
Lower Runtime Bounds for Integer Programs

F. Frohn1, M. Naaf1, J. Hensel1, M. Brockschmidt2, and J. Giesl1(B)

1 LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
{florian.frohn,hensel,giesl}@informatik.rwth-aachen.de,

matthias.naaf@rwth-aachen.de
2 Microsoft Research, Cambridge, UK

mabrocks@microsoft.com

Abstract. We present a technique to infer lower bounds on the worst-
case runtime complexity of integer programs. To this end, we construct
symbolic representations of program executions using a framework for
iterative, under-approximating program simplification. The core of this
simplification is a method for (under-approximating) program acceler-
ation based on recurrence solving and a variation of ranking functions.
Afterwards, we deduce asymptotic lower bounds from the resulting simpli-
fied programs. We implemented our technique in our tool LoAT and show
that it infers non-trivial lower bounds for a large number of examples.

1 Introduction

Recent advances in program analysis yield efficient methods to find upper bounds
on the complexity of sequential integer programs. Here, one usually considers
“worst-case complexity”, i.e., for any variable valuation, one analyzes the length
of the longest execution starting from that valuation. But in many cases, in addi-
tion to upper bounds, it is also important to find lower bounds for this notion of
complexity. Together with an analysis for upper bounds, this can be used to infer
tight complexity bounds. Lower bounds also have important applications in secu-
rity analysis, e.g., to detect possible denial-of-service or side-channel attacks, as
programs whose runtime depends on a secret parameter “leak” information about
that parameter. In general, concrete lower bounds that hold for arbitrary variable
valuations can hardly be expressed concisely. In contrast, asymptotic bounds are
easily understood by humans and witness possible attacks in a convenient way.

We first introduce our program model in Sect. 2. In Sect. 3, we show how to
use a variation of classical ranking functions which we call metering functions
to under-estimate the number of iterations of a simple loop (i.e., a single tran-
sition t looping on a location �). Then, we present a framework for repeated
program simplifications in Sect. 4. It simplifies full programs (with branching
and sequences of possibly nested loops) to programs with only simple loops.
Moreover, it eliminates simple loops by (under-)approximating their effect using

Supported by the DFG grant GI 274/6-1 and the Air Force Research Laboratory
(AFRL).

c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 550–567, 2016.
DOI: 10.1007/978-3-319-40229-1 37

Lower Runtime Bounds for Integer Programs 551

a combination of metering functions and recurrence solving. In this way, pro-
grams are transformed to simplified programs without loops. In Sect. 5, we then
show how to extract asymptotic lower bounds and variables that influence the
runtime from simplified programs. Finally, we conclude with an experimental
evaluation of our implementation LoAT in Sect. 6. For all proofs, we refer to [16].

Related Work. While there are many techniques to infer upper bounds on the
worst-case complexity of integer programs (e.g., [1–4,8,9,14,19,26]), there is
little work on lower bounds. In [3], it is briefly mentioned that their technique
could also be adapted to infer lower instead of upper bounds for abstract cost
rules, i.e., integer procedures with (possibly multiple) outputs. However, this
only considers best-case lower bounds instead of worst-case lower bounds as in
our technique. Upper and lower bounds for cost relations are inferred in [1]. Cost
relations extend recurrence equations such that, e.g., non-determinism can be
modeled. However, this technique also considers best-case lower bounds only.

A method for best-case lower bounds for logic programs is presented in [11].
Moreover, we recently introduced a technique to infer worst-case lower bounds
for term rewrite systems (TRSs) [15]. However, TRSs differ fundamentally from
the programs considered here, since they do not allow integers and have no
notion of a “program start”. Thus, the technique of [15], based on synthesizing
families of reductions by automatic induction proofs, is very different to the
present paper.

To simplify programs, we use a variant of loop acceleration to summarize the
effect of applying a loop repeatedly. Acceleration is mostly used in over-approx-
imating settings (e.g., [13,17,21,24]), where handling non-determinism is chal-
lenging, as loop summaries have to cover all possible non-deterministic choices.
However, our technique is under-approximating, i.e., we can instantiate non-
deterministic values arbitrarily. In contrast to the under-approximating acceler-
ation technique in [22], instead of quantifier elimination we use an adaptation
of ranking functions to under-estimate the number of loop iterations symbolically.

2 Preliminaries

We consider sequential non-recursive imperative integer programs, allowing non-
linear arithmetic and non-determinism, whereas heap usage and concurrency
are not supported. While most existing abstractions that transform heap pro-
grams to integer programs are “over-approximations”, we would need an under-
approximating abstraction to ensure that the inference of worst-case lower
bounds is sound. As in most related work, we treat numbers as mathemati-
cal integers Z. However, the transformation from [12] can be used to handle
machine integers correctly by inserting explicit normalization steps at possible
overflows.

552 F. Frohn et al.

A(V) is the set of arithmetic terms1 over the variables V and F(V) is the
set of conjunctions2 of (in)equations over A(V). So for x, y ∈ V, A(V) contains
terms like x · y + 2y and F(V) contains formulas such as x · y ≤ 2y ∧ y > 0.

We fix a finite set of program variables PV and represent integer programs
as directed graphs. Nodes are program locations L and edges are program tran-
sitions T where L contains a canonical start location �0. W.l.o.g., no transition
leads back to �0 and all transitions T are reachable from �0. To model non-
deterministic program data, we introduce pairwise disjoint finite sets of tem-
porary variables T V� with PV ∩ T V� = ∅ and define V� = PV ∪ T V� for all
locations � ∈ L.

Definition 1 (Programs). Configurations (�,v) consist of a location � ∈ L and
a valuation v : V� → Z. Val � = V� → Z is the set of all valuations for � ∈ L and
valuations are lifted to terms A(V�) and formulas F(V�) as usual. A transition
t = (�, γ, η, c, �′) can evaluate a configuration (�,v) if the guard γ ∈ F(V�) is
satisfied (i.e., v(γ) holds) to a new configuration (�′,v′). The update η : PV →
A(V�) maps any x ∈ PV to a term η(x) where v(η(x)) ∈ Z for all v ∈ Val �. It
determines v′ by setting v′(x) = v(η(x)) for x ∈ PV, while v′(x) for x ∈ T V�′ is
arbitrary. Such an evaluation step has cost k = v(c) for c ∈ A(V�) and is written
(�,v) →t,k (�′,v′). We use src(t) = �, guard(t) = γ, cost(t) = c, and dest(t) =
�′. We sometimes drop the indices t, k and write (�,v) →∗

k (�′,v′) if (�,v) →k1

· · · →km
(�′,v′) and

∑
1≤i≤m ki = k. A program is a set of transitions T .

