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Abstract. A class of variable degree trigonometric polynomial spline is
presented for geometric modeling and industrial design. The correspond-
ing generalized Hermite-like interpolating base functions provide bias and
tension control facilities for constructing continuous interpolating curves
and surfaces. The constructed curves and surfaces by the new spline can
represent some conic and conicoid segments very approximately. The
new interpolation spline, which need not solve m-system of equations,
provides higher approximation order for data fitting than normal cubic
Hermite interpolation spline for proper parameters. The idea is extended
to produce Coons-like surfaces. Moreover, the new spline can be used for
trajectory planning of manipulators in industrial design, which provides
a continuity of position, velocity and acceleration, in order to ensure that
the resulting trajectory is smooth enough. The variable degree trigono-
metric polynomial spline can be used to fit the sequence of joint positions
for N joints. This new method approve to be practicable by the experi-
mental results, and can meet the requirements of smooth motion of the
manipulator.

Keywords: Curves and surfaces modeling · Hermite-like interpolation ·
Variable degree interpolation spline · Trajectory planning · Manipulator

1 Introduction

It is well known that Hermite interpolation and cubic spline interpolation are
powerful tools for image processing and geometric modeling by interpolating
curves and surfaces. However, they sometime can not exactly represent some
conic and conicoid segments. Moreover, curve shapes cannot be adjusted except
by their corresponding tangent vectors at the end points based on cubic Her-
mite interpolation model. On the other hand, as mentioned by Peña [11], the
importance of trigonometric polynomials is well known in electronics, medicine,
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geometric modeling and the area of industrial design [6,7,12]. A number of recent
papers deal with properties of trigonometric polynomials and their applications:
Mainar et al. [8] found some bases for the spaces {1, t, cos t, sin t, cos 2t, sin 2t},
{1, t, t2, cos t, sin t} and {1, t, cos t, sin t, t cos t, t sin t}. Mazure [9] character-
ized extended Chebyshev spaces by Hermite interpolation and Bernstein bases.
Morigi [10] considered a class of generalized polynomials consisting of the null
spaces of certain differential operators with constant coefficients which contain
ordinary polynomials and appropriately scaled trigonometric polynomials. Su
and Tan presented a class of C2 generalized B-spline like quasi-cubic blended
interpolation spline by trigonometric polynomials in [15] and discussed the geo-
metric modeling for interpolation surfaces based on blended coordinate system
in [14].

Note that these existing methods can deal with some free-form curves and
surfaces (FFC/FFS) and transcendental curves precisely due to the blending
bases of polynomial and trigonometric functions, but suffer from complicated
procedures in constructing interpolating curves and surfaces.

In 1966, Schweikert [13] introduced a generalization of the classical C2 cubic
interpolation spline. For each interval of the knot sequence x0 < x1 < · · · xN ,
the pieces that formed this new class of splines were taken from the four dimen-
sional space

span{1 − t, t,
1
ρ2i

(
sinh(ρi(1 − t))

sinh(ρi)
− (1 − t)),

1
ρ2i

(
sinh(ρit)
sinh(ρi)

− t)}, t =
x − xi

xi+1 − xi
,

where ρi are tension parameters and as ρi → +∞, the space tends to the space
of linear polynomials. Costantini [3] presented variable degree polynomial spline
(VDPS) given by span{(1 − t)μ, Pn−2, t

μ}.
In the area of industrial design, we know that manipulator trajectory plan-

ning plays an important role in modern industrial production. The aim of trajec-
tory planning is to generate a geometric path without collision in robot motion
space, which is expressed as a sequence of discrete points. In order to ensure
that manipulator can move smoothly when it makes high operating speed, we
need to design a continuous trajectory to interpolate the given points. So many
interpolation curves and corresponding optimal problem have been designed and
presented for these discrete given points, such as normal cubic spline curve, B-
spline curve, NURBS curve, and so on [2,5,12,16]. We now introduce the new
interpolating spilne for the manipulator trajectory planning.

The main purpose of this paper is to develop a new method for constructing
interpolating curves and surfaces based on generalized Hermite-like interpolation
polynomials. This approach has the following features:
– The introduced generalized Hermite-like base functions possess the properties

similar to those of cubic Hermite base functions. The introduced new inter-
polation spline is C2 continuous, and the degree of introduced interpolation
spline is variable with tension parameters μi and μi+1.

