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Abstract. Bitcoin as deployed today does not scale. Scalability research
has focused on two directions: (1) redesigning the Blockchain proto-
col, and (2) facilitating ‘off-chain transactions’ and only consulting the
Blockchain if an adjudicator is required. In this paper we focus on the
latter and provide an overview of Bitcoin payment networks. These con-
sist of two components: payment channels to facilitate off-chain transac-
tions between two parties, and the capability to fairly exchange bitcoins
across multiple channels. We compare Duplex Micropayment Channels
and Lightning Channels, before discussing Hashed Time-Locked Con-
tracts which enable Bitcoin-based payment networks. Finally, we high-
light challenges for route discovery in these networks.

1 Introduction

The Bitcoin community fears that Bitcoin [11], the ‘Money for the Internet’ and
currently the most popular cryptocurrency, cannot scale to meet future demand.
Today, the network can process 3.3–7 tps (transactions per second) due to an
artificial cap of 1 MB blocks and recent research [5] highlights that 90% of the
network can only achieve an effective throughput of up to 27 tps. This is dwarfed
by established payment providers such as Visa, which facilitates about 2,000 tps,
with a peak capacity of 56,000 tps [21].

Bitcoin’s capacity limitations are increasingly felt by users in the form of
delayed transaction processing and rising transaction fees. Users currently pay
about 3 to 7 US cents per transaction (independent of the amount transferred).
The costs of sending a transaction could continue to rise as competition for
space in the Blockchain increases and the protocol’s monetary policy continually
reduces the minting of new coins that rewards ‘miners’ for securing the network.

A simple short-term fix to increase Bitcoin’s capacity would be to increase
the maximum block size, allowing more transactions to be included in each block.
While multiple such proposals exist [1,8,12], none have actively been adopted
as the community cannot agree if the size of blocks should be increased at all,
incrementally, dynamically or whether an artificial cap is required at all.

Long-term research has focused on two directions to improve scalability:
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1. Redesigning the underlying Blockchain protocol to support more transactions
per second [2,7,9,18], and

2. Facilitating ‘off-chain transactions’ where transactions are only committed to
the Blockchain if an adjudicator is required [6,14].

This paper explores the latter direction and investigates payment networks
that facilitate off-chain transactions, using the Blockchain only as a settlement
system. Payment networks are attractive as they require only two transac-
tions to be committed to the Blockchain in order to represent all intermediary
transactions, they allow bitcoins to be routed across a series of Payment Ser-
vice Providers (PSPs) without any trust-assumptions, and they provide double-
spending prevention as any payment requires the recipients cooperation. Most
importantly, depositors using payment networks are guaranteed to receive their
fair share of a channel’s balance at any point in time.

Payment networks can be split into two major components: payment channels
that sends bitcoins between two parties off-chain and the capability to fairly
exchange bitcoins across two or more of such channels. In this paper, we first
present important concepts of Bitcoin and its underlying lock time rules that
enable simple unidirectional and bidirectional payment channels (Sect. 2). Then,
we explore and compare more complex payment channel constructions such as
Duplex Micropayment Channels and Lightning Channels (Sect. 3). After that,
we discuss Hashed Time-Locked Contracts that guarantee the fair exchange of
bitcoins across two or more channels (Sect. 4) and highlight challenges for route
discovery in these payment networks (Sect. 4.3).

2 Background

We first introduce the necessary background about Bitcoin and its transaction
lock time rules used by payment networks. Then, we present how to establish
and send bitcoins in basic payment channels with an untrusted counterparty.

2.1 Bitcoin

Bitcoin is a decentralized transaction system, based on a peer-to-peer network
and a probabilistic consensus mechanism [11]. In Bitcoin, addresses are the equiv-
alent of accounts in traditional payment systems, used to send and receive funds.
An address is a cryptographic hash of a public key, and the corresponding private
key is used to spend coins by digitally signing transactions. Addresses provide
users with a degree of anonymity and it is recommended practice not to reuse
them when receiving bitcoins to preserve the user’s privacy. Technically, bit-
coins are not strictly sent to a Bitcoin address. Instead, bitcoins are associated
with redemption criteria specified in a Forth-like script language. Authorising a
transfer of coins requires satisfying these criteria. The two most popular script
programs are the ‘Pay to public key hash’ that requires a signature corresponding
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to an address, and the ‘Pay to script hash’ that, among others, enables multi-
signature addresses which require a threshold of m signatures from n public
keys.

Coins are transferred via transactions which have one or more inputs and one
or more outputs. Each output specifies the number of bitcoins sent and the script
program, whereas each input provides a reference to a previous transaction’s
output and the redeem script (e.g., a corresponding signature) that satisfies
the output’s spending conditions. Transactions cannot send more bitcoins than
provided in the inputs, and there are no rules on how the bitcoins are split
amongst the outputs. Also, transaction signers can choose to include a fee that
is deducted from the available bitcoins to spend.

Transactions are serialized in blocks that form a public ledger called the
Blockchain. Bitcoin’s blockchain is updated approximately every ten minutes,
each update corresponding to a new block that contains recent transactions. For
a block to be valid, it must be cryptographically linked with a previous block and
provide a solution to a computationally difficult ‘puzzle’. Miners are rewarded
for each block with a fixed amount of bitcoins and all transaction fees paid by
transactions in the block. The chain of blocks that solves the most computa-
tionally difficult puzzles is accepted by the network as the genuine Blockchain
and the position of a block in this chain is called ‘height’. Due to the lottery
process of solving the puzzle, more than one block can be found at the same
time, leading to uncertainty at the tip of the chain. A transaction is therefore
regarded as ‘confirmed’ once the block that includes it has achieved a depth of
at least six blocks from the tip of the chain [11].

