best results in terms of PSR and PPR values; they refer to the 30 % of
the most susceptible area. The PSR value computed for static and dynamic variables refers
specifically to the month of August, one of the most affected by wildfire; the PPR value has not
been assessed for the model using both static and dynamic variables due the low number of
triggering points detected in the period

Using only static variables Using both static variables and dynamic variables

PSR 75.7 81.5
PPR 70.6 –
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3 Representing and Discoverying Scenario Maps

This section describes the components of the SDI depicted in Fig. 3 devoted to
search the scenario maps which in our case study are wild fire susceptibility maps.

In order to implement a discovery mechanism able to retrieve scenario maps
plausibly depicting the current scenario, it is necessary to represent the contents of
the parameter maps (that have been used to generate the scenarios maps) to
empower the discovery facility of the SDI. To this aim a database of metadata is
generated which contains, for each map, metadata records that synthesize the map
lineage, i.e., the contents of the associated parameter maps. More specifically, each
susceptibility map has been generated by a model using given parameter maps, in
which the values of the parameters specify the static and dynamic conditions in
each distinct position of the territory. We represent the content of such parameter
maps by metadata and organize them into a database made available for querying
and possibly retrieving the scenario map(s) which are the most “plausible” for the
current situation, in relation to the environmental current conditions, i.e., current
parameters. We distinguish between dynamic parameters that change over time,
such as those denoting meteorological conditions, and static parameters that, given
a geographic area, can be considered invariable over the time of analysis, such as
land use, vegetation, altitude, slope aspect and gradient, among the others. In the
case study, the dynamic parameters are the temperature and rainfall, with reference
to the day before the occurrence, one week before, and one month before; and wind
direction and speed, with reference to the day before the occurrence.

Fig. 3 Metadata generation and discovery of scenario maps
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3.1 Metadata Definition

Each scenario map is represented by a metadata record that roughly synthesises its
content:

< sm, SM,N,M,D, ½PN�,Hs > ð1Þ

where:

• sm is the name of the type of hazard/susceptibility we are considering (in the
case study it is equal to “wild fire susceptibility”);

• SM is the unique identifier of the Scenario Map;
• N and M are the dimensions in pixels of the map;
• D is the domain of values of SM (for example susceptibility values are defined in

[0,1]),
• [PN] is a vector of unique identifiers of Parameter maps names used to generate

SM;
• Hs = {< vi,ϕvi > , < v2,ϕv2 > ,…, < vn,ϕvn >} is a level-2 fuzzy set [17],

where the linguistic values v1, .., vn are ordered based on their trapezoidal-
shaped membership functions on D: ∀i < j argmaxx∈D(μvi(x)) < arg-
maxx∈D(μvj(x)). Each membership degrees ϕvk ∈ [0,1] is defined as the relative
fuzzy cardinality of vk over the values of the pixels in the map SM:

phivk =
∑N,M

i, j μvkðSMijÞ
N*Mmaxi, j=1, ..N; 1, ...MðSMijÞ . ð2Þ

Thus Hs can be regarded as a representation of the quantized normalized his-
togram of frequency of the values in SM, according to a fuzzy partition defined by
the linguistic values v1, v2,…, vn on D.

Let us make an example of Hs computation on the synthetic scenario map SM
depicted in Table 2, by considering the quantisation defined by the following three
linguistic values defined by trapezoidal membership values:

v1 = low with μlow = (0, 0, 0, 0.5)
v2 = medium with μmedium = (0, 0.5, 0.5, 1)
v3 = high with μhigh = (0.5, 1, 1, 1)

where the quadruples (0, 0, 0, 0.5) (0, 0.5, 0.5, 1) and (0.5, 1, 1, 1) define the
vertexes of the triangles depicted in Fig. 4.

Table 2 Example of
scenario map SM of
dimensions N = 4, M = 4
and domain D = [0, 1]

1 1 0.25 0.5
1 1 0.25 0.5
1 1 0 0

1 0 0 0
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We obtain the following membership degrees to HS:

ϕlow = (Σi=1,…,4; j=1,..,4 μlow(SMij)/16 = 6/16
ϕmedium = 3/16
ϕhigh = 7/16
and thus Hs = {< low, 0.38 > , < medium, 0.19 > , < high, 0.44 >}.

With this representation we can guess that the scenario map SM contains pri-
marily high and low values and marginally medium values.

Furthermore, each scenario map SM has associated a number of dynamic
parameter maps PN uniquely represented by a metadata record that roughly syn-
thesizes the parameter map content. This metadata record is structured into the
following fields:

< pn,PN,TP, ½SM�,N,M,D,Hp,D′,Hp′ > ð3Þ

where:

• pn is the parameter name;
• PN is the unique identifier of the name of the parameter map;
• TP∈ {last month, last week, yesterday} is the time period of reference of the

parameter PN;
• [SM] is a vector containing the unique identifiers of the SM maps that were

generated with the contribution of parameter PN;
• N and M are the dimensions of PN;
• D is the domain of values of the parameter (for example integer);
• Hp = {<v1,ϕv1 > , < v2,ϕv2 > ,…, < vn,ϕvn >} is a level 2 fuzzy set defined as

Hs above. The linguistic values v1, .., vn are ordered by their trapezoidal-shaped

Fig. 4 Membership functions defined by the quadruples μlow = (0, 0, 0, 0.5), μmedium = (0, 0.5,
0.5, 1) μhigh = (0.5, 1, 1, 1)
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membership functions on D, i.e., ∀i < j argmaxx∈D(μvi(x)) < argmaxx∈D

(μvj(x)). The membership degrees ϕvk ∈ [0,1] are defined as the relative fuzzy
cardinality of vk over the pixel values in the parameter map PN:

ϕvk =
∑N,M

i, j μvkðPNijÞ
N*Mmaxi, j=1, ..N; 1, ...MðPNijÞ ð4Þ

Thus Hp is a representation of the quantised normalized histogram of frequency
of the values in map PN according to a fuzzy partition v1, v2,…, vn defined on D.

• D’ is the domain of values of the parameter first derivative.
• Hp’ = = {<dv1,ϕdv1 > , < dv2,ϕ dv2 > ,…, < dvn,ϕ dvn >} is a level 2 fuzzy

set defined as Hs and Hp above. The linguistic values dv1, .., dvn are ordered by
their trapezoidal-shaped membership functions on D’, ∀i < j argmaxx∈D’

(μdvi(x)) < argmaxx∈D’(μdvj(x)). The membership degrees ϕdvk∈ [0,1] are
defined as the relative fuzzy cardinality of dvk over the pixel values in the first
derivate of the parameter map PN. Thus the values dvi define approximate
ranges of the gradient map PN’ of PN. The membership degrees ϕdvk ∈ [0, 1]
are defined as the relative fuzzy cardinality of dvk over the first derivate of pixel
values in the parameter map PN:

phidvk =
∑N ′,M′

i, j μdvkðPN ′

ijÞ
N ′*M′ maxi, j=1, ..N′; 1, ...M′ðPN ′

ijÞ
ð5Þ

3.2 Storing the Metadata in a Catalogue Service

The metadata records described above are embedded within an XML metadata
format structured into fields compliant with current regulations in force at European
level for geo-data interoperability representation [18]. Thus they determine an
extension of the standard INSPIRE metadata format, guarantying full compliance
with OGC Web Catalogue Services as far as the discovery facility based on spatial,
time and semantic representation. The metadata records in (1), describing the
scenario map content, are embedded within the content field of the standard
metadata format, since they enable a content-based discovery of the scenario maps
as described below, while the metadata records in (3), describing the associated
parameter maps, are embedded within the lineage metadata field since they repre-
sent information on the parameters of the process that generated the scenario maps.
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3.3 Discovering Scenario Maps

The Discovery of scenario maps is performed by querying the metadata catalogue
service, which is a web application enabling online querying of the database of
metadata, and together with the metadata retrieves the link of the associated sce-
nario map. The user query is evaluated against the metadata indexes and both the
metadata that satisfy it and the associated scenario maps are retrieved. Generally,
current catalogue services are implemented on top of classic database management
systems, such as PostgreSQL, no ranking based on relevance evaluation of the
scenario maps is performed since the query language, basically SQL, allows
expressing only crisp selection conditions. Nevertheless, in the context of emer-
gency management, the possibility to retrieve an ordered list of scenario maps in
decreasing order of plausibility to represent the current scenario is very important.

Typically, the user of the catalogue service is an operator of either the munic-
ipality or the local civil protection who is preparing the activities preliminary in
view of a possible occurrence of an emergency, and is monitoring an ongoing
critical situation.

He needs to retrieve the scenario maps described by the dynamic influencing
parameter close to the current ones or similar to the forecasted ones, such as
rainfalls and temperature values close either to those of last days, or to those
forecasted for the next hours. Such scenario maps are likely to depict the current
ongoing territorial situation, or the situation that may occur in the immediate future.
The scenarios maps can aid operators to take decisions such as in planning evac-
uation of the population residing in areas at high risk, in identifying the safe areas
where to collect the evacuated citizens, in organizing rescue operations. Several
kinds of flexible queries can be formulated by the operators to take better decisions.
To model flexible querying, we rely on the framework of fuzzy databases [4–6].

3.4 Direct Query by Constraining the Parameters Values

During an emergency operation a flexible direct query can specify soft conditions
Sc on the values of some dynamic parameter pn: Sc: DPN_TP → [0, 1] where
DPN_TP is the domain of parameter named pn for the time period TP.

For example, one can specify a query composed by ANDing the following soft
conditions:

high pn = temperature during TP = last month AND
very high pn = temperature during TP = last week AND
very high pn = wind during TP = yesterday AND
None pn = rainfall during TP = last month

The operator formulates this query when interested in the most plausible sce-
nario maps given the current situation described by the linguistic values of the
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parameters specified in the soft conditions. Such soft conditions constrain the values
of the correspondent parameter map PN to some ongoing recent climatic conditions,
expressed by the linguistic values high for temperature during the last month, very
high for temperature during the last week, etc.

Another situation in which this query can be formulated is when the operator has
some forecasted values of the parameters and wants to obtain the most plausible
scenario based on the forecasts.

This query is evaluated by accessing the metadata records indexed by both pn
and TP and by matching the Hp field of each parameter map PN with the soft
condition Sc to compute the ranking score rSc as follows:

• firstly, the compatibility of the query soft constraint Sc with the meaning μvk of a
linguistic value vk in Hp is computed as the min;

• this compatibility degree is then aggregated by the min with the degree ϕk

associated with vk in Hp:

rSc =mink∈Hpðmini∈DPN TPðμvkðiÞ, ScðiÞÞ,ϕkÞÞ ð6Þ

This is done for all the soft conditions in the query, and finally the query ranking
scores rq is obtained by the minimum of rSc, since in the query the soft conditions
are ANDed.

The scenario maps with ranking scores greater than zero are listed in decreasing
order to the operator as shown in Fig. 5.

Fig. 5 Scenario maps ranked from left to right with respect to their degrees of satisfaction of the
soft constraint very low depicted in the right low corner
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3.5 Direct Query by Constraining the Parameters Trends

The operator specifies a soft condition on the trend of some parameters pn based on
either recent values or forecasted values: St: D’PN_TP → [0,1] where D’PN_TP is the
domain of the first derivate of parameter pn during period TP. An example of such
query can be:

High_increasing pn = temperature during TP = last month AND
High_increasing pn = wind during TP = yesterday AND
High_decreasing pn = rainfall during TP = last month

This query is evaluated by accessing the metadata records indexed by both pn
and TP and by matching Hp’ values dvk with the soft condition Sc’ to compute the
ranking score rSc’ as in the previous case:

r′Sc =mink∈Hp′ðmini∈D′

PNderscoreTP
ðμvkðiÞ, Sc′ðiÞÞ,ϕkÞ ð7Þ

This is done for all the soft conditions in the query, and finally the query ranking
scores are combined by the minimum again.

The scenario maps SM associated with the positive ranking scores to the query
can be listed in decreasing order to the operator.

3.6 Inverse Query

Inverse queries are useful for territorial management planning, when a risk man-
agement team, responsible of a given territorial area, determines the lower/upper
bounds of some environmental dynamic parameters pn which cause a given risk
level. This information can be used to define pre-alert emergency plans in case of
meteorological conditions within the lower and upper bounds. In this case the result
of a query is not a scenario map but a summary of the parameter maps that
generated the scenario map best satisfying the query condition.

The operator specifies a soft condition on the domain of sm with the aim of
retrieving the values of the parameters pn that more likely determine the suscep-
tibility values satisfying the soft constraint in most of the areas of the maps SM. An
example of query could be the following:

high sm
where high is a soft condition on the values of the scenario maps SM of type sm.
This query is evaluated by first defining the soft condition Sc: DSM → [0, 1] and

evaluating it by applying formula (6) on SM maps. Then the SM map with best
matching score is selected: SM | rSc(SM) = ArgMax(rSc(SM1), …, rSc(SMv)).

All the correspondent fuzzy sets Hp which synthetize the contents of the
parameter maps PM associated with the selected scenario map SM are selected and
shown to the operator.
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3.7 Scenario Map Fusion

The result of a flexible query must be an informative answer. Besides retrieving a
ranked list of the most plausible susceptibility maps, two virtual maps, representing
the most likely optimistic and pessimistic scenarios that may occur, together with
the variability of susceptibility levels in each pixel, are generated. To provide this
additional answer, we perform a spatial fusion of the ranked retrieved maps.

Specifically, given M scenario maps retrieved by a query, we fuse them pixel by
pixel and by taking into account their rank in order to obtain the most plausible
optimistic and pessimistic scenario maps.

The plausible optimistic scenario map is the one in which the value of a pixel is
computed based on the fusion of most of the smallest co-referred pixel values
appearing in the top ranked retrieved maps. This is because the greater the pixel
value the greater the susceptibility or risk, and then fusing the smallest values
means being optimistic on the scenario that may happen.

In fact, in the optimistic map, we expect that the best case happens, i.e., we fuse
the lowest susceptibility or risk levels within each pixel.

Conversely, for the plausible pessimistic scenario, we expect the worst situation
to occur, i.e., the pessimistic scenario map is the one in which the value of a pixel is
computed based on the fusion of most of the greatest co-referred pixel values in the
top ranked retrieved maps. This is because the greater the pixel value the greater the
susceptibility or risk and then fusing the greatest values means being pessimistic on
the scenario that may happen.

The generation of the virtual scenario is performed by applying a pixel based
fusion taking into account the ranks of the retrieved scenario maps, and an
aggregation defined by an IOWA operator [9].

3.7.1 Definition of the IOWA Operator

The IOWA operator is defined in order to allow associating with each element to
aggregate a priority defined by an external vector (u1,…, uM), named inducing order
vector. The IOWA operator of dimension M is a non linear aggregation operator
IOWA:[0,1]M→ [0,1] with a weighting vector W = (w1, w2, …, wM), with wj∈ [0,1]
and Σi=1,..M wi = 1 defined as [9]:

IOWAð< x1, u1 > , . . . , < xM, uM > = ∑i = 1, ..M wi*xu− indexðiÞ ð8Þ

in which X = (x1,…, xM) is the argument vector to be aggregated and xu-index(i) is the
element of vector X associated with the i-th greatest inducing order value u among
the values (u1,…, uM).

For computing the plausible optimistic and pessimistic scenario maps, the
inducing order vectors UP and UO are defined by taking into account both the pixels
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susceptibility degrees xj, and the ranks rj, of the scenarios maps in the retrieved list
(Listq) as follows:

uPi =
xi

maxxk∈ SM xk
*
Listq
�
�

�
�− ri +1

Listq
�
�

�
�

uOi =
maxxk∈ SM xk − xi
maxxk∈ SM xk

*
Listq
�
�

�
�− ri +1

Listq
�
�

�
�

ð9Þ

In which |Listq| is the cardinality of the retrieved list by query q. We could even
choose to consider the first top K elements in the list |Listq| = K.

The weighting vectorW of the IOWA operator is defined with the weights wi > 0
∀i < k<|Listq| and wi = 0 for i ≥ k. This way the result is computed by the weighted
combination of the top values xi ordered in decreasing value of either UP and UO to
generate the most plausible pessimistic and optimistic scenarios respectively.