– The shapes of interpolating curves and surfaces by the introduced generalized
polynomials can be adjusted by both tension parameters μi and μi+1, and
corresponding tangent vectors at the end points.
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– With the tension parameters and interpolation points chosen properly, the
trigonometric polynomial curves can be used to represent straight lines,
parabola, circular arcs and some transcendental curves precisely, the corre-
sponding tensor product surfaces can also represent sphere and some quadric
surfaces exactly.

The rest of this paper is organized as follows: Sect. 2 discusses the construction
and properties of generalized Hermite-like interpolation polynomials. In Sect. 3,
we present a new class of variable degree trigonometric polynomial spline, and
analyze the related propositions. The applications via introduced spline in the
curves and surfaces modeling and manipulator trajectory planning are demon-
strated in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Quasi-Cubic Hermite-Like Interpolation Polynomials

As we know, normal cubic Hermite base functions of interpolation in the space
P3([0, 1]) := span{1, t, t2, t3} are defined by

F0(t) = 2t3 − 3t2 + 1, F1(t) = −2t3 + 3t2, G0(t) = t3 − 2t2 + t, G1(t) = t3 − t2, (1)

where t ∈ [0, 1]; Fi(t), Gi(t), (i = 0, 1) are cubic polynomials satisfying F0(t) +
F1(t) = 1 and G0(t) = −G1(1 − t).

The four base functions have end points properties:

F0(0) = 1, F1(0) = 0, F0(1) = 0, F1(1) = 1,
G0(0) = 0, G1(0) = 0, G0(1) = 0, G1(1) = 0,
F ′
0(0) = 0, F ′

1(0) = 0, F ′
0(1) = 0, F ′

1(1) = 0,
G′

0(0) = 1, G′
1(0) = 0, G′

0(1) = 0, G′
1(1) = 1.

(2)

These results motivate us to construct blending Hermit-like bases in generalized
spaces.

In the following we discuss the cubic Hermite-like interpolation models based
on base functions from span{1, cosπ

2 t, sinπ
2 t, cosπt, (cosπ

2 t)μ0 , (sinπ
2 t)μ1} and

span{1, tμ0 , (1 − t)μ0 , cosπt, (cosπ
2 t)μ1 , (sinπ

2 t)μ1}, t ∈ [0, 1], μ0 ≥ 2, μ1 ≥ 2.

Definition 1. For two arbitrarily selected real values of μ0, μ1 with μi ∈ R,
μi ≥ 2, (i = 0, 1), the following four functions in t are defined as trigonometric
Hermite polynomials (THP):

TF0(t) = (cosπ
2 t)2, TF1(t) = (sinπ

2 t)2,
TG0,μ1(t) = 2

π (sinπ
2 t − (sinπ

2 t)μ1), TG1,μ0(t) = − 2
π (cosπ

2 t − (cosπ
2 t)μ0), (3)

where t ∈ [0, 1].
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Simple calculations verify that

TF0(0) = 1, TF1(0) = 0, TF0(1) = 0, TF1(1) = 1,
TG0,μ1(0) = 0, TG1,μ0(0) = 0, TG0,μ1(1) = 0, TG1,μ0(1) = 0,
TF ′

0(0) = 0, TF ′
1(0) = 0, TF ′

0(1) = 0, TF ′
1(1) = 0,

TG′
0,μ1

(0) = 1, TG′
1,μ0

(0) = 0, TG′
0,μ1

(1) = 0, TG′
1,μ0

(1) = 1,

(4)

and TF0(t) + TF1(t) = 1, TG0,μ1(t) = −TG1,μ0(1 − t) for μ0 = μ1.

Definition 2. For two arbitrarily selected real values of μ0, μ1 with μi ∈ R,
μi ≥ 2, (i = 0, 1), the following four functions in t are defined as generalized
trigonometric Hermite polynomials (GTHP):

GTF0(t) = (cosπ
2 t)2, GTF1(t) = (sinπ

2 t)2,
GTG0(t) = − 1

μ0
((1 − t)μ0 − (cosπ

2 t)μ1), GTG1(t) = 1
μ0

(tμ0 − (sinπ
2 t)μ1), (5)

where t ∈ [0, 1].

