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Abstract. The satisfiability problem for conjunctions of quantifier-free
literals in first-order theories T of interest–“T -solving” for short–has
been deeply investigated for more than three decades from both the-
oretical and practical perspectives, and it is currently a core issue of
state-of-the-art SMT solving. Given some theory T of interest, a key
theoretical problem is to establish the computational (in)tractability of
T -solving, or to identify intractable fragments of T .

In this paper we investigate this problem from a general perspective,
and we present a simple and general criterion for establishing the NP-
hardness of T -solving, which is based on the novel concept of “colorer”
for a theory T .

As a proof of concept, we show the effectiveness and simplicity of this
novel criterion by easily producing very simple proofs of the NP-hardness
for many theories of interest for SMT, or of some of their fragments.

1 Introduction

Since the pioneering works of the late 70’s and early 80’s by Nelson, Oppen,
Shostak and others [16,17,19–21,25,26], the satisfiability problem for conjunc-
tions of quantifier-free literals in first-order theories T of interest–hereafter “T -
solving” for short–has been deeply investigated from both theoretical and practi-
cal perspectives, and it is currently a core issue of state-of-the-art SMT solving.

Given some theory T of interest, or some fragment thereof, a key theoretical
problem is that of establishing the computational (in)tractability of T -solving,
or to identify (in)tractable fragments of T . Although in the pool of theories
of interest T -solving presents many levels of intractability, the main divide is
between polynomiality and NP-hardness. Despite a wide literature studying the
complexity of single theories or of families of theories (e.g. [5,7,8,10,11,13–15,
17,19–21]) and some more general work on complexity of T -solving [3,20,21],
we are not aware of any previous work explicitly addressing NP-hardness of
T -solving for a generic theory T .

In this paper we try to fill this gap, and we present a simple and general
criterion for establishing the NP-hardness of T -solving for theories with equality–
and in some cases also for theories without equality–which is based on the novel
concept of “colorer” for a theory T , inducing the notion of “colorable” theory.
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Our work started from the heuristic observation that the graph k-colorability
problem, which is NP-complete for k ≥ 3, fits very naturally as a candidate
problem to be polynomially encoded into T -solving for theories with equality.
(We believe, more naturally than the very frequently-used 3-SAT problem.) In
fact, we notice that the set of the arcs in a graph and the coloring of the ver-
texes can be encoded respectively into a conjunction of disequalities between
“vertex” variables and into a conjunction of equalities between “vertex” and
“color” variables, both of which are theory-independent. Therefore, in designing
a reduction from k-colorability to T -solving, the only facts one needs formalizing
by T -specific literals is a coherent definition of k distinct “colors” and the fact
that a generic vertex can be “colored” with and only with k colors.

Following this line of thought, in this paper we present a general framework
for producing reductions from graph k-colorability with k ≥ 3 to T -solving for
generic theories T with equality. This framework decouples the T -specific part of a
reduction from its T -independent part: the former is formalized into the definition
of a T -specific object, called “k-colorer”, the latter is formalized and proven once
forall in this paper. Thus, the task of proving the NP-hardness of a theory T via
reduction from k-colorability reduces to that of finding a k-colorer for T .

To this extent, we also provide some general criteria for producing k-colorers,
with hints and tips to achieve this simplified task. As a proof of concept, we
show the effectiveness and simplicity of this novel approach by easily producing
k-colorers with k ≥ 3 for many theories of interest for SMT, or for some of their
fragments.

We notice that this technique can be used not only to investigate the
intractability of major theories, but also to investigate that of fragments of
such theories, so that to pinpoint the subsets of constructs (i.e. functions and
predicates in the signature) which cause a theory to be intractable. We stress
the fact that the problem of identifying such intractable fragments is not only
of theoretical interest, but also of practical importance in the development of
SMT solvers, in order to drive the activation of ad-hoc techniques–including e.g.
weakened early pruning, layering, splitting-on-demand [1,4]–which partition the
search load among distinct specialized T -solvers and between the T -solvers and
the underlining SAT solver [2,23].

Note. An extended version of this paper with more details is publicly available [24].

Content. The rest of the paper is organized as follows: Sect. 2 provides the neces-
sary background knowledge and terminology for logic and graph coloring; Sect. 3
introduces our main definitions of k-colorer and k-colorability and presents our
main results; Sect. 4 explains how to produce k-colorers for given theories, pro-
viding a list of examples; Sect. 5 provides some discussion about k-colorability
vs. non-convexity; Sect. 6 extends the framework to theories without equality;
Sect. 7 discusses ongoing and future developments.
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2 Background and Terminology

Logic. We assume the reader is familiar with the standard syntax and semantics
of first-order logic. (We report a full description in [24].) We add some terminology.

Given a signature Σ, we call Σ-theory T a class of Σ-models. Given a theory
T , we call T -interpretation an extension of some Σ-model M in T which maps
free variables into elements of the domain of M. (The map is denoted by 〈.〉I .)
A Σ-formula ϕ–possibly with free variables–is T -satisfiable if I |= ϕ for some
T -interpretation I. (Hereafter we will use the symbol “|=T ” to denote the T -
satisfiability relation; we will also drop the prefix “Σ-” when the signature is
implicit by context.) We say that a set/conjunction of formulas Ψ T -entails
another formula ϕ, written Ψ |=T ϕ, if every T -interpretation T -satisfying Ψ
also T -satisfies ϕ. We say that ϕ is T -valid, written |=T ϕ, if ∅ |=T ϕ. We
call a cube any finite quantifier-free conjunction of literals. For short, we call
“T -solving” the problem of deciding the T -satisfiability of a cube.

Finally, a theory T is convex if for all cubes μ and all sets E of equalities
between variables, μ |=T

∨
e∈E e iff μ |=T e for some e ∈ E.

Remark 1. In SMT and other contexts it is often convenient to use formulas
with uninterpreted symbols (see e.g. [2]). Notice, however, that the presence of
uninterpreted function or predicate symbols of arity >0 may cause the complex-
ity of T -solving scale up (see e.g. the example in [21]). Thus, when not explicitly
specified otherwise, we implicitly assume that a theory T does not admit such
symbols. �

We are often interested in fragments of a theory obtained by restricting its
signature. Let Σ, Σ′ be two signatures s.t. Σ′ ⊆ Σ; we say that a Σ′-model M′

is a restriction to Σ′ of a Σ-model M iff M′ and M agree on all the symbols in
Σ′, and that a Σ′-theory T ′ is the signature-restriction fragment of a Σ-theory
T wrt. Σ′ iff T ′ is the set of the restrictions to Σ′ of the Σ-models in T .