3.7.2 Numeric Example

Let us consider the following values of the susceptibility degrees defined in [0,100]:
X = (10 20 100 70 100 20) and their associated ranks r = (1 2 3 4 5 6) in the

retrieved list Listq, by applying formula (9) we compute the following induced order
vectors UP and UO for the pessimistic and optimistic fusion:

UP = 0.1 0.2 1 0.7 1 0.2ð Þ 1 0.8 0.6 0.5 0.2 0.1ð ÞT. = 0.1 0.16 0.6 0.35 0.2 0.02ð Þ
UO = 0.9 0.8 0 0.3 0 0.8ð Þ 1 0.8 0.6 0.5 0.2 0.1ð ÞT. = 0.9 0.64 0 0.15 0 0.08ð Þ

Consequently the values of the susceptibility degrees X, reordered according to
UP and UO respectively are the following:

XP = 100 70 100 20 10 20ð Þ
XO = 10 20 70 20 100 100ð Þ

Now let us consider the IOWA operator with weighting vector W defined such
that wi = 0.33 ∀i < 3, and wi = 0 otherwise. When we apply it to X with recorder
vector UP and UP the following results are obtained:

• the most plausible pessimistic susceptibility degree is computed as follows: XP *
W = (100 70 100 20 10 20) (0.33 0.33 0.33 0 0 0)T = 89

• the most plausible optimistic susceptibility degree is computed as follows: XO *
W = (10 20 70 20 100 100) (0.33 0.33 0.33 0 0 0)T = 33
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4 Flexible Spatial Data Infrastructure Implementation

Since the early 1990s, SDIs have been introduced to increase the availability and
accessibility of geographic information on the Web. The SDI concept is focused on
distributed geo-data and processes, and fundamental operations such as discover-
ing, viewing, accessing, and integrating geo information. These operations are
made possible thanks to the interoperability of web services, acting together
through well-defined protocols and interfaces.

Interoperability is therefore a cornerstone in modern SDIs. Distributed and
heterogeneous geospatial data managed at their web sites can be discovered by
users who access on the Internet and query catalogue services managing metadata,
i.e., semi-structured textual descriptions of the characteristics of distributed
geo-data. Furthermore, such services provide access to the geo-data deemed rele-
vant by a user after a discovery phase without copying or transferring any dataset.
SDIs are therefore particularly attractive when geo-information sources are dis-
tributed and heterogeneous.

The geo SDA presented in this chapter has been implemented based on open
source packages that have been extended in order to evaluate flexible queries and to
return fused maps. To manage and deploy on the web the scenario maps we used
Geoserver, that is a Web GIS compliant with the OGC standard services. All the
scenario maps are served by Web Map Service.

For both the metadata management, querying and retrieval we used Geonetwork
that is a package developed by FAO on top of a geographic database implemented
by PostgreSQL, extended by PostGIS for managing the geometric attributes of the
geographic bounding boxes. This object-relational database has been extended in
order to evaluate flexible queries specifying soft conditions in the where clause of
the basic SQL query.

The Fusion module has been implemented on top of Openlayer library and is
called by Geonetwork anytime a user asks to display the most plausible optimistic
or pessimistic scenario map satisfying a query.

5 Conclusions

Public territorial planning administrations need up-to-date geo-located information
relative to the knowledge of critical situations that are happening or that are likely
to happen in the near future under some dynamic conditions (both meteorological
and environmental) in order to effectively plan and perform mitigation and emer-
gency interventions.

This is the motivation of our proposal to design and develop a geo SDI allowing
to access geo-located information such as authoritative information on the resour-
ces, vulnerable structures and contact people to be involved in the interventions,
VGI relative to critical situations freely provided by testimonies of critical events,
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and finally scientific information on the possible scenarios of risk that may plau-
sibly happen in a region given the occurrence of meteorological and environmental
conditions. To this end we applied methods of fuzzy database and fuzzy data fusion
to flexibly query the metadata of scenario maps and to generate virtual scenario
maps that depict the most plausible optimistic and pessimistic situation that may
possibly occur given the dynamic conditions specified in a query.

Although several projects generate susceptibility maps for forecasting events,
they usually only permit to display the susceptibility maps and to do standard
geospatial data manipulation operations (e.g., zooming and panning), but do not
support flexible querying on maps contents nor map fusion. Some applications have
modelled environmental risks based on dynamic variables such as in [19] where
malaria disease is modelled by considering the climatic changes, and in [15], where
they use fire simulators to predict fires, while the history of fires is only used to
calibrate the input variables of the simulator (using genetic algorithms).

As far as we know, no approach has proposed a geo SDI for flexible querying
stored scenarios maps, generated by models which consider the contributions of the
dynamic parameters that have an influence on the modelled phenomena.

To summarize our proposed geo SDI is original for several aspects.
First of all the way in which we synthetically represent the contents of sus-

ceptibility scenario maps, and parameters maps, based on level-2 fuzzy sets and the
extension of INSPIRE metadata structure so as to be able to empower the catalogue
service with the ability to answer content-based queries on scenario maps.

Second, by adopting a fuzzy database approach, the catalogue service can rank
the metadata, and thus the retrieved scenario maps described by them, with respect
to flexible queries, providing indications on the most plausible scenarios that may
occur based on the conditions in the query.

Finally, the pixel based fusion function allows computing two virtual scenario
maps, synthesising the most plausible optimistic and pessimistic scenarios that may
occur given the soft conditions described by the flexible query.
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The Multiple Facets of Fuzzy Controllers:
Look-up-Tables—A Special Class of Fuzzy
Controllers

Dimitar Filev and Hao Ying

Abstract Look-up table (LUT) controllers are among the most widely utilized
control tools in engineering practice. The reasons for their popularity include
simplicity, easy to use, inexpensive hardware implementation, and strong nonlin-
earity and multimodal behaviors that can be formalized, in many cases, only by
experimentally measured data. In a previous paper, we showed that the
two-dimensional (2D) LUT controllers and one special type of two-input Mamdani
fuzzy controllers are connected in that they have the identical input-output math-
ematical relation. We also demonstrated how to represent the LUT controllers by
the fuzzy controllers. Finally, we showed how to determine the local stability of the
LUT control systems. In the present work, we extend these results to the
n-dimensional LUT controllers and the special type of the n-input Mamdani fuzzy
controllers.

Keywords Fuzzy control ⋅ Fuzzy systems ⋅ Look-up tables ⋅ Stability theory

1 Introduction

The first wave of fuzzy system applications started in the mid 70s with the work of
Mamdani and his associates [1, 2] who demonstrated that a family of fuzzy rules
could result in a control algorithm that had performance comparable to the con-
ventional industrial controllers. Almost all of the fuzzy system applications at that
time followed the mainstream fuzzy control approach-rule-based controllers with
fuzzy predicates and reasoning mechanism [3, 4], realizing nonlinear PI, PD or
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PID-like control strategies. Most of these works were focused on solving specific
control problems, e.g. climate control (Matsushita), subway control (Hitachi),
dishwasher and locomotive wheel slip control (General Electric), control of prepaint
anticorrosion process (Ford Motor Company), vehicle transmissions (Honda &
Nissan), etc. [5–9], Utilizing some of the main advantages of fuzzy control—
implementation of intuitive control strategies based on human experience, no
requirements for an explicit plant model, rapid prototyping of the control algorithm
[10]—these applications gained quick success.

Today, the synergy between fuzzy control, neural networks, evolutionary
computing, machine learning, probabilistic/possibilistic reasoning, bio-inspired
computational intelligence methodologies, and other soft-computing theory estab-
lishes the foundations of a broader control area—intelligent control. Fuzzy control
methods are also widely used in conjunction with the conventional (“hard com-
puting”) control, diagnosis, pattern recognition, signal processing, knowledge based
algorithms and systems where they are introduced within the framework of heuristic
strategies at a higher control level (supervisory control, formalization of heuristic
task and goals) or/and synergistically with control algorithms that require subjective
information, which can be difficult to formalize within the framework of conven-
tional controllers [11].

Various techniques for designing and tuning fuzzy control algorithms have been
developed to improve the robustness and tuning of the parameters and the structure
of the fuzzy control rule-base by using the similarity between the fuzzy control, PID
control, and sliding mode control [12–14]. Significant efforts have been made to
rigorously derive and study analytical structure of fuzzy controllers, i.e. the math-
ematical relationship between the input and output of a fuzzy controller. Precise
understanding of the structure is fundamentally important because it can enable one
to analyze and design fuzzy control systems more effectively with the aid of con-
ventional control theory [14–18]. The analytical structure is determined by a fuzzy
controller’s components including input fuzzy sets, output fuzzy sets, fuzzy rules,
fuzzy inference, fuzzy logic operators, and defuzzifier. Different component choices
obviously result in different analytical structures [2, 11, 16].

In the past 15 years or so, research on improving the performance of fuzzy
control algorithms, stability analysis, and systematic design of fuzzy controllers has
focused on Takagi-Sugeno method [19] and input-output models of the plant. The
Takagi-Sugeno model is a generalization of the gain-scheduling concept—instead
of linearizing at a single operating point it enables linearization in multiple vaguely
defined regions of the state space [20]. Owing to the fuzzy decomposition the
nonlinear system is represented by a polytopic nonlinear structure of coupled linear
models that has the property of a universal approximator. The polytopic repre-
sentation establishes sufficient stability conditions for the TS system using a
common Lyapunov function for a set of Lyapunov inequalities [21]. The problem
of stability and synthesis is transformed to a convex program. A systematic design
methodology that is based on solving LMIs (linear matrix inequalities) has been
developed [22]. The TS approach with its strong theoretical foundations was able to
overcome the major critics regarding the lack of analyticity of the fuzzy control and
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made possible to address all major topics of modern control theory. However,
despite of the progress towards development of formal analytical model-based
approaches for designing fuzzy control systems, most of the practical applications
remained centered around heuristic rule-base control. It seems that this observation
only confirms the original assertion of Mamdani who introduced fuzzy logic control
in 1974 as a powerful tool to “convert heuristic control rules stated by a human
operator into an automatic control strategy” [1].

In this chapter we are focusing on a new direction of application of Mamdani
controllers that, we believe, has received little, if any, attention. We analytically
explore the relationship between one special type of Mamdani fuzzy controllers and
the multi-dimensional look-up table (LUT) controllers—one of the most widely
used practical engineering tools in industry, especially in automotive engineering—
and derive conclusions that contribute to the analysis of the look-up tables based
control systems. Our approach is inspired by the similarity between the fuzzy
controllers and look-up tables and uses the theory of fuzzy controllers to bring new
light to the look-up based engineering technique that is usually considered a low
tech and “black art” type control tool. In some sense our approach is just the
opposite to the mainstream fuzzy control literature which uses the conventional
control theory instrumentarium to explain, analyze, and further develop fuzzy
control. Our approach benefits from the great body works on fuzzy control to derive
new knowledge and to provide a new interpretation of the look-up type controllers.

LUTs are used in engineering applications as arrays of data that describe rela-
tionships between variables. In a broad sense they represent “pseudo-equations to
make up for a lack of ‘real’ equations or perhaps to replace complicated equations
with simpler ones” [23, 24]. For example, the vehicle control systems employee
thousands of LUTs that contain calibration parameters or define control actions
under different operating conditions. The most popular LUTs are the
two-dimensional (2D) tables that define the values of one dependent (output)
variable for different combinations of two independent (input) variables and even
more single dimensional LUTs. They are used as feedforward controllers or as
containers for calibrating or gain-scheduling parameters for feedback controllers.
The reasons for the popularity of the LUTs in the automotive industry are the strong
nonlinearity and multimodal behaviors in the powertrain that can be (in many cases)
formalized only by experimentally measured data under different operating con-
ditions. In addition, the LUTs are computationally effective, and can be easily
interpreted, visualized, and tuned. Two typical LUTs representing the fuel injection
time and the ignition advance at different values of the manifold absolute pressure
(MAP) and the engine speed are as follows:

The LUT output is obtained by interpolation (usually linear) in both directions,
resulting in a bilinear mapping that will be discussed in more details below. In the
following we will show that the output of the LUTs is identical to the output of a
special type of Mamdani FLCs.

The chapter is organized in two parts. The first part analyzes the relationship
between the Mamdani controllers and the LUT controllers. The main result is a
theorem proving the equivalence between one special type of Mamdani controllers
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with m input variables and the m-dimensional LUT. This result provides the
framework for describing and analyzing the LUT as fuzzy controllers. In the second
part we show how to determine the local stability of feedback control systems
involving the m-dimensional LUT controllers. These findings extend our previous
results on the 2D cases [25].

2 On the Relationship Between the Mamdani FLCs
and the LUT Controllers

2.1 A Special Type of Mamdani FLCs

The general class of Mamdani FLCs is a rule-base type system that has m input
variables, designated as xiðnÞ, i = 1, 2, …, m, where n signifies sampling instance.
xiðnÞ may be a state variable or an input variable computed using the current and/or
historical output of a dynamic plant to be controlled (e.g., yðnÞ and yðn− 1Þ) as well
as target output signal SðnÞ. This means the input space to be m-dimensional. xiðnÞ
is multiplied by a scaling factor ki, resulting in the scaled input variable. For
simplicity, we will use xiðnÞ to represent the scaled variable. This will not cause
confusion because only the scaled input variables will be needed in the rest of the
chapter. The universe of discourse for xiðnÞ is partitioned into Mi intervals. Like
most FLCs in the literature, each interval has at least one fuzzy set defined over it.
The j-th fuzzy set of xiðnÞ is designated as Aĩ, j whose membership function is
denoted μAĩ, j

ðxiÞ. Ãi, j can be any types. The fuzzy controller uses a total of

M = ∏
m

i=1
Mi fuzzy rules, each of which is in the following format:

IF x1ðnÞ isA1̃, I1 AND . . . AND xmðnÞ is Ãm, Im THEN uðnÞ isV ̃k ð1Þ

where the output fuzzy sets Vk̃, k = 1, …, M, cover the universe of uðnÞ. The
membership functions of Vk̃ are denoted μV ̃k ðuÞ and are limited to the singleton

type. That is, Vk̃ is nonzero only at one location in the universe of discount for uðnÞ
and the nonzero value is designated as Vk. The fuzzy AND operator is the product
operator

τhðxÞ= ∏
M

j=1
μA ̃j, Ij

ðxjÞ ð2Þ

where x= ½x1ðnÞ⋯⋯xmðnÞ� to define the degrees of firing the rules. As for rea-
soning, any fuzzy inference method may be used in the rules. It will produce the
same inference outcome because the output fuzzy sets are of the fuzzy singleton
type (we’ll limit the discussion to the case of fuzzy singleton; the extension to fuzzy

194 D. Filev and H. Ying



sets of general shape can be found in [14]). The popular centroid defuzzifier is
employed to combine the inference outcomes of the individual rules:

uðnÞ=
∑
M

h=1
τhðxÞ ⋅Vh

∑
M

h=1
τhðxÞ

ð3Þ

Here, τhðxÞ is the resulting membership of executing all the fuzzy logic AND
operations in the h-th rule whereas Vh signifies the nonzero value of the singleton
output fuzzy set in the rule.

The membership functions of the input fuzzy sets can be of general shape. The
only constraint on their selection is to guarantee a complete coverage of the
Cartesian product space of all the input variables. Expression (3) defines a deter-
ministic mapping between the inputs and the output of the Mamdani FLCs. For
finite universes of the inputs and output, which is always the case for real-world
applications, the mapping can be approximated by a LUT. For a predefined rule
base and membership functions the LUT can be calculated in advance as part of the
FLC design process. The output of the FLC can be inferred from the LUT by
interpolation. This simple LUT realization can be applied to any type of controller
but it is especially effective in the case of Mamdani FLC because it eliminates the
tedious calculations of the degrees of firing using (2)—an operation that might
require significant computational resource and time. Almost all references regarding
the LUT in the literature on fuzzy control followed the pattern described above—
the LUTs were considered as implementation tools approximating the FLCs and
their properties have not been analyzed or discussed in the framework of fuzzy
control.

