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Abstract. Individuals with Autism spectrum disorder (ASD) have difficulty
functioning independently on essential tasks that require adaptive skills such as
driving. Recently, computer-aided technology, such as Virtual Reality (VR), is
being widely used in ASD intervention to teach basic skills to children with
autism. However, most of these works either do not use feedback or solely use
performance feedback from the participant for system adaptation. This paper
introduces a physiology-based task adaptation mechanism in a virtual envi-
ronment for driving skill training. The difficulty of the driving task was
autonomously adjusted based on the participant’s performance and engagement
level to provide the participant with an optimal level of challenge. The
engagement level was detected using an affective model which was developed
based on our previous experimental data and a therapist’s ratings. We believe
that this physiology-based adaptive mechanism can be useful in teaching driving
skills to adolescents with ASD.
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1 Introduction

Autism spectrum disorder (ASD) has a high prevalence rate of 1 in 68 children in the US
[1] and is associated with high familial and societal cost [2, 3]. Individuals with ASD
have difficulty functioning independently on essential tasks that require adaptive skills
such as driving [3], which is crucial for independent living in developed countries.
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Although there is no single accepted treatment or known cure for ASD, there is a
growing consensus that skill training and educational intervention programs can
significantly improve long-term outcomes for individuals with ASD and their families
[4, 5]. A growing number of studies have been investigating applications of computer-
aided technology [6–11], including Virtual Reality (VR) platforms, for ASD interven-
tion. However, most of these studies do not provide feedback or solely use participants’
performance or explicit user feedback as primary means of evaluation.

Task difficulty can induce a variety of cognitive workload and affective states [12].
A task that is beyond an individual’s capability can be overwhelming and cause anxiety
while a task that does not utilize the skill of a person might result in boredom. An
individual under the states of anxiety or boredom will focus less on their tasks, learn
less, be less productive, and be more prone to errors [13]. Minimizing anxiety and
boredom during a task can help people maintain a high level of engagement, perform
well, and learn efficiently. To provide users with an optimal level of challenge,
dynamic difficulty adjustment (DDA) is used to automatically alter the task difficulty in
real-time by monitoring user state. Compared to strictly performance-based feedback,
physiology feedback can be more efficient in providing optimal challenge to users,
increasing their engagement and improving their performance [14].

The present study introduced a VR-based adaptive driving skill training system
which automatically adjusted its difficultly levels based on participants’ engagement
levels and performance metrics. The engagement detection model was developed by
training on data that was collected from our previous study where we recorded
physiological signals and engagement labels [15]. Off-the-shelf driving simulators were
not suitable for this study because we needed to design new driving tasks with
embedded intervention rules as well as to integrate the simulator with real-time
physiological recording and engagement detection modules. To the best of our
knowledge, none of the commercial driving simulators offer these flexibilities.

We believe that by utilizing physiology-based engagement detection to adjust
difficulty levels in a VR-based driving system, our proposed system can be used more
effectively for driving skill training of individuals with ASD.

2 System Overview

The proposed VR-based driving environment with adaptive response technology
comprised of (1) a VR-based driving task module; (2) a real-time physiological data
acquisition module; and (3) an individualized DDA module utilizing a physiology-
based engagement prediction mechanism (Fig. 1).

2.1 VR-Based Driving Task Module

In this study, we used desktop VR applications because they are accessible, affordable
and potentially minimize cyber sickness for this especially-sensitive ASD population
[16]. Unity (www.unity3d.com), a commercial VR design platform, was used to design
the VR environment. Within Unity, we developed a graphical user interface, created
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behaviors for vehicles, pedestrians and traffic lights, designed the driving scenario and
embedded customized driving rules.

The task difficulty can be adjusted by modifying several game parameters, such as
responsiveness of the brake pedal, accelerator pedal, steering wheel, intensity of light in
the environment etc. Detailed information of these parameters are presented in Table 1.
The values of these parameters for different difficulties were chosen based on the
average performance of the participants in our previous study. The parameters related
to difficulty levels were grouped into two categories. One category is car controlla-
bility, which contains the responsiveness of the brake pedal, accelerator pedal and
steering wheel. These are also the main factors that affect the difficulty of the game. The
other category is environment, which contains speed for agent vehicles and the
intensity of light in the environment. Each category has three difficulty levels from easy
to hard. By combining these two categories, we have nine different difficulty states,
among which the switching mechanism adjusts the difficulty.

2.2 Physiological Data Processing Module

Physiological response for an individual can be utilized to assess one’s affective states
[17]. The physiological data were collected using the Biopac MP150 physiological data
acquisition system (www.biopac.com) with a sampling rate of 1000 Hz. Using hard-
ware API provided by Biopac, we developed a customized physiological data acqui-
sition program, in which we integrated socket-based communication with the Unity
program to automatically record event information and time stamps. In this study, three
physiological signals were investigated, which were photoplethysmogram (PPG),
galvanic skin response (GSR) and respiration (RSP). These signals were measured by
using light-weight, non-invasive wireless sensors. PPG and GSR were measured from
toes instead of fingers in order to reduce the motion artifact from driving. Respiration
was measured by using a respiration belt tied around the participant’s abdomen.