Graph Coloring. We recall a few notions from [9].

Definition 1 (k-Colorability of a graph (see [9])). Let G def= 〈V, E〉 be an un-
directed graph, where V def= {V1, ..., Vn} is the set of vertexes and E def= {E1, ..., Em}
is the set of edges in the form 〈Vi, Vi′〉 for some i, i′. Let C def= {C1, ..., Ck} be a
set of distinct values, namely “colors”, for k>0. Then G is k-Colorable if and
only if there exists a total map color : V 	−→ C s.t. color(Vi) �= color(Vi′) for
every 〈Vi, Vi′〉 ∈ E. The problem of deciding if G is k-colorable is called the k-
colorability problem for G.

Lemma 1 (see [9]). The k-colorability problem for un-directed graphs is NP-
complete for k ≥ 3, it is in P for k<3.

Figure 1 (top) shows two small graph 3-colorability problems.
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G1 : G2 :

V1

V2

V3

V4C2

C1 C3

C3

V1

V2

V3

V4C2

C1 C3

??

Enc[G1⇒LA(Z)]
def
=

(c1 = 1) ∧ (c2 = 2) ∧ (c3 = 3) ∧ 4
i=1((vi ≥ 1) ∧ (vi ≤ 3))∧

¬(v1 = v2) ∧ ¬(v1 = v3) ∧ ¬(v1 = v4) ∧ ¬(v2 = v3) ∧ ¬(v2 = v4)

Enc[G2⇒LA(Z)]
def
= Enc[G1⇒LA(Z)] ∧ ¬(v3 = v4)

Fig. 1. Top Left: a small 3-colorable graph (G1), with C1 = blue, C2 = red, C3 = green.
Top Right: the same graph augmented with the vertex 〈V3, V4〉 (G2) is no more 3-
colorable. Bottom: example of encodings of the 3-colorability of G1 and G2 into LA(Z)
-solving. (Color figure online)

3 k-Colorers and k-Colorable Theories with Equality

Hereafter we focus w.l.o.g. on theories T of domain size ≥ 2, i.e., s.t. ¬(v1 = v2)
is T -consistent. In fact, if not so, then it is easy to see that T -solving is in P
(see [24]).

Definition 2 (k-Colorer, k-Colored Theory). Let T be some theory with
equality and k be some integer value s.t. k ≥ 2. Let vi be a variable, called
vertex variable, (implicitly) denoting the i-th vertex in an un-directed graph;
let c def= {c1, .., ck} be a set of variables, called color variables, denoting the set
of colors; let yi

def= {yi1, ..., yil} denote a possibly-empty set of variables, which is
indexed with the same index i of the vertex variable vi. Let AllDifferentk(c)

def=
∧k

j=1

∧k
j′=j+1 ¬(cj = cj′).

We call k-colorer for T , namely Colorerk(vi, c|yi), a finite quantifier-free
conjunction of T -literals (cube) over vi, c and yi which verify the following
properties:

Colorerk(vi, c|yi) |=T AllDifferentk(c), (1)

Colorerk(vi, c|yi) |=T
∨k

j=1
(vi = cj), (2)

there exist k T -interpretations {Ii,1, ..., Ii,k} s.t. (3)
for every j ∈ [1..k], 〈cj〉Ii,1 = 〈cj〉Ii,2 = ... = 〈cj〉Ii,k , and

for every j ∈ [1..k], Ii,j |=T Colorerk(vi, c|yi) ∧ (vi = cj).

We say that T is k-colorable if and only if it has a k-colorer.

yi is a (possibly-empty) set of auxiliary variables, one distinct set for each vertex
variable vi, which sometimes may be needed to express (1), (2) and (3) (see
Examples 7 and 9), or to make Colorerk(vi, c|yi) more readable by renaming
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internal terms (see Example 9). If yi = ∅, we may write “Colorerk(vi, c)” instead
of “Colorerk(vi, c|∅)”.1

{Ii,1, ..., Ii,k} denotes a set of T -interpretations each satisfying
Colorerk(vi, c|yi) s.t. all the T -interpretations in {Ii,1, ..., Ii,k} agree on the val-
ues assigned to the color variables in {c1, ..., ck} and s.t. each Ii,j assigns to
the vertex variable vi the same value assigned to the jth color variable cj . The
condition 〈cj〉Ii,1 = ... = 〈cj〉Ii,k of (3) expresses the fact that, when pass-
ing from the scenario Ii,j in which vi is assigned the color cj–expressed by the
equality (vi = cj) in (3)–to the scenario Ii,j′ in which vi is assigned the color
cj′–expressed by the equality (vi = cj′)– it is the value of the vertex variable vi
who must change, not those of the color variables c1, ..., ck.

Intuitively, Colorerk(vi, c|yi) expresses the following facts: (1) that c1, ..., ck
represent the names of distinct “color” values, (2) that each vertex represented
by the variable vi can be tagged (“colored”) only with one of such color names
cj , (3) that the values associated to the color names are not affected by the
choice of the color name cj tagged to vi–represented by the index j in Ii,j–and
that each tagging choice is admissible.

There may be many distinct k-colorers for a theory T , as shown in Example 1.

Example 1 (LA(Z)). We consider the theory of linear arithmetic over the inte-
gers (LA(Z)), assuming the standard model of integers, so that the symbols
+,−,≤,≥ and the interpreted constants 0, 1, ... are interpreted in the standard
way by all LA(Z)-interpretations. LA(Z) is 3-colorable, since we can define, e.g.,
k

def= 3, yi
def= ∅, and

Colorer3(vi, c1, c2, c3)
def= (c1 = 1) ∧ (c2 = 2) ∧ (c3 = 3) ∧ (v ≥ 1) ∧ (v ≤ 3). (4)

It is straightforward to see that Colorer3(vi, c1, c2, c3) verifies (1), (2) and (3),
with Ii,j

def= {c1 → 1, c2 → 2, c3 → 3, vi → j} for every j ∈ [1..3]. Notice that in
this case yi = ∅, i.e. Colorerk(vi, c|yi) requires no auxiliary variables. Notice also
that AllDifferentk(c) is implied by the usage of the interpreted constants 1, 2, 3.