The time dimension given by the block heights and timestamps enables two
lock time rules that are fundamental to payment channels:

Absolute Lock Time ensures an entire transaction1 or a child transaction that
is spending an output of a parent transaction2 cannot be accepted into the
Blockchain until a specified absolute block height k (or time) in the future,

Relative Lock Time ensures a child transaction that is spending an output of
a parent transaction cannot be accepted into the Blockchain until the parent
transaction has achieved a relative depth of λ blocks3.

2.2 Payment Channel Establishment

A payment channel allows two parties to send numerous payments to each other.
Instead of settling all transactions directly on the Blockchain, a payment channel
only requires two transactions: one to open the channel, and one to close it
and settle the final balance. The cornerstone of payment channels is depositing
bitcoins into a multi-signature address controlled by both parties and having the
guarantee that all bitcoins are eventually refunded at a mutually agreed time if
the channel expires.
1 The nLockTime field of the transaction.
2 The output’s script contains the OP CHECKLOCKTIMEVERIFY opcode.
3 The output’s script contains the OP CHECKSEQUENCEVERIFY opcode.
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Spilman [19] proposed the first payment channel establishment protocol with-
out the need to trust the counterparty. This protocol has a Funding Transaction
that stores the depositor’s bitcoins and requires the authorisation of both parties
to spend, and a Refund Transaction that returns the funds to the depositor if
no payments have been authorized or the counterparty abandons the protocol.
The lock time on the refund determines the lifetime of the payment channel. To
establish the channel, the Funding Transaction is created by the depositor and
remains unpublished until she received valid signatures for the Refund Transac-
tion from the counterparty.

Another possibility to realise refunds is through Non-Interactive Time-
Locked Refunds, that recently became available in Bitcoin with the activation
of BIP 65 [20]. Non-Interactive Time-Locked Refunds account for the channel
timeout directly in the multi-signature output of the Funding Transaction, which
means that dedicated refund transactions are no longer necessary. Once the
Absolute Lock Time specified in the output’s script has expired, the refund con-
dition can be redeemed without the cooperation of the counterparty. While the
output can only refund a single party, refunding multiple parties is possible with
dedicated multi-signature outputs representing each participant’s deposit.

In practice, the use of payment channel protocols is currently hindered by the
problem of transaction malleability and the infeasibility to build upon unsigned
transactions. Transaction malleability allows a co-signer or an external third
party to change the identification hash of a transaction before it is accepted
into the Blockchain. This is a problem for contracts that sign child transactions
before the parent transaction, whose outputs are being spent, is included in the
Blockchain. If a modified parent transaction is accepted into the Blockchain,
then all pre-signed child transactions become invalid. Furthermore, it is impos-
sible to build upon unsigned transactions as adding signatures to a transaction
changes its identification hash. BIP 66 [22] has been deployed to prevent third-
party signature malleability, but co-signer and other types of malleability remain.
BIP 141 [10], however, solves these malleability issues and allows to build upon
unsigned transactions, and is likely to be deployed soon.

2.3 Basic Payment Channels

We introduce unidirectional and bidirectional channels that leverage the Funding
Transaction’s multi-signature output. The establishment protocol in Sect. 2.2
is used to set up both channels. Bitcoins are sent using subsequent Payment
Transactions that have two outputs to send each party their respective bitcoins.

Unidirectional channels were first implemented by Corallo in Bitcoinj [3]
to allow a customer to send incremental payments to a merchant. Each payment
has two outputs: the first increases the amount of bitcoins sent to the merchant,
and the second returns change to the customer. This introduces the Replace by
Incentive rule as the merchant only signs and broadcasts the latest Payment
Transaction that sends them the most bitcoins. Payments can be made until the
channel expires or the whole deposit has been transferred to the merchant.
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Bidirectional channels require the Payment Transaction to be associated
with an Absolute Lock Time. Each incremental payment decrements the lock
time by a safety margin Δ that represents the expected time for transactions
to be accepted into the Blockchain. This introduces the Replace by Timelock
rule as the latest Payment Transaction is guaranteed to be accepted into the
Blockchain before any previously authorised transaction. Each payment requires
both parties to exchange signatures and reduces the channel’s lifetime.

3 Proposed Payment Channel Protocols

In this section, we outline two proposals for payment channels. The first one
is called Duplex Micropayment Channels, due to Decker and Wattenhofer [6].
It extends the number of transactions that can occur within the lifetime of a
bidirectional channel. The second one is called Lightning Channels, proposed by
Poon and Dryja [14], and allows the channel to remain open indefinitely.

3.1 Duplex Micropayment Channels

Decker and Wattenhofer propose Duplex Micropayment Channels which enable
bidirectional payment channels with a finite lifetime [6]. Their scheme builds
upon an initial Funding Transaction with deposits from two parties A and B. It
consists of two Unidirectional channels CAB , CBA that together allow bidirec-
tional payments, and an Invalidation Tree that sets the minimum lifetime of the
channel and is responsible for resetting the bitcoins available to spend in both
channels CAB , CBA. This reset is necessary as Alice may receive 1 BTC from
Bob in the unidirectional channel CBA, but her unidirectional channel to Bob
CAB has exhausted its supply of bitcoins. To continue bidirectional payments it
is necessary to refresh CAB with Alice’s 1 BTC.

