
Internal Guidance for Satallax

Michael Färber1(B) and Chad Brown2

1 Universität Innsbruck, Innsbruck, Austria
michael.faerber@uibk.ac.at

2 Czech Technical University in Prague, Prague, Czech Republic

Abstract. We propose a new internal guidance method for automated
theorem provers based on the given-clause algorithm. Our method influ-
ences the choice of unprocessed clauses using positive and negative exam-
ples from previous proofs. To this end, we present an efficient scheme for
Naive Bayesian classification by generalising label occurrences to types
with monoid structure. This makes it possible to extend existing fast
classifiers, which consider only positive examples, with negative ones. We
implement the method in the higher-order logic prover Satallax, where
we modify the delay with which propositions are processed. We evaluated
our method on a simply-typed higher-order logic version of the Flyspeck
project, where it solves 26 % more problems than Satallax without inter-
nal guidance.

1 Introduction

Experience can be described as knowing which methods to apply in which con-
text. It is a result of experiments, which can show a method to either fail or
succeed in a certain situation. Mathematicians solve problems by experience.
When solving a problem, mathematicians gain experience, which in the future
can help them to solve harder problems that they would not have been able to
solve without the experience gained before.

Fully automated theorem provers (ATPs) attempt to prove mathematical
problems without user interaction. A thriving field of research is how to make
ATPs behave more like mathematicians, by learning which decisions to take from
previous proof attempts, in order to find more proofs in shorter time, and to
prove problems that were previously out of reach for the ATP. Machine learning
can help advance that field, for it provides techniques to model experience and
to compare the quality of possible decisions. Machine learning approaches to
improve ATP performance include:

– Premise selection: Preselecting a set of axioms for a problem can be done
as a preprocessing step or inside the ATP at the beginning of proof search.
Examples of this technique are the Sumo INference Engine (SInE) [HV11] and
E.T. [KSUV15].

– Internal guidance: Unlike premise selection, internal guidance influences
choices made during the proof search. The hints technique [Ver96] was among

c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 349–361, 2016.
DOI: 10.1007/978-3-319-40229-1 24

350 M. Färber and C. Brown

the earliest attempts to directly influence proof search by learning from previ-
ous proofs. Other systems are E/TSM [Sch00], an extension of E [Sch13] with
term space maps, and MaLeCoP [UVŠ11] respectively FEMaLeCoP [KU15],
which are versions of leanCoP [Ott08] extended by Naive Bayesian learning.

– Learning of strategies: Finding good settings for ATPs automatically has
been researched for example in the Blind Strategymaker (BliStr) project
[Urb15].

– Learning of strategy choice: Once one has found good ATP strategies for
different sets of problems, it is not directly clear which strategies to apply for
which time when encountering a new problem. This problem was treated in
the Machine Learning of Strategies (MaLeS) [Kü14].

In this paper, we show an internal guidance algorithm for ATPs that use
(variations of) the given-clause algorithm. Specifically, we study a Naive Bayesian
classification method, introduced for the connection calculus in FEMaLeCoP, and
generalise it by measuring label occurrences with an arbitrary type having monoid
structure, in place of a single number. This generalisation has the benefit that it
can handle positive and negative occurrences. As a proof of concept, we implement
the algorithm in the ATP Satallax [Bro12], using no features at all, which already
solves 26 % more problems given the same amount of time, and which can solve
about as many problems in 1 s than without internal guidance in 2 s.

2 Naive Bayesian Classifier with Monoids

2.1 Motivation

Many automated theorem provers have a proof state in which they make deci-
sions, by ranking available choices (e.g. which proposition to process) and choos-
ing the best one. This is related to the classification problem in machine learning,
which takes data about previous decisions, i.e. which situation has led to which
choice, and then orders choices by usefulness for the current situation.

For example, let us assume that the state of the theorem prover is modelled
by the set of constants appearing in the previously processed propositions or in
the conjecture. Let our conjecture be x + y = y + x and let our premises include

∀P.[P (0) =⇒ (∀x.P (x) =⇒ P (s(x))) =⇒ ∀x.P (x)], (1)
x + 0 = x. (2)

If we first process Eq. 1, the prover state is characterised by F = {+, s, 0}. If
we then continue to process Eq. 2 and it turns out that this contributes to the
final proof, we register that in the situation F , Eq. 2 was useful.