Figure 1 shows an example, where the pseudo-code on the left corresponds
to the program on the right. Here, random(x, y) returns a random integer m
with x < m < y and we fix −ω < m < ω for all numbers m. The loop at
location �1 sets y to a value that is quadratic in x. Thus, the loop at �2 is
executed quadratically often where in each iteration, the inner loop at �3 may
also be repeated quadratically often. Thus, the length of the program’s worst-
case execution is a polynomial of degree 4 in x. Our technique can infer such
lower bounds automatically.

In the graph of Fig. 1, we write the costs of a transition in [] next to its
name and represent the updates by imperative commands. We use x to refer
to the value of the variable x before the update and x′ to refer to x’s value
after the update. Here, PV = {x, y, z, u}, T V�3 = {tv}, and T V� = ∅ for all
locations � �= �3. We have (�3,v) →t4 (�3,v′) for all valuations v where v(u) > 0,
v(tv) > 0, v′(u) = v(u) − v(tv), and v′(v) = v(v) for all v ∈ {x, y, z}.

Our goal is to find a lower bound on the worst-case runtime of a program
T . To this end, we define its derivation height [18] by a function dhT that
1 Our implementation only supports addition, subtraction, multiplication, division,

and exponentiation. Since we consider integer programs, we only allow programs
where all variable values are integers (so in contrast to x = 1

2
x, the assignment

x = 1
2
x + 1

2
x2 is permitted). While our program simplification technique preserves

this property, we do not allow division or exponentiation in the initial program to
ensure its validity.

2 Note that negations can be expressed by negating (in)equations directly, and dis-
junctions in programs can be expressed using multiple transitions.

Lower Runtime Bounds for Integer Programs 553

Fig. 1. Example integer program

operates on valuations v of the program variables (i.e., v is not defined for
temporary variables). The function dhT maps v to the maximum of the costs
of all evaluation sequences starting in configurations (�0,v�0) where v�0 is an
extension of v to V�0 . So in our example we have dhT (v) = 2 for all valuations
v where v(x) = 0, since then we can only apply the transitions t0 and t2 once.
For all valuations v with v(x) > 1, our method will detect that the worst-case
runtime of our program is at least 1

8v(x)4 + 1
4v(x)3 + 7

8v(x)2 + 7
4v(x). From this

concrete lower bound, our approach will infer that the asymptotic runtime of the
program is in Ω(x4). In particular, the runtime of the program depends on x.
Hence, if x is “secret”, then the program is vulnerable to side-channel attacks.

Definition 2 (Derivation Height). Let Val = PV → Z. The derivation
height dhT : Val → R≥0 ∪ {ω} of a program T is defined as dhT (v) = sup{k ∈
R | ∃v�0 ∈ Val �0 , � ∈ L,v� ∈ Val � . v�0 |PV = v ∧ (�0,v�0) →∗

k (�,v�)}.

Since →∗
k also permits evaluations with 0 steps, we always have dhT (v) ≥ 0.

Obviously, dhT is not computable in general, and thus our goal is to compute
a lower bound that is as precise as possible (i.e., a lower bound which is, e.g.,
unbounded,3 exponential, or a polynomial of a degree as high as possible).

3 Estimating the Number of Iterations of Simple Loops

We now show how to under-estimate the number of possible iterations of a simple
loop t = (�, γ, η, c, �). More precisely, we infer a term b ∈ A(V�) such that for
all v ∈ Val � with v |= γ, there is a v′ ∈ Val � with (�,v) →�v(b)�

t (�,v′). Here,
�k� = min{m ∈ N | m ≥ k} for all k ∈ R. Moreover, (�,v) →m

t (�,v′) means
that (�,v) = (�,v0) →t,k1 (�,v1) →t,k2 · · · →t,km

(�,vm) = (�,v′) for some

3 Programs with dhT (v) = ω result from non-termination or non-determinism. As an
example, consider the program x = random(0, ω); while x > 0 do x = x − 1 done.

554 F. Frohn et al.

costs k1, . . . , km. We say that (�,v) →m
t (�,v′) preserves T V� iff v(tv) = vi(tv) =

v′(tv) for all tv ∈ T V� and all 0 ≤ i ≤ m. Accordingly, we lift the update η
to arbitrary arithmetic terms by leaving temporary variables unchanged (i.e., if
PV = {x1, . . . , xn} and b ∈ A(V�), then η(b) = b[x1/η(x1), . . . , xn/η(xn)], where
[x/a] denotes the substitution that replaces all occurrences of the variable x by a).

To find such estimations, we use an adaptation of ranking functions [2,
6,25] which we call metering functions. We say that a term b ∈ A(V�) is
a ranking function4 for t = (�, γ, η, c, �) iff the following conditions hold.

γ =⇒ b > 0 (1) γ =⇒ η(b) ≤ b − 1 (2)

So e.g., x is a ranking function for t1 in Fig. 1. If T V� = ∅, then for any valuation
v ∈ Val , v(b) over-estimates the number of repetitions of the loop t: (2) ensures
that v(b) decreases at least by 1 in each loop iteration, and (1) requires that v(b)
is positive whenever the loop can be executed. In contrast, metering functions
are under-estimations for the maximal number of repetitions of a simple loop.

Definition 3 (Metering Function). Let t = (�, γ, η, c, �) be a transition. We
call b ∈ A(V�) a metering function for t iff the following conditions hold:

¬γ =⇒ b ≤ 0 (3) γ =⇒ η(b) ≥ b − 1 (4)

Here, (4) ensures that v(b) decreases at most by 1 in each loop iteration, and
(3) requires that v(b) is non-positive if the loop cannot be executed. Thus, the
loop can be executed at least v(b) times (i.e., v(b) is an under-estimation).

For the transition t1 in the example of Fig. 1, x is also a valid metering
function. Condition (3) requires ¬x > 0 =⇒ x ≤ 0 and (4) requires x > 0 =⇒
x − 1 ≥ x − 1. While x is a metering and a ranking function, x

2 is a metering,
but not a ranking function for t1. Similarly, x2 is a ranking, but not a metering
function for t1. Theorem 4 states that a simple loop t with a metering function
b can be executed at least �v(b)� times when starting with the valuation v.

Theorem 4 (Metering Functions are Under-Estimations). Let b be a
metering function for t = (�, γ, η, c, �). Then b under-estimates t, i.e., for all v ∈
Val � with v |= γ there is an evaluation (�,v) →�v(b)�

t (�,v′) that preserves T V�.

Our implementation builds upon a well-known transformation based on
Farkas’ Lemma [6,25] to find linear metering functions. The basic idea is to
search for coefficients of a linear template polynomial b such that (3) and (4)
hold for all possible instantiations of the variables V�. In addition to (3) and (4),
we also require (1) to avoid trivial solutions like b = 0. Here, the coefficients of
b are existentially quantified, while the variables from V� are universally quan-
tified. As in [6,25], eliminating the universal quantifiers using Farkas’ Lemma
allows us to use standard SMT solvers to search for b’s coefficients efficiently.