Simple calculations verify that

GTF0(0) = 1, GTF1(0) = 0, GTF0(1) = 0, GTF1(1) = 1,
GTG0(0) = 0, GTG1(0) = 0, GTG0(1) = 0, GTG1(1) = 0,
GTF ′

0(0) = 0, GTF ′
1(0) = 0, GTF ′

0(1) = 0, GTF ′
1(1) = 0,

GTG′
0(0) = 1, GTG′

1(0) = 0, GTG′
0(1) = 0, GTG′

1(1) = 1,

(6)

and GTF0(t) + GTF1(t) = 1, GTG0(t) = −GTG1(1 − t).
These properties, like those of normal cubic Hermite polynomials, can be

used for two-point Hermite-like interpolating curves with parameters μ0 and μ1,
which are defined by

THμ0,μ1(t) = p0TF0(t) + p1TF1(t) + p′
0TG0,μ1(t) + p′

1TG1,μ0(t), (7)

GTHμ0,μ1(t) = p0GTF0(t) + p1GTF1(t) + p′
0GTG0(t) + p′

1GTG1(t), (8)

where μ0, μ1 ∈ R, μ0, μ1 ≥ 2, t ∈ [0, 1] and p0, p1, p′
0, p′

1 are position and
derivative vectors on both ends of the segment [0, 1].

For any selected μ0, μ1 and vectors p0, p1, p′
0, p′

1, THμ0,μ1(t) and GTHμ0,μ1(t)
all represent a unique curve and

THμ0,μ1(0) = GTHμ0,μ1(0) = p0, THμ0,μ1(1) = GTHμ0,μ1(1) = p1,
TH ′

μ0,μ1
(0) = GTH ′

μ0,μ1
(0) = p′

0, TH ′
μ0,μ1

(1) = GTH ′
μ0,μ1

(1) = p′
1.

Especially, if μ0 = μ1 = 2, we can get

TH2,2(t) = (1, cosπ
2 t, sinπ

2 t, cosπt)

⎛
⎜⎜⎝

1
2

1
2 − 1

π
1
π

0 0 0 − 2
π

0 0 2
π 0

1
2 − 1

2
1
π

1
π

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p0
p1
p′
0

p′
1

⎞
⎟⎟⎠ ,

and

GTH2,2(t) = (1, t, t2, cosπt)

⎛
⎜⎜⎝

1
2

1
2 − 1

4 − 1
4

0 0 1 0
0 0 − 1

2
1
2

1
2 − 1

2
1
4

1
4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p0
p1
p′
0

p′
1

⎞
⎟⎟⎠ .
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Fig. 1. The (a) and (c) show the families of four THP and GTHP base functions
respectively, dashed lines represent normal cubic Hermite base functions. The (b) and
(d) indicate the families of THP and GTHP curves for given p0, p1, p

′
0, p

′
1 respectively.

3 The Variable Degree Spline via Trigonometric
Polynomials

Definition 3. Given a knot vector U : x0 < x1 < · · · < xN . Let TSμ
3 = {s(x) ∈

C2[x0, xN ] s.t. s(x) ∈ TP
μi,μi+1
3 for x ∈ [xi, xi+1], i = 0, 1, · · · , N − 1}, where

TP
μi,μi+1
3 := span{1, cosπ

2 t, sinπ
2 t, cosπt, (cosπ

2 t)μi , (sinπ
2 t)μi+1}, t = x−xi

xi+1−xi
;

μi ≥ 2, μi+1 ≥ 2, μi, μi+1 ∈ R.
If s(x) ∈ TSμ

3 and s(xi) = yi, we call s(x) trigonometric Hermite-like inter-
polation spline(THIS).

Definition 4. Given a knot vector U : x0 < x1 < · · · < xN . Let GTSμ
3 =

{s(x) ∈ C2[x0, xN ] s.t. s(x) ∈ GTP
μi,μi+1
3 for x ∈ [xi, xi+1], i = 0, 1, · · · , N−1},

where
GTP

μi,μi+1
3 := span{1, tμi , (1 − t)μi , cosπt, (cosπ

2 t)μi+1 , (sinπ
2 t)μi+1}, t =

x−xi

xi+1−xi
, μi ≥ 2, μi+1 ≥ 2, μi, μi+1 ∈ R.

If s(x) ∈ GTSμ
3 and s(xi) = yi, we call s(x) generalized trigonometric Hermite-

like interpolation spline (GTHIS).
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Let hj−1 = xj − xj−1, λj−1 = hj

hj−1+hj
, j = 1, 2, · · · , N .

