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Preface

This volume contains the proceedings of the 8th International Joint Conference on
Automated Reasoning, IJICAR 2016, held in Coimbra (Portugal) during June 27 — July 2,
2016. IICAR is the premier international conference covering all topics in automated
reasoning, including foundations, implementations, and applications. The 2016 edition
of the conference was a merger of three leading events in automated reasoning: Inter-
national Conference on Automated Deduction (CADE), International Symposium on
Frontiers of Combining Systems (FroCoS) and International Conference on Analytic
Tableaux and Related Methods (TABLEAUX). Previous IJCAR conferences were held
at Siena (Italy) in 2001, Cork (Ireland) in 2004, Seattle (USA) in 2006, Sydney (Aus-
tralia) in 2008, Edinburgh (UK) in 2010, Manchester (UK) in 2012, and Vienna
(Austria) in 2014.

The IJCAR 2016 program consisted of presentations of original research papers and
invited talks. Original papers were divided into two categories: regular papers and
system desriptions. There were 79 submissions, consisting of 65 regular papers and 14
systems descriptions. Each paper was carefully reviewed by at least three reviewers. All
reviewers were either members of the Program Committee (PC) or experts in the area
chosen by the PC members. After reviewing and discussing the submissions, the PC
accepted 26 regular papers and nine system descriptions.

The program also included four invited talks of the highest scientific value given by
Arnon Avron (Tel Aviv University), Gilles Barthe IMDEA Madrid), Sumit Gulwani,
(MSR, Redmond) and André Platzer (CMU, Pittsburgh). The abstracts of the invited
talks are included in the present proceedings.

The peer-reviewed research papers are organized in the proceedings in the following
sections: Satisfiability of Boolean Formulas, Satisfiability Modulo Theory, Rewriting,
Arithmetic Reasoning and Mechanized Mathematics, First-Order Logic and
Proof Theory, First-Order Theorem Proving, Higher-Order Theorem Proving, Modal
and Temporal Logics, Non-Classical Logics, and Verification. The wide range of
sections reflect the variety of topics covered in IJCAR 2016 and witness the maturity
of the area of automated reasoning.

During the conference, the International Conference on Automated Deduction
(CADE) Herbrand Award for Distinguished Contributions to Automated Reasoning
was presented to Zohar Manna and Richard Waldinger. The Best Paper Award was
conferred to Jasmin Christian Blanchette (Inria, France), Mathias Fleury (MPI,
Germany), and Christoph Weidenbach (MPI, Germany) for their paper titled
“A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality.”
Several students received the Woody Bledsoe Travel Awards, named after the late
Woody Bledsoe, and funded by CADE Inc. to support student participation.

Several people helped make IJCAR 2016 a success. We want to express our grat-
itude to the conference chair, Pedro Quaresma, and to the local Organizing Committee
who made IJCAR 2016 possible: Sandra Marques Pinto (publicity chair), Reinhard
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Kahle (workshop chair), Nuno Baeta, Carlos Caleiro, Nelma Moreira, Jodo Rasga, and
Vanda Santos. We thank all the members of the PC for their active participation in the
process of evaluating and selecting papers for publication, and during the selection
of the invited speakers. We also thank the external reviewers for their precious con-
tribution. The combined expertise of the PC members and the external reviewers
ensured that the papers accepted for publication were of the highest scientific quality.
We whole-heartedly thank all the authors for submitting their work to IICAR 2016. On
behalf of the PC, we thank the invited speakers for their contribution. We also
acknowledge the contributions of the workshop and competition organizers. We extend
our thanks to Andrei Voronkov and the EasyChair development team for providing
their conference management platform.

We finally thank the University of Coimbra, the hosting institution, and all sponsors
for their contribution to the success of the event.

April 2016 Nicola Olivetti
Ashish Tiwari
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A Logical Framework for Developing
and Mechanizing Set Theories

Arnon Avron

School of Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel
aa@cs.tau.ac.il

Abstract. We describe a framework for formalizing mathematics which is based
on the usual set theoretical foundations of mathematics. Its most important
feature is that it reflects real mathematical practice in making an extensive use of
statically defined abstract set terms, in the same way they are used in ordinary
mathematical discourse. We also show how large portions of scientifically
applicable mathematics can be developed in this framework in a straightforward
way, using just rather weak set theories which are predicatively acceptable. The
key property of those theories is that every object which is used in it is defined
by some closed term of the theory. This allows for a very concrete, computa-
tionally-oriented interpretation. However, the development is not committed to
such interpretation, and can easily be extended for handling stronger set theo-
ries, including ZFC itself.



Verification of Differential Private Computations

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Differential privacy [3, 4], is a statistical notion of privacy which achieves compelling
trade-offs between input privacy and accuracy (of outputs). Differential privacy is also
an attractive target for verification: despite their apparent simplicity, recently proposed
algorithms have intricate privacy and accuracy proofs. We present two program logics
for reasoning about privacy and accuracy properties of probabilistic computations. Our
first program logic [2] is used for proving accuracy bounds and captures reasoning
about the union bound, a simple but effective tool from probablility theory. Our second
program logic [1] is used for proving privacy and captures fine-grained reasoning about
probabilistic couplings [6, 8], a powerful tool for studying Markov chains. We illustrate
the strengths of our program logics with novel and elegant proofs of challenging
examples from differential privacy. Finally, we discuss the relationship between our
approach and general-purpose frameworks for the verification of probabilistic pro-
grams, such as PPDL [5] and pGCL [7].

References
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Programming by Examples: Applications,
Algorithms, and Ambiguity Resolution

Sumit Gulwani

Microsoft Corporation, Redmond, WA, USA
sumitg@microsoft.com

Abstract. 99 % of computer end users do not know programming, and struggle
with repetitive tasks. Programming by Examples (PBE) can revolutionize this
landscape by enabling users to synthesize intended programs from example
based specifications. A key technical challenge in PBE is to search for programs
that are consistent with the examples provided by the user. Our efficient search
methodology is based on two key ideas: (i) Restriction of the search space to an
appropriate domain-specific language that offers balanced expressivity and
readability (i) A divide-and-conquer based deductive search paradigm that
inductively reduces the problem of synthesizing a program of a certain kind that
satisfies a given specification into sub-problems that refer to sub-programs or
sub-specifications. Another challenge in PBE is to resolve the ambiguity in the
example based specification. We will discuss two complementary approaches:
(a) machine learning based ranking techniques that can pick an intended pro-
gram from among those that satisfy the specification, and (b) active-learning
based user interaction models. The above concepts will be illustrated using
FlashFill, FlashExtract, and FlashRelate—PBE technologies for data manipu-
lation domains. These technologies, which have been released inside various
Microsoft products, are useful for data scientists who spend 80 % of their time
wrangling with data. The Microsoft PROSE SDK allows easy construction of
such technologies.



Logic and Proofs for Cyber-Physical Systems

André Platzer

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
aplatzer@cs.cmu.edu

Abstract. Cyber-physical systems (CPS) combine cyber aspects such as com-
munication and computer control with physical aspects such as movement in
space, which arise frequently in many safety-critical application domains,
including aviation, automotive, railway, and robotics. But how can we ensure
that these systems are guaranteed to meet their design goals, e.g., that an aircraft
will not crash into another one?

This paper highlights some of the most fascinating aspects of cyberphysical
systems and their dynamical systems models, such as hybrid systems that
combine discrete transitions and continuous evolution along differential equa-
tions. Because of the impact that they can have on the real world, CPSs deserve
proof as safety evidence.

Multi-dynamical systems understand complex systems as a combination of
multiple elementary dynamical aspects, which makes them natural mathematical
models for CPS, since they tame their complexity by compositionality. The
family of differential dynamic logics achieves this compositionality by providing
compositional logics, programming languages, and reasoning principles for
CPS. Differential dynamic logics, as implemented in the theorem prover KeY-
maera X, have been instrumental in verifying many applications, including the
Airborne Collision Avoidance System ACAS X, the European Train Control
System ETCS, automotive systems, mobile robot navigation, and a surgical
robot system for skullbase surgery. This combination of strong theoretical
foundations with practical theorem proving challenges and relevant applications
makes Logic for CPS an ideal area for compelling and rewarding research.
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A Logical Framework for Developing
and Mechanizing Set Theories

Arnon Avron®

School of Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel
aal@cs.tau.ac.il

Abstract. We describe a framework for formalizing mathematics which
is based on the usual set theoretical foundations of mathematics. Its most
important feature is that it reflects real mathematical practice in making
an extensive use of statically defined abstract set terms, in the same way
they are used in ordinary mathematical discourse. We also show how
large portions of scientifically applicable mathematics can be developed
in this framework in a straightforward way, using just rather weak set
theories which are predicatively acceptable. The key property of those
theories is that every object which is used in it is defined by some closed
term of the theory. This allows for a very concrete, computationally-
oriented interpretation. However, the development is not committed to
such interpretation, and can easily be extended for handling stronger set
theories, including ZFC itself.

Set theory is almost universally accepted as the foundational theory in which
the whole of mathematics can be developed. As such, it is the most natural
framework for MKM (Mathematical Knowledge Management). Moreover: as is
emphasized and demonstrated in [7], set theory also has a great computational
potential. However, in order to be used for these tasks it is necessary to overcome
the following serious gaps that exist between the “official” formulations of set
theory (like ZFC) and actual mathematical practice:

— Unlike the language used in real mathematical practice, the language(s) used
in official formalizations of set theories are rather poor and inconvenient.

— ZFC treats all the mathematical objects on a par, and so hid the computa-
tional significance of many of them.

— Core mathematics practically deals only with a fraction of the set-theoretical
“universe” of ZFC. Therefore easier to mechanize systems, corresponding to
universes which are better suited for computations, should do.

The goal of this paper is to present a unified, type-free, user-friendly frame-
work (originally developed in [2,3]) for formalizations of axiomatic set theories
of different strength, from rudimentary set theory to full ZFC. Our framework
makes it possible to employ in a natural way all the usual set notations and
constructs as found in textbooks on naive or axiomatic set theory (and only
such notations). Another important feature of this framework is that its set of
© Springer International Publishing Switzerland 2016
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4 A. Avron

closed terms suffices for denoting every concrete set (including infinite ones!)
that might be needed in applications, as well as for computations with sets.

Our basic assumption is that the sets which are interesting from a computa-
tional point of view are those which can be defined by abstract terms the form
{z | ¢}, using formulas in some, intuitively meaningful, formal language. Now
the use of such terms is also indispensible for any user-friendly treatment of set
theories. Therefore they are used in all textbooks on first-order set theories, as
well as in several computerized systems. However, whenever they are intended
to denote sets (rather than classes) they are introduced (at least partially) in a
dynamic way, with different semantic justification each time. In contrast, what
abstract set terms may be used in our framework is statically defined in a precise,
purely syntactic way, using the mechanism of safety relations.

A safety relation is a syntactic relation between formulas and sets of variables,
which provide a common generalization of the notions of domain-independence
(in database theory), absoluteness (in set theory), and decidability (in formal
arithmetics). Intuitively, ¢ is safe with respect to {y1,...,yx} (where Fu(p) =
{z1, s Tn, Y1, ..., yx } and k > 0) if for every “accepted” sets ay, ..., an, the col-
lection {{y1,...,yx) | ¢(a1, ..., @n,y1,.--,Yx)} is also an “accepted” set, which can
be constructed from aq, ..., a,. Safety with respect to the empty set intuitively
means “definiteness”, and should be thought of as a generalization of decidabil-
ity and of absoluteness. The differences between set theories is mainly reduced in
our framework to different interpretations of the vague notions of “acceptable”,
“can be constructed”, and “definite”.

1 Outline of the Formal Framework

1.1 Logics

We allow the use of four different types of logics in our framework. The basic two
are classical first-order logic and intuitionistic first-order logic. However, in our
opinion the first-order level is not sufficient for handling infinity in a satisfactory
way, while second-order logic is too strong. In [1] it was argued that T'C-logic
(also called ancestral logic — AL) which allows the use of a transitive closure
operation T'C provides a better framework for the formalization of mathematics.
This suggestion (again in two versions: classical and intuitionistic) seems partic-
ularly promising for the present project, since with T'C' the difference between
set theories with infinity and those without it can again be reduced to differences
in the underlying syntactic safety relations.

1.2 Languages

A language L for a set theory S should be based in our framework on some first-
order signature o which includes € and =, and it is introduced by a simultaneous
recursive definition of its terms, formulas, and the safety relation > that underlies
it. The clauses for the terms and formulas of such L always include the usual
ones, together with the following additional clauses:
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— If x is a variable, ¢ is a formula, and ¢ = {z}, then {z | ¢} is a term.
— If the underlying logic is a T'C-logic then (T'C; ,¢)(t, s) is a formula whenever
@ is a formula, z,y are distinct variables, and ¢, s are terms.

The clauses defining the safety relation = of L should include the set of syntactic
conditions given below (which generalize those used for d.i. in database theory).

@ = 0 if ¢ is atomic.
p-{ztifpe{r=tt=0,0cx,xet}, and x & Fu(t).
VY= Xife>= X and ¢ » X.

AP = XUY ifp> X, ¢ >=Y and Y N Fo(p) =0.
Jyp = X —{y} if y € X and ¢ > X.

Va(o — ) = 0 if ¢ = {x} and o = 0!

NSOtk WD

More clauses may then be added, depending on the theory S. In particular, if
T'C-logic is used as the underlying logic then the following clause will also be
included: (TC, y¢)(z,y) = X if o = X, and {z,y} N X # 0.

Definition 1. Given an underlying logic £ and a first-order signature o which
includes € and =, the language L% is the minimal language which satisfies all
the above conditions.

The basic language used in our framework will be RSL = LE ZOFL, where FOL
denotes (classical or intuitionistic) first-order logic, and ozp = {€,=}. Already
in this language (and in its extensions) we can introduce as abbreviations most of
the standard notations for sets used in mathematics, like: 0, {t1,...,tn}, (¢, s),
{zet|p}incase p =0, {t |z € s}, sxt, snt, sUL, Jt, ¢, tze (in case ¢ =
{z}), and Az € s.t. An exact characterization (proved in [4]) of the expressive
power of RSL can be given in terms of the well-known class of rudimentary set
functions (see [8]): For any n-ary rudimentary function F' there exists a formula
¢ such that Fv(p) = {y,z1,...,2n}, ¢ =rsr {y} and F(z1,...,2,) = {y | ¢}
Conversely, if Fv(¢) ={y1,.-- Yk, T1,---,Tn}, and ¢ >=gsr {y1,-..,yx}, then
there exists a rudimentary function F' s.t. F(x1,...,2,) = {{y1,.-.,yx) | ¢}

1.3 The Basic Axioms and Systems

The main part of every Theory T in our framework consists of the following
axiom schemas (our version of the “ideal calculus” [10]):

Extensionality: Vz(z €z - 2 €y) mxz =y
Comprehensiony: Vz(z € {z | ¢} < ¢)

Given a signature o and a logic £, we denote by RST~ the theory in L% whose
axioms are the basic ones listed above. Note that the strength of RST depends
on the set of terms available in L%, and so on the safety relation used in L%.

Now the most important feature of RST¥ is that its two main axioms directly
lead (and are equivalent) to the following set-theoretical reduction rules:

! In the classical case this condition is derivable from the others.
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(B) Frsre t € {z | p} < p{t/x} (provided t is free for  in ).
(1) Frsre {z | x € t} =t (provided {z | x € t} is a term, i.e. x & Fv(t)).

It is easy to see that the usual reduction rules of the typed A-calculus follow from
these reduction rules. In particular: Fpgre a € s — (Ax € s.t)(a) = t{a/z}.

1.4 Extensions by Definitions

It was argued in [12] that the language of ZFC with definitions and partial func-
tions provides the most promising “bedrock semantics for communicating and
sharing mathematical knowledge”. Regularly expanding the language employed
is indeed an essential part of every mathematical research and its presentation.
There are two principles that govern this process in our framework. First, its
static nature demands that conservatively expanding the language of a given
theory should be reduced to the use of abbreviations. Second, since the introduc-
tion of new predicates and function symbols creates new atomic formulas and
terms, one should be careful that the above conditions concerning the underlying
safety relation > are preserved. Thus only formulas ¢ such that ¢ = @ can be
used for defining new predicated symbols. Now in the set-theoretical context it
is more convenient to write ¢t € X (instead of X (¢)) when X is a defined unary
predicate symbol?, viewing X as a class. Thus we allow the use of class terms of
the form {z|p}, provided that ¢ = (). The treatment of such terms is done in the
standard way, as described, e.g., in [13]. New function symbols, corresponding
to global operations (like the “rudimentary functions”), can then be introduced
in the form Az € X.t, where X is a class term. See [6] for details.

2 Handling the Axioms of ZF and ZFC

The definability of {¢, s} and of |Jt means that > sy, suffices for the axioms of
pairing and union. Next we turn to the comprehension axioms that remain valid
if we limit ourselves to hereditarily finite sets. It can be shown ([3]) that each of
them can be captured (in a modular way) by adding to the definition of =gy,
a certain syntactic condition. The separation axiom, for example, is available
whenever o > @) (where ¢ is the separating formula and > is the safety relation
used), and this is already quite strong. However, to capture the full power of this
schema we need to add the condition that ¢ = ) for every formula ¢ (implying
that we see any formula of the language as defining a “definite” property). Sim-
ilarly, the replacement schema is available whenever the corresponding function
is explicitely definable (in the form Az € s.t), but a more complicated condi-
tion corresponds to the full schema. As for the non-predicative powerset axiom,
the simplest way to get it is to enrich the language with the binary relation C,
add an axiom connecting it with €, and then add to the definition of the safety
relation the simple condition:  C t = {z} if x € Fu(t).

2 The use of binary predicates etc. can be reduced, of course, to the use of unary ones.
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Next we turn to the axiom of Infinity — the only comprehension axiom
that necessarily takes us out of the realm of finite sets. As long as we stick to
first-order languages, it seems impossible to incorporate it into our systems by
just imposing new simple syntactic conditions on the safety relation. Instead,
the best way to capture it is to add to the basic signature a new constant HF'
(interpreted as the collection HF of hereditarily finite sets) together with the
obvious counterparts of Peano’s arioms. On the other hand, if a TC-logic is used
as the underlying logic then we get the infinity axiom for free, since the set w
of the finite ordinals is definable by a safe formula in this extended language:
w={y|Iax=0ANTCryy={2|2=2Vzea})(zr,y)}

The regularity axiom can best be incorporated into our framework in the
form of e-induction. Finally, the most natural way to handle the axiom of choice
in that framework is to further extend its set of terms by allowing the use
of Hilbert’s ¢ symbol (together with its usual characterizing axiom, which is
equivalent to the axiom of global choice).

3 Predicative Theories and Computational Universes

Let 7 be a theory formulated within our framework. From the Platonist point
of view, its set of closed terms D(7) induces some subset S(7) of the universe
V' of sets. (The identity of S(7) depends only on the language of 7 and on
the interpretations of the symbols in its signature other than € and =). D(7)
also determines some subset M(7) of any transitive model M of 7. We call a
theory T predicative if the set S(7) it induces is a “universe” in the sense that
it is a transitive model of 7, and in addition the identity of S(7') is absolute in
the sense that M(7) = S(7) for any transitive model M of 7 (implying that
S(T) is actually a minimal transitive model of 7). We call a transitive set a
computational universe if it is S(T) for some predicative theory 7. In [4,5] it is
shown that some theories which naturally arise in our framework are predicative
(and so their minimal models are computational). This includes:

RST: This is the theory RSTfZ ?f (which can be shown to be equivalent to
Gandy’s basic set theory [11]). Its minimal model S(RST) is identical to HF
(the collection of hereditarily finite sets), which is J; in Jensen’s hierarchy.

RSTyp: This is RSTfZ(;ﬁ{HF} extended with Peano’s axioms for HF'. Its min-
imal model is Js.

PZF: This is RSTZC~, where TCL is some reasonable T'C-logic. Its minimal

OZF
model is J o = Lyw.

In a series of papers (e.g. [9]), Feferman showed that predicative mathematics
is sufficient for the formalization of the scientifically applicable mathematics.
However, Feferman’s systems have the drawbacks of not using the standard
set-theoretical framework, and their languages and basic concepts are rather
complicated in comparison to ZFC. The predicative theories of our framework
seem therefore to be a better choice. This thesis has been pursued in [5,6]. [6]
is devoted to the system RSTyp, which is the minimal system that meets all
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the basic predicative principles (in particular, it allows the introduction of the
natural numbers as a complete set). It is shown there how to develop large
portions of applicable mathematics within this minimal theory and its minimal
universe Jo. Not surprisingly, the restriction to this minimal framework has its
price: the development of mathematics within it involves a lot of coding, as well
as treating even the real line as a proper class. In contrast, in [5] the development
is done in a way which is very close to mathematical practice, using stronger, but
still strictly first-order, predicative theories. The next step of this project will
examine the use of PZF. PZF seems rather promising in this respect, since its
minimal model, J «, allows a natural interpretation of cumulative type theory,
in which J,, J,2, J,s3,...are taken as the major types. Thus the real numbers
can be taken to be those that are available in J, (which is far beyond what is
available in J3), and R itself will be an ordinary object of ‘type’ J,z.
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Abstract. 99 % of computer end users do not know programming, and
struggle with repetitive tasks. Programming by Examples (PBE) can rev-
olutionize this landscape by enabling users to synthesize intended pro-
grams from example based specifications. A key technical challenge in
PBE is to search for programs that are consistent with the examples
provided by the user. Our efficient search methodology is based on two
key ideas: (i) Restriction of the search space to an appropriate domain-
specific language that offers balanced expressivity and readability (ii)
A divide-and-conquer based deductive search paradigm that inductively
reduces the problem of synthesizing a program of a certain kind that sat-
isfies a given specification into sub-problems that refer to sub-programs
or sub-specifications. Another challenge in PBE is to resolve the ambigu-
ity in the example based specification. We will discuss two complemen-
tary approaches: (a) machine learning based ranking techniques that can
pick an intended program from among those that satisfy the specification,
and (b) active-learning based user interaction models. The above con-
cepts will be illustrated using FlashFill, FlashExtract, and FlashRelate—
PBE technologies for data manipulation domains. These technologies,
which have been released inside various Microsoft products, are useful
for data scientists who spend 80 % of their time wrangling with data. The
Microsoft PROSE SDK allows easy construction of such technologies.

1 Introduction

Program Synthesis [4] is the task of synthesizing a program that satisfies a given
specification. The traditional view of program synthesis has been to synthesize
programs from logical specifications that relate the inputs and outputs of the
program. Programming by Examples (PBE) [6] is a sub-field of program synthe-
sis, where the specification consists of input-output examples, or more generally,
output properties over given input states. PBE has emerged as a favorable para-
digm for two reasons: (i) the example-based specification in PBE makes it more
tractable than general program synthesis. (ii) Example-based specifications are
much easier for the users to provide in many scenarios.

2 Applications

PBE has been applied to various domains [3,15], and some recent applications
include parsing [14], refactoring [17], and query construction [20]. However, the

© Springer International Publishing Switzerland 2016
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killer application of PBE today is in the broad space of data wrangling, which
refers to the tedious process of converting data from one form to another. The
data wrangling pipelines includes tasks related to extraction, transformation,
and formatting.

