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Abstract. Fiber tracking of Diffusion Tensor Imaging (DTI) datasets
is a non-invasive tool to study the underlying fibrous structures in liv-
ing tissues. However, DTI fibers may vary from subject to subject due to
variations in anatomy, motions in scanning, and signal noise. In addition,
fiber tracking parameters have a great influence on tracking results. Sub-
tle changes of parameters can produce significantly different DTI fibers.
Interactive exploration and analysis of differences among DTI fiber mod-
els are critical for the purposes of group comparison, atlas construction,
and uncertainty analysis. Conventional approaches illustrate differences
in the 3D space with either voxel-wise or fiber-based comparisons. Unfor-
tunately, these approaches require an accurate alignment process and
might give rise to visual clutter. This paper introduces a two-phase pro-
jection technique to reformulate a complex 3D fiber model as a unique
2D map for feature characterization and comparative analysis. To facil-
itate investigation, regions of significant differences among the 2D maps
are further identified. Using these maps, differences that are difficult to
be distinguished in the 3D space due to depth occlusion can be easily
discovered. We design a visual exploration interface to study differences
from multiple perspectives. We evaluate the effectiveness of our approach
by examining two datasets.

Keywords: Diffusion tensor imaging · Fiber tracking · Difference visu-
alization · Visual exploration

1 Introduction

Diffusion Tensor Imaging (DTI) [2] is a non-invasive in vivo magnetic resonance
imaging technique that measures the diffusion of water in biological tissues. In
tissues containing fibrous structures, the diffusion is faster along the fibers [14].
By fitting the distribution with a Gaussian model, a DTI tensor volume can
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be reconstructed from the raw Diffusion Weighted Imaging (DWI) volumes [24].
Tracing paths through the entire tensor volume produces a collection of DTI
fibers. This process is known as fiber tractography or fiber tracking [1], which
has been proven to be a useful technique for analyzing anatomical connectivity.

In spite of its potential, DTI remains limited in applications. Uncertainty
is a major reason. DTI fibers vary from subject to subject due to variations
in anatomy, and from scan to scan because of different subject positions, scan-
ning motions and noises [14]. They are also sensitive to various parameters in
tractography such as the integration step size and stopping criteria [3].

To comparatively visualizing and analyzing different DTI datasets, one of
the major task is to represent and visualize differences within a collection of
DTI datasets. Direct comparison of 3D DWI or DTI volumes [18,28] demands
an accurate alignment process and misses the anatomical connectivity within
each volume. Explicit depiction of the geometrical differences among DTI fiber
models in the 3D space [3,7] is hindered by the spatial complexity of dense
fibers. Comparison by using statistical tractography metrics [6] lacks the ability
to locate regions of differences.

Projection techniques have been widely used to provide a holistic view of the
overall structures and distributional patterns. Recent work extends this scheme
into the exploration of DTI fiber models [4,25]. However, these solutions are well
designed to explore the content of only a single fiber model. The main reason
is that different fiber models do not share a common space for projection and
comparison.

In this paper, we present a comparative visualization approach that supports
quick identification and intuitive exploration of differences among DTI fiber
models. After all datasets are registered into a common coordinate space, fiber
models are embedded on a 2D visual plane by means of a two-phase projection
technique. The embedding of a fiber model constructs a 2D scatterplot which are
further represented as a continuous density map and a contoured density map.
To provide an overview of the major differences among these maps, regions
of differences (RoDs) are computed with a simple flood fill algorithm. Both
Juxtaposition and Explicit Encoding are utilized within the visual exploration
interface. We have verified the effectiveness of our approach on several DTI
datasets.

In summary, the contributions of this paper are:

– A novel low-dimensional representation of complex fiber models for visual
comparison and further regions of differences identification;

– An integrated visualization interface that provides users an intuitive way to
explore differences in multiple perspectives.

The remaining parts are organized as follows. Related work are summarized
in Sect. 2. Our approach is elaborated in Sect. 3. The visual exploration inter-
face is described in Sect. 4. The results of our approach are discussed in Sect. 5.
Finally, we conclude this paper in Sect. 6.
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2 Related Work

Our work is related to several topics of visualization research including compar-
ative visualization, uncertainty visualization, and DTI fiber model exploration.

