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Abstract. Hybrid logic is a valuable tool for specifying relational
structures, at the same time that allows defining accessibility relations
between states, it provides a way to nominate and make mention to what
happens at each specific state. However, due to the many sources nowa-
days available, we may need to deal with contradictory information. This
is the reason why we came with the idea of Quasi-hybrid logic, which is
a paraconsistent version of hybrid logic capable of dealing with inconsis-
tencies in the information, written as hybrid formulas.

In [5] we have already developed a semantics for this paraconsistent
logic. In this paper we go a step forward, namely we study its proof-
theoretical aspects. We present a complete tableau system for Quasi-
hybrid logic, by combining both tableaux for Quasi-classical and Hybrid
logics.

1 Introduction

Hybrid logic [1] is the simplest tool for the description of relational structures: it
allows establishing accessibility relations between states and furthermore, nom-
inating and making mention to what happens at specific states.

Unfortunately, we may collect contradictory information due to the many
sources nowadays available. This is the reason why we came with the idea of
Quasi-hybrid logic [5], which is a paraconsistent version of hybrid logic, thus
capable of dealing with the inconsistencies in the information, written as for-
mulas in hybrid logic. This kind of logic is useful for comparing the amount of
inconsistency among databases, and has proved to be applicable in a wide range
of real-life applications, namely we have studied how can inconsistencies relate
to the health care flow of a patient [4], and we are currently working in robotics
in order to create a robot which uses a paraconsistent reasoning to determine
its movements and actions.

This work proposes to introduce proof-theoretical aspects of QH logic. We
aimed to combine both tableaux for quasi-classical and hybrid logics, [3,8] respec-
tively, which resulted in a new tableau system as desired.

Classically, tableau systems rely on a backwards reasoning where we start
with a formula whose validity we want to prove. A tableau, i.e., a tree, is created
using some predefined rules, and whose starting point is the negation of the
formula we are investigating. If we come to a point where each branch of the
tree contains both a formula of the form ϕ and a formula of the form ¬ϕ, we
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say that the tableau is closed and verify that there are no counter-models for
the original formula, thus it is proved that the formula is valid.

In our paraconsistent setting, we will consider a database Δ, and a query
ψ whose satisfiability will be verified in the bistructures (introduced in Sect. 3)
that satisfy the formulas in the database. Analogously to the classical case, we
start with Δ and ψ∗, where ψ∗ will be defined later (in particular it will be
a satisfaction statement). Our tableau is constructed using strong rules (which
yield disjunctive syllogism) for formulas in Δ and a weaker version (which rejects
DS) for ψ∗. If we end up with a tableau which is closed, i.e., in which every branch
has a formula of the form ϕ and ϕ∗, we can conclude that ϕ is true in every
bistructure that satisfies Δ.

2 The Basic Hybrid Language

We start by presenting the simplest form of hybrid logic: the basic hybrid lan-
guage, H(@). The basic hybrid language introduces nominals and the satisfaction
operator into the propositional modal logic. Although being a simple extension,
it carries great power in terms of expressivity.

Definition 1. Let L = 〈Prop,Nom〉 be a hybrid similarity type where Prop
is a set of propositional symbols and Nom is a set disjoint from Prop. We use
p, q, r, etc. to refer to the elements in Prop. The elements in Nom are called nom-
inals and we typically write them as i, j, k, etc.. The set of well-formed formulas
over L, Form@(L), is defined by the following grammar:

WFF := i | p | ¬ϕ | ϕ ∨ ψ |ϕ ∧ ψ | ♦ϕ | �ϕ | @iϕ

For any nominal i, @i is called a satisfaction operator, and for a formula ϕ,
@iϕ is called a satisfaction statement.

Given a hybrid similarity type L = 〈Prop,Nom〉, a hybrid structure H over
L is a tuple (W,R,N, V ) such that:

– W is a non-empty set called domain, whose elements are called states or
worlds.

– R is a binary relation on W and is called the accessibility relation.
– N : Nom → W is a function called hybrid nomination that assigns nominals

to elements in W . For any nominal i, N(i) is the element of W named by i.
– V is a hybrid valuation, which means that V is a function with domain Prop

and range Pow(W ) such that V (p) tells us at which states (if any) each
propositional symbol is true.

The pair (W,R) is called the frame underlying H and H is said to be a
structure based on this frame.