Extraction: A first step in a data wrangling pipeline is often that of ingesting
or extracting tabular data from semi-structured formats such as text/log files,
web pages, and XML/JSON documents. These documents offer their creators
great flexibility in storing and organizing hierarchical data by combining presen-
tation/formatting with the underlying data. However, this makes it extremely
hard to extract the relevant data. The FlashExtract technology allows extract-
ing structured (tabular or hierarchical) data out of semi-structured documents
from examples [12]. For each field in the output data schema, the user provides
positive/negative instances of that field and FlashExtract generates a program
to extract all instances of that field. The FlashExtract technology ships as the
ConvertFrom-String cmdlet in Powershell in Windows 10, wherein the user pro-
vides examples of the strings to be extracted by inserting tags around them in
test. The FlashExtract technology also ships in Azure OMS (Operations Man-
agement Suite), where it enables extracting custom fields from log files.

Transformation: The Flash Fill feature, released in Excel 2013 and beyond, is a
PBE technology for automating syntactic string transformations of the kind such
as converting “FirstName LastName” into “LastName, FirstName” [5]. PBE can
also facilitate more sophisticated string transformations that require lookup into
other tables [21]. PBE is also a very natural fit for automating transformations
of other data types such as numbers [22] and dates [24].

Formatting: Another useful application of PBE is in the space of formatting data
tables. This can be useful in converting semi-structured tables found commonly
in spreadsheets into proper relational tables [2], or for re-pivoting the underlying
hierarchical data that has been locked into a two-dimensional tabular format [10].
PBE can also be useful in automating repetitive formatting in a powerpoint slide
deck such as converting all red colored text into green, or switching the direction
of all horizontal arrows [19].

3 Algorithms

Our methodology for designing and developing PBE algorithms involves three
key insights: domain-specific languages, deductive search, and a framework that
provides rich reusable machinery.

Domain-specific Language: A key idea in program synthesis is to restrict the
search space to an underlying domain-specific language (DSL) [1,7]. The DSL
should be expressive enough to represent a wide variety of tasks in the under-
lying task domain, but also restricted enough to allow efficient search. We have
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designed many functional domain-specific languages for this purpose, each of
which is characterized by a set of operators and a syntactic restriction on how
those operators can be composed with each other (as opposed to allowing all
possible type-safe composition of those operators) [6].

Deductive Search: A simple search strategy is to enumerate all programs in
order of increasing size [27]. Another commonly used search strategy is to reduce
the search problem to constraint solving via an appropriate reduction and then
leverage off-the-shelf SAT/SMT constraint solvers [8,25,26]. None of these search
strategies work effectively for our domains: the underlying DSLs are too big for
an enumerative strategy to scale, and involve operators that are too sophisticated
for existing constraint solvers to reason about.

Our synthesis algorithms employ a novel deductive search methodology [18]
that is based on standard algorithmic paradigm of divide-and-conquer. The key
idea is to recursively reduce the problem of synthesizing a program expression e of
a certain kind and that satisfies a certain specification ¢ to simpler sub-problems
(where the search is either over sub-expressions of e or over sub-specifications
of v), followed by appropriately combining those results. The reduction logic
for reducing a synthesis problem to simpler synthesis problems depends on the
nature of the involved expression e and the inductive specification 1. In contrast
to enumerative search, this search methodology is top-down—it fixes the top-part
of an expression and then searches for its sub-expressions. Enumerative search is
usually bottom-up—it enumerates smaller sub-expressions before enumerating
larger expressions.

Framework: Developing a synthesis algorithm for a specific domain is an expen-
sive process: The design of the algorithm requires domain-specific insights. A
robust implementation requires non-trivial engineering. Furthermore any exten-
sions or modifications to the underlying DSL are not easy.

The divide-and-conquer strategy underneath the various synthesis algorithms
can be refactored out inside a framework. Furthermore, since the reduction logic
depends on the logical properties of the top-level operator, these properties can
be captured modularly by the framework for re-use inside synthesizers for others
DSLs that use that operator. Our PROSE framework [18] builds over these ideas
and has facilitated development of industrial-strength PBE implementations for
various domains.

4 Ambiguity Resolution

Examples are an ambiguous form of specification; there are often many programs
that are consistent with the specification provided by a user. A challenge is to
identify an intended program that has the desired behavior on the various inputs
that the user cares about. Tessa Lau presented a critical discussion of PBE
systems in 2009 noting that PBE systems are not yet widespread due to lack
of usability and confidence in such systems [11]. We present two complementary
techniques for increasing usability and confidence of a PBE system.
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Ranking: Our synthesis algorithms generate the set of all/most programs in the
underlying DSL that are consistent with the specification provided by the user.
We rank these programs and pick the top-ranked program. Ranking is a function
of both program features and data features. Program features typically capture
simplicity and size of a program. Data features are over the data that is generated
by the program when executed on various inputs. Weights over these features
can be learned using machine learning techniques in an offline manner [23].

User Interaction models: In case the ranking does not pick an intended pro-
gram, or even otherwise, we need appropriate user interaction models that can
provide the equivalent of debugging experience in standard programming envi-
ronments. We can allow the user to navigate between all programs synthesized
by the underlying synthesizer (in an efficient manner) and to pick an intended
program [16]. Another complementary technique can be to ask questions to the
user as in active learning. These questions can be generated based on the dif-
ferences in the results produced by executing the multiple synthesized programs
on the available inputs [16].

5 Conclusion and Future Work

The programming languages research community has traditionally catered to
the needs of professional programmers in the continuously evolving technical
industry. The widespread access to computational devices has brought a new
opportunity, that of enabling non-programmers to create small programs for
automating their repetitive tasks. PBE becomes a very valuable paradigm in
this setting.

It is interesting to compare PBE with Machine learning (ML) since both
involve example-based training and prediction on new unseen data. PBE learns
from very few examples, while ML typically requires large amount of training
data. The models generated by PBE are human-readable and editable programs
unlike many black-box models produced by ML. On the other hand, ML is better
suited for fuzzy/noisy tasks.

There are many interesting future directions. The next generation of pro-
gramming experience shall be built around multi-modal specifications that are
natural and easy for the user to provide. While this article has focused on
example-based specifications, natural language-based specifications can comple-
ment example-based specifications and might even be a better fit for various class
of tasks such as spreadsheet queries [9] and smartphone scripts [13]. Furthermore,
the specifications may be provided iteratively, implying the need for incremental
synthesis algorithms. Another interesting future direction is to build systems
that learn user preferences based on past user interactions across different pro-
gramming sessions. (For instance, the underlying ranking can be dynamically
updated). This can pave the way for personalization and learning across users.
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Abstract. Cyber-physical systems (CPS) combine cyber aspects such
as communication and computer control with physical aspects such as
movement in space, which arise frequently in many safety-critical appli-
cation domains, including aviation, automotive, railway, and robotics.
But how can we ensure that these systems are guaranteed to meet their
design goals, e.g., that an aircraft will not crash into another one?

This paper highlights some of the most fascinating aspects of cyber-
physical systems and their dynamical systems models, such as hybrid
systems that combine discrete transitions and continuous evolution along
differential equations. Because of the impact that they can have on the
real world, CPSs deserve proof as safety evidence.

Multi-dynamical systems understand complex systems as a combina-
tion of multiple elementary dynamical aspects, which makes them natural
mathematical models for CPS, since they tame their complexity by com-
positionality. The family of differential dynamic logics achieves this com-
positionality by providing compositional logics, programming languages,
and reasoning principles for CPS. Differential dynamic logics, as imple-
mented in the theorem prover KeYmaera X, have been instrumental in
verifying many applications, including the Airborne Collision Avoidance
System ACAS X, the European Train Control System ETCS, automo-
tive systems, mobile robot navigation, and a surgical robot system for
skull-base surgery. This combination of strong theoretical foundations
with practical theorem proving challenges and relevant applications makes
Logic for CPS an ideal area for compelling and rewarding research.

1 Logical Foundations of Cyber-Physical Systems

Can we trust a computer to control physical processes? That depends on how it
has been programmed and what will happen if it malfunctions. When a lot is at
stake, computers need to be guaranteed to interact correctly with the physical
world. So, we need ways of analyzing, designing, and guaranteeing the behavior
of such systems. Providing these ways is an intellectual grand challenge with
substantial scientific, economical, societal, and educational impact. Its solution
is the key to enabling computer assistance that we can bet our lives on.

This paper focuses on illustrating important principles of cyber-physical systems
here. Technical surveys can be found in the literature, e.g., [2,7,8,12,20,32,41,42].
This material is based upon work supported by the National Science Foundation
under NSF CAREER Award CNS-1054246.

© Springer International Publishing Switzerland 2016

N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 15-21, 2016.
DOI: 10.1007/978-3-319-40229-1_3



16 A. Platzer

1.1 Cyber-Physical Systems

Computer control has been suggested to remedy inefficiencies, reliability issues,
or defects for virtually all physical systems. But computer control only helps our
society if we can ensure that it works correctly. As has been argued on numerous
occasions [1-8,11,12,17,18,20,21,23-27, 38, 41-44], we must, thus, verify the cor-
rectness of these systems, as testing may miss bugs. This problem is confounded,
because the behavior of the system under one circumstance can radically differ
from the behavior under another, especially when complex computer decisions
for different objectives interact. It is crucial to prove the absence of bugs so that
we are confident to bet our lives on the system functioning correctly, since that
is what we do every time we get into an airplane or car.

Systems like these are called cyber-physical systems (CPS). They combine
cyber capabilities (communication, computation and control) with physical capa-
bilities (sensing and actuation) to solve problems that neither part could solve
alone. While CPS are widely appreciated for their broad range of application
domains (e.g., automotive, aerospace, medical, transportation, civil engineering,
materials, chemistry, energy), the goal of the Logical Foundations of CPS is to
identify the common foundational core that constitutes the true essence of CPS
and their proof principles to serve as the simultaneous mathematical basis for
all those applications. The foundations of digital computer science have revolu-
tionized how systems are designed and our whole society works. We need even
stronger foundations when software reaches out into our physical world.

1.2 Multi-dynamical Systems

The first crucial insight for CPS foundations is the
multi-dynamical systems principle [32] of understand-
ing complex systems as a combination of multiple
elementary dynamical aspects. Mathematically, CPS
are multi-dynamical systems [32], i.e. systems char-
acterized by multiple facets of dynamical systems,
schematically summarized in Fig. 1. CPS involve com-
puter control decisions and are, thus, discrete. CPS §
are continuous, because they evolve along differen- q,}é'”
5

tial equations of motion or other physical processes.
CPS are uncertain, because their behavior is sub-
ject to choices coming from environmental variabil-
ity or intentional uncertainties that simplify their Fig. 1. Dynamical aspects
model. This uncertainty can manifest in different of CPS

ways. Uncertainties make CPS stochastic when good

information about the distribution of choices is available. Uncertainties make
CPS nondeterministic when no commitment about the resolution of choices is
made. Uncertainties make CPS adversarial when they involve multiple agents
with potentially conflicting goals or even active competition in a game. Verifying
that CPS work correctly requires dealing with all of these dynamical features—
and sometimes even more—at the same time.

nondet
(o))
o\}se“o
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1.3 CPS Proofs

Multi-dynamical systems study complex CPS as a combination of multiple ele-
mentary dynamical aspects. This approach helps to tame the complexity of CPS
by understanding that their complexity just comes from combining lots of sim-
ple dynamical effects with one another. The overall system is quite complex, but
each of its pieces is better-behaved, since it only has one dynamics. What miracle
translates this descriptive simplification of a CPS in terms of a combination of
multiple dynamical aspects into an analytic simplification in terms of multiple
dynamical systems that can be considered side-by-side?

The key to this mystery is to integrate the CPS dynamics all within a single,
compositional logic [32]. Since compositionality is an intrinsic feature starting
from the very semantics of logic [9,10,13,14,37,39,40], logics naturally reason
compositionally, too. With suitable generalizations of logics to embrace multi-
dynamical systems [27-31,34,35], this compositionality generalizes to CPS. Ver-
ification works by constructing a proof in such a logic. The whole proof verifies a
complex CPS. Yet, each proof step only reasons separately about one dynamical
aspect at a time using, e.g., local dynamics of differential equations, the theory
of real-closed fields, symbolic logic, differential form computations [35], fixpoint
theory [34], and so on, each captured in a separate, modular axiom or proof rule.

1.4 Theory

This logical view on CPS has already made it possible to develop rich theo-
ries of hybrid systems that combine discrete change and continuous differential
equations [27,31,35], theories of distributed hybrid systems that combine distrib-
uted systems with hybrid systems [30], theories of hybrid games that combine
discrete, continuous, and adversarial dynamics [34], all of which are sound and
relatively complete, but was also used for stochastic hybrid systems [29]. The
approach was instrumental in formulating and proving the first [27] and second
[31] completeness theorem for hybrid systems, which characterize and align the
discrete and continuous challenges of hybrid systems, and reveal their funda-
mental symmetry. The theory of hybrid systems forms a proof-theoretical bridge
aligning the theory of continuous systems with the theory of discrete systems.
Proof theory was essential in the study of provability of properties of differential
equations and differential cut elimination [33], which turn out to generalize ideas
from Lie’s results on Lie groups [19] but also relate to Gentzen’s cut elimination
theorem in classical logic [10]. Logic was equally crucial for the development
of differential ghosts that create extra dimensions [33] as proof-theoretical ana-
logues of dark matter, whose existence was speculated to balance out energy
invariants in astrophysics [16].



18 A. Platzer

As a logical rendition of
Lie’s ideas, differential invari- =

ants [28,33,35] enable induc- —E H — [2/:=f(z)|F’
tion principles for differential F — [¢' = f(2)&H|F
equations characterizing the

rate of change of truth of a @ynalnic (fonclusiorD

formula in the direction of
the dynamics; see Fig. 2. Intu-
itively, F' always remains true
after following the differential
equation 2’ = f(z) within the
domain H (conclusion), if F' started out true initially (conclusion’s assumption),
and if, within H, the differential F’ of F' (which characterizes the infinitesimal
change of F as a function of z’) holds after assigning the right-hand side f(x) of
the differential equation to its left-hand side z’ (premise). Differential invariants
lift the high descriptive power of differential equations to a high analytic power,
so that their properties can be proved even if the equations cannot be solved.
Solutions ruin the descriptive power even if the differential equations can be
solved, so that differential invariants are advantageous regardless.

Fig. 2. (left) Differential invariant F' (right) Proof
rule for invariance of F' along differential equation
2’ = f(z) in evolution domain H

1.5 Applications

Logical Foundations of CPS play an increasingly important role in practical
applications by way of their implementations in the theorem prover KeYmaera
and its clean-slate successor! KeYmaera X. This includes finding and fixing
[36] flaws in an air traffic conflict resolution maneuver, verifying and identifying
issues in the Next-generation Airborne Collision Avoidance System ACAS X [15],
verifying the European train control system ETCS, car control systems, mobile
ground robot navigation, and finding and fixing bugs in a skull-base surgical
robot system. Logic also identified a way of correctly relating proof in a model
to truth in reality [22], which is an inevitable challenge for CPS.

Finally, multi-dynamical systems impact education in the Foundations of
Cyber-Physical Systems course that is breaking with the myth that cyber-
physical systems are too challenging to be taught at the undergraduate level.
The compositionality principles of logic and multi-dynamical systems consider-
ably tame the educational complexity of CPS by making it possible to focus on
one aspect at a time without losing the ability to combine the understanding
attained for each aspect. The rich variety of systems that the students verified
for their final course projects? indicates that this approach effectively conveys
the principles for a successful separation of concerns for CPS.

! http://www.keymaeraX.org/.

2 The students’ self-defined 3-week course projects and their presentations to a panel
of experts from industry in the CPS V&V Grand Prix are available from the course
web pages http://lfcps.org/course/feps.html.
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1.6 Summary

Logical foundations make a big difference for cyber-physical systems, certainly in
understanding the basic principles of CPS, but also in real applications like the
Next-generation Airborne Collision Avoidance System. Lessons from centuries of
logic and foundations research can have a huge impact on advancing CPS. Yet,
conversely, the questions that CPS pose can have an equally significant impact
on advancing logic. Cyber-physical systems serve as a catalytic integrator for
other sciences, because they benefit from combining numerous exciting areas of
logic, mathematics, computer science, and control theory that previously seemed
unrelated. The mix of enabling strong analytic foundations with the need for
practical advances of rigorous reasoning and the significance of its applications,
as well as its fruitful interactions with many other sciences, make cyber-physical
systems an ideal field for compelling and rewarding research that has only just
begun. Numerous wonders remain yet to be discovered.
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Abstract. We developed a formal framework for CDCL (conflict-driven
clause learning) in Isabelle/HOL. Through a chain of refinements, an
abstract CDCL calculus is connected to a SAT solver expressed in a
functional programming language, with total correctness guarantees. The
framework offers a convenient way to prove metatheorems and experi-
ment with variants. Compared with earlier SAT solver verifications, the
main novelties are the inclusion of rules for forget, restart, and incremen-
tal solving and the application of refinement.

1 Introduction

Researchers in automated reasoning spend a significant portion of their work
time specifying logical calculi and proving metatheorems about them. These
proofs are typically carried out with pen and paper, which is error-prone and
can be tedious. As proof assistants are becoming easier to use, it makes sense to
employ them.

In this spirit, we started an effort, called IsaFoL. (Isabelle Formalization of
Logic), that aims at developing libraries and methodology for formalizing mod-
ern research in the field, using the Isabelle/HOL proof assistant [7]. Our initial
emphasis is on established results about propositional and first-order logic. In
particular, we are formalizing large parts of Weidenbach’s forthcoming textbook,
tentatively called Automated Reasoning—The Art of Generic Problem Solving.
Our inspiration for formalizing logic is the IsaFoR project, which focuses on term
rewriting [40].

The objective of formalization work is not to eliminate paper proofs, but
to complement them with rich formal companions. Formalizations help catch
mistakes, whether superficial or deep, in specifications and theorems; they make
it easy to experiment with changes or variants of concepts; and they help clarify
concepts left vague on paper.

This paper presents our formalization of CDCL from Automated Reasoning
on propositional satisfiability (SAT), developed via a refinement of Nieuwenhuis,
© Springer International Publishing Switzerland 2016
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Oliveras, and Tinelli’s account of CDCL [29]. CDCL is the algorithm imple-
mented in modern SAT solvers. We start with a family of abstract DPLL [11]
and CDCL [2,18,28,39] transition systems (Sect. 3). Some of the calculi include
rules for learning and forgetting clauses and for restarting the search. All cal-
culi are proved sound and complete, as well as terminating under a reasonable
strategy. The abstract CDCL calculus is refined into the more concrete calcu-
lus presented in Automated Reasoning and recently published [42] (Sect. 4). The
latter specifies a criterion for learning clauses representing first unit implication
points (1UIPs) [2], with the guarantee that learned clauses are not redundant and
hence derived at most once. The calculus also supports incremental solving. This
concrete calculus is refined further, as a certified functional program extracted
using Isabelle’s code generator (Sect.5).

Any formalization effort is a case study in the use of a proof assistant. Beyond
the code generator, we depended heavily on the following features of Isabelle:

e [sar [43] is a textual proof format inspired by the pioneering Mizar system
[27]. It makes it possible to write structured, readable proofs—a requisite for
any formalization that aims at clarifying an informal proof.

e Locales [1,19] parameterize theories over operations and assumptions, encour-
aging a modular style of development. They are useful to express hierarchies
of related concepts and to reduce the number of parameters and assumptions
that must be threaded through a formal development.

o Sledgehammer integrates superposition provers and SMT (satisfiability mod-
ulo theories) solvers in Isabelle to discharge proof obligations. The SMT
solvers, and one of the superposition provers [41], are built around a SAT
solver, resulting in a situation where SAT solvers are employed to prove their
own metatheory.

Our work is related to other verifications of SAT solvers, typically with the
aim of increasing their trustworthiness (Sect. 6). This goal has lost some of its sig-
nificance with the emergence of formats for certificates that are easy to generate,
even in highly optimized solvers, and that can be processed efficiently by verified
checkers [17]. In contrast, our focus is on formalizing the metatheory of CDCL,
to study and connect the various members of the family. The main novelties
of our framework are the inclusion of rules for forget, restart, and incremental
solving and the application of refinement to transfer results. The framework is
available online as part of the IsaFoL repository [13].

2 Isabelle

Isabelle [31,32] is a generic proof assistant that supports many object logics.
The metalogic is an intuitionistic fragment of higher-order logic (HOL) [10].
The types are built from type variables ‘a,’b, ... and n-ary type constructors,
normally written in postfix notation (e.g., ‘a list). The infix type constructor
‘a = 'b is interpreted as the (total) function space from ‘a to ’b. Function appli-
cations are written in a curried style (e.g., f  y). Anonymous functions = — y,,
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are written Ax. y,. The judgment ¢ :: 7 indicates that term ¢ has type 7. Propo-
sitions are simply terms of type prop. Symbols belonging to the signature are
uniformly called constants, even if they are functions or predicates. The meta-
logical operators include universal quantification A :: (‘a = prop) = prop and
implication = :: prop = prop = prop. The notation Ax. p, is syntactic sugar
for A (Az. p;) and similarly for other binder notations.

Isabelle/HOL is the instantiation of Isabelle with HOL, an object logic for
classical HOL extended with rank-1 (top-level) polymorphism and Haskell-style
type classes. It axiomatizes a type bool of Booleans as well as its own set of logical
symbols (V, 3, False, True, =, A, V, —, <=, =). The object logic is embedded
in the metalogic via a constant Trueprop :: bool = prop, which is normally not
printed. The distinction between the two logical levels is important operationally
but not semantically.

Isabelle adheres to the tradition initiated in the 1970s by the LCF system
[14]: All inferences are derived by a small trusted kernel; types and functions
are defined rather than axiomatized to guard against inconsistencies. High-level
specification mechanisms let us define important classes of types and functions,
notably inductive predicates and recursive functions. Internally, the system syn-
thesizes appropriate low-level definitions.

Isabelle developments are organized as collections of theory files, or mod-
ules, that build on one another. Each file consists of definitions, lemmas, and
proofs expressed in Isar, Isabelle’s input language. Proofs are specified either
as a sequence of tactics that manipulate the proof state directly or in a declar-
ative, natural deduction format. Our formalization almost exclusively employs
the more readable declarative style.

The Sledgehammer tool [4,34] integrates automatic theorem provers in Isa-
belle/HOL, including CVC4, E, LEO-II, Satallax, SPASS, Vampire, veriT, and
Z3. Upon invocation, it heuristically selects relevant lemmas from the thousands
available in loaded libraries, translates them along with the current proof obliga-
tion to SMT-LIB or TPTP, and invokes the automatic provers. In case of success,
the machine-generated proof is translated to an Isar proof that can be inserted
into the formal development.

Isabelle locales are a convenient mechanism for structuring large proofs.
A locale fixes types, constants, and assumptions within a specified scope. For
example:

locale X = fixes c: 7T/ assumes A/ .