An alternative 3-colorer which does not explicitly assign fixed values to the
cj ’s is:

Colorer3(vi, c1, c2, c3)
def=

(
AllDifferent3(c) ∧

∧3
j=1((cj ≥ 1) ∧ (cj ≤ 3)) ∧

(v ≥ 1) ∧ (v ≤ 3)

)

, (5)

which verifies (1), (2) and (3), e.g., with the same Ii,j ’s as above. Consider
instead:

Colorer3(vi, c1, c2, c3)
def=

(
AllDifferent3(c) ∧

∧3
j=1((cj ≥ 1) ∧ (cj ≤ 3)) ∧

(vi = 1)

)

. (6)

This is not a 3-colorer, because it does not verify (3): there is no pair of LA(Z)-
interpretations Ii,1 and Ii,2 s.t. Ii,1 |=LA(Z) Colorer3(vi, c1, c2, c3) ∧ (vi =
c1) and Ii,2 |=LA(Z) Colorer3(vi, c1, c2, c3) ∧ (vi = c2) which agree on the
values of c1, c2, c3. �
1 The symbol “|” is used to separate color and node variables from auxiliary ones.
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Remark 2. The choice of using variables c1, ..., ck to represent colors is due to the
fact that some theories do not provide k distinct interpreted constant symbols
in their signature (see Example 9). If this is not the case, then Colorerk(vi, c|yi)
can be built to force c1, ..., ck to assume fixed values expressed by interpreted
constant symbols, like 1, 2, 3 in (4), so that the condition 〈cj〉Ii,1 = ... = 〈cj〉Ii,k

of (3) is verified a priori.

The following properties of k-colorable theories follow straightforwardly.

Property 1. Let T be a k-colorable theory for some k ≥ 2. Then we have that:

(a) ∃c.AllDifferentk(c) is T -valid;
(b) T is non-convex.

Proof. Consider the definition of Colorerk(vi, c|yi) in Definition 2.

(a) By (3) Colorerk(vi, c|yi) is T -satisfiable; thus by (1) AllDifferentk(c) is T -
satisfiable, so that |=T ∃c.AllDifferentk(c);

(b) By (2), Colorerk(vi, c|yi) |=T
∨k

j=1(vi = cj). By (3), for every j1 ∈ [1..k]
there exists an interpretation Ii,j1 s.t. Ii,j1 |=T Colorerk(vi, c|yi)∧(vi = cj1).
Then, by (1), for every j2 ∈ [1..k] s.t. j2 �= j1 we have that Ii,j1 |=T
Colorerk(vi, c|yi) ∧ ¬(vi = cj2). Thus for every j ∈ [1..k] Colorerk(vi, c|yi) �|=
(vi = cj). Therefore T is non-convex. ��

Property 2. If T ′ is a k-colorable theory with equality for some k ≥ 2, and T ′ is
a signature-restriction fragment of another theory T , then T is k-colorable.

Proof. If Colorerk(vi, c|yi) is a k-colorer for T ′, then by definition of signature-
restriction fragment it is also a k-colorer for T . ��

Lemma 2. Let k be an integer value s.t. k ≥ 3. Let G and C be respectively
an un-directed graph with n vertexes V1, ..., Vn and a set of k distinct colors
C1, ..., Ck, like in Definition 1. Let T be a k-colorable theory with equality. We
consider the following conjunctions of T -literals:

Colorable(v1, ..., vn, c|y1, ...,yn) def=
∧

Vi∈V
Colorerk(vi, c|yi) (7)

Graph[G](v1, ..., vn) def=
∧

〈Vi1 ,Vi2 〉∈E
¬(vi1 = vi2) (8)

Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) def= Colorable(v1, ..., vn, c|y1, ...,yn) ∧ (9)
Graph[G](v1, ..., vn),

where v1, ..., vn, c1, ..., ck and y11, ..., y1l, ...yi1, ..., yil, ..., yn1, ..., ynl are free vari-
ables,2 and all the k-colorers Colorerk(vi, c|yi) in (7) are identical modulo the
renaming of the variables vi and yi, but not of the color variables c.

Then G is k-colorable iff Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) is T -satisfiable.

2 Notice that each cj is implicitly associated with the color Cj ∈ C for every j ∈ [1..k]
and each vi and yi is implicitly associated to the vertex Vi ∈ V for every i ∈ [1..n].
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Proof.

If: Suppose Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) is T -satisfiable, that is, there exist
an interpretation I in T s.t. I |=T Colorable(v1, ..., vn, c|y1, ...,yn) and I |=T
Graph[G](v1, ..., vn). Thus:
(i) By (7) and (1), 〈cj1〉I �= 〈cj2〉I for every j1, j2 ∈ [1, ..., k] s.t. j1 �= j2.
(ii) By (7), (2) and (1), for every i ∈ [1...n] there exists some j ∈ [1...k] s.t.

〈vi〉I = 〈cj〉I and s.t. 〈vi〉I �= 〈cj′〉I for every j′ �= j.
(iii) By (8), 〈vi1〉I �= 〈vi2〉I for every 〈Vi1 , Vi2〉 ∈ E .
Then by (i) and (ii) we can build a map color : V 	−→ C s.t., for every Vi ∈ V,
color(Vi) = Cj iff 〈vi〉I = 〈cj〉I . By (iii) we have that color(Vi1) �= color(Vi2)
for every 〈Vi1 , Vi2〉 ∈ E . Thus G is k-colorable.

Only if: Suppose G is k-colorable, that is, there exist a map color : V 	−→ C s.t.
color(Vi1) �= color(Vi2) for every 〈Vi1 , Vi2〉 ∈ E .
Consider i = 1, and let {I1,1, ..., I1,k} be the set of T -interpretations for
Colorerk(v1, c|y1) as in (3), so that:
(a) for every j ∈ [1..k], I1,j |=T Colorerk(v1, c|y1) ∧ (v1 = cj),
(b) for every j ∈ [1..k], 〈cj〉I1,1 = ... = 〈cj〉I1,k .
For every i ∈ [1..n] we consider Colorerk(vi, c|yi) and we build a replica
{Ii,1, ..., Ii,k} of the set of T -interpretations {I1,1, ..., I1,k} in such a way
that:
(i) 〈vi〉Ii,j

def= 〈v1〉I1,j = 〈cj〉I1,j (each Ii,j maps its vertex variable vi into the
same color as I1,j maps its vertex variable v1);

(ii) 〈cj〉Ii,1
def= 〈cj〉I1,1 , ..., 〈cj〉Ii,k

def= 〈cj〉I1,k , so that, by (a), 〈cj〉Ii,1 = ... =
〈cj〉Ii,k = 〈cj〉I1,1 = ... = 〈cj〉I1,k (all Ii,j agree on the values of the color
variables, for every i ∈ [1..n] and j ∈ [1..k]);

(iii) 〈yi1〉Ii,j
def= 〈y11〉I1,j , ..., 〈yil〉Ii,j

def= 〈y1l〉I1,j (each Ii,j maps its auxiliary
variables yi into the same domain values as I1,j maps y1).