The satisfaction relation, which is defined as follows, is a generalization of
Kripke-style satisfaction.
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Definition 2 (Satisfaction). The relation of local satisfaction |= between a
hybrid structure H = (W,R,N, V ), a state w ∈ W and a hybrid formula is
recursively defined by:

1. H, w |= i iff w = N(i);
2. H, w |= p iff w ∈ V (p);
3. H, w |= ¬ϕ iff it is false that H, w |= ϕ;
4. H, w |= ϕ ∧ ψ iff H, w |= ϕ and H, w |= ψ;
5. H, w |= ϕ ∨ ψ iff H, w |= ϕ or H, w |= ψ;
6. H, w |= ♦ϕ iff ∃w′ ∈ W (wRw′ and H, w′ |= ϕ);
7. H, w |= �ϕ iff ∀w′ ∈ W (wRw′ ⇒ H, w′ |= ϕ);
8. H, w |= @iϕ iff H, w′ |= ϕ, where w′ = N(i);

If H, w |= ϕ we say that ϕ is satisfied in H at w. If ϕ is satisfied at all states
in a structure H, we write H |= ϕ. If ϕ is satisfied at all states in all structures
based on a frame F , then we say that ϕ is valid on F and we write F |= ϕ. If ϕ
is valid on all frames, then we simply say that ϕ is valid and we write |= ϕ. For
Δ ⊆ Form@(L), we say that H is a model of Δ iff for all θ ∈ Δ,H |= θ.

Definition 3. A formula ϕ̄ ∈ Form@(L) is said to be (logically) equivalent to
ϕ ∈ Form@(L) iff for every hybrid structure H = (W,R,N, V ), for all w ∈ W ,

H, w |= ϕ ⇔ H, w |= ϕ̄.

It is easy to see that boolean connectives have the usual properties, and that
�ϕ is equivalent to ¬♦¬ϕ.

We define the notion of negation normal form of a formula (i.e., formulas
in which the negation symbol occurs immediately before propositional symbols
and/or nominals) for hybrid logic and we establish an analogous result to the
one in [2] for classical propositional logic that states that any modal formula is
logically equivalent to one in the negation normal form.

Definition 4. Let L = 〈Prop,Nom〉 be a hybrid similarity type. A formula is
said to be in negation normal form, for short NNF, if negation only appears
directly before propositional variables and/or nominals. The set of NNF formulas
over L, FormNNF(@)(L), is recursively defined as follows:

For p ∈ Prop, i ∈ Nom,

1. p, i, ¬p, ¬i are in NNF;
2. If ϕ, ψ are formulas in NNF, then ϕ ∨ ψ, ϕ ∧ ψ are in NNF;
3. If ϕ is in NNF, then �ϕ, ♦ϕ are in NNF;
4. If ϕ is in NNF, then @iϕ is in NNF.

The next proposition shows that we do not lose generality by considering
just formulas in negation normal form.
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Proposition 1 [5]. Every formula ϕ ∈ Form@(L) is logically equivalent to a
formula ϕ̄ ∈ FormNNF(@)(L).

The negation normal form of a formula is defined just as in classical propo-
sitional logic. A recursive procedure that puts formulas in negation normal form
nnf : Form@(L) → FormNNF(@)(L), is set as usual. For example:

nnf(l)
def
= l, if l is a literal,

nnf(¬(ψ1 ∧ ψ2))
def
= nnf(¬ψ1) ∨ nnf(¬ψ2) and nnf(¬�ψ)

def
= ♦nnf(¬ψ)

3 Paraconsistency in Hybrid Logic

In this section we study paraconsistency in Hybrid logic following an approach
inspired by the work of Grant and Hunter ([6,7]).

First of all, we define a Quasi-hybrid (QH) Basic Logic. The assumption in
[6] is that all formulas are in Prenex Conjunctive Normal Form; in QH logic
we will assume henceforth that all formulas are in Negation Normal Form. This
assumption does not lead to loss of generality since any hybrid formula is equiv-
alent to a formula in negation normal form (cf. Proposition 1).

Next, concepts of bistructure, decoupled and strong satisfaction and QH
model will be presented. We define the paraconsistent diagram of a bistructure.

3.1 Quasi-Hybrid Basic Logic

As already mentioned, we will assume that all formulas are in negation normal
form, i.e., given a hybrid similarity type L = 〈Prop,Nom〉, the set of formulas
is FormNNF(@)(L).

Definition 5. Let θ be a formula in NNF. We define the complementation oper-
ation ∼ from ∼ θ := nnf(¬θ).

The ∼ operator is not part of the object hybrid similarity type but it makes
some definitions clearer.

Recall that a hybrid structure for a hybrid similarity type L is a tuple
(W,R,N, V ). However, in order to accommodate contradictions in a model, we
will use two valuations for propositions: V + and V −.

Definition 6. A hybrid bistructure is a tuple (W,R,N, V +, V −), where
(W,R,N, V +) and (W,R,N, V −) are hybrid structures.

The map V + is interpreted as the acceptance of a propositional symbol, and
V − as the rejection. This is formalized in the definition for decoupled satisfaction.

Definition 7. For a hybrid bistructure E = (W,R,N, V +, V −) we define a sat-
isfiability relation |=d called decoupled satisfaction at w ∈ W for propositional
symbols and nominals as follows:
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1. E,w |=d p iff w ∈ V +(p);
2. E,w |=d i iff w = N(i);
3. E,w |=d ¬p iff w ∈ V −(p);
4. E,w |=d ¬i iff w �= N(i);

Since we allow both a propositional symbol and its negation to be simulta-
neously satisfied and also allow both to be non-satisfied, we have decoupled, at
the level of the structure, the link between a formula and its complement. In
contrast, if a classical hybrid structure satisfies a propositional symbol at some
world, it is forced to not satisfy its complement at that world.

