I Know Where You All Are! Exploiting Mobile
Social Apps for Large-Scale Location
Privacy Probing

Shuang Zhao'®, Xiapu Luo®*, Bo Bai'®, Xiaobo Ma?34®) Wei Zou!®,
Xinliang Qiu'®, and Man Ho Au*

! Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China
{zhaoshuang,baibo,zouwei,qiuxinliang}@iie.ac.cn
2 MOE KLINNS Lab, Xi’an Jiaotong University, Xi’an, China
3 Department of Computing, The Hong Kong Polytechnic University,
Hung Hom, Hong Kong
xma.cs@xjtu.edu.cn
4 The Hong Kong Polytechnic University Shenzhen Research Institute,
Shenzhen, China
Beijing Key Laboratory of Network Security and Protection Technology,

Beijing, China
{csxluo,csallen}@comp.polyu.edu.hk

(<

Abstract. Mobile social apps have been changing the way people inter-
act with each other in the physical world. To help people extend their
social networks, Location-Based Social Network (LBSN) apps (e.g.,
Wechat, SayHi, Momo) that encourage people to make friends with
nearby strangers have gained their popularity recently. They provide a
“Nearby” feature for a user to find other users near him/her. While seeing
other users, the user, as well as his/her coarse-grained relative location,
will also be visible in the “Nearby” feature of other users. Leveraging this
observation, in this paper, we model the location probing attacks, and
propose three approaches to perform large-scale such attacks on LBSN
apps. Moreover, we apply the new approaches in the risk assessment
of eight popular LBSN apps, each of which has millions of installation.
The results demonstrate the severity of such attacks. More precisely,
our approaches can collect a huge volume of users’ location information
effectively and automatically, which can be exploited to invade users’ pri-
vacy. This study sheds light on the research of protecting users’ private
location information.

1 Introduction

With the wide adoption of mobile devices with built-in positioning systems (e.g.,
GPS), LBSNs (Location-based Social Networks) are becoming increasingly pop-
ular, especially among the young. Nowadays, millions of people are using various
LBSN apps to share interesting location-embedded information with others in
their social networks, while simultaneously expanding their social networks with
the new interdependency derived from their locations [1].

© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part I, LNCS 9722, pp. 3-19, 2016.
DOI: 10.1007/978-3-319-40253-6_1

4 S. Zhao et al.

These LBSN apps can be roughly divided into two categories (I and IT). LBSN
apps of category I encourage users to share location-embedded information with
their friends, such as Foursquare and Google+. Foursquare, which has achieved
more than 55 million users worldwide since 2009 [2], allows users to check-in at
some interesting places and then share the check-in locations with their friends.
Google+, besides sharing check-in locations, even allows users to share their
real-time locations with pre-specified users (e.g., their families) [3].

LBSN apps of category II concentrate on location-based social network dis-
covery. Such LBSN apps allow users to search and interact with strangers around,
and make new friends. Salient examples of this category include Wechat, Momo,
SayHi, Skout and so forth. WeChat, which now has more than 540 million
monthly active users around the world [4], has a feature called “Nearby”. This
feature allows users to get a list of other users nearby as well as their coarse-
grained relative locations. People can use this feature to discover strangers (and
be discovered by others simultaneously), and then make friends with strangers
of interest. Some apps (e.g., Facebook and Sina Weibo) that were not origi-
nally designed for LBSNs are now also upgraded to this category. For example,
Facebook Places was announced in 2010 to bring similar LSBN features into
Facebook [5]. Sina Weibo, a Twitter-like microblog app in China, has also come
up with a “Nearby” feature to let users discover nearby people, microblogs and
hot places.

While using LBSN apps of category I to check-in or share locations with
friends, users are likely to explicitly publish their locations to their social net-
works [6]. On the contrary, while using LBSN apps of category II to discover
nearby users, users will get information without explicitly making their loca-
tions public. As a matter of fact, when a user (using LBSN apps of category
IT) searches nearby users, the user’s exact location (e.g., GPS coordinates) will
be uploaded to the app server, and then exposed (usually after obfuscation as
needed) to nearby users by the app server. At first glance, the users’ exact loca-
tions would be secure as long as the app server is securely managed. However,
there remains a risk of location privacy leakage when at least one of the follow-
ing two potential threats happens. First, the location exposed to nearby users
by the app server is not properly obfuscated. Second, the exact location can be
deduced from (obfuscated) locations exposed to nearby users.

In this paper, we systematically investigate these two threats using typical
LBSN apps of category II. We find that existing LBSN apps® are vulnerable to
these threats, which could be exploited by the adversary to perform automated
and efficient large-scale location probing attacks, Such attacks could reveal the
location of any user that uses the “Nearby” feature. We propose a series of novel
methods to probe the location privacy of people using different LBSN apps and
show that our location probing methods are general and applicable to the vast
majority of existing LBSN apps.

! Unless otherwise mentioned, LBSN apps investigated in the remainder of this paper
belong to category II by default.

T Know Where You All Are! Exploiting Mobile Social Apps 5

Our work is different from existing work in twofold. First, we are able to probe
locations of any user whereas in existing works such as [7-9] the attacker can
only probe the locations of his/her friends. Second, we propose three general
approaches for location probing, and discuss the scenarios for using different
approaches, whereas existing studies usually focus on specific situations. For
example, [10] uses Android virtual machines to carry out proof-of-concept attacks
via Wechat, Skout and Momo, and [11] discusses the possibilities of launching
the sniffing attacks if the HTTP traffic of LBSN apps can be intercepted and
manipulated.