In the following we’ll show that under certain assumptions the LUTs can be
identical to the FLCs, and that implementation of specific FLCs can be computa-
tionally effective and simple, comparable to the implementation of the PID con-
trollers. We’ll also show that the equivalence between the FLC and LUT can be
used to introduce a systematic approach to the local stability analysis of LUT
controllers.

In order to simplify the notations we’ll first limit the discussion to the 2D case,
i.e., assuming two input variables x1ðnÞ and x2ðnÞ with the corresponding universes
partitioned into intervals covered by fuzzy sets eA1, 1, . . . , eA1, n1 and eA2, 1, . . . , eA1, n2
since this type of FLCs covers the most common cases of PI- and PD-like FLCs.
Results will be further generalized to multiple input variables.

The maximal number of rules that are determined by this partitioning is
n= n1 × n2:
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IF x1ðnÞ is Ã1, 1 AND x2ðnÞ isA2̃, 1 THEN uðnÞ isV11

IF x1ðnÞ is Ã1, 1 AND x2ðnÞ isA2̃, 2 THEN uðnÞ isV12

. . .

IF x1ðnÞ is Ã1, n1 AND x2ðnÞ is Ã2, n2 THEN uðnÞ isVn1n2

ð4Þ

In this work we’ll make one additional assumption on the type of the fuzzy sets
eA1, 1, . . . , eA1, n1 and eA2, 1, . . . , eA1, n2—they are defined by the normal triangular
membership functions. “Normal” means for any values of x1ðnÞ and x2ðnÞ the
corresponding membership values of the two neighboring fuzzy sets sum to one
(Fig. 1 and Table 1). That is

μÃi, j
ðxiÞ + μAĩ, j+1

ðxiÞ=1, j = 1, . . . , ni − 1f g, i = 1, 2f g

These membership functions are analogous to the concept of B-splines [26]. One
can see from Fig. 1 that the normality assumption implies that for any input value
x1ðnÞ(or x2ðnÞ) at least one but no more than two of the corresponding membership
grades A1̃, s and Ã1, s+1 (or Ã2, t and Ã2, t+1) are nonzero and consequently at least
one but no more than four of the fuzzy rules (4), including Ã1, s, Ã1, s+1, A ̃2, t, and
Ã2, t+1, will have nonzero degrees of firing. The normality assumption also means
that the membership functions of the input variables are uniquely defined by the

Fig. 1 Normalized membership function of the fuzzy sets of input variables x1ðnÞ and x2ðnÞ that
satisfy the normality requirement
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universe parameters a1, s and a2, t, s = 1, . . . , n1 − 1f g, t = 1, . . . , n2 − 1f g, matching
their maxima.

2.2 Relationship Between the Mamdani FLCs and the LUT
Controllers

Because of the popularity of 2D LUT controllers in real-world applications, we will
first show that if a 2D LUT that has as entries the singleton values Vs, t, and with
rows and columns defined by the universe parameters a1, s and a2, t (Table 2) then
the LUT output will be identical to the above fuzzy controllers. In other words, a
two-input Mamdani FLC with the normal triangular membership functions of the
inputs, singleton consequents and the product AND operator is identical to a 2D
LUT that has rows, columns and entries that are defined by the corresponding
parameters of the membership functions and the singleton consequents of the FLC.

Table 1 Sample LUTs
representing fuel injection
time and ignition advance for
different engine operating
conditions—manifold
absolute pressure (MAP) and
engine speed [31]

Speed (RPM)
MAP (kPA) 500 1000 1500

50 4.02 4.06 4.09
40 3.36 3.39 3.36
30 3.24 3.27 3.31
20 3.04 2.89 3.04

Speed (RPM)
MAP (kPA) 500 1000 1500

50 10 16 18
40 9.4 15.7 17.3
30 8.6 15 16.8
20 7.9 14.5 15.9

Table 2 LUT with rows and columns defined by the universe parameters a1, s, a2, t , and entries—
the singleton consequents Vs, t , s = f1, . . . , n1 − 1g, t = f1, . . . , n2 − 1g
x1
x2 a2, n2 Vn1, n2

a2, n2 − 1

…

a2, t+1 Vs , t+1 Vs+1, t+1

a2, t Vs , t Vs+1, t

…

a2,2
a2,1 V1,1 V1,2

a1,1 a1,2 … a1, s a1, s+1 … a1, n1 − 1 a1, n1
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According to Fig. 2 for a set of arbitrarily chosen x1ðnÞ and x2ðnÞ we get for the
degrees of firing of the affected rules:

τs, tðxÞ= μA ̃1, sðx1Þ ⋅ μÃ2, t
ðx2Þ= a1, s+1 − x1ðnÞ

a1, s+1 − a1, s
×
a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

τs, t+1ðxÞ= μA ̃1, sðx1Þ ⋅ μÃ2, t+1
ðx2Þ= a1, s+1 − x1ðnÞ

a1, s+1 − a1, s
×

x2ðnÞ− a2, t
a2, t+1 − a2, t

τs+1, tðxÞ= μA ̃1, s+1
ðx1Þ ⋅ μÃ2, t

ðx2Þ= x1ðnÞ− a1, s
a1, s+1 − a1, s

×
a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

τs+1, t+1ðxÞ= μA ̃1, s+1
ðx1Þ ⋅ μA2̃, t+1

ðx2Þ= x1ðnÞ− a1, s
a1, s+1 − a1, s

×
x2ðnÞ− a2, t
a2, t+1 − a2, t

ð5Þ

The four firing levels are positive and sum to one. Therefore, the defuzzifier (3)
makes the output of the FLC uðnÞ to interpolate between the corresponding sin-
gletons according to the current values of the degrees of firing as functions of the
current input values x1ðnÞ and x2ðnÞ:

uðnÞ= τs, tðxÞVs, t + τs, t+1ðxÞVs, t+1 + τs+1, tðxÞVs+1, t + τs+1, t+1ðxÞVs+1, t+1 ð6Þ

Alternatively, from the grid representation of the LUT in Table 1 (Fig. 2), we
can obtain uðnÞ by interpolating first between Vs, t and Vs+1, t, and between Vs, t+1

and Vs+1, t+1 along x1ðnÞ axis. The intermediate interpolated values vt and vt+1(the
order of interpolation does not matter) are

vt =
a1, s+1 − x1ðnÞ
a1, s+1 − a1, s

Vs, t +
x1ðnÞ− a1, s
a1, s+1 − a1, s

Vs+1, t ð7Þ

Fig. 2 Grid representation of
the LUT of Table 2
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vt+1 =
a1, s+1 − x1ðnÞ
a1, s+1 − a1, s

Vs, t+1 +
x1ðnÞ− a1, s
a1, s+1 − a1, s

Vs+1, t+1 ð8Þ

Similarly, by interpolating between vt and vt+1 along x2ðnÞ axis and substituting
for vt and vt+1 according to (8) and (9) we get for the interpolated value uTðnÞ that
is inferred by the LUT:

uTðnÞ= a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

vt +
x2ðnÞ− a2, t
a2, t+1 − a2, t

vt+1

=
a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

a1, s+1 − x1ðnÞ
a1, s+1 − a1, s

Vs, t +
x1ðnÞ− a1, s
a1, s+1 − a1, s

Vs+1, t

� �

+
x2ðnÞ− a2, t
a2, t+1 − a2, t

a1, s+1 − x1ðnÞ
a1, s+1 − a1, s

Vs, t+1 +
x1ðnÞ− a1, s
a1, s+1 − a1, s

Vs+1, t+1

� �

=
a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

a1, s+1 − x1ðnÞ
a1, s+1 − a1, s

Vs, t +
a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

x1ðnÞ− a1, s
a1, s+1 − a1, s

Vs+1, t +
x2ðnÞ− a2, t
a2, t+1 − a2, t

a1, s+1 − x1ðnÞ
a1, s+1 − a1, s

Vs, t+1

+
x2ðnÞ− a2, t
a2, t+1 − a2, t

x1ðnÞ− a1, s
a1, s+1 − a1, s

Vs+1, t+1.

ð9Þ

By comparing with expression (6) we finally obtain:

uTðnÞ= τs, tðxÞVs, t + τs, t+1ðxÞVs, t+1 + τs+1, tðxÞVs+1, t + τs+1, t+1ðxÞVs+1, t+1 = uðnÞ

Therefore, the FLC and the LUT produce the same results.
The equivalence between the FLC and the LUT suggests a comprehensive

representation and effective computational realization of the FLC with the normal
triangular membership functions. We’ll illustrate the opportunity for simplifying the
implementation of the FLC based on its equivalence to the LUT on the showcase of
a simple PI/PD-like FLC. This FLC uses the rule base (5) and has two inputs—the
scaled error between the set point and the plant output, EðnÞ=KeeðnÞ and the scaled
difference of the error, ΔEðnÞ =KΔeΔeðnÞ =KΔe eðnÞ− eðn− 1Þð Þ, and one output
that coincides with the control variable uðnÞ (i.e., PD-like FLC) or its difference
ΔuðnÞ= uðnÞ− uðn− 1Þ (i.e., PI-like FLC) [14]. A prototypical set of rules of this
FLC can be derived from the meta-rules defining a common sense control strategy:

• If EðnÞ and ΔEðnÞ are zero, then maintain present control output
• If EðnÞ is tending to zero at a satisfactory rate, then maintain present control

output
• If EðnÞ is not self-correcting, then a nonzero ΔuðnÞ is added to present control

output, depending on the sign and magnitude of EðnÞ and ΔEðnÞ
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Table 3 shows an example of a PI-like Mamdani FLC rule base that is based on
partitioning of the universes of EðnÞ and ΔEðnÞ into three fuzzy sets—Negative
(Ne), Zero (Ze), and Positive (Pe) for EðnÞ, and Negative (Nd), Zero (Zd), and
Positive (Pd) for ΔEðnÞ,and fuzzy singletons (real values) Negative (N* = −1),
Negative Medium (NM* = −0.4), Zero (Z* = 0), Positive Medium (PM* = 0.4),
and Positive (P* = 1) that are defined on the ΔuðnÞ universe:

One can easily transfer the rule base in Table 3 to the generic rule base format
(4) by letting

A1̃, 1 =Ne; A2̃, 1 =Nd; V ̃1, 1 =N*

A1̃, 2 =Ne; A2̃, 2 = Zd; V ̃2, 2 =N*

A1̃, 3 =Ne; A2̃, 3 =Pd; V ̃3, 3 =Z*

A1̃, 4 = Ze; Ã2, 4 =Nd; V ̃4, 4 =N*

A1̃, 5 = Ze; Ã2, 5 = Zd; V ̃5, 5 = Z*

A1̃, 6 = Ze; Ã2, 6 =Pd; V ̃6, 6 =P*

A1̃, 7 =Pe; A2̃, 7 =Nd; V ̃7, 7 =Z*

A1̃, 8 =Pe; A2̃, 8 = Zd; V ̃8, 8 =P*

A1̃, 9 =Pe; A2̃, 9 =Pd; V ̃9, 9 =P*

If we consider the normal triangular membership functions of EðnÞ and ΔEðnÞ in
Fig. 3 we can replace the rule base formulation (Table 3) by the LUT in Table 4.

The output of this LUT equivalent form of the FLC can be calculated by only
one line of MATLAB code—line 11 in Fig. 5.

The equivalent LUT form of the FLC combines all the advantages of the FLC
with the efficiency and transparency of the LUT. It allows for a computational

Table 3 Example of a rule
base of the Mamdani FLC

E(n) →

Ne Ze Pe

ΔEðnÞ Nd N* NM* Z*

↓ Zd N* Z* P*

Pd Z* PM* P*

Fig. 3 Normal triangular
membership functions of the
fuzzy sets of the error EðnÞ
and its difference ΔEðnÞ
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efficient implementation of the FLC that does not require dealing with the rule base,
rules firing, and defuzzification, while exactly preserving all the properties of the
FLC.

From Fig. 2 and expression (9) we can see that the interpolated value of the 2D
LUT that is inferred for two arbitrary inputs x1ðnÞ and x2ðnÞ is essentially the
weighted average of the nodes Vs, t, Vs+1, t, Vs, t+1, and Vs+1, t+1 over the nor-

malized areas a1, s+1 − x1ðnÞ
a1, s+ 1 − a1, s

. a2, t +1 − x2ðnÞ
a2, t +1 − a2, t

, a1, s+ 1 − x1ðnÞ
a1, s+1 − a1, s

. x2ðnÞ− a2, t
a2, t+1 − a2, t

, x1ðnÞ− a1, s
a1, s+1 − a1, s

.a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

, and
x1ðnÞ− a1, s
a1, s+1 − a1, s

. x2ðnÞ− a2, t
a2, t+1 − a2, t

of the four sub-rectangles. These sub-rectangles are determined

% LUT FLC 
% FLC Definition
% Universes of Error e and Error Difference de
E=[-1 0 1];
DE=[-2 0 2];
% Control Singletons (each row corresponds to one value of de)
U=[-1 -.4 0; -1 0 1; 0 0.4 1];
% End of FLC Definition
% FLC Output uk for given values of the erorr ek and error difference dek
uk=interp2(E,DE,U,ek,dek);

Fig. 4 Sample MATLAB implementation of the LUT equivalence of the FLC. The actual FLC is
calculated in last line

Table 4 The LUT that is equivalent to the Mamdani FLC with the rule base by Table 3 and the
membership functions by Fig. 4

E(n) →

-1 0 1
ΔEðnÞ −2 -1 −.0.4 0
↓ 0 -1 0 1

2 0 0.4 1

Fig. 5 Four sub-rectangles partitioning the rectangle a1, s+1 − a1, sð Þ× a2, t+1 − a2, tð Þ
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by the partitioning of the rectangle a1, s+1 − a1, sð Þ× a2, t+1 − a2, tð Þ by x1ðnÞ and
x2ðnÞ, and each of them is associated with one of four nodes Vs, t, Vs+1, t, Vs, t+1, and
Vs+1, t+1—see Fig. 6 that illustrates this partitioning. The areas of the rectangles are
used as a measure of closeness between the input x1ðnÞ, x2ðnÞð Þ and the nodes in
the 2D space. It is easy to see that the weights are positive and sum to one.

In the above discussion we demonstrated the equivalence between the FLCs
and the LUT considering the commonly used two-inputs, single-output model of
a FLC and the 2D LUT that is widely accepted in industry. We now extend this
result to cover m-dimensional LUT controllers, which is important both theo-
retically and practically. That is, we’ll use the above observation to derive the
expression for the output inferred by an mD LUT and to prove its equivalence
to an mD FLC.

Theorem 1 A Mamdani FLC with m inputs partitioned into (ni + 1), i = {1, 2, …,
m}, fuzzy subsets with the normal triangular membership functions, product AND
aggregation of the input fuzzy subsets, and singleton consequents is equivalent to
an m-dimensional LUT with grid points defined by the arguments of the maxima of
the membership functions of the input variables and grid point entries corre-
sponding to the consequents.

Proof Assume an mD LUT where the inputs are divided into an m dimensional
grid of n1, n2, …, nm of m dimensional cells defined by the ordered grid points
ai, 1, ai, 2, . . . , ai, si , ai, ni +1, i = f1, 2, . . . ,mg and corresponding functional values
(LUT entries) V1, 1, ..., 1, V1, 1, ..., 2,. . . , V1, 1, ..., si , V1, 1, ..., si + 1, . . . , V1, 1, ..., nm +1,…,
Vn1 + 1, n2 + 1, ..., nm + 1 where si = 1, 2, . . . , nif g, i = 1, 2, . . . , mf g are arbitrary inter-
mediate points. Assume now an mD FLC, i.e. an m-input, single output fuzzy
system with inputs partitioned into (n1 + 1), (n2 + 1), …, (nm + 1) normal fuzzy
subsets and singleton consequents (Fig. 6). The LUT grid points and entries
coincide with the corresponding maxima of the membership functions and the
consequents of the FLC. This type of fuzzy partitioning defines a family of (n1 + 1)
(n2 + 1) … (nm + 1) rules with fuzzy predicates:

Fig. 6 Membership functions of the fuzzy sets of the i-th FLC input xi
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IFx1isA1, 1 AND x2 is A2, 1 AND . . . xm is Am, 1 THEN u is V1, 1, ..., 1

IF x1 is A1, 1 AND x2 is A2, 1 AND . . . xm is Am, 2 THEN u is V1, 1, ..., 2

. . .

