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Abstract. This paper provides a comprehensive overview of the state-of-the-art
for processing large-scale 3D point cloud based on optical acquisition. We first
summarize the general pipeline of point cloud processing, ranging from filtering
to the final reconstruction, and give further detailed introduction. On this basis
we give a general insight over the previous and latest methods applying LIDAR
and remote sensing techniques as well as Kinect on analysis techniques,
including urban environment and cluttered indoor scene. We also focus on the
various approaches of 3D laser scenes scanning. The goal of the paper is to
provide a comprehensive understanding on the point cloud reconstruction
methods based on 3D laser scanning techniques, and make forecasts for future
research issues.
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1 Introduction

Large-scale 3D point cloud and LIDAR (Light Detection And Ranging) technique are
hot topics that gradually emerges and become ubiquitous in recent years, mainly used
for large-scale 3D point cloud generation. Currently acquisition of both indoor and
outdoor environments is widely developed and used in many fields such as navigation,
architecture and real estate, and is getting popularity thanks to the appearance of 3D
laser scanning machines and range cameras.

Compared to other modeling techniques, the merits of point cloud data obtained by
LIDAR and Kinect are irreplaceable. First, the data is real and truthful, like the saying
“what you see is what you get”. Second, big scale data indicates millions of points or
even more, which contains rich information to be processed such as millimeter level
accuracy. However, the existing noise makes it difficult to calculate interlaced objects
like trees or other plants. Another shortage in current methods is the lack of combi-
nation of position, color and strength together to generate models. The existing algo-
rithms usually deal with point cloud position but ignore true color of each point, which
needs further improvement.

To achieve better results from the large-scale scanning point cloud data by LIDAR,
many studies have attempted to establish or improve the point cloud processing
algorithms. In these methods, the major challenge lies in how to identify the noise and
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classify the cluttered scene. Fortunately, there are some open source libraries emerged
for dealing with point cloud, i.e., Point Cloud Library (PCL) of [1], which is a fully
developed library for n-D Point Clouds and 3D geometry processing.

2 Point Cloud Processing

The processing of point cloud has already been developed and regulated as sophisti-
cated mechanisms. We summarize the basic steps for the point cloud processing as
shown in Fig. 1.

2.1 Filtering

Filtering is usually the first step for point cloud treatment, which deals with noisy
points, outliers, holes and data compression to obtain “clean” data.

Filtering methods have already been studied for a long time, [2, 3] similarly used
some filtering methods in order to detect target like plane terrain surface, classify
buildings as well as tiny elements such as electrical power lines. Act as an implement,
[4] used first pulse data to improve the result. Instead of classifying points in a local
neighborhood, [5] first segmented the point cloud into patches in which all points can
be connected through a smooth path of nearby points and then these segments were
classified based on their geometric relationships with the surrounding segments.

2.2 Feature Estimation

Feature as a key criterion plays important role in judging and estimating points. Local
feature and global feature are two ways of estimating curvature and the normal of
points. For feature estimation, [6] first developed a robust algorithm which can extract
surfaces, feature lines and feature junctions from noisy point clouds. Later improve-
ment involved [7] in whose work feature detection and reconstruction were recognized
as problem during input occurs, described by a point cloud.

Filtering
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Sample

Consensus
Surface
Generation

Fig. 1. Basic point cloud processing steps

268 X. Liu et al.



2.3 Key Point Extraction

Key point is also known as point of interest. Located on 3D point cloud or surface
model, it can be detected and obtained by defining some certain standards and then
extracting. Technically speaking, the number of such kind of points is far more less
than the one of original one, thus making it possible for us to analyze what we really
concern about. One thing to mention is that key point can be combined with local
feature descriptors to be considered as key descriptors, moving forward to compactly
represent the data we previously get from either Kinect or things like that. Some
famous descriptors like SIFT and SURF are often used in this procedure.