The definition of locale X implicitly fixes a type ‘a, explicitly fixes a constant c
whose type 7/, may depend on ‘a, and states an assumption A, ¢ :: prop over ‘a
and c. Definitions made within the locale may depend on ‘a and ¢, and lemmas
proved within the locale may additionally depend on A/, . A single locale can
introduce several types, constants, and assumptions. Seen from the outside, the
lemmas proved in X are polymorphic in type variable ‘a, universally quantified
over ¢, and conditional on A/, ..

Locales support inheritance, union, and embedding. To embed Y into X, or
make Y a sublocale of X, we must recast an instance of Y into an instance of
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X, by providing, in the context of Y, definitions of the types and constants of
X together with proofs of X’s assumptions. The command sublocale Y C X ¢
emits the proof obligation A, ;, where v and ¢ :: 7, may depend on types and
constants from Y. After the proof, all the lemmas proved in X become available
in Y, with ‘a and ¢ :: 7/, instantiated with v and ¢ :: 7,,.

3 Abstract CDCL

The abstract CDCL (conflict-driven clause learning) calculus by Nieuwenhuis
et al. [29] forms the first layer of our refinement chain. Our formalization relies
on basic Isabelle libraries for lists and multisets and on custom libraries for
propositional logic. Properties such as partial correctness and termination are
inherited by subsequent layers.

3.1 Propositional Logic

We represent raw and annotated literals by freely generated datatypes para-
meterized by the types ‘v (propositional variable), ‘vl (decision level), and 'cls
(clause):

datatype v literal = datatype ('v,’ll,’cls) ann_literal =
Pos v Decided ('v literal) 'lvl
| Neg v | Propagated (‘v literal) 'cls

The syntax is similar to that of Standard ML and other typed functional pro-
gramming languages. For example, literal has two constructors, Pos and Neg, of
type ‘v = v literal. Informally, we write A, = A, and LT for positive, negative,
and decided literals, and —L for the negation of a literal, with —(— A) = A. The
simpler calculi do not use 'lvl or 'cls; they take 'lvl = 'cls = unit, a singleton type
whose unique value is denoted by ().

A v clause is a (finite) multiset over “v literal. Clauses themselves are often
stored in multisets of clauses. To ease reading, we write clauses using logical
symbols (e.g., L, L, and C'V D for ), {L}, and C & D). Given a set I of literals,
I E C is true if and only if C' and I share a literal. This is lifted to (multi)sets of
clauses: I F N «— YCeN. I E C. A set is satisfiable if there exists a (consistent)
set of literals I such that I E N. Finally, NE N’ «— VI.IFE N —IF N'.

3.2 DPLL with Backjumping

Nieuwenhuis et al. present CDCL as a set of transition rules on states. A state
is a pair (M, N), where M is the trail and N is the set of clauses to satisfy.
The trail is a list of annotated literals that represents the partial model under
construction. In accordance with Isabelle conventions for lists, the trail grows
on the left: Adding a literal L to M results in the new trail L - M, where the
list constructor - has type ‘a = ‘a list = 'a list. The concatenation of two lists is
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written M @ M’. To lighten the notation, we often build lists from elements and
other lists by simple juxtaposition, writing M LM’ for M @ L - M.

The core of the CDCL calculus is defined as a transition relation DPLL+BJ,
an extension of classical DPLL (Davis—Putnam—Logemann—Loveland) [11] with
nonchronological backtracking, or backjumping. We write S ==ppL4py S’ for
DPLL4+BJ S S’ The DPLL4BJ calculus consists of three rules, starting from an
initial state (e, N):

Propagate (M, N) =ppLLyBs (LM, N)
if N contains a clause C'V L such that M E = C and L is undefined in M
(i.e., neither M E L nor M E —L)

Backjump (M/LTM, N) =—DPLL+BJ (L/M, N)
if N contains a conflicting clause C' (i.e., M'LTM F = C) and there exists a
clause C' V L' such that N E C'V L, M E =C’ and L’ is undefined in M
but occurs in N or in M'Lt

Decide (]\4'7 N) =—DPLL+BJ (LTM, N)
if the atom of L belongs to N and is undefined in M

The Backjump rule is more general than necessary for capturing DPLL, where
it suffices to swap the leftmost decision literal. In this form, the rule can also
represent CDCL backjumping, if C' vV L’ is a new clause derived from N.

A natural representation of such rules in Isabelle is as an inductive predicate.
Isabelle’s inductive command lets us specify the transition rules as introduction
rules. From this specification, it produces elimination rules to perform a case
analysis on a hypothesis of the form DPLL+BJ S S”. In the interest of modularity,
we formalized the rules individually as their own predicates and combined them
to obtain DPLL+BJ:

inductive DPLL+BJ ::’st = ‘st = bool where
decide S S’ = DPLL+BJ S S’

| propagate S S’ = DPLL+BJ S S’

| backjump S S = DPLL+BJ S S’

The predicate operates on states (M, N) of type ’st. To allow for refinements,
this type is kept as a parameter of the calculus, using a locale that abstracts
over it and that provides basic operations to manipulate states:

locale dpll_state =
fixes
trail :: ‘st = ("v, unit, unit) ann_literal list and
clauses :: ‘st = "v clause multiset and

prepend_trail :: ("v, unit, unit) ann_literal = ‘st = 'st and ... and
remove_clause :: "v clause = st = 'st
assumes

NS L. trail (prepend_trail L S) =L - trail S and ... and
NS C. clauses (remove_cls C' S) = remove_mset C' (clauses S)

The predicates corresponding to the individual calculus rules are phrased in
terms of such an abstract state. For example:
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inductive decide :: ‘st = ‘st = bool where
undefined_lit L (trail S) = atm_of L € atms_of (clauses S) =
S’ ~ prepend_trail (Decided L ()) S => decide S S’

States are compared extensionally: S ~ S’ is true if the two states have identical
trails and clause sets, ignoring other fields. This flexibility is necessary to allow
refinements with more sophisticated data structures.

In addition, each rule is defined in its own locale, parameterized by addi-
tional side conditions. Complex calculi are built by inheriting and instantiating
locales providing the desired rules. Following a common idiom, the DPLL+BJ
calculus is distributed over two locales: The first locale, DPLL+BJ_ops, defines
the DPLL+-BJ calculus; the second locale, DPLL+BJ, extends it with an assump-
tion expressing a structural invariant over DPLL4BJ that is instantiated when
proving concrete properties later. This cannot be achieved with a single locale,
because definitions may not precede assumptions.

Theorem 1 (Termination [13, wf_dpll_bj]). The relation DPLL+BJ is well
founded.

Termination is proved by exhibiting a well-founded relation < such that
S’ < S whenever S =ppi4p) S’ Let S = (M, N) and S’ = (M, N') with the
decompositions

M =M,L! ... MLiMy M =M., L. ML"M

where My, ..., My, M,..., M/, contain no decision literals. Let V' be the num-
ber of distinct variables occurring in the initial clause set N. Now, let v M =
V — |M], indicating the number of unassigned variables in the trail M. Nieuw-
enhuis et al. define < such that S’ < § if (1) there exists i < n,n’ for which
[v M§,...,v M!_]=[vMoy,...,vM;_1] and v M/<v M; or (2) [v My,...,v M,]
is a strict prefix of [v My, ...,v M],]. This order is not to be confused with the
lexicographic order—we have [0] < € by condition (2), whereas e<e[0]. Yet the
authors justify well-foundedness by appealing to the well-foundedness of <, on
bounded lists over finite alphabets. In our proof, we clarify and simplify matters
by mapping states to lists [|MO| ey |Mn\], without appealing to v. Using the
standard lexicographic ordering, states become larger with each transition:

Propagate [k1,...,kn] <iex [K1,.. ., Kkn + 1]
Backjump  [k1,...,ky] <iex [k1,...,k; +1] withj<n
Decide k1, kn] <iex [k1s .-+ kn, O]

The lists corresponding to possible states are <-bounded by the list consisting
of V occurrences of V, thereby delimiting a finite domain D = {[k1,...,ky] |
ki,... kn,n <V} We take < to be the restriction of > to D. A variant of
this approach is to encode lists into a measure puy M = Y7 |M;| V"~" and let
S' < 8 « py M'>py M, building on the well-foundedness of > over bounded
sets of integers.
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A final state is a state from which no transitions are possible. Given a relation
—, we write ==*' for the right-restriction of its reflexive transitive closure to
final states.

Theorem 2 (Partial Correctness [13, full_dpll_backjump_final_state_from
[init_state]). If (e, N) =pp, .5y (M,N), then N is satisfiable if and only
if MEN.

We first prove structural invariants on arbitrary states (M’, N) reachable from
(e, N), namely: (1) each variable occurs at most once in M’; (2) if M’ = My LM,
where L is propagated, then M7, N F L. From these invariants, together with
the constraint that (M, N) is a final state, it is easy to prove the conclusion.

3.3 Classical DPLL

The locale machinery allows us to derive a classical DPLL [11] calculus from
DPLL with backjumping. This is achieved through a DPLL locale that restricts
the Backjump rule so that it performs only chronological backtracking:

Backtrack (MILTM, N) —DPLL (—L - M, N)
if there exists a conflicting clause and M’ contains no decided literals

Lemma 3 (Backtracking [13, backtrack_is_backjump]). Backtracking is a
special case of backjumping.

The Backjump rule depends on a conflict clause C and a clause C’ V L' that
justifies the propagation of L’. The conflict clause is specified by Backtrack. As for
C'VL/, given atrail M’ Lt M decomposable as M, L' M,, L} | --- My L} My where
My, ..., M, contain no decided literals, we can take C' = —L{ V-V —L,_1.

Consequently, the inclusion DPLL C DPLL+BJ holds. In Isabelle, this is
expressed as a locale instantiation: DPLL is made a sublocale of DPLL+BJ, with
a side condition restricting the application of the Backjump rule. The partial
correctness and termination theorems are inherited from the base locale. DPLL
instantiates the abstract state type ‘st with a concrete type of pairs. By dis-
charging the locale assumptions emerging with the sublocale command, we
also verify that these assumptions are consistent. Roughly:

locale DPLL =

begin
type_synonym ‘v state = ('v, unit, unit) ann_literal list x v clause multiset
inductive backtrack :: v state = "v state = bool where ...

end

sublocale DPLL C dpllstate fst snd (AL (M, N). (L-M,N)) ...
sublocale DPLL C DPLL+BJops ... (A\C' L S S’ DPLL.backtrack S S') ...
sublocale DPLL C DPLL+BJ ...
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If a conflict cannot be resolved by backtracking, we would like to have the
option of stopping even if some variables are undefined. A state (M, N) is con-
clusive if M E N or if N contains a conflicting clause and M contains no decided
literals. For DPLL, all final states are conclusive, but not all conclusive states
are final.

Theorem 4 (Partial Correctness [13, dpll_conclusive_state_correctness]).
If (¢, N) =fpL (M,N) and (M,N) is a conclusive state, N is satisfiable if
and only if M F N.

The theorem does not require stopping at the first conclusive state. In an
implementation, testing M E N can be expensive, so a solver might continue for
a while. In the worst case, it will stop in a final state—which exists by Theorem 1.

3.4 The CDCL Calculus

The abstract CDCL calculus extends DPLL4-BJ with a pair of rules for learning
new lemmas and forgetting old ones:

Learn (M, N) =cpcLnot (M, NW{C}) if N E C and each atom of C is in
N or M
Forget (M,N (] {C}) —>CDCL_NOT (M, N) ifNEC

In practice, the Learn rule is normally applied to clauses built exclusively from
atoms in M, because the learned clause is false in M. This property eventu-
ally guarantees that the learned clause is not redundant (e.g., it is not already
contained in N).

We call this calculus CDCL_NOT after Nieuwenhuis, Oliveras, and Tinelli.
Because of the locale parameters, it is strictly speaking a family of calculi. In
general, CDCL_NOT does not terminate, because it is possible to learn and forget
the same clause infinitely often. But for some instantiations of the parameters
with suitable restrictions on Learn and Forget, the calculus always terminates.
In particular, DPLL+BJ always terminates.

Theorem 5 (Termination [13, wf_cdclyor-no_learn_and_ forget_infinite_
chain]). Let C be an instance of the CDCL_NOT calculus (i.e., C C CDCL_NOT).
If C admits no infinite chains consisting exclusively of Learn and Forget tran-
sitions, then C is well founded.

In many SAT solvers, the only clauses that are ever learned are the ones used
for backtracking. If we restrict the learning so that it is always done immediately
before backjumping, we can be sure that some progress will be made between
a Learn and the next Learn or Forget. This idea is captured by the following
combined rule:

Learn+Backjump (M’'LYM, N) =>cpcL NOT_merge (L'M, N W {C’'V L'})
if C, LY, L', M, M’, N satisfy Backjump’s side conditions
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(a) Syntactic dependencies (b) Refinements

Fig. 1. Connections between the abstract calculi

The calculus variant that performs this rule instead of Learn or Backjump is called
CDCL_NOT _merge. Because a single Learn+Backjump transition corresponds to
two transitions in CDCL_NOT, the inclusion CDCL_NOT_merge € CDCL_NOT

does not hold. Instead, we have CDCL.NOT_merge € CDCL_.NOT™, which is
proved by simulation.

3.5 Restarts

Modern SAT solvers rely on a dynamic decision literal heuristic. They period-
ically restart the proof search to apply the effects of a changed heuristic. This
helps the calculus focus on a part of the initial clauses where it can make pro-
gress. Upon a restart, some learned clauses may be removed, and the trail is
reset to €. Since our calculus has a Forget rule, our Restart rule needs only to
clear the trail. Adding Restart to CDCL_NOT yields CDCL_NOT+restart. How-
ever, this calculus does not terminate, because Restart can be applied infinitely
often.

A working strategy is to gradually increase the number of transitions between
successive restarts. This is formalized via a locale parameterized by a base cal-
culus C and an unbounded function f :: N = N. Nieuwenhuis et al. require f to
be strictly increasing, but unboundedness is sufficient.

The extended calculus C+restartT is defined by the two rules

Restart (S, 7) = Ctrestartt ((6, N'),n+1)if § = (M',N')and m > fn
Finish (S,n) = Crestaret (S, n+ 1) if § =¥ 8’

The T in restartT reminds us that we count the number of transitions; in Sect. 4.4,
we will review an alternative strategy based on the number of conflicts or learned
clauses. Termination relies on a measure puy associated with C that may not
increase from restart to restart: If S =% §' =jestant S, then py 57 <
wy S. The measure may depend on V', the number of variables occurring in the
problem. We instantiated the locale parameter C with CDCL_NOT _merge and f
with the Luby sequence (1,1,2,1,1,2,4,...) [23], with the restriction that no
clause containing duplicate literals is ever learned, thereby bounding the number
of learnable clauses and hence the number of transitions taken by C.
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Figure 1(a) summarizes the syntactic dependencies between the calculi
reviewed in this section. An arrow C — B indicates that C is defined in
terms of B. Figure 1(b) presents the refinements between the calculi. An arrow
C = B indicates that we proved C C B* or some stronger result—either by
locale embedding (sublocale) or by simulating C’s behavior in terms of B.

4 A Refined CDCL Towards an Implementation

The CDCL_NOT calculus captures the essence of modern SAT solvers without
imposing a policy on when to apply specific rules. In particular, the Backjump
rule depends on a clause C'V L’ to justify the propagation of a literal, but does not
specify a procedure for coming up with this clause. For Automated Reasoning,
Weidenbach developed a calculus that is more specific in this respect, and closer
to existing implementations, while keeping many aspects unspecified [42]. This
calculus, CDCL_W, is also formalized in Isabelle and connected to CDCL_NOT.

4.1 The New CDCL Calculus

The CDCL_W calculus operates on states (M, N,U, k, D), where M is the trail;
N and U are the sets of initial and learned clauses, respectively; k is the decision
level (i.e., the number of decision literals in M); D is a conflict clause, or the
distinguished clause T if no conflict has been detected. In M, each decision
literal is annotated with a level (Decided L k or L*), and each propagated literal
is annotated with the clause that caused its propagation (Propagated L C or
LY). The level of a propagated literal L is the level of the closest decision literal
that follows it in the trail, or 0 if no such literal exists. The level of a clause is
the highest level of any of its literals (0 for L). The calculus assumes that N
contains no duplicate literals and never produces clauses containing duplicates.

The calculus starts in a state (e, N, 0,0, T). The following rules apply as long
as no conflict has been detected:

Propagate (M, N, U, k, T) =>cpcLw (LEVEM, N, U, k, T)
ifCVvLe NWwU, M E-C, and L is undefined in M
Conflict (M, N,U,k, T) =cpcLw (M,N,U,k,D)if De NoU and M E =D
Decide (M, N, U, k, T) =>cpcLw (L*T'M, N, U k+1,T)
if L is undefined in M and occurs in N
Restart (M, N,U, k, T) =>cpcLw (6, N,U,0,T) if M ¥ N
Forget (M, N, Uy {C},k, T) =cpcLw (M,N,U,k, T)
if M ¥ N and M contains no literal LE

Once a conflict clause is detected and stored in the state, the following rules col-
laborate to reduce it and backtrack, exploring a first unique implication point [2]:

Skip (LM, N, U, k, D) =>cocLw (M, N,U, k, D)
if D¢ {L, T} and —L does not occur in D

Resolve (LCVLM, N,U,k,DV —L) =>cpcLw (M,N,U,k,CUD) if D is of
level k
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Backtrack
(M'K**M,N,U, k, DV L) =>cpcL.w (LDVLM, N, UW{DV L},i,T)
if L is of level k and D is of level ¢

(In Resolve, C'U D is the same as C'V D, except that it avoids duplicating literals
present in both C' and D.) In combination, these three rules can be simulated
by the combined learning and nonchronological backjump rule Learn4+Backjump
from CDCL_NOT _merge.

Several structural invariants hold on all states reachable from an initial state,
including the following: The trail is consistent; the k& decided literals in the trail
are annotated with levels k to 1; and the clause annotating a propagated literal
of the trail is contained in N W U. Some of the invariants were not mentioned
in the textbook (e.g., whenever LY occurs in the trail, L is a literal of C);
formalization helped develop a better understanding of the data structure and
clarify the book.

Like CDCL_NOT, CDCL_W has a notion of conclusive state. A state (M, N, U,
k,D) is conclusive if D = T and M £ N or if D = 1 and N is unsatisfi-
able. The calculus always terminates but, without suitable strategy, it can stop
in an inconclusive state. Consider this derivation: (e, {A, B}, 0,0, T) = pecide
(ﬁA17 {A7 B}7 (Z)a 1, T) = Decide (ﬁB2 ﬁA17 {A7 B}7 (Z); 2, T) = Conflict (ﬁB2
- AY {A,B},0,2, A). The conflict cannot be processed by Skip or Resolve. The
calculus is blocked.

4.2 A Reasonable Strategy

To prove correctness, we assume a reasonable strategy: Propagate and Conflict are
preferred over Decide; Restart and Forget are not applied. (We will lift the restric-
tion on Restart and Forget in Sect.4.4.) The resulting calculus, CDCL_-W+stgy,
refines CDCL_W with the assumption that derivations are produced by a rea-
sonable strategy. This assumption is enough to ensure that the calculus can
backjump after detecting a conflict clause other than 1. The crucial invariant
is the existence of a literal with the highest level in any conflict, so that Resolve
can be applied.

Theorem 6 (Partial Correctness [13, full_cdcly _stgy_final_state_conclusive_
from_init_state]). If (¢, N, 0,0, T) :>E!DCL7W4_“gy S" and N contains no clauses
with duplicate literals, S’ is a conclusive state.

Once a conflict clause has been stored in the state, the clause is first reduced
by a chain of Skip and Resolve transitions. Then, there are two scenarios: (1) the
conflict is solved by a Backtrack, at which point the calculus may resume prop-
agating and deciding literals; (2) the reduced conflict is 1, meaning that N is
unsatisfiable—i.e., for unsatisfiable clause sets, the calculus generates a resolu-
tion refutation.

The CDCL_W+stgy calculus is designed to have respectable complexity
bounds. One of the reasons for this is that the same clause cannot be
learned twice:
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Theorem 7 (Relearning [13, cdcly_stgy distinct_mset_clauses]). Let
(6, N,0,0,T) =tpcLwistgy (M, N, U, k, D). No Backtrack transition is pos-
sible from the latter state causing the addition of a clause from N WU to U.

The formalization of this theorem posed some challenges. The informal proof in
Automated Reasoning is as follows (with slightly adapted notations):

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e.,
it reaches a state (M, N,U, k, DV L) where Backtrack is applicable and
DV L € NWU. More precisely, the state has the form (K, --- Ko KF M,
KM, N,U,k, DV L) where the K;, i>1 are propagated literals that
do not occur complemented in D, as for otherwise D cannot be of level
i. Furthermore, one of the K; is the complement of L. But now, because
DV L is false in K,,--- Ko KEMy K My and DV L € N WU instead
of deciding K¥ the literal L should be propagated by a reasonable strat-
egy. A contradiction. Note that none of the K; can be annotated with
DV L. O

Many details are missing. To find the contradiction, we must show that there
exists a state in the derivation with the trail My K**1M;, and such that DV L €
N & U. The textbook does not explain why such a state is guaranteed to exist.
Moreover, inductive reasoning is hidden under the ellipsis notation (K, --- K3).
Such a high level proof might be suitable for humans, but the details are needed
in Isabelle, and Sledgehammer alone cannot fill in such large gaps, especially if
induction is needed. The full formal proof is over 700 lines long and was among
the most difficult proofs we carried out.

Using this theorem and assuming that only backjumping has a cost, we get
a complexity of O(3V), where V is the number of different propositional vari-
ables. If Conflict is always preferred over Propagate, the learned clause in never
redundant in the sense of ordered resolution [42], yielding a complexity bound
of O(2"). Formalizing this is planned for future work.

In Automated Reasoning, and in our formalization, Theorem 7 is also used
to establish the termination of CDCL_W+-stgy. However, the argument for the
termination of CDCL_NOT also applies to CDCL_W irrespective of the strat-
egy, a stronger result. To lift this result, we must show that CDCL_W refines
CDCL-NOT.

4.3 Connection with Abstract CDCL

It is interesting to show that CDCL_W refines CDCL_NOT _merge, to establish
beyond doubt that CDCL_W is a CDCL calculus and to lift the termination
proof and any other general results about CDCL_NOT _merge. The states are
easy to connect: We interpret a CDCL_W tuple (M, N, U, k, C') as a CDCL.NOT
pair (M, N).

The main difficulty is to relate the low-level conflict-related CDCL_W rules to
their high-level counterparts. Our solution is to introduce an intermediate calcu-
lus, called CDCL_W_merge, that combines consecutive low-level transitions into
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(a) Syntactic dependencies (b) Refinements

Fig. 2. Connections involving the refined calculi

a single transition. This calculus refines both CDCL-W and CDCL_NOT _merge
and is sufficiently similar to CDCL_W so that we can transfer termination and
other properties from CDCL_NOT _merge to CDCL_W through it.