In other proof searches, processing Eq. 2 in a certain prover state will not
contribute towards the final proof. We call such situations negative examples.

Intuitively, we would like to apply propositions in situations that are similar
to those in which the propositions were useful, and avoid processing propositions
in situations similar to those where the propositions were useless. In general,

Internal Guidance for Satallax 351

examples (positive and negative) can be characterised by a prover state F and
a proposition l that was processed in state F . This makes it possible to treat
the choice of propositions as classification problem. In the next section, we show
how to rank choices based on previous experience.

2.2 Classifiers with Positive Examples

A classifier takes pairs (F, l), relating a set of features F with a label l, and
produces a function that, given a set of features, predicts a label. Classifiers can
be characterised by a function r(l, F), which represents the relevance of a label
wrt a set of features. For internal guidance, we use r to estimate the relevance
of a clause l to process in the current prover state F .

A Bayesian classifier estimates the relevance of a label by its probability to
occur with a set of features, i.e. P (l | F). By using the Naive Bayesian assumption
that features are conditionally independent, the conditional probability is:

P (l | F) =
P (l)P (F | l)

P (F)
=

P (l)
∏

f∈F P (f | l)
P (F)

∝ P (l)
∏

f∈F

P (f | l).

To increase numerical stability, we use sums of logarithms. Furthermore, we
weight the probabilities with the inverse document frequency (IDF) of the fea-
tures, and we omit the constant factor P (F). The resulting classifier then is:

r(l, F) = log P (l) +
∑

f∈F

log(idf(fi)) log P (f | l).

In FEMaLeCoP, the simplified probability functions1 are approximated by

P (l) ≈ Dl, P (f | l) ≈
{

c if Dl,f = 0
Dl,f

Dl
otherwise

where Dl,f denotes the number of times l appeared among the training examples
in conjunction with f , Dl denotes how often l appeared among all training
examples, and c is a constant.

2.3 Generalised Classifiers

In our experiments, we found negative training examples to be crucial for inter-
nal guidance. Therefore, we generalised the classifier to represent the type of
occurrences as a commutative monoid.

Definition 1. A pair (M, +) is a monoid if there exists a neutral element 0 ∈ M
such that for all x, y, z ∈ M , (x + y) + z = x + (y + z) and x + 0 = 0 + x = x. If
furthermore x + y = y + x, then the monoid is commutative.
1 We omitted several constant factors. Furthermore, FEMaLeCoP considers also fea-

tures of training examples that are not part of the features F , albeit this is a further
derivation of the theoretical model.

352 M. Färber and C. Brown

The generalised classifier is instantiated with a commutative monoid (M,+)
and reads triples (F, l, o), which in addition to features and label now store the
label occurrence o ∈ M . For example, if the classifier is to support positive and
negative examples, then one can use the monoid (N×N,+2), where the first and
second elements of the pair represent the number of positive respectively negative
occurrences, the +2 operation is pairwise addition, and the neutral element is
(0, 0). A triple learnt by this classifier could be (F, l, (1, 2)), meaning that l occurs
with F once in a positive and twice in a negative way. Commutativity imposes
that the order in which the classifier is trained does not matter.

We now formally define Dl (occurrences of label), Dl,f (co-occurrences of
label with feature) and idf (inverse document frequency):

Dl =
∑

{o | (F, l′, o) ∈ D, l = l′},

Dl,f =
∑

{o | (F, l′, o) ∈ D, l = l′, f ∈ F},

idf(f) =
|D|

|{(F, l′, o) | (F, l′, o) ∈ D, f ∈ F}|
With this, our classifier for positive and negative examples can be defined as

follows:

P (l) =
|p − n|
p + n

(cpp + cnn), P (fi | l) =

{
c if Dl,f = 0
cp

pf

p + cn
nf

n otherwise

where (p, n) = Dl, (pf , nf) = Dl,f , and c, cp, and cn are constants. The term
|p−n|
p+n represents confidence and models our intuition that labels which appear

always in the same role (say, as positive example) should have a greater influence
than more ambivalent labels. For example, if a label occurs about the same
number of times as positive and as negative example, confidence is approximately
0, and when a label is almost exclusively positive or negative, confidence is 1.