2.4 Registration

In the area of reverse engineering, computer vision and ones like digital heritage, point
clouds usually have defects such as incomplete data, translation and rotation disloca-
tion. In order to obtain a complete data model, an appropriate coordinate transformation
is needed, and sets of points obtained from different perspectives are merged into a
unified coordinate system, and then operations like visualization can be carried out.
When it comes to registration, [8] successfully handled a cluttered scene.

2.5 Segmentation

Segmentation is to assign a public label to similar region or surface. Methods in [9]
mentioned smoothness constraint. According to the work of [9], the segmentation
methods can be divided into 3 categories, where the target shape played as a judgment
criterion.

1. Edge based segmentation. Typical variations on this were reported earlier in [10,
11]. Two stages were included here: edge detection and points grouping. One was
to detect the outlines of the borders between different regions while the other mainly
generated final segments

2. Surface-based segmentation. The similarity measure lies on local surface properties
to conduct segmentation. Points with spatial distance and similar surface properties
are merged together. One of the good performances is its noise-resistance. Similar
to the previous one, surface-based segmentation also has two major categories:
bottom-up which starts from seed-pixels and then grow and top-down which starts
by putting the points together and fitting a single surface to it. [12, 13]

3. Scanline-based segmentation. Each row is considered as a scan-line and treated
independently with each other in the first stage. So this method is especially suitable
for range images. Typical application is [14] dealing with artificial construction.
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2.6 Sample Consensus

Methods like random Sample Consensus (RANSAC) and primitives like planes and
cylinders are commonly employed or combined freely in this procedure. Early work
used Voronoi point insertion in local tangent spaces and Moving Least Squares
(MLS) projection to realize the sampling. After that there was [15–17] in the same
period developing different version of Locally Optimal Projector (LOP) to effectively
overcome outliers and noise. While the latest work by [18] presented an edge-aware
manner which has higher robustness.

2.7 Surface Generation

Surface reconstruction is widely used in broad scope, ranging from data visualization,
machine vision to medical technology even aerospace. [2, 19, 20] are some latest
research in this field. Far more work has been done before. More discussions about
surface reconstruction will be included in the Sects. 3 and 4.

2.8 Data Structure

At the end of the pipeline of whole point cloud processing, we should pay much
attention to the data structure which is a key problem for point data storage and
processing, as high efficient structure has critical effects to the algorithm speed and
storage. Quick search method based on the neighborhood is realized here. [21] for the
kd-tree and [22] for the octree are all excellent research in this field.

3 Urban Environment Laser Scanning

One of our focuses is to analyze the commonly used methods on the point cloud of
outdoor large scenes, and from this part, we will focus on the Lidar information
acquisition and data processing of urban environment, which is used most as one kind
of large-scale scenes.

3.1 Target of Laser Scanning and Remote Sensing for Urban
Environment

Most research are engaged into the management of recovering single buildings or
downtown area, while newly rising of researches are aiming at residential area. It is
worth mentioning that [23] showed how to get detailed scanned data: two or more
rotating laser scanners were taken on a moving car, even a helicopter to scan in full
view.

Dense buildings: An earlier work [24] first worked out ways to rapidly and auto-
matically reconstructing large-scale model base on remote sensor data. The next year
saw an explosion of great work [25, 26]. Recently was [27] who proposed a 3D urban
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scene reconstruction method based on the exploration of properties of architectural
scenes. A supplement was [28] that considered trees and topologically complex
grounds almost at the same time.

Residential area reconstruction is a newly emerge interest topic. In contrast to
multiple-floors or high-rise buildings mentioned in [29–31] gave a unique idea to
decompose and reconstruct irregular low buildings. Another problem to address is the
dense trees that frequently appear in company with residential buildings. Aiming at
these areas, related research well defined the problem and found a comparatively clear
way to detect the vegetation. Other previous work include [32, 33].

3.2 Scanning Methods and Solutions

Great efforts have been dedicated to the 3D reconstruction of urban environments from
point data sets. But there are still challenges to be addressed when it comes to sig-
nificantly complex.