To the best of our knowledge, we are the first to carry out a large-scale
experiment to evaluate the practical efficiency of such attack in real world. Our
contributions include:

e Track location information flows and evaluate the risk of location
privacy leakage in popular LBSN apps. We analyze the location infor-
mation flows from many aspects including location accuracies, transport pro-
tocols, packet contents, etc. in popular LBSN apps such as Wechat, Momo,
Mitalk, SayHi, Skout, MeetMe and Weibo, and find out that most of them
have high risk of location privacy leakage.

e Propose three general attack methods for location probing and eval-
uate them via different LBSN apps. We propose three general attack
methods to probe and track users’ location information, which can be applied
to the majority of existing LBSN apps. We also discuss the scenarios for using
different attack methods, and demonstrate these methods on SayHi, Mitalk
and Wechat, separately.

e Recommendation of count-measures. We suggest some count-measures
against this new threat of privacy leakage in LBSNs.

The rest of the paper proceeds as follows. Section2 presents an overview of
location-based social networks and LBSN apps. Section 3 details three general
attack approaches with examples. After recommending some countermeasures
in Sect. 4, we conclude the paper in Sect. 5.

2 Overview of LBSN Apps

Most LBSN apps have two features: check-in and social network discovery. We
focus on the latter because people’s check-in locations are shared with their
friends and therefore they are not regarded as private information.

The workflow of social network discovery in LBSN apps is elaborated in Fig. 1.
The following steps will be performed in the scenario where a user searches for
people nearby at location [y and time %.

e Step (a): The mobile app sends a request including the user’s current loca-
tion Iy which is obtained by GPS or online SDKs(e.g., Google SDK [12], Baidu
Location SDK [13]) and the authorization token to the server. The authoriza-
tion token is provided by the server as a unique identifier as long as the user
logins into the mobile app.

6 S. Zhao et al.

(2)User1 searches for (3)User2 searches for
(1)User0 searches for people nearby around people nearby around
people nearby at location /, at time #,+4¢, location /, at time #,+4¢,
location /, and time 7, (4t<A4r) (4t>AT)
User >t
. . 2d (3d)
(li)sI::g":;ztc;ntci::an ('l d)Response including a U:erl]) is User0 is
&authorization token list of pe.opl.e nearby and found by not found
their distances userl by user2
Server > ¢
(1b)Save user0's (1c)Search DB for people
location [, & time #, who appeared around the
into database location / less than a
Database v finite time 47 ago Y > t

Fig. 1. The workflow of social network discovery in LBSN apps

e Step (b): Once the request from the user is received, the server saves the
user’s location [y, time tg and other information into the database for further
use, such as letting the user be visible to others.

e Step (c): The server searches the database which contains the request time
and locations of all the users who have ever searched for nearby people. Then,
it finds out a list of users who are not in the friend list of the user (user()
and have appeared around the location ly (within a distance of AD) less than
a finite time AT ago. Given a user as u, the people in user u;’s social network
as Uy;, and the distance between two locations l;, [; as Dy, 1, the nearby users
queried from the database for user ug can be described as:

{u,l, t|u ¢ Uso, D1y < AD,t > tg — AT} (1)

e Step (d): The server sends a response to the mobile app with the queried
results. For the purpose of privacy protection, the results returned by most
LBSN app servers only contain essential user information v and coarse-grained
distances [, because if the accurate distances are provided, a user’s exact loca-
tion can be calculated by trilateration position methods easily [14]. Finally,
the mobile app displays these results to the user.

Figure 2 shows the displayed results in typical LBSN apps: Wechat, Mitalk,
Momo, Weibo, SKout, SayHi, Badoo and LOVOO. The displayed user informa-
tion generally contains nickname, gender and other information (e.g., person-
alized signatures). In particular, Wechat, Mitalk and Weibo provide distances
to an accuracy of 100 meters, and Momo and SayHi do so to an accuracy of 10
meters. However, LOVOO provides distances accurate to within 0.1 miles, which
is the least accurate.

The user can view detailed information (e.g., publicly available photos) of
nearby strangers, send greetings to them, and finally make new friends to extend
the user’s own social network.

Figure 1 also presents two other scenarios to show in what circumstances a
user can be found by others. In one scenario where user! searches for people
nearby at a place which is close to the location of user0 (ly) for a short while

T Know Where You All Are! Exploiting Mobile Social Apps 7

@ skouT SayHi [Badoo ® Lovoo

Fig. 2. Search nearby people in LBSN apps

(Atq,t1 < AT) after user0 searches for people nearby, according to Eq. 1, user0
can be found by userl because Dy, ;, < AD and tg > t; — AT. As for the other
scenario where user2 searches for people nearby after a long while (Aty,to >
AT'), user0 cannot be found.

If an attacker ua (whose friend list Upa is empty) is able to send a fake
location l4 to the server in Step (a), he will get a response containing the users
u; around [4 and their distances Dy, ;, in Step (d). By changing the value of [4
constantly, the attacker can probe the users at any location.

In order to perform the location probing attack, we need to address the
following challenging issues.

e How to forge the request with fake locations: We need to intercept the
request in Step (a), and tamper the value of current location I. For securing
data transportation, some LBSN apps use techniques like SSL authentication
and data encryption, making request forgery a challenging task. Therefore, we
need to try all possible ways to break or bypass these protection techniques.

e How to perform a large-scale probing effectively and economically:
We need to use as few resources as possible (e.g., 1 PC) to probe thousands of
locations for large-scale attacks. Because the location information of the users
will be cached for a while (AT') in Step (c), using too many probers to probe at

8 S. Zhao et al.

different locations synchronously is both resource-consuming and unnecessary.
But if the time span of probing two nearby locations is too long (e.g., longer
than AT'), some data may be missed. For example, a user appeared at location
lp at time tg, his location information can be probed only if the prober happens
to probe at a location near [y between time ¢y and tg + AT.