Consequently, by (3), for every vi ∈ {v1, ..., vn}, {Ii,1, ..., Ii,k} are s.t.
(a) for every j ∈ [1..k], Ii,j |=T Colorerk(vi, c|yi) ∧ (vi = cj),
(b) for every j ∈ [1..k], 〈cj〉Ii,1 = ... = 〈cj〉Ii,k .
For every i ∈ [1...n], let ji ∈ [1..k] be the index s.t. Cji = color(Vi), and we
pick the T -interpretation Ii,ji . Thus, since all the Ii,jis agree on the common
variables c, we can merge them and create a global T -interpretation I as
follows:
(i) 〈vi〉I def= 〈vi〉Ii,ji = 〈cji〉Ii,ji = 〈cji〉I , for every i ∈ [1..n];
(ii) 〈cj〉I def= 〈cj〉Ii,ji , for every j ∈ [1..k];
(iii) 〈yir〉I def= 〈yir〉Ii,ji , for every i ∈ [1..n] and for every r ∈ [1..l].
By construction, for every i ∈ 1..n, I agrees with Ii,ji on c, vi, and yi, so
that, by point (a), I |=T (Colorerk(vi, c|yi) ∧ (vi = cji)).
Thus I |=T Colorable(v1, ..., vn, c|y1, ...,yn).
Since the values 〈c1〉I , ..., 〈ck〉I are all distinct, we can build a bijection linking
each domain value 〈cj〉I to the color Cj , for every j ∈ [1..k]. Hence 〈cj〉I =
〈cj′〉I iff Cj = Cj′ . For every 〈Vi, Vi′〉 ∈ E , color(Vi) �= color(Vi′), that is,
Cji �= Cji′ . Therefore 〈cji〉I �= 〈cji′ 〉I , and 〈vi〉I = 〈cji〉I �= 〈cji′ 〉I = 〈vi′〉I .
Consequently I |=T Graph[G](v1, ..., vn).
Thus Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) is T -satisfiable. ��



Colors Make Theories Hard 159

Example 2. Figure 1 shows a simple example of encoding a graph 3-colorability
problem into LA(Z)-solving, using the k-colorer (4) of Example 1. (Notice that
the literals which do not contain vi and yi can be moved out of the conjunction∧

Vi∈V ... in (7).) The first formula is LA(Z)-satisfied, e.g., by an interpretation
I s.t. 〈cj〉I def= j for every j ∈ [1..3], 〈v1〉I def= 1, 〈v2〉I def= 2, 〈v3〉I def= 3 and
〈v4〉I def= 3, which mimics the coloring in Fig. 1 (left). The second formula is
LA(Z)-unsatisfiable, as expected. �

Lemma 3. Let k, n, G, C, T and Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) be as in
Lemma 2. Then ||Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn)|| is polynomial in ||G|| def= ||V||+
||E||.3

Proof. By Definition 2 we have that ||Colorerk(vi, c|yi)|| is constant wrt. ||V|| or
||E||. From (7), (8) and (9), ||Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn)|| is O(||V||+ ||E||). ��

Combining Lemmas 1, 2 and 3 we have directly the following main result.

Theorem 1. If a theory with equality T is k-colorable for some k ≥ 3, then
the problem of deciding the T -satisfiability of a quantifier-free conjunction of
T -literals is NP-hard.

Notice that the key source of hardness is condition (2) in Definition 2: intu-
itively, a k-colorable theory is expressive enough to represent with a quantifier-
free conjunction of T -literals–without disjunctions!–the fact that one variable
must assume a value among a choice of k ≥ 3 possible candidates–in addition to
the fact that a list of pairs of variables cannot pairwise assume the same value.
This source of non-deterministic choices has a high computational cost, as stated
in Theorem 1.

4 Proving k-Colorabilty

Theorem 1 suggests a general technique for proving the NP-hardness of a theory
T : pick some k ≥ 3 and then try to build a k-colorer Colorerk(vi, c|yi). Also,
when T is known to be NP-hard, one may want to identify smaller –and possibly
minimal– signature-restriction fragments T ′ which are k-colorable for some k, by
identifying increasingly-smaller subsets of the signature of T which are needed
to define a k-colorer.

We introduce some sufficient criteria for a theory to be k-colorable with some
k ≥ 3. As a proof of concept, we use these criteria to prove the k-colorability
with some k ≥ 3, and hence the NP-hardness, of some theories T of practical
interest, and of some of their signature-restriction fragments.

We remark that the ultimate goal here is not to provide fully-detailed proofs
of NP-hardness–all the main theories presented here are already well-known to
3 Notice that k is fixed a priori and as such it is a constant value for the input graph
k-colorability problem: e.g., depending on T , we are speaking of reducing graph
3-colorability–or 4-colorability, or even 264-colorability–to T -solving.
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be NP-hard, although to the best of our knowledge the complexity of not all
of their fragments has been investigated explicitly–rather to present proof of
concept of the convenience and effectiveness of our proposed colorability-based
technique, using various theories/fragments as examples. To this extent, for the
sake of simplicity and space needs, and when this does not affect comprehension,
sometimes we skip some formal details of the syntax and semantics of the theories
under analysis, referring the reader to the proper literature. Rather, we dedicate
a few lines to give some hints and tips on how to apply our colorability-based
technique in potentially-typical scenarios.

