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Abstract. Online social networks have become increasingly popular,
where users are more and more lured to reveal their private information.
This brings about convenient personalized services but also incurs pri-
vacy concerns. To balance utility and privacy, many privacy-preserving
mechanisms such as differential privacy have been proposed. However,
most existent solutions set a single privacy protection level across the net-
work, which does not well meet users’ personalized requirements. In this
paper, we propose a fine-grained differential privacy mechanism for data
mining in online social networks. Compared with traditional methods,
our scheme provides query responses with respect to different privacy
protection levels depending on where the query is from (i.e., is distance-
grained), and also supports different protection levels for different data
items (i.e., is item-grained). In addition, we take into consideration the
collusion attack on differential privacy, and give a countermeasure in
privacy-preserving data mining. We evaluate our scheme analytically,
and conduct experiments on synthetic and real-world data to demon-
strate its utility and privacy protection.

Keywords: Differential privacy · Online social networks · Privacy-
preserving data mining · Collusion attack

1 Introduction

Online social networks (OSNs) are increasingly involved in our daily life. Driven
by various OSN applications, large number of profiles are uploaded. Mean-
while, the tendency towards uploading personal data to OSNs has raised privacy
concerns. Debates on privacy leakage in OSNs [1–3] have continued for years.
Although users have certain degree of privacy concerns, actually such concerns
would not be converted into any actions [1]. The contradiction between privacy
and utility calls for better privacy mechanisms in OSNs.
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Twomain aspects ofOSNs’ privacy researches are privacy-preserving datamin-
ing (PPDM) [4] and privacy-preserving data publishing (PPDP) [5], which respec-
tively achieves data mining and data sharing goals without privacy leakage. k-
anonymity [6] is one of the most widely used anonymity models, which divides
all records into several equivalence groups and hides individual records in groups.
Later models like l-diversity [7], t-closeness [8], and (a, k)-anonymity [9] are pro-
posed to enhance the privacy guarantee in various environments. Nevertheless, it
has been shown that former anonymity models are susceptible to several back-
ground knowledge attacks [10]. The notion of differential privacy [11] is proposed in
the context of statistical databases, which provides a mechanism resistent to back-
ground knowledge attacks. Differential privacy provides a quantifiable measure-
ment of privacy via a certain parameter ε. A query is said to satisfy ε-differential
privacy, if when an individual item in a data set is added or removed, the proba-
bility distribution of the query answers varies by a factor of exp(ε). Thus curious
users cannot deduce the individual item from the query answer.

Most previous work on differential privacy assigns the same privacy protec-
tion levels (i.e., ε) to all users in the network. However, in practice, heterogeneous
privacy requirements are needed [12–15]. Users tend to allow people who are more
closed to them (e.g., families, close friends) to get more accurate information,
whereas those who are just acquaintances or strangers obtain obscure data. In
addition, items in each user’s data set require various privacy protection levels.
For example, individual users may regard their telephone numbers as very pri-
vate information that should not be leaked to strangers, whereas some business
accounts need to publish their telephone numbers so as to get in touch with
potential consumers.

Since existing privacy techniques cannot satisfy the increasing and heteroge-
nous privacy demands, finer-grained privacy-preserving mechanisms are required
in OSNs. In this paper, we propose a fine-grained differential privacy mechanism,
and the merits of our scheme can be summarized as follows:

• First, each query satisfies ε-differential privacy, where ε varies with the dis-
tance between users (i.e., distance-grained).

• Second, each user can assign different privacy protection levels for different
items in their respective data set (i.e., item-grained).

• Third, our scheme is resistent to the collusion attack in OSNs.

Our work adopts some techniques in [16,17], and combines the merits of
them. In addition, our work extends the application scenario in [16] to PPDM,
and proposes a new method to resist the collusion attack.

This paper is organized as follows. We present the preliminaries in Sect. 2, and
provide the problem formulation in Sect. 3. Section 4 gives an implementation
approach to our scheme. The theoretical analysis is proposed in Sect. 5. Section 6
presents experimental results, followed by conclusions in Sect. 7.
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2 Preliminaries

2.1 Differential Privacy

Differential privacy is originally introduced by Dwork [11]. The privacy guarantee
provided by differential privacy is implemented via adding noise to the output of
the computation, thus curious users cannot infer whether or not the individual
data is involved in the computation.