When searching for a metering function for t = (�, γ, η, c, �), one can omit con-
straints from γ that are irrelevant for t’s termination. So if γ is ϕ∧ψ, ψ ∈ F(PV),
and γ =⇒ η(ψ), then it suffices to find a metering function b for t′ = (�, ϕ, η, c, �).
4 In the following, we often use arithmetic terms A(V�) to denote functions V� → R.

Lower Runtime Bounds for Integer Programs 555

The reason is that if v |= γ and (�,v) →t′ (�,v′), then v′ |= ψ (since v |= γ entails
v |= η(ψ)). Hence, if v |= γ then (�,v) →�v(b)�

t′ (�,v′) implies (�,v) →�v(b)�
t (�,v′),

i.e., b under-estimates t. So if t = (�, x < y ∧ 0 < y, x′ = x + 1, c, �), we can con-
sider t′ = (�, x < y, x′ = x+1, c, �) instead. While t only has complex metering
functions like min(y − x, y), t′ has the metering function y − x.

Example 5 (Unbounded Loops). Loops t = (�, γ, η, c, �) where the whole guard can
be omitted (since γ =⇒ η(γ)) do not terminate. Here, we also allow ω as under-
estimation. So for T = {(�0, true, id, 1, �), t} with t = (�, 0 < x, x′ = x+1, y, �)},
we can omit 0 < x since 0 < x =⇒ 0 < x + 1. Hence, ω under-estimates the
resulting loop (�, true, x′ = x + 1, y, �) and thus, ω also under-estimates t.

4 Simplifying Programs to Compute Lower Bounds

We now define processors mapping programs to simpler programs. Processors are
applied repeatedly to transform the program until extraction of a (concrete) lower
bound is straightforward. For this, processors should be sound, i.e., any lower-
bound for the derivation height of proc(T) should also be a lower bound for T .

Definition 6 (Sound Processor). A mapping proc from programs to programs
is sound iff dhT (v) ≥ dhproc(T)(v) holds for all programs T and all v ∈ Val.

In Sect. 4.1, we show how to accelerate a simple loop t to a transition which
is equivalent to applying t multiple times (according to a metering function for
t). The resulting program can be simplified by chaining subsequent transitions
which may result in new simple loops, cf. Sect. 4.2. We describe a simplifica-
tion strategy which alternates these steps repeatedly. In this way, we eventually
obtain a simplified program without loops which directly gives rise to a concrete
lower bound.

4.1 Accelerating Simple Loops

Consider a simple loop t = (�, γ, η, c, �). For m ∈ N, let ηm denote m applications
of η. To accelerate t, we compute its iterated update and costs, i.e., a closed
form ηit of ηtv and an under-approximation cit ∈ A(V�) of

∑
0≤i<tv ηi(c) for a

fresh temporary variable tv . If b under-estimates t, then we add the transition
(�, γ ∧ 0 < tv < b + 1, ηit, cit, �) to the program. It summarizes tv iterations of
t, where tv is bounded by �b�. Here, ηit and cit may also contain exponentiation
(i.e., we can also infer exponential bounds).

For PV = {x1, . . . , xn}, the iterated update is computed by solving the recur-
rence equations x(1) = η(x) and x(tv+1) = η(x)[x1/x

(tv)
1 , . . . , xn/x

(tv)
n] for all

x ∈ PV and tv ≥ 1. So for the transition t1 from Fig. 1 we get the recurrence equa-
tions x(1) = x−1, x(tv1+1) = x(tv1)−1, y(1) = y+x, and y(tv1+1) = y(tv1)+x(tv1).
Usually, they can easily be solved using state-of-the-art recurrence solvers [4].
In our example, we obtain the closed forms ηit(x) = x(tv1) = x − tv1 and

556 F. Frohn et al.

ηit(y) = y(tv1) = y + tv1 · x − 1
2 tv

2
1 + 1

2 tv1. While ηit(y) contains rational coef-
ficients, our approach ensures that ηit always maps integers to integers. Thus,
we again obtain an integer program. We proceed similarly for the iterated cost
of a transition, where we may under-approximate the solution of the recur-
rence equations c(1) = c and c(tv+1) = c(tv) + c[x1/x

(tv)
1 , . . . , xn/x

(tv)
n]. For t1 in

Fig. 1, we get c(1) = 1 and c(tv1+1) = c(tv1) + 1 which leads to the closed form
cit = c(tv1) = tv1.

Theorem 7 (Loop Acceleration). Let t = (�, γ, η, c, �) ∈ T and let tv be
a fresh temporary variable. Moreover, let ηit(x) = ηtv (x) for all x ∈ PV and
let cit ≤

∑
0≤i<tv ηi(c). If b under-estimates t, then the processor mapping T to

T ∪ {(�, γ ∧ 0 < tv < b + 1, ηit, cit, �)} is sound.

We say that the resulting new simple loop is accelerated and we refer to all
simple loops which were not introduced by Theorem7 as non-accelerated.

Example 8 (Non-Integer Metering Functions). Theorem 7 also allows metering
functions that do not map to the integers. Let T = {(�0, true, id, 1, �), t} with
t = (�, 0 < x, x′ = x − 2, 1, �). Accelerating t with the metering function x

2
yields (�, 0 < tv < x

2 + 1, x′ = x − 2 tv , tv , �). Note that 0 < tv < x
2 + 1 implies

0 < x as tv and x range over Z. Hence, 0 < x can be omitted in the resulting
guard.

Example 9 (Unbounded Loops Continued). In Example 5, ω under-estimates t =
(�, 0 < x, x′ = x + 1, y, �). The accelerated transition is t = (�, 0 < x ∧ γ′, x′ =
x + tv , tv · y, �), where γ′ corresponds to 0 < tv < ω + 1 = ω, i.e., tv has no
upper bound.

If we cannot find a metering function or fail to obtain the closed form ηit or
cit for a simple loop t, then we can simplify t by eliminating temporary variables.
To do so, we fix their values by adding suitable constraints to guard(t). As we
are interested in witnesses for maximal computations, we use a heuristic that
adds constraints tv = a for temporary variables tv , where a ∈ A(V�) is a suitable
upper or lower bound on tv ’s values, i.e., guard(t) implies tv ≤ a or tv ≥ a. This is
repeated until we find constraints which allow us to apply loop acceleration. Note
that adding additional constraints to guard(t) is always sound in our setting.