IF x1 is A1, 1 AND x2 is A2, 1 AND . . . xm is Am, sm THEN u is V1, 1, ..., sm

IF x1 is A1, 1 AND x2 is A2, 1 AND . . . xm is Am, sm +1 THEN u is V1, 1, ..., sm +1

. . .

IF x1 is A1, 1 AND x2 is A2, 1 AND . . . xm is Am, nm +1 THEN u is V1, 1, ..., nm +1

. . .

IF x1 is A1, n1 + 1 AND x2 is A2, n2 + 1 AND . . . xm is Am, nm +1 THEN u is Vn1 + 1, n2 + 1, ..., nm +1

Consider the m dimensional LUT cell Cs formed by a1, s1 ≤ x1ðnÞ≤ a1, s1 + 1,
a2, s2 ≤ x2ðnÞ≤ a2, s2 + 1, am, sm ≤ xmðnÞ≤ am, sm +1, and si = 1, 2, . . . , nif g, i = 1, 2,f
. . . , mg. The cell is defined by the hyperrectangle

Cs ≡ a1, s1 + 1 − a1, s1ð Þ× a2, s2 + 1 − a2, s2ð Þ× . . . × am, sm +1 − am, smð Þ.

The hyperrectangle Cs has 2m nodes, Vs1, s2, ..., sm ,Vs1, s2, ..., sm +1, . . . ,
Vs1 + 1, s2 + 1, ..., sm +1, which are associated with the LUT entries. The hyperrectangle
Cs is divided by the inputs x1ðnÞ, x2ðnÞ, . . . , and xmðnÞ into 2m sub-
hyperrectangles:

Cs1 + 1, s2 + 1, ..., sm +1 ≡ a1, s1 + 1 − x1ðnÞð Þ× a2, s2 + 1 − x2ðnÞð Þ× . . . × am, sm +1 − xmðnÞð Þ
Cs1 + 1, s2 + 1, ..., sm ≡ a1, s1 + 1 − x1ðnÞð Þ× a2, s2 + 1 − x2ðnÞð Þ× . . . × xmðnÞ− am, smð Þ

Cs1, s2, ..., sm ≡ x1ðnÞ− a1, s1ð Þ× x2ðnÞ− a2, s2ð Þ× . . . × xmðnÞ− am, smð Þ

Each of the sub-hyperrectangles includes one of the nodes of the cell Cs. Using
the definition of a volume of a hyperrectangle as a product of its sides [27] (note
that this definition of the volume of a hyperrectangle is consistent with the defi-
nitions of the area of a rectangle in 2D and the volume of a cuboid in the 3D space)
we can express the volume of the cell Cs as a sum of the volumes of the
sub-hyperrectangles Cs1, s2, ..., sm ,Cs1, s2, ..., sm +1, . . . ,Cs1 + 1, s2 + 1, ..., sm +1:

ða1, s1 + 1 − a1, s1Þða2, s2 + 1 − a2, s2Þ . . . ðam, sm +1 − am, smÞ= a1, s1 + 1 − x1ðnÞð Þ
a2, s2 + 1 − x2ðnÞð Þ . . . am, sm +1 − xmðnÞð Þ+
a1, s1 + 1 − x1ðnÞð Þ a2, s2 + 1 − x2ðnÞð Þ . . . xmðnÞ− am, smð Þ+ . . .

+ x1ðnÞ− a1, s1ð Þ x2ðnÞ− a2, s2ð Þ . . . xmðnÞ− am, smð Þ

Similarly to the 2D case, the volumes of the sub-hyperrectangulars reflect the
closeness of the input x1ðnÞ, x2ðnÞ, . . . xmðnÞð Þ to the nodes of Cs. By associating
the normalized volumes of the sub-hyperrectangles with the corresponding nodes of
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Cs −Vs1, s2, ..., sm Vs1, s2, ..., sm +1, . . . ,Vs1 + 1, s2 + 1, ..., sm +1—we get the interpolated value
that is inferred by the rD LUT:

uTðnÞ= 1
K

a1, s1 + 1 − x1ðnÞð Þ a2, s2 + 1 − x2ðnÞð Þ . . . ar, sr +1 − xrðnÞð Þð
Vs1 + 1, s2 + 1, ..., sm +1 + a1, s1 + 1 − x1ðnÞð Þ a2, s2 + 1 − x2ðnÞð Þ
xrðnÞ− ar, srð Þ Vs1 + 1, s2 + 1, ..., smð Þ+ . . . + x1ðnÞ− a1, s1ð Þ
x2ðnÞ− a2, s2ð Þ . . . xrðnÞ− ar, srð ÞVs1, s2, ..., smÞ

ð10Þ

where the normalizing factor K = ða1, s1 + 1 − a1, s1Þða2, s2 + 1 − a2, s2Þ . . .
ðam, sm +1 − am, smÞ is the volume of the hyperrectangle a1, s1 + 1 − a1, s1ð Þ× a2, s2 + 1ð
− a2, s2Þ× . . . × am, sm +1 − am, smð Þ. It is easy to see that by combining pair of the
terms with all but one elements identical, e.g. the first two terms in (), the weights
will sum to one.

Consider now that the same arbitrary input values x1ðnÞ, x2ðnÞ, and xmðnÞ where

a1, s1 ≤ x1ðnÞ≤ a1, s1 + 1, a2, s2 ≤ x2ðnÞ≤ a2, s2 + 1, . . . , am, sm ≤ xmðnÞ≤ am, sm +1,

and si = 1, 2, . . . , m− 1f g, i = 1, 2, . . . , mf g are applied to the FLC. As we can
see from Fig. 6 only the following 2m rules:

IF x1 is A1, s1 AND x2 is A2, s2 AND . . . xm is Am, sm THEN u is Vs1, s2, ..., sm

IF x1 is A1, s1 AND x2 is A2, s2 AND . . . xm is Am, sm +1 THEN u is Vs1, s2, ..., sm +1

. . .

IF x1 is A1, s1 + 1 AND x2 is A2, s2 + 1 AND . . . xm is Am, sm +1 THEN u is Vs1 + 1, s2 + 1, ..., sm +1

will fire because their antecedents have nonzero membership values.
Following Fig. 6 and assuming a product AND operator the degrees of firing of

those rules are:

τs1, s2, ..., sm =
x1ðnÞ− a1, s1ð Þ x2ðnÞ− a2, s2ð Þ . . . xmðnÞ− am, smð Þ

a1, s1 + 1 − a1, s1ð Þ a2, s2 + 1 − a2, s2ð Þ . . . am, sm +1 − am, smð Þ
τs1, s2, ..., sm +1 =

x1ðnÞ− a1, s1ð Þ x2ðnÞ− a2, s2ð Þ . . . xmðnÞ− am, sm +1ð Þ
a1, s1 + 1 − a1, s1ð Þ a2, s2 + 1 − a2, s2ð Þ . . . am, sm +1 − am, smð Þ

. . .

τs1 + 1, s2 + 1, ..., sm +1 =
x1ðnÞ− a1, s1 + 1ð Þ x2ðnÞ− a2, s2 + 1ð Þ . . . xmðnÞ− am, sm +1ð Þ
a1, s1 + 1 − a1, s1ð Þ a2, s2 + 1 − a2, s2ð Þ . . . am, sm +1 − am, smð Þ

By applying the defuzzification law (3) we obtain for u(n) an expression that is
identical to that for the output of the LUT (10):
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uðnÞ= x1ðnÞ− a1, s1ð Þ x2ðnÞ− a2, s2ð Þ . . . xmðnÞ− am, smð Þ
ða1, s1 + 1 − a1, s1Þða2, s2 + 1 − a2, s2Þ . . . ðam, sm +1 − am, smÞ

Vs1, s2, ..., sm

+
x1ðnÞ− a1, s1ð Þ x2ðnÞ− a2, s2ð Þ . . . xmðnÞ− am, sm +1ð Þ

ða1, s1 + 1 − a1, s1Þða2, s2 + 1 − a2, s2Þ . . . ðam, sm +1 − am, smÞ
Vs1, s2, ..., sm +1 + . . .

+
x1ðnÞ− a1, s1 + 1ð Þ x2ðnÞ− a2, s2 + 1ð Þ . . . xmðnÞ− am, sm +1ð Þ
ða1, s1 + 1 − a1, s1Þða2, s2 + 1 − a2, s2Þ . . . ðam, sm +1 − am, smÞ

Vs1 + 1, s2 + 1, ..., sm +1

We point out that the properties of the FLCs with the normal triangular mem-
bership functions have been studied by a number of researchers. Most of their work
have been focused on analyzing the similarity between the FLCs and the linear PI
and PD controllers, demonstrating that for special values of the consequents the
FLCs are identical to the nonlinear PI or PD controllers (e.g., [14, 16, 28]). A more
detailed recent studies of the properties of the fuzzy models with the normal
membership functions from the perspective of bilinear systems by Sugeno and
Taniguchi [29] were partially the inspiration for our work.

In the next section we’ll show the input-output relationship of the LUT con-
trollers and how to determine the local stability of the LUT control systems—a
topic the has received very little, if any, attention although a great deal of practical
control applications are based on such LUT controllers.

3 Analytical Structure and Local Stability of the LUT
Control Systems

We will first focus on the analytical structure of the fuzzy controllers with two input
variables and will then generalize the result to the m-dimensional LTU controllers.
By simplifying (9) we obtain the analytical structure of the 2D LUT controllers,
which is also the 2D FLCs, as follows:

uTðnÞ= uðnÞ= a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

a1, s+1 − x1ðnÞ
a1, s+1 − a1, s

Vs, t +
a2, t+1 − x2ðnÞ
a2, t+1 − a2, t

x1ðnÞ− a1, s
a1, s+1 − a1, s

Vs+1, t +
x2 − a2, t

a2, t+1 − a2, t

a1, s+1 − x1ðnÞ
a1, s+1 − a1, s

Vs, t+1

+
x2 − a2, t

a2, t+1 − a2, t

x1ðnÞ− a1, s
a1, s+1 − a1, s

Vs+1, t+1

= αx1ðnÞ+ βx2ðnÞ+ γx1ðnÞx2ðnÞ+ δ

ð11Þ

where α, β, γ, and δ are constants:
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α= a2, t+1Vs+1, t − a2, t+1Vs, t + a2, tVs, t+1 − a2, tVs+1, t+1ð Þ K̸
β= a1, s+1Vs, t+1 − a1, s+1Vs, t + a1, sVs+1, t − a1, sVs+1, t+1ð Þ K̸
γ = Vs, t −Vs+1, t −Vs, t+1 +Vs+1, t+1ð Þ K̸
δ= a1, s+1a2, t+1Vs, t + a1, sa2, tVs+1, t+1 − a1, sa2, t+1Vs+1, t − a1, s+1a2, tVs, t+1ð Þ K̸
K = ða2, t+1 − a2, tÞða1, s+1 − a1, sÞ

That is, the LUT controllers are nonlinear controllers with constant offset term
(δ).

Likewise, simplifying (10), one can attain the nonlinear analytical structure of
the rD LUT controllers, or equivalently that of the rD FLCs:

uTðnÞ= uðnÞ= ∑
di ≥ 0

βd1...dr ∏
r

i=1
xdii

� �

, ∑
r

i=1
di ≤ r ð12Þ

where the values of the constants βd1...dr , is determined by all the constant
parameters in (10). For concise presentation, we omit their complicated general
relations with these parameters. For any specific LUT controller, especially those
involving only a handful number of input variables which is mostly the case in
practice, βd1....dr , can be easily determined. For instance, when there are two input
variables, based on (11), it is obvious that β10 = α, β01 = β, β11 = γ, and β00 = δ.

We now turn our attention to the local stability determination of the rD LUT
controller regulating a nonlinear dynamic system. Without loss of generality,
assume that when the system to be controlled is at the equilibrium point of our
interest, x1ðnÞ= . . . .. = xrðnÞ=0. We want to study the condition for the nonlinear
rD LUT control system to be stable at least in the area around the equilibrium point.
If both the system and the LUT controller are linearizable at the equilibrium point,
then the system stability at that point can be decided by applying Lyapunov’s
linearization method [30] to the linearized LUT controller and the linearized sys-
tem. Thus, we obtain the following result:

Theorem 2 Suppose that the rD LUT controller is used to control a nonlinear
system that is linearizable at the equilibrium point. The control system is locally
stable (or unstable) at the equilibrium point if and only if the linearized system
involving the LUT controller linearized at the equilibrium point

uTðnÞ= β10⋯0x1ðnÞ+ β010⋯0x2ðnÞ+⋯+ β0⋯0rxrðnÞ

is strictly stable (or unstable).

Proof First, notice that because (12) is a multi-variable polynomial, it is always
linearizable at an equilibrium point no matter where it is. Now suppose that the
equilibrium point is x1ðnÞ= . . . .. = xrðnÞ=0. Linearization of (12) is achieved if all
the cross-product terms of the variables are dropped because xiðnÞ≈ 0 for all the
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variables and hence the higher order cross-product terms are much smaller than
xiðnÞ. This results in

uTðnÞ= β10⋯0x1ðnÞ+ β010⋯0x2ðnÞ+⋯+ β0⋯0rxrðnÞ+ β0⋯0

Since the constant term β0...0 does not affect the system stability, it is removed
from the stability study. The conclusion naturally follows by using Lyapunov’s
linearization method. The method states that if the nonlinear control system is
continuously differentiable at the equilibrium point and the linearized system is
strictly stable (or unstable) at the equilibrium point, then the equilibrium point is
locally stable (or unstable) for the original nonlinear system. Q.E.D The lineariz-
ability test must be met for the system to be controlled as it is the precondition for
the theorem. A test failure only means inapplicability of the theorem; it does not
imply system instability. Theorem 2 offers some practically important advantages.
First, it is a necessary and sufficient condition. Unlike sufficient conditions or
necessary conditions, it is not conservative and is the “tightest” possible stability
condition. Second, the theorem can be used not only when the system model is
available, but also when it is unavailable but is known linearizable at the equilib-
rium point (most physical systems are linearizable).

4 Conclusion

In this chapter we expanded our previous work on the relationship between the
LUT controllers and one special type of fuzzy controller. We showed that the
multidimensional LUT’s are closely related to the fuzzy models and can be con-
sidered and analyzed, in a broad sense, a special class of fuzzy models.
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FuzzyLP: An R Package for Solving Fuzzy
Linear Programming Problems

Pablo J. Villacorta, Carlos A. Rabelo,
David A. Pelta and José Luis Verdegay

Abstract An inherent limitation of Linear Programming is the need to know pre-

cisely all the conditions concerning the problem being modeled. This is not always

possible as there exist uncertainty situations which require a more suitable approach.

Fuzzy Linear Programming allows working with imprecise data and constraints,

leading to more realistic models. Despite being a consolidated field with more than

30 years of existence, almost no software has been developed for public use that

solves fuzzy linear programming problems. Here we present an open-source R pack-

age to deal with fuzzy constraints, fuzzy costs and fuzzy coefficients in linear pro-

gramming. The theoretical foundations for solving each type of problem are intro-

duced first, followed by code examples. The package is accompanied by a user man-

ual and can be freely downloaded, employed and extended by any R user.

1 Introduction

Linear Programming (LP) is one of the main branches of Operational Research. It

is composed of optimization models whose objective function and constraints are

linear on the decision variables. Due to their simplicity, they have often been used for

solving a wide variety of problems in sciences and engineering, enabling important

benefits and savings for companies and organizations. Efficient algorithms exist for

this problem, such as simplex, created in 1947 [11].
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One limitation of LP is the requirement to know precisely all the parameters of

the problem. This is sometimes not possible due to risk or uncertainty in some data,

which can be handled using fuzzy numbers. Such situations are very common. Fuzzy

Linear Programming (FLP) [17], as a particular case of the more broad field of Fuzzy

Convex Optimization [30], allows working with imprecision in both the coefficients

and the constraints, yielding more realistic models. We can distinguish three cases:

∙ Problems with fuzzy constraints problems, where some degree of violation of the

constraints is allowed.

