About Us, with Us: The Fluid Project’s
Inclusive Design Tools

Colin Clark!®™) Dana Ayotte!, Antranig Basman?, and Jutta Treviranus®
! OCAD University, Toronto, Canada
cclark@ocadu.ca
2 Raising the Floor - International, Geneva, Switzerland

Abstract. Since 2007, the Fluid Project has been developing an inte-
grated set of inclusive design methods and software tools to support
personalization, authoring, and software creation by users within the
context of a participatory, open source community. In this paper, we
position the Fluid Project’s inclusive design practice within the context
of interaction, participatory, and universal design methods. We exam-
ine and contrast these approaches from the perspective of supporting
user creativity throughout the process of designing and using software.
The Fluid Project is an open source community of designers, developers,
testers, users, and other diverse contributors who might not otherwise
fit into the highly technical and exclusive culture of conventional open
source software communities.

Keywords: Accessibility - Inclusive design - Co-design - Fluid project -
Development tools - Assistive technology - Design methods - User
creativity

1 Introduction

We begin by briefly surveying several established design methods, exploring their
strengths, weaknesses, and relations to inclusive design. In particular, we exam-
ine the degree to which these methods can support diverse participation by users
during the design process and beyond. Next, we describe the community-grown
design methods employed by Fluid, which blend established techniques with
new inclusive methods. The challenges and opportunities of designing within
an open source community are discussed; we provide an overview of common
open source governance and decision-making processes, examining some of the
social and technological mismatches between today’s developer-oriented open
source practices and our goal of an inclusive, participatory community. We end
by discussing how inclusive design and collaboration can be supported by tech-
nologies such as Fluid’s Infusion framework, which provides the foundation for
what we call “user-continued design,” where software artifacts can be changed
and redesigned even after the initial design process has been completed.

© Springer International Publishing Switzerland 2016
M. Antona and C. Stephanidis (Eds.): UAHCI 2016, Part I, LNCS 9737, pp. 172-182, 2016.
DOI: 10.1007/978-3-319-40250-5_17

About Us, with Us: The Fluid Project’s Inclusive Design Tools 173

2 Design Methods

2.1 Interaction Design

Industry-driven interaction design methods such as those described by Cooper
[4], Beyer et al. [2], and IDEO [11] primarily look inward; they are created by
professionals and intended for an audience of like-minded designers and man-
agers. These methods aim to provide prescriptive, generalized, and reproducible
techniques for managing teams who design commercial software products or offer
design consulting services. The predominant emphasis is on “modelling” users,
their goals, and their work or organizational processes.

Despite an increased focus on user-centered design, which often invites users
into the fold of research in a more active way (as with the human-centric design
methods of [11]), such industrial modelling methods maintain the user in a pas-
sive role as “consumer” or “customer,” often advocating for a rigid design focus
on typical or mainstream requirements while explicitly de-prioritizing the “edge
cases” of outlying, marginal needs [4].

While this approach may simplify product requirements and focus designers
on the most popular features, it also risks excluding the crucial features and
customizations that enable people with disabilities to use a software product and
which ultimately contribute to greater innovation and to the overall usability of
a system [21].

Moreover, interaction design advocates often argue that their subjects (i.e.
the individuals who use their software on a daily basis) are unable to be articu-
late or self-aware about their own technology needs, and that only the software
industry can provide design innovation, not users themselves [20]. User input
gathered through human-centered design methods tends to be seen only as a
means for users to inspire the creative process of “real” designers. The result
is that there are few opportunities for individuals to actively contribute to the
design process and work alongside professional designers, except as consumers
or research subjects.

2.2 Universal Design

Universal design, with an explicit focus on meeting the needs of all individu-
als, including those with disabilities, substantially expands a designer’s creative
remit and responsibilities. However, the challenge of universal design is in its
emphasis on a single product or design that aims to fit the needs of all users
without adaptation or personalization. Ron Mace describes universal design as
“the design of products and environments to be usable by all people, to the
greatest extent possible, without the need for adaptation or specialized design’
[our italics] [15]. As the complexity and diversity of today’s software grows, it is
no longer practical for designers to plan for every user and every feature within
a single piece of software, nor to be able to fully understand and obtain expertise
in the infinite variety of creative, serendipitous, and unexpected uses that soft-
ware can be subjected to. Instead, the design process needs to be supported by

174 C. Clark et al.

technologies that provide users with a means to materially change, personalize,
specialize, and extend their software environments.