Theorem 10 (Strengthening). Let t = (�, γ, η, c, �′) ∈ T and ϕ ∈ F(V�).
Then the processor mapping T to T \ {t} ∪ {(�, γ ∧ ϕ, η, c, �′)} is sound.

In t4 from Fig. 1, γ contains tv > 0. So γ implies the bound tv ≥ 1 since tv
must be instantiated by integers. Hence, we add the constraint tv = 1. Now the
update u′ = u − tv of the transition t4 becomes u′ = u − 1, and thus, u is a
metering function. So after fixing tv = 1, t4 can be accelerated similarly to t1.

To simplify the program, we delete a simple loop t after trying to accelerate
it. So we just keep the accelerated loop (or none, if acceleration of t still fails
after eliminating all temporary variables by strengthening t’s guard). For our
example, we obtain the program in Fig. 2 with the accelerated transitions t1, t4.

Theorem 11 (Deletion). For t∈T, the processor mappingT to T \{t} is sound.

Lower Runtime Bounds for Integer Programs 557

Fig. 2. Accelerating t1 and t4 Fig. 3. Eliminating t1 and t4

4.2 Chaining Transitions

After trying to accelerate all simple loops of a program, we can chain subsequent
transitions t1, t2 by adding a new transition t1.2 that simulates their combina-
tion. Afterwards, the transitions t1 and t2 can (but need not) be deleted with
Theorem 11.

Theorem 12 (Chaining). Let t1 = (�1, γ1, η1, c1, �2) and t2 = (�2, γ2, η2, c2, �3)
with t1, t2 ∈ T . Let ren be an injective function renaming the variables in T V�2

to fresh ones and let5 t1.2 = (�1, γ1∧ren(η1(γ2)), ren◦η1◦η2, c1+ren(η1(c2)), �3).
Then the processor mapping T to T ∪ {t1.2} is sound. In the new program T ∪
{t1.2}, the temporary variables of �1 are defined to be T V�1 ∪ ren(T V�2).

One goal of chaining is loop elimination of all accelerated simple loops. To
this end, we chain all subsequent transitions t′, t where t is a simple loop and t′ is
no simple loop. Afterwards, we delete t. Moreover, once t′ has been chained with
all subsequent simple loops, then we also remove t′, since its effect is now covered
by the newly introduced (chained) transitions. So in our example from Fig. 2,
we chain t0 with t1 and t3 with t4. The resulting program is depicted in Fig. 3,
where we always simplify arithmetic terms and formulas to ease readability.

Chaining also allows location elimination by chaining all pairs of incoming
and outgoing transitions for a location � and removing them afterwards. It is
advantageous to eliminate locations with just a single incoming transition first.
This heuristic takes into account which locations were the entry points of loops.
So for the example in Fig. 3, it would avoid chaining t5 and t3.4 in order to elim-
inate �2. In this way, we avoid constructing chained transitions that correspond
to a run from the “middle” of a loop to the “middle” of the next loop iteration.

5 For all x ∈ PV, ren ◦ η1 ◦ η2(x) = ren(η1(η2(x))) = η2(x)[x1/η1(x1), . . . , xn/η1(xn),
tv1/ren(tv1), . . . , tvm/ren(tvm)] if PV = {x1, . . . , xn} and T V�2 = {tv1, . . . , tvm}.

558 F. Frohn et al.

Fig. 4. Eliminating �1 and �3 Fig. 5. Accelerating t3.4.5 Fig. 6. Eliminating t
3.4.5

So instead of eliminating �2, we chain t0.1 and t2 as well as t3.4 and t5 to
eliminate the locations �1 and �3, leading to the program in Fig. 4. Here, the
temporary variables tv1 and tv4 vanish since, before applying arithmetic simpli-
fications, the guards of t0.1.2 resp. t3.4.5 imply tv1=x resp. tv4=z − 1.

Our overall approach for program simplification is shown in Algorithm1. Of
course, this algorithm is a heuristic and other strategies for the application of
the processors would also be possible. The set S in Steps 3–5 is needed to handle
locations � with multiple simple loops. The reason is that each transition t′ with
dest(t′) = � should be chained with each of �’s simple loops before removing t′.

Algorithm 1 terminates: In the loop 2.1–2.2, each iteration decreases the num-
ber of temporary variables in t. The loop 2 terminates since each iteration reduces
the number of non-accelerated simple loops. In loop 4, the number of simple loops
is decreasing and for loop 6, the number of reachable locations decreases. The
overall loop terminates as it reduces the number of reachable locations. The rea-
son is that the program does not have simple loops anymore when the algorithm
reaches Step 6. Thus, at this point there is either a location � which can be
eliminated or the program does not have a path of length 2.

According to Algorithm 1, in our example we go back to Step 1 and 2 and apply
Loop Acceleration to transition t3.4.5. This transition has the metering function
z−1 and its iterated update sets u to 0 and z to z−tv for a fresh temporary variable
tv . To compute t3.4.5’s iterated costs, we have to find an under-approximation for
the solution of the recurrence equations c(1) = z+1 and c(tv+1) = c(tv)+z(tv)+1.
After computing the closed form z − tv of z(tv), the second equation simplifies
to c(tv+1) = c(tv) + z − tv + 1, which results in the closed form cit = c(tv) =
tv · z − 1

2 tv
2 + 3

2 tv . In this way, we obtain the program in Fig. 5. A final chaining
step and deletion of the only simple loop yields the program in Fig. 6.

Lower Runtime Bounds for Integer Programs 559

Algorithm 1. Program Simplification
While there is a path of length 2:

1. Apply Deletion to transitions whose guard is proved unsatisfiable.
2. While there is a non-accelerated simple loop t:

2.1 Try to apply Loop Acceleration to t.
2.2 If 2.1 failed and t uses temporary variables:

Apply Strengthening to t to eliminate a temporary variable and go to 2.1
2.3 Apply Deletion to t.

3. Let S = ∅.
4. While there is a simple loop t:

4.1 Apply Chaining to each pair t′, t where src(t′) �= dest(t′) = src(t).
4.2 Add all these transitions t′ to S and apply Deletion to t.

5. Apply Deletion to each transition in S.
6. While there is a location � without simple loops but with incoming and outgoing

transitions (starting with locations � with just one incoming transition):
6.1 Apply Chaining to each pair t′, t where dest(t′) = src(t) = �.
6.2 Apply Deletion to each t where src(t) = � or dest(t) = �.