The core idea of Duplex Micropayment Channels is to apply the Replace by
Timelock rule (cf. Sect. 2.3) using a tree of timelocked transactions instead of
a single transaction. This structure is called an Invalidation Tree, exemplarily
shown in Fig. 1. The nodes in the tree represent Bitcoin transactions; each edge
corresponds to the spending of the previous node’s output and is signed by
both parties. Each transaction Td,k has a depth d in the tree and is associated
with an Absolute Lock Time k. Nodes in the active branch (T1,k, T2,k, ..., Td,k)
have Absolute Lock Times that are less than previously authorised branches.
This guarantees that the active branch is accepted into the Blockchain before
previously authorised branches.

The leaf node Td,k on the active branch has two outputs to represent each
unidirectional channel CAB and CBA. Each output can be spent if either of the
following conditions is satisfied:

1. The first condition requires the signature of both parties to authorise a Pay-
ment Transaction.
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Fig. 1. Duplex Micropayment Channels. A Funding Transaction is stored in
the Blockchain. All payments occur in the unidirectional channels. If either channel
becomes exhausted, then a new branch is created in the Invalidation Tree with a
smaller Absolute Time Lock k. This invalidates all previous branches, and resets the
balance of both unidirectional channels. For illustration Δ = 1.

2. The second condition requires the signature of the depositor and that the cur-
rent Blockchain height is greater than an Absolute Lock Time kmax. This lock
time kmax is the maximum waiting time before the bitcoins can be returned
to the depositor using a Refund Transaction.

Payments are sent in the unidirectional channels CAB , CBA as the sender
signs subsequent Payment Transactions that have two outputs: the first sends
bitcoins to the receiver, while the second returns change to the sender. The
Replace by Incentive rule implies that the receiver will only sign the Payment
Transaction that sends them the most bitcoins. If the receiver is unresponsive,
the depositor is guaranteed to have their bitcoins refunded once the maximum
lifetime of the channel kmax expires. It is possible to reset the balance of both uni-
directional channels once a channel has exhausted its supply of bitcoins. Reset-
ting the channels requires replacing the current active branch in the Invalidation
Tree with a new branch whose leaf node Td,k acts as an anchor for a new set of
unidirectional channels.

In the following, we explain how to establish the channel, send bidirectional
payments, reset the balance of both Unidirectional channels and finally settle
the payment channel on the Blockchain.

Channel Establishment. First, both parties combine their funds in an
unsigned Funding Transaction. Then, they build the first branch (T1,k, T2,k, . . . ,
Td,k) of the Invalidation Tree and exchange signatures for the branch and the
Payment Transactions that represent the unidirectional channels CAB , CBA.
Finally, both parties sign and broadcast the Funding Transaction.
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The Absolute Lock Time kmax of the Refund Transaction should exceed the
Absolute Lock Time of the leaf node Td,k by at least a safety margin Δ. This
ensures that the unidirectional channels have enough time to be accepted into
the Blockchain before the Refund Transactions become available to spend.

Send a Payment. Each payment requires the sender to sign a new Payment
Transaction. The receiver only signs the transaction that sends them the most
bitcoins if they want to settle a dispute on the Blockchain. If either unidirectional
channel has exhausted its supply of bitcoins, then both parties must cooperate
to reset the balance of both channels before further payments can be made.

Reset Balance. Resetting the balance of the unidirectional channels requires
both parties to agree a new active branch in the Invalidation Tree.
Figure 1 demonstrates several branch replacements. An example includes
the current active branch (T1,99, T2,99, T3,99) replacing the previous branch
(T1,99, T2,99, T3,100).

First, both parties find the first node Tα,k closest to the leaves that has
a greater Absolute Lock Time than it’s parent node by a safety margin of Δ,
otherwise the root node T1,k is chosen.

Second, a new branch is created, starting with the chosen node whose
Absolute Lock Time is decremented by the safety margin Δ (i.e. Tα,k−Δ). Each
child node in this new branch is given an Absolute Lock Time greater than k−Δ
(e. g., the maximum value initially chosen when the tree was established). As lock
times are transitive, the reduced lock time of the parent transaction automat-
ically invalidates all previously authorised branches. Note, that when the lock
time of the root node T1,k−Δ is decremented, then the channel’s minimum life-
time kmin is also reduced.

Third, both parties exchange signatures for the new active branch. The signa-
tures for the node Tα,k−Δ are only exchanged once both parties have successfully
exchanged signatures for the Payment Transactions that represent the unidirec-
tional channels CAB , CBA and all of its child nodes (Tα+1,k, ..., Td,k).

Settle Channel. Both parties cooperate to sign and broadcast a transaction
that has no Absolute Lock Time and has two outputs to send each party their
respective final balance. If both parties cannot cooperate, then either party can
broadcast the current active branch for inclusion into the Blockchain once the
Absolute Lock Times expire. If the receiver in a unidirectional channel does not
broadcast the Payment Transaction that sends them the most bitcoins, then the
depositor waits until kmax to broadcast the Refund Transaction.

3.2 Lightning Channels

Poon and Dryja propose bidirectional payment channels called Lightning Chan-
nels that can remain open indefinitely [14]. Sending a payment requires the
cooperation of both parties to authorise a new channel state that represents each
party’s new balance, before revoking the channel’s current state. The revocation
mechanism requires both parties to check the Blockchain periodically to detect
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Fig. 2. Lightning Channels. Each party has a Commitment Transaction that only
they can broadcast. To settle a dispute on the Blockchain, either party can broadcast
their Commitment Transaction and Revocable Delivery Transaction to claim their share
of bitcoins. In response, the counterparty broadcasts their Delivery Transaction to
receive their share of bitcoins. If a Commitment Transactions has previously been
revoked, the counterparty can broadcast the Breach Remedy Transaction to steal all
bitcoins in the channel. (Color figure online)

if a previously revoked channel state has been submitted. If a revoked state is
detected, the counterparty that did not broadcast the revoked state can issue a
penalty to claim all bitcoins in the channel. Initially, this revocation was per-
formed by exchanging signatures for the penalty transaction. An improvement
proposed by Back is outlined in [16] to use the pre-image S of a revocation hash
H(S). This revocation hash is used in our description of Lightning Channels.