2.3 Participatory Design

Participatory design, in contrast to many interaction design methods, offers the
potential for users to more actively engage in the design process. This often
takes the form of workshops and scenario-building exercises where users are
invited to explore design strategies alongside professional designers [23]. While
participatory techniques play a foundational role in the Fluid Project’s inclusive
design methods, particularly the concept of experienced designers working in
harmony with users and other non-designers, we argue that workshops and other
“before-the-fact” design methods alone are insufficient for three primary reasons:

1. Participatory design methods do not explicitly provide a means for ongoing
community “stewardship” or “curation” of the software product after the
initial participatory methods have been completed

2. Additional technological tools are needed in order support ongoing or user-
continued design, including the ability for individuals to customize, adapt,
and modify a “finished” software product

3. Most user-centered or participatory methods do not fully support the partic-
ipation of “extreme users” — those at the margins or who have particular
needs that cannot be easily accommodated by traditional user research or
workshops [18].

3 Fluid’s Inclusive Design Tools

Taking up the co-design position that “all people have something to offer to the
design process and that they can be both articulate and creative when given
appropriate tools with which to express themselves” [19], the Fluid Project has
been developing design and technological tools to support user creativity. We
aim to extend the design process into the designed artifact itself — to give
users the ability to continue the design process themselves, after the specialized
design effort has been finished and the product has shipped. This approach to
“adaptation as design” extends from creating tools that allow users to configure
their own interfaces, to technologies that support remixing, repurposing, and
sharing.

Designing inclusively, we have learned, requires more than just design
processes, but also new technologies. This is the motivation for tools such as
Fluid Infusion [13], a software development framework that enables applications
to be reconfigured in context- and preference-sensitive ways, and the GPII Nexus
[10], which can integrate diverse software components together in a way that will
eventually be supported by graphical authoring and programming tools accessi-
ble to non-developers.

About Us, with Us: The Fluid Project’s Inclusive Design Tools 175

3.1 Catalogue of Design Tools

Fluid’s software and design tools are rooted in open community practices that
emphasize the role of users, especially users with disabilities, as co-designers,
“gardeners”, and ongoing maintainers of the project’s outcomes. Fluid’s app-
roach emphasizes the importance of non-prescriptive design methods and self-
organizing collaborative teams who freely draw from a toolbox of design
approaches (such as those documented in Fluid’s Design Handbook [14] and
the Inclusive Learning Design Handbook [12]) based on the design context and
the needs of participants and project stakeholders. We outline some of Fluid’s
community-driven design methods below.

UX Walkthroughs are a hybrid technique based on heuristic evaluation and
cognitive walkthroughs. They emphasize paired or collaborative evaluation of
user interfaces by designers and non-designers alike, and serve to bring a diversity
of perspectives to bear on the design process.

The UX Walkthrough technique is a procedure for critically examining a
user interface by following one or more predetermined scenarios and making
assessments based on common user experience heuristics such as those by Jakob
Neilsen [17]. It is an amalgam of several proven conventional inspection proce-
dures, supporting reviewers in making assessments both from the user’s point
of view and that of a design expert. Pairing actual users up with designers to
define scenarios and participate in walkthroughs can further enrich the results.

The multifaceted nature of the UX Walkthrough enables reviewers to make
assessments across several dimensions, including: general design quality, task-
oriented usability, assistive technology usability, accessibility standards compli-
ance, and code quality. A UX Walkthrough can be performed by novices as well
as experienced evaluators. The result is a comprehensive and multidimensional
report of usability and accessibility issues in a website or application.