3 Location Privacy Probing via LBSN Apps

This section presents some general paradigms for location privacy probing via
popular LBSN apps. We first look deeply into some popular LBSN apps and
examine the security through their transport protocols, request encryptions,
response data, etc. Then, we propose and demonstrate three general methods
for location privacy probing, which can be applied to the majority of existing
LBSN apps.

3.1 Examining Popular LBSN Apps

We install 8 popular LBSN apps including LOVOO, MeetMe, Mitalk, Momo,
SayHi, Skout, Wechat and Weibo into an Android mobile phone, and use a
web debugging proxy named Fiddler [15] to intercept and examine the network
traffic between the apps and their servers. We set up a proxy with Fiddler 4 on
a computer, and configure the proxy settings in the Android mobile phone to
access Internet through our proxy. Then, all the HTTP/HTTPS traffic of the
LBSN apps can be intercepted and monitored by Fiddler 4. Figure 3 shows the
user interface of Fiddler 4. We see a list of intercepted HTTP/HTTPS requests
on the left side of the user interface, including Protocol, Host, URL, etc. On the
right side, there are two windows showing the details of the selected request and
decoded response respectively.

4 Fiddler Web Debugger = B
4y Replay X+ b Go @ Sveam [Decode | Keep: All sezsions +) dny Process # Find [Save B (D) £ Browse ~ G Clear Coche &
[t Protocat —— gody Gz - | () stetstes | 5 tvectors | £ autonesponder | [Gomposer
p Hm® sdash.m.techeo com frestfeur fak=. @ Hesders Textiew | WebFormg | Hexvew | Auth | Cockes | |Raw | JSON
W adash.m. BopeT Ton FErUR TER, ML

intercepted § M post DuEh acTiverTarioe SiTieekDEGed o &
e L

HTTR Mg snamg.on OD4IWHGENOTO0N. . 25,642 me
e mme snsmg.cn (0PRejSIOMO... 5895 me -
5
[Viewinhotesea
TR cstucmobile?. e, u3.uowe. 1 no
Response is encoded end may require decoding before inspection. Cick here to transform.
b aimebo.cn [Riuh/acteigsd=.., 4837 |
praing apmebo.cn [2jchentjacdiog_bat... a3 GetSyntaxiiew Trancformer | Headers | Textiiew Imageview | Hexiiew
p HTTR

apiwebo.cn [2icardisdgsid=_28,,, w7 webvew | Auth | Caching | Cooker | Raw ;0N | e

shovmcd.com MFYWVKADRGEAME... LB0§ m: bileteral_fitar=1

TP _fiter=
W safe.ucwebicom /dstaver =ph 16 [— Decoded Responie
TP apog.ucandE! foolectiaid=10514... 2 bottom_menu_v=0

munews.badu.con jrews?F-mohomesa.., 15,351 mo _ S

N | ©°1¢41 | Cetemae | deena e

v

Fig. 3. Intercept and monitor network traffic with Fiddler 4

T Know Where You All Are! Exploiting Mobile Social Apps 9

We examine the security of the intercepted network traffic from different
aspects.

e Transport protocols: The content in HTTP requests can be easily inter-
cepted and manipulated to launch the request forgery attacks. HTTPS (HTTP
over TLS/SSL) can provide data encryption to prevent the data from being
tampered [16]. It is worth noting that TLS/SSL can be configured either one-
way or two-way. In one-way TLS/SSL communication, the server is required
to present the certificate to the client, but the client is not required to present
the certificate to the server, meaning that the server will accept the request
from anyone. In this case, the HT'TPS request can still be forged using a local
self-signed certificate [17]. In two-way SSL communication, both the server
and the client are required to present the certificates, which makes request
interception a hard task. Therefore, we consider the HTTP and HTTPS with
one-way SSL protocols are insecure, and HTTPS with two-way SSL protocol
is safe.

e Request encryptions: Another way for data protection is to encrypt some
of the parameters in the HTTP request. For example, a checksum or signa-
ture can prevent the request from being tampered effectively, as long as the
encryption algorithm can not be cracked easily.

e Response data: The response data should not contain more information
than what the app client needs. If the response data contains much more
information (e.g., more accurate location than which is displayed in the app,
the last time the person appeared), it will bring a risk of information leakage.

The analysis results are shown in Table1l. We can see that most apps use
HTTP or HTTPS protocol with one-way SSL for data transportation and
have no encrypted parameters in the requests. In this case, we can forge the
HTTP/HTTPS requests to query nearby people at any location. Mitalk and
LOVOO encrypt parameters (checksum and signature) and therefore the request
can be forged only if we can crack the encryption algorithms and figure out
the value of checksum or signature parameters. If the requests are too difficult
to forge while the data is transported via HTTPS with two-way SSL or the
encryption algorithm is irreversible, we can also use mobile phone emulators
and automated testing methods to simulate user actions to get people nearby at
fake locations. The detailed demonstrations of these three methods are shown
in Sects. 3.2, 3.3 and 3.4.