Whenever the CDCL_W calculus performs a low-level sequence of transitions
of the form Conflict (Skip | Resolve)* Backtrack’, the CDCL_W_merge calculus per-
forms a single transition of a new rule that subsumes all four low-level rules:

Reduce+Maybe_Backtrack S =>cpctwmerge S

: N . / s *! "
if S Conflict 5 Skip | Resolve | Backtrack S

When simulating CDCL_W_merge in terms of CDCL_NOT, two interesting
scenarios arise. In the first case, Reduce+Maybe_Backtrack’s behavior com-
prises a backtrack. The rule can then be simulated using CDCL_NOT_merge’s
Learn+Backjump rule. The second scenario arises when the conflict clause is
reduced to L, leading to a conclusive final state. Then, Reduce+Maybe_Backtrack
has no counterpart in CDCL_NOT_merge. More formally, the two calculi are
related as follows: If S ==cpcLwWmerge S, €ither S =cpcL NOT_merge S’ Or S is
a conclusive state. Since CDCL_NOT _merge is well founded, so is CDCL_W_merge.
This implies that CDCL_W without Restart terminates.

Since CDCL_W_merge is mostly a rephrasing of CDCL_W, it makes sense
to restrict CDCL_W_merge to a reasonable strategy that prefers Propagate and
Reduce+Maybe_Backtrack over Decide, yielding CDCL_W_merge+stgy. The two
strategy-restricted calculi have the same end-to-end behavior:

*! ’ *! /
S = CDCLW._mergetstgy O < S =CDCLW-tstgy ©

4.4 A Strategy with Restart and Forget

We could use the same strategy for restarts as in Sect. 3.5, but we prefer to exploit
Theorem 7, which asserts that no relearning is possible. Since only finitely many
different duplicate-free clauses can ever be learned, it is sufficient to increase the
number of learned clauses between two restarts to obtain termination. This cri-
terion is the norm in existing implementations. The lower bound on the number
of learned clauses is given by an unbounded function f :: N = N. In addition, we
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allow an arbitrary subset of the learned clauses to be forgotten upon a restart
but otherwise forbid Forget. The calculus C+restartL that realizes these ideas is
defined by the two rules

Restart (S,1) = cirestaret (8", n+1)
if $ =¢85 = Restart 5" = Forget O and |learned S’| — |learned S| > fn

Finish (5,1n) = cyrestaret (5", 0+ 1) if § =F P!

We formally proved that CDCL_W+stgy+restartL is partially correct and ter-
minating. Figure 2 summarizes the situation, following the conventions of Fig. 1.

4.5 Incremental Solving

SMT solvers combine a SAT solver with theory solvers (e.g., for uninterpreted
functions and linear arithmetic). The main loop runs the SAT solver on a set
of clauses. If the SAT solver answers “unsatisfiable,” the SMT solver is done;
otherwise, the main loop asks the theory solvers to provide further, theory-
motivated clauses to exclude the current candidate model and force the SAT
solver to search for another one. This design crucially relies on incremental SAT
solving: the possibility of adding new clauses to the clause set C' of a conclusive
satisfiable state and of continuing from there.

As a step towards formalizing SMT, we designed a calculus CDCL_W+stgy+
incr that provides incremental solving on top of CDCL_W+stgy:

Add_Nonconflicto (M N, U, k, T) —>CDCL W+stgy+|ncr S’
ifMEF-Cand (M,NW {C} Uk, T) :>CDCL Wstgy S’

Add_Conflictc (M'LM, N,U, k, T) =>cDCL W-tstgy+incr S
if LM E—~C,—LeC, M contains no literal of C, L is of level 7 in LM, and
(LM, Nw {0}7 U’ i’ C) :>é!DCL,W+stgy S

We first run the CDCL_W+stgy calculus on a set of clauses N, as usual. If
N is satisfiable, we can add a nonempty, duplicate-free clause C' to the set of

clauses and apply one of the two above rules. These rules adjust the state and
relaunch CDCL_W+-stgy.

Theorem 8 (Partial Correctness [13, incremental_conclusive_state]). If S
is a conclusive state and S ==cpcL Wstgy+iner S', then S’ is a conclusive state.

The key is to prove that the structural invariants that hold for CDCL_W+stgy
still hold after adding the new clause to the state. The proof is easy because we
can reuse the invariants we have already proved about CDCL_W+stgy.

5 An Implementation of CDCL

The previous sections presented variants of DPLL and CDCL as parameter-
ized transition systems, formalized using locales and inductive predicates. The
final link in our refinement chain is a deterministic SAT solver that implements
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CDCL_W-stgy, expressed as a functional program in Isabelle. When implement-
ing a calculus, we must make many decisions regarding the data structures
and the order of rule applications. We choose to represent states by tuples
(M, N, U, k, D), where propositional variables are coded as natural numbers and
multisets as lists.! Each transition rule in CDCL_W+stgy is implemented by a
corresponding function. For example, the function that implements the Propa-
gate rule is given below:

definition dopropagatestep :: "v solver_state = 'v solver_state where
dopropagatestep S =
(case S of
(M,N,U,k,T) =
(case find firstunit.propagation M (N @QU) of
Some (L, C) = (Propagated LC - M, N, U, k, T)
| None = 9)
| S=29)

The main loop invokes the functions for the rules, looking for conflicts before
propagating literals. It is a recursive program, specified using the function
command [21]. For Isabelle to accept the recursive definition of the main loop
as a terminating program, we must discharge a proof obligation stating that
its call graph is well founded. This is a priori unprovable: The solver is not
guaranteed to terminate if starting in an arbitrary state. To work around this,
we restrict the input by introducing a subset type that contains a strong enough
structural invariant, including the duplicate-freedom of all the lists in the data
structure. With the invariant in place, it is easy to show that the call graph is
included in CDCL_W+-stgy, allowing us to reuse its termination argument. The
partial correctness theorem can then be lifted, meaning that the SAT solver is
a decision procedure for propositional logic.

The final step is to extract running code. Using Isabelle’s code generator
[15], we can translate the program into Haskell, OCaml, Scala, or Standard ML
code. The resulting program is syntactically analogous to the source program in
Isabelle (including its dependencies) and uses the target language’s facilities for
datatypes and recursive functions with pattern matching. Invariants on subset
types are ignored; when invoking the solver from outside Isabelle, the caller is
responsible for ensuring that the input satisfies the invariant. The entire program
is about 700 lines long in OCaml. It is not efficient, due to its extensive reliance
on lists, but it satisfies the need for a proof of concept.

6 Discussion and Related Work

Our formalization consists of about 28000 lines of Isabelle text. It was done
over a period of 10 months almost entirely by Fleury, who also taught himself

! We have started formalizing the two-watched-literal optimization [28] but have yet to
connect it with our SAT solver implementation. The README.md file in our repository
is frequently updated to mention the latest developments [13].
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Isabelle during that time. It covers nearly all of the metatheoretical material
of Sects. 2.6 to 2.11 of Automated Reasoning and Sect.2 of Nieuwenhuis et al.,
including normal form transformations and ground unordered resolution [12].

It is difficult to quantify the cost of formalization as opposed to paper proofs.
For a sketchy paper proof, formalization may take an arbitrarily long time;
indeed, Weidenbach’s nine-line proof of Theorem 7 took 700 lines of Isabelle.
In contrast, given a very detailed paper proof, one can obtain a formalization
in less time than it took to write the paper proof [44]. A common hurdle to
formalization is often the lack of suitable libraries. For CDCL, we spent con-
siderable time adding definitions, lemmas, and automation hints to Isabelle’s
multiset library but otherwise did not need any special libraries. We also found
that organizing the proof at a high level—especially locale engineering—is more
challenging than discharging proof obligations.

Given the varied level of formality of the proofs in the draft of Automated
Reasoning, it is unlikely that Fleury will ever catch up with Weidenbach. But the
insights arising from formalization have already enriched the textbook in many
ways. The most damning mistake was in the proof of the resolution calculus
without reductions, where the completeness theorem was stated with “N =—*
{L1}” instead of “N =—* N’ and L € N'.” For CDCL, the main issues were that
key invariants were omitted and some proofs were too sketchy to be accessible
to the intended audience of the book.

For discharging proof obligations, we relied extensively on Sledgehammer,
including its facility for generating detailed Isar proofs [3] and the SMT-based
smt tactic [9]. We found the SMT solver CVC4 particularly useful, corroborating
earlier empirical evaluations [36]. In contrast, the counterexample generators
Nitpick and Quickcheck [5] were seldom of any use. We often discovered flawed
conjectures by seeing Sledgehammer fail to solve an easy-looking problem. As one
example among many, we lost perhaps one hour working from the hypothesis that
converting a set to a multiset and back is the identity: set_mset (mset_set A) = A.
Because Isabelle multisets are finite, the property does not hold for infinite sets
A; yet Nitpick and Quickcheck fail to find a counterexample, because they try
only finite sets as values for A.

Formalizing logic in a proof assistant is an enticing, if somewhat self-
referential, prospect. Shankar’s proof of Godel’s first incompleteness theo-
rem [37], Harrison’s formalization of basic first-order model theory [16], and
Margetson and Ridge’s formalized completeness and cut elimination theorems
[24] are among the first results in this area. Recently, SAT solvers have been
formalized in proof assistants. Marié¢ [25,26] verified a CDCL-based SAT solver
in Isabelle/HOL, including two watched literals, as a purely functional program.
The solver is monolithic, which complicates extensions. In addition, he formal-
ized the abstract CDCL calculus by Nieuwenhuis et al. Mari¢’s methodology is
quite different from ours, without the use of refinements, inductive predicates,
locales, or even Sledgehammer. In his Ph.D. thesis, Lescuyer [22] presents the
formalization of the CDCL calculus and the core of an SMT solver in Coq. He
also developed a reflexive DPLIL-based SAT solver for Coq, which can be used
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as a tactic in the proof assistant. Another formalization of a CDCL-based SAT
solver, including termination but excluding two watched literals, is by Shankar
and Vaucher in PVS [38]. Most of this work was done by Vaucher during a
two-month internship, an impressive achievement. Finally, Oe et al. [33] verified
an imperative and fairly efficient CDCL-based SAT solver, expressed using the
Guru language for verified programming. Optimized data structures are used,
including for two watched literals and conflict analysis. However, termination is
not guaranteed, and model soundness is achieved through a run-time check and
not proved.

7 Conclusion

The advantages of computer-checked metatheory are well known from program-
ming language research, where papers are often accompanied by formalizations
and proof assistants are used in the classroom [30,35]. This paper, like its pre-
decessors [6,8], reported on some steps we have taken to apply these methods to
automated reasoning. Compared with other application areas of proof assistants,
the proof obligations are manageable, and little background theory is required.

We presented a formal framework for DPLL and CDCL in Isabelle/HOL,
covering the ground between an abstract calculus and a certified SAT solver.
Our framework paves the way for further formalization of metatheoretical results.
We intend to keep following Automated Reasoning, including its generalization
of ordered ground resolution with CDCL, culminating with a formalization of
the full superposition calculus and extensions. Thereby, we aim at demonstrating
that interactive theorem proving is mature enough to be of use to practitioners
in automated reasoning, and we hope to help them by developing the necessary
libraries and methodology.

The CDCL algorithm, and its implementation in highly efficient SAT solvers,
is one of the jewels of computer science. To quote Knuth [20, p. iv], “The story
of satisfiability is the tale of a triumph of software engineering blended with
rich doses of beautiful mathematics.” What fascinates us about CDCL is not
only how or how well it works, but also why it works so well. Knuth’s remark is
accurate, but it is not the whole story.

Acknowledgment. Stephan Merz made this work possible. Dmitriy Traytel remotely
cosupervised Fleury’s M.Sc. thesis and provided ample advice on using Isabelle (as
opposed to developing it). Andrei Popescu gave us his permission to reuse, in a slightly
adapted form, the succinct description of locales he cowrote on a different occasion [6].
Simon Cruanes, Anders Schlichtkrull, Mark Summerfield, and Dmitriy Traytel sug-
gested textual improvements.
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Abstract. In theory and practice of modern SAT solving, clause-
elimination procedures are essential for simplifying formulas in conjunc-
tive normal form (CNF). Such procedures identify redundant clauses and
faithfully remove them, either before solving in a preprocessing phase or
during solving, resulting in a considerable speed up of the SAT solver.
A wide number of effective clause-elimination procedures is based on
the clause-redundancy property called blocked clauses. For checking if a
clause C is blocked in a formula F', only those clauses of F' that are
resolvable with C' have to be considered. Hence, the blocked-clauses
redundancy property can be said to be local. In this paper, we argue
that the established definitions of blocked clauses are not in their most
general form. We introduce more powerful generalizations, called set-
blocked clauses and super-blocked clauses, respectively. Both can still be
checked locally, and for the latter it can even be shown that it is the
most general local redundancy property. Furthermore, we relate these
new notions to existing clause-redundancy properties and give a detailed
complexity analysis.

1 Introduction

Over the last two decades, we have seen enormous progress in the performance
of SAT solvers, i.e., tools for solving the satisfiability problem of propositional
logic (SAT) [1]. As a consequence, SAT solvers have become attractive reasoning
engines in many user domains like the verification of hardware and software [2]
as well as in the backends of other reasoning tools like SMT solvers [3] or even
first-order theorem provers [4]. In such applications, however, SAT solvers often
reach their limits, motivating the quest for more efficient SAT techniques.
Clause-elimination procedures which simplify formulas in conjunctive nor-
mal form (CNF) play a crucial role regarding the performance of modern
SAT solvers [5-12]. Either before solving (“preprocessing”) or during solving
(“inprocessing” ), such procedures identify redundant clauses and remove them
without changing the satisfiability or unsatisfiability of the formula [6,7].

This work has been supported by the Austrian Science Fund (FWF) under projects
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An important redundancy property is that of blocked clauses [13,14]. Infor-
mally, a clause C' is blocked in a CNF-formula F' if it contains a literal [ such
that all possible resolvents of C' on [ with clauses from F' are tautologies. As
only the resolution environment of a clause C' and not the whole formula F' has
to be considered to check whether C' is blocked, the blocked-clauses condition is
said to be a local redundancy property.

Blocked clauses have not only shown to be important for speeding up the
solving process [8,14], but they also yield the basis for blocked-clause decompo-
sition which splits a CNF into two parts such that blocked-clause elimination can
solve it. Blocked-clause decomposition [9] is successfully used for gate extraction,
for efficiently finding backbone variables, and for the detection of implied binary
equivalences [10,11]. The winner of the SATRace 2015 competition, the solver
abcdSAT [12], uses blocked-clause decomposition as core technology.

These success stories motivate us to have a closer look at local redundancy
properties in general, and at blocked clauses in particular. We show in this
paper that the established definitions of local clause redundancy properties like
blocked clauses are not in their most general form and introduce more powerful
generalizations, called set-blocked clauses and super-blocked clauses. Both can
still be checked locally and for the latter we show that it is actually the most
general local redundancy property. Furthermore, we relate these new notions to
existing clause redundancy properties and give a detailed complexity analysis.

Our paper is structured as follows. After introducing the necessary prelimi-
naries in Sect. 2, we present some observations on blocked clauses in Sect. 3. In
Sect. 4, we introduce the notion of semantic blocking and show that it is the
most general local redundancy property. After this, the syntax-based notions of
set-blocking and super-blocking are introduced in Sect.5, where we also relate
the different redundancy properties to each other and show that super-blocking
coincides with semantic blocking. In Sect. 6, we give a detailed complexity analy-
sis and in Sect. 7, we outline the relationship to existing redundancy properties
before concluding with an outlook to future work in Sect. 8.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF) which
are defined as follows. A literal is either a Boolean variable = (a positive literal)
or the negation —z of a variable x (a negative literal). For a literal I, we define
l=-zifl =z and [ = z if | = =z. Accordingly, for a set L of literals, we define
L=1{l|l€ L} A clause is a disjunction of literals. A formula is a conjunction
of clauses. A clause can be seen as a set of literals and a formula as a set of
clauses. A tautology is a clause that contains both [ and [ for some literal I. For a
literal, clause, or formula F', var(F') denotes the variables in F'. For convenience,
we treat var(F') as a variable if F' is a literal, and as a set of variables otherwise.

An assignment over a set V of variables is a function that assigns to every
variable in V either 1 or 0. If for an assignment 7 and a formula F, the domain
of 7 coincides with var(F), then 7 is said to be an assignment of F. Given an
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assignment 7 and a literal [, 7; is the assignment obtained from 7 by interchanging
(“flipping”) the truth value of [, i.e., by defining 7;(v) = 1 — 7(v) if v = var(l)
and 7;(v) = 7(v) otherwise.

A literal [ is satisfied by an assignment 7 if [ is positive and 7(var(l)) = 1
or if it is negative and 7(var(l)) = 0. A clause is satisfied by an assignment 7
if it contains a literal that is satisfied by 7. Finally, a formula is satisfied by an
assignment 7 if all of its clauses are satisfied by 7. A formula is satisfiable if there
exists an assignment that satisfies it. Two formulas are logically equivalent if they
are satisfied by the same assignments. Two formulas F' and F’ are satisfiability
equivalent if F' is satisfiable if and only if F’ is satisfiable.

Given two clauses C; and Cs with literal I € C; and [ € Cs, the clause
C = (Cy \ {I}) U (C2 \ {I}) is called the resolvent of C; and Cy on . Given a
formula F' and a clause C, the resolution environment, envp(C), of C in F is
the set of all clauses in F' that can be resolved with C:

envp(C) = {C’" € F |3 € C' such that | € C}.

The variables in var(C) are referred to as local variables and the variables in
var(envp(C)) \ var(C) are the external variables, denoted by extr(C').

Next, we formally introduce the redundancy of clauses. Intuitively, a clause
C' is redundant w.r.t. a formula F' if neither its addition to F' nor its removal
from F' changes the satisfiability or unsatisfiability of F'.

Definition 1. A clause C' is redundant w.r.t. a formula F if F\ {C} and
F U {C} are satisfiability equivalent. A redundancy property is a set of pairs
(F, C) where C is redundant w.r.t. F. Finally, for two redundancy properties P,
and Po, P1 is more general than Po if Po C Py. Accordingly, P1 is strictly more
general than Po if Py C P;.

As an example, consider the formula F' = {(a V b), (—a V =b)}. The clause C' =
(—a V —b) is redundant w.r.t. F since F'\ {C} and F U {C} are satisfiability
equivalent (although they are not logically equivalent). Furthermore, the set
{(F,C) | F is a formula and C is a tautology} is a redundancy property since
for every formula F' and every tautology C, F'\ {C} is satisfiability equivalent
to FU{C}.

Also note that C is not redundant w.r.t. F if and only if F'\ {C'} is satisfiable
and F' U {C?} is unsatisfiable. Redundancy properties as defined above yield not
only the basis for clause-elimination but also for clause-addition procedures [7].

3 Observations on Blocked Clauses

In the following, we recapitulate the notion of blocked clauses due to Heule et al. [6]
which we will refer to as literal-blocked clauses in the rest of the paper. Motivated
by the examples given in this section, we will generalize this notion of blocking to
more powerful redundancy properties.
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bV -z

ztVbV-a—aVb
T -bVa

Fig. 1. The clause (a V b) from Example 3 and its resolution environment.

Definition 2. Given a formula F, a clause C, and a literal | € C, [ blocks C'
in F if for each clause C" € F with 1 € C", CU(C'\{l}) is a tautology. A clause
C is literal-blocked in F' if there exists a literal that blocks C in F. By BC we
denote the set {(F,C) | C is literal-blocked in F}.

Ezample 1. Consider the formula F = {(-a V ¢),(=b V —a)} and the clause
C = (a V). The literal b blocks C' in F since the only clause in F' that contains
—b is the clause C" = (=bV —a), and CU (C'\ {I}) = (aV bV —a) is a tautology.

Proposition 1. BC is a redundancy property.

Proposition 1 paraphrases results from [6] and actually follows from results in
this paper (cf. Proposition 6 and Corollary 9). Intuitively, if an assignment T
satisfies F'\ {C} but falsifies C' which is blocked by literal I, then 7; satisfies C.
The condition that [ blocks C' thereby guarantees that 7; does not falsify any
other clauses in F. Hence, 7; satisfies F'U {C} and thus F'\ {C} and F U {C}
are satisfiability equivalent. Next, we illustrate how a satisfying assignment of
F U{C?} can be obtained from one of F' \ {C} [6]. This approach is used when
blocked clauses have been removed from a formula during pre- or inprocessing.

Ezample 2. Consider again the formula F' = {(-aVe¢), (=bV —a)} and the clause
C = (a V) from Example 1. We already know that b blocks C in F. So let 7 be
the assignment that falsifies the variables a, b, and c. Clearly, 7 satisfies F' but
falsifies C'. Now, the assignment 73, obtained from 7 by flipping the truth value
of b, satisfies not only C' but also all clauses of F: The only clause that could
have been falsified by flipping the truth value of b is (=b V —a), but since —a is
still satisfied by 7, we get that 7, satisfies F' U {C}. O

Literal-blocked clauses generalize many other redundancy properties like pure
literal or tautology [6]. One of their particularly important properties is that for
testing if some clause C' is literal-blocked in a formula F' it suffices to consider
only those clauses of F' that can be resolved with C, i.e., the clauses in the reso-
lution environment, envp(C), of C. This raises the question whether there exist
redundant clauses which can be identified by considering only their resolution
environment, but which are not literal-blocked. This is indeed the case:

Ezample 3. Let C = (a V b) and F an arbitrary formula with the resolution
environment envp(C) = {(x VbV —a), (b V —x),(-bV a)} (see Fig. 1). The
clause C' is not literal-blocked in F' but redundant: Suppose that there exists an
assignment 7 that satisfies F' but falsifies C. Then, 7 must satisfy either x or —z.
If 7(z) = 1, then C can be satisfied by flipping the truth value of a, resulting in
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assignment 7/ = 7,. Thereby, 7/(z) = 1 guarantees that the clause (x VbV —a)
stays satisfied. In contrast, if 7(x) = 0, we can satisfy C' by the assignment 7",
obtained from 7 by flipping the truth values of both a and b: Then, 7”(b) = 1
guarantees that (x V bV —a) stays satisfied whereas 7”/(z) = 0 and 7"(a) = 1
guarantee that both (=bV —x) and (—bV a) stay satisfied. Since flipping the truth
values of literals in C' does not affect the truth of clauses outside the resolution
environment, envp(C), we obtain in both cases a satisfying assignment of F. O

4 A Semantic Notion of Blocking

In the examples of the preceding section, when arguing that a clause C' is redun-
dant w.r.t. some formula F', we showed that every assignment 7 that satisfies
F\ {C}, but falsifies C, can be turned into a satisfying assignment 7’ of FFU{C'}
by flipping the truth values of certain literals in C. Since this flipping only affects
the truth of clauses in the resolution environment, envp(C), of C, it suffices to
make sure that 7/ satisfies envp(C) in order to guarantee that it satisfies FU{C'}.
This naturally leads to the following semantic notion of blocking:

Definition 3. A clause C is semantically blocked in a formula F if, for every
satisfying assignment T of envp(C), there exists a satisfying assignment 7' of
envp(C)U{C} such that 7(v) = 7' (v) for all v ¢ var(C). By SEMpgc we denote
the set {(F,C) | C is semantically blocked in F'}.

Note that clause C' in Example 3 is semantically blocked in F'. Note also that if
the resolution environment, envi(C), of a clause C' is not satisfiable, then C' is
semantically blocked.