Personas and Use Cases provide models of potential stakeholders who may
use a product or service and the scenarios they may encounter when using it.
Personas often play an ambivalent role in an inclusive design process; as tools,
they offer teams a useful way to identify with and design for certain users, yet
they also simultaneously risk stereotyping or reducing users to static, product-
oriented identities.

Although personas represent fictional people, their characteristics, needs,
goals and motivations are rooted in the insights and feedback collected from
various sources including formal or informal research techniques (such as inter-
views and surveys), or through familiarity with the needs and interests of self,
co-workers, friends or family members. They begin as early, provisional sketches
and often evolve iteratively as more information is gathered. Personas are behav-
ioural models; they do not represent the full demographics of any given popu-
lation of complex and unique people. They enable designers, developers and
evaluators across a project to keep a broad and diverse collection of stakeholders

176 C. Clark et al.

in mind. Considering non-obvious or unconventional users helps a design team
to think broadly and stay open to unexpected uses of the systems they are cre-
ating. Personas are most useful for inclusive design when they are understood
as full and idiosyncratic individuals, rather than as representatives of a broader
category of disability, age group, or market demographic [18].

Use cases describe particular scenarios in which a persona may encounter and
use a product or service, providing more detail about specific tasks and goals
as well as helping to map out the potential steps in a workflow. User personas
and accompanying use cases are not meant to exhaustively describe all potential
stakeholders or situations; rather they help to illustrate key goals and behaviour
patterns related to the design in question.

When paired with the other tools, particularly User States and Contexts and
UX Walkthroughs, personas and use cases can help to paint a clearer picture
of a broad and diverse range of user needs and preferences. They must be used
with caution, since by their nature they create a distinction between user and
designer, and they must be tempered with the awareness that no single persona
or group of personas can independently determine the full range of potential
uses of a product or service. Most importantly, like the real world, they need
to be understood as always in flux; user needs and goals change significantly in
different contexts and at different times.

User States and Contexts serve to “de-centre” and “multiply” personas,
reducing the risk of stereotyping with personas by emphasizing the dynamic
nature of a user and their needs across different contexts of use. This tool offers
a way to represent and “query” or visualize different user needs and perspectives
individually or in aggregate.

These diagrams can be considered a use-modelling tool for evaluating the
ability of a design to be perceived and operated by users in a wide range of
states and contexts. A user states and context map can be used to demonstrate
the range of needs of users that are represented by a particular persona, or
those of a collection of personas. The map can also be used to consider and
demonstrate how a user’s state and context can change in the short term (e.g.
on a daily basis) or the long term (e.g. over a lifetime). Each “constellation” in
a User States and Contexts diagram shows the needs of a particular user in a
specific context, environment, or situation. These diagrams can be layered on
top of each other to plot how needs change across different contexts. Similarly,
diagrams of different users can be clustered in order to analyze relationships
amongst users. This helps to reveal patterns and commonalities that might not
otherwise be obvious when using personas alone, as well as serving to highlight
unique needs, interesting outliers, and edge cases that may suggest new design
opportunities and features (Fig. 1).

Community Design Crits bring together designers, developers, and users to
discuss and critique design artifacts, including ideas, scenarios, mockups, and
in-development software.