To describe the protocol, we use the following notation: transactions are
denoted as T β,X

j,λ , where β is an acronym for the transaction’s name, X is the
party that can broadcast the transaction (i.e. it requires party X’s signature to
complete the transaction), j is the number of updates that have occurred in the
channel and λ is an optional Relative Lock Time. Furthermore, T only requires
the broadcaster to sign, T̃ requires both parties to sign and σβ

X,j represents party
X’s signature for the jth transaction β.

Figure 2 presents the underlying transaction structure of Lightning Channels.
The channel relies upon an initial Funding Transaction T̃F that is signed by
both parties and deposits bitcoins into a multi-signature address. The symmetric
structure of the scheme provides each party with the following transactions:
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Channel Establishment:
A → B: Revocation hash hA,j and her transaction input π

B → A: Unsigned T̃F , signature σC
B,j for TC,A

j , revocation hash hB,j

A → B: Signature σC
A,j for TC,B

j , signature σF
A for TF

B → N : Broadcast T̃F to the Bitcoin network.
Send a Payment:
A → B: New revocation hash hA,j+1

B → A: Signature σC
B,j+1 for new TC,A

j+1 , new revocation hash hB,j+1

A → B: Signature σC
A,j+1 for new TC,B

j+1 , pre-image SA,j of previous revocation hash hA,j

B A: Pre-image SB,j of previous revocation hash hB,j

Fig. 3. Sequence of messages exchanged between two parties A and B to establish a
Lightning Channel and send payments.

The Commitment Transaction T̃C,X
j spends the multi-signature output and

therefore requires signatures from both parties. Each party receives the counter-
party’s signature in advance. The first output sends bitcoins to the broadcaster,
while the second outputs sends bitcoins to the counterparty. Spending the second
output only requires the counterparty’s signature, but spending the first output
is only possible if either of the following two conditions is fulfilled:

1. The first condition requires a signature from the broadcaster and has a Rela-
tive Lock Time such that the Commitment Transaction T̃C,X

j needs to achieve
a depth of λ before the output is spendable.

2. The second condition requires the pre-image SX,j of a revocation hash hX,j =
H(SX,j) and a signature from the counterparty.

These conditions allow Commitment Transactions to be revoked by revealing
the pre-image SX,j to the counterparty. The normal payout to the broadcaster
is delayed by a Relative Lock Time λ to allow the counterparty to claim the
funds if the transaction has previously been revoked. Revoking a Commitment
Transaction allows both parties to update the channels while ensuring that no
revoked transaction will ever be published.

The Revocable Delivery Transaction TRD,X
j,λ requires the signature of the

broadcaster, and sends bitcoins to the broadcaster. It can only be broadcast
once the broadcaster’s Commitment Transaction has achieved a depth of λ in
Bitcoin’s blockchain.

The Delivery Transaction TD,X
j,λ requires the signature of the counterparty

that did not broadcast the Commitment Transaction and immediately sends the
counterparty their share of bitcoins.

The Breach Remedy Transaction TBR,X
j requires the signature of the coun-

terparty that has not broadcast the revoked Commitment Transaction and the
pre-image SX,j of the Commitment Transaction’s revocation hash. It can only
be broadcast once a revoked Commitment Transaction has been accepted into
the Blockchain. No Relative Lock Time is associated with this transaction to
allow the counterparty to issue the penalty immediately.
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In the following and in Fig. 3, we explain how to establish the channel, send
bidirectional payments, and finally settle the payment channel on the Blockchain.

Channel Establishment. Alice sends Bob her revocation hash hA,j and a
transaction input πA for the Funding Transaction T̃F . Bob responds with an
unsigned Funding Transaction T̃F that includes inputs of both parties, a sig-
nature σC

B,j for Alice’s Commitment Transaction TC,A
j and his revocation hash

hB,j . Then, Alice sends a signature σC
A,j for Bob’s Commitment Transaction

TC,B
j and a signature σF

A for the Funding Transaction TF . Finally, Bob signs
and broadcasts the Funding Transaction T̃F to the network.

Send a Payment. Sending a payment requires the cooperation of both parties
to authorise a new set of transactions to represent the channel’s new balance
before invalidating the current set of transactions.

Alice sends Bob a new revocation hash hA,j+1. Bob responds with a signature
σC

B,j+1 for Alice’s new Commitment Transaction TC,A
j+1 , and his new revocation

hash hB,j+1. Alice checks that the bitcoins are correctly distributed to each party
in TC,A

j+1 before sending her signature σC
A,j+1 for Bob’s new Commitment Trans-

action TC,B
j+1 . Bob then also checks that the bitcoins are correctly distributed to

each party. Once the channel’s new state has been authorised, Alice sends the
pre-image SA,j of her revocation hash to Bob, and this pre-image revokes her
current Commitment Transaction TC,A

j . Bob checks if the pre-image correctly
revokes Alice’s current Commitment Transaction before sending Alice the pre-
image SB,j for his revocation hash hB,j . Finally, Alice checks if this pre-image
revokes Bob’s current Commitment Transaction TC,B

j .