Definition 1 (ε-Differential Privacy). A random function M satisfies ε- dif-
ferential privacy if for all neighboring data sets D and D′, and for all outputs
t ∈ R of this randomized function, the following statement holds:

Pr[M(D) = t] ≤ exp(ε) Pr[M(D′) = t],

in which exp refers to the exponential function. Two data sets D and D′ are
said to be neighbors if they are different in at most one item. ε is the privacy
protection parameter which controls the amount of distinction induced by two
neighboring data sets. A smaller value of ε ensures a stronger privacy guarantee.

We can achieve ε-differential privacy by adding random noise whose magni-
tude is decided by the possible change in the computation output over any two
neighboring data sets. We denote this quantity as the global sensitivity.

Definition 2 (Global Sensitivity). The global sensitivity S(f) of a function
f is the maximum absolute difference obtained on the output over all neighboring
data sets:

S(f) = max
D∼D′

|f(D) − f(D′)|.

To satisfy the differential privacy definition, two main mechanisms are usually
utilized: the Laplace mechanism and the Exponential mechanism. The Laplace
mechanism is proposed in [18], which achieves ε-differential privacy by adding
noise following Laplace distribution. Between the two mechanisms, the Laplace
mechanism is more suitable for numeric outputs.

Definition 3 (Laplace Mechanism). Given a function f : D → R, the mech-
anism M adds Laplace distributed noise to the output of f :

M(D) = f(D) + V, where V ∼ Lap(
S(f)

ε
),

where Lap(S(f)
ε ) has probability density function hε(x) = ε

2S(f) exp(−ε|x|
S(f) ).

2.2 Related Work

The notion of differential privacy was introduced by Dwork [11]. After that, dif-
ferential privacy has been a popular privacy-preserving mechanism in PPDM and
PPDP. However, most previous work focuses on theoretical aspects. In this paper,
we propose a fine-grained differential privacy mechanism in OSNs scenario.
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The majority of previous work on fine-grained differential privacy provides
user-grained privacy protection levels [14], where each user can set a person-
alized protection parameter (i.e., ε). Yuan et al. [19] considered personalized
protection for graph data in terms of both semantic and structural information.
However, considering the heterogeneous privacy need of different items in users’
data sets, finer-grained mechanisms are required. Alaggan et al. introduced a
mechanism [17] named heterogeneous differential privacy (HDP), HDP allows
users set different privacy protection levels for different items in each data set,
and Jorgensen et al. [15] extends HDP to Exponential mechanism of differ-
ential privacy. In our scheme, we adopt some techniques in [17] to realise the
item-grained differential privacy.

Different from user-grained differential privacy, distance-grained differential
privacy mechanism decides parameter ε by where the query is from. To the
best of our knowledge, Koufogiannis et al. proposed the first distance-grained
mechanism in [20], and later introduced a modified distance-grained differential
privacy mechanism in PPDP [16].

Furthermore, few works take into consideration the collusion attack on dif-
ferential privacy. Although the collusion attack does not leak private informa-
tion directly, it expands the parameter ε, thus loosing the privacy guarantee of
the system. Zhang et al. [21] designed a collusion resistent algorithm in PPDM
which combines multiparty computation and differential privacy. Koufogiannis
et al. [16,20] proposed mechanisms to address this problem in PPDP.

Inspired by previous work, we design a fine-grained differential privacy mech-
anism in OSNs. Although some of the tools in [16,17] are leveraged to provide
a solution, we consider a different problem which applies to PPDM rather than
PPDP. In PPDM scenario, the users related to a query can be two random users
in the network, which makes resisting the collusion attack more difficult.

3 Problem Formulation

3.1 System Model

Consider an OSN represented as a graph G = (N,E), where N is the set of
nodes and E is the set of edges connecting pair of nodes in N . Each node in
N represents a user in the network and each edge represents the friendship
relationship between users. Each user owns a data set D, which is denoted by
an n dimensional vector D = [b1, b2, ..., bn].1

There exist three parties in our model: server, data owner, and inquirer.

• Server usually is a service provider, such as Twitter, Facebook. The server
stores the topology of G and users’ data sets. In our scheme, we assume that
the server is a trusted third party, which means that it will not leak any
information to others, and will always return actual distance between users.

• Data owner is a user in the network, owning a data set D that to be queried.
• Inquirer is a user in the network, who submits a query Q to the server.

Moreover, each user in the network can be both data owner and inquirer.
1 Without of causing confusing, we interchangeably use node and user in this paper.
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Fig. 1. System Illustration Fig. 2. A network example with 7
nodes, nodes 5–7 constitute group A.