Theorem 2. SEMgc is a redundancy property.

Proof. Let F be a formula and C a clause that is semantically blocked in F.
We show that F'U{C} is satisfiable if F'\ {C'} is satisfiable. Suppose that there
exists a satisfying assignment 7 of F'\ {C'}. We proceed by a case distinction.

CASE 1: C contains a literal | with var(l) ¢ var(F \ {C}). Then, 7 can be easily
extended to a satisfying assignment 7/ of F'U {C'} that satisfies .

CASE 2: var(C) C var(F \ {C}). In this case, 7 is an assignment of F U {C'}.
Suppose that 7 falsifies C'. It follows that C' is not a tautology and so it does not
contain a literal [ such that [ € C, hence C ¢ envp(C). Thus, envg(C) C F\{C}
and so 7 satisfies envp(C). Since C is semantically blocked in F, there exists
a satisfying assignment 7' of envp(C) U {C} such that 7(v) = 7/(v) for all
v ¢ var(C). Now, since 7/'(v) differs from 7 only on variables in var(C), the only
clauses in F' that could possibly be falsified by 7/ are those with a literal [ such
that [ € C. But those are exactly the clauses in envp(C), so 7’ satisfies FU{C'}.

Hence, C' is redundant w.r.t. F' and thus SEMgc is a redundancy property. O



50 B. Kiesl et al.

If a clause C is redundant w.r.t. some formula F' and this redundancy can be
identified by considering only its resolution environment in F', then we expect
C to be redundant w.r.t. every formula F’ in which C has the same resolution
environment as in F. This leads us to the notion of local redundancy properties.

Definition 4. A redundancy property P is local if, for any two formulas F, F’
and every clause C with envp(C) = envp (C), either {(F,C), (F',C)} C P or
{(F,C),(F',C)} NP =0.

Theorem 3. SEMgc is a local redundancy property.

Preparatory for showing that SEMgc is actually the most general local redun-
dancy property (cf. Theorem 5 below), we first prove the following lemma.

Lemma 4. Let F be a formula and C' a clause that is not semantically blocked
in F. Then, there exists a formula F" with envp/ (C) = envp(C) such that C is
not redundant w.r.t. F'.

Proof. Let F be a formula and C a clause that is not semantically blocked in
F, i.e., there exists a satisfying assignment 7 of envp(C) but there does not
exist a satisfying assignment 7’ of envp(C) U {C} such that 7(v) = 7/(v) for all
v ¢ var(C). We define the set T of (unit) clauses as follows:

T={()|v ¢ var(C),7(v) =1} U{(-w) | v & var(C),7(v) = 0}.

We furthermore define F’ = envp(C)U{C}UT. Clearly, since C can be falsified
and since the clauses in T' contain only literals with variables that do not occur
in C, we get that neither C nor any clause of T contains a literal [ with [ € C.
We thus have that envp (C) = envp(C).

Now observe the following: The assignment 7 satisfies envp(C') and, clearly,
also T', hence F’\ {C'} is satisfiable. Furthermore, by the construction of T, every
assignment that satisfies F must agree with 7 on all variables v ¢ var(C). Now,
since there does not exist a satisfying assignment 7/ of envr(C)U{C} such that
7(v) = 7'(v) for all v ¢ var(C), it follows that F’ U {C'} = F’ is unsatisfiable.
Therefore, F' \ {C} and F’ U {C?} are not satisfiability equivalent and thus C' is
not redundant w.r.t. F”. O

Theorem 5. SEMgc is the most general local redundancy property.

Proof. Suppose there exists a local redundancy property P that is strictly more
general than SEMpc. Then, there exists some pair (F,C) such that (F,C) €
P but (F,C) ¢ SEMgc. Now, since (F,C) ¢ SEMgc it follows by Lemma 4
that there exists a formula F’ with envp/ (C) = envp(C) such that C is not
redundant w.r.t. F’. But since P is local and envp/(C) = envp(C), it follows
that (F’,C) € P, hence P is not a redundancy property, a contradiction. a
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5 Super-Blocked Clauses

In the following, we introduce syntax-based notions of blocking which strictly
generalize the original notion of literal-blocking as given in Definition 2. We will
first introduce the notion of set-blocking which is already a strict generalization
of literal-blocking. This notion will then be further generalized to the so-called
notion of super-blocking which, as we will prove, coincides with the notion of
semantic blocking given in Definition 3.

Definition 5. Let F be a formula and C a clause. A non-empty set L C C
blocks C in F if, for each clause C' € F with C'NL # (), (C\ LYULUC" is
a tautology. We say that a clause is set-blocked in F' if there exists a set that
blocks it. We write SETgc to refer to {(F,C) | C is set-blocked inF'}.

Ezample 4. Let C = (aVb) and F = {(-aVb),(=bVa)}. Then, C is set-blocked
by L = {a, b} but not literal-blocked in F'. O

Given an assignment 7 that satisfies F'\ {C} but falsifies C, the existence of
a blocking set L guarantees that a satisfying assignment 7/ of F'U {C} can be
obtained from 7 by flipping the truth values of the literals in L. Since (C'\ L) U
LU is a tautology for every C’ in the resolution environment of C, it holds
that (i) C’ itself is a tautology and thus satisfied by 7/, or (ii) C’ contains a
literal of L which is satisfied by 7' since its truth value is flipped, or (iii) C”
contains a literal [ which is satisfied since [ € C' is falsified by 7 and the truth
value of [ is not flipped. Hence, 7’ satisfies U {C'}.

Proposition 6. Set-blocking is strictly more general than literal-blocking, i.e.,
it holds that BC C SETgc.

Proof. Example 4 shows that BC # SETgc. It remains to show that BC C SETgc.
Let F be a formula and C' a literal-blocked clause in F'. We distinguish two cases:

Case 1: C is a tautology. Then, 1,1 € C for some literal . Let L = {I,1}. It
follows that (C'\ L) U LU C" is a tautology for every C’ with C' N L # 0.

CAsE 2: C'is not a tautology. Since C' is literal-blocked, there exists some literal
I € C such that for every clause ¢’ € F with [ € C’, CU(C’\ {I}) is a tautology.
Let L = {I} and let C' € F with C'NL # (). Then, as C’ contains I, CU(C"\ {I})
is a tautology. Since C' is not a tautology, C’ contains some literal I’ # [ such that
I' € CU(C'\{l}). Now, since I’ # | we have that I’ # [ and thus I’ € (C\{I})UC".
But then, (C'\ L) U LUC" is a tautology.

Thus, C' is set-blocked in F' and therefore BC C SETgc. a

We already argued slightly informally why set-blocked clauses are redundant.
However, the fact that SETgc is a redundancy property follows directly from the
properties of super-blocked clauses, which we introduce next. In the following, for
a formula F' and an assignment 7, we denote by F'|7 the set of clauses obtained
from F' by removing all clauses that are satisfied by 7. Recall that the external
variables, extr(C), are those that are contained in envp(C') but not in C.
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Definition 6. A clause C is super-blocked in a formula F if, for every assign-

ment T over the external variables, extp(C), C is set-blocked in F|r. We write
SUPgc for the set {(F,C) | C is super-blocked in F'}.

For instance, the clause C' in Example 3 is not set-blocked but super-blocked in
F since it is set-blocked in F|r and F|7’ for 7(z) = 1 and 7/(z) = 0. Again,
the idea is that from an assignment 7 that satisfies F'\ {C} but falsifies C, a
satisfying assignment 7/ of FU{C} can be obtained by flipping the truth values
of certain literals of C. However, for making sure that the flipping does not falsify
any clauses C” in the resolution environment of C, also the truth values of literals
[ € C" with var(l) € extp(C) are considered. This is in contrast to set-blocking,
where only the truth values of literals whose variables are contained in var(C)
are considered. Finally, note that if a clause is set-blocked in F, then it is also
set-blocked in every F’ C F and thus in every F|r. Hence we get:

Proposition 7. Super-blocking is strictly more general than set-blocking, i.e.,
it holds that SETgc C SUPgc.

Theorem 8. A clause is super-blocked in a formula F if and only if it is seman-
tically blocked in F', i.e., it holds that SUPgc = SEMpc.

Proof. For the “only if” direction, let F' be a formula, C' a clause that is super-
blocked in F, and 7 a satisfying assignment of envp(C). If 7 satisfies C, or C
contains a literal | with var(l) ¢ var(F) (implying that 7 can be straightfor-
wardly extended to a satisfying assignment of C), then it trivially follows that
C' is semantically blocked in F. Assume thus that var(C) C var(F) and that
7 does not satisfy C. Furthermore, let 75 be obtained from 7 by restricting it
to the external variables extr(C'). Since C' is super-blocked in F', there exists a
non-empty set L C C that blocks C in F|rg. Consider the following assignment:

0 if-vel,
(v) =<1 ifvelL,

7(v) otherwise.

Since 7 falsifies C' there is no literal [ with I,] € L, hence 7’ is well-defined.
Clearly, 7/ satisfies C' and 7/(v) = 7(v) for all v ¢ var(C). It remains to show
that 7/ satisfies envp(C). Since 7’ differs from 7 only on the truth values of
variables in var(L), 7/ can only falsify clauses containing a literal [ with [ € L.
Let C' be such a clause. We proceed by a case distinction.

CASE 1: €' contains an external literal [ (i.e., var(l) € extp(C')) that is satisfied
by 7. Then, since var(l) ¢ var(C) and thus [ ¢ L, it follows that 7/ agrees with
7 on the truth value of I and thus [ is satisfied by 7’.

Casg 2: C' does not contain an external literal that is satisfied by 7. In this
case, C’ is contained in F|rg and thus, since L set-blocks C' in F|7g, we have
that (C'\ L)ULUC" is a tautology. If C’ is a tautology, then it is easily satisfied
by 7/, so assume that it is not a tautology. Clearly, since C is not a tautology,
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we have that (C'\ L) U L is not a tautology, hence there are two literals [, such
that [ € ¢’ and [ is in C'\ L or in L. If [ € C' \ L, then 7’ agrees with 7 on [,
hence [ is falsified by 7/ and thus [ is satisfied by 7/. In contrast, if [ € L, then
I € L and thus [ is satisfied by 7/. In both cases 7’ satisfies | and thus C”.

For the “if” direction, let F' be a formula and C' a clause that is not super-
blocked in F', i.e., there exists an assignment 7p over the external variables,
ext p(C), such that C' is not set-blocked in F|rg. Then, let

1 if-ved,
T(v) =40 ifv e C,

T (v) otherwise.

Clearly, 7 is well-defined since C' cannot be a tautology, for otherwise it would
be set-blocked in F'|7g. Furthermore, 7 falsifies C' and since (by definition) every
clause C’ € envp(C) contains a literal [ such that [ € C it satisfies envg(C).

Now let 7/ be a satisfying assignment of C' such that 7/(v) = 7(v) for all
v & var(C). As 7/ satisfies C, it is obtained from 7 by flipping the truth values
of some literals L C C. We show that 7/ does not satisfy envp(C). Clearly, 7/
agrees with 75 over the external variables extr(C') and since C' is not set-blocked
in F|7g, there exists a clause C’ € F|rg with C'N L # () such that (C\ L)ULUC’
is not a tautology and neither 7 nor 7’ satisfy any external literal in C”.

Let [ € C' be a (local) literal with var(l) € var(C). Since (C'\ L)U LU’ is
not a tautology it follows that I ¢ C'\ L and [ ¢ L. Since var(l) € var(C) we get
that [ € C'\ L or I € L. In both cases, [ is not satisfied by 7/. Thus, no literal in
C’ is satisfied by 7/ and consequently 7/ does not satisfy C’ € envp(C), which
then allows to conclude that C' is not semantically blocked in F. O

Corollary 9. SETgc is a (local) redundancy property.

6 Complexity Analysis

In this section, we analyze the complexity of testing whether a clause is set-
blocked or super-blocked. We further consider the complexity of testing restricted
variants of set-blocking and super-blocking which gives rise to a whole family of
blocking notions. Note that all complexity results are w.r.t. the size of a clause
and its resolution environment.

Definition 7. The set-blocking problem is the following decision problem:
Given a pair (F,C), where F' is a set of clauses and C' a clause such that every
C'" € F contains a literal | with | € C, is C set-blocked in F ¢

Theorem 10. The set-blocking problem is NP-complete.

Proof. We first show NP-membership followed by NP-hardness.

NP-MEMBERSHIP: For a non-empty set L C C, it can be checked in polynomial
time whether (C'\ L)U LU C’ is a tautology for every C’ with C’ N L # (). The
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following is thus an NP-procedure: Guess a non-empty set L C C and check if
it blocks C in F.

NP-HARDNESS (Proof Sketch): We give a reduction from SAT by defining the
following reduction function on input formula F' which is w.l.o.g. in CNF:

f(F)=(F',C), withC=(uVx VI V- Va,Val),

where var(F) = {x1,...,2,} and w,2},...,z), are new variables that do not
occur in F. Furthermore, F’ is obtained from F' by

— replacing every clause D € F by a clause t(D) obtained from D by adding —u
and replacing every negative literal —z; by the positive literal 2, and
— adding the clauses (—x; V —a}), (2 V u), (—a} V) for every x; € var(F).

The intuition behind the construction of F’ and C' is as follows. By including u
in C and adding —u to every t(D) with D € F, we guarantee that all clauses
in I contain a literal [ with [ € C. This makes (F”,C) a valid instance of the
set-blocking problem. The main idea, however, is, that blocking-sets L of C' in
F’ correspond to satisfying assignments 7 of F'.

An assignment 7, obtained from a blocking set L by defining 7(x;) = 1 if
x; € L and 7(x;) = 0 otherwise, satisfies F' because of the following;:

1. Since all C" = t(D) with D € F, as well as C, contain—apart from —u—only
positive literals, (C'\ L) U L U C’ is only a tautology if L contains a literal
of C’. Now, the clauses (—z; V u), (—z} V u) force u to be contained in L and
thus L must contain a literal | # —u of every ¢(D) with D € F.

2. The reason why negative literals —x; are replaced by positive literals z} is as
follows: If C' were of the form (wV z1 V —z1 V-V a, V -x,), it would be
trivially blocked by every set L containing two complementary literals x;, —x;.
Hence, satisfying assignments would not correspond to blocking sets.

3. The clauses (—x; V —z}) guarantee that x; and z; cannot both be contained
in L. Since L contains a literal of every t(D), it is thus guaranteed that 7
satisfies every D € F: If L contains a positive literal z; € t(D), then z; € D
is satisfied by 7. If L contains a negative literal =} € ¢(D), then z; ¢ L, hence
7(z;) = 0 and thus —z; € D is satisfied by 7.

Similarly, one can show that every set L, obtained from a satisfying assignment 7
of F by defining L = {u} U {x; | 7(z;) = 1} U {z} | 7(z;) = 0}, blocks C'in F’. O

We next analyze the complexity of testing whether a clause is super-blocked.
To do so, we define the following problem:

Definition 8. The super-blocking problem is the following decision problem:
Given a pair (F,C), where F' is a set of clauses and C' a clause such that every
C'" € F contains a literal | with | € C, is C super-blocked in F ¢

Theorem 11. The super-blocking problem is I1 -complete.
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Proof. Again, we first show I72-membership followed by IT4-hardness.

IIP-MEMBERSHIP: The following is a X¥-procedure for testing whether C is not
super-blocked in F: Guess an assignment 7 over the external variables, extr(C),
and ask an NP-oracle whether C' is set-blocked in F|7. If the oracle answers no,
then return yes, otherwise return no.

ITY-HARDNESS (Proof Sketch): We give a reduction from V3-SAT to the super-
blocking problem. Let ¢ = VX3IYF be an instance of V3-SAT and assume
w.l.o.g. that F' is in CNF. We define the reduction function

f(¢) = (F',C), with C = (uVyr Vyy V- Vya V),

where Y = {y1,...,yn} and w, 4], ...,y are new variables not occurring in ¢.
Furthermore, F is obtained from F' by

— replacing every clause D € F by a clause ¢(D) which is obtained from D by
adding —u and replacing every negative literal —y; by the positive literal y/
for y; € Y; and by

— adding the clauses (—y; V =), (—y; V u), (—y} V u) for every y; € Y.

As super-blocking coincides with semantic blocking, we show that ¢ is satisfiable
if and only if C is semantically blocked in F”.

The reduction is similar to the one used for proving Theorem 10. Here, how-
ever, only the existentially quantified variables of ¢ are encoded into C, hence
all x; € X are external variables.

For the “only if” direction, we assume that ¢ is satisfiable and that we
are given some arbitrary satisfying assignment 7 of F'. By restricting 7 to the
variables in X we can then obtain an assignment ox over the variables in X.
Since ¢ is satisfiable, there exists an assignment oy over the variables in Y
such that ox U oy satisfies F'. From this we can in turn obtain a satisfying
assignment 7" of F' U {C} by defining 7/'(z;) = ox for z; € X, 7'(y;) = oy (y:)
and 7'(y}) = 1 — oy (y;) for y; € Y, and finally 7/(u) = 1. Since 7/ differs from 7
only on variables in var(C), C is semantically blocked in F”.

Likewise, for showing the “if” direction, we assume that C is semantically
blocked in F’ and that we are given some arbitrary assignment ox over the
variables in X. The crucial observation is then that for ox we can construct
an assignment 7 that satisfies F’, by defining 7(x;) = ox(z;) for all x; € X
and 7(v) = 0 for all v € C. The assignment 7 satisfies F’ since every C’ € F’
contains a literal [ with [ € C. Then, since C' is semantically blocked in F’, there
exists a satisfying assignment 7’ of F” U {C} that corresponds with ox over X.
Since (—y; V u) and (—y} V u) are in F” for every y; € Y, it is also guaranteed
that u must be satisfied by 7/ and thus 7/ satisfies a literal [ # —u in every t(D)
with D € F'. Finally, an assignment oy over the variables in Y can be obtained
by defining oy (y;) = 1 if and only if 7/(y;) = 1. Then, ox U oy is a satisfying
assignment of F. ]

We have already seen that the set-blocking problem is NP-complete in the general
case. However, a restricted variant of set-blocking is obtained by only allowing
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blocking sets whose size is bounded by a constant. Then, the resulting problem
of testing whether a clause C' is blocked by some non-empty set L C C', whose
size is at most k for k € N, turns out to be polynomial: For a finite set C
and k € NT, there are only polynomially many non-empty subsets L C C' with
|L| < k. To see this, observe (by basic combinatorics) that the exact number of
such subsets is given by the following sum which reduces to a polynomial with

degree at most k:
k
> (]
o)

i=1
Hence, the number of non-empty subsets L C C with |L| < k is polynomial in

the size of C. This line of argumentation is actually very common. For the sake
of completeness, however, we provide the following example:

Ezample 5. Let |C| =n and k = 3 (with k¥ < n). Then, the number of non-empty
subsets L C C with |L| < k is given by the polynomial Z?:l (?) = %n?’ + %n of
degree k = 3. O

Now, as there are only polynomially many potential blocking sets and since it
can be checked in polynomial time whether a given set L C C blocks C' in F
(as argued in the proof of Theorem 10), it can be checked in polynomial time
whether for some clause C' there exists a blocking set L of size at most k.

Since the definition of super-blocking is based on the definition of set-
blocking, one can also consider the complexity of restricted versions of super-
blocking where the size of the according blocking sets is bounded by a constant.
We thus define an infinite number of decision problems (one for every k € N7)
as follows:

Definition 9. For any k € NT, the k-super-blocking problem is the following
decision problem: Given a pair (F,C), where F is a set of clauses and C' a clause
such that every C' € F contains a literal | with | € C, does it hold that, for every
assignment T over the external variables extp(C), there exists a non-empty set
L C C with |L| < k that blocks C in F|r?

Theorem 12. The k-super-blocking problem is in co-NP for all k € NT.

Proof. Consider the statement that has to be tested for the complement of the
k-super-blocking problem:

There exists an assignment 7 over the external variables ezt p(C') such that
no non-empty subset of C' with |C| < k blocks C in F|r.

Since it can be checked in polynomial time whether a given set L C C blocks C'
in F|r, the following is an NP-procedure:

Guess an assignment 7 over the external variables extp(C) and check for
every non-empty subset of C' (with |C| < k) whether it blocks C' in F|r.
If there is one, return no, otherwise return yes.
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Hence, for every integer k € NT, the k-super-blocking problem is in co-NP. O
Hardness for the complexity class co-NP can be shown already for k = 1.
Theorem 13. The I-super-blocking problem is co-NP-hard.

Proof. By a reduction from the unsatisfiability problem of propositional logic.
Let F = {C4,...,Cy} be a formula in CNF and define the reduction function

f(F)=(F',C), withC = (u1 V-V uy),

where uy,...,u, are new variables that do not occur in F, and F’ = U?Zl F;
with F; = {(-u; V1) |l € C;}. Clearly, (F’,C) is a valid instance of the 1-super-
blocking problem and var(F') = extp/(C). We show that F' is unsatisfiable if and
only if, for every assignment 7 over extp (C), there exists a u; € C such that
{u;} set-blocks C in F’|r.

For the “only if” direction, assume that F' is unsatisfiable and let 7 be an
assignment over ezt (C). Since var(F) = extp (C) it follows that there exists
a clause C; in F' that is falsified by 7. But then, since every clause in F; contains
a literal [ with [ € C;, it follows that Fj is satisfied by 7. Hence, F; N F'|T = ()
and thus, since —u; only occurs in F;, {u;} trivially set-blocks C' in F’.

For the “if” direction, assume that for every 7 over extp: (C), there exists a
u; € C such that {u;} set-blocks C' in F’|7. Since var(F) = extp (C) it follows
that for every assignment 7 of F' and every clause (—u; V1) € F'|1 (with [ € C),
T = (C\ {u;}) U {~u;} U{-w;,1} is a tautology. But since T' cannot contain

complementary literals it must be the case that (—u; V1) ¢ F'|7 which implies
that every [ € C; is falsified by 7. It follows that F is unsatisfiable. O

Corollary 14. The k-super-blocking problem is co-NP-complete for all k € NT.

The notions of set-blocking and super-blocking, together with the correspond-
ing restrictions discussed in this section, give rise to a whole family of blocking
notions which differ in both generality and complexity. We conclude the follow-
ing: (i) Considering the assignments over external variables (as is the case for
super-blocking) leads to co-NP-hardness. (ii) If blocking sets of arbitrary size
are considered, the (sub-)problem of checking whether there exists a blocking
set is NP-hard. (iii) If the size of blocking sets is bounded by a constant k, the
(sub-)problem of testing whether there exists a blocking set turns out to be
polynomial. (iv) The problem of testing whether a clause is super-blocked in the
most general sense, where the size of blocking sets is not bounded by a constant,
is I11-complete. Hence, we can summarize the following complexity results:

|L| is unrestricted | |L| < k for k € N*

Super-blocking | IT1-complete co-NP-complete

Set-blocking NP-complete P
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Note that the cardinality |L| of blocking sets is of course bounded by the
length of the clauses, thus we can restrict |L| < |C|. This is particularly inter-
esting for formula instances with (uniform) constant or maximal clause length.