This decoupling gives us the basis for a semantics for paraconsistent reason-
ing. Paraconsistency involves a tradeoff; in order to allow contradictions, one
of the following three principles must be abandoned: disjunction introduction,
disjunctive syllogism, and transitivity. In this approach, we chose to keep the
disjunctive syllogism and transitivity and discard disjunction introduction.

In Quasi-hybrid logic, “or” statements involve an intensional disjunction.
Such a disjunction is one whose satisfaction entails not merely that at least one
of the disjuncts is the case, but also that if one of the disjuncts were not the
case, then the other one would be the case.

Definition 8. A satisfiability relation |=s called strong satisfaction, is defined
as follows:

1. E,w |=s p iff E,w |=d p;
2. E,w |=s ¬p iff E,w |=d ¬p;
3. E,w |=s i iff E,w |=d i;
4. E,w |=s ¬i iff E,w |=d ¬i;
5. E,w |=s θ1 ∨ θ2 iff [E,w |=s θ1 or E,w |=s θ2] and [E,w |=s∼ θ1 ⇒

E,w |=s θ2] and [E,w |=s∼ θ2 ⇒ E,w |=s θ1];
6. E,w |=s θ1 ∧ θ2 iff E,w |=s θ1 and E,w |=s θ2;
7. E,w |=s ♦θ iff ∃w′(wRw′ & E,w′ |=s θ);
8. E,w |=s �θ iff ∀w′(wRw′ ⇒ E,w′ |=s θ);
9. E,w |=s @iθ iff E,w′ |=s θ where w′ = N(i);

We define strong validity as follows: E |=s θ iff for all w ∈ W, E,w |=s θ.
We say that E is a quasi-hybrid model of Δ iff for all θ ∈ Δ,E |=s θ and we

write E |=s Δ.

4 A Tableau for Quasi-Hybrid Logic

In this section we discuss a decision procedure for Quasi-hybrid logic, based on a
tableau system. This new tableau system is a fusion between the tableau system
for Quasi-classical logic introduced in [8], and the tableau system for Hybrid
logic proposed in [3].

We will consider a database Δ of hybrid formulas that express real situations
where inconsistencies may appear at some states, and we will check if a query ϕ
is a consequence of the database, i.e., we will want to check if every bistructure
that strongly validates all formulas in Δ also validates ϕ weakly.

We will restrict our attention to formulas which are satisfaction statements.
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4.1 Tableau Rules for QH Logic

We will start by introducing some definitions that will be useful later when we
explain the construction of the tableau. We present the rules and a theorem for
checking soundness.

Definition 9. We define weak satisfaction |=w as strong satisfaction (|=s),
except for the case of disjunction, which we will consider as a classical dis-
junction:

E,w |=w θ1 ∨ θ2 iffE,w |=w θ1 or E,w |=w θ2

The reader may observe that for any θ ∈ FormNNF(@)(L), E,w |=s θ implies
E,w |=w θ. And that, by contraposition, �|=w ⊆ �|=s.

Similarly to the definition of strong validity, we define weak validity as follows:
E |=w θ iff for all w ∈ W, E,w |=w θ.

From now on, we will restrict our attention to satisfaction statements.

Definition 10 (Quasi-Hybrid Consequence Relation). Let Δ be a set of
satisfaction statements called database, and ϕ be a satisfaction statement, called
query. We say that ϕ is a consequence of Δ in quasi-hybrid logic if and only if,
for all bistructures E which are quasi-hybrid models of Δ, ϕ is weakly valid.

Formally,
Δ |=QH ϕ iff ∀E (E |=s Δ ⇒ E |=w ϕ)

Before introducing the tableau-based proof procedure, some definitions are
required, namely:

Definition 11. Given a hybrid similarity type L = 〈Prop,Nom〉, we denote the
set of satisfaction statements over L as L@.

We duplicate the set of satisfaction statements by considering starred copies.
The extended set is denoted by L∗

@ and is defined as: L∗
@ = L@ ∪ {ϕ∗ | ϕ ∈ L@}.

The satisfaction of the new formulas ϕ∗ is in some sense the complementary
of the satisfaction of ϕ.

Definition 12. We extend both weak and strong satisfaction relations to starred
formulas as follows:

E,w |=s ϕ∗ iff E,w �|=s ϕ
E,w |=w ϕ∗ iff E,w �|=w ϕ

Weak and strong validity of starred formulas are defined in the natural way.
We can now introduce two types of decomposition rules to be used in our QH

semantic tableau: strong rules and weak rules, strong rules are applied to non-
starred formulas, and weak rules are applied to starred formulas. The tableau
system will be denoted TQH.
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Tableau Rules:
Strong rules (S-rules)
• For connectives and operators:

@i(α ∨ β)
(@i(∼ α))∗ | @iβ

(∨1)
@i(α ∨ β)

(@i(∼ β))∗ | @iα
(∨2)

@i(α ∨ β)
@iα | @iβ

(∨3)