2.1 Comparative Visualization

Recently, a wide variety of approaches have been developed in the field of com-
parative visualization. Gleicher et al. [12] summarized visual designs for compar-
isons into three categories: Juxtaposition, Superposition, and Explicit Encoding.
Verma and Pang [29] proposed several solutions for comparative flow visualiza-
tion at image level, data level, and feature level. Malik et al. [20] introduced a
novel multi-view design for comparing and visualizing gray values and edges of
several 3D CT datasets simultaneously. Schmidt et al. [26] proposed an approach
for comparative visualization of multiple images. Their technique overcomes the
scalability issues pertaining to the number of objects for comparison, and allows
users to perform detailed cluster analysis in the regions of significant differences.
Oelke et al. [22] designed a glyph representation called topic coins to encode
information necessary for comparative document analysis.

In the field of DTI study, comparison is an important means to locate changes
related to development, degeneration, and disease. One pioneering work [7] com-
pares the generated fibers in the 3D space and uses saturation to indicate the
magnitude of differences between corresponding points. This method is simple
and intuitive, but only focuses on fiber structures and may result in visual clut-
ter. In order to investigate the diffusion properties along fibers, group statistical
analysis [5,13] is performed after aligning datasets and representing fibers with
continuous functions. The key idea behind this method is that fibers are repre-
sented with a simplified form (like B-spline) to facilitate statistical comparison.

To study the diffusion property volumes such as the Fractional Anisotropy
(FA) for multiple subjects, Smith et al. [28] presented Tract-Based Spatical Sta-
tistics (TBSS), which is a voxel wise analysis framework via a nonlinear regis-
tration followed by projection onto a skeleton. In addition to the study on DTI
volumes, there has been some work on general-purpose group analysis of geomet-
rical or volumetric datasets. For instance, Elvins and Jain [10] proposed to use
a density histogram to describe a volume dataset. Though simple, it provides
very low discrimination power. Other different feature descriptors have been
proposed to accomplish similarity assessment, including transformational [11],
topological [15], and statistical [23] signatures. Different from these methods, our
approach generates a unique 2D signature map of a 3D fiber model for further
comparison and exploration.

2.2 DTI Fiber Model Exploration

Exploring and manipulating a DTI fiber model in the 3D space pose many
challenges, especially on providing intuitive interaction. Embedding the fibers
into a 2D space with projection techniques has been demonstrated to be an
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effective means to study fiber models. Chen et al. [4] designed a novel interface
by utilizing the multidimensional scaling (MDS) technique to facilitate quick and
accurate 3D fiber selection on a 2D plane. Similarly, Jianu et al. [17] introduced
a visual exploration paradigm by embedding 3D fibers on a 2D plane to reduce
navigation efforts. Poco et al. [25] exploited the Local Affine Multidimensional
Projection (LAMP) [19] technique to support fast visual exploration of large
collection of DTI fibers. Demiralp et al. [9] presented a 2D path representations
with a planar projection technique for studying fiber dataset. A web interface
was also designed to support exploration. In general, the 2D visual representation
captures the structures and patterns of the source dataset and is free of occlusion
during interaction and exploration. However, most of these approaches focus on
single fiber model exploration. This paper advances a computation-efficient two-
phase projection technique to compare multiple fiber models.

3 Our Approach

Fig. 1 shows a schematic overview of our approach. In general, our approach
consists of three main components. The preprocessing component registers all
DTI volumes into a common space and reconstructs a 2nd order tensor in each
voxel based on the Gaussian diffusion model. Fibers are then extracted according
to the user-defined tracking parameters. Instead of direct comparing fiber models
in the 3D space, we employ a two-phase projection technique followed by the
density estimation to reformulate each fiber model as a 2D signature map. As
a key benefit, these maps allow for intuitive recognition and quick comparison.
A number of views and interactions are provided to discover and study differences
among fiber models.