We call Dl, Dl,f , and idf classification data. They are precalculated to allow
fast classification. Furthermore, new training examples can be added to existing
classification data efficiently, similarly to [KU15].

3 Learning Scenarios

In this section, we still consider ATPs as black boxes, taking as input a problem
and classification data for internal guidance, returning as output training data
(empty if the ATP did not find a proof).

We propose two different scenarios to generate training data and to use it in
subsequent proof searches, see Fig. 1:

– On-line learning: We run the ATP on every problem with classification data.
For every problem the ATP solves, we update the classifier with the training
data from the ATP proof.

Internal Guidance for Satallax 353

– Off-line learning: We first run the ATP on all problems without classification
data, saving training data for every problem solved. We then create classifica-
tion data from the training data and rerun the ATP with the classifier on all
problems.

While the second scenario can be parallelised, thus taking less wall-clock
time, it has to treat every problem twice in the worst case (namely when every
problem fails), thus taking up to double the CPU time of the first scenario.

Fig. 1. Comparison of online and offline learning. The large boxes symbolise an ATP
proof search, which takes classifier data and returns training data (empty if no proof
found). The small “+” boxes combine classifiers and training data, returning new
classifier data.

4 Internal Guidance for Given-Clause Provers

Variants of the given-clause algorithm are commonly used in refutation-based
ATPs, such as Vampire [KV13] or E [Sch13].2 We introduce a simple version
of the algorithm: Given an initial set of clauses to refute, the set of unprocessed
clauses is initialised with the initial set of clauses, and the set of processed clauses
is the empty set. At every iteration of the algorithm, a given clause is selected
from the unprocessed clauses and moved to the processed clauses, possibly gen-
erating new clauses which are moved to the unprocessed clauses. The algorithm
2 Technically, our reference prover Satallax does not implement a given-clause algo-

rithm, as Satallax treats terms instead of clauses, and it interleaves the choice of
unprocessed terms with other commands. However, for the sake of internal guid-
ance, we can consider Satallax to implement a version of the given-clause algorithm.
We describe the differences in more detail in Sect. 6.

354 M. Färber and C. Brown

terminates as soon as either the set of unprocessed clauses is empty or the empty
clause was generated.

The integration of our internal guidance method into an ATP with given-
clause algorithm involves two tasks: The recording of training data, and the
ranking of unprocessed clauses, which influences the choice of the given clause.
To reduce the amount of data an ATP has to load for internal guidance, we
process training data and transform it into classification data outside of the
ATP. We describe these tasks below in the order they are executed when no
internal guidance data is present yet.

4.1 Recording Training Data

Recording training data can be done in different fashions:

– In situ: Information about clause usage is recorded every time an unprocessed
clause gets processed. This method allows for more expressive prover state
characterisation, on the other hand, we found it to decrease the proof success
rate, as the recording of proof data makes the inference slower.

– Post mortem: Only when a proof was found, information about clause usage
is reconstructed. As this method does not place any overhead on the proof
search, we resorted to post-mortem recording, which is still sufficiently expres-
sive for our purposes.

For every proof, we save: conjecture (if one was given), axioms A (premises
given in the problem), processed clauses C, and clauses C+ that were used in
the final proof (C+ ⊆ C). We call such information for a single proof a training
datum. We ignore unprocessed clauses, as we cannot easily estimate whether
they might have contributed to a proof.

4.2 Postprocessing Training Data

In our experiments, we frequently encounter clauses that are the same, differing
only by containing different Skolem constants. To this end, we process the train-
ing data before creating classification data from it. We tried different techniques
to handle Skolem constants, as well as other postprocessing methods:

– Skolem filtering: We discard clauses containing any Skolem constants.
– Consistent Skolemisation: We normalise Skolem constants inside all

clauses, similarly to [UVŠ11]. That is, a clause P (x, y, x), where x and y are
Skolem constants, becomes P (c1, c2, c1).