@i(α ∧ β)
@iα,@iβ

(∧)
@i@jα

@jα
(@)

@i�α,@i♦t

@tα
(�)

@i♦α

@i♦t,@tα
(♦)(i)

• For nominals:

@ii
(Ref)(ii)

@ac,@aϕ

@cϕ
(Nom1)(iii)

@ac,@a♦b

@c♦b
(Nom2)

Weak rules (W-rules)
• For connectives and operators:

(@i(α ∨ β))∗

(@iα)∗, (@iβ)∗ (∨∗)
(@i(α ∧ β))∗

(@iα)∗|(@iβ)∗ (∧∗)

(@i@jα)∗

(@jα)∗ (@∗)
(@i�α)∗

@i♦t, (@tα)∗ (�∗)(iv)
(@i♦α)∗,@i♦t

(@tα)∗ (♦∗)

(@i�¬t)∗

@i♦t
(�∗

¬i)

• For nominals:

@ac, (@aϕ)∗

(@cϕ)∗ (Nom∗
1)(iii)

@ac, (@a�b)∗

(@c�b)∗ (Nom∗
2)

(i) t is a new nominal, α is not a nominal.
(ii) for i in the branch.
(iii) for ϕ a propositional variable/nominal.
(iv) t is a new nominal, α is not of the form ¬j, for j a nominal.

The strong and weak rules for nominals, together with (∨1), (∨2), (�) and
(♦∗) are called non-destructive rules. The remaining are called destructive.

The star in the formulas can be seen as a kind of meta-negation; the weak
rules, which involve starred formulas, can thus be viewed as duals of the strong
ones, except for the case where we obtain the classical disjunction.
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Next theorem states that TQH is sound:

Theorem 1 (Soundness). The tableau rules are sound in the following sense:

– for any r-rule
Λ

Σ
, any bistructure E and any state w ∈ W , E,w |=r Λ implies

E,w |=r Σ.

– for any r-rule
Λ

Σ | Γ
, any bistructure E and any state w ∈ W , E,w |=r Λ

implies E,w |=r Σ or E,w |=r Γ ,

for Λ; Σ and Γ lists of formulas in L∗
@ and r ∈ {s,w}.

Proof. The proof can be obtained by checking each rule.

4.2 Properties of the Tableau System and its Construction

The idea of a tableau is that we apply the rules previously introduced to root for-
mulas and to formulas which occur in the tableau after the application of a rule.
This indiscriminate way of applying rules leads to infinite tableaux, where there
may be repeated formulas and loops, thus we must find a systematic construction
that terminates a tableau and allows us to take some conclusions from it.

Definition 13. We say that a formula χ ∈ L∗
@ is a strong occurrence/s-occurs

if it is the result of applying a strong rule. Analogously we say that χ is a weak
occurrence/w-occurs if it is the result of applying a weak rule. A formula occurs if
it s-occurs or w-occurs.

Definition 14. The notion of a subformula is defined by the following condi-
tions:

– ϕ is a subformula of ϕ;
– if ψ ∧ θ or ψ ∨ θ is a subformula of ϕ, then so are ψ and θ;
– if @aψ, �ψ, or ♦ψ is a subformula of ϕ, then so is ψ.

The tableau system TQH satisfies the following quasi-subformula property:

Theorem 2 (Quasi-Subformula Property). If a formula @aϕ s-occurs in
a tableau where ϕ is not a nominal and ϕ is not of the form ♦b, then ϕ is a
subformula of a root formula. If a formula (@aϕ)∗ w-occurs in a tableau, then ϕ
is a subformula of the premise in the applied rule.

Proof. The proof can be obtained by checking each rule.

Definition 15. Let Θ be a branch of a tableau and let NomΘ be the set of
nominals occurring in the formulas of Θ. Define a binary relation ∼Θ on NomΘ

by a ∼Θ b if and only if the formula @ab occurs on Θ.

Definition 16. Let b and a be nominals occurring on a branch Θ of a tableau
in TQH. The nominal a is said to be included in the nominal b with respect to Θ
if the following holds:
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– for any subformula ϕ of a root formula, if the @aϕ s-occurs on Θ, then @bϕ
also s-occurs on Θ; and

– if (@aϕ)∗ w-occurs on Θ, then (@bϕ)∗ also w-occurs on Θ.

If a is included in b with respect to Θ, and the first occurrence of b on Θ is before
the first occurrence of a, then we write a ⊆Θ b.

Definition 17 (Tableau Construction). Given a database Δ of satisfaction
statements and a query @aϕ of QH, one wants to verify if @aϕ is a consequence
of Δ. In order to do so, we define by induction a sequence τ0, τ1, τ2, · · · of finite
tableaux in TQH, each of which is embedded in its successor.

Let τ0 be the finite tableau constituted by the formulas in Δ and (@aϕ)∗.
τn+1 is obtained from τn if it is possible to apply an arbitrary rule to τn with the
following three restrictions:

1. If a formula to be added to a branch by applying a rule already occurs on the
branch, then the addition of the formula is simply omitted.