3.2 Forging Requests

For LBSN apps, the request for searching people nearby contains parameters
which are used to locate the user. The attacker can search people at any location
by intercepting and tampering the location parameters. We demonstrate the
attack in the following steps:

Step 1: Request Interception. We use Fiddler as a web proxy to intercept the
HTTP/HTTPS traffic between LBSN apps and their servers. For HT'TP traffic in

10 S. Zhao et al.

Table 1. Examination results of popular LBSN apps

APP Downloads(million) Location Transport Request Location accuracy
Google | App 360 Accuracy in | protocol encryption | &Other information in
play1 Store | Android | APP response data

market?
LOVOO | 14 8.4 0.001 0.1 mi radius | HT'TPS with signature 100m radius&last time
one-way
SSL

MeetMe | 14 8.9 0.001 100 m radius | HTTP with none 100 m radius

plaintexts

Mitalk 0.8 1.8 17 100 m radius | HTTP with checksum 10 m radius

plaintexts

Momo 1.8 26 168 10 m radius HTTPS with none 1m radius

one-way
SSL

SayHi 12 3.3 0.04 10 m radius HTTP with none 0.000001° coordinate

plaintexts (=~ 0.1m)

Skout 23 24 0.06 1000 m HTTP with none 0.01 m radius

radius plaintexts

‘Wechat | 169 43 455 100 m radius | HT'TPS with N/A N/A

two-way
SSL

Weibo 10 23 456 100 m radius | HT'TP with none 0.00001° coordinate (=

plaintexts 1m) &last time

1 Most people in Chinese Mainland download Android apps from third-party markets because Google
Play is inaccessible there.
2 One of the largest Android third-party markets in China provided by Qihoo 360 Company.

plaintext, we can directly get the contents of the requests and responses. Fiddler
can also decrypt HTTPS traffic with one-way SSL, as long as a local self-signed
certificate is generated and installed into the mobile phone. If certificate and
public key pinning [18] is used in the LBSN app, reverse engineering work should
be performed to replace the hard-coded key of the app with the one generated
by Fiddler.

Some of the intercepted requests of different LBSN apps are as follows:

e MeetMe:
GET http://friends.meetme.com /mobile/boost /0?placement=meet&target
Gender=b&latitude=38.988088&longitude=-76.977333&orderBy=distance&
includeFriends=t&onlineOnly=f&pageSize=30

e SayHi:
GET http://r.x-vv.com/ft?s=LI9uLTNuWxplRJ>=true&ii=1&ts=0&of
=0&1c=116.2085999,39.9726842

e Weibo:
GET http://api.weibo.cn/2/place/nearby_users?gender=0&sourcetype=
findfriend&offset=0&s=ab516ad4&c=android&lat=39.83178&long=116.29
0966&gsid=u078d0a32pkzvoOr0EIVILVMS8j& & page=1&sort=1&count=20

¢ Momo:
POST https://api.immomo.com
Count=20&1at=39.83178&1ng=116.290966&index=0

e Skout:
Set current city name:

http://friends.meetme.com/mobile/boost/0?placement=meet&targetGender=b&latitude=38.988088&longitude=-76.977333&orderBy=distance&includeFriends=t&onlineOnly=f&pageSize=30
http://friends.meetme.com/mobile/boost/0?placement=meet&targetGender=b&latitude=38.988088&longitude=-76.977333&orderBy=distance&includeFriends=t&onlineOnly=f&pageSize=30
http://friends.meetme.com/mobile/boost/0?placement=meet&targetGender=b&latitude=38.988088&longitude=-76.977333&orderBy=distance&includeFriends=t&onlineOnly=f&pageSize=30
http://r.x-vv.com/ft?s=L99uLTNuWxp1RJ>=true&ii=1&ts=0&of=0&lc=116.2085999,39.9726842
http://r.x-vv.com/ft?s=L99uLTNuWxp1RJ>=true&ii=1&ts=0&of=0&lc=116.2085999,39.9726842
http://api.weibo.cn/2/place/nearby_users?gender=0&sourcetype=findfriend&offset=0&s=a5516ad4&c=android&lat=39.83178&long=116.290966&gsid=u078d0a32pkzvoOr0ElvfLVM8j&&page=1&sort=1&count=20
http://api.weibo.cn/2/place/nearby_users?gender=0&sourcetype=findfriend&offset=0&s=a5516ad4&c=android&lat=39.83178&long=116.290966&gsid=u078d0a32pkzvoOr0ElvfLVM8j&&page=1&sort=1&count=20
http://api.weibo.cn/2/place/nearby_users?gender=0&sourcetype=findfriend&offset=0&s=a5516ad4&c=android&lat=39.83178&long=116.290966&gsid=u078d0a32pkzvoOr0ElvfLVM8j&&page=1&sort=1&count=20
https://api.immomo.com

I Know Where You All Are! Exploiting Mobile Social Apps 11

POST http://and.skout.com/api/1/me/location
Get nearby people:
GET http://and.skout.com/api/1/lookatme?application_code=3456025fd1e
4ec43hecd88b84fd700f4\ &arca=city\&limit=20\&start=0\&rand_token=3dcbf
32a-9966-4b6b-9¢18-441be07b12el

e Badoo:
POST https://eul.badoo.com/jsss/mjinba.phtml?v=2
<jsondata>
In these requests, the location parameters {latitude,longitude}, lc, {lat,long},
{lat,Ing} indicate the location of the user who is searching nearby people.

Step 2: Request Forgery. We forge HT'TP or HTTPS with one-way SSL
requests by modifying the values of the location parameters in the intercepted
requests to search nearby people at any location. We develop a program to
automatically probe nearby people at random locations repeatedly. In order to
avoid the alarm of anomaly detections, the program sleeps for a short while after
each probing.

Step3: Response Parsing. For most of the LBSN apps, the responses of search-
ing nearby people are in JSON format because it is more efficient than XML
and other data interchange formats [19]. We can extract useful information such
as the person’s id, name, distance or geo-coordinate by comparing the response
data with the information displayed in the app.