4.1 Exploiting Interpreted Constants, Closed Terms and
Provably-Distinct Terms

Proposition 1. Let T be a theory which admits at least k ≥ 3 terms t1(xi), ...,
tk(xi), where xi are the set of variables which are free in tj (if any), let yi being
a possibly-empty set of auxiliary variables, and let

Colorerk(vi, c|xi,yi)
def=

∧k

j=1
(cj = tj(xi)) ∧ Ψ(vi|xi,yi) (10)

be a quantifier-free conjunction of literals s.t.

|=T ∀xi. AllDifferentk({t1(xi), ..., tk(xi)}) (11)

Ψ(vi|xi,yi) |=T
∨k

j=1
(vi = tj(xi)) (12)

there exist k T -interpretations {Ii,1, ..., Ii,k} s.t. (13)
for every j ∈ [1..k], 〈cj〉Ii,1 = 〈cj〉Ii,2 = ... = 〈cj〉Ii,k , and

for every j ∈ [1..k], Ii,j |=T Colorerk(vi, c|xi,yi) ∧ (vi = tj(xi)).

Importantly, if t1, .., tk are closed terms, then (13) reduces to he following:

there exist k T -interpretations {Ii,1, ..., Ii,k} s.t. (14)
for every j ∈ [1..k], Ii,j |=T Colorerk(vi, c|yi) ∧ (vi = tj).

Then Colorerk(vi, c|xi,yi) is a k-colorer for T .

Proof. By (11),
∧k

j=1(cj = tj(xi)) |=T AllDifferentk(c), s.t. (1) holds. By (10) and
(12), Colorerk(vi, c|xi,yi) verifies (2). By (10) and (13) we have that (3) holds. ��

Theories of Arithmetic. We use Proposition 1–where t1, ..., tk are numerical
constants–to prove the k-colorability of (various signature-restriction fragments
of) the theories of arithmetic.

Example 3 (A{≥,=}(Z), LA(Z), NLA(Z)). Let A{≥,=}(Z) be the basic theory
of integers under successor [20,21], that is, whose atoms are in the form (s1 �
s2), where � ∈ {≥,=} and s1, s2 are variables or positive numerical constants.
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Then A{≥,=}(Z) is 3-colorable, because we can define a 3-colorer like that of (4)
in Example 1. (Notice that this is an instance of Proposition 1.) A{≥,=}(Z) is a
signature-restriction fragment of LA(Z) and NLA(Z) (see e.g. [24]), which are
then 3-colorable by Proposition 2. Therefore, T -solving for all these theories is
NP-hard by Theorem1.4 �

Notice that conjunctions of only positive equalities and inequalities in the form
(s1�s2), without negated literals, are instead well-known to be solvable in polyno-
mial time (see e.g. [2,18]). Notice also that, on the rational domain, the correspond-
ing theories A{≥,=}(Q) and LA(Q) are convex and hence they are not colorable by
Property 1. In fact, T -solving for such theories is notoriously in P [10].

Example 4 (NLA(R)\{≥,>},NLA(R)). Weconsider NLA(R)\{≥,>}, the signature-
restriction fragment of the non-linear arithmetic over the reals (NLA(R)) with-
out inequality symbols {≥,≤}. As an instance of Proposition 1, we show that
NLA(R)\{≥,>} is 3-colorable, because we can define, e.g., k

def= 3, y def= ∅, and

Colorer3(vi, c1, c2, c3)
def=

(
(c1 = −1) ∧ (c2 = 0) ∧ (c3 = 1)∧
(vi · (vi − 1) · (vi + 1) = 0)

)

.

By Proposition 1, it is straightforward to see that Colorer3(vi, c1, c2, c3) verifies
(1), (2) and (3), with 〈c1〉Ii,j

def= −1, 〈c2〉Ii,j
def= 0, 〈c3〉Ii,j

def= 1, and 〈vi〉Ii,j
def=

〈cj〉Ii,j s.t. j ∈ [1..3]. Then by Proposition 2 the full NLA(R) is 3-colorable, so
that T -solving for both theories is NP-hard by Theorem1. �

4.2 Exploiting Finite Domains of Fixed Size

Proposition 2. Let T be some theory with finite domain of fixed size k ≥ 3.
Then Colorerk(vi, c)

def= AllDifferentk(c) is a k-colorer for T .

Proof. Let c def= {c1, ..., ck}. Since the domain of T has fixed size k ≥ 3, we have:

AllDifferentk(c) �|=T ⊥ (15)
AllDifferentk+1(c ∪ {vi}) |=T ⊥. (16)

AllDifferentk(c) entails itself, so that (1) holds. AllDifferentk(c)∧
∧k

j=1 ¬(vi = cj)
is the same as AllDifferentk+1(c∪ {vi}) which is T -unsatisfiable by (16), so that
AllDifferentk(c) |=T

∨k
j=1(vi = cj). Hence (2) holds. By (15) there exists some

T -interpretation I s.t. I |=T AllDifferentk(c). For every j ∈ [1..k] we build an
extension Ii,j of I with the same domain s.t. 〈c1〉Ii,j

def= 〈c1〉I , ..., 〈ck〉Ii,j
def= 〈ck〉I ,

and 〈vi〉Ii,j
def= 〈cj〉I . Hence (3) holds. ��

4 Notice that NLA(Z)-solving is undecidable.
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Theories of Fixed-Width Bit-Vectors and Floating-Point Arithmetic.
We prove the k-colorability of (the signature-restriction fragments of) the the-
ories of Fixed-width Bit-vectors and Floating-point Arithmetic by instantiating
Proposition 2.

Example 5 (BVw, w>1). Let BV{=}
w be the simplest possible signature-

restriction fragment of the fixed-width bit-vectors theory with equality = and
width w>1, with no interpreted constant, function or predicate symbol in its
signature. Then by Proposition 2, BV{=}

w is k-colorable, where k = 2w. Hence,
by Property 2 all theories BV∗

w obtained by augmenting the signature of BV{=}
w

with various combinations of interpreted constants (e.g. bvw 0...00, bvw 0...01,...),
functions (e.g. bvw and, bvw or,...) and predicates (e.g. bvw ≥,...)–are k-colorable
with k = 2w. Hence, when w>1, by Theorem 1, T -solving is NP-hard for all such
theories. �

[7] shows that the T -satisfiability of quantifier-free conjunctions of atoms
for the fragment of BV involving only concatenation and partition of words is
in P. Notice however that neither Example 5 contradicts the results in [7], nor
Example 5 plus [7] build a proof of P = NP , because the polynomial procedure
in [7] does not admit negative equalities ¬(vi = v′

i) in the conjunction.