The engagement model was developed offline using physiological data and ther-
apist’s labels from our previous study [15]. Therefore, it is necessary that the patterns

Fig. 1. System framework overview
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of emotional responses remain stable across participants. Although different patterns of
emotional responses have been found in psychophysiological studies, Stemmler [18]
argues that they are due to context deviation specificity. Since, in the current study, the
engagement is elicited in the same context (the driving task), inter-participant vari-
ability should be low. Nevertheless, to further reduce this variability, three minutes’
physiological data during a period of rest were acquired as a baseline. The raw
physiological signals from our previous study were preprocessed to remove motion
artifacts and noise. After preprocessing, the data were subsampled 10-fold. Subsam-
pling can significantly reduce computation time for feature extraction, which is very
crucial in real-time closed-loop systems. A set of features, which were highly correlated
with engagement, were selected for training an engagement detection model [15]. After
feature extraction, several machine learning algorithms from the Waikato Environment
for Knowledge Analysis (WEKA) [19] toolkit were used to build the engagement
detection model. Ten-fold cross-validation was used to validate the model. In the end,
the Random Forest algorithm, which had the highest accuracy (84.72 %), was chosen
to develop the engagement model.

In our proposed closed-loop driving scenario, the driving task program and
engagement detection module communicated via sockets over a local area network
(LAN). When defined events, like start of trial, end of trial, failure, success etc.,
occurred, a JSON (http://www.json.org) string containing the time stamp and event
message was sent to the physiological data acquisition module. Event makers were
recorded with the physiological data for future offline analysis. In the beginning of the
experiment, three minutes of baseline data were recorded. After the baseline recording,
baseline data were processed to get the baseline features. Every three minutes, the
driving task sent an event marker to the engagement detection module to trigger
detection. The engagement detection module acquire three minutes’ data before this
trigger. These data were preprocessed and ten selected features were extracted. The

Table 1. Difficulty parameters

Group Parameters Domain Easy
difficulty

Medium
difficulty

Hard
difficulty

Car
Controllability

Responsiveness
of brake pedal

[0.35, 1] 1 0.675 0.35

Responsiveness
of the
accelerator
pedal

[1, 1.5] 1 1.25 1.5

Responsiveness
of the steering
wheel

[1, 3.75] 1 1 3.75

Environment Intensity of light
in the
environment

[0.01, 0.5] 0.5 0.226 0.01

Speed of agent
vehicles

[0.85, 1.75] 0.85 1.35 1.75
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baseline features were subtracted from the features of the three minutes’ data to offset
environment and subject difference. Then these features were fed into the Random
Forest model to predict the engagement level. A binary label, “HIGH” or “LOW”, was
sent to the driving task program via the socket. Then the difficulty adjustment module
took over and made the decision to switch the task difficulty (Fig. 2).

2.3 Difficulty Adjustment Module

Performance-Sensitive System (PS). For the PS, a task-switching mechanism adjusts
the difficulty states based on participants’ performance metric alone. When a partici-
pant’s performance is “Good” (Case 1), the task progression continues step-wise while
the task difficulty level increases based on the state flow representation shown in Fig. 3.
On the other hand, if a participant’s performance is “Poor” (Case 2), the task pro-
gression continues step-wise while decreasing the task difficulty level. The switch
mechanism continues until Case 1 reaches the most difficult level or Case 2 reaches the
easiest level (Fig. 3).

Engagement-Sensitive System (ES). For the ES, however, the task switching
mechanism is not only based on participants’ performance but also his/her engagement
level. In other words, in order to move up to higher difficulty levels, the participant
must not only perform “Good” in the task, he/she must also be “High Engaged” in the
task. In the ES, we fuse performance metrics and engagement levels to make the
decision regarding the next step (Table 2). In some cases, the switching strategy is
intuitive: If a participant is “High Engaged” and performs “Good”, the system increases
the difficulty level based on the finite state machine representation. On the other hand,
if a participant is “Low Engaged” and performs “Poor”, the system decrease the dif-
ficulty level. However, in the other two cases, where the engagement and performance
metrics does not agree with each other, the switching strategy is harder to define. We
give performance more priority for these cases. For case 2 in Table 2, in which
engagement is “High” but performance is “Poor”, the system recommends decreasing
the difficulty level. For case 3, when a participant is “Low Engaged” but performs
“Good”, the difficulty level remains the same at least until next adjustment. At the next

Fig. 2. Physiological data processing module

542 D. Bian et al.



Fig. 3. Performance-Sensitive System difficulty switching state flow. (highest_diff_state: system
at highest difficulty state, lowest_diff_state: system at lowest difficulty state).