2. After the application of a destructive rule to a formula occurrence ϕ on a
branch, it is recorded that the rule was applied to ϕ with respect to the branch
and the rule will not again be applied to ϕ with respect to the branch or any
extension of it.

3. The existential rules (♦,�∗) are not applied to a formula occurrence @a♦ϕ
or (@a�ϕ)∗ on a branch Θ if there exists a nominal b such that a ⊆Θ b.

Note that due to the first restriction, a formula cannot occur more than
once on a branch. Also note that no information is recorded about applica-
tions of nondestructive rules. The conditions on applications of the existential
rules (♦,�∗) in the third restriction are the loop-check conditions. The intuition
behind loopchecks is that an existential rule is not applied in a world if the
information in that world can be found already in an ancestor world. Hence, the
introduction of a new world by the existential rule is blocked.

A branch is closed iff there is a formula ψ for which ψ and ψ∗ are in that
branch; we use the symbol × to mark a closed branch. A TQH tableau is closed
iff every branch is closed. A branch is open if it is not closed and there are no
more rules to apply; we use the symbol � to mark an open branch. A tableau is
open if it has an open branch.

A terminal tableau is a tableau where the rules have been exhaustively used
i.e., there are no more rules applicable to the tableau obeying the restrictions in
Definition 17.

Henceforth, θ is a branch of a terminal tableau.

Definition 18. Let U be the subset of NomΘ containing any nominal a having
the property that there is no nominal b such that a ⊆Θ b. Let ≈ be the restriction
of ∼Θ to U .

Note that U contains all nominals present in the root formulas since they
are the first formulas of the branch Θ. Observe that Θ is closed under the rules
(Ref) and (Nom1), so both ∼Θ and ≈ are equivalence relations.
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Given a nominal a in U , we let [a]≈ denote the equivalence class of a with
respect to ≈ and we let U/ ≈ denote the set of equivalence classes.

Definition 19. Let R be the binary relation on U defined by aRc if and only
if there exists a nominal c′ ≈ c such that one of the following two conditions is
satisfied:

1. The formula @a♦c′ occurs on Θ.
2. There exists a nominal d in NomΘ such that the formula @a♦d occurs on Θ

and d ⊆Θ c′.

Note that the nominal d referred to in the second item in the definition is not
an element of U . It follows from Θ being closed under the rule (Nom2) that R
is compatible with ≈ in the first argument and it is trivial that R is compatible
with ≈ in the second argument. We let R̄ be the binary relation on U/ ≈ defined
by [a]≈ R̄ [c]≈ if and only if aRc.

Definition 20. Let N̄ : U → U/ ≈ be defined as N̄(a) = [a]≈.

Definition 21. Let V + be the function that to each ordinary propositional sym-
bol assigns the set of elements of U where that propositional variable occurs, i.e.,
a ∈ V +(p) iff @ap occurs on Θ. Analogously, let V − be the function that to
each ordinary propositional symbol assigns the set of elements of U where the
negation of that propositional variable occurs, i.e., a ∈ V −(p) iff @a¬p occurs
on Θ.

We let V +
≈ be defined by V +

≈ (p) = {[a]≈ | a ∈ V +(p)}. We define V −
≈ analo-

gously: V −
≈ (p) = {[a]≈ | a ∈ V −(p)}.

Given a branch Θ, let MΘ =
(
U/ ≈, R̄, N̄ , V +

≈ , V −
≈

)
. We will omit the refer-

ence to the branch in MΘ if it is clear from the context.

Theorem 3 (Model Existence). Assume that the branch Θ is open. For any
satisfaction statement @aϕ which contains only nominals from U , the following
conditions hold:

(i) If @aϕ s-occurs on Θ, then M, [a]≈ |=s ϕ
(ii) If @aϕ w-occurs on Θ, then M, [a]≈ |=w ϕ
(iii) If (@aϕ)∗ s-occurs on Θ, then M, [a]≈ �|=s ϕ.
(iv) If (@aϕ)∗ w-occurs on Θ, then M, [a]≈ �|=w ϕ.

Proof. The proof is by induction on the structure of ϕ.

– ϕ = i, i a nominal
(i) @ai s-occurs on Θ, then [a]≈ = [i]≈, hence M, [a]≈ |=s i.
(ii) @ai never w-occurs.
(iii) (@ai)∗ s-occurs on Θ, then, since the branch is open, @ai does not occur
on Θ, in particular, it does not s-occur. So, [a]≈ �= [i]≈, then M, [a]≈ �|=s i.
(iv) (@ai)∗ w-occurs on Θ, then analogously to the previous case, @ai does
not occur on Θ, in particular, it does not w-occur. So, [a]≈ �= [i]≈, then
M, [a]≈ �|=w i.
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– ϕ = ¬i, i a nominal
The proof is analogous to the case ϕ = i.