From Definitions 3 and 4, we set

TH
μi,μi+1
j,3 (x(t)) = yj−1TF0(t) + yjTF1(t) + hj(mj−1TG0,μ1(t) + mjTG1,μ0(t)),

GTH
μi,μi+1
j,3 (x(t)) = yj−1GTF0(t) + yjGTF1(t) + hj(mj−1GTG0(t) + mjGTG1(t)),

j = 0, 1, · · · , N − 1.

(9)

Note: In the different interval, we can replace μ0 and μ1 in the above base
functions in Eq. (9) respectively. Correspondingly, TG0,μ1 � TG0,μi+1 , TG0,μ0 �
TG0,μi

.
We now know that TH

μj−1,0,μj−1,1
j−1,3 (x(t)) and GTH

μj−1,0,μj−1,1
j−1,3 (x(t))

are C1 continuous. But if we suppose that TH
μj−1,0,μj−1,1
j−1,3 (x(t)) and

GTH
μj−1,0,μj−1,1
j−1,3 (x(t)) are C2 continuous, then mj , (j = 0, 1, · · · N) must be

solved. We can suppose

d2

dx2
TH

μj−1,0,μj−1,1
j−1,3 (x−

j ) =
d2

dx2
TH

μj,0,μj,1
j,3 (x+

j ), (10)

d2

dx2
GTH

μj−1,0,μj−1,1
j−1,3 (x−

j ) =
d2

dx2
GTH

μj,0,μj,1
j,3 (x+

j ), (11)

j = 1, 2, · · · , N − 1.

(1) Now we discuss the functions of TH
μj−1,0,μj−1,1
j−1,3 (x(t)).

If μ0 = μ1 = 2, we get

λjmj−1 + 2mj + (1− λj)mj+1 = π[
1− λj

hj+1
(yj+1 − yj) +

λj

hj
(yj − yj−1)], j = 1, 2, · · · , N − 1.

Given initial values m0 = y′
0,mN = y′

N , we can solve the Eq. (10) for mj ,
(j = 1, 2, · · · , N − 1). Especially, if hj = hj+1 = 1, j = 0, 1, · · · , N − 1, then
we get: ⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0
1 4 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 4 1
0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

m0

m1

...
mN−1

mN

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

y′
0

π(y2 − y0)
...

π(yN − yN−2)
y′

N

⎞
⎟⎟⎟⎟⎟⎠

(2) For the functions of GTH
μj−1,0,μj−1,1
j−1,3 (x(t)) from Eq. (11), we have

(i) If μj−1,0 = μj−1,1 = 2, then

(
π2

4
−1)λjmj−1+(

π2

4
+1)mj+(

π2

4
−1)(1−λj)mj+1 =

π2

2
[
1 − λj−1

hj

(yj+1−yj)+
λj−1

hj−1
(yj −yj−1)],
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j = 1, 2, · · · , N − 1.
(ii) If μj−1,0 = 2, μj−1,1 > 2, then

λj−1mj−1+kjmj +(1−λj−1)mj+1 =
π2

2
[
1 − λj−1

hj
(yj −yj+1)+

λj−1

hj−1
(yj−1−yj)],

where kj = −π2

8 [(1 − λj−1)μj,1 + λj−1μj−1,1] − 1, j = 1, 2, · · · , N − 1.
(iii) If μj−1,1 = 2, μj−1,0 > 2, then

π2

2μj−1,0
λj−1mj−1 +kjmj +

π2

2μj,0
(1− λj−1)mj+1 =

π2

2
[
1 − λj−1

hj

(yj+1 − yj)+
λj−1

hj−1
(yj − yj−1)],

where kj = λj−1[(μj−1,0 − 1) + π2

2μj−1,0
] + (1 − λj−1)[(μj,0 − 1) + π2

2μj,0
], j =

1, 2, · · · , N − 1.
Also with the initial values of m0,mN , we can solve the mj(j = 1, 2, · · · , N −1)

from the above equations.
(iv) If μj−1,0 > 2, μj−1,1 > 2, we get

mj =
π2

2kj
[
1 − λj−1

hj
(yj+1 − yj) +

λj−1

hj−1
(yj − yj−1)],

where kj = λj−1[(μj−1,0 − 1) + π2

4
μj−1,1
μj−1,0

] + (1 − λj−1)[(μj,0 − 1) + π2

4
μj,1
μj,0

], j =
1, 2, · · · , N − 1.