About Us, with Us: The Fluid Project’s Inclusive Design Tools 177

SOCIAL

quiet environment

o6 distractions

INTERNET
ACCESS

o can hear well
 occasional distractions

from the physical context

as ready access
\to high-speed

TR
\ aceSRIOION ol networks

\
\ ehas occasional
\ access to

 canspeskwel
\ enhance audio 1
\ high-speed internet o frequent e |
\ ohas ready access disractions {01l audo \
\ tolow speed eneedsanatematve |
ohasa \ needs SnOsy_ eneedsan toaura meractons |
modern needs context | aternatve oal |
Computer | Visual informaton
_Ahasan o “needs braile |
" “antquaterr “heeas tacte eneeds amodifed |
- computer Sraphics pointingdevice |
ot o doesnthave
DEVICE sminphae_ ehasa S] e B |
~ nonsmartphone Wapaning devce stz to pon
PLATFORM T ohas no phone encedsonalemaive +i5es auemate |
ehas a devicE—_ 10 keyboar +Uses manual scanin
ahasadedce “wiha el depy e eneedsanaliernatie (ISR
ith faciltated way 1o hold down < uses voice recognition
Slarge dispay == o keys ata tine
+needs analtemative euses an eye tracking
eneeds. Keybx |
/ Sen eyboard ayout i ot andselect |
o consructve,
iznguage
clameane / v SEe
arrangement needs text eneeds amodified __— a pointing
e Keyboard - avce and
osefdirected /o epreters aloud susssbimycode akeyboard
arrangement Shorter __—<ses quadrant code: wel
LEARNING / intaraction e .
ARRANGEMENT [oreters sessions [Gimotes *Giisceen
e 3 ransation | tayout
oftislanguage |
Smpifed

o understands

this language
e adapts &y

to allnteraction
ssions. efinds the page
layout readable

efinds the content

& luent understanable
in this language

Fig. 1. A user states and contexts diagram.

Design crits provide a space, both locally and remotely via the use of video
conferencing tools, for informal feedback and input to be gathered on a regular
basis from a group of people with differing perspectives and differing stakes in
the design. Gathering feedback in this way allows everyone a chance to partic-

ipate in the design process from the start and in so doing reduces the typical
design/develop/test cycle time.

Open, Transparent Sharing of design artifacts and discussion on mailing lists
and other community forums based on “lazy consensus” governance principles
[3]. Lazy consensus is a form of community-based decision-making that allows
participants to make design and technical decisions freely based on their own
personal judgement, trusting that, by virtue of the fact they are working openly
and visibly, others will be able to speak up, contribute, or ask questions if issues
arise.

When working transparently, diverse participation in the design process is
more likely, because those who wish to get involved and who have access to
the content and tools can contribute. Accessible and open communication tools
can provide both a means of alerting the community to a group discussion or
other activity, as well as a means of distributing collaborative artifacts including
meeting minutes, design mockups, and other relevant information.

178 C. Clark et al.

3.2 Using and Exploring Design Tools

These design and development techniques have been used with some success
on a number of software design projects, and have been expanded for use in
other communities and open source projects such as the Global Public Inclusive
Infrastructure [22]. However, there are significant challenges to designing within
the context of open communities, many of which we are still exploring. In par-
ticular, meritocratic governance runs the risk of being exclusive and dominated
by contributors in privileged positions (socially, culturally, technologically, and
economically) if a system is not in place to ensure that diverse contributions,
especially those by non-coders, are recognized and promoted [7]. Access to open
source collaborative forums, which are often synchronous, require high band-
width, or privilege text-based communication over verbal or visual means, can
limit diverse contributions. We continue to experiment with, evaluate, and test
new social and technical methods for supporting ongoing engagement by individ-
uals with disabilities, non-technical contributors, and those who might otherwise
be excluded from conventional open source culture.

4 Technological Tools for Design

Technological tools to support such open and interactive design processes are,
in our experience, relatively scarce. This is not only a result of the rarity of the
processes they would support, but also because the underpinning for them is
missing at the technological level. In this section, we survey the parallel story of
technologies designed to support software developers in order to highlight what
is missing for inclusive design, and to imagine the types of support which could
be created for a community-oriented design process.

4.1 Distributed Version Control for Software Developers

Distributed version control systems gradually took over from traditional cen-
tralized version control systems during the 2000s. Distributed versioning offers a
more democratic, “peer to peer” model for managing community assets, rather
than the previous authority-based model whereby the definitive version of a com-
munity asset was stored in a nominated central repository. The most widely-used
system of this kind currently is git [8], designed by Linux architect Linus Tor-
valds in response to problems he faced managing a very large source code base
of millions of lines of code shared amongst thousands of contributors. Especially
as hosted by the hugely popular infrastructure site GitHub [9], git offers impor-
tant new affordances for software developers, beyond those directly implied by
adopting an open source contribution model.