– ϕ = p, p a propositional variable
(i) @ap s-occurs on Θ, then a ∈ V +

≈ (p), thus M, [a]≈ |=s p.
(ii) @ap never w-occurs.
(iii) (@ap)∗ s-occurs on Θ, then, since the branch is open, @ap does not occur
on Θ, in particular, it does not s-occur. It also means that a /∈ V +

≈ (p) so,
M, [a]≈ �|=s p.
(iv) (@ap)∗ w-occurs on Θ; analogously to the previous case, considering that
@ap does not w-occur we get that M, [a]≈ �|=w p.

– ϕ = ¬p, p a propositional variable
Each case will be analogous to the one in ϕ = p, only with the difference that
we now consider V −

≈ (p) instead of V +
≈ (p).

– ϕ = φ ∧ ψ, φ, ψ formulas
(i) @a(φ ∧ ψ) s-occurs on Θ, then, by applying the S-rule (∧), @aφ and @aψ
s-occur on Θ. By the induction hypothesis, M, [a]≈ |=s φ and M, [a]≈ |=s ψ.
Thus, M, [a]≈ |=s φ ∧ ψ.
(ii) @a(φ ∧ ψ) never w-occurs.
(iii) (@a(φ ∧ ψ))∗ s-occurs on Θ, then, by applying the W-rule (∧∗), (@aφ)∗

or (@aψ)∗ w-occur on Θ.Hence, by induction hypothesis, M, [a]≈ �|=w φ or
M, [a]≈ �|=w ψ. Thus, M, [a]≈ �|=w φ ∧ ψ. Therefore, M, [a]≈ �|=s φ ∧ ψ.
(iv) (@a(φ ∧ ψ))∗ w-occurs on Θ; follow an analogous approach to (iii).

– ϕ = @iφ, φ a formula
(i) @a@iφ s-occurs on Θ, then, by applying the S-rule (@), @iφ s-occurs on
Θ. By the induction hypothesis, M, [i]≈ |=s φ; thus, by the definition of satis-
fiability, M, [a]≈ |=s @iφ.
(ii) @a@iφ never w-occurs.
(iii) (@a@iφ)∗ s-occurs on Θ, then, by applying the W-rule (@∗), (@iφ)∗ w-
occurs on Θ. By the induction hypothesis, M, [i]≈ �|=w φ. Thus, M, [i]≈ �|=s φ
and it follows that M, [a]≈ �|=s @iφ.
(iv) (@a@iφ)∗ w-occurs on Θ; follow an analogous approach to (iii).

– ϕ = φ ∨ ψ, φ, ψ formulas
(i) @a(φ ∨ ψ) s-occurs on Θ, then, since we can apply three S-rules, namely
(∨1,∨2,∨3), one may obtain 8 new branches, represented as follows:

@a(φ ∨ ψ)

(@a(∼ φ))∗

(@a(∼ ψ))∗

@aφ

1

@aψ

2

@aφ

@aφ

3

@aψ

4

@aψ

(@a(∼ ψ))∗

@aφ

5

@aψ

6

@aφ

@aφ

7

@aψ

8
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Let us check what happens at each branch:
1. (@a(∼ φ))∗, (@a(∼ ψ))∗ and @aφ s-occur.

By induction hypothesis:
M, [a]≈ �|=s∼ φ,
M, [a]≈ �|=s∼ ψ, and
M, [a]≈ |=s φ.

Recall that M, [a]≈ |=s φ ∨ ψ
⇔ (M, [a]≈ |=s φ or M, [a]≈ |=s ψ)
and (M, [a]≈ |=s∼ φ ⇒ M, [a]≈ |=s ψ)
and (M, [a]≈ |=s∼ ψ ⇒ M, [a]≈ |=s φ)

Thus, under the conditions in branch number 1, it is verified that

M, [a]≈ |=s φ ∨ ψ.

2. (@a(∼ φ))∗, (@a(∼ ψ))∗ and @aψ s-occur.
Thus,
M, [a]≈ �|=s∼ φ,
M, [a]≈ �|=s∼ ψ, and
M, [a]≈ |=s ψ.
Using the same approach as before, one has that M, [a]≈ |=s φ ∨ ψ.

3. (@a(∼ φ))∗, and @aφ s-occur.
Thus,
M, [a]≈ �|=s∼ φ, and
M, [a]≈ |=s φ.

Then, M, [a]≈ |=s φ ∨ ψ.

4. (@a(∼ φ))∗, @aφ and @aψ s-occur.
Thus,
M, [a]≈ �|=s∼ φ,
M, [a]≈ |=s φ, and
M, [a]≈ |=s ψ.

So, M, [a]≈ |=s φ ∨ ψ.

5. @aψ, (@a(∼ ψ))∗ and @aφ s-occur.
Analogously to branch number 4, M, [a]≈ |=s φ ∨ ψ.

6. @aψ and (@a(∼ ψ))∗ s-occur.
Analogously to branch number 3, M, [a]≈ |=s φ ∨ ψ.

7. and 8. @aφ and @aψ s-occur.
Thus, M, [a]≈ |=s φ ∨ ψ.