5 Asymptotic Lower Bounds for Simplified Programs

After Algorithm 1, all program paths have length 1. We call such programs sim-
plified and let T be a simplified program throughout this section. Now for any
v∈Val �0 ,

max{v(cost(t)) | t ∈ T ,v |= guard(t)}, (5)

is a lower bound on T ’s derivation height dhT (v|PV), i.e., (5) is the maximal cost
of those transitions whose guard is satisfied by v. So for the program in Fig. 6, we
obtain the bound x2·tv+x·tv−tv2+3tv+2x+4

2 for all valuations with v |= 0 < tv <
1
2x2+ 1

2x. However, such bounds do not provide an intuitive understanding of the
program’s complexity and are also not suitable to detect possible attacks. Hence,
we now show how to derive asymptotic lower bounds for simplified programs.
These asymptotic bounds can easily be understood (i.e., a high lower bound can
help programmers to improve their program to make it more efficient) and they
identify potential attacks. After introducing our notion of asymptotic bounds in
Sect. 5.1, we present a technique to derive them automatically in Sect. 5.2.

5.1 Asymptotic Bounds and Limit Problems

While dhT is defined on valuations, asymptotic bounds are usually defined for
functions on N. To bridge this gap, we use the common definition of complexity
as a function of the size of the input. So the runtime complexity rcT (n) is the
maximal cost of any evaluation that starts with a configuration where the sum
of the absolute values of all program variables is at most n.

Definition 13 (Runtime Complexity). Let |v| =
∑

x∈PV |v(x)| for all valu-
ations v. The runtime complexity rcT : N → R≥0 ∪ {ω} is defined as rcT (n) =
sup{dhT (v) | v ∈ Val , |v| ≤ n}.

560 F. Frohn et al.

Our goal is to derive an asymptotic lower bound for rcT from a simplified
program T . So for the program T in Fig. 6, we would like to derive rcT (n) ∈
Ω(n4). As usual, f(n) ∈ Ω(g(n)) means that there is an m > 0 and an n0 ∈ N

such that f(n) ≥ m · g(n) holds for all n ≥ n0. However, in general, the costs of
a transition do not directly give rise to the desired asymptotic lower bound. For
instance, in Fig. 6, the costs of the only transition are cubic, but the complexity
of the program is a polynomial of degree 4 (since tv may be quadratic in x).

To infer an asymptotic lower bound from a transition t ∈ T , we try to find
an infinite family of valuations vn ∈ Val �0 (parameterized by n ∈ N) where
there is an n0 ∈ N such that vn |= guard(t) holds for all n ≥ n0. This implies
rcT (|vn|) ∈ Ω(vn(cost(t))), since for all n ≥ n0 we have:

rcT (|vn|) ≥ dhT (vn|PV) as |vn|PV | = |vn|
≥ vn(cost(t)) by (5)

We first normalize all constraints in guard(t) such that they have the form
a > 0. Now our goal is to find infinitely many models vn for a formula of the form∧

1≤i≤k(ai > 0). Obviously, such a formula is satisfied if all terms ai are positive
constants or increase infinitely towards ω. Thus, we introduce a technique which
tries to find out whether fixing the valuations of some variables and increasing or
decreasing the valuations of others results in positive resp. increasing valuations
of a1, . . . , ak. Our technique operates on so-called limit problems {a•1

1 , . . . , a•k

k }
where ai ∈ A(V�0) and •i ∈ {+,−,+!,−!}. Here, a+ (resp. a−) means that a
grows towards ω (resp. −ω) and a+! (resp. a−!) means that a has to be a positive
(resp. negative) constant. So we represent guard(t) by an initial limit problem
{a•1

1 , . . . , a•k

k } where •i ∈ {+,+!} for all 1 ≤ i ≤ k. We say that a family of
valuations vn is a solution to a limit problem S iff vn “satisfies” S for large n.

To define this notion formally, for any function f : N → R we say that
limn
→ω f(n) = ω (resp. limn
→ω f(n) = −ω) iff for every m ∈ Z there is an
n0 ∈ N such that f(n) ≥ m (resp. f(n) ≤ m) holds for all n ≥ n0. Similarly,
limn
→ω f(n) = m iff there is an n0 such that f(n) = m holds for all n ≥ n0.

Definition 14 (Solutions of Limit Problems). For any function f : N → R

and any • ∈ {+,−,+!,−!}, we say that f satisfies • iff

limn
→ω f(n) = ω, if • = + ∃m ∈ Z. limn
→ω f(n) = m > 0, if • = +!

limn
→ω f(n) = −ω, if • = − ∃m ∈ Z. limn
→ω f(n) = m < 0, if • = −!

A family vn of valuations is a solution of a limit problem S iff for every a• ∈ S,
the function λn. vn(a) satisfies •. Here, “λn. vn(a)” is the function from N → R

that maps any n ∈ N to vn(a).

Example 15 (Bound for Fig. 6). In Fig. 6 where guard(t) is 0 < tv < 1
2x2 + 1

2x,
the family vn with vn(tv) = 1

2n2 + 1
2n − 1,vn(x) = n, and vn(y) = vn(z) =

vn(u) = 0 is a solution of the initial limit problem {tv+, (12x2 + 1
2x − tv)+!)}.

The reason is that the function λn. vn(tv) that maps any n ∈ N to vn(tv) =
1
2n2 + 1

2n− 1 satisfies +, i.e., limn
→ω(12n2 + 1
2n− 1) = ω. Similarly, the function

Lower Runtime Bounds for Integer Programs 561

λn. vn(12x2 + 1
2x − tv) = λn. 1 satisfies +!. Section 5.2 will show how to infer

such solutions of limit problems automatically. Thus, there is an n0 such that
vn |= guard(t) holds for all n ≥ n0. Hence, we get the asymptotic lower bound
rcT (|vn|) ∈ Ω(vn(cost(t))) = Ω(18n4 + 1

4n3 + 7
8n2 + 7

4n) = Ω(n4).

Theorem 16 (Asymptotic Bounds for Simplified Programs). Given a
transition t of a simplified program T with guard(t) = a1 > 0 ∧ · · · ∧ ak > 0,
let the family vn be a solution of an initial limit problem {a•1

1 , . . . , a•k

k } with
•i ∈ {+,+!} for all 1 ≤ i ≤ k. Then rcT (|vn|) ∈ Ω(vn(cost(t))).

Of course, if T has several transitions, then we try to take the one which
results in the highest lower bound. Moreover, one should extend the initial limit
problem {a•1

1 , . . . , a•k

k } by cost(t)+. In this way, one searches for valuations vn

where vn(cost(t)) depends on n, i.e., where the costs are not constant.
The costs are unbounded (i.e., they only depend on temporary variables) iff

the initial limit problem {a•1
1 , . . . , a•k

k , cost(t)+} has a solution vn where vn(x)
is constant for all x ∈ PV. Then we can even infer rcT (n) ∈ Ω(ω). For instance,
after chaining the transition t of Example 9 with the transition from the start
location (see Example 5), the resulting initial limit problem {x+! , tv+, (tv · y +
1)+} has the solution vn with vn(x) = vn(y) = 1 and vn(tv) = n, which implies
rcT (n) ∈ Ω(ω).