Amongst the most interesting for our purposes is GitHub’s review model.
This allows a suggested contribution to a project to enter a rich interactive
lifecycle centred around a git artifact known as a pull request — a request by the
contributor that their work be accepted (pulled) into the community’s shared
project. GitHub’s pull request review interface provides the following facilities
to contributors:

About Us, with Us: The Fluid Project’s Inclusive Design Tools 179

1. Difference focused: the interface highlights the differences between the
project’s state before and after the contribution is accepted. It is possible
to navigate to complete views of project artifacts before and after the contri-
bution.

2. A Content-focused discussion: comments can be attached to particular
parts of the contribution. These can start off a dialogue between the con-
tributor and other project members which remains attached to the particular
content it is relevant to.

3. An archived record: even after the contribution is accepted into the project
(or perhaps rejected) the pull request interface remains permanently available
in the archive, making it easy to revisit and understand previous discussions.

It is worth noting that this pull request workflow is particularly a facility of
GitHub rather than simply git itself, although it is enabled by the core technol-
ogy of git. Unlike git itself, GitHub is not an open source project and its free-tier
facilities are provided to the open source community as part of a wider commer-
cial offering. However, alternatives to Git and free alternatives to GitHub exist,
such as Gitorius on git, or the darcs hub [5] on darcs (although this currently
has no pull request UT).

4.2 Nothing for Designers

Nothing similar to GitHub’s pull request user interface and workflow currently
exists to facilitate contributions to open source culture from non-developers.
Because of this, open design teams are often left to devise ad hoc processes,
such as exchanging designs as “rendered” image files (e.g. bitmaps and PDF's)
using Dropbox [6] or other cloud file sharing systems, attachments to wiki pages,
email, and so on. As a result, comments and discussion are separated from the
design artifacts and occur in parallel channels such as emails, IRC chats and
Skype messages. There is no easy way to interleave comments, suggestions, and
critiques with a design “source” file, and it can be difficult to publicly archive
and preserve such discussions for future reference. This complicates lazy consen-
sus and collaborative governance for design, and makes it difficult to establish
stable, shared archives of design knowledge within a community to help bring
newcomers on board.

Additionally, none of the design tools most commonly in use today have
accessibility features to facilitate contributions from individuals with disabilities,
such as the ability to attach descriptive text narratives to wireframes and mockup
images. This huge discrepancy between the quality of tools provided to technical
as opposed to design contributors further erodes the ideology of a “meritocracy”
in open source communities.

4.3 Fluid’s Dream of an Inclusive Tool Chain

We dream that the same community affordances can be extended to all kinds of
contributors. The technical, economic, and social barriers to this are, however,

180 C. Clark et al.

significant. Providing, for example, an accessible equivalent to Adobe’s Illustra-
tor or similar visual design tools is a prohibitive task. Even where open source
alternatives to popular commercial visual design tools exist, they are unlikely
to provide useful accessibility and collaborative features that can be integrated
with robust, decentralized version management in a manner suitable for non-
technical users. Such tools will likely never be developed without a fundamental
change to both the economics and practices of software design and development.
Indeed, such a collaborative, accessible design tool could likely never stand alone
as a single product; it could only be viable within the context of a broad col-
lection of mutually-supportive technologies that take the needs of inclusion and
collaboration into account at each infrastructural level.

5 Building an Inclusive Tool Chain

The primary aim of Fluid’s Infusion framework is to provide the foundation for
such an inclusive tool chain, including supporting “user-continued” design. The
needs of inclusion and collaboration both induce similar kinds of requirements
on software and content creation processes.

5.1 Working with Design Landmarks

At the technical level, one of the strategies we have found to be effective in Infu-
sion for supporting both adaptability and collaboration is to provide landmarks
in a design — named architectural points that can be used to focus discussion as
well as used to target further design or customization after the fact by users. We
take our inspiration from the kinds of landmarks visible in HTML documents,
which can be successfully referenced by means of a vocabulary of CSS selectors
[16]. Landmarks can, for example, take the form of tag names, CSS class names,
or other attributes of a document node. By referencing these landmarks using
CSS selectors, designers can meet both the needs of styling (using CSS rules) and
further authoring (by using document-oriented manipulation tools such as the
jQuery library). Landmarks are also valuable for supporting collaborative design
tools, since they provide a means to attach comments and document-directed
discussion to the design. Such CSS rules have been an early success for inclusive
design, allowing designers and developers to share access to a design space in a
harmonious way.