Finally, we conclude the discussion by returning to the starting point of this
paper: literal-blocked clauses. Obviously, we can write the definition for set-
blocking with |L| < 1 as follows: A set {l} C C blocks a clause C in a formula F
if for each clause €’ € F with [ € C’, (C'\ {lI})UC" is a tautology. (Note that we
write (C'\ {I})UC" instead of (C'\ {I})U{I}UC" since I is anyhow required to be
contained in C’.) This is very similar to the original definition of literal-blocked
clauses which requires C' U (C'\ {l}) to be a tautology.

7 Comparison with Other Redundancy Properties

In the following, we consider several local and non-local redundancy properties
as presented in [7] and relate them to the previously discussed local redundancy
properties. From the three basic redundancy properties tautology (T), subsump-
tion (S), and literal-blocked clauses (BC), extended redundancy properties are
derived as follows.

Given a formula F' and a clause C, ALA(F, C) is the unique clause obtained
from C by repeating asymmetric literal addition, as defined in the following, until
a fixed point is reached: If 1, ...,y € C and there is a clause (I3 V--- VI VI) €
F\{C} for some literal [, let C' := C'U{l}. The special case where k = 1 is called
hidden literal addition (HLA). Due to space limitations, we will not consider HLA
separately. Given a formula F' and a clause C, (F,C) € AT (resp., AS or ABC)
if (F,ALA(F,C)) € T (resp., S or BC).

Finally, we introduce the redundancy properties prefixed with R [7]. Given a
formula F' and a clause C, (F,C) € RP if either (i) (F,C) € P or (ii) there is a
literal I in C such that for each clause €’ € F with [ € C’, (F,CUC’"\ {I}) € P.
Examples are RT, RS, and RAT. Especially RAT is extremely powerful, because it
captures all known SAT solving techniques including preprocessing, inprocessing,
and clause learning [7,15].

These notions of redundancy lead to the hierarchy depicted in Fig.2 which
we extend with the previously introduced set-blocked and super-blocked clauses.
We discuss the incomparability with redundancy properties based on T in detail;
incomparability with subsumption-based properties works analogously.

Proposition 15. AT € SETgc and SETgc € AT.

Proof. Let C = (aVbVe)and F ={(-aVz),(=bVz),(-cVa),(aVb)}. Since
-b € ALA(F, C), it follows that (F,C) € AT. Now, assume that C is set-blocked
by some set L C C, i.e., for every C' with C'NL # (), (C\ L)ULUC" is a
tautology. Since L C C' is non-empty, (v V x) N L #  for at least one (—v V x)
with v € {a,b,c}. Let therefore C’ be such a (v V z). Then, v ¢ (C'\ L) and
v & L. Hence, (C'\ L)U LUC’ is not a tautology and thus C'is not set-blocked
by L, a contradiction. We conclude that (F,C) ¢ SETgc.

Finally, let £ = () and C = (a). Then, (F,C) € SETgc, but (F,C) € AT. O
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¥
RAS | [ As | [ AT | [ ABC| RAT
|RAS | LAS | LAT | | |
| | | |
|Rs — s | | T | BC RT
O ool [SEToc|-—{5UPsd]

Fig. 2. Hierarchy of redundancy properties [7] extended with novel local redundancies.
For redundancy properties P; and P2, an arrow from P; to P2 denotes that P2 C Ps.

Proposition 16. AT € SUPgc and SUPgc € AT.

Proof. Consider again the clause C = (a VbV ¢) and the formula F = {(-a V ),
(=bVx),(-cVx),(aVb)} from the proof of Proposition 15, and observe that
extp(C) = {z}. Here, for the assignment 7 that falsifies the external variable
z, F|lr = F and since C is not set-blocked in F' (as shown in the proof of
Proposition 15), it is not set-blocked in F|r, hence (F,C) ¢ SUPgc.

To see that SUPgc € AT, let F' = ) and C = (a). Then, since (F,C) € SETgc
and SETgc C SUPgc, we get that (F,C) € SUPgc but (F,C) ¢ AT. O

From Proposition 16 together with the fact that AT C RAT we get:
Corollary 17. RAT ¢ SUPgc.
Proposition 18. SETgc € RAT.

Proof. Consider the clause C' = (a V b) and the formula F' = {(a V b), (—a V b),
(aV—b)}. Clearly, C is set-blocked by L = {a,b} in F and thus (F,C) € SETgc.

Now, for the literal a there is only the clause C’ = (—a V b) that contains —a
and CUC"\{—a} = (aVb). Furthermore, for the literal b there is only the clause
C" = (aV—b) that contains —b and here again we get that CUC"”\{-b} = (aVb).
Since ALA(F'\ {C}, (a Vb)) = (a Vv b) is not a tautology, (F,C) ¢ RAT. O

Corollary 19. RAT is incomparable with SETgc and SUPgc.

8 Conclusion

Previous research and recent SAT competitions have clearly revealed the power
of solving techniques based on the redundancy property of literal-blocked clauses.
One reason for the success of this redundancy property is that it is local in
the sense that it can be efficiently checked by considering only the resolution
environment of a clause [8,12,14]. In this paper, we showed that there are even
more general local redundancy properties like set-blocked clauses (SETgc) and
super-blocked clauses (SUPgc). Local redundancy properties are particularly
appealing in the context of real-world verification, where problem encodings
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into SAT often lead to very large formulas in which the resolution environments
of clauses are still small.

Our complexity analysis showed that checking the newly introduced redun-
dancy properties is computationally expensive in the worst case. This seemingly
limits their practical applicability at first glance. However, we presented bounded
variants that can be checked more efficiently and we expect them to considerably
improve the solving process when added to our SAT solvers. While the focus of
this paper lies on the theoretical investigation of local redundancy properties,
thereby contributing to gaining a deeper understanding of blocked clauses, a
practical evaluation is subject to future work.

Another direction for future work is lifting the new redundancy properties to
QSAT, the satisfiability problem of quantified Boolean formulas (QBF). There,
literal-blocked clauses have been shown to be even more effective than in SAT
solving [6,16] and we expect that this also holds for quantified variants of SETgc
and SUPgc.
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Abstract. We identify a fragment of Presburger arithmetic enriched
with free function symbols and cardinality constraints for interpreted
sets, which is amenable to automated analysis. We establish decidabil-
ity and complexity results for such a fragment and we implement our
algorithms. The experiments run in discharging proof obligations com-
ing from invariant checking and bounded model-checking benchmarks
show the practical feasibility of our decision procedure.

1 Introduction

Enriching logic formalisms with counting capabilities is an important task in view
of the needs of many application areas, ranging from database theory to formal
verification. Such enrichments have been designed both in the description logics
area and in the area of Satisfiability Modulo Theories (SMT), where some of the
most important recent achievements were decidability and complexity bounds for
BAPA [14] - the enrichment of Presburger arithmetic with the ability of talking
about finite sets and their cardinalities. As pointed out in [15], BAPA constraints
can be used for program analysis and verification by expressing data structure
invariants, simulations between program fragments or termination conditions.
The analysis of BAPA constraints was successfully extended also to formalisms
encompassing multisets [18] as well as direct/inverse images along relations and
functions [23].

A limitation of BAPA and its extensions lies in the fact that only uninter-
preted symbols (for sets, relations, functions, etc.) are allowed. On the other
hand, it is well-known that a different logical formalism, namely unary counting
quantifiers, can be used in order to reason about the cardinality of definable
(i.e. of interpreted) sets. Unary counting quantifiers can be added to Presburger
arithmetic without compromising decidability, see [19], however they might be
quite problematic if combined in an unlimited way with free function symbols.
In this paper, we investigate the extension of Presburger arithmetic including
both counting quantifiers and uninterpreted function symbols, and we isolate
fragments where we can achieve decidability and in some cases also relatively
good complexity bounds. The key ingredient to isolate such fragments is the
notion of flatness: roughly, in a flat formula, subterms of the kind a(t) (where
a is a free function symbol) can occur only if ¢ is a variable. By itself, this naif
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flatness requirement is useless (any formula can match it to the price of intro-
ducing extra quantified variables); in order to make it effective, further syntactic
restrictions should be incorporated in it, as witnessed in [2]. This is what we are
going to do in this paper, where suitable notions of ‘flat’ and ‘simple flat’ for-
mulae are introduced in the rich context of Presburger arithmetic enriched with
free function symbols and with unary counting quantifiers (we use free function
symbols to model arrays, see below).

The fragments we design are all obviously more expressive than BAPA, but
they do not come from pure logic motivations, on the contrary they are suggested
by an emerging application area, namely the area of verification of fault-tolerant
distributed systems. Such systems (see [8] for a good account) are modeled as
partially synchronous systems, where a finite number of identical processes oper-
ate in lock-step (in each round they send messages, receive messages, and update
their local state depending on the local state at the beginning of the round and
the received messages). Messages can be lost, processes may omit to perform
some tasks or also behave in a malicious way; for these reasons, the fact that
some actions are enabled or not, and the correctness of the algorithms them-
selves, are subject to threshold conditions saying for instance that some qualified
majority of processes are in a certain status or behave in a non-faulty way. Veri-
fications tasks thus have to handle cardinality constraints of the kind studied in
this paper (the reader interested in full formalization examples can directly go
to Sect. 5).

The paper is organized as follows: we first present basic syntax (Sect.?2),
then decidability (Sect.3) and complexity (Sect.4) results; experiments with
our prototypical implementation are supplied in Sect.5, and Sect.6 concludes
the work.

2 Preliminaries

We work within Presburger arithmetic enriched with free function symbols and
cardinality constraints. This is a rather expressive logic, whose syntax is summa-
rized in Fig. 1. Terms and formuleae are interpreted in the natural way over the
domain of integers Z; as a consequence, satisfiability of a formula ¢ means that
it is possible to assign values to parameters, free variables and array-ids so as
to make ¢ true in Z (validity of ¢ means that —¢ is not satisfiable, equivalence
of ¢ and ¢ means that ¢ < ¢ is valid, etc.). We nevertheless implicitly assume
few constraints (to be explained below) about our intended semantics.

To denote integer numbers, we have (besides variables and numerals) also
parameters: the latter denote unspecified integers. Among parameters, we always
include a specific parameter (named N) identifying the dimension of the system
- alias the length of our arrays: in other words, it is assumed that for all array
identifiers a € Arr, the value a(z) is conventional (say, zero) outside the interval
[0,N) = {n € Z | 0 < n < N}. Although binary free function symbols are
quite useful in some applications, in this paper we prefer not to deal with them.
The operator §{z | ¢} indicates the cardinality of the finite set formed by the
x € [0, N) such that ¢(z) holds.
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0,1,... Y/ numerals (numeric constants)
Ty Yy 2y € Var individual variables

M,N,... € Par parameters (free constants)
a,b,... € Arr array ids (free unary

function symbols)

tu,... = n|M|z|t+t] —t|a(®)]|t{z]| ¢} terms
AB,... u= t<t|t=t|t=,t atoms
G ,... = A|loNd| ¢ | Tz formulae

Fig. 1. Syntax

Notice that the cardinality constraint operator f {z | —}, as well the quantifier
Jz, bind the variable x; below, we indicate with 1 (z) (resp. t(z)) the fact that
the formula ¢ (the term t) has free individual variables included in the list z.
When we speak of a substitution, we always mean ‘substitution without capture’,
meaning that, when we replace the free occurrences of a variable x with a term
u in a formula ¢ or in a term ¢, the term u should not contain free variables that
might be located inside the scope of a binder for them once the substitution is
performed; the result of the substitution is denoted with ¢(u/x) and t(u/x).

The logic of Fig. 1 is far from being tractable, because even the combination
of free function symbols and Presburger arithmetic lands in a highly undecidable
class [10]. We are looking for a mild fragment, nevertheless sufficiently expressive
for our intended applications. These applications mostly come from verification
tasks, like bounded model checking or invariant checking. Our aim is to design a
decidable fragment (so as to be able not only to produce certifications, but also to
find bugs) with some minimal closure properties; from this point of view, notice
that for bounded model checking closure under conjunctions is sufficient, but
for invariant checking we need also closure under negations in order to discharge
entailments.

2.1 Flat Formulse

We now introduce some useful subclasses of the formulee built up according to
the grammar of Fig. 1 (all subclasses are closed under Boolean operations):

— Arithmetic formule : these are built up from the grammar of Fig. 1 without
using neither array-ids nor cardinality constraint operators; we use letter
a, B, ... for arithmetic formulse. Recall that, according to the well-known
quantifier elimination result, arithmetic formulae are equivalent to quantifier-
free arithmetic formulee.

— Constraint formule : these are built up from the grammar of Fig.1 without
using array-ids.

— Basic formule : these are obtained from an arithmetic formula by simul-
taneously replacing some free variables by terms of the kind a(y), where y
s a variable and a an array-id. When we need to display full information,
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we may use the notation a(y,a(y)) to indicate basic formulee. By this nota-
tion, we mean that y = yi,...,y, are variables, a = ay,...,a, are array-ids
and that a(y,a(y)) is obtained from an arithmetic formula a(z,z) (where
2= 211, ,;Sn)T)y replacing z;; with a;(y;) (i=1,...,sand j=1,...,n).

— Flat formule : these are recursively defined as follows (i) basic formulee are flat
formulee; (ii) if ¢ is a flat formula, 3 is a basic formula, z and = are variables,
then ¢(f {x | B}/ 2) is a flat formula. Thus in flat formulee all dereferenced
indexes are either free or the ones defining the comprehension.!

Ezample 1. The formule a(y)+a(z) < z and z = §{z| § {2’ |a(2’) < 1} = a(x)}
are flat (the former also basic) whereas z = § {z| § {z'|a(z') < 2} = a(x)} is not
such (the binder §{z| --- captures a free occurrence of z in § {2z’ |a(z’) < x}).

The following result is proved in [19] (see also the Appendix of [1]):

Theorem 1. For every constraint formula one can compute an arithmetic
formula equivalent to it.

3 Satisfiability for Flat formulae

We shall show that flat formulae are decidable for satisfiability. In fact, we shall
show decidability of the slightly larger class covered by the following

Definition 1. Extended flat formule (briefly, E-flat formule) are formule of
the kind

Jz.a ANz |Bit=2 AN Bz | Br} =2k (1)

where z = 2z1,...,2K and o, B, ..., Bk are basic formule and x does not occur
m .

Notice that a and the 3; in (1) above may contain further free variables y
(besides z) as well as the terms a(y) and a(z); the 3; may contain occurrences
of z and of a(z). a

That flat formulae are also E-flat can be seen as follows: due to the fact that
our substitutions avoid captures, we can use equivalences like ¢(t/z) < 3z (t =
z A ¢) in order to abstract out the terms ¢t := § {z|a} occurring in the recursive
construction of a flat formula ¢. By repeating this linear time transformation,
we end up in a formula of the kind (1). However, not all E-flat formula are flat
because the dependency graph associated to (1) might not be acyclic (the graph
we are talking about has the z; as nodes and has an arc z; — z; when z; occurs
in B;). The above conversion of a flat formula into a formula of the form (1) on
the other hand produces an E-flat formula whose associated graph is acyclic.

We prove a technical lemma showing how we can manipulate E-flat formulae
without loss of generality. Formulae 1, ..., @k are said to be a partition iff the

! If we want to emphasize the way the basic formula § is built up, following the
above conventions, we may write it as 3(z,y,a(z),a(y)); here, supposing that a is
ai,...,as, since x is a singleton, the tuple a(x) is a1(z),...,as(x).
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formulee \/{il o1 and —(p; A wp) (for h # 1) are valid. Recall that the existential
closure of a formula is the sentence obtained by prefixing it with a string of
existential quantifiers binding all variables having a free occurrence in it.

Lemma 1. The existential closure of an FE-flat formula is equivalent to a
sentence of the kind

23y, aly.2) Az | bz, alz), y,2)} =210 ANz | Br(z,a(),y,2)} = 2k

(2)
where y and z 1= 21,...,2x are variables, a is arithmetical, and the formule
B1, ..., 0K are basic and form a partition.

Proof. The differences between (the matrices of) (2) and (1) are twofold: first
in (2), the 3, form a partition and, second, in (1) the terms as(y;) and as(zp)
(for as € a and y; € y, 25 € z) may occur in « and in the 3.

We may disregard the ay(z;,) without loss of generality, because we can
include them in the as(y;): to this aim, it is sufficient to take a fresh y, to
add the conjunct y = zj to « and to replace everywhere as(zp) by as(y). In
order to eliminate also a term like a,(y;), we make a guess and distinguish the
case where y; > N and the case where y; < N (formally, ‘making a guess’
means to replace (1) with a disjunction - the two disjuncts being obtained by
adding to « the case description). According to the semantics conventions we
made in Sect. 2, the first case is trivial because we can just replace as(y;) by
0. In the other case, we first take a fresh variable u and apply the equivalence
V(. as(yj)...) < Ju(as(y;) =u A y(...u...)) (here v is the whole (1)); then
we replace as(y;) = u by the equivalent formula #{z | x = y; Aaslz] =u} =1
and finally the latter by Ju’ (v = 1A 8{z | * = y; Aas[z] = u} = v’) (the result
has the desired shape once we move the new existential quantifiers in front).

After this, we still need to modify the ; so that they form a partition (this
further step produces an exponential blow-up). Let ¢ (y) be the matrix of a
formula of the kind (2), where the (; are not a partition. Let us set K :=
{1,..., K} and let us consider further variables u = (u, )y, for o € 2. Then it
is clear that the existential closure of 1 is equivalent to the formula obtained by
prefixing the existential quantifiers Ju 3z to the formula

K

a A /\Zl: Z U /\/\ﬂ{x‘ﬂa}:ucf (3)

1=1 €2 o(l)=1 oe2kK

where (,;= /\{il €x(1)B1 (here e,y is ‘=" if o(l) = 0, it is a blank space other-
wise). 4

Theorem 2. Satisfiability of E-flat formule is decidable.

Proof. We reduce satisfiability of (2) to satisfiability of a constraint formula (4)
which is decidable by Theorem 1. The matrix of (2) has free variables z,y and
these are inherited by the equi-satisfiable formula (4), but the latter contains
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extra free variables zg, 2; g: variables zg count new Venn regions, whereas vari-
ables z; g counts how many elements are taken from zg to contribute to the old
Venn region counted by z;. In detail, we show that (2) is equisatisfiable with

aA /\ zs =t | N\ ubi(zuy2) A N\ Vu-bi(z,uy,2)} | A

Sep(K les 1¢3
K
N /\ (ZS = Zzl7s> A /\ 2] = Z zs | A /\ 21,8 >0
Sep(K) les =1 Sep(K),les leSep(K)
(1)
(according to our notations, the basic formule §;(z,a(z),y,z) from (2) were
supposed to be built up from the arithmetic formulee 5;(z, u, Y, 2) by replacing
the variables u = u1, ..., us with the terms a(z) = a12), ..., as(x)).

Suppose that (4) is satisfiable. Then there is an ass1gnment V to the free
variables occurring in it so that (4) is true in the standard structure of the
integers (for simplicity, we use the same name for a free variable and for the
integer assigned to it by V). If a = a1, ..., as, we need to define a4(¢) for all s
and for all ¢ € [0, N). For every [ = 1, ..., K this must be done in such a way that
there are exactly z; integer numbers taken from [0, N) satisfying 5;(x, a(x), y, z).
The interval [0, N) can be partioned by associating with each i € [0, N) the set
is = {l € K| 3upBi(i,u,y,z) holds under V'}. For every S € p(K) the number
of the i such that ig = S is zg; for every | € S, pick 2,5 among them and, for
these selected i, let the s-tuple a(i) be equal to an s-tuple y such that 5 (i, u, y, z)
holds (for this tuple y, since the (3 are a partition, 34 (i,u,y,z) does not hold,
if h #1). Since 25 = ) ;. g 21,5 and since ) g zs is equal to the length of the
interval [0, N) (because the formulee A,cg Juf A A\;yg Vu—f are a partition),
the definition of the a is complete. The formula (2) is true by construction.

On the other hand suppose that (2) is satisfiable under an assignment V;
we need to find V(zg), V(z,s) (we again indicate them simply as zg, 21,5) so
that (4) is true. For zg there is no choice, since zs = #{i | \;cg FuBi(i,u, y,2) A
/\les Vu-G(i,u,y,2)} must be true; for z; g, we take it to be the cardinality
of the set of the ¢ such that §;(i, a( ),y, z) holds under V and S = {h € K |
Ju Pr(i,u,y,z) holds under V}. In thTs way, for every S, the equality zg =
> ies 21,8 holds and for every [, the equality z; = ZSEp )1eS 2,8 holds too.
Thus the formula (2) becomes true under our extended V. =

Ezxample 2. Let us test the satisfiability of
N>3ANzn=1Az1=8{z]|x+|a(z)] <3} ANz =t{x]|z+]|a(z)] >3} (5)

We have K = 2 and let us put Sy := {1,2}, S5 := 0, S5 := {1}, 54 := {2}. Since
the absolute value is a positive number, when writing down (4), we easily realize
that we must have zg, = #{0,1,2} = 3,25, = 25, = 0,25, = t#{3,..., N — 1} =
N — 3. Thus (5) is satisfiable iff there are 21, , 225, , 225, > 0 such that

N > 3Nz =5 1N z18, + 225, 23/\2’254=N—3/\z122151/\2222251+ng4



Counting Constraints in Flat Array Fragments 71

which is in fact the case (but notice that an additional conjunct like N =5 0
would make (5) unsatisfiable).

4 A More Tractable Subcase

We saw that satisfiability of flat formulee is decidable, but the complexity of the
decision procedure is very high: Lemma 1 introduces an exponential blow-up and
other exponential blow-ups are introduced by Theorem 2 and by the decision
procedure (via quantifier elimination) from [19]. Of course, all this might be
subject to dramatic optimizations (to be investigated by future reseach); in this
paper we show that there is a much milder (and still practically useful) fragment.

Definition 2. Simple flat formule are recursively defined as follows: (i) basic
formule are simple flat formule; (i) if ¢ is a simple flat formula, B(a(z), a(y),y)
is a basic formula and x,z are variables, then ¢(4{x | B}/ 2) is a simple flat
formula.

As an example of a simple flat formula consider the following one
a'(y) =z A{z|d(2) =a(@)} > N-1 A ({2 | d'(2) = a(2)} <N — aly) # 2)

expressing that @’ = write(a,y, z) (i.e. that the array a’ is obtained from a by
over-writing z in the entry y).

Definition 3. Simple E-flat formule are formule of the kind

Jz. a(a(y),a(z),y,2) A #{z | Bi(a(z),aly),a(z),y,2)} =21 A---
A H{z | Br(a(z), ay),alz). ¥, 2))} = 2k

(6)

where o and the 3; are basic.

It is easily seen that (once again) simple flat formulae are closed under
Boolean combinations and that simple flat formulse are simple E-flat formulae
(the converse is not true, for ciclicity of the dependence graph of the z;’s in (6)).