Settle Channel. To settle the channel, both parties cooperate to sign and
broadcast a transaction that sends each party their share of bitcoins. If either
party does not cooperate, then the dispute is settled on the Blockchain. In a dis-
pute, either party broadcasts their most recent Commitment Transaction T̃C,A

j

and Revocable Delivery Transaction TRD,A
j,λ . The counterparty must then broad-

cast their Delivery Transaction TD,B
j to receive their share of the coins.

3.3 Comparison of Duplex Micropayment and Lightning Channels

This section provides a comparison of Duplex Micropayment Channels and
Lightning Channels. We focus on the computation, storage and network access
required for both schemes before highlighting if resource-limited participants
can outsource responsibility to a trusted third party. Finally, we discuss the
total number of transactions that can be facilitated.

Blockchain Privacy. A new pair of addresses A1, B1 is generated by both
parties for the Funding Transaction’s multi-signature output. If both channels
are closed cooperatively, then A1, B1 can be reused in the closing transaction that
sends each party their final balance. In terms of privacy, an external Blockchain
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Table 1. The number of signatures required for each step in Duplex Micropayment
Channels and Lightning Channels. Also, d represents each node in the Invalidation
Tree and α is the number of replaced nodes in the Invalidation Tree.

Set up Payment Reset Settle (Co-op) Settle (Dispute)

Duplex (d + 2) × 2 1 (α + 1) × 2 1 × 2 1 × 2

Lightning 2 × 2 1 × 2 0 1 × 2 3

observer can see the number of bitcoins each address received, but not identify
which receiving address A1, B1 corresponds to which depositing address A0, B0.

Throughout the lifetime of both schemes, A1, B1 can be reused in each inter-
mediary transaction to minimise computing addresses. If a dispute is settled on
the Blockchain, then a Duplex Micropayment Channel achieves the same pri-
vacy as using a single transaction to close the channel. While Lightning Chan-
nels also provide these privacy guarantees, they allow to identify which address
A1, B1 raised the dispute by identifying the address that received bitcoins in the
Revocable Delivery Transaction.

In Duplex Micropayment Channels, both parties can have a different pair of
addresses for each unidirectional channel. By inspecting the outputs of both Pay-
ment Transactions it is not possible to derive which addresses belong to the same
owner. It is also not possible to determine which party raised the dispute using
the transactions from the Blockchain only. The parties in Lightning Channels can
compute 3 addresses to be used for both sets of Commitment Transactions. For
example, Alice’s Commitment Transaction’s first output sends bitcoins to either
A1 or B1, and the second output sends bitcoins to B2. Her Revocable Delivery
Transaction sends bitcoins to A2 and Bob’s Delivery Transaction sends bitcoins
to B3. Here, it is still possible to determine which addresses raised the dispute
and also the final share of bitcoins each set of addresses received.

The number of signatures required in each payment channel is shown
in Table 1. To establish the channel, both schemes require each party to sign a
Funding Transaction. In Duplex Micropayment Channels each party must also
sign d nodes in the Invalidation Tree and a Payment Transaction representing
the unidirectional channel, whereas Lightning Channels require each party to
sign an additional Commitment Transaction.

To send a new payment, the Duplex Micropayment Channels require a single
signature from the sender. If either unidirectional channel has exhausted its
supply of bitcoins, then both parties cooperate to reset the balance of both
channels. This reset requires each party to sign α replacement transactions in the
Invalidation Tree and an additional signature for the new Payment Transactions
that represent the unidirectional channels. Lightning Channels always require
a single signature from both parties to authorise a new pair of Commitment
Transactions. This has implications for popular hubs as Duplex Micropayment
Channels do not require the hub’s involvement to receive bitcoins (except to
perform a reset), while the hub must sign every payment in Lightning Channels.
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In both schemes parties can cooperatively close the channel by signing a
transaction that settles the final balance. However, they must sign the remain-
ing intermediary transactions if the channel is not closed cooperatively. The
unsigned transactions in Duplex Micropayment Channels include the Payment
Transaction, or a Refund Transaction if the counterparty does not sign their
Payment Transaction. In Lightning Channels, either party can broadcast their
Commitment Transaction and sign a Revocable Delivery Transaction to claim
their bitcoins. In response, the counterparty must sign the Delivery Transaction
to receive their share of bitcoins. If the Commitment Transaction was previously
revoked, then the counterparty must instead sign a Breach Remedy Transaction.

Local Storage Requirements. In Duplex Micropayment Channels, both par-
ties store d + 1 transactions which include the current active branch in the
Invalidation Tree and the most recently received Payment Transaction from the
counterparty. In Lightning Channels, each party stores the pre-image for every
revocation hash used by the counterparty and the current Commitment Trans-
action. To prevent the need to brute-force the revocation hash using all stored
pre-images, parties should also store a mapping between each pre-image and
corresponding revocation hash.

Storage in the Blockchain. When both parties cooperate, both schemes only
require 2 transactions, the Funding Transaction and a Settlement Transaction,
to be committed to the Blockchain. In the worst case, when parties do not coop-
erate, Duplex Micropayment Channels require 1 + d + 2 transactions. The d
transactions represent the Invalidation Tree’s active branch, plus the Funding
Transaction and 2 additional transactions representing either Payment Trans-
actions for the unidirectional channels or their Refund Transactions. Lightning
Channels always require 4 transactions. Besides the Funding Transaction, this
includes a Commitment Transaction, the corresponding Delivery Transaction
and either a Breach Remedy Transaction or a Revocable Delivery Transaction.