Figure4 shows the displayed results and the JSON-formatted response of
searching nearby people in SayHi. SayHi provides distance values to an accuracy
of 0.01km. As shown in Fig. 4, although we can see that the user Sasithorn is
5.01 km away, we cannot figure out the exact location of Sasithorn only using this
information. However, we find that the geo-coordinate of Sasithorn (116.339193,
39.9923481) is in the JSON-formatted response data.

Besides the geo-coordinate of the user, the JSON-formatted response of
Weibo also exposes the time when the user was located in that place for the last
time (last_at field). Figure 5 demonstrates a real-world example, which indicates
that the user with ID 2753134815 was at the location (116.30042, 40.02080) at
01:09:58, Sep 27th, 2015.

3.3 Encryption Cracking

Some LBSN apps use data encryption techniques other than HTTPS protocol
to secure the data traffic. They add encrypted parameters such as checksum
or signature into the requests for data tampering detection. Take Mitalk for
example, the intercepted request of searching nearby people in Mitalk is shown
in Fig. 6, in which latitude and longitude represent the searching location. The
JSON-formatted response contains an “ok” code and a list of persons around
the searching location. However, when we try to modify the value of latitude,
longitude or any other parameter in the request, the response indicates errors
with code 401.

http://and.skout.com/api/1/me/location
http://and.skout.com/api/1/lookatme?application_code=3456025fd1e4ec43hec488b84fd700f4&area=city&limit=20&start=0&rand_token=3dcbf32a-9966-4b6b-9c18-441be07b12e1
http://and.skout.com/api/1/lookatme?application_code=3456025fd1e4ec43hec488b84fd700f4&area=city&limit=20&start=0&rand_token=3dcbf32a-9966-4b6b-9c18-441be07b12e1
http://and.skout.com/api/1/lookatme?application_code=3456025fd1e4ec43hec488b84fd700f4&area=city&limit=20&start=0&rand_token=3dcbf32a-9966-4b6b-9c18-441be07b12e1
https://eu1.badoo.com/jsss/mjinba.phtml?v=2

12 S. Zhao et al.

ﬂNeazby people -0

g=1

h=20336151
img=hi-con_20336151_1433928063260
1=34359738374

Sasithorn 5.01m cx
e 116.339193
39.9923481

Is=1435388151144
Gina 6.61mm dAiian
W nn= 14749270016
= p=250
sm=0, 18,25, Wewide
ut=0
v=6

m free 1o chat g=1

h=20642901
26.7um
Fantine img=hi-con_20642901_1435323083398
aw J=34359738374
s 3

u,

116.3573074

=
i_ Maggle . 35,9969576
- Is=1435387803422

n=Gina
e riend f=13063150808

p=150

ut=0

V=g

Fig. 4. Displayed and JSON results of searching nearby people in SayHi

PHHTTS.

=,

2753134315
idstr =2753134315
lang=zh-m
last_at=2015-06-27 01:09:58
lat=40.02050
locaton =P Fh§
~lon=116,30042

~ mbrank=0

- 19938RAIN

Fig. 5. Displayed and JSON results of searching nearby people in Weibo

After a series of experiments, we figure out that the parameter s in the
request is generated by a customized algorithm and it represents the checksum
of all other parameters. The server will recalculate the checksum and compare it
to the value of s when it receives a request. If the values don’t match (i.e., one or
more of the parameters might be tampered), an error message will be returned.

We perform reverse engineering to crack the algorithm of generating para-
meter s. We decompile the APK of Mitalk into Java using tools including apk-
tool [20], dex2jar [21] and Jd-gui [22], and find out the generation procedure of
s, which is shown in Fig. 7(a).

I Know Where You All Are! Exploiting Mobile Social Apps 13

[Raw] [Header Definitions]

fsetting=%TD%22stranger

R22%7 D&st.l. =0&ti S583249793&uui
SSMtoken-QD.:!"’Ex!J'HEOJ EO!:L:\:\D\'D’E\SO‘&!DB‘!\

GetSyntaxView = Transformer | Headers @ TextView = ImageView & HexView
WebView | Auth | Caching | Cookies |[Raw | JSON | xmL

HTTP/1.1 200 OK

Server: Tengine/2.1.0

iDate: Mon, 29 Jun 2015 13:07:29 QAT
Content-Type: application/json; charset=utf-8
Connection: keep-alive

[Content-Length: 4096

{"result”:"ok","description™: "&3}", “data”: {"total”:20, “next”:20, “1ist":[{ i

Fig. 6. Intercepted request and response of Mitalk

public static String &(ListcNameValuePair> paraslist, String paramString)
i
pacenlist.edd(new BasicNemeVeluePeiz(“time”,
Collections. sort(paranlist, new Ebi)}:
StringSuilder localStringSuilder = mew StringBuildesz():
JIrerator locellterator = peranliat.itezetox{l:
for {int m = 1; locallterator.hasNext(); m = 0)
{
RameValuePair locallismeValusPair = (NameValvePair)locsllterator.nextil;
if (mw=0) [
localStringBuilder.append{~s")

5. veloeOf (Systen. currentTineNillas()}1):

]
lccalStriagBuildes. eppend (locallameValueFair. getName (1) .appead(™=") .append{locallaneValuePeic. gesValue ()) :