In practice, a data mining task can be a numerical computation of D and Q,
or a searching task on data sets. We define f(D) as an arbitrary function of D,
where f(D) is defined by specific data mining tasks, and M(D) is a modified
f(D) that satisfies differential privacy by adding noise V . As Fig. 1 shows, Ui

is the data owner, Uj is the inquirer. When the server receives Uj ’s query Q,
it computes M(D), where D is the data set of Ui. After the computation, the
server returns the query answer yij to Uj in proper methods (e.g., returns the
IDs of the users whose computation results satisfy Q, or returns the computation
results directly), where yij = M(D) = f(D) + V .

3.2 Fine-Grained Differential Privacy

We propose a fine-grained differential privacy mechanism which assigns different
protection levels for different inquirers (i.e., distance-grained differential privacy)
and simultaneously satisfies different privacy levels for each dimension of D
(i.e., item-grained differential privacy).

A. Distance-grained Differential Privacy
Practically, under a query, users are willing to give more accurate data to closed
people, whereas return obscure result to people with distant relationship. In our
scheme, we use shortest path length to measure the relationship between users.

More specifically, inquirer Uj gets a result that ensures ε(dij)-differential pri-
vacy, where dij denotes the shortest path length between the data owner Ui

and inquirer Uj . If dij is smaller, ε(dij) should be larger, i.e., ε(dij) is inversely
proportional to dij .

B. Item-grained Differential Privacy
Usually, items in D have heterogeneous privacy expectations. For instance, D
contains hobbies, locations, jobs, and other personal information of a specific
user. The user may consider locations are sensitive information that should
not be known by other users, whereas be willing to share his hobbies with
others. Thus the user can set higher privacy levels (i.e., smaller ε) for the
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items of locations, In our scheme, every user can set a privacy weight vector
W = [w1, w2, ..., wn], where each element wk represents the privacy weight asso-
ciated to the kth item bk in D with wk ∈ [0, 1]; smaller wk ensures stronger
protection, where 0 corresponds to absolute privacy while 1 refers to standard
ε(dij)-differential privacy.

Consequently, whenever an inquirer Uj submits a query for data owner Ui to
the server, he will get a perturbed answer satisfies wkε(dij)-differential privacy
for each dimension.

3.3 Collusion Attack

In practice, users in the network can share information with each other. As Fig. 2
shows, assuming that there is a group A, each user in A has a query answer yij

about data owner Ui’s data set D. When users in group A share their query
answers, they may derive a more accurate estimate of D, even though each user
owns a highly noisy answer of the query.

Theorem 1. For a group of users A, where each user has a query answer yij

that satisfies ε(dij)-differential privacy, they can derive an estimator yA that
ensures (

∑
Uj∈A ε(dij))-differential privacy under collusion.

Proof:. To simplify the proving process, we assume that group A has two users:
Uj1 and Uj2 . We set yij1 = M1(D) = f(D) + V1, yij2 = M2(D) = f(D) + V2.

Pr[M1(D) = yij1 ,M2(D) = yij2 ]
Pr[M1(D′) = yij1 ,M2(D′) = yij2 ]

=
Pr[M1(D) = yij1 ] Pr[M2(D) = yij2 ]
Pr[M1(D′) = yij1 ] Pr[M2(D′) = yij2 ]

=
hε(dij1 )

(yij1 − f(D))
hε(dij1 )

(yij1 − f(D′))
hε(dij2 )

(yij2 − f(D))
hε(dij2 )

(yij2 − f(D′))

=
exp(−ε(dij1 )|yij1−f(D)|

S(f) )

exp(−ε(dij1 )|yij1−f(D′)|
S(f) )

exp(−ε(dij2 )|yij2−f(D)|
S(f) )

exp(−ε(dij2)|yij2−f(D′)|
S(f) )

≤ exp(
ε(dij1)|f(D′) − f(D)|

S(f)
) exp(

ε(dij2)|f(D′) − f(D)|
S(f)

)

≤ exp(ε(dij1)) exp(ε(dij2)) = exp(ε(dij1) + ε(dij2)).

Therefore, when the collusion attack happened, the privacy protection para-
meter will be the sum of colluded users’ ε(dij).

Although collusion attacks will not leak data owners’ information directly, it
expands the parameter ε, thus loosing the privacy guarantee of the system.