Frequency of Access to the Blockchain. Duplex Micropayment Channels
rely on the Replace by Timelock rule to ensure that only the latest authorised
branch in the Invalidation Tree is accepted into the Blockchain. Therefore, after
establishing the channel, neither party needs to access the Blockchain until the
channel has expired. Then, however, it is important to push the d transaction
in the latest branch and the Payment Transaction that sends the party their
bitcoins as soon as they become valid. Lightning Channels require both parties
to periodically scan the Blockchain for previously revoked transactions. The
frequency of monitoring is based on the mutually agreed Relative Lock Time that
delays the Revocable Delivery Transaction’s acceptance into the Blockchain.

Outsourcing Responsibilities is possible in both schemes to reduce the bur-
den for resource-limited parties. In Duplex Micropayment Channels, a trusted
third party can be responsible for broadcasting the active branch of the Invalida-
tion Tree and the Payment Transaction that sends the party their bitcoins once
the channel has expired. The branch must be broadcast within the safety-margin
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Δ time span, otherwise previously authorised branches become spendable. In
Lightning Channels, the trusted third party is provided with signed Breach Rem-
edy Transactions, pre-images of revocation hashes and the identification hash of
previously revoked Commitment Transactions. It is then responsible for moni-
toring the Blockchain for the previously revoked Commitment Transactions and
broadcasting the corresponding Breach Remedy Transactions.

The total number of transactions that can occur in Duplex Micropayment
Channels is based on the number of bitcoins sent, the frequency of resets to
replenish the unidirectional channels, the depth of the tree, and the Absolute
Lock Time associated with each node. In comparison, the only limitation for
Lightning Channels is the bidirectional activity between both parties.

4 Routing Payments

We present how to fairly exchange bitcoins across several payment channels
with Hashed Time-Locked Contracts (HTLCs) before discussing how to miti-
gate routing interruptions and the challenge of route discovery on the payment
network.

4.1 Hashed Time-Locked Contract (HTLC)

Hashed Time-Locked Contracts fairly exchange bitcoins across several payment
channels. They allow two parties to open channels with separate Payment Service
Providers (PSP), and then construct a route of payment channels that connects
both channels. If we have three channels, Alice →Bob, Bob →Caroline and Car-
oline →Dave, then Alice can send bitcoins to Dave, via Bob and Caroline. This
fair exchange guarantees that intermediary hops receive their bitcoins, once they
have sent their bitcoins to the next hop.

Figure 4 outlines the exchange of messages required to fairly exchange bit-
coins across all intermediary channels. Once a route has been selected, the final
receiver (Dave) provides the initial sender (Alice) with an HTLC hash H(R).
The initial sender commits bitcoins in a payment channel shared with their PSP
under the condition that the pre-image R is revealed within k blocks. Each
intermediary along the route decrements the lock time k and repeats this com-
mitment with the next hop. The lock time k is decremented by ω to provide
the intermediary a timespan for their bitcoins to be sent to the next hop and
to allow them to claim their bitcoins from the previous hop. The last hop is the
final receiver, who receives the payment amount contingent upon providing R.

The final receiver can claim the bitcoins by creating a transaction that reveals
R and spends the HTLC output. Revealing R then allows the next party to also
claim the bitcoins from their previous hop. However, it is not necessary to claim
the outputs using Bitcoin’s blockchain. Instead, both parties may simply agree
to update their shared channel to reflect the new balance. This can be done
along the route: every pair of participants updates their channels until the initial
sender’s bitcoins are taken.
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Fig. 4. (a) The final receiver provides the initial sender with the HTLC hash H(R).
This is shared along the HTLC route and the HTLC transfer’s Absolute Lock Time
k is decremented for each hop. (b) Outlines how the pre-image R is revealed in the
reverse order for each hop to claim their bitcoins once the final receiver is given H(R).
For illustration the decrement time is ω = 1.

In Duplex Micropayment Channels a new HTLC output is either added
as part of a new Payment Transaction in the unidirectional channel or as an
additional output to the leaf node Td,k in the Invalidation Tree (cf. Fig. 5). This
HTLC output is claimable if either of the following two conditions is satisfied:

1. The first condition requires a signature from both parties.
2. The second condition requires a signature from both parties4 and the pre-

image R of the HTLC hash H(R).

This HTLC output can be spent using either of the following three transac-
tions. The HTLC Refund Transaction guarantees that the bitcoins are returned
to the sender by krefund and satisfies the first condition of the HTLC output.
The HTLC Settlement Transaction requires the pre-image R of the HTLC hash
and sends bitcoins to the counterparty. This transaction has an Absolute Lock
Time ksettle to delay the receiver claiming the bitcoins to ensure that the HTLC
output can later be cancelled if both parties agree. This transaction spends the
second condition of the HTLC output. The HTLC Forfeiture Transaction has no
lock time and is signed by both parties to cancel the HTLC transfer. It spends
the first condition of the HTLC output and guarantees that the bitcoins are
returned to the sender, even if the pre-image R of the HTLC hash is revealed.

It is the responsibility of the initial sender to compute the lock time krefund
for each hop along the route. The sender needs to ensure that each hop’s krefund is
greater than the hop’s chosen ksettle (i.e. krefund > ksettle). Both lock times must
also be greater than the hop’s leaf node Td,k lock time kleaf (i.e. ksettle > kleaf).
This is required as a refund or settlement cannot happen until the leaf node Td,k

is included in Bitcoin’s blockchain. Also, a timespan between the leaf node’s
lock time kleaf, and the settlement lock time ksettle is required to allow the hop
to cancel the HTLC transfer using a HTLC Forfeiture Transaction. This means
that the bitcoins are potentially locked for the entire lifetime of the channel.
4 The sender must have a different Bitcoin address for each condition in the HTLC

output, otherwise the receiver can use the signature to satisfy either condition.
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Fig. 5. The HTLC is attached as an additional output to the Invalidation Tree’s leaf
node. We have omitted unidirectional channels for space. The HTLC Refund Trans-
action guarantees that the bitcoins are returned to the sender if R is not revealed by
block krefund, the HTLC Settlement Transaction sends bitcoins to the receiver if the
pre-image R of the HTLC hash is revealed by block ksettle, and the HTLC Forfeiture
Transaction can later be signed to cancel the transfer. (Color figure online)

The initial sender’s krefund is passed to the next hop on the route, who should
decrement krefund by ω for use in their channel. This repeats as each hop passes
their krefund to the next hop. The initial sender’s krefund must therefore take into
account the largest leaf node’s lock time kleaf in the route. In the worst case, if
the largest kleaf is associated with the final receiver’s channel, then the lock time
krefund for all hops along the route must also be larger than the largest kleaf.