DTI Volumes

Preprocessing

Fiber Models

Fiber Model
Reformulation

Interactive
Exploration

Signatures

Users

Views

Fiber Model Selection

RoD PickingRoD Computation Fiber Metrics Comparison

Two-Phase Projection

Density Estimation Contouring

Signatures ComparisonRegistration Tensor Estimation

Fiber Tracking

Fig. 1. An overview of our difference computation, visualization, and exploration
pipeline for DTI fiber models.

3.1 Preprocessing

For accurate comparison, the alignment of all DTI volume datasets to a target is
required. In our approach, FLIRT [16] is employed to perform a rigid registration.
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After registration, a diffusion tensor field can be reconstructed of a DTI
dataset. By tracing paths with numerical integration methods such as the second-
order Runge-Kutta (RK2), a fiber model that captures the connectivity infor-
mation of a DTI dataset is produced.

3.2 Fiber Model Reformulation

Let Γ = F1 ∪ F2 ∪ ... ∪ FN be a fiber corpus consisting of N fiber models, and
fiber model Fi = {f j

i , j = 1, 2, ..., Ni} has Ni fibers, where f j
i denotes a fiber. To

represent the variations among different fiber models, our approach generates a
unique signature map Si for each fiber model Fi.

Directly representing each fiber model Fi in the 3D space may cause visual
clutter. Projection techniques [4,25] that focus on building a 2D visual repre-
sentation for a fiber model can alleviate this issue. Before projection, all fibers
must be reparameterized to make sure that they have the same number of ver-
tices and orientations in order to calculate similarity measure used in LAMP
technique [19,25].

To embed fibers on the visual plane, our approach employs the Landmark
MDS (LMDS) technique [8] which performs a two-phase projection. A subset of
fibers Γlandmark ⊂ Γ are selected from the fiber corpus as landmark fibers. Using
these fibers as landmarks, LMDS can project each fibers r ∈ Γ to its 2D location
lr on the visual plane. Throughout this paper, the longer mean of thresholded
closest distance [30] is used to measure the dissimilarity between fibers:

d(p, q, t) = max(dt(p, q, t), dt(q, p, t)), (1)

where dt(p, q, t) = meanu∈p,(minv∈q‖u−v‖>t)minv∈q ‖ u−v ‖, u and v are vertices
of fiber p and q respectively. The minimum threshold t is set to 0.5 mm as
suggested by [30].

Compared with other methods, this projection scheme reduces the compu-
tational complexity of dissimilarity estimation from O(n2) to O(m2 + m × n).
m = |Γlandmark| is the number of landmark fibers. n = |Γ | is the number of fibers
in the fiber corpus. Empirically, m is set to

√
n in our implementation. One addi-

tional benefit of this scheme is its intrinsic parallelizability, because each fiber is
embedded independently from each other using a fixed linear transformation.

In our implementation, we randomly selected 100 landmark fibers as ran-
dom selection produces similar results to those use optimized selection methods
provided in [8].

Density Estimation. The embedding of each fiber model Fi yields a 2D scat-
terplot (see Fig. 5 second row). Similar fibers are positioned close to each other
in this scatterplot. To facilitate recognition and visualization, we further apply
the kernel density estimation (KDE) to the scatterplot to produce a continuous
2D density map Di (see Fig. 5 third row). A Gaussian kernel is used in our app-
roach with the bandwidth h determined by the Silverman’s rule of thumb [27]
and can be modified by the user.
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By dividing the range of the computed density into multiple intervals and
coloring the elements within each interval, another contour-like map (see Fig. 5
fourth row) is generated. The contoured density map suppresses many undesired
details for a quick comparison.

Consequently, each fiber model uniquely determines a signature map Si: a
discrete scatterplot associated with a continuous density map and a contoured
density map.

3.3 Region of Difference Estimation

The Juxtaposition design that displays visualizations side by side in multiple
views is a common way to explore differences and similarities among multiple
datasets. However, it requires a large amount of mental workload to identify the
differences. Inspired by [26], we employ an explicit difference encoding to assist
users in identifying regions of differences (RoDs).