– Consistent normalisation: Similarly to consistent Skolemisation, we nor-
malise all symbols of a clause. That is, P (x, y, x) as above becomes
c1(c2, c3, c2). This allows the ATP to discover similar groups of clauses, for
example a + b = b + a and a ∗ b = b ∗ a both map to c1(c2, c3) = c1(c3, c2),
but on the other hand, this also maps possibly different clauses such as P (x)
and Q(z) to the same clause. Still, in problem collections which do not share
a common set of function constants (such as TPTP), this method is suitable.

Internal Guidance for Satallax 355

– Inference filtering: An interesting experiment is to discard all clauses gen-
erated during proof search that are not part of the initial clauses.

We denote the consistent Skolemisation/normalisation of a clause c described
above as N (c).

4.3 Transforming Training Data to Classification Data

For a given training datum with processed clauses C and proof clauses C+, we
define the corresponding classifier data to be:

{(F(c), c, (1, 0)) | c ∈ C+} ∪ {(F(c), c, (0, 1)) | c ∈ C \ C+},

where F(c) denotes the features of a clause. We use the monoid (N×N,+2, (0, 0))
introduced in Sect. 2, storing positive and negative examples. The classifier data
of the whole training data is then the (multiset) union of the classifier data of
the individual training data.

4.4 Clause Ranking

This section describes how our internal guidance method influences the choice
of unprocessed clauses using a previously constructed classifier.

At the beginning of proof search, the ATP loads the classifier. Some learning
ATPs, such as E/TSM [Sch00], select and prepare knowledge relevant to the
current problem before the proof search. However, as we store classifier data in
a hash table, filtering irrelevant knowledge to the problem at hand would require
a relatively slow traversal of the whole table, whereas lookup of knowledge is fast
even in the presence of a large number of irrelevant facts. For this reason we do
not filter the classification data per problem.

Then, at every choice point, i.e. every time the ATP chooses a clause from
the unprocessed clauses C, it picks a clause c ∈ C that maximises the clause
rank R(c, F), where

R(c, F) = rATP(c) + r(N (c), F)

and:

– rATP(c) is an ATP function that calculates the relevance of a clause with
traditional means (such as weight, age, . . .),

– F is the current prover state,
– r(c, F) is the Naive Bayesian ranking function as shown in Sect. 2, and
– N (c) is the normalisation function as introduced in Subsect. 4.2.

5 Tuning of Guidance Parameters

We employed two different methods to automatically find good parameters for
internal guidance, such as c, cp, and cn from Sect. 2.

356 M. Färber and C. Brown

5.1 Off-Line Tuning

Off-line tuning analyses existing training data and attempts to find parameters
that give proof-relevant clauses from the training data a high rank, while giving
proof-irrelevant clauses a low rank. To do this, we evaluate for every training
datum the following formula, which adds for every proof-relevant clause the
number of proof-irrelevant clauses that were ranked higher:

∑

c+∈C+

|{c | R(c, F) > R(c+, F+), c ∈ C \ C+}|,

where C and C+ come from the training datum (see Subsect. 4.1), F and F+

are the features of the prover states when c respectively c+ were processed (we
reconstruct these from the training datum), and R is the ranking formula from
Subsect. 4.4.

In the end, we sum up the results of the formula above for all training data,
and take the guidance parameters which minimise that sum.

5.2 Particle Swarm Optimisation

Particle Swarm Optimisation [KE95] (PSO) is a standard optimisation algorithm
that can be applied to minimise the output of a function f(x), where x is a vector
of continuous values. A particle is defined by a location x (a candidate solution
for the optimisation problem) and a velocity v . Initially, p particles are created
with random locations and velocities. Then, at every iteration of the algorithm,
a new velocity is calculated for every particle and the particle is moved by that
amount. The new velocity of a particle is:

v(t + 1) = ω · v(t) + φp · rp · (bp(t) − x (t)) + φg · rg · (bg(t) − x (t)),

where:

– v(t) is the old velocity of the particle,
– bp(t) is the location of the best previously found solution among all particles,
– bg(t) is the location of the best previously found solution of the particle,
– rp and rg are random vectors generated at every evaluation of the formula,

and
– ω = 0.4, φp = 0.4, and φg = 3.6 are constants.