Infusion aims to bring the affordance of these selectors and rules not just to
markup and styling, but to the rest of the software development process. This
is accomplished by organizing Infusion applications into cellular units named
components that can be referenced by means of a CSS-like system of IoCSS
rules, allowing components to be easily altered, replaced, or removed at any
time. This casts the world of software development more in terms of document
authoring than source code editing, with its final artifacts taking the form of
structured trees with landmarks rather than binary opaque blobs [1]. The key
difference between such document-based software and traditional code is that

About Us, with Us: The Fluid Project’s Inclusive Design Tools 181

it is intended to be modifiable at any point in the software’s creation and use
lifecycle. By providing an infrastructure which is suitable for authoring such
trees, and for casting designs both visual and architectural in terms of them, we
aim to support the creation of inclusive, collaborative workflows for designers of
all kinds, including users.

5.2 Requirements Beyond Frameworks

Despite our technical efforts, we recognize that collaborative, open, and partic-
ipatory design communities cannot be supported solely by means of a develop-
ment framework. Other requirements need to be met through:

— Building up hosting infrastructure for applications and data, and the tools
and infrastructure needed to manage it

— Building up community structures and workflows for welcoming, supporting
and reviewing contributions

— Building up and curating shared understanding of productive ways of casting
and solving design and implementation problems, organized, for example, in
“handbooks” of design guidelines, “bestiaries” of real-world problems and
their solutions or other approaches like those listed in Sect. 3.1.

6 Conclusion

The design processes and technologies we describe here aim to support new forms
of participation in open source software and to ultimately provide users with the
ability to materially redesign and adapt software themselves. These goals are,
needless to say, highly complex, ambitious, and challenging. We believe that such
processes and tools need to be prototyped, evaluated, and refined within the
context of open, collaborative communities that recognize the many and diverse
contributions necessary to make highly usable software. Our approach continues
to evolve and grow based on real-world experience designing and implementing
software for a variety of projects, and we invite others to join our community
and help creatively explore these issues with us.

The authors would like to thank James Yoon and Sepideh Shahi for their
contributions to the design methods described in this paper.

References

1. Basman, A., Clark, C., Lewis, C.: Harmonious Authorship from Different Repre-
sentations. Psychology of Programming Interest Group Annual Conference 2015.
http://www.ppig.org/sites/default/files/2015- PPIG-26th- Basman.pdf

2. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Sys-
tems. Morgan Kaufmann Publishers, San Francisco (1998)

3. Capra, E., Wasserman, A.L.: A framework for evaluating managerial styles in open
source projects. OpenSource Dev. Communities Qual. 27, 1-14 (2008). Special
Issue of IFIP International Federation for Information Processing

http://www.ppig.org/sites/default/files/2015-PPIG-26th-Basman.pdf

182

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. Clark et al.

Cooper, A., Robert, R., Cronin, D.: About Face 3: The Essentials of Interaction
Design, p. 80. Wiley, Indianapolis (2007)

Darcs Hub. http://hub.darcs.net/

Dropbox (service). Wikipedia. https://en.wikipedia.org/wiki/Dropbox_(service)
Emke, C.A.: The Dehumanizing Myth of the Meritocracy. Model View Culture
21 (2015). https://modelviewculture.com/pieces/the-dehumanizing-myth-of-the-
meritocracy

Git. https://git-scm.com/

Github. Wikipedia. https://en.wikipedia.org/wiki/GitHub

. Clark, C., Basman, A., Bates, S.: The Nexus. GPII Wiki, 10 March 2016. https://

wiki.gpii.net/w/The_Nexus

IDEO. Methods. Design Kit. http://www.designkit.org/methods

The Inclusive Learning Design Handbook. The FLOE Project. http://handbook.
floeproject.org/