Note: In this conditions of (iv), we do not need to solve the linear system for
mj , (j = 0, 1, · · · , N) to construct the cubic Hermite-like interpolation spline
GTH

μj−1,0,μj−1,1
j−1,3 (x(t))

Example 1: Given g(x) = sinx
x , knot vector U := (0, π

2 , π, 3π
2 ) and correspond-

ing derivative values g′(xj) := (0,− 4
π2 ,− 1

π , 4
9π2 ), (j = 0, 1, 2, 3). If we interpo-

late the values of function g(x) and corresponding derivative values g′(xj) at the

0 1 2 3 4 5
−0.4

0

0.4

0.8

1.2
GTHSI curves
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y=sin(x)/x

(a)

0 1 2 3 4 5

−0.25
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Fig. 2. (a) The figures of function g(x), normal cubic interpolation spline curves and
GTHIS curves with µ0 = µ1 = 3. (b) The figure describes the interpolation errors
associated with GTHIS curves and normal cubic interpolation spline curves.
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knots, we can obtain a GTHIS curve by choosing μ0 = μ1 = 3 without solving
m-system of equations (See: Fig. 2(a)). Figure 2(b) indicates the error function
of interpolation spline associated with the GTHIS spline and cubic polynomial
spline, which shows that the GTHIS spline has a better approximation order
than cubic interpolation spline.

4 The Applications by Introduced Variable Degree Spline

4.1 The Applications of Introduced Spline in the Curves
and Surfaces Modeling

Let us suppose that p′
0 = k0u0 and p′

1 = k1u1, where u0 := p′
0

||p′
0|| , u1 := p′

1
||p′

1|| . By
varying k0 and k1, we can obtain an infinite family of curves, all of which have
the same end points and slopes, but entirely different interior shapes.

Given four points q0, q1, q2 and q3 with (qi ∈ Rn, n ∈ N, i = 0, 1, 2, 3), we can
obtain a trigonometric model for p0 := q0, p1 := q1, p

′
0 := q2 − q0, p

′
1 := q3 − q1.

In this case, a new class of geometric forms is obtained by

THμ0,μ1 (t) = q0TB0,μ0,μ1 (t) + q1TB1,μ0,μ1 (t) + q2TB2,μ0,μ1 (t) + q3TB3,μ0,μ1 (t), (12)

GTHμ0,μ1 (t) = q0GTB0,μ0,μ1 (t) + q1GTB1,μ0,μ1 (t) + q2GTB2,μ0,μ1 (t) + q3GTB3,μ0,μ1 (t),

(13)

where μ0, μ1 ∈ R, μ0, μ1 ≥ 2, t ∈ [0, 1].

Proposition 1. Using the above notations, we have:

TB0,μ0,μ1 (t) = cos2 π
2 t − 2

π sin π
2 t + 2

π sinμ1 π
2 t, TB1,μ0,μ1 (t) = sin2 π

2 t + 2
π cos π

2 t − 2
π cosμ0 π

2 t,

TB2,μ0,μ1 (t) = 2
π (sin π

2 t − sinμ1 π
2 t), TB3,μ0,μ1 (t) = − 2

π (cos π
2 t − cosμ0 π

2 t),

(14)

GT B0,μ0,μ1 (t) = cos2 π
2 t + 1

μ0
(1 − t)μ0 − 1

μ0
cosμ1 π

2 t, GT B1,μ0,μ1 (t) = sin2 π
2 t − 1

μ0
tμ0 + 1

μ0
sinμ1 π

2 t,

GT B2,μ0,μ1 (t) = − 1
μ0

(1 − t)μ0 + 1
μ0

cosμ1 π
2 t, GT B3,μ0,μ1 (t) = 1

μ0
tμ0 − 1

μ0
sinμ1 π

2 t.

(15)

Parabola, circular arcs and some transcendental curves can be repre-
sented precisely by choosing proper q0, q1, q2, q3 and μ0, μ1. Denote TH(t) :=
THμ0,μ1(t), GTH(t) := GTHμ0,μ1(t) and TBi(t) := TBi,μ0,μ1(t), GTBi(t) :=
GTBi,μ0,μ1(t), (i = 0, 1, 2, 3) in the remainder of the paper. For example:

(i) Let q0 = q2 and q1 = q3. Then TH(t) = GTH(t) = q0cos
2 π
2 t +q1sin

2 π
2 t

= q1 + (q0 −q1)cos2 π
2 t. So TH(t) and GTH(t) all represent a line segment pre-

cisely in these conditions.