We apply PSO to optimise the performance of an ATP on a problem set S.
For this, we define f(x) to be the number of problems in S the ATP can solve
with a set of flags being set to x and with timeout t. We then run PSO and take
the best global solution obtained after n iterations. We fixed t = 1s, p = 300,
and |S| = 1000. The algorithm has worst-case execution time t · p · n · |S|.

Internal Guidance for Satallax 357

6 Implementation

We implement our internal guidance in Satallax version 2.8. Satallax is an auto-
mated theorem prover for higher-order logic, based on a tableaux calculus with
extensionality and choice. It is written in OCaml by Brown [Bro12]. Satallax
implements a priority queue, on which it places several kinds of proof search
commands: Among the 11 different commands in Satallax 2.8, there are for
example proposition processing, mating, and confrontation. Proof search works
by processing the commands on the priority queue by descending priority, until a
proof is found or a timeout is reached. The priorities assigned to these commands
are determined by flags, which are the settings Satallax uses for proof search. A
set of flag settings is called a mode (in other ATPs frequently called strategies)
and can be chosen by the user upon the start of Satallax. Similar to other modern
ATPs such as Vampire [KV13] or E [Sch13], Satallax also supports timeslicing
via strategies (in other ATPs frequently called schedules), which define a set of
modes together with time amounts Satallax calls each mode with. Formally, a
strategy is a sequence [(m1, t1), . . . , (mn, tn)], where mi is a mode and ti the
time to run the mode with. The total time of the strategy is the sum of times,
i.e. tΣ(S) =

∑
(m,t)∈S t.

As a side-effect of this work, we have extended Satallax with the capability of
loading user-defined strategies, which was previously not possible as strategies
were hard-coded into the program. Furthermore, we implemented modifying flags
via the command line, which is useful e.g. to change a flag among all modes of
a strategy without changing the flag among all files of a strategy. We used this
extensively in the automatic evaluation of flag settings via PSO, as shown in
Subsect. 5.2.

When running Satallax with a strategy S and a timeout tmax, then all the
times of the strategy are multiplied by tmax

tΣ(S) if tmax > tΣ(S), to divide the time
between modes appropriately when running Satallax for longer than what the
strategy S specifies. Then, every mode mi in the strategy is run sequentially for
time ti until a proof is found or the timeout tmax is hit.

An analysis of several proof searches yielded that on average, more than 90 %
of commands put onto the priority queue of Satallax are proposition processing
commands, which correspond to processing a clause from the set of unprocessed
clauses in given-clause provers. For that reason, we decided to influence the
priority of proposition processing commands, giving those propositions with a
high probability of being useful a higher priority. The procedure follows the one
described in Subsect. 4.4, but the ranking of a proposition is performed when the
proposition processing command is put onto the priority queue, and the Naive
Bayes rank is added to the priority that Satallax without internal guidance would
have assigned to the command. As other types of commands are in the priority
queue as well, we pay attention not to influence the priority of term processing
commands too much (by choosing too large guidance parameters), as this can
lead to disproportionate displacement of other commands.

358 M. Färber and C. Brown

To record training data, we use the terms from the proof search that con-
tributed to the final proof. For this, Satallax uses picomus [Bie08] to construct
a minimal unsatisfiable core.

To characterise the prover state of Satallax, we tried different kinds of features:

– Symbols of processed terms: We collect the symbols of all processed propo-
sitions at the time a proposition is inserted into the priority queue and call
these symbols the features of the proposition. However, this experimentally
turned out to be a bad choice, because the set of features for each proposition
grows quite rapidly, as the set of processed propositions grows monotonically.

– Axioms of the problem: We associate every proposition processed in a proof
search with all the axioms of the problem. In contrast to the method above,
this associates the same features to all propositions processed during the proof
search for a problem, and is thus more a characterisation of the problem
(similar to TPTP characteristics [SB10]) than of the prover state.

In our experiments, just calculating the influence of these features without
them actually influencing the priority makes Satallax prove less problems (due
to the additional calculation time), and the positive impact of the features on
the proof search does not compensate for the initial loss of problems. Therefore,
we currently do not use features at all and associate the empty set of features
to all labels, i.e. F(c) = {}. However, it turns out that even without features,
learning from previous proofs can be quite effective, as shown in the next section.