If the costs are not unbounded, we say that they depend on x ∈ PV iff the
initial limit problem {a•1

1 , . . . , a•k

k , cost(t)+} has a solution vn where vn(y) is
constant for all y ∈ PV \ {x}. If x corresponds to a “secret”, then the program
can be subject to side-channel attacks. For example, in Example 15 we have
vn(cost(t)) = 1

8n4+ 1
4n3+ 7

8n2+ 7
4n. Since vn maps all program variables except

x to constants, the costs of our program depend on the program variable x. So
if x is “secret”, then the program is not safe from side-channel attacks.

Theorem 16 results in bounds of the form “rcT (|vn|) ∈ Ω(vn(c))”, which
depend on the sizes |vn|. Let f(n) = rcT (n), g(n) = |vn|, and let Ω(vn(c)) have
the form Ω(nk) or Ω(kn) for a k ∈ N. Moreover for all x ∈ PV, let vn(x) be
a polynomial of at most degree m, i.e., let g(n) ∈ O(nm). Then the following
observation from [15] allows us to infer a bound for rcT (n) instead of rcT (|vn|).

Lemma 17 (Bounds for Function Composition). Let f : N → R≥0 and
g : N → N where g(n) ∈ O(nm) for some m ∈ N \ {0}. Moreover, let f(n) be
weakly and let g(n) be strictly monotonically increasing for large enough n.

• If f(g(n)) ∈ Ω(nk) with k ∈ N, then f(n) ∈ Ω(n
k
m).

• If f(g(n)) ∈ Ω(kn) with k ∈ N, then f(n) ∈ Ω(k
m
√

n).

Example 18 (Bound for Fig. 6 Continued). In Example 15, we inferred
rcT (|vn|) ∈ Ω(n4) where vn(x) = n and vn(y) = vn(z) = vn(u) = 0. Hence, we
have |vn| = n ∈ O(n1). By Lemma 17, we obtain rcT (n) ∈ Ω(n

4
1) = Ω(n4).

Example 19 (Non-Polynomial Bounds). Let T = {(�0, x = y2, id, y, �)}. By Def-
inition 14, the family vn with vn(x) = n2 and vn(y) = n is a solution of the

562 F. Frohn et al.

initial limit problem {(x − y2 + 1)+! , (y2 − x + 1)+! , y+}. Due to Theorem 16,
this proves rcT (|vn|) ∈ Ω(n). As |vn| = n2 + n ∈ O(n2), Lemma 17 results in
rcT (n) ∈ Ω(n

1
2).

5.2 Transformation of Limit Problems

A limit problem S is trivial iff all terms in S are variables and there is no variable
x with x•1 , x•2 ∈ S and •1 �= •2. For trivial limit problems S we can immediately
obtain a particular solution vS

n which instantiates variables “according to S”.

Lemma 20 (Solving Trivial Limit Problems). Let S be a trivial limit prob-
lem. Then vS

n is a solution of S where for all n ∈ N, vS
n is defined as follows:

vS
n(x) = n, if x+ ∈ S vS

n(x) = 1, if x+! ∈ S vS
n(x) = 0, otherwise

vS
n(x) = −n, if x− ∈ S vS

n(x) = −1, if x−! ∈ S

For instance, if V�0 = {x, y, tv} and S = {x+, y−!}, then S is a trivial limit
problem and vS

n with vS
n(x) = n,vS

n(y) = −1, and vS
n(tv) = 0 is a solution for S.

However, in general the initial limit problem S = {a•1
1 , . . . , a•k

k , cost(t)+}
is not trivial. Therefore, we now define a transformation � to simplify limit
problems until one reaches a trivial problem. With our transformation, S � S′

ensures that each solution of S′ also gives rise to a solution of S.
If S contains f(a1, a2)• for some standard arithmetic operation f like addi-

tion, subtraction, multiplication, division, and exponentiation, we use a so-called
limit vector (•1, •2) with •i ∈ {+,−,+!,−!} to characterize for which kinds of
arguments the operation f is increasing (if • = +) resp. decreasing (if • = −)
resp. a positive or negative constant (if • = +! or • = −!).6 Then S can be
transformed into the new limit problem S \ {f(a1, a2)•} ∪ {a•1

1 , a•2
2 }.

For example, (+,+!) is an increasing limit vector for subtraction. The reason
is that a1 − a2 is increasing if a1 is increasing and a2 is a positive constant.
Hence, our transformation � allows us to replace (a1 − a2)+ by a+

1 and a+!
2 .

To define limit vectors formally, we say that (•1, •2) is an increasing (resp.
decreasing) limit vector for f iff the function λn. f(g(n), h(n)) satisfies +
(resp. −) for any functions g and h that satisfy •1 and •2, respectively. Here,
“λn. f(g(n), h(n))” is the function from N → R that maps any n ∈ N to
f(g(n), h(n)). Similarly, (•1, •2) is a positive (resp. negative) limit vector for
f iff λn. f(g(n), h(n)) satisfies +! (resp. −!) for any functions g and h that
satisfy •1 and •2, respectively.

With this definition, (+,+!) is indeed an increasing limit vector for subtraction,
since limn
→ω g(n) = ω and limn
→ω h(n) = m with m > 0 implies limn
→ω(g(n) −
h(n)) = ω. In other words, if g(n) satisfies + and h(n) satisfies +!, then g(n)−h(n)
satisfies + as well. In contrast, (+,+) is not an increasing limit vector for subtrac-
tion. To see this, consider the functions g(n) = h(n) = n. Both g(n) and h(n)
satisfy +, whereas g(n) − h(n) = 0 does not satisfy +. Similarly, (+!,+!) is not a
6 To ease the presentation, we restrict ourselves to binary operations f . For operations

of arity m, one would need limit vectors of the form (•1, . . . , •m).

Lower Runtime Bounds for Integer Programs 563

positive limit vector for subtraction, since for g(n) = 1 and h(n) = 2, both g(n)
and h(n) satisfy +!, but g(n) − h(n) = −1 does not satisfy +!.

Limit vectors can be used to simplify limit problems, cf. (A) in the following
definition. Moreover, for numbers m ∈ Z, one can easily simplify constraints of
the form m+! and m−! (e.g., 2+! is obviously satisfied since 2 > 0), cf. (B).