According to the proof of Theorem 1, we can infer that the collusion attack
works when the noise additions are independent of each other. Therefore, we
should introduce correlations between the noise additions added to different
query answers. In order to meet practical requirements, any group of users cannot
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derive a better estimator than the most accurate answer among the group, i.e.,
the answer of the inquirer who is closest to the data owner in the group.

Theorem 2. For a group of users A, where each user has a query answer yij

that satisfies ε(dij)-differential privacy, and the noise additions of yij are corre-
lated to each other, the best estimator yA ensures (maxUj∈A ε(dij))-differential
privacy.

Proof: To simplify the proving process, we assume that group A has two users:
Uj1 and Uj2 . yij1 = M1(D) = f(D) + V1, yij2 = M2(D) = f(D) + V2, where
φ(V2 − V1) is the conditional probability density function of Pr[V1|V2].

Pr[M1(D) = yij1 ,M2(D) = yij2 ]
Pr[M1(D′) = yij1 ,M2(D′) = yij2 ]

=
Pr[M2(D) = yij2 ] Pr[M1(D) = yij1 |M2(D) = yij2 ]

Pr[M2(D′) = yij2 ] Pr[M1(D′) = yij1 |M2(D′) = yij2 ]

=
hε(dij2 )

(yij2 − f(D))
hε(dij2 )

(yij2 − f(D′))
φ(yij1 − f(D) − (yij2 − f(D)))
φ(yij1 − f(D′) − (yij2 − f(D′)))

=
exp(−ε(dij2 )|yij2−f(D)|

S(f) )

exp(−ε(dij2 )|yij2−f(D′)|
S(f) )

φ(yij1 − yij2)
φ(yij1 − yij2)

≤ exp(ε(dij2)).

4 Scheme Implementation

In this paper, we take user matching as the example of data mining in OSNs,
and give a particular implementation approach to our scheme.

User matching is a common application in OSNs, where the server computes
the similarity between users’ data sets. Therefore, D is data owner’s profile; Q
is another n dimension vector [q1, q2, ..., qn], which refers to the user attributes
that the inquirer searching for, it can be inconsistent with the inquirer’s profile;
f(D) is computing the similarity between Q and D.

There are many methods to evaluate the similarity between data
(e.g., Euclidean distance, Cosine similarity). We choose Euclidean distance
fQ(D) =

√∑n
i=0(bi − qi)2 as the evaluation criterion (i.e., f(D)), where for

binary vectors, S(f) = max
D∼D′

|fQ(D) − fQ(D′)| = 1.

We define the similarity between user Ui and Uj as 1
fQ(D) . According to

former analysis, the value of ε of each user should be inversely proportional to
dij . We set ε(dij) = 1

dij+1 .
The working flow of our scheme consists of three phases: creating correlations,

query process, and updating perturbations.
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4.1 Creating Correlations Phase

Creating correlations is the most crucial and innovative phase in our scheme. The
correlation should ensure that each noise addition follows Laplace distribution,
which makes the perturbations satisfy differential privacy.

Theorem 3. Consider two noise additions V1 ∼ Lap( 1
ε1

), V2 ∼ Lap( 1
ε2

), where
ε1 < ε2. V1 and V2 are correlated with a conditional probability Φ, where Φ has
the density:

φ(x) = (1 − ε21
ε22

)
ε1√
2π

√
ε1xK− 1

2
(ε1x), (1)

where K is the modified Bessel function of the second kind.

Proof: See the Appendix.

We denote (1) as bessel distribution, and its input parameters are ε1 and ε2.
Although Koufogiannis et al. [16] introduce similar method to address this

problem by building correlations, we design a novel correlation creation mecha-
nism, which is more suitable for PPDM.

We can see edges of the network as the bridges to build up the correlations
between nodes. In our scheme, each edge is assigned a perturbation vector, in
which each element represents the sampling noise for different distances. In addi-
tion, each node is assigned an initial perturbation, which will not change once
the node joined in the network.

Algorithm 1 illustrates the method to assign perturbations over the network.
In the algorithm, the largest dimension of each edge’s perturbation vector is
decided by the diameter of the network. Real OSNs’ diameters are usually small
numbers: according to the networks’ data in SNAP2 database, the Facebook
network with 4039 nodes has a diameter of 8, the Gowalla network with 196591
nodes only has a diameter of 14. This property of OSNs guarantees that we only
need to save a vector of small size for each edge. In our scheme, perturbation is
a sample of the bessel distribution density, which denotes the amount of noise
added to the query answer when passing by the edge.