[ioeaiSeringPaiier -appead "7 - append IparabEcingl =
Teturn COm.XIeoEL channel 0,38, cires STring]
H

localScringBuilder.toString().getByes())) s

(a) The Decompiled Generation Procedure of Parameter s

e b Tag ext
S —— P —— T UF LUNLK GBS AAT A1/ ZEZALBLO DAL AULSOEE
DFLOWER F7CEL7EFAIBDIAIOZAAS2B77F4C0A084
x: LT IV, PRl dam 1/W0g: s A LIETes 3 3 1sag/siring DFLOWER count=182&read_time-1411458647811
uuid-5394@51184F 7CE17EFALBD1A3924
rvoke-staric (p3, pll, L ./ channels resaiizavasuziliione gy 8 3

Buuid
—re——— - 7racanoga
DFLOWER 21538623E7057C3A2300922C (8683850
ke-staric (¥, w0 ,1ABATCIA/Util/Log:-»d(llave/lane/Strina;lisve/lane/stzize DFLOWER F7CE178FA1BD1A3G24AS2R77F4C 4084
DFLOAER count-1008read_time-1411458757433
=, T uuid-5304051184F 7CE178FA1B01A3024
DFLOMER 1AA1B43607746DCIFCBCLBER720751CC

(b) Monitor paramString in Logcat

Fig. 7. Cracking encrypted parameter s of Mitalk

From the figure we conclude that the encrypted parameter s is calculated
according to Eq. 2:

s = b(namel = valuel&k...&nameN = value N ¶mString) (2)

In the equation, namel to nameN are the alphabetical parameters of the request
excluding s. Meanwhile, paramString is a fixed value. In order to get the value of
paramString, we firstly disassemble the APK file of Mitalk into smali codes, and
insert some debug codes to let the app print the value of paramString into logcat
(which is an Android logging system for collecting debug outputs) while runing.
Then, we repackage [23] the APK file and install it into an Android phone. When

14 S. Zhao et al.

public static char(] bsyte(] vard, int varl. Lnt var2) int varl2 = var8 /

i int varld = (var8 «) << | vard /
int vaxd = ¢ +waxl ») / int varld - (vard &« ©°) << | varll /
char{] varé - new char(- = ({var2 + -} / }1; int varl$ - varll
int var§ = varl + var2: int varigé = varé =

vard(varé) - bivarl?):
int varld int varl? - varl€ s ;
for (int varé - wvarl < varS; varl - varl() vard[varl€) - brvarlld):
{ char varl@:
int var? = varl + if (varl? < vac3)
tnt vars - &« varOrvarl] : 1

int var® varl# - bivarld);
if (var? < vars) 1
i else
int var2i = var? = ; 1
vard - & varO[var?) varl8 - (char) ;
var? = var2l 1
)
tlse wvard[varl?] = varlB
i int varl® - varl7 + ;
vard - char var20;
I Aif (varl® < vard)
|
int varll: var20 - b{varls)
if (var? < var$)]

[} else
varll - var? + i
wvarll - ¢ varQ([var?) var20 = (chary

I 1
else

i vard [varld) - var20:
varll - vaxr7;: varé - varld +
varll - 1

'

return vard;

Fig. 8. Decompiled function b from com.xiaomi.channel.d.f.a.b

we launch the repackaged Mitalk app and login with an account, the value of
paramString can be watched in a logeat viewer, as shown in Fig. 7(b).

From com.ziaomi.channel.d.f.a.b, the function b in Eq. 2 can be decompiled.
The decompiled function is shown in Fig. 8. We can calculate the value of s using
Eq. (2) to bypass the data tampering detection of the server, and then use the
same method in Sect. 3.2 to search nearby people at any location.

3.4 Emulator Simulation

Some LBSN apps like Wechat and LOVOO use HTTPS with two-way SSL pro-
tocol or use advanced encryption techniques. In this case, it will be too difficult,
if not impossible, to intercept and forge the requests. Under these circumstances,
we use mobile phone emulators and automated testing tools to simulate user’s
actions to probe nearby people at any location.

We demonstrate the method on Wechat using Android emulator [24] and
utautomator, which is a testing framework for Android [25]. We create an auto-
mated functional Ul test case using uiautomator, which will automatically press
a series of buttons to launch Wechat app and search nearby people in it. As
soon as the results are displayed on the screen, the test case will inspect the Ul
to find the layout hierarchy and read information we need such as usernames
and distances through the properties of specific Ul components. The UI and the
corresponding layout hierarchy of Wechat are shown in Fig. 9. The algorithm of
the testcase is shown in Algorithm 1.

I Know Where You All Are! Exploiting Mobile Social Apps 15

Ul Automator Viewer

G

0) ListView [0.219][1080,1776]

(1) LinearLayout [0,218][1080,411]

P (0) LinearLayout (0.219][1080,411]

‘ﬁ f';' A 10} ImageView [36,242][180,386)
s » (1) LinearLayout [180.210[1044,410]

¥(2) LinearLayout [0.411){1080,603)

- ARTHE L *{0) LinearLayout [0,411][1080,603]
S . i 0) ImageView [38,434)(180,578)
-) b . ¥ (1) LinearLayout [180,411]]876 ,602]
mf‘?“"’f!" *(0) LinearLayout [195,441)[247,501
100k (0) TaxtView: 7777 [185,441)[38
E P 1) imageView [367,443)1241.50
¢ : = [s
Node Detail
BEES L index 1
b XL text
resource-id
§ WREL olass androidwidget LinearLayout
i package com.tencent.mm
content-desc
E AFEENE L checkable false
w1 checked false
chckable false
— AT A enabled true
2005617 focusable false
focused false

scrollable false
long-clickabie false

Fig. 9. Inspect the layout hierarchy of Wechat with UTAutomator

Algorithm 1. Searching and Reading People Nearby in Wechat

: Press HOME button to return to home screen
Find the icon with text “Wechat”, click it and wait for new window
Find the tab with text “Discover”, click it and wait for new window
Find the button with text “People Nearby”, click it and wait for new window
if Text “Unable to load your location data” is found then
Return error
end if
Get the listview L with resource id “com.tencent.mm:id/atf”
Read the properties of each listitem in L to Result
: if L is scrollable then
Scroll down L for next page
Goto 1
: else
Return Result
: end if

= e e e
TEwhEo®

In our experiments, we first send fake geo-coordinates to the emulator using
a GPS command geo fiz in the emulator’s control console, and then launch the
testcase in the emulator to get nearby people at the fake location. By repeating
the above two steps, we can probe nearby people at any location.