∙ Problems with fuzzy costs, where the coefficients of the objective function are

fuzzy.

∙ Problems with fuzzy coefficients, where the coefficients of the constraints are

fuzzy.

although it is usual to find problems that combine more than one of these.

Consider the following motivating examples. In [5], the distribution of frozen

food along a network, which could be solved with a linear program in case all the

parameter were precisely known, is approached as an FLP problem with fuzzy con-

straints. The reason is that time-related parameters such as the time needed by the

refrigerated truck to move between locations, the time the truck doors remain open

when unloading, or the time windows imposed by the clients are not precisely known,

hence the constraints associated to these uncertain quantities should be treated as soft

constraints. In [7], the main aim is to design a diet which enables an animal of certain

characteristics to achieve certain level of daily weight gain. Parameters involved in

the problem, such as the exact amount of each type of food owned by the farmer,

or the amount eaten by each animal are not known precisely by the farmer since

the livestock is treated as a whole. The constraints on the maximum quantities of

each nutrient each animal should eat are fuzzy for the same reason, and also because

some tolerance is permitted if it leads to cheaper diets. Finally, in [23], the problem

of supply chain planning is tackled via a fuzzy MILP approach considering that, in

a real scenario, quantities such as the costs corresponding to idleness, raw material

acquisition, inventory holding, demand backlog and transport cannot be measured

easily since they imply human perception for their estimation, hence they are mod-

eled using fuzzy numbers. The same applies to the production time, the production

capacity, and some others.

A list of applications of FLP can be found in [26]; we summarize some of them

below.

∙ Agricultural economy: water usage and water scheduling in agriculture, diet prob-

lems, optimization of farms structure, allocation of regional resources.

∙ Banking: assessing financial assets, portfolio problems, investment.

∙ Environment: regulation of air pollution, energy production models.

∙ Manufacturing: aggregated production scheduling, machine optimization, optimal

allocation for metal manufacturing, optimal system design, raw oil processing.

∙ Personnel management and coordination.

∙ Transportation problems, track routing problems.
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Further examples include industrial production planning [35], optimal water alloca-

tion with environmental constraints [34], optimal cattle diets [7], supply chain man-

agement under uncertainty [23], optimization of football team resources to maximize

performance [6], and energy management [29], just to cite a few.

Although a very large number of approaches can be found in the literature, soft-

ware solutions are scarce. As highlighted in [29], researchers usually focus on toy

examples to demonstrate their novel mathematical solution methods. In [29], a pro-

posal on a fuzzy version of GAMS [28], a popular algebraic modeling language for

crisp mathematical programming, is briefly outlined but no further development was

done. Apart from this, there exist (a) a non-general software aimed at solving a con-

crete problem, such as SACRA [8] for cattle diet optimization, and (b) a decision

support system, called PROBO [9], written in Pascal which is difficult to integrate

with current software environments.

This contribution is aimed at partially filling this gap by presenting a ready-to-use

implementation in a modern language so that existing FLP methods can be used by

the R community without much effort.
1

At the same time, we hope our work will

contribute to further software developments in this direction to make fuzzy mathe-

matical programming models in general readily available for researchers and practi-

tioners from other areas, spreading this methodology beyond the fuzzy community.

The remainder of the present work is structured as follows. Section 2 provides

background on some key concepts concerning fuzzy numbers, although the reader

is assumed already familiar with the foundations of fuzzy sets. Section 3 describes

the mathematical models implemented in our package, along with fragments of R

code showing their corresponding implementation and usage. Section 4 is devoted

to conclusions and further work.

A Note on R
The R programming language [25, 37] is oriented to data manipulation, data analysis

and graphics. It has its origin in the S and S-Plus languages. Its modern version

was established in 1988 and is basically an open-source implementation of the S

language. The website of the R project
2

is the main information source and collects

extensive documentation, both official and contributed. R is similar to MATLAB
Ⓡ

in

that it provides many operators for doing computations with vectors and matrices in

a seamless way, as well as a large collection of built-in mathematical and statistical

functions for computing with data. As happens with other mathematical languages

and environments, it can be used either interactively from a console, or by running

R scripts which implement a more elaborated workflow.

Possibly the two features which have contributed most to the fast adoption of R are

the following. First, it is open-source, hence the users can access the source code of

all R functionality including the built-in core functions. Second, it can be extended

by using packages. A package is a collection of functions, data structures such as

classes (as R is object-oriented) and data gathered together to accomplish a concrete

1
FuzzyLP can be downloaded from http://cran.r-project.org/package=FuzzyLP.

2
http://www.r-project.org.

http://cran.r-project.org/package=FuzzyLP
http://www.r-project.org
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task. A central repository called CRAN
3

(Comprehensive R Archive Network) stores

all packages contributed by R users. When one develops a package along with the

necessary documentation, it can be submitted to CRAN after passing some minimal

quality and usability standards. From that moment, anyone can easily download and

use it in his/her own programs, as well as access the package source code and modify

or extend it in any way. As a result, a fast dissemination of novel, highly special-

ized methods implemented directly by their authors is achieved. In the long run, this

practice, known as reproducible research, allows for a faster advancement in many

research areas as new approaches are built on top of (and can be easily compared

with) existing proposals that are readily available. As of August 2016 there are more

than 8700 contributed R packages on CRAN, including FuzzyLP. The packages are

aimed at either implementing statistical methods, giving access to data or hardware,

or serving as a complement to textbooks.

Two contributed packages have been used in implementing our FuzzyLP package:

∙ The package FuzzyNumbers [18] provides classes and methods for working with

fuzzy numbers. More precisely, it allows representing generic fuzzy numbers as

well as some particular types (triangular, trapezoidal, piecewise linear). It offers

several defuzzification functions as well as functions to approximate general fuzzy

numbers using piecewise linear fuzzy numbers. Basic arithmetic can also be done

with fuzzy numbers. Finally, it also has plotting facilities. According to the author,

future versions may include random fuzzy number generation, aggregation and

sorting.

∙ Package ROI (R Optimization Infrastructure [33]). Since FLP ultimately relies on

crisp LP solving algorithms, this package has been used to accomplish such task.

A large number of optimization packages are available in R; see the R Task View

on Optimization.
4

Among them, ROI is an attempt to provide a unified interface for

any optimization problem. For this reason, along with the possibility that future

versions of our FuzzyLP package need to deal with other non-linear fuzzy opti-

mization problems which eventually rely on more complex crisp solvers that ROI

already offers, we have chosen this package.

2 Fuzzy Numbers

We assume the reader is familiar with the basics of fuzzy sets and fuzzy numbers,

and therefore we only review those concepts that are highly relevant for our later

exposition. The interested reader may refer to [15, 22] for an introduction to the

topic.

3
http://cran.r-project.org/web/packages/available_packages_by_name.html.

4
http://cran.r-project.org/web/views/Optimization.html.

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/views/Optimization.html
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Definition 1 A fuzzy number [14] Ã is a convex and normalized subset of the real

line such that

(i) ∀𝛼 ∈ [0, 1], Ã
𝛼
= {x ∈ ℝ|𝜇Ã ≥ 𝛼} (the 𝛼-cuts of Ã) is a convex set.

(ii) 𝜇Ã is upper semi-continuous

(iii) Supp(Ã) = {x ∈ ℝ|𝜇Ã > 0} is a bounded set on ℝ.

Definition 2 Given r < u ≤ U < R ∈ ℝ, a Trapezoidal Fuzzy Number (TrFN) ũ =
(r, u,U,R) is defined as:

𝜇ũ(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x−r
u−r

if r ≤ x ≤ u
1 if u ≤ x ≤ U
R−x
R−U

if U ≤ x ≤ R
0 otherwise

Proposition 1 (Linear combination of TrFNs [31]) Let B̃ =
∑n

j=1 ũj ⋅ aj where aj ∈
ℝ, aj ≥ 0, j = 1,… , n, and let ũj, j = 1,… , n be TrFNs defined by ũj = (rj, uj,Uj,Rj).
Then the membership function of B̃ is

𝜇B̃(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x−𝐫𝐚
𝐮𝐚−𝐫𝐚 if 𝐫𝐚 ≤ x ≤ 𝐮𝐚
1 if 𝐮𝐚 ≤ x ≤ 𝐔𝐚
𝐑𝐚−x
𝐑𝐚−𝐔𝐚 if 𝐔𝐚 ≤ x ≤ 𝐑𝐚
0 otherwise

where 𝐫 = (r1,… , rn), 𝐮 = (u1,… , un), 𝐔 = (U1,… ,Un) and 𝐑 = (R1,… ,Rn). In
other words, B̃ =

∑n
j=1 ũj ⋅ aj = (𝐫𝐚,𝐮𝐚,𝐔𝐚,𝐑𝐚).

2.1 Operations with Fuzzy Numbers

In the remainder of this work, only TrFNs will be used exclusively. For this rea-

son and due to space constraints, we only review operations with TrFNs. It is well

known that the product and quotient operations with TrFNs do not yield another

TrFN. However, only addition, subtraction and product by a scalar are needed for

the FLP algorithms implemented here. Hence we focus on those operations.

Proposition 2 Let x̃i = (ri, ui,Ui,Ri), i = 1, 2, two TrFNs. Then

(i) x̃1 + x̃2 = (r1 + r2, u1 + u2,U1 + U2,R1 + R2)
(ii) x̃1 − x̃2 = (r1 − R2, u1 − U2,U1 − u2,R1 − r2)
(iii) If a ∈ ℝ+, a ⋅ x̃1 = a ⋅ (r1, u1,U1,R1) = (a ⋅ r1, a ⋅ u1, a ⋅ U1, a ⋅ R1)
(iv) If a ∈ ℝ−, a ⋅ x̃1 = a ⋅ (r1, u1,U1,R1) = (a ⋅ R1, a ⋅ U1, a ⋅ u1, a ⋅ r1).
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2.2 Comparison of Fuzzy Numbers

As will be explained later, FLP ultimately requires comparing fuzzy numbers. This

is a broad topic by itself, and a lot of proposals have been published; see for instance

[16, 24]. Here the method based on ordering functions has been applied, although

the code is prepared for other customized comparison functions implemented by the

user that can be passed as an argument.

Ordering Functions

Let  (ℝ) denote the set of fuzzy numbers on ℝ. An ordering (or defuzzification)

function is an application g ∶  (ℝ) → ℝ so that fuzzy numbers are sorted accord-

ing to their corresponding defuzzified real numbers. Therefore, given Ã, B̃ ∈  (ℝ),
we consider Ã <g B̃ ⇔ g(Ã) < g(B̃); Ã >g B̃ ⇔ g(Ã) > g(B̃); and Ã =g B̃ ⇔ g(Ã) =
g(B̃). Function g is called a linear ordering function if (a) ∀ Ã, B̃ ∈  (ℝ), g(Ã + B̃) =
g(Ã) + g(B̃), and (b) ∀ r ∈ ℝ, r > 0 and ∀ Ã ∈  (ℝ), g(r ⋅ Ã) = r ⋅ g(Ã).

The following linear ordering functions have been implemented:

1. First Yager’s index [39]:

g(ũ) =
∫S h(z)𝜇ũ(z)dz
∫S 𝜇ũ(z)dz

(1)

where S = supp(ũ) and h(z) is a measure of importance of each value z. Taking

h(z) = z and assuming TrFNs, this simplifies to

g(ũ) = 1
3
(U2 − u2) + (R2 − r2) + (RU − ru)

(U − u) + (R − r)
(2)

2. Third Yager’s index [39]:

g(ũ) =
∫

1

0
M(ũ

𝛼
)d𝛼 (3)

where ũ
𝛼

is an 𝛼-cut of ũ and M(ũ
𝛼
) the mean value of the elements in ũ

𝛼
. When

using TrFNs the above expression simplifies to

g(ũ) = U + u + R + r
4

(4)

3. Adamo relation [1]. For a fixed 𝛼 ∈ [0, 1]:

g
𝛼
(ũ) = max{x ∕ 𝜇ũ(x) ≥ 𝛼} (5)
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which for TrFNs simplifies to

g
𝛼
(ũ) = R − 𝛼(R − U) (6)

4. Average relation [19]. For TrFNs:

g𝜆t (ũ) = u − u − r
t + 1

+ 𝜆

(
U − u + (R − r) − (U − u)

t + 1

)
, 𝜆 ∈ [0, 1], t ≥ 0 (7)

where 𝜆 represents the degree of optimism to be selected by the decision-maker

(larger 𝜆 corresponds to a more optimist decision-maker).

3 Fuzzy Linear Programming

A crisp LP problem consists in maximizing/minimizing a function subject to con-

straints over the variables:

max z = 𝐜𝐱
s.t. ∶ 𝐀𝐱 ≤ 𝐛

𝐱 ≥ 𝟎

where 𝐀 ∈ mxn(ℝ) is a matrix of real numbers, 𝐜 ∈ ℝn
is a cost vector and 𝐛 ∈ ℝm

a vector.

In the above formulation, all coefficients are assumed to be perfectly known. How-

ever, this is not the case in many real cases of application. There may be uncertainty

concerning some coefficients, or they may come from an (approximate) estimation by

a human expert/decision maker who will possibly be more confident when express-

ing her knowledge in linguistic terms of the natural language [40]. Very often, when

a person is asked to express her expertise in strictly numerical values, he/she feels

like being forced to commit an error, hence the use of natural language, supported

by fuzzy numbers to do computations, might be more suitable. Optimization prob-

lems with fuzzy quantities were first presented in [3]. Key concepts such as fuzzy

constraint and fuzzy goal, which we will explain in detail later in this section, were

conceived there.

In the next sections we explain in detail the three FLP models and several solution

methods implemented in our package.
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3.1 Fuzzy Constraints

We consider the case where the decision maker can accept a violation of the con-

straints up to a certain degree he/she establishes. This can be formalized for each

constraint as

aix ≤f bi, i = 1,… ,m

and can be modeled using a membership function

𝜇i ∶ ℝ → [0, 1], 𝜇i(x) =
⎧
⎪
⎨
⎪
⎩

1 if x ≤ bi
fi(x) if bi ≤ x ≤ bi + ti
0 if x ≥ bi + ti

(8)

where the fi are continuous, non-increasing functions. Membership functions 𝜇i cap-

ture the fact that the decision maker tolerates a certain degree of violation of each

constraint, up to a value of bi + ti. For each x ∈ ℝ, 𝜇i(x) stands for the degree of

fulfillment of the i-th constraint for that x. The problem to be solved is

max z = 𝐜𝐱
s.t. ∶ 𝐀𝐱 ≤f 𝐛

𝐱 ≥ 𝟎

To illustrate the use of the functions implemented to solve this type of problem, we

will use the fuzzy constraints problem shown on the left, which can be transformed

into the problem on the right if the membership functions are assumed linear with

maximum tolerances of 5 and 6.

max z = 3x1 + x2 max z = 3x1 + x2
s.t. ∶ 1.875x1 − 1.5x2 ≤f 4 ⇒ s.t. ∶ 1.875x1 − 1.5x2 ≤ 4 + 5(1 − 𝛼)
4.75x1 + 2.125x2 ≤f 14.5 ⇒ 4.75x1 + 2.125x2 ≤ 14.5 + 6(1 − 𝛼)

xi ≥ 0, i = 1, 2, 3 𝛼i ≥ 0, i = 1, 2, 3

The following R commands create the necessary objects:

> objective<-c(3, 1)
> A<-matrix(c(1.875, -1.5, 4.75, 2.125), nrow = 2, byrow = T)
> dir = c("<=", "<=") # direction of the inequalities
> b<-c(4, 14.5)
> t<-c(5, 6) # tolerances

Different solutions have been proposed. The solution given in [36] generalizes

those given before by [32, 41], which are obtained as particular cases depending on
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the value of a parameter. We implement four solution methods, whose names begin

with FCLP for Fuzzy Constraints Linear Program

Method 1: Verdegay’s Approach
In [36] it was proved, via the representation theorem, that the problem can be solved

by solving the following Parametric Linear Programming problem:

max z = 𝐜𝐱
s.t. ∶ 𝐀𝐱 ≤ 𝐠(𝛼)

𝐱 ≥ 𝟎, 𝛼 ∈ [0, 1]

where 𝐠(𝛼) = (g1(𝛼),… , gm(𝛼)) ∈ ℝm
, with gi = f −1i .