We can thus conclude that, if @a(φ ∨ ψ) s-occurs, then M, [a]≈ |=s φ ∨ ψ.
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(ii) @a(φ ∨ ψ) never w-occurs.
(iii) (@a(φ ∨ ψ))∗ s-occurs on Θ, then by applying rule (∨∗), we obtain that
(@aφ)∗ and (@aψ)∗ w-occur. By induction hypothesis, M, [a]≈ �|=w φ and
M, [a]≈ �|=w ψ; thus, M, [a]≈ �|=w φ ∨ ψ. Therefore M, [a]≈ �|=s φ ∨ ψ.
(iv) (@a(φ ∨ ψ))∗ w-occurs on Θ, analogous to the previous case.

– ϕ = ♦ψ, where:
• ψ is a nominal t

For the first two cases we have that:
(i) @a♦t s-occurs on Θ, then [a]≈R̄[t]≈. By definition of satisfiability,
M, [a]≈ |=s ♦t.
(ii) @a♦t w-occurs on Θ; it follows from the previous explanation that
M, [a]≈ |=w ♦t.

• ψ is not a nominal
For the first two cases we have that:
(i) @a♦ψ s-occurs on Θ, then by the application of the S-rule (♦), @a♦t
and @tψ s-occur, for t a new nominal.

∗ if t ∈ U , [a]≈R̄[t]≈ and M, [a]≈ |=s ♦ψ.
∗ if t /∈ U , ∃d such that t ⊆Θ d. Assume that there is no e such that
d ⊆Θ e, i.e., d ∈ U . By Theorem 2, the formula ψ is a subformula
of a root formula, so @dψ s-occurs on Θ. By induction hypothesis,
M, [d]≈ |=s ψ and [a]≈R̄[d]≈. Thus yielding that M, [a]≈ |=s ♦ψ.

(ii) @a♦ψ never w-occurs.

• The last two cases are applicable for either ψ a nominal or not:
(iii) (@a♦ψ)∗ s-occurs on Θ.
We want to prove that M, [a]≈ �|=s ♦ψ, i.e., that for all [c]≈ such that
[a]≈R̄[c]≈, M, [c]≈ �|=s ψ.
By definition, [a]≈R̄[c]≈ implies that ∃c′ : c′ ≈ c that satisfies one of the
following two conditions:

∗ @a♦c′ occurs.
Then, by the W-rule (♦∗), (@c′ψ)∗ w-occurs on Θ. By induction,
M, [c′]≈ �|=w ψ.
Since [c′]≈ = [c]≈, then [a]≈R̄[c′]≈. Thus, M, [a]≈ �|=w ♦ψ, which
implies that M, [a]≈ �|=s ♦ψ.
∗ ∃d ∈ NomΘ such that @a♦d occurs and d ⊆Θ c′.
By the application of the W-rule (♦∗), (@dψ)∗ occurs on Θ. By
Theorem 2, ψ is a subformula of the premise in the applied rule.
Since d ⊆Θ c′, (@c′ψ)∗ occurs on Θ.
By induction we conclude that M, [c′]≈ �|=w ψ, thus M, [a]≈ �|=w ♦ψ
and finally, M, [a]≈ �|=s ♦ψ.

(iv) (@a♦ψ)∗ w-occurs on Θ. The proof is the same as the previous one,
stopping at the point where M, [a]≈ �|=w ♦ψ.
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– ϕ = �ψ
In order to prove the first two cases, consider ψ an arbitrary formula.
(i) @a�ψ s-occurs on Θ.
We want to prove that M, [a]≈ |=s �ψ, i.e., that for all [c]≈ such that
[a]≈R̄[c]≈, M, [c]≈ |=s ψ.
As you may verify, this is a similar proof to the one made for (@a♦ψ)∗:
By definition, [a]≈R̄[c]≈ implies that ∃c′ : c′ ≈ c that satisfies one of the
following two conditions:

• @a♦c′ occurs.
Then, by the S-rule (�), @c′ψ s-occurs on Θ. By induction, M, [c′]≈ |=s ψ.
Since [c′]≈ = [c]≈, then [a]≈R̄[c′]≈. Thus, M, [a]≈ |=s �ψ.

• ∃d ∈ NomΘ such that a♦d occurs and d ⊆Θ c′.
By the application of the S-rule (�), @dψ s-occurs on Θ. By Theorem 2,
ψ is a subformula.
Since d ⊆Θ c′, @c′ψ occurs on Θ.
By induction we conclude that M, [c′]≈ |=s ψ, thus M, [a]≈ |=s �ψ.

(ii) @a�ψ never w-occurs.

The last two cases require a separation between ψ of the form ¬i, with i a
nominal, and not of the form described.
Let us consider:

• ψ of the form ¬i, with i a nominal.
(iii) (@a�¬i)∗ s-occurs on Θ, thus, by the rule (�∗

¬i) which implies that
(@a♦i) w-occurs.
An occurrence of (@a♦i) means that [a]≈R̄[i]≈. So, by definition,
M, [a]≈ |=w ♦i, which entails that M, [a]≈ �|=w �¬i. Therefore, M, [a]≈ �|=s

�¬i.
(iv) (@a�¬i)∗ w-occurs on Θ follows the same approach.