(ii) Let q0 = 2
π (q1 − q3), q1 = 2

π (q2 − q0) and μ0 = μ1 = 2, (∗)
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or let q1 − q0 = 2
π (q3 + q2 − q1 − q0) and μ0 = μ1 = 2. (∗∗)

Then TH(t) represents a segment of elliptic arc for proper q0, q1, q2, q3.
In fact, under the conditions of (∗), we can get TH(t) = q0cos

π
2 t + q1sin

π
2 t.

Especially, if q0 = (1, 0), q1 = (0, 1), then q2 = (1, π
2 ), q3 = (−π

2 , 1). So
TH(t) = (cosπ

2 t, sinπ
2 t).

Under the conditions of (∗∗), we can get TH(t) = q0 + 2
π (q3 − q1) + 2

π (q1 −
q3)cosπ

2 t + 2
π (q2 − q0)sinπ

2 t. So we know that TH(t) can represent a segment of
circular and elliptic arc precisely (See: Fig. 3(a)).

(iii) Let μ0 = μ1 = 2. By simple calculations, we know that both TH(t) and
GTH(t) represent quadratic polynomial curves. In fact, from (14) and (15), we
have

1 = TB0(t) + TB1(t) + TB2(t) + TB3(t),
sinπ

2
t = TB1(t) + TB3(t) + π

2
TB2(t),

sin2 π
2
t = TB1(t) + TB3(t).

(16)

1 = GTB0(t) + GTB1(t) + GTB2(t) + GTB3(t),
t = GTB1(t) + GTB2(t) + 2GTB3(t)
t2 = GTB1(t) + 3GTB3(t).

(17)

(iv) If q0 − q2 = q1 − q3, q0 = −q1 and μ0 = μ1 = 2, then GTH(t) =
1
2 (q0 − q2) + (q2 − q0)t + 1

2 (q0 + q2)cos(πt). So GTH(t) can represent a segment
of sine or cosine curve for proper q0, q2. Especially, if q0 = (1, 1), q2 = (−1, 1),
then GTH(t) = (x(t), y(t)) = (1 − 2t, cos(πt)), t ∈ [0, 1]. So GTH(t) represents
a segment of sine curves (See: Fig. 3(b)).

(v) If q0 = −q2, q3 = 3q1 and μ0 = 2, μ1 = 2, then GTH(t) = q0(1 − t)2 + q1t
2.

So GTH(t) can represent the curve
√

x +
√

y = 1 precisely for proper q0, q1.
Especially, if q0 = (1, 0), q1 = (0, 1), then GTH(t) = (x(t), y(t)) = ((1 − t)2, t2),
t ∈ [0, 1]. So

√
x +

√
y = 1 (See: Fig. 3(c)).

We can generalize the methods, which are used to construct THP and GTHP
curves, to bicubic Coons-like surfaces.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

THP curve
Circular arc

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
GTH(t)
y=sin(πx/2)

(b)
0 0.5 1

0

0.5

1

GTHP curve
Original curve

(c)

Fig. 3. (a) A segment of circular arc is represented precisely by THP curves. (b) A
segment of sine curves is represented precisely by GTHP curves. (c) A segment of
curves with

√
x +

√
y = 1 is represented precisely by GTHP curves.
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Definition 5. If H(u, v) is a bivariate continuous vector function defined in
the parameter domain of [0, 1] × [0, 1], we can construct a bicubic Hermite-like
interpolating surface SH(u, v) = H(u)·M ·T (v) which interpolates the end points
and corresponding tangent vectors:

H(u) = (TH0(u), TH1(u), TH2(u), TH3(u));T (v) = (TH0(v), TH1(v), TH2(v), TH3(v))
T

C =

⎛
⎜⎜⎝

H(0, 0) H(0, 1) H ′
v(0, 0) H ′

v(0, 1)
H(1, 0) H(1, 1) H ′

v(1, 0) H ′
v(1, 1)

H ′
u(0, 0) H ′

u(0, 1) H ′′
uv(0, 0) H ′′

uv(0, 1)
H ′

u(1, 0) H ′
u(1, 1) H ′′

uv(1, 0) H ′′
uv(1, 1)

⎞
⎟⎟⎠ .