4.2 Query Process Phase

In query process phase, the inquirer submits a query to the server, and tells
the server the data owner of this query. The server uses the scalar product of
W and D to compute fQ(W · D), and adds noise to the computation result,
where the noise is the sum of the perturbations on each edge in the shortest
path from the inquirer to the data owner (if there exists more than one shortest
path between two nodes, the algorithm randomly picks one of the paths). We
illustrate the noise computation process in Algorithm 2. The query answer is
denoted as yij = M(D) = fQ(W · D) + V .

2 https://snap.stanford.edu/data/index.html.

https://snap.stanford.edu/data/index.html
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Algorithm 1. Perturbation Assignment
for node in G.nodes() do

Rnode ∼ Laplace(1) // Assign initial perturbations
end for
l = G.diameter()
ε[l] = [1, 1

2
, ..., 1

l+1
]

for (j1, j2) in G.edges() do
i = 0
while i < l do

perturbationj1,j2 [i] = bessel(ε[i], ε[i + 1])
i = i + 1

end while
end for

Algorithm 2. Noise Computation
Input: Data Owner Ui, Inquirer Uj

path[ ] = shortest path(i, j) //path consists of nodes in the shortest path sequentially
N = 0
for (t=0; t < len(path) − 1; t++) do

dis = shortest path length(i, path[t + 1])
N = N + perturbationpath[t],path[t+1][dis]

end for
noise = N + Ri

4.3 Updating Perturbations Phase

In addition to the collusion attack, repeat queries may also cause privacy leakage.
If a certain inquirer receives two query answers with the same noise, he can
deduce the noise and know the real data sequentially. So perturbation vectors
should be updated after each query.

In Algorithm 3, we randomly update half of the perturbations used in the
former query, which simultaneously ensures the correlations between noise addi-
tions and saves the computation cost.

5 Theoretical Analysis

Our scheme provides privacy protection for both the data sets and their cor-
responding privacy weight vectors. The privacy protections guaranteed by our
scheme are:

• Each query answer provides ε(dij)-differential privacy for data owner’s data
set D. More specifically, each dimension satisfies wkε(dij)-differential privacy.

• Each query answer provides ε(dij)-differential privacy for data owner’s privacy
weight vector W .

• Noise additions for different inquirers are correlated.
• Noise additions before and after update are correlated.
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Algorithm 3. Perturbation Update
Input: path of the former query

m = �len(path)/2� //Compute the number of updated edges.
K = [ ]
for (t=0; t < m; t++) do

K[t] = random(0, len(path) − 1)
end for
for (t=0; t < len(path); t++) do

j1 = path[t], j2 = path[t + 1]
if t in K then

perturbationj1,j2 [t + 1] = bessel(ε[t], ε[t + 1])
end if

end for

5.1 Privacy Analysis

Theorem 4. Our scheme ensures that each query answer satisfies ε(dij)-
differential privacy.

Proof: See data owner’s data set as a whole, the query answer satisfies:

Pr[M(D) = t]
Pr[M(D′) = t]

=
hε(dij)(t − f(D))
hε(dij)(t − f(D′))

=
ε(dij)
2S(f) exp(−ε(dij)|t−f(D)|

S(f) )
ε(dij)
2S(f) exp(−ε(dij)|t−f(D′)|

S(f) )

= exp(
ε(dij)(|t − f(D)| − |t − f(D′)|)

S(f)
)

≤ exp(
ε(dij)|f(D′) − f(D)|

S(f)
) ≤ exp(ε(dij)),

where hε(·) is defined in Theorem 1, thus proving the result.

Theorem 5. The random function M provide wkε(dij)-differential privacy for
each dimension of D.

Proof: First, we use Sk(f) to denote the local sensitivity of function f :

Sk(f) = max
D∼D(k)

|f(D) − f(D(k))|,

where D and D(k) are neighboring data sets which are different in the kth
element. In addition, S(f) = max(Sk(f)).