• ψ otherwise.
(iii) (@a�ψ)∗ s-occurs on Θ, thus by application of the W-rule (�∗), @a♦t
and (@tψ)∗ w-occur, for t a new nominal.

∗ if t ∈ U , [a]≈R̄[t]≈. By induction hypothesis, M, [t]≈ �|=w ψ. Thus
M, [a]≈ �|=w �ψ. To conclude, M, [a]≈ �|=s �ψ.
∗ if t /∈ U , ∃d such that t ⊆Θ d. Assume that there is no e such that
d ⊆Θ e, i.e., d ∈ U . By Theorem 2, the formula ψ is a subformula of
a root formula, so (@dψ)∗ w-occurs on Θ. By induction hypothesis,
M, [d]≈ �|=w ψ and [a]≈R̄[d]≈. Thus yielding that M, [a]≈ �|=w �ψ,
which, in its turn, yields M, [a]≈ �|=s �ψ.

(iv) (@a�ψ)∗ s-occurs on Θ; the proof is the same as before, stopping at
M, [a]≈ �|=w �ψ, which already gives the desired result.

From this theorem together with the soundness theorem we have the following
decision procedure:
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Decision Procedure: Given a database Δ and a query @aϕ whose consequence
from Δ we want to decide, let τn be a terminal tableau generated by the tableau
construction algorithm. If the tableau is closed, then @aϕ is a consequence of Δ.
Analogously, if the tableau is open, then @aϕ is not a consequence of Δ.

Example 1. Let Δ = {@i(p ∨ q),@j♦i,@jq,@j¬q} be a database and consider
a query ϕ = @j♦p. Let us decide if ϕ is a consequence of Δ using the tableau
procedure described:

@i(p ∨ q),@j♦i,@jq,@j¬q, (@j♦p)∗

(@ip)∗

@ip

×
@iq

(@i¬p)∗

(@i¬q)∗

�
@ip

×

@iq

(@i¬q)∗

�
@ip

×
Since the tableau has some open branches, it means that the tableau is open,

thus ϕ is not a consequence of Δ. A counter-model is the bistructure with two
worlds i and j where only @iq, @jq, @j¬q and @j♦i,@i�¬i, @j�¬j are satisfied,
which clearly is a bistructure that satisfies Δ, but where ϕ is not true.

We can easily verify that the database has an inconsistency, as it contains
both @jq and @j¬q. If we were to evaluate ϕ in hybrid logic (usual version,
non-paraconsistent), then ϕ would trivially follow.

Example 2. Let Δ = {@t(p ∧ q ∧ r),@i�¬p,@i♦t} be a database and consider
a query ϕ = (@t(p ∧ ¬p)). Let us decide if ϕ is a consequence of Δ using the
tableau procedure described:

@t(p ∧ q ∧ r), @i�¬p, @i♦t, (@t(p ∧ ¬p))∗

@tp,@tq,@tr

@t¬p

(@tp)∗

×
(@t¬p)∗

×
Note that the database has an inconsistency and the query itself is inconsis-

tent. However, from the tableau procedure we verify that, since it is closed, ϕ is
a consequence of Δ.

These examples show the mechanism of the tableau construction in action.
Both examples yield an inconsistency in the database, but it is possible to still
reach sensible conclusions about the validity of the query, thanks to the para-
consistent aspect of the tableau system presented.
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5 Conclusion

Paraconsistent logics have been around for some decades, and their importance is
justified by the unavoidable occurrence of inconsistencies in data and knowledge
management. Inconsistent information can appear everywhere, and for many
reasons. Contradictory information may arise in systems which are safety critical,
such as health systems, aviation systems and many others.

After introducing Quasi-hybrid logic [5], a paraconsistent version of hybrid
logic capable of dealing with contradictory information under the form of hybrid
formulas, the next step was the construction of a proof-theoretical system for
this new logic and the study of properties such as completeness, decidability, etc.

The challenge here was the combination of two different tableau systems
already existent in literature, one for Quasi-classical logic and another for Hybrid
logic. We ended up with a tableau system for Quasi-hybrid logic, described in
this work, which ends with some examples.

This is clearly a step forward in the study of QH logic, which we aim to
continue exploring, namely by:

– investigating inconsistency at the level of nominals, by allowing two nomi-
nations: a positive one for nominals, and a negative one for the negation of
nominals. This way, we are able to handle the possibility of receiving informa-
tion of the form @ij and @i¬j;

– accounting for inconsistency in modalities, for example by allowing both @i♦j
and @i�¬j to be true;

– studying paraconsistency in the context of strong Priorean logic;
– use a combination of all of the above to study reactive deontic logics and

switch graphs, where the base accessibility relation changes when its edges
are traversed, in the context of QH logic.

Paraconsistency has already been considered in the context of modal logic
(e.g. [9,10]). It will be interesting to compare our system with the hybrid systems
obtained by adding nominals and the satisfaction operator to those systems.
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