Given the values of function H(u, v), corresponding tangent vectors and up to
second partial derivatives at the end points, we can construct THP surfaces and
GTHP surfaces by corresponding THP polynomials (3) and GTHP polynomi-
als (5).

Figure 4(a1) offers a segment of sphere and interpolating surfaces, Fig. 4(b1)
indicates the error function of original surface and interpolating surface associ-
ated with bicubic Hermite interpolation polynomials, Fig. 4(c1) shows the error
function associated with original surface and THP surface.

Figure 4(a2) offers another original function of H(u, v) = (x(u, v),
y(u, v), z(u, v)) associated with x(u, v) = eu+v, y(u, v) = eu−v, z(u, v) = uv and
interpolating surface, Fig. 4(b2) indicates the error function of original surface
H(u, v) and interpolating surface associated with bicubic Hermite interpolation
polynomials, Fig. 4(c2) explains the error function associated with GTHP sur-
face and surface H(u, v).

Fig. 4. The figures of original surface, interpolating surface, and corresponding error
functions by THP and GTHP interpolation respectively.
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From these figures we know that the interpolating surfaces associated with
the THP surface for the first original function and the GTHP surface for the
second original function have a better approximate order than the interpolating
surface associated with bicubic Hermite interpolating polynomials.

4.2 The Applications of Introduced Spline in the Manipulator
Trajectory Planning

In this section, we consider the applications of introduced spline in the manipula-
tor trajectory planning. Our goal is to find a path which connects the given start
point and the target point, and make the manipulator move smoothly between
the two end points while avoiding all obstacles in the motion. In our approach,
the variable degree spline interpolation based method is applied to construct
the trajectory. Moreover, the generated trajectories have continues values of the
accelerations without solving equations system, and thus ensures the smooth-
ness of the trajectory. The generation process of trajectories with the variable
degree spline possess the lower computational complexity than the one via nor-
mal polynomial spline method.

Given a sequence of data points qi, (i = 0, 1, · · · , N) in joint space of manip-
ulation, planning manipulator trajectory with the variable degree interpolation
spline. The input data point has been taken to be the same as in [16], in order
to make a comparison with the results obtained from the experiment. Let four
data points in joint space, q0(0, 60), q1(1,−50), q2(3, 80), q3(4, 100), the time is
used as the X-axis and the joint angle is used as the Y-axis. Given the initial
conditions, acceleration is zero in start and end points. Here, we compare the
acceleration curves via the variable degree interpolation spline with the one by
cubic spline and the cubic triangular Bézier spline [16] in Fig. 5.

(a) (b) (c)

Fig. 5. The acceleration curves via the cubic spline (a), the cubic triangular Bézier
spline [16] (b), and the variable degree interpolation spline (c)

As stated in the foregoing, we described the trajectory of manipulator. How-
ever, in modern industrial production, the speed of operation directly affects
the productivity. If the manipulator can achieve the maximized the speed of
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operation, the traveling time must be minimized. Therefore, the optimiza-
tion problem is to adjust the time intervals between via-points such that the
total traveling time is minimum. There are N joints which must be consid-
ered. Now, for the joint j (1 � j � N), let q1, q2, · · · , qn be the via-points
in joint space and t1, t2, · · · , tn be the sequence of time instants corresponding
to the via-points; let hi = ti+1 − ti (i = 1, 2, · · · , n − 1) be the time interval
between two consecutive via-points and ai be the acceleration of the interpola-
tion qi,Sj,i(t) � GTH

μj,0,μj,1
j,3 (x(t)) be the variable degree interpolation spline

for the jth joint defined on the interval [ti, ti+1]. It is assumed that the position,
velocity, acceleration are continuous on this time interval. Sj,i(t), S′

j,i(t), S
′′
j,i(t)

and S′′′
j,i(t) (t ∈ [ti, ti+1]) are the position, velocity, acceleration and jerk between

the via-points qi and qi+1 respectively. The v1 and vn, a1 and an are joint veloc-
ities and joint accelerations at the initial time t = t1 and at the terminal time
t = tn. According to the definition of quasi-cubic Hermite-like interpolation
polynomials, we have:

Sj,i(x(t)) = qj,iGTF0(t) + qj,i+1GTF1(t) + hi(vj,iGTG0(t) + vj,i+1GTG1(t))

S′
j,i(x(t)) =

1
hi

(qj,iGTF ′
0(t) + qj,i+1GTF ′

1(t)) + vj,iGTG′
0(t) + vj,i+1GTG′

1(t)