Table 2. Engagement-Sensitive System cases

Engagement Performance Action

Case 1 High Good Increase difficulty
Case 2 High Poor Decrease difficulty
Case 3a/3b Low Good Same/Decrease difficulty
Case 4 Low Poor Decrease difficulty

Fig. 4. Engagement-Sensitive System difficulty switching state flow. (highest_diff_state: system
at highest difficulty state, lowest_diff_state: system at lowest difficulty state, C1, C2, C3a, C3b,
C4 are explained in Table below).
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adjustment point, if the participant is still “Low Engaged” and performs “Good”, the
system decreases the difficulty level (Fig. 4).

3 Method and Procedure

3.1 Experimental Setup

The VR driving environment was run on a server-grade machine that could provide
high quality rendering for graphics, while the peripheral physiological signals were
acquired and processed in parallel on a separate. Both machines communicated over
the LAN using TCP/IP. The VR driving task was presented on a 24-inch flat LCD
panel (at resolution 1980 � 1080). Participants interacted with the driving environment
using a Logitech G27 driving controller that was mounted on a specially-designed
play-seat [20, 21]. The experiment was conducted in a laboratory with two rooms
separated by one-way glass for observation. The researcher sat in the outer room.

3.2 Participants

We have recruited 4 teenagers with ASD for this phase of study. One of them is female.
All participants had a clinical diagnosis of ASD from a licensed clinical psychologist as
well as scores at or above clinical cutoff on the Autism Diagnostic Observation
Schedule [22]. The Institutional Review Board (IRB) approval for conducting the
experiment was sought and obtained.

3.3 Procedure

The participants were randomly assigned to either PS or ES. Each participant com-
pleted a 90-min session in one visit. At the start of each session, physiological sensors
were placed on the participant’s body by a trained experimenter. Participants watched a
short video which explained basic instructions and game controls. After the tutorial, the
participant was asked to remain calm and relaxed for three minutes during which
physiological baseline data were collected. Participants also receive three minutes of
practice driving in which there were no pedestrians and no other vehicles in the VR
environment. This practice period allowed participants to familiarize themselves with
the game controls and virtual environment.

After the three-minute practice, participants began the driving assignment. Through
the assignment, participants followed the navigation system and tried to obey traffic
rules. Disobeying any traffic rules (i.e., running a red light) caused a performance
failure. Time duration for the assignment varied from 30 to 40 min depending on the
participant’s performance. A post-task survey was completed once the participant
finished the assignment.
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4 Results and Discussion

Four participants were recruited for a pilot study evaluation of the system and all of the
participants completed the experiment. Two participants were assigned to the PS group
and the other two were assigned to the ES group. The driving task ran smoothly
according to the participants’ responses; all of the participants reported that they
“enjoyed the game” or “enjoyed the game a lot”. Importantly, all of the participants
reported noticing that the task difficulty changed during the driving task, demonstrating
that the driving task difficulty can be successfully manipulated by tuning the difficulty
parameters we have chosen. The performance data, such as steering wheel angle, gas
and brake pedal usage, driving speed, and failure times, were recorded to hard disk in
various formats (e.g., time series and event log). These data could be analyzed to
evaluate participants’ driving behavior.

Physiological measures including PPG, GSR and RSP were recorded and assessed
during the driving task. These data were divided into three minute’s windows. After
preprocessing, a set of features were extracted from these windows and corrected
through baseline features subtraction. These sets of features were then fed into the
Random Forest engagement model to measure the average engagement level for each
participant during the task. Although we cannot draw conclusion regarding differences
between the PS and ES groups due to the small sample size, it is encouraging that all
subjects, regardless of group affiliation, demonstrated higher engagement characteris-
tics for a majority of the task duration (M = 77.79 %, SD = 4.63). In addition, the
average engagement levels reported from the post-task survey support the acceptability
of the system (Table 3).

One advantage of our system is that it does not rely on direct input from the user;
this is advantageous because the user may not be aware of his/her level of engagement
during the task and may not have the time or the extra cognitive capability to provide
such information. Another advantage is that the engagement detection module and
DDA module are independent of the simulation software package and thus can be
applied to any learning scenario—not merely driving training. The engagement level
predictions are sent as JSON strings over TCP/IP, which can be read and applied

Table 3. Engagement statistics from engagement model and post-task survey

Participant
ID

Percentage of “High Engaged” output from
engagement model

Engagement level from
post-task survey*

PS01 77.78 5
PS02 73.84 4
ES01 84.30 5
ES02 75.25 5
Mean 77.79 4.75
Std 4.63 0.5

*The post-task survey used a 5-Likert Scale, where 1 means not engaged and 5 means highly
engaged.
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generically. Once the difficulty levels are defined for a given task, the difficulty switch
logic can be applied based on the performance and engagement level of the user.

DDA is a valuable mechanism for maintaining consistent levels of engagement in
people using a system. As wearable physiological sensors such as smart watches
become more popular and less invasive, passive systems which make use of the user’s
affective states will become easier to implement, more reliable, and more common-
place. In this paper, we presented our system based on the physiology-based DDA
mechanism, which uses the user’s engagement level and performance to dynamically
adjust the difficulty level of the driving task. We demonstrated that our system is
reliable and robust. Future work will focus on conducting a larger user study in order to
make conclusion about the superiority of the ES system over the PS system.
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