Infusion. Fluid. http://fluidproject.org/products/infusion/

The Fluid Design Handbook. Fluid Project Wiki. https://wiki.fluidproject.org/
display /fluid /Design-+Handbook

Mace, R., et al.: The Principles Of Universal Design. https://www.ncsu.edu/ncsu/
design/cud/about_ud/udprinciplestext.htm

Getting Started with CSS Selectors. Mozilla Developer Network. https://developer.
mozilla.org/en/docs/Web/Guide/CSS/Getting_started /Selectors

Neilsen, J.: 10 Usability Heuristics for User Interface Design. Neilsen Norman
Group. https://www.nngroup.com/articles/ten-usability-heuristics/

Pullin, G., Newell, A.F.: Focussing on extra-ordinary users. In: Stephanidis, C.
(ed.) HCI 2007. LNCS, vol. 4554, pp. 253-262. Springer, Heidelberg (2007)
Sanders, E.B.N.: From user-centered to participatory design approaches. In:
Frascara, J. (ed.) Design and the Social Sciences. Taylor and Francis, London
(2002)

Skibsted, J.M., Hansen, R.B.: User-led innovation can’t create breakthroughs; just
ask apple and Ikea. Fast Company, 3 March 2007. http://www.fastcodesign.com/
1663220/ user-led-innovation-cant-create-breakthroughs-just-ask-apple-and-ikea
Treviranus, J.: Leveraging the web as a platform for economic inclusion. Behav.
Sci. Law 32, 94-103 (2014)

Vanderheiden, G., Treviranus, J.: Creating a global public inclusive infrastructure.
In: Stephanidis, C. (ed.) Universal Access in HCI, Part I, HCII 2011. LNCS, vol.
6765, pp. 517-526. Springer, Heidelberg (2011)

Wakkary, R.: A participatory design understanding of interaction design. Science
of Design Workshop. CHI (2007)

http://hub.darcs.net/
https://en.wikipedia.org/wiki/Dropbox_(service)
https://modelviewculture.com/pieces/the-dehumanizing-myth-of-the-meritocracy
https://modelviewculture.com/pieces/the-dehumanizing-myth-of-the-meritocracy
https://git-scm.com/
https://en.wikipedia.org/wiki/GitHub
https://wiki.gpii.net/w/The_Nexus
https://wiki.gpii.net/w/The_Nexus
http://www.designkit.org/methods
http://handbook.floeproject.org/
http://handbook.floeproject.org/
http://fluidproject.org/products/infusion/
https://wiki.fluidproject.org/display/fluid/Design+Handbook
https://wiki.fluidproject.org/display/fluid/Design+Handbook
https://www.ncsu.edu/ncsu/design/cud/about_ud/udprinciplestext.htm
https://www.ncsu.edu/ncsu/design/cud/about_ud/udprinciplestext.htm
https://developer.mozilla.org/en/docs/Web/Guide/CSS/Getting_started/Selectors
https://developer.mozilla.org/en/docs/Web/Guide/CSS/Getting_started/Selectors
https://www.nngroup.com/articles/ten-usability-heuristics/
http://www.fastcodesign.com/1663220/user-led-innovation-cant-create-breakthroughs-just-ask-apple-and-ikea
http://www.fastcodesign.com/1663220/user-led-innovation-cant-create-breakthroughs-just-ask-apple-and-ikea

	About Us, with Us: The Fluid Project's Inclusive Design Tools
	1 Introduction
	2 Design Methods
	2.1 Interaction Design
	2.2 Universal Design
	2.3 Participatory Design

	3 Fluid's Inclusive Design Tools
	3.1 Catalogue of Design Tools
	3.2 Using and Exploring Design Tools

	4 Technological Tools for Design
	4.1 Distributed Version Control for Software Developers
	4.2 Nothing for Designers
	4.3 Fluid's Dream of an Inclusive Tool Chain

	5 Building an Inclusive Tool Chain
	5.1 Working with Design Landmarks
	5.2 Requirements Beyond Frameworks

	6 Conclusion
	References