If the fi are linear, the problem simplifies to

max z = 𝐜𝐱
s.t. ∶ 𝐀𝐱 ≤ 𝐛 + 𝐭(1 − 𝛼)

𝐱 ≥ 𝟎, 𝛼 ∈ [0, 1]

with 𝐭 = (t1,… , tm) ∈ ℝm
.

It has been proved [12] that by solving a model with linear fi, it is possible to

obtain the solution to the same fuzzy constraints problem as if it had been modeled

with non-linear functions, hence no generality is lost when assuming linear functions

for the fuzzy constraints.

Two R functions implement this approach in our package:

∙ FCLP.fixedBeta which, for a fixed value of 𝛼 (called 𝛽 in our function), solves

the model. In the example below, 𝛽 = 0.5.

> FCLP.fixedBeta(objective, A, dir, b, t, beta=0.5, T, T)

[1] "Solution is optimal."
beta x1 x2 objective

[1,] 0.5 3.606188 0.1744023 10.99297

∙ FCLP.sampledBeta samples 𝛼 in the interval [0, 1] and solves the model for every

sampled value. In the example below we set a step size of 0.25 for sampling 𝛼,

which yields five 𝛼-cuts, for 𝛼 = {0, 0.25, 0.5, 0.75, 1}:

> FCLP.sampledBeta(objective, A, dir, b, t, T, min=0,
+ max=1, step=0.25)

beta x1 x2 objective
[1,] 0.00 4.315789 0.0000000 12.947368
[2,] 0.25 4.000000 0.0000000 12.000000
[3,] 0.50 3.606188 0.1744023 10.992968
[4,] 0.75 3.164557 0.4556962 9.949367
[5,] 1.00 2.722925 0.7369902 8.905767
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Method 2: Zimmermann’s Approach

In [41, 42] the author discusses the case in which the decision maker is satisfied

with a solution that achieves a goal z0 ∈ ℝ for the objective function that, despite

not being optimal, minimizes the degree of violation of the constraints. The origi-

nal formulation is shown on the left. This problem is equivalent to the one on the

right, where an additional fuzzy linear constraint has been added. Please notice the

new constraint can be thought as embedded in the general expression of the linear

constraints, 𝐀𝐱 ≤𝐟 𝐛 if we assume that 𝐀 and 𝐛 include an extra row for −𝐜 and an

element −z0 respectively.

max 𝐜𝐱 ≥f z0 max z = 𝐜𝐱
s.t. ∶ 𝐀𝐱 ≤f 𝐛 ⇒ s.t. ∶ 𝐜𝐱 ≥f z0

𝐱 ≥ 𝟎 𝐀𝐱 ≤f 𝐛, 𝐱 ≥ 𝟎

When the membership functions of the constraints and the objective are linear the

above problem simplifies to

max 𝛼

s.t. ∶ 𝐜𝐱 ≥ z0 − t0(1 − 𝛼)
𝐀𝐱 ≤ 𝐛 + 𝐭(1 − 𝛼)
𝐱 ≥ 𝟎, 𝛼 ∈ [0, 1]

Two R functions implement this approach:

∙ FCLP.classicObjective for the case that the goal z0 is crisp.

Goal attainable (z0 = 11):

> FCLP.classicObjective(objective, A, dir, b, t, z0=11, TRUE)

Bound reached, FCLP.fixedBeta with beta = 0.4983154 may
obtain better results.

beta x1 x2 objective
[1,] 0.4983154 3.609164 0.1725067 11

Goal not attainable (z0 = 14):

> FCLP.classicObjective(objective, A, dir, b, t, z0=14, TRUE)

[1] "Minimal bound not reached."
NULL



FuzzyLP: An R Package for Solving Fuzzy Linear Programming Problems 219

∙ FCLP.fuzzyObjective for a goal (z0 = 14) on which we admit certain tolerance

(t0 = 2).

> FCLP.fuzzyObjective(objective, A, dir, b, t, z0=14, t0=2, T)

Bound reached, FCLP.fixedBeta with beta = 0.1636364 may obtain
better results.

beta x1 x2 objective
[1,] 0.1636364 4.109091 0 12.32727

Actually FCLP.fuzzyObjective generalizes FCLP.classic Objective. The latter

simply calls the former setting the tolerance t0 = 0.

Method 3: Werners’s Approach

Following Zimmermann’s proposal, it may occur that the decision maker does not

want to provide the goal or the tolerance, or does not have an estimate. Werners [38]

proposes two extreme points:

Z0 = inf{max
𝐱∈X

𝐜𝐱}, Z1 = sup{max
𝐱∈X

𝐜𝐱} (9)

with X = {𝐱 ∈ ℝn ∕ 𝐀𝐱 ≤f 𝐛, 𝐱 ≥ 𝟎}. Taking z0 = Z0
and t0 = Z1 − Z0

and assum-

ing linear functions for the constraints and the objective, the new problem to be

solved can be formulated as

max 𝛼

s.t. ∶ 𝐜𝐱 ≥ Z0 − (Z1 − Z0)(1 − 𝛼)
𝐀𝐱 ≤ 𝐛 + 𝐭(1 − 𝛼)
𝐱 ≥ 𝟎, 𝛼 ∈ [0, 1]

which is a particularization of Zimmermann’s formulation with the aforementioned

z0 and t0.

This method is implemented by function FCLP.fuzzyUndefined Objective, in

which the goal and tolerance are estimated and then, FCLP. fuzzyObjective is

called:

> FCLP.fuzzyUndefinedObjective(objective, A, dir, b, t, TRUE)

[1] "Using bound =" "12.9473684210526"
[1] "Using tolerance =" "4.04160189503294"

beta x1 x2 objective
[1,] 0.5080818 3.591912 0.1834957 10.95923
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Method 4: Tanaka’s Approach

Tanaka [32] proposed normalizing the objective function z = 𝐜𝐱. Let M be the opti-

mum when the problem is solved considering crisp constraints. Then

f ∶ ℝn → [0, 1], f (x) =
{

1 if 𝐜𝐱 > M
𝐜𝐱
M

if 𝐜𝐱 ≤ M

The new problem to be solved is

max 𝛼

s.t. ∶ 𝐜𝐱
M

≥ 𝛼

𝐀𝐱 ≤ 𝐛 + 𝐭(1 − 𝛼)
𝐱 ≥ 𝟎, 𝛼 ∈ [0, 1]

For implementation purposes, we will do the following modification:

𝐜𝐱
M

≥ 𝛼 ⇔ 𝐜𝐱 ≥ M𝛼 = M −M(1 − 𝛼)

Therefore we replace the first constraint above by 𝐜𝐱 ≥ M −M(1 − 𝛼).
This approach is implemented in function FCLP.fuzzyUndefinedNorm Objective.

It first computes M and then calls FCLP.fuzzyObjective with z0 = t0 = M.

> FCLP.fuzzyUndefinedNormObjective(objective, A, dir, b, t, TRUE)

[1] "Using bound =" "12.9473684210526"
[1] "Using tolerance =" "12.9473684210526"

beta x1 x2 objective
[1,] 0.7639495 3.139915 0.4713919 9.891136

3.2 Fuzzy Costs

FLP with fuzzy costs pose uncertainty in the coefficients of the objective function,

modeled as fuzzy numbers. Such problems can be stated as:

max z = �̃�x
s.t. ∶ 𝐀𝐱 ≤ 𝐛

𝐱 ≥ 𝟎
(10)

where 𝐀 ∈ mxn(ℝ) is a real matrix, �̃� is an n-dimensional vector of fuzzy numbers,

and 𝐛 ∈ ℝm
is a real vector.
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In [10] the costs membership functions are assumed to have the form:

𝜇j ∶ ℝ → [0, 1], 𝜇j(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 if x ≤ rj or x ≥ Rj
hj(x) if rj ≤ x ≤ cj
gj(x) if cj ≤ x ≤ Rj
1 if cj ≤ x ≤ cj

with hj and gj continuous, hj strictly increasing, gj strictly decreasing, and such that

functions 𝜇j are continuous.

In order to demonstrate the functions of our package dealing with fuzzy costs, we

will use the following example with TrFNs [10, pp. 94, 125]:

max z = (0, 2, 2, 3)x1 + (1, 3, 4, 5)x2
s.t. ∶ x1 + 3x2 ≤ 6

x1 + x2 ≤ 4
xi ≥ 0, i = 1, 2

The following R commands create the necessary objects:

> objective<-c(TrapezoidalFuzzyNumber(0,2,2,3), # fuzzy costs
+ TrapezoidalFuzzyNumber(1,3,4,5)) # vector
> A<-matrix(c(1, 3, 1, 1), nrow = 2, byrow=T)
> dir = c("<=", "<=") # direction of the inequalities
> b<-c(6, 4)

Four approaches will be presented: three of them are based on the Representation

Theorem and the last one, on the comparison of fuzzy numbers.

Method 1: Multi-objective Approach

The results of [13, 36] together with the definition of TrFNs lead us to transform

the above problem in the following parametric linear programming problem. Let

X = {𝐱 ∈ ℝn ∕ 𝐀𝐱 ≤ 𝐛, 𝐱 ≥ 𝟎}. Then

max z = 𝐜𝐱
s.t. ∶ 𝐱 ∈ X

𝚽(1 − 𝛼) ≤ 𝐜 ≤ 𝚿(1 − 𝛼)
𝛼 ∈ [0, 1]

(11)

where 𝚽 = (h−11 ,… , h−1n ) and 𝚿 = (g−11 ,… , g−1n ). Symbols hj and gj take part in the

definition of the membership functions 𝜇j of every fuzzy cost c̃j.
If we fix 𝛼 and solve the above problem with it, the solution set is the 𝛼-cut of the

solution fuzzy number, which would be completely defined by all its 𝛼-cuts as stated

by the Representation Theorem. If we define 𝛤 (1 − 𝛼) = {𝐜 ∈ ℝn ∕ ci ∈ [𝛷i(1 −
𝛼), 𝛹i(1 − 𝛼)]}, the new problem constitutes a multi-objective linear programming
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problem with one objective for each 𝐜 ∈ 𝛤 (1 − 𝛼). According to [4] the problem is

equivalent to the following:

max {𝐜1𝐱,… , 𝐜2n𝐱}
s.t. ∶ 𝐀𝐱 ≤ 𝐛

𝐱 ≥ 𝟎
𝐜k ∈ E(1 − 𝛼), k = 1, 2,… , 2n
𝛼 ∈ [0, 1]

where E(1 − 𝛼) ⊆ 𝛤 (1 − 𝛼) is the subset of those vectors whose components are the

upper bounds of cj, i.e., the Cartesian product:

E(1 − 𝛼) =
n∏

i=1
{𝛷i(1 − 𝛼), 𝛹i(1 − 𝛼)}

This problem can be solved by any multi-objective linear programming technique.

In our code, the objectives have been aggregated using a weighting vector with the

same weight for every objective. The objective function thus simplifies to max 𝐜1𝐱 +
⋯ + 𝐜2n𝐱 subject to the constraints stated above.

This approach is implemented by function FOLP.multiObj. Since the problem

has to be solved for every 𝛼 ∈ [0, 1], the function samples 𝛼 in [0, 1] according to a

user-specified step, and solves for each 𝛼.

> sal<-FOLP.multiObj(objective, A, dir, b, maximum=TRUE, min=0,
+ max=1, step=0.25)
> sal

alpha x1 x2 objective
[1,] 0 3 1 ?
[2,] 0.25 3 1 ?
[3,] 0.5 3 1 ?
[4,] 0.75 3 1 ?
[5,] 1 3 1 ?

> sal[,"objective"] # Display the objective column properly

[[1]]
Trapezoidal fuzzy number with:

support=[1,14],
core=[9,10].

... # output omitted for elements 2, 3, 4 and 5
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Method 2: Interval Arithmetic Approach

Expression (11) can be viewed as a linear programming problem in which every

coefficient of the objective function takes values in an interval. Therefore, the prob-

lem can be solved resorting to interval arithmetic and relations ≤l, ≤c, ≤lc introduced

in [2, 21].

Definition 3 LetA = [al, au] =< ac, aw > andB = [bl, bu] =< bc, bw > be two inter-

vals, where the < ·, · > are based on the center c and width w.

∙ A ≤l B if al ≤ bl and au ≤ bu
∙ A ≤c B if ac ≤ bc and aw ≥ bw.

∙ A ≤lc B if al ≤ bl and ac ≤ bc

∙ A <l B if A ≤l B and A ≠ B
∙ A <c B if A ≤c B and A ≠ B
∙ A <lc B if A ≤lc B and A ≠ B

For every 𝐱 ∈ X, 𝛼 ∈ [0, 1], define the intervals

Ij(𝛼) = [𝛷j(1 − 𝛼), 𝛹j(1 − 𝛼)] and z(𝐱, 𝛼) =
n∑

j=1
xjIj(𝛼)

For each 𝛼, a solution 𝐱∗ to the problem is one whose associated interval z(𝐱∗, 𝛼) is

non-dominated, i.e. 𝐱∗ ∈ X such that ∄𝐱′ ∈ X ∶ z(𝐱∗, 𝛼) ≤lc z(𝐱′, 𝛼). Since 𝐱∗ does

not have to be unique, we can define the set

S(1 − 𝛼) = {𝐱 ∈ X ∕ ∄𝐱′ ∈ X ∶ z(𝐱, 𝛼) ≤ic z(𝐱′, 𝛼)}

These sets are the 𝛼-cuts of the fuzzy solution which, according to the Representation

Theorem, would yield the solution fuzzy number S̃ =
⋃

𝛼
𝛼S(1 − 𝛼).

For a fixed 𝛼, the problem of finding solutions whose associated intervals are

non-dominated can be formulated as the following bi-objective problem.

max{z(𝛼) = (zi(𝐱, 𝛼), zc(𝐱, 𝛼)) ∶ 𝐱 ∈ X}

According to [20] this problem can be solved using weights. Let 𝛽1, 𝛽2 ∈ [0, 1] ∶
𝛽1 + 𝛽2 = 1. The problem can be reformulated as:

max{z(𝛼) = 𝛽1zi(𝐱, 𝛼) + 𝛽2zc(𝐱, 𝛼) ∶ 𝐱 ∈ X}

This approach is implemented by function FOLP.interv which receives the prob-

lem data and weight 𝛽1 (note 𝛽2 can be automatically computed as 1 - 𝛽1). The func-

tion performs samples 𝛼 in [0, 1] with the user-specified step size. A private function

computes z(𝛼) from the fuzzy coefficients.

> sal<-FOLP.interv(objective, A, dir, b, maximum=TRUE, w1=0.7,
+ min=0, max=1, step=0.25)
> sal
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The structure of this variable is the same as in the previous section.

Method 3: Stratified Piecewise Reduction

In [27] the fuzzy cost problem is approached by modeling the uncertainty of the

coefficients using embedded intervals, each with an associated possibility degree:

c̃j = {[r(k)j ,R(k)
j ] ∕ 𝛼

(k); k = 1,… , p}

For a given 𝛼 ∈ [0, 1], consider the intervals obtained from the 𝛼-cuts of the fuzzy

coefficients. With a slight abuse of notation (and omitting the 𝛼 that has been fixed),

we will write c̃j = [rj,Rj].
Let 𝐫 = (r1,… , rn), 𝐑 = (R1,… ,Rn), and consider the LP problems

max z = 𝐫𝐱 max z = 𝐑𝐱
s.t. ∶ 𝐀𝐱 ≤ 𝐛 s.t. ∶ 𝐀𝐱 ≤ 𝐛

𝐱 ≥ 𝟎 𝐱 ≥ 𝟎

Let 𝐱∗𝐫 and 𝐱∗𝐑 be their respective solutions.