3.2.1 Manhattan-World (MW) Grammars
[26] combined the existing mapping and navigation databases with computer vision
methods following Manhattan World assumption. What’s more [34] developed the MW
methods so that an independent complete model can be obtained to describe buildings
with partial texture. Figure 2 shows the pipelines of the two methods for contrast. [25]
took MW into consideration and created flat roof models. Tracing back to [36] we found
an origin of this MW method. At that time researchers had observed that most indoor
and outdoor (city) scenes were designed on a Manhattan three-dimensional grid.

3.2.2 Aerial LiDAR Method
Many research efforts have addressed the complex problem of modeling cities from
aerial LiDAR data. Several automatic pipelines have been introduced by recent work
(e.g., [32, 37, 38]). The work above all removed some kinds of trees and noise, while

Fig. 2. Pipelines of Zheng et al. [26] (up) and Vanegas et al. [34] (down)
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the remaining objects were divided into ground points and building patches which were
gridded then.

There are still some problems to be solved so that objects other than planar can also
be reconstructed. Therefore works aiming at primitive emerged. Based on a RJMCMC
sampler, [39] established two steps to combine parametric models. Work [37, 40] also
addressed this problem and detected planes via user interaction. Studies [24, 35, 41, 42]
acted as implements to show this method.

3.2.3 Multi-view Stereo (MVS) Algorithm
Different from data captured by LiDAR methods, MVS combines various viewpoints
together. [27] proposed a 3D urban scene reconstruction method based on exploration
of properties of architectural scenes. Briefly, it utilized a given set of calibrated pho-
tographs to generate point clouds, and an MVS algorithm was used in the process,
whose details were given in [43]. [44] presented MVS imagery that sometimes had
spatially heterogeneous point distributions without induced adjacent relationships
among each two points, including outliers.

As a supplement was a patch-based MVS (PMVS) algorithm presented in [43]. It
used a sparse set of matched key points for matching, expanding and filtering. This
process was repeated until a visibility constraint to filter away false matches can be
applied.

3.3 Major Objects of Urban Remote Sensing

Several papers indicated that there were three representative elements in the urban
scenes we would concern about, namely buildings, trees and ground.

Buildings are one of the most important elements when dealing with urban envi-
ronment. Objects namely roof and wall are all focus of numerous studies. [19] well
interpreted the reconstruction of such parts (see Fig. 3). As illustrated on Fig. 4, [28]
simplified mesh-patches while keeping a high accuracy. Trees are always sort of
troublesome when it comes to accurate reconstruction. Although [31] truly involved
scenes as residential area, its treatment about trees was still a simplified template
matching method. The other method such as using billboard for trees’ representation
would be a shortcut, but from the street view, a more realistic tree modeling was more
necessary such as [45].

Fig. 3. Reconstruction of roof and wall Fig. 4. Simplified mesh-patches
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Ground independently can make up an important landscape no matter in which
fields. Point cloud related things mainly concentrate in surface reconstruction. A con-
tinuous surface is often used to represent ground. Generally speaking plane is con-
sidered as an imitation of ground.

3.4 Advantages/Disadvantages of Existing Methods

Because of the diversity and complexity of our references, limitations and contributions
cannot be completely included in this paper. Here we briefly give a summary as
following:

1. For Manhattan-World methods, there are mainly three limitations. MW assumption
results are the first one. Although the MW parts are efficiently reconstructed, there
are still lots of architecture not belongs to the type.

2. Second, according to a classification-depending idea, bad results may appear
owning to great amount of noise and missing data.

3. Third, all the work above cannot effectively handing data sets with tiny change or
poly tropic surface.

4 Indoor Scenes

The other of our focuses is to analyze the commonly used methods on the point cloud
of indoor scenes. In contrast to external surface of buildings which are relatively
piecewise flat, inside scenes are more complicated when it comes to 3D structures [46].
Let alone the endless furniture with various shapes, rooms in and out are also a big
problem (Fig. 5).