7 Evaluation

To evaluate the performance of our internal guidance method in Satallax, we
used a THF0 [SB10] version (simply-typed higher-order logic) of the top-level
theorems of the Flyspeck [HAB+15] project, as generated by Kaliszyk and Urban
[KU14]. The test set consists of 14185 problems from topology, geometry, inte-
gration, and other fields. The premises of each problem are the actual premises
that were used in the Flyspeck proofs, amounting to an average of 84.3 premises
per problem.3 We used an Intel Core i3-5010U CPU (2.1 GHz Dual Core, 3 MB
Cache) and ran maximally one instance of Satallax at a time.

To evaluate the performance of the off-line learning scenario described in
Sect. 3, we run Satallax on all Flyspeck problems, generating training data when-
ever Satallax finds a proof. We use the Satallax 2.5 strategy (abbreviated as
“S2.5”), because the newest strategy in Satallax 2.8 can not always retrieve the
terms that were used in the final proof, which is important to obtain training data.

As the off-line learning scenario involves evaluating every problem twice (once
to generate training data and once to prove the problem with internal guidance),
it doubles runtime in the worst case, i.e. if no problem is solved. Therefore, a user

3 The test set, as well as our modified version of Satallax and instructions to recre-
ate our evaluation, can be found under: http://cl-informatik.uibk.ac.at/∼mfaerber/
satallax.html.

http://cl-informatik.uibk.ac.at/~mfaerber/satallax.html
http://cl-informatik.uibk.ac.at/~mfaerber/satallax.html

Internal Guidance for Satallax 359

might like to compare its performance to simply running the ATP with double
timeout directly: When increasing the timeout from 1 s to 2 s, the number of
solved problems increases from 2717 to 3394. However, this is mostly due to the
fact that Satallax tries more modes, so to measure the gain in solved problems
more fairly, we create a strategy “S2.5 1s” which contains only those modes that
were already used during the 1 s run, and let each of them run about double the
time. This strategy proves 2845 problems in 2 s.

We now compare the different postprocessing options introduced in
Subsect. 4.2. For this, we create a classifier from the training data gathered dur-
ing the 1 s run. We then run Satallax with internal guidance in off-line learning
mode with 1 s timeout and the Satallax 2.5 strategy. We perform this proce-
dure for each postprocessing option. We call a problem “lost” that Satallax with
guidance could not solve and Satallax without guidance could. Vice versa for
“gained”. The results are given in Table 1. We perform best when influencing
only the priority of axioms (inference filtering), solving 786 problems that could
not be solved by Satallax in 1 s without internal guidance.

Table 1. Comparison of postprocessing options.

Postprocessing Solved Lost Gained

Consistent normalisation 1911 920 114

Consistent Skolemisation 1939 885 107

None 2166 688 137

Skolem filtering 3395 98 776

Inference filtering 3428 75 786

To evaluate online learning, we run Satallax on all Flyspeck problems by
ascending order, accumulating training data and using it for all subsequent proof
searches. We filter away terms in the training data that contain Skolem variables.
As result, Satallax with online learning, running 1 s per problem, solves 3374
problems (59 lost, 716 gained), which is a plus of 24 %.

In the next experiment, we evaluate the prover performance with the
“S2.5 1s” strategy and a timeout of 30 s. For this, we use an 48-core server
with 2.2 GHz AMD Opteron CPUs and 320 GB RAM, running 10 instances of
Satallax in parallel. First, we run Satallax without internal guidance for 30 s,
which solves 3097 problems. Next, we create from the training data a classifier
with Skolem filtering, which takes 3 s and results in a 1.8M file. Finally, we run
Satallax with internal guidance in off-line learning mode using the classifier. This
proves 4028 problems in 30 s, which is a plus of 30 %. Results are shown in Fig. 2.
The “jumps” in the data stem from changes of modes.

360 M. Färber and C. Brown

Fig. 2. Problems solved in a certain time (Color figure online).