3.5 Location Tracking

As long as a large volume of data is collected, it is likely that a specific person
would be probed multiple times at different places. Then, we can mark the

16 S. Zhao et al.

-2 £ VEBES . - R Pointl Poifit2
—re
550 falNE 27 i /
¢20150302j12.gn . e .' . ‘
&8 FY E ot &
2015.03-03T1354.09 = T & e
e (aac] i N suz
* LR % B0, 4z
L lopsy, EHE * s = =
s oseror sy Re/ | _geme =i |
IHER A \ | T e W e
(a) Weibo (b) Wechat (¢c) Momo

Fig. 10. Location tracking via different LBSN apps

location and the time when the person appeared on a map to track his/her
locations.

For some LBSN apps such as Weibo and SayHi, we can get the geo-
coordinates of a targeted person directly, and hence we mark the exact locations
of the person with points on a map, as shown in Fig. 10(a). For some other apps
such as Wechat and Momo, we can only get the coarse-grained locations which
are determined by the probed location and the distances from the targeted per-
son to the probed location. In this case, we mark the approximate locations of
the person with circles on a map, as shown in Fig. 10(b). The red points indicate
the locations of the probers, and the circles denote the possible locations of the
probed users.

According to the trilateration positioning method [14], if a point lies on two
circles at the same time, we can narrow down the possible locations to the
intersections of the two circles. If a point lies on three or more circles, we can
narrow down the possibilities to a unique point. Figure 10(c) shows that at nearly
the same time, a user is probed by 5 probers (red points) and another user is
probed by 3 probers. The locations of these two users can be deduced precisely
to Pointl and Point?2.

3.6 Risk Evaluation

We next evaluate the overall risk induced by the popular LBSN apps. Table 2
shows the overall risk evaluation of popular LBSN apps. More than half of the
apps (i.e., five out of eight) are easy to exploit. Meanwhile, half of the apps (i.e.,
four out of eight) can expose people’s location privacy with high accuracy. Weibo
and SayHi have the highest risks, because they can be exploited for location
probing easily and meanwhile can leak people’s geo-coordinate directly. LOVOO
and Wechat have a relatively low risk of being exploited for large-scale location
probing, because the efficiency of emulator simulation is much lower than forging
requests, and they only expose people’s coarse-grained locations.

I Know Where You All Are! Exploiting Mobile Social Apps 17

Table 2. Risk evaluation of popular LBSN apps

APP Possible exploit method Exploit difficulty | Accuracy of leaked data

LOVOO | Encryption cracking & Difficult Medium
Forging requests or
emulator simulation

MeetMe | Forging requests Easy Medium

Mitalk | Encryption cracking & Difficult High
Forging requests or
emulator simulation

Momo | Forging requests Easy High
SayHi Forging requests Easy Very high
Skout Forging requests Easy Low
Wechat | Emulator simulation Difficult Medium
Weibo | Forging requests Easy Very high

4 Recommendations on Counter-Measures

In this section, we discuss some possible counter-measures against the threat of
location privacy leakage via LBSN apps.

Firstly, we point out that using HT'TP protocol with plaintexts for data trans-
portation is extremely unsafe, because it is vulnerable to both request forgery
and MITM (man-in-the-middle) attacks. Besides, since the one-way TLS/SSL
authorization does not require the server to check the validity of the certificate
from the client, a self-signed local certificate can be generated and used to parse
the plain content from the TLS/SSL traffic, which makes HTTPS protocol with
one-way TLS/SSL unsafe to use. Other misuses of TLS/SSL in the development
of the apps such as allowing all hostnames, trusting all certificates, SSL stripping
and lazy SSL usage [26] will also make the apps vulnerable.

Also, anti-probing and anomaly detection methods should be used by the
service providers to distinguish automatic probers from normal human users. It
is not efficient enough to simply limit the quota for searching nearby people of
each user just as what Momo does, because it can be bypassed easily by using
multiple probing accounts and devices. A witty designed machine behavior model
should be studied and applied for better detection and protection. Last but not
least, in the client/server (C/S) model, while responding to the request, the
response data volume should be small without more extra information than the
app client needs, while leaving the data filtering and omitting work to the client
will bring the risk of information leakage.

5 Conclusion

In this paper, we pointed out that mobile social apps will introduce location
privacy leakage when they provide the functionality of searching nearby people.

18 S. Zhao et al.

We examined the risks of location leakage in popular LBSN apps and find out
that they can be exploited for launching the location probing attacks. Moreover,
we proposed three general methods for conducting such attacks via LBSN apps.

Using the new attack methods, we evaluated the overall risk induced by pop-
ular LBSN apps and had many interesting observations. This study shows that
the current methods for location privacy protection in LBSN apps are insufficient
and new protection mechanisms are desired to address such risk.