Definition 21 (�). Let S be a limit problem. We have:

(A) S ∪ {f(a1, a2)•} � S ∪ {a•1
1 , a•2

2 } if • is + (resp. −,+!,−!) and (•1, •2) is
an increasing (resp. decreasing, positive, negative) limit vector for f

(B) S ∪ {m+!} � S if m ∈ Z with m > 0, S ∪ {m−!} � S if m < 0

Example 22 (Bound for Fig. 6 Continued). For the initial limit problem from
Example 15, we have {tv+, (12x2 + 1

2x − tv)+!} � {tv+, (12x2 + 1
2x)+! , tv−!} �

{tv+, (12x2)+! , (12x)+! , tv−!} �∗ {tv+, x+! , tv−!} using the positive limit vector
(+!,−!) for subtraction and the positive limit vector (+!,+!) for addition.

The resulting problem in Example 22 is not trivial as it contains tv+ and tv−! ,
i.e., we failed to compute an asymptotic lower bound. However, if we substitute tv
with its upper bound 1

2x2+ 1
2x−1, then we could reduce the initial limit problem

to a trivial one. Hence, we now extend � by allowing to apply substitutions.

Definition 23 (� Continued). Let S be a limit problem and let σ : V�0 →
A(V�0) be a substitution such that x does not occur in xσ and v(xσ) ∈ Z for all
valuations v ∈ Val �0 and all x ∈ V�0 . Then we have7

(C) S �σ Sσ

Example 24 (Bound for Fig. 6 Continued). For the initial limit problem from
Example 15, we now have8 {tv+, (12x2 + 1

2x − tv)+!} �[tv/ 1
2x2+ 1

2x−1] {(12x2 +
1
2x − 1)+, 1+!} � {(12x2 + 1

2x − 1)+} � {(12x2 + 1
2x)+, 1+!} �∗ {x+}, which is

trivial.

AlthoughDefinition 23 requires that variablesmay only be instantiated by inte-
ger terms, it is also useful to handle limit problems that contain non-integer terms.

Example 25 (Non-Integer Metering Functions Continued). After chaining the
accelerated transition of Example 8 with the transition from the start location,
for the resulting initial limit problem we get {tv+, (12x− tv + 1)+! , (tv + 1)+} �2

{tv+, (12x − tv + 1)+!} �[x/2tv−1] {tv+, 1
2

+!} � {tv+, 1+! , 2+!} �2 {tv+}, using
the positive limit vector (+!,+!) for division. This allows us to infer rcT (n)∈Ω(n).

However, up to now we cannot prove that, e.g., a transition t with guard(t) =
x2 − x > 0 and cost(t) = x has a linear lower bound, since (+,+) is not an
increasing limit vector for subtraction. To handle such cases, the following rules
allow us to neglect polynomial sub-expressions if they are “dominated” by other
polynomials of higher degree or by exponential sub-expressions.
7 The other rules for � are implicitly labeled with the identical substitution id.
8 σ = [tv/ 1

2
x2 + 1

2
x−1] satisfies the condition v(yσ) ∈ Z for all v ∈ Val�0 and y ∈ V�0 .

564 F. Frohn et al.

Definition 26 (� Continued). Let S be a limit problem, let ± ∈ {+,−}, and
let a, b, e ∈ A({x}) be (univariate) polynomials. Then we have:
(D) S ∪ {(a ± b)•} � S ∪ {a•}, if • ∈ {+,−}, and a has a higher degree than b

(E) S ∪ {(ae ± b)+} � S ∪ {(a − 1)•, e+}, if • ∈ {+,+!}.
Thus, {(x2−x)+} � {(x2)+} = {(x·x)+} � {x+} by the increasing limit vector
(+,+) for multiplication. Similarly, {(2x − x3)+} � {(2 − 1)+! , x+} � {x+}.
Rule (E) can also be used to handle problems like (ae)+ (by choosing b = 0).

Theorem 27 states that � is indeed correct. When constructing the valuation
from the resulting trivial limit problem, one has to take the substitutions into
account which were used in the derivation. Here, (vn ◦σ)(x) stands for vn(σ(x)).

Theorem 27 (Correctness of �). If S �σ S′ and the family vn is a solution
of S′, then vn ◦ σ is a solution of S.

Example 28 (Bound for Fig. 6 Continued). Example 24 leads to the solution v′
n◦σ

of the initial limit problem for the program from Fig. 6 where σ = [tv/ 1
2x2+ 1

2x−1],
v′

n(x) = n, and v′
n(tv) = v′

n(y) = v′
n(z) = v′

n(u) = 0. Hence, v′
n ◦ σ = vn where

vn is as in Example 15. As explained in Example 18, this proves rcT (n) ∈ Ω(n4).

So we start with an initial limit problem S = {a•1
1 , . . . , a•k

k , cost(t)+} that
represents guard(t) and requires non-constant costs, and transform S with �
into a trivial S′, i.e., S �σ1 . . . �σm S′. For automation, one should leave the •i

in the initial problem S open, and only instantiate them by a value from {+,+!}
when this is needed to apply a particular rule for the transformation �. Then
the resulting family vS′

n of valuations gives rise to a solution vS′

n ◦ σm ◦ . . . ◦ σ1

of S. Thus, we have rcT (|vS′

n ◦ σ|) ∈ Ω(vS′

n (σ(cost(t)))), where σ = σm ◦ . . . ◦ σ1,
which leads to a lower bound for rcT (n) with Lemma 17.

Our implementation uses the following strategy to apply the rules from Def-
initions 21, 23, 26 for �. Initially, we reduce the number of variables by prop-
agating bounds implied by the guard, i.e., if γ =⇒ x ≥ a or γ =⇒ x ≤ a for
some a ∈ A(V�0 \ {x}), then we apply the substitution [x/a] to the initial limit
problem by rule (C). For example, we simplify the limit problem from Exam-
ple 19 by instantiating x with y2, as the guard of the corresponding transition
implies x = y2. So here, we get {(x − y2 + 1)+! , (y2 − x + 1)+! , y+} �[x/y2]

{1+! , y+} � {y+}. Afterwards, we use (B) and (D) with highest and (E) with
second highest priority. The third priority is trying to apply (A) to univariate
terms (since processing univariate terms helps to guide the search). As fourth
priority, we apply (C) with a substitution [x/m] if x+! or x−! in S, where we use
SMT solving to find a suitable m ∈ Z. Otherwise, we apply (A) to multivari-
ate terms. Since � is well founded and, except for (C), finitely branching, one
may also backtrack and explore alternative applications of �. In particular, we
backtrack if we obtain a contradictory limit problem. Moreover, if we obtain a
trivial S′ where vS′

n (σ(cost(t))) is a polynomial, but cost(t) is a polynomial of
higher degree or an exponential function, then we backtrack to search for other
solutions which might lead to a higher lower bound. However, our implementa-
tion can of course fail, since solvability of limit problems is undecidable (due to
Hilbert’s Tenth Problem).