8 Conclusion

We have shown how to integrate internal guidance into ATPs based on the
given-clause algorithm, using positive as well as negative examples. We have
demonstrated the usefulness of this method experimentally, showing that on
a given test set, we can solve up to 26 % more problems. ATPs with internal
guidance could be integrated into hammer systems such as Sledgehammer (which
can already reconstruct Satallax proofs [SBP13]) or HOL(y)Hammer [KU14],
continually improving their success rate with minimal overhead. It could also
be interesting to learn internal guidance for ATPs from subgoals given by the
user in previous proofs. Currently, we learn only from problems we could find
a proof for, but in the future, we could benefit from considering also proof
searches that did not yield proofs. Furthermore, it would be interesting to see
the effect of negative examples on existing ATPs with internal guidance, such
as FEMaLeCoP. We believe that finding good features that characterise prover
state are important to further improve the learning results.

Acknowledgements. We would like to thank Sebastian Joosten and Cezary Kaliszyk
for reading initial drafts of the paper, and especially Josef Urban for inspiring discus-
sions and inviting the authors to Prague. Furthermore, we would like to thank the
anonymous IJCAR referees for their valuable comments.

This work has been supported by the Austrian Science Fund (FWF) grant P26201
as well as by the European Research Council (ERC) grant AI4REASON.

Internal Guidance for Satallax 361

References

[Bie08] Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)
[Bro12] Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B.,

Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117.
Springer, Heidelberg (2012)

[HAB+15] Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Le Hoang,
T., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q.,
Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran,
T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A formal proof of
the Kepler conjecture. CoRR, abs/1501.02155 (2015)

[HV11] Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 299–314. Springer, Heidelberg (2011)

[KE95] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE Interna-
tional Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995

[KSUV15] Kaliszyk, C., Schulz, S., Urban, J., Vyskocil, J.: System description: E.T.
0.1. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS (LNAI), vol.
9195, pp. 389–398. Springer, Heidelberg (2015)

[KU14] Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Fly-
speck. J. Autom. Reasoning 53(2), 173–213 (2014)

[KU15] Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning con-
nection prover. In: Davis, M., et al. (eds.) LPAR-20 2015. LNCS, vol. 9450,
pp. 88–96. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 7

[KV13] Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35.
Springer, Heidelberg (2013)

[Kü14] Daniel, A.K.: Machine learning for automated reasoning. Ph.D. thesis, Rad-
boud Universiteit Nijmegen, April 2014

[Ott08] Otten, J.: leanCoP2.0 and ileanCoP1.2: high performance lean theorem prov-
ing in classical and intuitionistic logic (system descriptions). In: Armando,
A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol.
5195, pp. 283–291. Springer, Heidelberg (2008)

[SB10] Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic
using the TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27
(2010)

[SBP13] Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II, Satallax on the
Sledgehammer test bench. J. Appl. Logic 11(1), 91–102 (2013)

[Sch00] Schulz, S.: Learning Search Control Knowledge for Equational Deduction.
DISKI, vol. 230. Akademische Verlagsgesellschaft Aka GmbH Berlin, Berlin
(2000)

[Sch13] Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A.,
Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer,
Heidelberg (2013)

[Urb15] Urban, J.: BliStr: the blind Strategy maker. In: Gottlob, G., Sutcliffe, G.,
Voronkov, A. (eds.) GCAI 32015, Global Conference on Artificial Intelli-
gence. EPiC Series in Computing, vol. 36, pp. 312–319. EasyChair (2015)

[UVŠ11] Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection
prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol.
6793, pp. 263–277. Springer, Heidelberg (2011)

[Ver96] Veroff, R.: Using hints to increase the effectiveness of an automated rea-
soning program: case studies. J. Autom. Reasoning 16(3), 223–239 (1996)

http://dx.doi.org/10.1007/978-3-662-48899-7_7

	Internal Guidance for Satallax
	1 Introduction
	2 Naive Bayesian Classifier with Monoids
	2.1 Motivation
	2.2 Classifiers with Positive Examples
	2.3 Generalised Classifiers

	3 Learning Scenarios
	4 Internal Guidance for Given-Clause Provers
	4.1 Recording Training Data
	4.2 Postprocessing Training Data
	4.3 Transforming Training Data to Classification Data
	4.4 Clause Ranking

	5 Tuning of Guidance Parameters
	5.1 Off-Line Tuning
	5.2 Particle Swarm Optimisation

	6 Implementation
	7 Evaluation
	8 Conclusion
	References