Finally, the hash H(R) and the pre-image R can be discarded once the HTLC
transfer has been forfeited or a new active branch in the Invalidation Tree is
mutually agreed to cancel the HTLC transfer.

In Lightning Channels, a new HTLC output is associated with both Com-
mitment Transactions in a new channel state (cf. Fig. 6). The broadcaster of a
Commitment Transaction is restrained by a Relative Lock Time λ before she
can claim the bitcoins in the HTLC output. This provides the counterparty an
opportunity to claim the bitcoins. We explain the role of λ once the commonal-
ity of the HTLC output’s redemption criteria for each Commitment Transaction
has been presented. The bitcoins can be claimed if either of the following three
conditions is satisfied:

1. The first condition requires a signature from the receiver and the pre-image
R of the HTLC hash H(R).

2. The second condition requires a signature from the sender once the Absolute
Lock Time krefund has expired.

3. The third condition requires a signature from the counterparty that did not
broadcast the revoked Commitment Transaction, and the pre-image S of the
broadcaster’s revocation hash H(S).

The broadcaster of a Commitment Transaction must consider both the
Absolute Lock Time krefund that dictates when the HTLC transfer expires, and
the Relative Lock Time λ which requires the broadcaster’s Commitment Trans-
action to achieve a depth of λ blocks in the Blockchain before the broadcaster
can claim their bitcoins. To illustrate the additional burden of λ for either party’s
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Fig. 6. The HTLC is an additional output in both Commitment Transactions and we
have omitted the other outputs for space. The delivery sends bitcoins to the receiver
if they know R, the refund guarantees that the bitcoins are returned to the sender,
and the breach remedy sends bitcoins to the counterparty whom did not broadcast a
revoked Commitment Transaction. (Color figure online)

redemption criteria, we consider the sender’s and receiver’s Commitment Trans-
action in turn.

The sender only broadcasts their Commitment Transaction to claim a refund
using the HTLC Refund Transaction if the HTLC transfer expires, satisfying
the second condition. To take the delay caused by λ into account, the sender’s
Commitment Transaction must be accepted into the Blockchain at block height
krefund − λ for the HTLC Refund Transaction to become spendable at the cor-
rect time. If the refund is not claimed at the correct time, then R might be later
revealed, and the sender is not guaranteed to receive the bitcoins from the pre-
vious hop. This λ provides a timespan for the counterparty to claim the bitcoins
using the pre-image R of the HTLC hash H(R), satisfying the first condition,
or with the pre-image SA of the revocation hash H(SA), satisfying the third
condition.

The receiver only broadcasts their Commitment Transaction if they know
the pre-image R of the HTLC hash. The bitcoins are redeemed using the HTLC
Delivery Transaction that satisfies the first condition. To take the delay caused
by λ into account, the receiver’s Commitment Transaction must be accepted into
Bitcoin’s blockchain at block height krefund −λ−Δ. This makes certain that the
HTLC Delivery Transaction has a safety margin Δ timespan to be accepted
into Bitcoin’s blockchain before the HTLC transfer expires. This λ provides a
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timespan for the counterparty to claim the bitcoins if the transfer has expired or
if the pre-image SB of the receiver’s revocation hash H(SB) has been revealed.

The initial sender is responsible for computing the lock time krefund in
advance for each hop. This krefund is passed along the route, and each hop decre-
ments krefund by ω for use in their channel. However, the initial sender’s krefund
must take into account the hop with the largest Relative Lock Time λ. In the
worst case, if the largest λ is associated with the final receiver’s channel, then
the lock time krefund for all channels must also include the largest λ. This poten-
tially locks the bitcoins for a long period of time as resource-limited parties may
require a large λ as it dictates the frequency in which each party must monitor
the Blockchain. Also, the pre-image R can be discarded once both parties have
exchanged the pre-images SA, SB of the revocation hashes H(SA),H(SB).

4.2 Routing Interruptions

The routing is interruptible if an intermediary is unresponsive after accepting the
HTLC transfer. The initial sender and final receiver should wait until the HTLC
transfer expires before reattempting the transfer. To overcome this issue, Poon
has proposed a rollback protocol [13] that allows the final receiver to refund the
initial sender using a second route. This allows the initial sender to reattempt
the HTLC transfer, and if the intermediary returns, the initial sender’s bitcoins
are refunded using the second route. This rollback is only performed if the final
receiver has not revealed the first route’s pre-image R1 of the HTLC hash H(R1).

To perform the rollback, the initial sender provides the final receiver with
a new HTLC hash H(R2) and an Absolute Lock Time kexpire that represents
the expiry time for the initial sender’s HTLC transfer with their immediate hop
in the first route. The final hop in the second route sends the initial sender
the refunded bitcoins and must have an expiry time krefund that is greater than
kexpire. This provides a timespan for the initial sender’s bitcoins to be claimed
in the first route, and for them to receive the refund in the second route.