4.1 Scene Understanding

The major problem lies in the recognition of hundreds of objects; here we call them
same kind with different shapes. Even one same kind of objects can have several forms
(Fig. 6), thus increasing the difficulties when handling scanned data.

Fig. 5. Complex indoor scene Fig. 6. Different results in same search-
ing premise
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4.1.1 Separation
As addressed in [46] (see Fig. 7), classification and separation were interdependent
issues, and the realization triggered an algorithm which went through the whole room
by a search-classify region-growing process. [47] presented a method according to
texture and surroundings to identify objects. [48] presented an algorithm for indoor
scene separation. In the research classification labeled of features are detected and
separated via graph-cut to the whole scene. [49] combined color, depth and contextual
information together to realize a semantic labeling progress.

4.1.2 Classification
As mentioned above, the classification methods of 3D box around objects is adopted by
[50] while [51] made a supplement with physical considerations. Rather than the image
understanding background, [52] first pre-segmented the obtained points and then found
good way to detect repeating areas. The latest is [49] who used a graphical model to
learn features and contextual relations across objects.

Apart from the two sub-problems, Geometric priors for objects are also involved.
Similar to [53, 54] used geometry to represent individual objects, which were com-
monly utilized in understanding surroundings. Similar works include [55–57]. They all
engaged in understanding indoor objects and filling missing parts.

4.2 Scanning Techniques

Also thanks to the quick development of range camera, scanning becomes an easy task.
Among the vast literature, the possibility of real-time lightweight 3D scanning has been
early demonstrated by [59]. When it comes to the up-to-date techniques, [60] presented
a guided real-time scanning setup, where the incoming 3D data stream was continu-
ously analyzed, and the data quality was automatically assessed.

For further study, repetition [61], symmetry [62, 63] also got some notice. Primi-
tives as well played a role in the completion of missing parts. Other geometric proxies
and abstractions including curves, skeletons, planar abstractions, etc. have been used.
In the context of image understanding, indoor scenes have been abstracted and modeled
as a collection of simple cuboids [58] to capture a variety of man-made objects.

Fig. 7. Separation and classification outcome of Lee et al. [46]
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4.3 Scene Modeling

Several decades ago people have set about to use laser scanner on a mobile robot to
obtain indoor circumstance. Literature introduced ICP (iterative closest point) or
SLAM (simultaneous localization and mapping) techniques. However the limitation of
expensive hardware took the two to an end. However, For instance, parts can act as
entities for discovering repetitions [52], training classifiers, or facilitating shape syn-
thesis. In [60], multiple objects of a single category could also be represented by a
smaller set of part-based template. Expensive matching is usually a basement of these
approaches, along with no low memory footprint real-time realizations.

5 Conclusions

Point cloud and large-scale scenes based on optical acquisition are topics that are
gaining increasing attention by recent years, and new relative researches spring up
constantly. So far, remarkable progress has been made in both basic processing of
traditional point sets and newly developed approaches in scanning streets, parks and
households. Meanwhile, algorithms continuously appear to improve the previous ones.
What people have done not only solves the problems of understanding what a large
environment we are staying in, but also helps better drawing blue print for the coming
city construction as well as detailed decoration.

Challenges still exist and we need to do better jobs. Acquired models need to be
more accurate and less noisy, data sets need to be greatly enlarged, and results of
reconstruction also have much more to be revised.

With the development of technology, more accurate range cameras come into use
which will largely promote the solution and accuracy of point cloud. Besides, improved
algorithms can shorten the calculation time meanwhile enhance their robustness. The
expected result is to clearly obtain point data and successfully reconstruct all kinds of
architecture as much as possible. Trees, heritage buildings, and some irregular ones are
the main problems that to be solved.

This survey mainly provides an overview of the previous works, and relative
methods and ideas included should be further explored from the references in order to
gain a more over-all understanding. Our goal is to lay the foundation for the novices in
this field, and we hope we can give valuable insights into this important research and
encourage new ones.
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