In our scheme, the input of function f is W · D rather than D, and Alaggan
et al. proves that Sk(f) ≤ wkS(f) in [17].
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So, we have:

Pr[M(W · D) = t]
Pr[M(W · D′) = t]

=
hε(dij)(t − f(W · D))
hε(dij)(t − f(W · D′))

=
ε(dij)
2S(f) exp(−ε(dij)|t−f(W ·D)|

S(f) )
ε(dij)
2S(f) exp(−ε(dij)|t−f(W ·D′)|

S(f) )

≤ exp(
ε(dij)|f(W · D) − f(W · D(k))|

S(f)
)

≤ exp(
ε(dij)Sk(f)

S(f)
) ≤ exp(

ε(dij)wkS(f)
S(f)

)

= exp(wkε(dij)),

thus concluding the proof.

Theorem 6. The random function M provide ε(dij)-differential privacy for
each individual privacy weight W .

Proof: W and W ′ are privacy weight vectors, and they differ in the kth element
in each data set. So W · D and W ′ · D are neighboring data sets.

Pr[M(W · D) = t]
Pr[M(W ′ · D) = t]

=
hε(dij)(t − f(W · D))
hε(dij)(t − f(W ′ · D))

=
ε(dij)
2S(f) exp(−ε(dij)|t−f(W ·D)|

S(f) )
ε(dij)
2S(f) exp(−ε(dij)|t−f(W ′·D)|

S(f) )

≤ exp(
ε(dij)|f(W · D) − f(W ′ · D)|

S(f)
)

≤ exp(
ε(dij)S(f)

S(f)
) = exp(ε(dij)),

thus concluding the proof.

5.2 Correlation Analysis

We use Monte-Carlo method to verify the correlation between noise. For univer-
sality, we simulate the process on the network example as shown in Fig. 2, where
node 1 is the data owner, nodes 2–7 gets the query answer of the same query,
respectively.

Specifically, we run the perturbation algorithm for over 100000 times, and
use (2) to compute the Pearson Correlation Coefficient between results.

r =

n∑

i=1

(xi − x̄)(yi − ȳ)
√

n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2
(2)

In Fig. 3, each blue dash line represents one set of results, the red solid line
is the average of all computation results. As shown in Fig. 3(a), after repeated
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iterations, the correlation coefficient between two different nodes converges to
0.78, which indicates that noise additions of different nodes are correlated.

Other than the collusion attack from a group of users, a single user can
exploit the results he received to deduce more information. Therefore, to avoid
this attack, different noise additions of the same query should be correlated, and
they should be correlated to other nodes’ noise additions as well.

(a) (b)

(c) (d)

Fig. 3. Correlation analysis by Monte-Carlo method: the x-dimension value is the iter-
ation time in Monte-Carlo method, the y-dimension value is the correlation coefficient.
(a) shows the correlation coefficient between two nodes’ noise additions; (b)(c) show
correlation coefficients after 50 and 100 updates, respectively; (d) shows the correlation
of different nodes’ noise after update. (Color figure online)

In our scheme, we update the assigned perturbations after each query.
Figure 3(b) and (c) illustrate that the noise additions after 50 and 100 updates
are still correlated with the original noise, and the correlation coefficient does
not decrease with the increasing of the number of updates. We can observe that
the correlation coefficient eventually converges to 0.68.

Meanwhile, Fig. 3(d) shows that the noise additions of different nodes after
updates are still correlated.

6 Experiments

6.1 Data Sets

The experiments involve three networks’ data: one synthetic network data and
two real-world data. Real-world data come from the SNAP database.
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• BA Network: BA model is a description of scale-free networks, which has
the most similar topology to real OSNs. In our experiment, we use a BA
network with 100 nodes and 291 edges. In addition, we build the data sets of
each nodes by randomly choose 20 integer numbers from 0 to 10.

• Facebook: The Facebook network used in this experiment contains 213 nodes
and 10305 edges. Each user keeps a data set as a 224 dimensional binary vector
which includes user’s name, locations, jobs, etc.

• Gowalla: Gowalla is a location-based social networking website where users
share their locations by checking in. The network we use in this experiment
consists of 34378 nodes and 626658 edges. The data that each user keeps is a
two dimensional vector of latitude and longitude.

6.2 Privacy Performance

To demonstrate the privacy performance of our scheme, we compare the query
results of different users. For better illustration, we modify W yet the query
Q remains the same. Figure 4(a) and (b) shows the similarity variation in BA
network and Gowalla network, respectively. We vary two elements in W from 0
to 1 in each network, where the step size is 0.1.

(a) BA (b) Gowalla

Fig. 4. The similarity between certain Q and D rises with the increase of w, where
w represents the element we changed in private weight vectors, and w ∈ [0, 1]. (Color
figure online)

The experiments show that the similarity rises with the increase of the ele-
ments in W , which is consist with our design goals that small w means stronger
privacy protection. In addition, our results also illustrate that the similarities
decrease as the distance increasing, which shows that our scheme realises the
distance-grained differential privacy.