Specifically, the density variance V (x) at each location x is computed as:

V (x) =
1
N

N∑

i=1

(Di(x) − μ(x))2, (2)

where μ(x) is the average density at location x. In our implementation, we com-
pute the density variance for each pixel of the densities generated by KDE. Then,
a user-adjustable threshold is used to filter out pixels of low density variations.
At last, the region growing algorithm [26] is employed to group disjoint pix-
els into regions. The resultant RoDs provide an overview of differences residing
in the shown signatures. Users can flexibly pick a RoD to further explore the
statistical differences of fibers embedded into this region.

As RoDs are generated from the results of density estimation, they are
affected by the bandwidth h of the kernel function. When bandwidth increased,
number of RoDs will be reduced and adjacent RoDs tend to merge together.

4 Visual Exploration Interface

The fiber models, the generated signatures, and the computed RoDs can be
interactively explored in our integrated interface composed of a set of linked
views. Figure 2 illustrates an overview of this interface.

Fiber Model List View. Each fiber model is represented as a rectangular
glyph. Basic information and a snapshot are embedded (see Fig. 2(a)). The fiber
models of interest can be dragged to the signature view for further exploration
and comparison.

Signature View. Users can compare the signatures in the signature view to
discover differences and similarities among fiber models. The signature view
employs a juxtapositional design which shows the selected fiber models’ signa-
tures in a side-by-side fashion. Users can remove a signature from this view. In
addition, following interactions are supported:
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a b

c

d

Fig. 2. The main views of our visual exploration interface. (a) The fiber model list
view. (b) The signature view. (c) The RoD view. (d) The 3D fiber view.

Switching. Users can choose different forms of signatures (including the discrete
scatterplot, the continuous density map, and the contoured density map) to
be displayed.

Dragging. To facilitate comparison, signatures of interest can be dragged close
to each other.

Selection. The box selection and lasso selection are provided to specify a region
of interest. Linked selection simultaneously specify identical regions on dif-
ferent signatures. The selected fibers are shown in the 3D fiber view.

RoD View. As described above, the signature view shows the details of the
selected fiber models’ signatures. The identified RoDs are rendered as polygons
overlaid on the average density map (see Fig. 2(c)). The Focus+Context inter-
action is implemented to inspect each individual RoD. Once users pick a RoD, a
DiffRadar diagram will be displayed around. The DiffRadar diagram shows the
detailed statistical variations of the selected fibers.

Figure 3 illustrates the design of our DiffRadar diagram. The radial layout is
leveraged where each quantitative fiber metric corresponds to one of the equian-
gular axes. Five widely used fiber metrics are computed for those fibers embed-
ded into the selected RoD: number of fibers (NF), total length (TL), average
total length (ATL), total FA weighted length (TWL), and average FA weighted
length (ATWL). Please refer to [5] for the computation details. The picked RoD
is shown in the center of this diagram. The metrics of a fiber model are connected
with polylines. To differentiate fiber models, a categorical color set is used.

3D Fiber View. As the axes in signatures do not have intrinsic meanings, linked
views and interactions are demanded. Fibers selected from either the signature
view or the RoD view are visualized as illuminated lines [21] in the 3D space.
Users can easily understand and verify the findings in this view.
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Fig. 3. An example DiffRadar dia-
gram. The average density map is dis-
played at background as a context.
RoDs are shown as polygons.

(a) (b)

Fig. 4. Linked exploration: selected
fibers in the signature view (a) are
immediately rendered as illuminated
lines in the 3D fiber view (b).

5 Results and Discussions

We implemented our approach based on a set of toolkits and libraries. The pre-
processing is accomplished using a free software library FSL. Typically several
minutes are needed to pre-compute a fiber model on our experimental platform.
The algorithms (Sect. 3.2) are implemented with the standard C++. Comput-
ing dissimilarities between fibers are further accelerated with CUDA 5.5. The
visualization interface is developed based on Qt 5.1. The rendering of DTI fibers
utilized a GPU-accelerated illuminated line algorithm [21].

5.1 Fiber Model Characterization

We tested our approach on a set of 78 DTI data. Some of the subjects were
scanned multiple times in the data.