Finally, the receiver commits bitcoins to the next hop under the condition
that the pre-images of the first route’s HTLC hash H(R1) and the sender’s
HTLC hash H(R2) are revealed. Each hop decrements the lock time kmax by
ω, and commits bitcoins to the next hop if R1, R2 are revealed. The final hop
is the sender who has knowledge of R2, but can only claim the bitcoins if R1 is
revealed from the first HTLC transfer.

4.3 Challenges for Route Discovery

We now discuss the challenges that payment networks face for route discovery.
These challenges include the type of connections available for routing bitcoins,
the topology of the network, the difficulty in building reputation systems to help
assess the risk of other nodes and the financial incentives for routing bitcoins.

Node connections on the network rely on the user’s role. End users might
exclusively connect to PSPs who are responsible for establishing channels with
other PSPs to find routes on the network. How these channels are funded will also
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differ as end users might fund the channel with the PSP, while the PSP to PSP
channels are mutually funded. Also, the total number of bitcoins in a channel
restricts the bitcoins an end user can receive. For example, if the user and PSP
share a channel U ↔ P in which the PSP has a balance of x bitcoins, then the
user can only receive up to x bitcoins without establishing a new channel. The
receiver must send bitcoins to the PSP to receive further payments.

Route planning methods include source-routing in which the sender pre-
determines the payment route, and per-hop routing where only the final desti-
nation is given to the network and each hop finds the best route.

The former approach simplifies calculating the fee and lock time for the
transfer. It is compatible with onion-routing which only reveals the previous
and next hop, and allows the sender to enforce the order in which each node is
visited. However, this does not prevent a node using intermediaries to route the
bitcoins to the next hop. It might also be possible to identify that the next hop
is the final recipient using the remaining fee and lock time.

Per-hop routing outsources the route finding to the network and can adapt
to changing network conditions. The final destination is revealed to each node
to help them find a route, offering less privacy than source-routing. Nodes could
potentially offer low (or negative) fees to encourage others to select them for
routing and then sell the transaction data to interested third parties. In per-hop
routing, estimating the total fee and maximum lock time is difficult as the route
is not known in advance, and mechanisms must be put into place that prevent
nodes from taking excessive fees.

The topology of the network hinges on the ease of becoming a PSP and
the potential regulation as money transmitters.

A straightforward approach is a hub-and-spoke model [17] with thousands of
well-connected hubs who share route-finding information amongst themselves. In
this model, end users open channels with hubs, and it is the hub’s responsibility
to find a route to the receiver’s hub. These hubs are expected to be reliable
and fast which potentially results in negligible HTLC transfer halts. This is
important for Duplex Micropayment Channels as bitcoins can be locked for the
channel’s remaining lifetime if a transfer halt occurs. Also, the usage of Duplex
Micropayment Channels reduces the computational overhead for hubs as they
are only required to sign HTLC transfers while sending bitcoins, and not to
receive them. In this model, end-users may not be responsible for computing
or revealing the pre-image R of the HTLC hash as it would allow them to halt
transfers.

The fundamental issue with the hub-and-spoke model is that it may lack
Bitcoin’s open-membership property. Instead, the community’s vision for a pay-
ment network is to allow anyone to become a PSP which requires a mesh network
and gossip protocol to advertise PSP services. Poon has proposed that Bitcoin’s
blockchain can aid route discovery as the user can identify which PSPs share
channels [17]. If a route has been found, there is no guarantee that the PSPs
are reliable due to the nature of open-membership. Lightning Channels are more
suitable for unreliable transfers as a failure only temporarily locks the bitcoins.
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However, the computation overhead increases as PSPs must sign both sending
and receiving HTLC transfers.

To prevent routing failures naturally leads to a reputation system to assess
the risk of using a PSP. However, in the event of a failure, it is arguably a non-
trivial problem to determine the reason behind the halt due to the private nature
of routing and the inability to inspect other payment channels. For example, if
the hop C → D settles on the Blockchain, it is not possible to determine if Dave
had knowledge of the pre-image R, refused to disclose it, or simply raised a
dispute to tarnish the reputation of Caroline [15]. Also, it might not be possible
to identify which hop halted the transfer when disputes are not settled on the
Blockchain. Furthermore, revealing the internal channel state of intermediaries
cannot always reveal the reason behind a halt. For example, it is not possible to
identify the duration of time before R was disclosed.

Routing fees need to cover the costs for a PSP to operate a secure node.
These costs potentially include a ‘risk’ charge based on the number of bitcoins
maintained in their hot wallet5 to facilitate transfers. The PSP might charge if
they are required to deposit bitcoins into the channel for end-users (i.e. mer-
chants) who expect to mostly receive bitcoins. Also, negotiating a fee for routing
is not straightforward as some PSPs may fluctuate fees to move funds in a
maxed-out channel in a certain direction [4]. How fees are negotiated depends
on the topology of the network as PSPs might have direct connections with each
hop in the route or rely on fees advertised via a gossip protocol. Finally, the fee
structure for end-users can be regular installments or on a per-transfer basis.

5 Conclusion

In this paper we presented an overview of Blockchain-based payment networks,
a potential scaling solution for Bitcoin. We compared two prominent propos-
als, Duplex Micropayment Channels and Lightning Channels before discussing
how to fairly exchange bitcoins across two or more channels using Hashed Time-
Locked Contracts. Finally, we highlighted challenges for route discovery in pay-
ment networks. It is our hope that this paper will motivate other researchers
to begin tackling the open problems associated with Blockchain-based payment
networks.
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