S′′
j,i(x(t)) = ( 1

hi
)2(qj,iGTF ′′

0 (t) + qj,i+1GTF ′′
1 (t)) + 1

hi
(vj,iGTG′′

0 (t) + vj,i+1GTG′′
1 (t))

S′′′
j,i(x(t)) = ( 1

hi
)3(qj,iGTF ′′′

0 (t) + qj,i+1GTF ′′′
1 (t)) + ( 1

hi
)2(vj,iGTG′′′

0 (t) + vj,i+1GTG′′′
1 (t))

j = 1, 2, · · · , N, i = 1, 2, · · · , n − 1

(18)

From Eq. (11), let μ = 3, we have:

vj,i = 2π2

8+π2 [
1−λi−1

hi
(qj,i+1 − qj,i) +

λi−1
hi−1

(qj,i − qj,i−1)], i = 2, · · · , n − 1, j = 1, 2, · · · , N

(19)

In order to apply the mathematic model, the kinematics constraints should be
formulated, for convenience, let

V Cj = velocity constraint for the jth joint
WCj = acceleration constraint for the jth joint
JCj = jerk constraint for the jth joint

The optimal problem is formulated mathematically as follows.
Objective function:

Minimize T =
n−1∑
i=1

hi (20)

Constraints:
⎧⎪⎨
⎪⎩

|S′
j,i(x(t))| � V Cj ,

|S′′
j,i(x(t))| � WCj , j = i, · · · , N, i = 1, · · · , n

|S′′′
j,i(x(t))| � JCj ,

(21)
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Table 1. Input data for trajectory planning

Joint Via-points(deg)

1 2 3 4

1 120 90 45 0

2 −10 60 40 100

3 0 −20 30 70

Table 2. Kinematics limits of the joints

Joint Velocity(deg/s) Acceleration(deg/s2)

1 100 70

2 95 75

3 100 75

Table 3. Simulation results

The above constraints can be expressed in explicit forms by Eqs. (18) and (19)
as follows: Objective function:

Minimize T =
n−1∑
i=1

hi

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max{|vj,i|, |vj,i+1|} + π
2hi

|pi+1 − pi| + π
4

√
v2

j,i + v2
j,i+1 � V Cj ,

π2

2h2
i

|pi+1 − pi| + 2vj,i+1
hi

+ 3π2
8hi

√
v2

j,i + v2
j,i+1 � WCj ,

π3

2h3
i

|pi+1 − pi| + 2(vj,i+vj,i+1))

h2
i

+ 9π3

16h2
i

√
v2

j,i + v2
j,i+1 � JCj ,

hi � max
|qj,i+1−qj,i|

V Cj
,

j = 1, · · · , N, i = 1, · · · , n

(22)

since hi are the time parameters, and should be subject to a lower bound.
Here, we briefly described the optimization algorithm and will achieve the exper-
iment in simulation for manipulator. The input data has been taken to the same
as in [2] (Table 1).
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5 Conclusions and Discussions

We have proposed a new class of Hermite-like interpolation polynomials and
a variable degree trigonometric polynomial interpolation spline. The technique
enhances the control capability of curves and surfaces with the control points
and parameters μ0 and μ1. In addition, we can replace parameters μ0 and μ1

by different parameters μi and μi+1 in the different interval. So the new curves
are locally-controllable via the different parameters μi and μi+1. Moreover, the
introduced curves can represent straight lines, polynomial curves, conics and
some transcendental curves precisely (Tables 2 and 3).

For CAD field, the four points form a control polygon and these control
points can be used to adjust curve shape in a predictable and natural way. The
form of generalized interpolation model is a good candidate for use in an inter-
active environment to design curves for CAD system and in computer graphics
applications.

The new interpolation methods can offer higher approximation order than
normal Hermite polynomial interpolation method, but do not need to solve m-
system of equations for proper parameters.

Experiment results show the new presented spline can be introduced in the
area of industrial design. It has a better approximation order with GTHIS spline
than the case with the cubic interpolation spline in the curves and surfaces mod-
eling, and we can design a continuous trajectory to interpolate the given points in
the trajectory planning to ensure that manipulator can move smoothly when it
makes high operating speed. The generation process of curves and surfaces mod-
eling and trajectories planning with the variable degree spline possess the lower
computational complexity than the one via normal polynomial spline method.
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