Example 6 (FPAe,s). Let FPAe,s be the theory of floating-point arithmetic
s.t. e ≥ 1 and s ≥ 1 are the number of available bits for the exponent and
the significant respectively [22]. (E.g., FPA11,53 represents the binary64 for-
mat of IEEE 754-2008 [22].) As with Example 5, let FPA=

e,s be the simplest
possible signature-restriction fragment of FPA=

e,s with equality =,5 with no
interpreted constant, function and predicate symbol in its signature. Then by
Proposition 2, FPA=

e,s is k-colorable, where k = 2e+s. Hence, by Property 2, all
theories FPA∗

e,s obtained by augmenting the signature of FPA=
e,s with various

combinations of interpreted constants, functions or predicates are k-colorable
with k ≥ 4, so that T -solving is NP-hard. �

4.3 Dealing with Collection Datatypes

A class of theories of big interest in SMT-based formal verification are these
describing collection datatypes (see e.g. [6,12])–e.g., lists, arrays, sets, etc. In
general these are “families” of theories, each being a combination of a “basic”
theory (e.g., the basic theory of lists) with one or more theories describing the
elements or the indexes of the datatype. In what follows we consider the basic
theories, where elements are represented by generic variables representing values
in some infinite domain.

One potential problem if finding k-colorers for most of these “basic” theories
is that neither we have interpreted constants in the domain of the elements, so
that we cannot apply Proposition 1 as we did with arithmetical theories, nor
5 Here “=” is the equality symbol and it is not the FPAe,s-specific symbol “==”, see

[22].
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we have any information on the size of the domain of the elements, so that we
cannot apply Proposition 2.

We analyze different potential scenarios. One first scenario is where we have
at least one “structural” interpreted constant–e.g., that representing the empty
collection–plus some function symbols, which we can use to build k ≥ 3 closed
terms t1, ..., tk and then use the schema of Proposition 1 to build a k-colorer.

Theories of Lists. The above scenario is illustrated in the next example.

Example 7 (L+). Let L be the simplest theory of lists of generic elements, with
the signature Σ

def= {nil, car(·), cdr(·), cons(·, ·)} and described by the axioms:

∀xy.(car(cons(x, y) = x)), ∀xy.(cdr(cons(x, y) = y)), (17)
∀xy.(¬(cons(x, y) = nil)), ∀x.(¬(x = nil) → (cons(car(x), cdr(x)) = x)),(18)

and let L+ be L enriched by the axioms

(car(nil) = nil), (cdr(nil) = nil). (19)

L+-solving is NP-complete whilst L-solving is in P [17]. A more general theory
of lists, which has L+ as a signature-restriction fragment, is described in [6,12].
Following Proposition 1, we prove that L+ is 4-colorable, by setting k

def= 4,
y def= {x1, x2, y1, y2},

Colorer4(vi, c11, c21, c12, c22|x1, x2, y1, y2)
def= (20)

⎛

⎜
⎜
⎝

(c11 = cons(nil, nil)) ∧ (c21 = cons(cons(nil, nil), nil))∧
(c12 = cons(nil, cons(nil, nil))) ∧ (c22 = cons(cons(nil, nil), cons(nil, nil)))∧
∧2

i=1 ((car(xi) = car(yi)) ∧ (cdr(xi) = cdr(yi)) ∧ ¬(xi = yi)) ∧
(vi = cons(x1, x2)).

⎞

⎟
⎟
⎠

To prove (11) we notice that we can deduce ¬(cons(nil, nil) = nil) from (18),
so that, by construction, all the ci’s are pairwise different. Let Ψ(viyi) be the
formula given by the last two rows in (20), so that (20) matches the definition
in Proposition 1. Then we derive (12) from the following observation [17], with
i ∈ {1, 2}:

((car(xi) = car(yi)) ∧ (cdr(xi) = cdr(yi)) ∧ ¬(xi = yi)) (21)
|=L+ (xi = nil) ∨ (xi = cons(nil, nil)),

which derives from the fact that (18) and (19) imply that either (xi = nil) or
(yi = nil) must hold. Therefore vi

def= cons(x1, x2) can consistently assume one
and only one of the values c11, ..., c22 in the first two rows in (20).

To prove (14), since the cis are closed, we deterministically define each Ii,j ’s
using the standard interpretation of nil, cons, car, and cdr: 〈c11〉Ii,j

def= (NIL.NIL),
〈c21〉Ii,j

def= ((NIL.NIL).NIL), ... 〈vi〉Ii,j
def= 〈cj〉Ii,j , checking that, for every j ∈ [1..k],

Ii,j |=L+ Colorer4(vi, c11, c21, c12, c22|x1, x2, y1, y2) ∧ (vi = cj).
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Thus L+-solving is NP-hard by Theorem 1, so that also the more general theory
described in [6,12] is NP-hard. �

Remark 3. The k-colorer (20) was produced along the following heuristic
process.

1. Look for an entailment in the form: μ1(x1,y1) |=T (x1 = t1) ∨ (x1 = t2),
s.t. t1, t2 are closed terms representing distinct values in the domain (21).

2. Define (vi = cons(x1, x2)) and (cr1r2 = cons(tr1 , tr2)), s.t. r1, r2 ∈ {1, 2}
3. Define the k-colorer as

∧

i∈{1,2}
μi(xi,yi) ∧

∧

r1,r2∈{1,2}
(cr1r2 = cons(tr1 , tr2)) ∧ (vi = cons(x1, x2)).

4. Check (11), (12), (14).

Notice that the only non-obvious step is 1, the other come out nearly determin-
istically.

Theories of Finite Sets. Another scenario is where we cannot use inter-
preted constants to build closed terms, but we can build k non-closed terms
t1(xi), ..., tk(xi) which match the requirements of Proposition 1 anyway, which
allows to build a k-colorer. This scenario is illustrated in the next example.

Example 8. Let S be the theory of finite sets as defined, e.g., in [6,12].6 Let
S{⊆,{}} be the signature-restriction fragment of the S which considers only
the subset and the enumerator operators {⊆, {}}. We show that S{⊆,{}} is
4-colorable by Proposition 1.