Let z∗𝐫 = 𝐫𝐱∗r and z∗𝐑 = 𝐑𝐱∗𝐑 be the optimal solutions of the objective functions,

and let z′𝐫 = 𝐫𝐱∗𝐑 and z′𝐑 = 𝐑𝐱∗𝐫 . Clearly z∗𝐫 ≥ z′𝐫 and z∗𝐑 ≥ z′𝐑.

The problem can be solved using the auxiliary problem

max 𝜆

s.t. ∶
𝐫𝐱 − z′𝐫
z∗𝐫 − z′𝐫

≥ 𝜆

𝐑𝐱 − z′𝐑
z∗𝐑 − z′𝐑

≥ 𝜆

𝐀𝐱 ≤ 𝐛, 𝐱 ≥ 𝟎, 𝜆 ≥ 0

After solving the above problems for different values of 𝛼, the solution to the original

fuzzy costs problem can be found as the intersection of the solutions of the auxiliary

problems.

Function FOLP.strat computes the values z∗𝐫 , z′𝐫 , z∗𝐑 and z′𝐑 by solving the cor-

responding LP problems, and then solves the original problem. This has to be done

separately for each value of 𝛼, therefore FOLP.strat samples 𝛼 ∈ [0, 1] with a user-

specified step size.

> sal <- FOLP.strat(objective, A, dir, b, maximum=TRUE, min=0,
+ max=0.4, step=0.05)
> sal

alpha x1 x2 lambda objective
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[1,] 0 1.5 1.5 0.5 ?
[2,] 0.05 1.5 1.5 0.5 ?
[3,] 0.1 1.5 1.5 0.5 ?
[4,] 0.15 1.5 1.5 0.5 ?
[5,] 0.2 1.5 1.5 0.5 ?
[6,] 0.25 3 1 1 ?
[7,] 0.3 NA NA NA NA
[8,] 0.35 NA NA NA NA
[9,] 0.4 NA NA NA NA

> sal[,"objective"] # display the objective column properly

[[1]]
Trapezoidal fuzzy number with:

support=[1.5,12],
core=[7.5,9].

... # output omitted for list elements 2 to 9

Method 4: Ordering Functions

The problem (10) can be transformed into a crisp one by using a linear ordering

function g ∶  (ℝ) → ℝ, so that the fuzzy objective function is replaced by max z =
g(c̃1)x1 +⋯ + g(c̃n)xn, subject to the same crisp constraints.

Function FOLP.ordFun implements this approach. It receives the problem data

and a string indicating the ordering function to be used (argument ordf). This can

be one of the four built-in functions, namely "Yager1" for the first Yager’s index

(Eq. 2), "Yager3" for the third (Eq. 4), "Adamo" for the Adamo relation (Eq. 6), and

"Average" for the average index (Eq. 7). Some of them require additional arguments,

as described in detail in the package documentation. If a user-defined custom linear

function is to be used, the string should be "Custom". The custom function is passed

to FOLP.ordFun in the FUN argument. The custom function must accept at least one

argument of class FuzzyNumber, and may also accept additional arguments that must

be named when passing them to FOLP.ordFun. It is the user’s responsibility to give

them names that do not interfere with existing ones, and to care that the function is

linear.

Example call using first Yager’s index:

> sal<-FOLP.ordFun(objective, A, dir, b, maximum=TRUE,
+ ordf="Yager1")

For Adamo’s index, which requires an additional parameter 𝛼:

> sal<-FOLP.ordFun(objective, A, dir, b, maximum=TRUE,
+ ordf="Adamo", alpha=0.5)
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For a custom function that computes the mean of the core multiplied by another

real number:

> custom.f <- function(tfn,a){ a * mean(core(tfn)) }
> sal<-FOLP.ordFun(objective, A, dir, b, TRUE, "Custom",
+ FUN=custom.f, a=2)

3.3 General Model

The most general setting is that with fuzzy costs, fuzzy coefficients in the technology

matrix, and fuzzy constraints that can be violated up to a certain degree. Calling m
to the number of constraints, it can be formalized as the problem on the left. This

formulation can be transformed into the problem on the right, according to the Rep-

resentation Theorem and assuming that the decision maker agrees with considering

the same degree of satisfaction both in the fuzzy costs and in the fuzzy technological

matrix.
5

max z = �̃�x max z = �̃�x
s.t. ∶ �̃�i𝐱 ≤f �̃�i, ⇒ s.t. ∶ �̃�i𝐱 ≤ �̃�i + 𝐭i(1 − 𝛼), i = 1,… ,m

𝐱 ≥ 𝟎 𝐱 ≥ 𝟎

where �̃�i and 𝐛i(i = 1,… ,m) are n-dimensional vectors of fuzzy numbers, �̃� is

another n-dimensional vector of fuzzy numbers, and 𝐭i is the fuzzy tolerance admit-

ted for violating the i-th constraint.

Let g1 and g2 be two linear ordering functions for the objective and for the con-

straints, respectively. With them, and because g1 and g2 are linear, the problem can

be defuzzified to obtain the following crisp LP problem:

max z = g1(�̃�)𝐱
s.t. ∶ g2(�̃�i)𝐱 ≤ g2(�̃�i) + g2(𝐭i)(1 − 𝛼), i = 1,… ,m

𝐱 ≥ 𝟎

The function implementing this approach is called GFLP. It receives the two lin-

ear ordering functions to be used (one for the objective function and the other for

the constraints). They must be one of the functions described in Sect. 3.2. Since the

problem has to be solved for a fixed 𝛼 and then the Representation Theorem is used,

the function samples 𝛼 ∈ [0, 1] with a user-specified step size.

5
Otherwise, different 𝛼- and 𝛽-cuts should be needed and the problem would become more difficult.
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The function will be demonstrated with the following example:

max z = (1, 3, 4, 5)x1 + (0, 1, 1, 2)x2
s.t. ∶ (0, 2, 2, 3.5)x1 + (0, 1, 1, 4)x2 ≤ (2, 2, 2, 3) + (1, 2, 2, 3)(1 − 𝛼)

(3, 5, 5, 6)x1 + (1.5, 2, 2, 3)x2 ≤ 12
x1 ≥ 0, x2 ≥ 0

The R commands below create the necessary objects:

> objective<-c(TrapezoidalFuzzyNumber(1,3,4,5),
+ TrapezoidalFuzzyNumber(0,1,1,2))
> A<-matrix(c(TrapezoidalFuzzyNumber(0,2,2,3.5),
+ TrapezoidalFuzzyNumber(3,5,5,6),
+ TrapezoidalFuzzyNumber(0,1,1,4),
+ TrapezoidalFuzzyNumber(1.5,2,2,3)), nrow= 2)
> dir = c("<=", "<=")
> b<-c(TrapezoidalFuzzyNumber(2,2,2,3), 12)
> t<-c(TrapezoidalFuzzyNumber(1,2,2,3),0)

The example employs the average index (which receives two additional parame-

ters 𝜆 and t) for the objective function, and Adamo for the constraints. As the latter

only requires one parameter, it can be passed directly without using a tagged vector.

> sal<-GFLP(objective, A, dir, b, t, TRUE, "Average",
+ ordf_obj_param=c(lambda=0.5, t=3),
+ ordf_res="Adamo", ordf_res_param = 0.5)
> sal

beta x1 x2 objective
[1,] 0 1.818182 0 ?
[2,] 0.25 1.590909 0 ?
[3,] 0.5 1.363636 0 ?
[4,] 0.75 1.136364 0 ?
[5,] 1 0.9090909 0 ?

> sal[,"objective"]

[[1]]
Trapezoidal fuzzy number with:

support=[1.81818,9.09091],
core=[5.45455,7.27273].

# ... output omitted for elements 2 to 5
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4 Conclusions and Further Work

An R package for solving FLP problems has been presented and demonstrated in

simple use cases. It can deal with fuzzy constraints, fuzzy costs and a fuzzy technol-

ogy matrix, and provides specific functions for solving each type of problem. The

computations are done with TrFNs as they ease the application of several theoretical

results. Our code relies on packages FuzzyNumbers for creating and working with

TrFNs, and ROI for solving the crisp LP problems in which the FLP problems are

transformed. The package, called FuzzyLP, can be downloaded from CRAN, the R

centralized repository.

To the best of our knowledge, this is the first open-source implementation of FLP

solving methods, and possibly the only one available in a modern language, as R is.

It has been developed as a library of functions, which broadens its usability. Nev-

ertheless, much more can still be done in this direction, such as incorporating more

solving techniques for other types of FLP problems, and spanning the functionality

to fuzzy non-linear optimization, such as Fuzzy Quadratic Programming (FQP).
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A Bibliometric Analysis of the Publications
of Ronald R. Yager

José M. Merigó, Anna M. Gil-Lafuente and Janusz Kacprzyk

Abstract This study presents a bibliometric analysis of the publications of
Ronald R. Yager available in Web of Science. Currently Professor Yager has more
than 500 publications in this database. He is recognized as one of the most
influential authors in the World in Computer Science. The bibliometric review
considers a wide range of issues including a specific analysis of his publications,
collaborators and citations. The VOS viewer software is used to visualize his
publication and citation network though bibliographic coupling and co-citation
analysis. The results clearly show his strong influence in Computer Science
although it also shows a strong influence in Engineering and Applied Mathematics.

Keywords Ronald R. Yager ⋅ Bibliometric analysis ⋅ Web of Science ⋅ VOS
viewer

1 Introduction

Ronald R. Yager is one of the most influential authors in the world in computer
science. He has received many distinctions, exemplified by the recently received
Rosenblatt Medal from the IEEE. He has also been included in the
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Thomson/Reuters list of Most Influential Authors in Computer Science in 2001. He
is a Fellow of the New York Academy of Sciences, the International Fuzzy Systems
Association (IFSA) and the Institute of Electrical and Electronics Engineers (IEEE),
the largest professional organization of this kind in the world. He is on the editorial
board of many leading journals including IEEE Transactions on Fuzzy Systems,
Fuzzy Sets and Systems, International Journal of Approximate Reasoning, Inter-
national Journal of General Systems and International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems. Moreover, he is the editor-in-chief of
the International Journal of Intelligent Systems. He has published an extremely
huge number of publications. Including conference proceedings and related mate-
rial, he has published more than 1000 publications. Currently, he has almost 50.000
citations according to Google Scholar and the Hirsch [6] h-index above 100.
Through this index, he has been included in a very selective list that includes all the
authors from all-time and all sciences that currently have an h-index of 100 or more.
This list currently includes only 1040 authors (http://www.webometrics.info/en/
node/58).

Bibliometrics is a research field that studies the bibliographic material quanti-
tatively [3]. It provides general overviews of a research variable including topics,
journals, universities, authors, and countries. In the literature, there are many
studies that provide bibliometric overviews in a wide range of issues including
topics [8], journals [4, 8, 9] and countries [2].

The aim of this study is to provide a bibliometric overview of the publications of
Ronald R. Yager in the Web of Science in order to see his research network. Note
that the Web of Science is a database that includes those journals that are usually
regarded as the most influential ones. The results clearly show that Yager is one of
the World leading authors in Computer Science.

The rest of the paper is organized as follows. Section 2 briefly reviews the
methods used in the paper. Section 3 presents the publication and citation structure
of Yager and Sect. 4 develops a bibliographic coupling and co-citation analysis of
his publications. Section 5 summarizes the main conclusions and findings of the
paper.

2 Bibliometric Methods

Bibliometric studies provide a general overview of a research variable such as a
country or a journal. In this study, the focus is on an individual author analysis. This
approach is useful to analyse deeply leading researchers that have a huge number of
publications in order to see their publication and citation structure. This article
analyses a wide range of bibliometric indicators [1] including the total number of
publications and citations, cites per paper, the h-index [6], and the citing articles.
Moreover, we also use the VOS viewer software [11] to visualize the results
through bibliographic coupling [7] and co-citation [10]. Note that in this case,
bibliographic coupling occurs when two documents of Yager cite the same third
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document. Co-citation appears when two documents receive a citation by the same
third study of Yager.

The search process uses the Web of Science database. Web of Science currently
includes more than 15 thousand journals and more than 50 million documents. In
order to develop the search process, we searched for “Yager RR” by “Author” in
the Web of Science Core Collection, which is usually recognized as the most
influential database because it strictly includes the highest-quality material. The
search process was carried out the 28th of March, 2016.

Currently, Ronald R. Yager has published 585 publications available in Web of
Science Core Collection. Note that by including other materials not available in the
WoS database; Yager has more than 1000 publications. Most of them are listed at:

http://scholar.google.com/citations?user=uAsllJMAAAAJ&hl=en&oi=ao.
These 585 documents are divided in 418 articles, 141 proceedings articles, 19

letters, 11 editorials, 5 notes and 1 review. When looking at the citation report of the
Web of Science, we see that Yager has received 17523 citations with a ratio of
29.95 cites per paper. He has an h-index of 61 and has 9584 citing articles.

3 Publication and Citation Structure of Ronald R. Yager

This section analyses the 585 publications of Ronald R. Yager in Web of Science in
order to identify its main research profile and connections. Figure 1 presents the
number of documents he has published annually.

During the last twenty years, Yager has published an average of 15−20 articles
each year in sources indexed in Web of Science. Next, let us look into the citations
he has received annually. Figure 2 presents the number of citations received in each
year.

As we can see, the number of citations received has increased significantly
throughout time. This is explained because his research has become very popular in
the scientific community but also due to some other general factors that has affected
science throughout time. During the last years, research has increased a lot due to an
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increase in the knowledge economy that invests more and more on people involved
in research. During the last decades, this strong increase was seen in Europe but
also in many developing countries that currently are growing a lot. Additionally,
Web of Science has increased the number of journals covered in the database which
implies a higher volume of publications and citations. During the last years, Pro-
fessor Yager is receiving more than one thousand citations each year and between
2013 and 2015, the number of citations is above 1500 and the trend is that the
citations will continue increasing.

Ronald R. Yager has published in many leading journals. Table 1 presents the
journals where Yager has published most of his papers. Note that some additional
indicators are also shown in the table including the citations, h-index and cites per
paper that the publications in this journal has obtained.

Fuzzy Sets and Systems is the journal where Yager has published the highest
number of articles. However, the journal with the highest number of citations is the
IEEE Transactions on Systems, Man and Cybernetics, mainly because Yager
published his seminal paper on OWA operators in this journal. Moreover, note that
the journal was divided in three parts in 1996. Thus, if we sum all the publications
Yager has published in all the different names of the journal, he would have 51
articles and more than 4500 citations. He also has a significant number of publi-
cations in Information Sciences. Currently, he has published more than twenty
papers in seven journals and more than ten in thirteen journals.

According to Merigó et al. [8], Yager is the author with the highest number of
publications in Information Sciences, International Journal of Approximate Rea-
soning, International Journal of Intelligent Systems, International Journal of
Uncertainty, Fuzziness and Knowledge Based Systems. Moreover, he is in the
second position in the International Journal of General Systems, third in all IEEE
Transactions on Systems, Man and Cybernetics and IEEE Transactions on Fuzzy
Systems, and fifth in Fuzzy Sets and Systems.

Next, let us look into the most cited papers published by Ronald R. Yager.
Table 2 presents the 30 most cited papers according to Web of Science.

Obviously, the most cited paper is his seminal work on the ordered weighted
average published in 1988. Currently it has more than 2600 citations. This paper is
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the 96th most cited paper of all-time in Computer Science of more than 2 million
publications. It is the second most cited paper in the World in computer science
published in 1988 of more than 15000 publications. If focusing on the Web of
Science category of Computer Science—Cybernetics, it is the 8th most cited paper
of all-time in this category of more than 100000 publications.

His second most cited paper was published in 1993 with 579 citations [13]. Most
of his key publications are related to the OWA operators [5, 12, 14]. Currently, he
has nine papers with more than 300 citations. Regarding co-authors, it is worth
noting his collaboration with Dimitar P. Filev that has provided five of his thirty
most cited papers. Additionally, Zeshui Xu has co-authored three papers in the list,
Alexander Rybalov has two and Janos C. Fodor, Krassimir Atanassov and Gabriela
Pasi, one.

Now, let us analyze the publications according to some different variables. First,
Table 3 presents the publications according to the categories and research areas
where the journals are usually classified.