The difference between simple and non-simple flat/E-flat formulee is that
in simple formulae the abstraction variable cannot occur outside the read of an
array symbol (in other words, the §,3; from the above definition are of the
kind g;(a(z),a(y),a(z),y,z) and not of the kind g;(a(z),a(y),a(z),z,y,z)).
This restriction has an important semantic effect, namely that formula (6)
are equi-satisfiable to formulee which are permutation-invariant, in the follow-
ing sense. The truth value of an arithmetical formula or of a formula like
z = t{z|a(a(x),y)} is not affected by a permutation of the values of the a(x)
for z € [0, N), because x does not occur free in a (permuting the values of the
a(r) may on the contrary change the value of a flat non-simple sentence like
z = #{z|a(x) < x}). This ‘permutation invariance’ will be exploited in the argu-
ment proving the correctness of decision procedure of Theorem 3 below. Formu-
lae (6) themselves are not permutation-invariant because of subterms a(z), a(y),
so we first show how to eliminate them up to satisfiability: B
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Lemma 2. Simple E-flat formule are equi-satisfiable to disjunctions of permu-
tation-invariant formule of the kind

Jz. a(y,z) ANz | Bi(a(z),y,2)} = 21/ Af{z | Br(a(),y,2))} = 2K (7)

Proof. Let us take a formula like (6): we convert it to an equi-satisfiabe disjunc-
tion of formulee of the kind (7). The task is to eliminate terms a(z), a(y) by
a series of guessings (each guessing will form the content of a disjunct). Notice
that we can apply the procedure of Lemma 1 to eliminate the a(z), but for
the a(y) we must operate differently (the method used in Lemma 1 introduced
non-simple abstraction terms).

Let us suppose that y := y1, ...,y and that, after a first guess, o contains
the conjunct y; < N for each j = 1,...,m (if it contains y; > N, we replace
as(y;) by 0); after a second series of guesses, we can suppose also that o contains
the conjuncts y;, # y,, for j1 # jo (if it contains y;, = y,,, we replace y;, by y;,
everywhere, making y;, to disappear from the whole formula). In the next step,
(i) we introduce for every a € a and for every j =1,...,m a fresh variable u,;,
(ii) we replace everywhere a(y;) by uq; and (iii) we conjoin to « the equalities
a(y;j) = Uq;. In this way we get a formula of the following kind

K
3z, N\ alyy) =ue Ae(yuz) AN He | Bia(z),y.uz)} =2 (8)
a€ay;€y =1

where u is the tuple formed by the u,; (varying ¢ and j). We now make another
series of guesses and conjoin to « either uq; = uqjr OF Uq; # uay for (a,j) #
(a',7"). Whenever u,; = ugqj is conjoined, u,; is replaced by ugj everywhere,
so that u,; disappears completely. The resulting formula still has the form (8),
but now the map (a, j) — uq; is not injective anymore (otherwise said, u,; now
indicates the element from the tuple u associated with the pair (a,j) and we
might have that the same u,; is associated with different pairs (a, j)).

Starting from (8) modified in this way, let us define now the equivalence
relation among the y; that holds between y; and y; whenever for all a € a there
is uq € u such that a contains the equalities a(y;) = u, and a(y}) = u,. Each
equivalence class F is uniquely identified by the corresponding function fz from
a into u (it is the function that for each y; € E maps a € a to the u, € u such
that o contains the equality a(y;) = uq as a conjunct). Let Ei, ..., E, be the
equivalence classes and let nq,...,n, be their cardinalities. We claim that (8) is
equisatisfiable to

3z. oy, u, z) /\/\ti{x|/\ (@)} >ng A

(9)
A /\ t{z | Bia(e),y,u,2)} = 2
=1

In fact, satisfiability of (8) trivially implies the satisfiability of the formula (9);
vice versa, since (9) is permutation-invariant, if it is satisfiable we can modify
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any assignment satisfying it via a simultaneous permutation of the values of the
a € a so as to produce an assignment satisfying (8).
We now need just the trivial observation that the inequalities #{z |
Naca @(z) = fE,(a )} > ng can be replaced by the formule #{z | A,c,a(z) =
B,(a)} = z; N z, > ny (for fresh z;) in order to match the syntactic shape
of (7). —|

We can freely assume that quantifiers do not occur in simple flat formulae: this
is without loss of generality because such formulae are built up from arithmetic
and basic formulae.?

Theorem 3. Satisfiability of simple flat formule can be decided in NP (and
thus it is an NP-complete problem,).

Proof. First, by applying the procedure of the previous Lemma we can reduce
to the problem of checking the satisfiability of formule of the kind

a(y,z) A Ha|Bal@),y.2)t =2z A A o | Br(al),y.2)} = 2z (10)

where «, 31, ..., Bk are basic (notice also that each formula in the output of the
procedure of the previous Lemma comes from a polynomial guess).

Suppose that Ai(a(x),y,z),...,Ar(a(x),y,z) are the atoms occurring in
Bi,- .., Brk. For a Boolean assignment o to these atoms, we indicate with [3;]”
the Boolean value (0 or 1) the formula §; has under such assignment. We first
claim that (10) is satisfiable iff there exists a set of assignments X such that the
formula

5 21 [6:]°
aly,z) A /\ Ju /\ (w,y,2) | A ZU" [[52]]
oeX j=1 =P : (11)
2K [8x1°
/\Zvc,:N/\ /\vg>0
oceX oceX

is satisfiable (we introduced extra fresh variables v,, for ¢ € X; notation
€5(4;) 18 the same as in the proof of Lemma 1). In fact, on one side, if (10)
is satisfiable under V, we can take as X the set of assigments for which
/\JL:1 €04, Aj(ali), y,2) is true under V' for some i € [0,N) and for v, the

cardinality of the set of the i € [0, N) for which /\]L:1 €0(4,)Aj(ali), y, z) holds.
This choice makes (11) true. Vice versa, if (11) is true under V| in order to
define the value of the tuple a(i) (for i € [0, N)), pick for every o € X' some u,,
such that /\j:1 o(4;) A5 (U, Yy, 2) holds; then, supposing X' = {71,...,04}, let

2 By the quantifier-elimination result for Presburger arithmetic, it is well-known that
arithmetic formulee are equivalent to quantifier-free ones. The same is true for basic
formulae because they are obtained from arithmetic formulae by substitutions with-
out capture.



74 F. Alberti et al.

a(i) be equal to u,, for i € [0,v,,), to u,, for i € [vs,,vs,), etc. Since we have
that ) .5, v, = IV, the definition of the interpretation of the a is complete (any
other permutation of the values a(z) inside [0, N) would fit as well). In this way,
formula (10) turns out to be true.

We so established that our original formula is satisfiable iff there is some
X such that (11) is satisfiable; the only problem we still have to face is that
2’ might be exponentially large. To reduce to a polynomial X', we use the
same technique as in [16]. In fact, if (11) is satisfiable, then the column vec-
tor (21,...,2K, N)T is a linear combination with positive integer coefficients of
the 0/1-vectors ([31]7,- -+, [Bx]°,1)T and it is known from [9] that, if this is the
case, the same result can be achieved by assuming that at most 2K’ log,(4K")
of the v, are nonzero (we put K’ := K + 1). Thus polynomially many X' are
sufficient and for such X, a satisfying assignment for the existential Presburger
formula (11) is a polynomial certificate. 4

4.1 Some Heuristics

We discuss here some useful heuristics for the satisfiability algorithm for simple
flat formulee (most of these heuristics have been implemented in our prototype).

1.- The satisfiability test involves all formulee (11) for each set of assign-
ments Y having cardinality at most M = [2K’'log,(4K’)] (actually, one can
improve this bound, see [16]). If we replace in (11), for every o, the con-
junct v, > 0 by v, > 0 and the conjunct? Elg(/\f=1 €0(A;)A5(u,y,2)) by
v, >0 — EIQ(/\jLz1 €0(A;)A; (8, y,2)), we can limit ourselves to the X' having
cardinality equal to M. This trick is useful if, for some reason, we prefer to go
through any sufficient set of assignments (like the set of all assignments supplied
by some Boolean propagation, see below).

2.- There is no need to consider assignments o over the set of the atoms A;
occurring in the fi,...,Bk: any set of formulse generating the f31,..., 8k by
Boolean combinations fits our purposes. As a consequence, the choice of these
‘atoms’ is subject to case-by-case evaluations.

3.- Universally quantified formulee of the kind Vz (0 < z Az < N — ()
can be turned into flat formulse by rewriting them as N = §{x | 8} (and in
fact such universally quantified formulae often occur in our benchmarks suite).
These formulae contribute to (10) via the conjuncts of the kind z; = N A #{z |
Bi(a(z),y,z)} = z. It is quite useful to consider the {3;,, ..., 3;, } arising in this
way as atoms (in the sense of point 2 above) and restrict to the assignments o
such that o(3;,) =---=0(8;,) = 1.

4.- Boolean propagation is a quite effective strategy to prune useless assign-
ments. In our context, as soon as a partial assignment ¢ is produced inside
the assignments enumeration subroutine, an SMT solver is invoked to test the
satisfiability of a(y,z) A /\jedom(a) €0(4;)A; (1, y,2). Since this is implied by a

3 These conjuncts (varying o € X) are needed in (11) to ensure that the assignments
we are using can coexist in a model.
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(skolemized) conjunct of (11), if the test is negative the current partial assign-
ment is discarded and next partial assignment (obtained by complementing the
value of the last assigned literal) is taken instead.

5 Examples and Experiments

We implemented a prototype ARCA-SAT* producing out of simple E-flat for-
mulee (10) the proof obbligations (11) (written in SMT-LIB2 format), exploiting
the heuristics explained in Sect.4.1. To experiment the feasibility of our app-
roach for concrete verification problems, we also implemented a (beta) version
of a tool called ARCA producing out of the specification of a parametric dis-
tributed system and of a safety-like problem, some E-flat simple formulse whose
unsatisfiability formalizes invariant-checking and bounded-model checking prob-
lems. A script executing in sequence ARCA, ARCA-SAT and z3 can then solve
such problems by reporting a ‘sat/unsat’ answer.

A system is specified via a pair of flat (simple) formula ¢(p) and 7(p,p’) and
a safety problem via a further formula v(p) (here the p are parameters and array-
ids, the p’ are renamed copies of the p).iA bounded model checking problem is
the problem of checking whether the formula

Upy) ATy ) N AT(D, D )/\U(}zn+1)

n+1

is satisfiable for a fixed n. An invariant-cheking problem, given also a formula
@(p), is the problem of checking whether the three formulae

up) A=p(p), od(p) AT(p,p') A=o(p), o(p) Av(p)

are unsatisfiable. Notice that since all our algorithms terminate and are sound
and complete, the above problems are always solved by the above tool combi-
nation (if enough computation resources are available). Thus, our technique is
able both to make safety certifications and to find bugs.

To validate our technique, in the following we describe in detail the formal-
ization of the send-receive broadcast primitive (SRBP) in [21]. SRBP is used
as a basis to synchronize clocks in systems where processes may fail in sending
and/or receiving messages. Periodically, processes broadcast the virtual time to
be adopted by all, as a (session s) message. Processes that accept this message
set s as their current time. SRBP aims at guaranteeing the following properties:

Correctness: if at least f + 1 correct processes broadcast the message
(session s), all correct processes accept the message.

Unforgeability: if no correct process broadcasts (session s), no correct process
accepts the message.

Relay: if a correct process accepts (session s), all correct processes accept it.

4 ARCA stands for Array with Cardinalities.
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where f < N/2 is the number of processes failing during an algorithm run, with
N the number of processes in the system. Algorithm 1 shows the pseudo-code.

We model SRBP as follows: IT(z) is the initial state of a process z; it is
s when z broadcasts a (init, session s) message, and 0 otherwise. SE(z) = s
indicates that x has broadcast its own echo. AC(z) = s indicates that z has
accepted (session s). Let pc be the program counter, r the round number, and
G a flag indicating whether one round has been executed. We indicate with
F(z) =1 the fact that z is faulty, and F(x) = 0 otherwise. Finally, CI(z) and
CE(x) are the number of respectively inits and echoes received. In the following,
Va means Va € [0, N). Some sentences are conjoined to all our proof obligations,
namely: #{z|F(z) = 0} + #{z|F(z) = 1} = N A #{z|F(z) = 1} < N/2. For
the Correctness property, we write ¢, as follows:

e i =pc=1Ar=0AG=0As5#0A (12)
#{z|IT(z) =0} + #{z|IT(z) = s} = N A (13)
#{z|F(z) = 0N IT(2) = s} > (#{z[F(z) =1} + 1) A (14)
Ve.SE(x) =0ANAC(z) =0ACI(z) =0ACE(z) =0 (15)

where we impose that the number of correct processes broadcasting the init
message is at least the number of faulty processes, f, plus 1. It is worth to
notice that — from the above definition — our tool produces a specification that
is checked for any N € N number of processes. The constraints on IT allow to
verify all admissible assignments of 0 or s to the variables. Similarly for F(z).

The algorithm safety is verified by checking that the bad properties cannot
be reached from the initial state. For Correctness, we set v, := pc = 1 AG =
IA#{z|F(z) = 0NAC(z) = 0} > 0, that is, Correctness is not satisfied if — after
one round — some correct process exists that has yet to accept. The algorithm
evolution is described by two transitions: 7, and 75. The former allows to choose
the number of both inits and echoes received by each process. The latter describes
the actions in Algorithm 1.

mi=pc=1Apd =2 A7 =rAG' =GAs' =sA3IK1,K2, K3, K4.
K1 = #{z|F(z) =0AIT(z) = s} NK2 = #{z|F(x) =0A SE(z) = s} A
K3=#{z|F(z) =1ANIT(z) = s} N K4 = #{z|F(z) =1 ANSE(z) = s} A
Vao.F(z) =0= (CI'(x) > K1 ACI'(z) < (K1 + K3) ACE'(z) > K2 A
CE'(z) < (K2+ K4)) A
Vo.F(z) =1= (CI'(x) >0ACI'(z) < (K1+ K3) ACE'(z) > 0 A
CE'(z) < (K2 + K4)) A
Ve IT (z) = IT(z) A SE'(z) = SE(x) A AC () = AC(z)
T2 ::pc:Q/\pc/:I/\r':(r+1)/\s/:3/\G/:1/\
Va.(CI(z) > #{z|F(z) = 1} + 1 = SE'(z) = s A AC'(z) = 5) A
Va.(CI(z) < #{z|F(2) = 1} + LACE(z) > 1 = SE'(z) = /\AC(x): )/\
Va.(Cl(z) < #{z|F(z) =1} + 1 ACE(x )<1:>SE(1’)
Vo IT (z) = IT(z) ACI'(z) = CI(z) A CE'(2z) = CE(x)
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Algorithm 1. Pseudo-code for the send-receive broadcast primitive.

Initialization:
To broadcast a (session s) message, a correct process sends (init, session s) to all.
End Initialization
for each correct process:
1. if received (init, session s) from at least f + 1 distinct processes or
2 received (echo, session s) from any process then
3. accept (session s);
4 send (echo, session s) to all;
5. endif

The same two transitions are used to verify both the Unforgeability and
the Relay properties, for which however we have to change the initial and final
formula. For Unforgeability, (13) in ¢ changes as ... A #{z|F(z) = 0A IT(x) =
0} = #{z|F(z) = 0} A...; while v, == pc = 1AG = 1AH#{z|F(z) = 0NAC(z) =
s} > 0. In ¢, we say that all non-faulty processes have IT(z) = 0. Unforgeability
is not satisfied if some correct process accepts. For Relay, we use:

tr i =pc=1AT=0As#0NG=0A
#{z|F(z) =0NAC(z) =sANSE(z) =s}=1A
#{z|AC(z) =0ASE(z) =0} = (N — 1) A#{z|AC(z) = s NSE(z) =s} =1A
Ve IT(z) =0ACI(z) =0ANCE(z) =0

while v, = v.. In this case, we start the system in the worst condition: by the
hypothesis, we just know that one correct process has accepted. Upon accep-
tance, by the pseudo-code, it must have sent an echo. All the other processes are
initialized in an idle state. We also produce an unsafe model of Correctness: we
modify ¢, by imposing that just f correct processes broadcast the init message.

In Table1, we report the results of validating these and other models with
our tool. In the first column, the considered algorithm is indicated. The second
column indicates the property to be verified; the third column reports the con-
ditions of verification. In the fourth column, we indicate whether we consider
either a bounded model checking (BMC) or an invariant-checking (1C) problem.
The fifth column supplies the obtained results (for BMC problems, ‘safe’ means
of course ’safe up to the analyzed bound’). The sixth column shows the time
jointly spent by ARCA, ARCA-SAT and z3 for the verification, considering for
BMC the sum of the times spent for every traces of length up to 10. We used a
PC equipped with Intel Core i7 processor and operating system Linux Ubuntu
14.04 64 bits. We focused on BMC problems as they produce longer formulas thus
stressing more the tools. Specifically, following the example above, we modeled:
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Table 1. Evaluated algorithms and experimental results.

Algorithm | Property Condition Problem | Outcome | Time (s.)
SRBP [21] | Correctness > (f+1) init’s |BMC safe 0.82
SRBP [21] | Correctness < f init’s BMC unsafe 2.21
SRBP [21] | Unforgeability | > (f+ 1) init’s | BMC safe 0.85
SRBP [21] | Relay > (f+1)init’s |BMC safe 1.93
BBP [22] Correctness N > 3f BMC safe 6.17
BBP [22] Unforgeability N > 3f BMC safe 0.25
BBP [22] Unforgeability N > 3f BMC unsafe 0.25
BBP [22] Relay N > 3f BMC safe 1.01
OT [4] Agreement threshold >2N/3 |1C safe 4.20
OT [4] Agreement threshold >2N/3 | BMC safe 278.95
OT [4] Agreement threshold < 2N/3 | BMC unsafe 17.75
OT [4] Irrevocability threshold >2N/3 | BMC safe 8.72
OT [4] Irrevocability threshold < 2N/3 | BMC unsafe 9.51
OT [4] Weak Validity | threshold >2N/3 | BMC safe 0.45
OT [4] Weak Validity | threshold < 2N/3 | BMC unsafe 0.59
UV [5] Agreement Phrosplit violated | BMC unsafe 4.18
UV [5] Irrevocability Prospiit violated | BMC unsafe 2.04
UV [5] Integrity - BMC safe 1.02
Ur,e« [3] | Integrity a=0APsafe BMC safe 1.16
Ur,g,« [3] | Integrity a=0APsafe BMC unsafe 0.83
Ur,e.« [3] | Integrity a=1APsase BMC safe 5.20
Ur,e.« [3] | Integrity a=1A—Psape |BMC unsafe 4.93
Ure.e [3] | Agreement a=0APsafe BMC safe 59.80
Ur,e.« [3] | Agreement o =0A"Psase BMC unsafe 7.78
Ur,e.« [3] | Agreement a=1APsase BMC safe 179.67
Ur,g,o [3] | Agreement a=1A"Psase BMC unsafe 31.94
MESI [17] | cache coherence | - Ie; safe 0.11
MOESI [20] | cache coherence |- IC safe 0.08
Dekker [6] | mutual exclusion |- IC safe 2.05

— the byzantine broadcast primitive (BBP) [22] used to simulate authenticated
broadcast in the presence of malicious failures of the processes,

— the one-third algorithm (OT) [4] for consensus in the presence of benign trans-
mission failures,

— the Uniform Voting (UV) algorithm [5] for consensus in the presence of benign
transmission failures,
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— the Up g o algorithm [3] for consensus in the presence of malicious transmis-
sion failures,

— the MESI [17] and MOESI [20] algorithms for cache coherence,

— the Dekker’s algorithm [6] for mutual exclusion.

All the models, together with our tools to verify them, are available at http://
users.mat.unimi.it /users/ghilardi/arca (for the z3 solver see http://risedfun.
com/z3).

As far as the processing times are concerned, we observed that on average z3
accounts for around 68% of the processing time, while ARCA and ARCA-SAT
together account for the remaining 32%. Indeed, the SMT tests performed by
ARCA-SAT are lightweight — as they only prune assignments — yet effective, as
they succeed in reducing the number of assignments of at least one order of
magnitude.

6 Conclusions, Related and Further Work

We identified two fragments of the rich syntax of Fig.1 and we showed their
decidability (for the second fragment we showed also a tight complexity bound).
Since our fragments are closed under Boolean connectives, it is possible to use
them not only in bounded model checking (where they can both give certifica-
tions and find bugs), but also in order to decide whether an invariant holds or
not. We implemented our algorithm for the weaker fragment and used it in some
experiments. As far as we know, this is the first implementation of a complete
algorithm for a fragment of arithmetic with arrays and counting capabilities for
interpreted sets. In future, we plan to extend both our tool ARCA and our results
in order to deal with more complex verification problems.

Since one of the major intended applications concerns fault-tolerant distrib-
uted systems, we briefly review and compare here some recent work in the area.
Papers [11-13] represent a very interesting and effective research line, where car-
dinality constraints are not directly handled but abstracted away using interval
abstract domains and counters. As a result, a remarkable amount of algorithms
are certified, although the method might suffer of some lack of expressiveness for
more complex examples. On the contrary, paper [4] directly handles cardinality
constraints for interpreted sets; nontrivial invariant properties are synthesized
and checked, based on Horn constraint solving technology. At the level of decision
procedures, some incomplete inference schemata are employed (completeness is
nevertheless showed for array updates against difference bounds constraints).
Paper [7] introduces a very expressive logic, specifically tailored to handle con-
sensus problems (whence the name ‘consensus logic’ C'L). Such logic employs
arrays with values into power set types, hence it is situated in a higher order logic
context. Despite this, our flat fragment is not fully included into C'L, because we
allow arithmetic constraints on the sort of indexes and also mixed constraints
between indexes and data: in fact, we have a unique sort for indexes and data,
leading to the possibility of writing typically non permutation-invariant formulee
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like §{z | a(z)+2 = N} = z. As pointed out in [2], this mono-sorted approach is
useful in the analysis of programs, when pointers to the memory (modeled as an
array) are stored into array variables. From the point of view of deduction, the
paper [7] uses an incomplete algorithm in order to certify invariants. A smaller
decidable fragment (identified via several syntactic restrictions) is introduced in
the final part of the paper; the sketch of the decidability proof supplied for this
smaller fragment uses bounds for minimal solutions of Presburger formulae as
well as Venn regions decompositions in order to build models where all nodes in
the same Venn region share the same value for their function symbols.
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Abstract. We consider the problem of deciding the theory of finite sets
with cardinality constraints using a satisfiability modulo theories solver.
Sets are a common high-level data structure used in programming; thus,
such a theory is useful for modeling program constructs directly. More
importantly, sets are a basic construct of mathematics and thus nat-
ural to use when formalizing the properties of computational systems.
We develop a calculus describing a modular combination of a proce-
dure for reasoning about membership constraints with a procedure for
reasoning about cardinality constraints. Cardinality reasoning involves
tracking how different sets overlap. For efficiency, we avoid considering
Venn regions directly, as done previous work. Instead, we develop a novel
technique wherein potentially overlapping regions are considered incre-
mentally as needed. We use a graph to track the interaction among the
different regions. Initial experimental results demonstrate that the new
technique is competitive with previous techniques and scales much better
on certain classes of problems.