In fact, consider the following set of literals:

Colorer4(vi, c|y1, y2) def=

⎛

⎝
(c1 = {y1, y2}) ∧(c2 = {y1}) ∧
(c3 = {y2}) ∧(c4 = {}) ∧
¬(y1 = y2) ∧(vi ⊆ c1)

⎞

⎠ . (22)

(22) is a 4-colorer. It is easy to see from the semantics of {⊆, {}} that (11) and
(12) hold. Let Y1, Y2 s.t. Y1 �= Y2 be two domain elements so that we can set
〈yr〉Ii,j

def= Yr for every r ∈ [1..2] and j ∈ [1..k]. Then, for every j ∈ [1..k], we
define Ii,j s.t. 〈c1〉Ii,j

def= {Y1, Y2}, 〈c2〉Ii,j
def= {Y1}, 〈c3〉Ii,j

def= {Y2}, 〈c4〉Ii,j
def= {},

〈vi〉Ii,j
def= 〈cj〉Ii,j . Then Ii,1, ..., Ii,k verify (13). �

In this case the k-colorer (22) was really immediate to build, upon the obser-
vation that the operator ⊆ can produce 4 distinct subsets of a 2-element set.

6 S includes the operators {{...}), (· ⊆ ·), (· ∪ ·), (· ∩ ·), (· \ ·), (·P·), | · |, (· ∈ ·)}, follow-
ing their standard semantics. We refer the reader to [6,12] for a precise description
of the theory.
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Theories of Arrays. In the following case we cannot apply Proposition 1, so
that we apply Definition 2 directly.

Example 9. (AR). Let AR be the theory of arrays of generic elements and
indexes, with the signature Σ

def= {·[·], ·〈· ← ·〉} 7 and described by the axioms:

∀Aijv. ((i = j) → (A〈i ← v〉[j] = v), (23)
∀Aijv. (¬(i = j) → (A〈i ← v〉[j] = A[j]), (24)
∀AB. ((∀i. A[i] = B[i]) → (A = B)). (25)

AR is 3-colorable, because we can define, e.g., k def= 3, y def
= {A1, ..., A4, i1, ..., i3} and

Colorer3(vi, c1, c2, c3|A1, ..., A4, i1, ..., i3)
def=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

AllDifferent3(c) ∧
¬(i2 = i3) ∧
(A2 = A1〈i1 ← c1〉) ∧
(A3 = A2〈i2 ← c2〉) ∧
(A4 = A3〈i3 ← c3〉) ∧
(vi = A4[i1])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(26)

so that obviously (1) holds, and also (2) holds, because Colorer3(vi, c|y) entails
(vi = c1) when 〈i1〉I �= 〈i3〉I and 〈i1〉I �= 〈i2〉I , entails (vi = c2) when
〈i1〉I = 〈i2〉I , and entails (vi = c3) when 〈i1〉I = 〈i3〉I . Also (3) holds: given
three distinct domain values C1, C2, C3, the T -interpretations Ii,j can be built
straightforwardly as follows:

c1 c2 c3 vi i1 i2 i3 A4 ...
Ii,1 C1 C2 C3 C1 1 2 3 [C1, C2, C3, ...]
Ii,2 C1 C2 C3 C2 2 2 3 [∗∗, C2, C3, ...]
Ii,3 C1 C2 C3 C3 3 2 3 [∗∗, C2, C3, ...]

�

Notice that in Example 9, Colorerk(vi, c|yi) uses the auxiliary variables A1, ..., A4

representing arrays and i1, ..., i3 representing indexes. The A2, A3, A4, however,
are not strictly necessary and can be eliminated by inlining. Notice also that
Colorerk(vi, c|yi) includes explicitly AllDifferent3(c) because no interpreted con-
stants come into play.

The k-colorer (26) was produced straightforwardly by noticing that the com-
bination of (23) and (24) produces a case-split in the form “if i = j then
(A〈i ← v〉[j] = v) else (A〈i ← v〉[j] = A[j])”, which could be reiterated so that to
produce a 3-branch decision tree, producing 3 different expressions for the term
A[i1]. This could be rewritten into k-colorer by means of some term renaming.

7 We use the following notation: “A[i]” (aka “read(A, i)”) is the value returned by
reading the i-th element of the array A, whilst “A〈i ← vi〉” (aka “write(A, i, v)”) is
the array resulting from assigning the value v to the i-th element of array A.
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5 k-Colorability vs. Non-Convexity

Although related by Property 1, k-colorability and non-convexity are distinct
properties. First, we recall that the non-convexity of a theory T does not imply
the NP-hardness of T -solving. (In [24] we report a simple example.) Second,
by Property 1, having domain size ≥ 3 is a strict requirement for proving NP-
hardness via colorability, whereas there exist non-convex theories with domain
size 2 whose T -solving is NP-Hard. (E.g., the theory BV1 of bit vectors with
fixed width 1, see [24].)

In what follows we introduce a theory with domain size ≥ 3 whose T -solving
is NP-hard, which is non-convex and which is not k-colorable for any k ≥ 3. This
shows that not every theory with domain size ≥ 3 can be proven NP-hard by k-
colorability. The same example shows also that k-colorability is strictly stronger
than non-convexity, even when the theory has domain size ≥ 3.

Example 10. Consider the theory T with equality whose signature consists in
the interpreted constant symbols {0, 1, 2, ...} with the standard meaning plus
the function symbols {and(·, ·), not(·)} which are interpreted as follows:

〈and(x, y)〉I def=
{

1 if 〈x〉I>0 and 〈y〉I>0
0 otherwise , 〈not(x)〉I def=

{
0 if 〈x〉I>0
1 otherwise. (27)

(Importantly, the ≥, >,≤, < predicates are not part of the signature.) T -
satisfiability is NP-complete since you can polynomially reduce SAT to it and
you can always have a polynomial-size witness for every T -satisfied formula.