The signatures generated with our approach characterize the overall struc-
tures and distributional patterns of each fiber model. The scatterplot reveals the
similarities among fibers. Similar fibers are positioned close to each other. It is
thus natural to perform feature exploration by studying the shape, layout, and
distribution in this map. Users can select a region of interest and inspect the
selected fibers in the 3D space (see Fig. 4).

Figure 5 shows the signatures of three healthy subjects FM1, FM2, and
FM3. Generally, all of them present similar low-dimensional patterns. We can
further inspect the detailed differences among them in the RoD view as shown
in Fig. 6. From the DiffRadar diagram for RoD R1 in Fig. 6(a), we find that
subject FM1 has much lower values in terms of quantitative metrics NF, TL,
and TWL. However, as shown in Fig. 6(b) for RoD R2, subject FM1 has slightly
higher values in terms of these quantitative metrics compared to subject FM2
and FM3. Anatomical variations mainly contribute to these differences.

5.2 DTI Tracking Parameter Study

This experiment intends to investigate whether the integration step size has a
great influence on the tracking results. For this purpose, we generate several
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Fig. 5. Results for three fiber models selected from the atlas dataset. From top to
bottom: the 3D fiber models, the 2D embedding, the continuous density maps, and the
contoured density maps.

fiber models from a single DWI image with varied integration step size. Some
of them have same integration step but few differences are caused by jittering
of seeding locations. We selected six signatures which corresponding integration
steps are 0.75, 0.75, 0.58, 0.58, 0.58 and 0.58.

The computed RoDs in Fig. 7(a) explicitly show the major differences among
them. This indicate that the integration step size has a strong effect on the
tracking results. That is because the step size determines how long a fiber can
move forward and backward in the path tracing process. We also compute the
RoDs for the last four signatures (see Fig. 7(b)). It can be easily verified that
fewer RoDs are identified compared with Fig. 7(a), because there are smaller
variations among the last four signatures.

5.3 Discussions and Future Work

Our approach shows promising effectiveness in displaying differences among fiber
models. It can be regarded as an adaption of the low-dimensional projection
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(a) (b)

R2

R1

Fig. 6. The DiffRadar diagrams for
two RoDs: R1 and R2. The variation
of R1 is higher than that of R2.

(a) (b)

Fig. 7. (a) The RoDs for six signatures.
(b) The RoDs for the last four signa-
tures. The same threshold is used.

scheme proposed in [4,17,25] to multiple datasets comparisons. Our projection
scheme uses the same set of landmark fibers to build low-dimensional represen-
tations for fiber models. The low-dimensional embedding of the landmark fibers
can be regarded as the backbone of these low-dimensional representations.

The axes of the low-dimensional projection layout do not have physical mean-
ings. Understanding the projection depends on the user’s ability to link locations
in the 2D plane to the fibers in the 3D space. Our approach exploits the linked
interaction to provide a fast and intuitive correspondence between points in the
2D embedding space and 3D fibers. However, it requires training and exploration
time. We plan to enhance the correspondence between the 2D embedding space
and the 3D space. One possibility is to label some representative fibers in the
2D embedding space.

Due to the limited human perception capability and screen space, it is chal-
lenging to simultaneously compare a large number of signatures in the signa-
ture view. The RoD view shows an overview to locate differences among them.
However, when diving into the details, visual clutter might be produced in the
DiffRadar diagram caused by too many overlapped polylines. Clustering and
hierarchical exploration are a feasible solution as proven by [26]. This is an
avenue for our future work. In addition, effective comparison models will be
further studied as well.

6 Conclusion

This paper presents a novel comparative visualization approach for discover-
ing and exploring differences among DTI fiber models. While previous methods
compare DTI datasets in either a 3D physical space or a statistical metric space,
our approach compares the datasets in a common embedding space. The core
is a computation-efficient two-phase projection technique followed by a density
estimation process to build the low-dimensional representations of fiber models.
Using these low-dimensional representations, regions of significant differences are
further explicitly computed. An integrated interface is designed to explore the
differences. Experiments on different DTI datasets demonstrate the effectiveness
of this approach. Some experts gave positive comments that being able to quickly
compare and explore different fibers models with each other is definitely useful.
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