Lower Runtime Bounds for Integer Programs 565

6 Experiments and Conclusion

We presented the first technique to infer lower bounds on the worst-case run-
time complexity of integer programs, based on a modular program simplification
framework. The main simplification technique is loop acceleration, which relies
on recurrence solving and metering functions, an adaptation of classical ranking
functions. By eliminating loops and locations via chaining, we eventually obtain
simplified programs. We presented a technique to infer asymptotic lower bounds
from simplified programs, which can also be used to find vulnerabilities.

Our implementation LoAT (“Lower Bounds Analysis Tool”) is freely available
at [23]. It was inspired by KoAT [8], which alternates runtime- and size-analysis to
infer upper bounds in a modular way. Similarly, LoAT alternates runtime-analysis
and recurrence solving to transform loops to loop-free transitions independently.
LoAT uses the recurrence solver PURRS [4] and the SMT solver Z3 [10].

We evaluated LoAT on the benchmarks [5] from the evaluation of [8]. We
omitted 50 recursive programs, since our approach cannot yet handle recursion.
As we know of no other tool to compute worst-case lower bounds for integer
programs, we compared our results with the asymptotically smallest results of
leading tools for upper bounds: KoAT, CoFloCo [14], Loopus [26], RanK [2]. We
did not compare with PUBS [1], since the cost relations analyzed by PUBS
significantly differ from the integer programs handled by LoAT. Moreover, as
PUBS computes best-case lower bounds, such a comparison would be meaningless
since the worst-case lower bounds computed by LoAT are no valid best-case lower
bounds. We used a timeout of 60 s. In the following, we disregard 132 examples
where rcT (n) ∈ O(1) was proved since there is no non-trivial lower bound in
these cases.

rcT (n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω)

O(1) (132) – – – – – –

O(n) 45 125 – – – – –

O(n2) 9 18 33 – – – –

O(n3) 2 – – 3 – – –

O(n4) 1 – – – 2 – –

EXP – – – – – 5 –

O(ω) 57 31 3 – – – 173

LoAT infers non-trivial
lower bounds for 393 (78 %)
of the remaining 507 exam-
ples. Tight bounds (i.e., the
lower and the upper bound
coincide) are proved in 341
cases (67 %). Whenever an
exponential upper bound is
proved, LoAT also proves an exponential lower bound (i.e., rcT (n) ∈ Ω(kn) for
some k > 1). In 173 cases, LoAT infers unbounded runtime complexity. In some
cases, this is due to non-termination, but for this particular goal, specialized tools
are more powerful (e.g., whenever LoAT proves unbounded runtime complexity
due to non-termination, the termination analyzer T2 [7] shows non-termination
as well). The average runtime of LoAT was 2.4 s per example. These results
could be improved further by supplementing LoAT with invariant inference as
implemented in tools like APRON [20]. For a detailed experimental evaluation
of our implementation as well as the sources and a pre-compiled binary of LoAT
we refer to [16].

Acknowledgments. We thank S. Genaim and J. Böker for discussions and comments.

566 F. Frohn et al.

References

1. Albert, E., Genaim, S., Masud, A.N.: On the inference of resource usage upper and
lower bounds. ACM Trans. Comput. Logic 14(3), 22:1–22:35 (2013)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

3. Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost
analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421.
Springer, Heidelberg (2012)

4. Bagnara, R., Pescetti, A., Zaccagnini, A., Zaffanella, E.: PURRS: towards com-
puter algebra support for fully automatic worst-case complexity analysis. CoRR
abs/cs/0512056 (2005)

5. Benchmark examples. https://github.com/s-falke/kittel-koat/tree/master/
koat-evaluation/examples

6. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005)

7. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013)

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime
and size complexity analysis of integer programs. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 140–155. Springer, Heidelberg
(2014)

9. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Grove, D., Blackburn, S. (eds.) PLDI 2015, pp. 467–478, ACM (2015)

10. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

11. Debray, S., López-Garćıa, P., Hermenegildo, M.V., Lin, N.: Lower bound cost esti-
mation for logic programs. In: Maluszynski, J. (ed.) ILPS 1997, pp. 291–305. MIT
Press (1997)

12. Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using
bitvector arithmetic. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 261–277. Springer, Heidelberg (2012)

13. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: Kaivola, R., Wahl,
T. (eds.) FMCAD 2015, pp. 57–64. IEEE (2015)

14. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Heidelberg (2014)

15. Frohn, F., Giesl, J., Emmes, F., Ströder, T., Aschermann, C., Hensel, J.: Inferring
lower bounds for runtime complexity. In: Fernández, M. (ed.) RTA 2015. LIPIcs,
vol. 36, pp. 334–349. Dagstuhl Publishing (2015)

16. Frohn, F., Naaf, M., Hensel, J., Brockschmidt, M., Giesl, J.: Proofs and empiri-
cal evaluation of “Lower Runtime Bounds for Integer Programs” (2016). http://
aprove.informatik.rwth-aachen.de/eval/integerLower/

17. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

https://github.com/s-falke/kittel-koat/tree/master/koat-evaluation/examples
https://github.com/s-falke/kittel-koat/tree/master/koat-evaluation/examples
http://aprove.informatik.rwth-aachen.de/eval/integerLower/
http://aprove.informatik.rwth-aachen.de/eval/integerLower/

Lower Runtime Bounds for Integer Programs 567

18. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations.
In: Dershowitz, N. (ed.) Rewriting Techniques and Applications. LNCS, vol. 355,
pp. 167–177. Springer, Heidelberg (1989)

19. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14:1–14:62 (2012)

20. Jeannet, B., Miné, A.: APRON: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

21. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general
linear loops. ACM SIGPLAN Not. 49(1), 529–540 (2014)

22. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. Form. Meth. Sys. Des. 47(1), 75–92
(2015)

23. LoAT. https://github.com/aprove-developers/LoAT
24. Madhukar, K., Wachter, B., Kroening, D., Lewis, M., Srivas, M.K.: Accelerating

invariant generation. In: Kaivola, R., Wahl, T. (eds.) FMCAD 2015, pp. 105–111.
IEEE (2015)

25. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

26. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 745–761. Springer, Heidelberg (2014)

https://github.com/aprove-developers/LoAT

	Lower Runtime Bounds for Integer Programs
	1 Introduction
	2 Preliminaries
	3 Estimating the Number of Iterations of Simple Loops
	4 Simplifying Programs to Compute Lower Bounds
	4.1 Accelerating Simple Loops
	4.2 Chaining Transitions

	5 Asymptotic Lower Bounds for Simplified Programs
	5.1 Asymptotic Bounds and Limit Problems
	5.2 Transformation of Limit Problems

	6 Experiments and Conclusion
	References