Also, as with BV1, T is non-convex, because we have:

(x0 = 0) ∧ (and(x1, x2) = 0) |=T (((x0 = x1) ∨ (x0 = x2)) (28)
(x0 = 0) ∧ (and(x1, x2) = 0) �|=T (x0 = xi) i ∈ {1, 2}. (29)

We show that T is not k-colorable for any k ≥ 3. We notice that every literal
l including vi must be in one of the following forms (modulo the symmetry of
= and and): (vi = t), (vi = not(t)), (vi = and(t1, t2)), (t = t∗(vi, ...)), and their
negations, where t, t1, t2 are generic terms in T and t∗(vi, ...) is any term in T
containing vi. Looking at the above literal forms, we notice that the presence
of the subterms not(vi) and and(vi, t2) in a term entails either 〈vi〉I>〈0〉I , or
〈vi〉I = 〈0〉I or 〈vi〉I ≥ 〈0〉I , so that one single literal l can express only the
following facts about one variable vi:8

(i) for every T -interpretation I s.t. I |=T l, 〈vi〉I = 〈n〉I for some n ∈
{0, 1, 2, 3, ...};

(ii) for every T -interpretation I s.t. I |=T l, 〈vi〉I �= 〈n〉I for some n ∈
{0, 1, 2, 3, ...};

8 Whereas (i) and (ii) can be also written as l |=T (vi = n) and l |=T (vi �= n), (iii)
and (iv) cannot be rewritten as l |=T (vi ≥ 0) and l |=T (vi>0) because ≥ and >
are not part of the signature.
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(iii) for every T -interpretation I s.t. I |=T l, 〈vi〉I ≥ 〈0〉I (equivalent to true);
(iv) for every T -interpretation I s.t. I |=T l, 〈vi〉I>〈0〉I (equivalent to 〈vi〉I �= 0);
(v) for every T -interpretation I s.t. I |=T l, 〈vi〉I = 〈vi〉I (equivalent to true);
(vi) for every T -interpretation I s.t. I |=T l, 〈vi〉I �= 〈vi〉I (equivalent to false).

Thus, for k ≥ 3, no finite conjunction of T -literals Colorerk(vi, c|yi) comply-
ing with (1) and (3) can also comply with (2). �

6 Colorable Theories without Equality

In previous sections we have restricted our interest to theories with equality. In
this section we extend the technique by dropping this restriction. The following
definition extends Definition 2 to the case of general theories.

Definition 3 (k-Colorer, k-Colored Theory). Let T be some theory and k
be some integer value s.t. k ≥ 2. Let vi be a variable, called vertex variable,
(implicitly) denoting the i-th vertex in an un-directed graph; let c def= {c1, .., ck}
be a set of variables, called color variables, denoting the set of colors; let
yi

def= {yi1, ..., yil} denote a possibly-empty set of variables, which is indexed with
the same index i of the vertex variable vi. We call k-colorer for T , namely
Colorerk(vi, c|yi), a finite quantifier-free conjunction of T -literals (cube) over vi,
c and yi which verify the following properties:

– For every T -intepretation I, if I |=T Colorerk(vi, c|yi), then:

for every j, j′ ∈ [1..k] s.t. j �= j′, 〈cj〉I �= 〈cj′〉I , (30)
for some j ∈ [1..k], 〈v〉I = 〈cj〉I , (31)

– There exist k T -interpretations {Ii,1, ..., Ii,k} s.t.

for every j ∈ [1..k], 〈cj〉Ii,1 = 〈cj〉Ii,2 = ... = 〈cj〉Ii,k , and (32)

for every j ∈ [1..k],
{

〈v〉Ii,j = 〈cj〉Ii,j and
Ii,j |=T Colorerk(vi, c|yi).

We say that T is k-colorable iff it has a k-colorer.

Notice that ifT is a theorywith equality, thenDefinitions 2 and3are equivalent.

Definition 4. We say that a theory T emulates equality [resp. disequality] if
and only if there exists a finite quantifier-free conjunction of T -literals Eq(x1, x2)
[resp. Neq(x1, x2)] such that, for every T -interpretation I, I |=T Eq(x1, x2) [resp.
I |=T Neq(x1, x2)] if and only if 〈x1〉I = 〈x2〉I [resp. 〈x1〉I �= 〈x2〉I ].

Obviously every theory T with equality emulates both equality and disequal-
ity, with Eq(x1, x2)

def= (x1 = x2) and Neq(x1, x2)
def= ¬(x1 = x2).

Theorem 2. If a theory T is k-colorable for some k ≥ 3 and T emulates equal-
ity and inequality, then the problem of deciding the T -satisfiability of a finite
conjunction of quantifier-free T -literals is T -satisfiable is NP-hard.
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Proof. Identical to that of Theorem 1, referring to Definition 3 instead of
Definition 2 and substituting every positive equality in the form (x1 = x2) with
Eq(x1, x2) and every negative equality in the form ¬(x1 = x2) with Neq(x1, x2). ��

Example 11. Let NLA(R)\{=} be the signature-restriction fragment of NLA(R)
without equality. We notice that NLA(R)\{=} emulates both equality and
inequality:

Eq(x1, x2)
def= (x1 ≥ x2) ∧ (x2 ≥ x1) (33)

Neq(x1, x2)
def= ((x1 − x2) ∗ (x1 − x2)>0). (34)

T is 3-colorable because, like in Example 4, we can define, e.g., k
def= 3, y def= ∅, and

Colorer3(vi, c1, c2, c3)
def
= Eq(c1,−1)∧Eq(c2, 0)∧Eq(c3, 1)∧Eq(v1 ∗ (v2 −1)∗ (v1 +1), 0).

Like inExample 4, it is straighforward to see thatColorer3(v, c1, c2, c3) verifies (30),
(31) and (32), with 〈c1〉Ii,j

def= −1, 〈c2〉Ii,j
def= 0, 〈c3〉Ii,j

def= 1, and 〈vi〉Ii,j
def= 〈cj〉Ii,j

for every j ∈ [1..3]. Thus NLA(R)\{=}-solving is NP-hard by Theorem 2. �

7 Open Issues, Ongoing and Future Work

We believe that our framework can be generalized along the following directions,
which we are currently working on: (i) adopt some more general notion of frag-
ment, so that to extend the range of applicability of Property 2; (ii) extend the
applicability of our technique for the case of theories without equality by pro-
viding a more general definition of Eq(., .) and Neq(., .) enriched with auxiliary
variables –or uninterpreted function/predicate symbols– adapting Theorem2
accordingly; (iii) extend Colorerk(vi, c|yi) so that to use also uninterpreted func-
tion/predicate symbols as auxiliary symbols yi; (iv) to overcome the restriction
of domain size ≥ 3, extend Colorerk(vi, c|yi) to use pairs of variables vi c1, .., ck
instead of single variables to encode vertexes and colors, including ad hoc Neq(., .)
functions.

The above work should be run in parallel and interleaved with an extensive
exploration of the pool of available NP-hard theories, proving the k-colorability
of as many theories/fragments as possible. To this extent, we would like to
investigate the boundary of k-colorability, looking for theories of domain size
≥ 3 which are not k-colorable.
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