As we can see, most of his publications are in the fields of Computer Science.
Particularly, Artificial Intelligence is the most influential category with more than
300 publications.

Table 1 Publications of Ronald R. Yager classified by journals

Journals Abbrev. TP TC TC/TP H

Fuzzy Sets and Systems FSS 59 3355 56.86 24
Information Sciences IS 49 2140 43.67 21
IEEE Trans. Fuzzy Systems TFS 40 652 16.30 13
Int. J. Intelligent Systems IJIS 37 1147 31.00 16
Int. J. General Systems IJGS 34 1604 47.18 17
IEEE Trans. Systems, Man and Cyberneticsa SMC 25 3435 137.40 13
Int. J. Man-Machine Studies IJMMS 22 718 32.64 11
Int. J. Uncert. Fuzziness Knowledge-Based Syst. IJUFK 18 446 24.78 7
Int. J. Approximate Reasoning IJAR 17 778 45.76 11
IEEE Trans. SMC—Part B SMCB 17 1035 60.88 13
Kybernetes KYB 14 225 16.07 8
Cybernetics and Systemsb CSb 13 214 16.46 6
Fuzzy Optimization and Decision Making FODM 12 292 24.33 7
Soft Computing SC 7 129 18.43 3
Knowledge-Based Systems KBS 5 24 4.80 2
J. Intelligent and Fuzzy Systems JIFS 5 41 8.20 2
IEEE Trans. SMC—Part A SMCA 5 155 31.00 5
Information Fusion IF 4 15 3.75 2
4 other 3 – – –

7 other 2 – – –

aNote that in 1996 the IEEE-TSMC was divided in part A, B and C
bBetween 1971 and 1979, the official name was Journal of Cybernetics
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Table 2 30 most cited papers in Web of Science published by Ronald R. Yager

Title Co-author J Y TC

1. On OWA aggregation operators for multi-criteria
decision-making

TSMC 1988 2638

2. Families of OWA operators FSS 1993 579
3. A procedure for ordering fuzzy subsets of the unit
interval

IS 1981 497

4. Quantifier guided aggregation using OWA operators IJIS 1996 462
5. Some geometric aggregation operators based on
intuitionistic fuzzy sets

Xu, ZS IJGS 2006 421

6. On the Dempster-Shafer framework and new
combination rules

IS 1987 399

7. Induced ordered weighted averaging operators Filev, DP SMCB 1999 394
8. On a general class of fuzzy connectives FSS 1980 377
9. Uninorm aggregation operators Rybalov, A FSS 1996 323
10. Approximate clustering via the mountain method Filev, DP TSMC 1994 273
11. Structure of uninorms Fodor, JC;

Rybalov, A
IJUFK 1997 265

12. On the issue of obtaining OWA operator weights Filev, DP FSS 1998 253
13. Dynamic intuitionistic fuzzy multi-attribute
decision making

Xu, ZS IJAR 2008 200

14. Measure of fuzziness and negation. Part 1 IJGS 1979 187
15. On the theory of bags IJGS 1986 186
16. Entropy and specificity in a mathematical theory of
evidence

IJGS 1983 180

17. A new approach to the summarization of data IS 1982 177
18. Multiple objective decision-making using fuzzy
sets

IJMS 1977 172

19. Induced aggregation operators FSS 2003 164
20. OWA aggregation over a continuous interval
argument with applications to decision making

SMCB 2004 163

21. Connectives and quantifiers in fuzzy sets FSS 1991 159

22. An approach to ordinal decision-making IJAR 1995 155
23. Intuitionistic fuzzy interpretations of multi-criteria
multi-person and multi-measurement tool decision
making

Atanassov,
K; Pasi, G

IJSS 2005 144

24. A generalized defuzzification method via BAD
distributions

Filev, DP IJIS 1991 116

25. Analytic properties of maximum entropy OWA
operators

Filev, DP IS 1995 114

26. Aggregation operators and fuzzy systems modeling FSS 1994 111

27. Centered OWA operators SC 2007 110
28. A characterization of the extension principle FSS 1986 107

(continued)
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Next, let us focus on the main collaborators of Ronald R. Yager. Table 4 pre-
sents the collaborators with the highest number of publications co-authored with
Yager. The table distinguishes between authors, organizations and countries.

Dimitar P. Filev is the most significant co-author of Yager with 33 joint pub-
lications. Five other authors have co-authored at least 10 publications with Yager
and available in Web of Science. Regarding organizations, Iona College (USA) is
the institution where Professor Yager has worked for most of his career. Therefore,
most of his publications are under this affiliation. He also has a significant number
of publications with King Saud University (Saudi Arabia) due to his recognition as

Table 2 (continued)

Title Co-author J Y TC

29. Intuitionistic and interval-valued intutionistic fuzzy
preference relations and their measures of similarity for
the evaluation of agreement within a group

Xu, ZS FODM 2009 105

30. Applications and extensions of OWA aggregations IJMS 1992 105
Abbreviations are available in Table 1 except for: J = Journal; Y = Year

Table 3 Publications distributed by WoS categories and research areas

WoS categories Research areas

CS—Artificial Intelligence 302 Computer Science (CS) 547
CS—Theory & Methods 133 Engineering 174
CS—Cybernetics 108 Mathematics 76
Eng. Electrical & Electronics 106 Automation & Control Syst 34
CS—Information Systems 81 Operations Res. & Manag. Sci 30
Mathematics, Applied 73 Psychology 24
Statistics and Probability 61 Business and Economics 11
Ergonomics 58 Imaging Sci Photograph Tech 6
Automation and Control Syst 34 Information Sci & Library Sci. 6
Operations Res. and Manag. Sci 30 Sci Techn Other Topics 4
CS—Interdisciplinary 27 Optics 4
Psychology 23 3 other 3
Management 8 2 other 2
CS—Software Engineering 7 12 other 1
Imaging Sci Photographic Tech 6
Engineering, Multidisciplinary 6
Information Sci and Library Sci. 5
Optics 4
Logic 4
5 other 3
4 other 2
19 other 1
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Visiting Distinguished Scientist. The results in the country list are quite similar to
organizations being the USA at the top of the list with most of his publications.
Note that the publications from the seventies and eighties often do not include the
affiliation. Due to this, the USA does not get all of his publications although this
should be the result.

The research developed by Yager has influenced a lot of researchers. Tables 5
and 6 analyze the citing articles of Ronald Yager. Currently he has 9584 citing
articles and 17523 citations. Thus, on average, each article cites Yager twice in the

Table 4 Collaborators of Ronald R. Yager: Authors, organizations and countries

Authors TP Organizations TP Countries TP

DP Filev 33 Iona College 527 USA 548
N Alajlan 19 King Saud U 23 Saudi Arabia 23
A Rybalov 16 U Alberta 11 Spain 17
FE Petry 12 US Navy 10 Italy 17
G Pasi 11 US Dep Defense 10 Canada 15
MZ Reformat 10 Naval Res Lab 10 France 12
V Kreinovich 8 National Science Found 9 Denmark 11
ZS Xu 6 CNRS France 8 PR China 10
HL Larsen 6 U Texas El Paso 7 UK 7
L Garmendia 6 Ford Motor Company 7 Israel 5
KJ Engemann 6 U California Berkeley 6 4 other 4
D Dubois 6 Pierre Marie Curie U Paris 6 6 Bulgaria 3
6 other 5 New York Academy Sci 6 3 other 2
4 other 4 8 other 5 8 other 1
15 other 3 6 other 4
27 other 2 7 other 3

Table 5 Citing articles of Ronald R. Yager: Authors, organizations and countries

Authors TP Organizations TP Countries TP

RR Yager 415 Iona College 404 PR China 2234
ZS Xu 184 U Granada 306 USA 1408
JM Merigó 125 CNRS 194 Spain 1091
E Herrera-Viedma 111 Polish Academy of Sciences 178 France 546
J Kacprzyk 109 Southeast U 162 Taiwan 535
R Mesiar 102 Ghent U 129 UK 449
D Dubois 94 Slovak U Tech 115 Canada 400
F Herrera 92 U Toulouse 112 Poland 398
W Pedrycz 82 U Barcelona 109 Italy 355
GW Wei 78 U Toulouse III 102 India 314
L Martinez 78 U Jaén 102 Iran 307

(continued)
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reference list. Table 5 focuses on authors, organizations and countries citing the
publications of Yager. Table 6 analyzes the journals and research areas where these
citing articles are classified.

As expected, the self-citations of Yager are the most significant citing articles.
This is quite logic because usually, his research has been built based on his previous
studies. Moreover, Zeshui Xu, José M. Merigó, Enrique Herrera-Viedma, Janusz
Kacprzyk and Radko Mesiar, have cited him in more than 100 publications each.

Table 5 (continued)

Authors TP Organizations TP Countries TP

S Zadrozny 77 PLA U Sci Tech 95 Japan 254
H Bustince 76 Tsinghua U 93 Australia 240
H Prade 75 Islamic Azad U 91 Belgium 196
G Beliakov 61 Sichuan U 88 Turkey 164
J Montero 60 U Manchester 87 Brazil 162
V Torra 58 Indian Inst Tech 87 Germany 153
XW Liu 56 U Illes Balears 83 South Korea 150
J Torrens 55 Shanghai Jiao Tong U 83 Slovakia 139
F Chiclana 53 Public U Navarra 78 Czech Rep 124

Table 6 Citing articles of Ronald R. Yager: Journals and research areas

Journals TP Research areas TP

FSS 776 Computer science 7114
IS 457 Engineering 2683
IJIS 342 Mathematics 1488
IEEE-TFS 305 Operations Res. & Manag. Sci 930
Expert Syst with Applic 234 Automation & Control Syst 645
IJUFKS 229 Business & Economics 414
JIFS 212 Environmental Sci Ecology 180
IJAR 141 Imaging Sci Photograph Tech 146
KBS 139 Telecommunications 129
Eur J Operational Research 133 Sci Tech Other Topics 107
Applied Soft Computing 129 Robotics 105
IJGS 104 Water Resources 92
SC 93 Remote Sensing 90
IEEE-TSMC-B 74 Physics 83
IJ Computational Intel Syst 66 Mechanics 77
Computers & Industrial Eng 59 Instruments Instrumentation 70
Applied Math Modeling 54 Information Sci & Library Sci. 66
FODM 53 Materials Science 58
IEEE-TSMC-A 51 Transportation 54

IEEE-TSMC 50 Social Sci Other Topics 52
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Organizations and countries are aligned with the affiliation of the authors of the
citing articles. Among others, it is worth mentioning the University of Granada that
has more than 300 citing articles. Regarding countries, China has the highest
number of citing articles which proves the huge impact that Yager’s research is
having in this country. The USA and Spain also have more than 1000 citing articles.

Fuzzy Sets and Systems is the journal with the highest number of citing articles.
Information Sciences also have a significant number of citations to Yager’s
research. Five other journals have more than 200 citing articles and five more have
more than 100. Focusing on research areas, most of the citing articles are in the field
of Computer Science. However, he also has a significant number of citations in
Engineering, Mathematics and Operations Research & Management Science.

4 Bibliographic Coupling and Co-citations of Yager

In this Section, we visualize the publications of Yager and how they cite other
research. For doing so, we use bibliographic coupling [7] and co-citation analysis
[10]. Figure 3 presents the bibliographic coupling of authors which indicates the
most significant co-authors of Yager and when do they tend to cite the same
material.

Figure 4 presents the bibliographic coupling of countries based on Yager’s
publications. Note that the results are aligned with Fig. 3 because it represents the
affiliation of these authors.

Figure 5 shows the bibliographic coupling of journals. Here, we can identify the
journals where Yager publishes and see which ones tend to cite the same material.

Fig. 3 Bibliographic coupling of authors
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Fig. 4 Bibliographic coupling of countries

Fig. 5 Bibliographic coupling of journals
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Figure 6 analyzes the bibliographic coupling of institutions. In this case, the
results are also aligned with the affiliation of the authors of Fig. 3.

Next, let us focus on co-citation analysis. Figure 7 presents the
author-co-citations of Yager. In summary, this figure shows the most cited authors
by Yager and their connections when receiving citations by Yager’s studies jointly.
It is clear that he has cited himself mostly although he has been strongly influenced
by Lotfi A. Zadeh, the father of fuzzy logic [15, 16]. Didier Dubois appears in the
third position with also a significant influence in Yager’s research.

Figure 8 analyzes the co-citations of documents that Yager cites in his publi-
cations. As expected, the most significant document is his seminal paper on OWA
operators published in 1988. Most of the highly cited papers that he cite are by
himself or by Zadeh.

Next, let us focus on the co-citations of journals. Figure 9 presents the results.
Observe that the most cited journals by Yager are Fuzzy Sets and Systems, Infor-
mation Sciences, IEEE Transactions on Systems, Man and Cybernetics, Interna-
tional Journal of Intelligent Systems and IEEE Transactions on Fuzzy Systems.

Finally, let us develop a keyword analysis of the publications of Yager. Note that
this keyword analysis is based on the title and abstracts of the 585 publications of
Yager. Figure 10 presents the results.

Fig. 6 Bibliographic coupling of institutions
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Apart from common words used in abstracts such as problems, approach, case
and process, we can also identify some representative keywords of his research.
First, we see at the right of the figure the keywords OWA, aggregation and operator,
which clearly shows his contributions in this field. Some more general concepts
such as information, knowledge and uncertainty are seen at the left side. At the top,
appear several keywords connected with decision making. And at the bottom of the
graph, we see the keywords connected to his contributions on fuzzy sets.

Fig. 7 Co-citations of authors

Fig. 8 Co-citations of documents

A Bibliometric Analysis of the Publications of Ronald R. Yager 245



Fig. 9 Co-citations of journals

Fig. 10 Keyword analysis
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5 Conclusions

This study has presented a general overview of the publications of Ronald R. Yager
according to the results available in Web of Science. Yager is one of the World
leading authors in Computer Science with more than 500 publications and 17000
citations. He is the editor-in-chief of the International Journal of Intelligent Systems
and a member of the editorial board of many leading journals. This work has
identified the journals and research areas where he usually publishes his research,
his main collaborators, and the places where his research has influenced more.

Dimitar P. Filev is the most significant co-author throughout Yager’s career.
Yager tends to publish in Computer Research journals such as Fuzzy Sets and
Systems, Information Sciences and some IEEE journals of the System, Man and
Cybernetics Society and the Computational Intelligence Society. His most
influential paper was written in 1988 and it is the first contribution on the OWA
operators which has impacted significantly the scientific community. This study is
among the 100 most cited papers of all-time in Computer Science. We have also
developed a graphical analysis of the publications and citations of Yager through
the VOS viewer software. By using bibliographic coupling and co-citation analysis
we can map the leading variables that affect him. As expected, the graphical
analysis provides similar results to those seen on the tables although we have seen
some interesting differences. Particularly, we have seen the papers that Yager cites
mostly which are mainly written by himself or by Lotfi A. Zadeh.

This study provides a general bibliometric overview of a leading author. This
analysis provides a deep analysis of the main profile of a leading researcher which
is quite useful to get an overview of a standard leading profile in this field.
Obviously, each researcher has its own particularities but from a general perspective
it is useful to get a general picture of the field. In future research, it would be
interesting to develop similar bibliometric overviews with other authors in Com-
puter Science and in other fields. This approach may provide a summary of a
representative author that may be used by PhD students and newcomers in order to
get a general overview of the field. It may be also useful in order to see in a paper a
general summary of the contributions of an author. Although specialized
researchers in this field could intuitively know this information, usually a biblio-
metric overview also identifies results that were not directly expected. Therefore, it
may be useful to get a general perspective of an author.

As an interesting further direction of this analysis, one can use other systems,
notably Scopus, which gain more and more relevance, and even the Goggle Scholar
or systems based on it. This can be relevant for this analysis because the influence
of Yager’s works is very wide and concerns areas in which the WoS and journals
covered in that system may not constitute the main part of publications covered.
Moreover, these new systems take into account books which are very relevant
elements of the publication record in many fields of science, exemplified by social
sciences or humanities, which are not covered by the WoS but in which Yager’s
works have also been influential.
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