6.3 Utility Performance

In many practical user matching situations, the server often returns k IDs
of users who have the top k similarities with Q instead of one user’s ID. In
our experiments, the server returns 20 most similar users’ IDs to the inquirer.
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We evaluate the utility of our scheme by comparing the query answers with
accurate query results. We define the precision as the ratio of correct IDs (i.e.,
IDs exist in accurate query result) to the size of query answer (i.e., 20). Figure 5
shows the query precision in BA network, Facebook network, and Gowalla net-
work, respectively. According to Sect. 6.2, privacy weight vectors have a great
impact on the query answers. If a particular user wants to hide several elements
in his data set (i.e., set quite small values to corresponding locations in the pri-
vacy weight vector), the query answers related to that user may significantly
differ from the real answer. Therefore, to give a universal evaluation, we assume
that all users set their privacy weight vectors as vectors of all ones, which satisfies
the standard differential privacy protection.

(a) BA (b) Facebook (c) Gowalla

Fig. 5. Precision of the query answers in (a)BA, (b)Facebook, and (C)Gowalla net-
works. Each point represents a query answer, where the x-dimension value is the preci-
sion, while y-dimension is the deviation between received query answers and real query
answers. In the thermodynamic diagram, dark points represent the points shows up
more frequently, yet the light color ones are those just occur occasionally.

In our scheme, query answers from distant data owners have larger noise,
whereas close data owners add less noise to query answers. As a result, the IDs
that inquirers received may contain more close data owners rather than real
similar users, which may impact the precision of this experiment. However, from
Fig. 5, we can observe that the majority of query answers have a precision value
larger than 0.7, which proves that our scheme still provides good utility.

7 Conclusions

PPDM is an important issue in OSNs. However, most previous work assigns same
privacy protection levels to all users in the network, which cannot satisfy users’
personalized requirements. In this paper, we propose a scheme that provides fine-
grained differential privacy for data mining in OSNs. Our scheme provides both
distance-grained and item-grained differential privacy. Specifically, each inquirer
in the network receives a query answer that satisfies wkε(dij)-differential privacy
for each item in data owner’s data set.
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In addition, we investigate the collusion attack on differential privacy, and
give a solution to this problem in PPDM. Finally, we conduct experiments on
both synthetic and real-world data. Experiments show that our scheme guaran-
tees good utility as well as good privacy protection.
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Appendix

Proof of Theorem 3: Assume that V1 ∼ Lap( 1
ε1

), V2 ∼ Lap( 1
ε2

), where ε1 < ε2.
The conditional probability Pr[V1|V2] has a density function φ(x). Additionally,
V1 = hε1(x) = ε1 exp(−ε1|x|), V2 = hε2(y) = ε2 exp(−ε2|y|). We use g(x, y) to
denote the joint distribution density of V1 and V2. So g(x, y) holds:

g(x, y) = φ(y − x)h(x) (3)

The density (3) should satisfy the following marginal distributions:
∫ ∞

−∞
g(x, y)dy = hε1(x)

∫ ∞

−∞
g(x, y)dx = hε2(y) (4)

The Eq. (4) could be seen as a convolution operation
∫ ∞

−∞ φ(y−x)hε1(x)dx =
hε2(y). We use Convolution Theorem to solve this equation:

Fφ(s) =
Fhε2

(s)
Fhε1

(s)
, (5)

where F denotes Fourier Transform. According to (5), we get:

Fφ(s) =
Fhε2

(s)
Fhε1

(s)
=

1 − s2

ε22

1 − s2

ε21

= (
ε1
ε2

)2(1 +
ε22 − ε21
ε21 + s2

)

We set b(x) = |x|1− n
2 Kn

2 −1(|x|), where K denotes the modified Bessel func-

tion of the second kind, and Fb(s) = (2π)
n
2

1+s2 . So,

F−1
φ (s) = (

ε1
ε2

)2[δ(x) + (
ε22
ε21

− 1)
ε1√
2π

√
ε1xK− 1

2
(ε1x)]

φ(x) � (1 − ε21
ε22

)
ε1√
2π

√
ε1xK− 1

2
(ε1x)

More relevant details about the proof are given by Koufogiannis et al. in [16].
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