Acknowledgements. This work is supported in part by the Hong Kong GRF/ECS
(No. PolyU 5389/13E) and the HKPolyU Research Grant (G-YBJX), and in part
by the National Natural Science Foundation (No. 61202396, 61221063, U1301254),
Postdoctoral Science Foundation (2015M582663), Postdoctoral Science Foundation
of Shaanxi Province, 863 High Tech Development Plan (2012AA011003), 111 Inter-
national Collaboration Program, the Fundamental Research Funds for the Cen-
tral Universities (3115200112), Shenzhen City Science and Technology R&D Fund
(JCYJ20150630115257892), and Technology Innovation Project of Chinese Academy
of Sciences (Y5X0011716, Y5X0011516), of China.

References

1. Zheng, Y.: Tutorial on location-based social networks. In: Proceedings of the 21st
International Conference on World Wide Web, WWW, vol. 12 (2012)

2. Foursquare Inc. About us. https://foursquare.com/about

3. Hattersley, M.: Google+ Companion. Wiley, Indianapolis (2012)

4. Inc, S.: Number of active wechat messenger accounts 2010-2015. http://www.stat
ista.com/statistics /255778 /number-of-active- wechat-messenger-accounts/

5. O’Dell, J.: A field guide to using facebook places. Mashable. com, p. 23 (2012)

6. Zhao, X., Li, L., Xue, G.: Checking in without worries: location privacy in location
based social networks. In: 2013 Proceedings IEEE INFOCOM, pp. 3003-3011.
IEEE (2013)

7. Carbunar, B., Sion, R., Potharaju, R., Ehsan, M.: Private badges for geosocial
networks. IEEE Trans. Mob. Comput. 13(10), 2382-2396 (2014)

8. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082—-1090.
ACM (2011)

9. Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in
location sharing services. ICWSM 2011, 81-88 (2011)

10. Li, M., Zhu, H., Gao, Z., Chen, S., Le, Y., Shangqian, H., Ren, K.: All your location
are belong to us: breaking mobile social networks for automated user location
tracking. In: Proceedings of the 15th ACM International Symposium on Mobile ad
hoc Networking and Computing, pp. 43-52. ACM (2014)

11. Patsakis, C., Zigomitros, A., Solanas, A.: Analysis of privacy and security exposure
in mobile dating applications. In: Boumerdassi, S., Bouzefrane, S., Renault, E.
(eds.) Mobile, Secure, and Programmable Networking. LNCS, vol. 9395, pp. 151—
162. Springer, Switzerland (2015)

12. Rogers, R., Lombardo, J., Mednieks, Z., Meike, B.: Android Application Develop-
ment: Programming with the Google SDK. O’Reilly Media Inc, Sebastopol (2009)

https://foursquare.com/about
http://www.statista.com/statistics/255778/number-of-active-wechat-messenger-accounts/
http://www.statista.com/statistics/255778/number-of-active-wechat-messenger-accounts/

13.

14.

15.
16.

17.
18.

19.

20.

21.

22.

23.

24.
25.
26.

I Know Where You All Are! Exploiting Mobile Social Apps 19

Baidu Inc. Baidu location sdk. http://api.map.baidu.com/lbsapi/cloud/
geosdk.htm

Murphy, W., Hereman, W.: Determination of a position in three dimensions using
trilateration and approximate distances. Department of Mathematical and Com-
puter Sciences, Colorado School of Mines, Golden, Colorado, MCS-95, 7, p. 19
(1995)

Lawrence, E.: Fiddler: Web Debugging Proxy (2007)

Hickman, K., Elgamal, T.: The ssl protocol. Netscape Communications Corp, vol.
501 (1995)

Rudrappa, N.: Defeating SSL certificate validation for android applications
Evans, C., Palmer, C., Sleevi, R.: Public key pinning extension for http. Technical
report (2015)

Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C.: Comparison of JSON and
XML data interchange formats: a case study. Caine 2009, 157-162 (2009)
Winsniewski, R.: Android-apktool: a tool for reverse engineering android APK files
(2012)

Alll, B., Tumbleson, C.: Dex2jar: Tools to work with android. dex and java. class
files

Dupuy, E.: Jd-gui: Yet another fast java decompiler. http://java.decompiler.
free.fr/?q=jdgui/accessed

Berthome, P., Fecherolle, T., Guilloteau, N., Lalande, J.F.: Repackaging android
applications for auditing access to private data. In: 2012 Seventh International
Conference on Availability, Reliability and Security (ARES), pp. 388-396. IEEE
(2012)

Android Developers: Using the android emulator (2012)

Android Developers: Uiautomator (2013)

Fahl, S., Harbach, M., Muders, T., Baumgértner, L., Freisleben, B., Smith, M.:
Why eve and mallory love android: an analysis of android SSL (in) security. In:
Proceedings of the 2012 ACM conference on Computer and communications secu-
rity, pp. 50-61. ACM (2012)

http://api.map.baidu.com/lbsapi/cloud/geosdk.htm
http://api.map.baidu.com/lbsapi/cloud/geosdk.htm
http://java.decompiler.free.fr/?q=jdgui/accessed
http://java.decompiler.free.fr/?q=jdgui/accessed

	I Know Where You All Are! Exploiting Mobile Social Apps for Large-Scale Location Privacy Probing
	1 Introduction
	2 Overview of LBSN Apps
	3 Location Privacy Probing via LBSN Apps
	3.1 Examining Popular LBSN Apps
	3.2 Forging Requests
	3.3 Encryption Cracking
	3.4 Emulator Simulation
	3.5 Location Tracking
	3.6 Risk Evaluation

	4 Recommendations on Counter-Measures
	5 Conclusion
	References