1 Introduction

Satisfiability modulo theories (SMT) solvers are at the heart of many verifica-
tion tools. One of the reasons for their popularity is that fast, dedicated decision
procedures for fragments of first-order logic are extremely useful for reasoning
about constructs common in hardware and software verification. In particular,
they provide a good balance between speed and expressiveness. Common frag-
ments include theories such as bitvectors, arithmetic, and arrays, which are useful
both for modeling basic constructs as well as for performing general reasoning.

As the use of SMT solvers has spread, there has been a corresponding demand
for SMT solvers to support additional useful theories. Although it is possible to
encode finitely axiomatizable theories using quantifiers, the performance and
robustness gap between a custom decision procedure and an encoding using
quantifiers can be quite significant.

In this paper, we present a new decision procedure for a fragment of set
theory. Our main motivation is that sets are a common abstraction used in pro-
gramming. As with other SMT theories like the theories of arrays and bitvectors,
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we expect the theory of sets to be useful in modeling a variety of program con-
structs. Sets are also used directly in high-level programming languages like
SETL and in specification languages like Alloy, B and Z. More generally, sets
are a basic construct in mathematics and come up quite naturally when trying
to express properties of systems.

While the full language of set theory is undecidable, many interesting frag-
ments are known to be decidable. We present a calculus which can handle basic
set operations, such as membership, union, intersection, and difference, and
which can also reason efficiently about set cardinalities. The calculus is also
designed for easy integration into the DPLL(T) framework [12].

1.1 Related Work

In the SMT community, the desire to support a theory of finite sets with cardi-
nality goes back at least to a 2009 proposal [9]. However, the focus there is on
formalizing the semantics and representation of the theory within the context of
the SMT-LIB language, rather than on a decision procedure for deciding it.

There is an existing stream of research on exploring decidable fragments of
set theory (often referred to in the literature as syllogistics) [5]. One such sub-
fragment is MLSS, more precisely, the ground set-theoretic fragment with basic
Boolean set operators (union, intersection, set difference), singleton operator
and membership predicate. A tableau-based procedure for this fragment was
presented in [6], and the part of our calculus covering this same fragment builds
on that work. In [7], an extension of the theory of arrays is presented, which can
be used to encode the MLSS fragment. However, this approach cannot be used
to encode cardinality constraints.

In this paper, we consider the MLSS fragment extended with set cardinal-
ity operations. The decidability of this fragment was established in [14]. The
procedure given there involves making an up-front guess that is exponential in
the number of set variables, making it non-incremental and highly impractical.
That said, the focus of [14] is on establishing decidability and not on providing
an efficient procedure.

Another logical fragment that is closely related is the Boolean Algebra and
Presburger Arithmetic (BAPA) fragment, for which several algorithms have been
proposed [10,11,13]. Though BAPA doesn’t have the membership predicate or
the singleton operator in its language, [13, Sect. 4] shows how one can generalize
the algorithm for such reasoning. Intuitively, singleton sets can be simulated by
imposing a cardinality constraint card(X) = 1. Similarly, a membership con-
straint, say £ 9, is encoded by introducing a singleton set, say X, and then
using the subset operation: X C S.

This reduction can lead to significant inefficiencies, however. Consider the
following simple example: £ Sy U (Sa U (... U (Sgg L S100))). It is easy to see
that the constraint is satisfiable. In our calculus, a straightforward repeated
application of one of the rules for set unions can determine this. On the other
hand, in a reduction to BAPA, the membership reasoning is reduced to reasoning
about cardinalities of different sets. For example, the algorithm in [13] will reduce
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the problem to arithmetic constraints involving variables for 2!°* Venn regions
derived from Sy, S, ..., S100, and the singleton set introduced for x.

The broader point is that reasoning about cardinalities of Venn regions is the
main bottleneck for this fragment. As we show in our calculus, it is possible to
avoid using Venn regions for membership predicates by instead reasoning about
them directly. For explicit cardinality constraints, our calculus minimizes the
number of Venn regions that need to be considered by reasoning about only a
limited number of relevant regions that are introduced lazily.

1.2 Formal Preliminaries

We work in the context of many-sorted first-order logic with equality. We assume
the reader is familiar with the following notions: signature, term, literal, formula,
free variable, interpretation, and satisfiability of a formula in an interpretation
(see, e.g., [3] for more details). Let X' be a many-sorted signature. We will use
~ as the (infix) logical symbol for equality—which has type o x o for all sorts
o in X and is always interpreted as the identity relation. We write s % t as an
abbreviation of = s ~ ¢. If e is a term or a formula, we denote by V(e) the set of
e’s free variables, extending the notation to tuples and sets of terms or formulas
as expected.

If v is a Y-formula and Z a Y-interpretation, we write Z |= ¢ if Z satisfies .
If t is a term, we denote by % the value of ¢ in Z. A theory is a pair T = (X, 1),
where X' is a signature and I is a class of X-interpretations that is closed under
variable reassignment (i.e., every Y-interpretation that differs from one in I only
in how it interprets the variables is also in I). I is also referred to as the models
of T. A Y-formula ¢ is satisfiable (resp., unsatisfiable) in T if it is satisfied by
some (resp., no) interpretation in I. A set I" of Y-formulas entails in T a X-
formula o, written I" =7 ¢, if every interpretation in I that satisfies all formulas
in I' satisfies ¢ as well. We write =1 ¢ as an abbreviation for § =7 ». We
write I' = ¢ to denote that I" entails ¢ in the class of all X-interpretations. The
set I' is satisfiable in T if I f£r L where L is the universally false atom. Two
Y-formulas are equisatisfiable in T if for every model A of T' that satisfies one,
there is a model of T that satisfies the other and differs from .4 at most over the
free variables not shared by the two formulas. When convenient, we will tacitly
treat a finite set of formulas as the conjunction of its elements and vice versa.

2 A Theory of Finite Sets with Cardinality

We consider a typed theory Tg of finite sets with cardinality. In a more gen-
eral logical setting, this theory would be equipped with a parametric set type,
with a type parameter for the set’s elements, and a corresponding collection
of polymorphic set operations.! For simplicity here, we will describe instead a
many-sorted theory of sets of sort Set whose elements are all of sort Element.

! In fact, this is the setting supported in our implementation in CVC4.
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Constant and function symbols:

n: Card for allm € N - : Card — Card + : Card x Card — Card
0 :Set card():Set — Card {-}:Element — Set L, M,\ : Set x Set — Set

Predicate symbols:

< : Card x Card >= : Card x Card C: Set x Set £ : Element x Set
Fig. 1. The signature of Tg.

The theory Tg can be combined with any other theory ¥ in a standard way, i.e.,
Nelson-Oppen-style, by identifying the Element sort with a sort ¢ in ¥, with the
restriction that o must be interpreted in T as an infinite set.? Note that we limit
our language to consider only flat sets (i.e. no sets of sets). However, this can
be simulated by combining ¥ with itself using the mechanism just mentioned.
The theory T has also a sort Card for terms denoting set cardinalities. Since we
consider only finite sets, all cardinalities will be natural numbers.

Atomic formulas in Tg are built over a signature with these three sorts, and
an infinite set of variables for each sort. Modulo isomorphism, T g is the theory of
a single many-sorted structure, and its models differ in essence only on how they
interpret the variables. Each model of g interprets Element as some countably
infinite set E, Set as the set of finite subsets of F, and Card as N. The signature
of T g has the following predicate and function symbols, summarized in Fig. 1: the
usual symbols of linear integer arithmetic, the usual set composition operators,
an empty set (@) and a singleton set ({-}) constructor, and a cardinality operator
(card(+)), all interpreted as expected. The signature includes also symbols for the
cardinality comparison (<), subset (C) and membership (E) predicates.

We call set term any term of sort Set or of the form card(s), and cardinality
term any term of sort Card with no occurrences of card(-). A set constraint is an
atomic formula of the form s &~ ¢, s C ¢, e E t or their negation, with s and ¢ set
terms and e a term of sort Element. A cardinality constraint is a [dis|equality
[-]c & d or an inequality c¢< d or ¢>= d where ¢ and d are cardinality terms. An
element constraint is a [dislequality [-]z & y where x and y are variables of sort
Element. A Tg-constraint is a set, cardinality or element constraint.

We will use z, y for variables of sort Element; S, T, U for variables of sort
Set; s, t, u, v for terms of sort Set; and ¢ with subscripts for variables of sort
Card. Given C, a set of constraints, Vars (C) (respectively, Terms(C)) denotes the
set of variables (respectively, terms) in C. For notational convenience, we fix an
injective mapping from terms of sort Set to variables of sort Card that allows us
to associate to each such term s a unique cardinality variable c;.

We are interested in checking the satisfiability in g of finite sets of ¥g-
constraints. While this problem is decidable, it has high worst-case time complex-

2 An extension that allows o to be interpreted as finite by relying on polite combina-
tion [8] is planned as future work.
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ity [14]. So our efforts are in the direction of producing a solver for ¥ g-constraints
that is efficient in practice, in addition to being correct and terminating. Our
solver relies on the modular combination of a solver for set constraints and an
off-the-shelf solver for linear integer arithmetic, which handles arithmetic con-
straints over set cardinalities.

3 A Calculus for the Theory

In this section, we describe a tableaux-style calculus capturing the essence of our
combined solver for Tg. As we describe in the next section, that calculus admits
a proof procedure that decides the satisfiability of T g-constraints.

For simplicity, we consider as input to the calculus only conjunctions C of
constraints whose set constraints are in flat form. These are (well-sorted) set
constraints of the foorm S~T, S# T, S~0, S~ {z}, S=~TuUU,S~TnU,
S~T\U,zE S, 2 £ S, or cg = card(S), where S, T, U, cg, and x are
variables of the expected sort. We also assume that any set variable S of C
appears in at most one union, intersection or set difference term. Thanks to
common satisfiability-preserving transformations, all of these assumptions can
be made without loss of generality.

The calculus is described as a set of derivation rules which modify a state
data structure. A state is either the special state unsat or a tuple of the form
(8§, M, A,G), where S is a set of set constraints, M is a set of element constraints,
A is a set of cardinality constraints, and G is a directed graph over set terms
with nodes V(G) and edges E(G). Since cardinality constraints can be processed
by a standard arithmetic solver, and element constraints by a simple equality
solver,* we present and discuss only rules that deal with set constraints.

The derivation rules are provided in Fig. 2 through 9 in guarded assignment
form. In such form, the premises of a rule refer to the current state and the
conclusion describes how each state component is changed, if at all, by the rule’s
application. A derivation rule applies to a state o if all the conditions in the rule’s
premises hold for o and the resulting state is different from o. In the rules, we
write S,t as an abbreviation for S U {t}. Rules with two or more conclusions
separated by the symbol || are non-deterministic branching rules.

The rules are such that it is possible to generate a closed tableau (or deriva-
tion tree) from an initial state (Sp, Mo, Ao, Go), where Gy is an empty graph,
if and only if the conjunction of all the constraints in Sp U Mgy U Ag is unsat-
isfiable in Tg. Broadly speaking, the derivation rules can be divided into three
categories. First are those that reason about membership constraints (of form
z E 5). These rules only update the components S and M of the current state,
although their premises may depend on other parts of the state, in particular,
the nodes of the graph G. Second are rules that handle constraints of the form

3 Including replacing constraints of the form s C ¢ with s & (s M¢t).
4 Recall that 5 has no terms of sort Element besides variables.
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UNION Down I UnioN Down II
Tz sUteS" zEsUteS” {u,v} = {s, t} z#ueS”
S:=8Sa(zggs)a(xit) S:=8<a(zEWV)
UNioN Up I UnioN Up IT
TEseS” r#ZteS” suteT TEuUES” u € {s,t} suteT
S:=8a(z#sUt) S:=8S<a(zEsUt)
INTER DOWN 1 INTER DOowN II
rEsNteS” xEsNteS” {u,v} = {s,t} rEuES”
S=8Sqa(zEs)a(zEL) S:=8a(z#v)
INTER UP I INTER UP II
TEsSES” rEtES” snteT zZueS” u € {s,t} snteT
S:=8<(zEsMt) S:=8S<(z#snt)

UNION SPLIT
TEsUteS TES,TEtZS"

S:=8<a(zeEs) || S:=8S<(zE?)

INTER SPLIT
snteT {u,v} = {s, t} zEuEeS” TEvV,TEVES"

S:=8S<a(zEv) || S:=S<(z#)

Fig. 2. Union and intersection rules.

¢s = card(S). The graph incrementally built by the calculus is central to satis-
fying these constraints. Third are rules for propagating element and cardinality
constraints respectively to M and A.

3.1 Set Reasoning Rules

Figures 2 and 3 focus on sets without cardinality. They are based on the MLSS
decision procedure by Cantone and Zarba [6], though with some key differences.
First, the rules operate over a set 7 of Set terms which may be larger than just
the terms in S. This generalization is required because of additional terms that
may be introduced when reasoning about cardinalities. Second, the reasoning is
done modulo equality. A final, technical difference is that we work with sets of
ur-elements rather than untyped sets.

These rules rely on the following additional notation. Given a set C of con-
straints, let Termssort (C) refer to terms of sort Sort in C, with Terms(C) denoting
all terms in C. We define the binary relation ~} C Terms(C) x Terms(C) to be
the reflexive, symmetric, and transitive closure of the relation on terms induced
by equality constraints in C. Now, we define the following closures:
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M ={ory|loxjyytU{zsty| Iy e~y 2, y=iu v, o' £y e M}
S*=8SU{zEs |, . arj 2, sxis, 2 ESs €S}
U{z s |, s a2, sass, o/ £ €S}

where z, y, 2/, ¢y in Termsgiement(M U S), and s, s’ in Termsse(S). Next, we
define a left-associative operator <. Intuitively, given a set of constraints C and
a literal [, C < (1) adds [ to C only if [ is not in C’s closure. More precisely,

C iflecC”
Ca(l)= 1
<) {C U{l} otherwise. S

Finally, the set of relevant terms for these rules is denoted by 7 and consists of
terms from S and G: 7 = Terms(S) UV (G).

Figure2 shows the rules for reasoning about membership in unions and
intersections. Each rule covers one case in which a new membership (or non-
membership) constraint can be deduced. The justification for these rules is
straightforward based on the semantics of the set operations. Due to space limi-
tations, we do not show the rules that process set difference constraints. However,
they are analogous to those given for union and intersection constraints. Figure 3
shows rules for singletons, disequalities, and contradictions. Note in particular
that the SET DISEQUALITY rule introduces a variable y, denoting an element
that is in one set but not in the other.

SINGLETON SINGLE MEMBER SINGLE NON-MEMBER
{z}eT zE{y}eS” z#{y} €8

S:=8«(z E {z}) M:=Ma(zry) M:=Ma(z#y)

SET DISEQUALITY
s#teS” P € Terms(S) such that t E s € S  and x £ t € S*
Pz € Terms(S) such that 2 £ s € S andx Et € S”

S=Sa(yEs)ay#l) || S:=8S<y#Zs)ayE?)
EqQ Unsat SET UNSAT EMPTY UNSAT
(zstx)e M* (zES)eS” (xZs)eS” (zE0)eS”
unsat unsat unsat

Fig. 3. Singleton, disequality and contradiction rules. Here, y is a fresh variable.

Ezample 1. Let S = {S~ AUB,S~CnND,zE C,z % D,y # S,y E D}. Using
the rules in Fig. 2, we can directly deduce the additional constraints: x £ C'M D
(by INTER UP II), 2 2 A, c # B,y # A, y £ B (by UNntON DowN I), and
y # C (by INTER DowN II). This gives a complete picture, modulo equality, of
exactly which sets contain x and y. a
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3.2 Cardinality of Sets

The next set of rules is based on two observations: (7) the cardinality of two sets,
and that of their union, intersection and set difference are inter-related; (i) if
two set terms are asserted to be equal, their cardinalities must match. Figure 4
shows the Venn regions for two sets, T" and U. Notice the following relationships:
T is a disjoint union of T\ U and TNU; T'UU is a disjoint union of T\ U and
TNU and U\ T; and U is a disjoint union of T MU and U \ T. Knowing that
the sets are disjoint is important; it allows us to infer the constraints:

card(T) =~ card(T'\U) + card(T 1 U)

card(TUU) = card(T'\U) + card(TMU) + card(U\ T)
card(U) =~ card(U\T) + card(T 1 U).

TUU
T TUU U
T\U TNnU U\T
T U \ \
Fig. 4. Venn regions for T" and U. Fig. 5. The same structure as a graph.

We can represent these same relationships using a graph. The nodes of the
graph are set terms, and each node has the property that it is the disjoint union
of its children in the graph. The graph for the regions in Fig. 4 is shown in Fig. 5.
We ensure that the graph contains all nodes whose cardinality is implicitly or
explicitly constrained by the current state. Set terms with implicit cardinality
constraints include (7) union, intersection, and set difference terms appearing in
S, for which one of the operands is already in the graph; and (i7) terms occurring
in an equality whose other member is already in the graph. A careful analysis®
reveals that we can actually avoid adding intersection terms ¢ M w unless both ¢
and u are already in the graph, and set difference terms ¢\ v unless ¢ is already
in the graph.

The rules in Fig. 6 make use of a function add which takes a graph G and a
term s and returns the graph G’ defined as follows:

1. Fors=Tors=0ors={x}:
V(@) =V(G)U{s}
E(G') = E(G)
2. Fors=TnNUors=T\U:
V(G) =Va=V(G)U{T,U,T\U,TAU,U\T)}

5 See completeness proof in [1, Chap. 2] for further details.
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E(gl) :Ee :E(g)u{(T7T\U)v(T7T|_|U)a (U,THU), (UaU\T)}
3. For s =T UU and V5 and F5 as above:

V(G)=VaU{TUU}

E(g,) :E2U{(Tl—lUvT\U)v(TuUle_lU)a(Tl—anU\T)}

Recall that, by assumption, each set variable participates in at most one union,
intersection, or set difference. This ensures that edges from a set variable node
are added only once, maintaining the invariant that its children in the graph
are disjoint. Terms with explicit constraints on their cardinality are added to
the graph by INTRODUCE CARD. Terms that have implicit constraints on their
cardinality, specifically, singletons and the empty set, are added by rules INTRO-
DUCE SINGLETON and INTRODUCE EMPTY SET.

If two nodes s and ¢ in the graph are asserted to be equal (that is, s~t € S
ort ~ s € S), we can ensure they have the same cardinality by systematically
modifying the graph. Let £(n) denote the set of leaf nodes for the subtree rooted
at node n which are not known to be empty. Formally,

L(n) = {n' € Leaves(n) | n' ~ 0 & S*}, (2)

where Leaves (v) = {w € V(G) | C(w) = 0, w is reachable from v} and C'(w)
denotes the children of w. We call two nodes n and n’ merged if they have the
same set of nonempty leaves, that is if £L(n) = L(n’).

INTRODUCE UNION

INTRODUCE EQ RIGHT S~TUUeS TuUgV(G)
S~teS SeV(G) tZV(G) TeV(G)orUceV(9)
G :=add(g,1t) G:=add(G, TUU)
INTRODUCE INTER
INTRODUCE EQ LEFT S~TnuesS TNU €V(9)
S~teS S EV(9) teV(G) TeV(9) UeV(9)

G :=add(g,S) G:=add(Gg, TN0U)
INTRODUCE CARD INTRODUCE SINGLETON INTRODUCE EMPTY SET
cs ~card(S) € S {z} € Terms(S)

G :=add(g, S) G :=add(G,{z}) G :=add(g,0)

Fig. 6. Graph introduction rules.

The rules in Fig. 7 ensure that for all equalities over set terms, the correspond-
ing nodes in the graph are merged. Consider an equality s ~ ¢t. Rule MERGE
EqQuALITY I handles the case when either £(s) or £(t) is a proper subset of the
other by constraining the extra leaves in the superset to be empty. Rule MERGE
EqQuALITY IT handles the remaining case where neither is a subset of the other.
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MERGE EQuALiTY I MERGE EqQuariTy 11
s~teS s,t,0 € V(G) s~teS s, t € V(G)
{u,v} ={s,t}  L(u) € L(v) L(s) L LE) L)L L(s)
S={s'm0]|selLw\Lu}UuS G := merge(G, s,t)

Fig. 7. Merge rules.

The graph G’ = merge(G, s,t) is defined as follows, where Ly = L(s) \ £L(¢) and
Lo = L(t)\ L(s):

V(G)=V(G)U{linly | lh € Ly,ly € Lo}

E(g/) = E(g) U {(ll,ll [ 12)7 (lg,ll M l2) | l1 € Ly,ly € LQ}

We denote by G the collection of all of the following arithmetic constraints
imposed by graph G:

1. For each set term s € V(G), its corresponding cardinality is the sum of the

seV(g)}.

corresponding non-empty leaf nodes: {cs N e £(s) Ct
2. Each cardinality is non-negative: {¢;>=0 | s € V(G)}.
A singleton set has cardinality 1: {c; = 1| s € V(G), s = {z}}.
4. The empty set has cardinality 0: {c; =~ 0| s € V(G), s = 0}.

©w

Rule ARITHMETIC CONTRADICTION, shown in Fig. 8 makes use of the arith-
metic solver to check whether the constraints in C; are inconsistent with the
input constraints. Also shown is rule GUESS EMPTY SET which can be used
to guess if a leaf node is empty. This is useful to apply early on, to reduce
the impact of merge operations on the size of the graph. Here and in Fig.9,

Leaves (G) = {v € V(G) | C(v) = 0}.

ARITEIMETIC CONTRADICTION GUESS EMPTY SET
AUG =<, L t € Leaves (G)
unsat S:=8S<a(t~0) || S:=8<a(t#0)

Fig. 8. Additional graph rules.

3.3 Cardinality and Membership Interaction

The rules in Fig.9 propagate consequences of set membership constraints to
the sets M and A. Let £ denote the set of equalities in M, and let [z],
denote the equivalence class of x with respect to £. Then for a Set term ¢,
ts = {[z]¢ | x Et € §*}, the set of equivalence classes of elements known to
be in ¢t. The notation A = ¢; > n means that ¢; >= k € A for some concrete
constant k > n.
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MEMBERS ARRANGEMENT
t € Leaves (G) AZ e > ts| [zlg,[ylg €ts (2] # Wl zyg M

M=Ma(zry) || M=Mw(zzy)
GUESs LOWER BOUND PROPAGATE MINSIZE
t € Leaves (G) A2 e > |ts] T1ES,...,thnESsES" A cs>n
< |ts| € A it E M foralll <i<j<n
A:=c¢>=|ts|, A || A:=c<]ts|, A A:i=cs>=n, A

Fig. 9. Cardinality and membership interaction rules.

Rule MEMBERS ARRANGEMENT is used to decide which elements of a set
should be equal or disequal. Once applied to completion, Rule PROPAGATE MIN-
SIZE can then be used to determine a lower bound for the cardinality of that
set. Rule GUESS LOWER BOUND can be used to short-circuit this process by
guessing a conservative lower bound based on the number of distinct equiva-
lence classes of elements known to be members of a set. If this does not lead
to a contradiction, a model can be found without resorting to extensive use of
MEMBERS ARRANGEMENT.

Ezample 2. Consider again the constraints from Example 1, but now augmented
with cardinality constraints {cs = card(S), cc = card(C), ¢p =~ card(D)} and
arithmetic constraints {cg>= 4, c¢ + ¢p < 10}. Using the rules in Fig.6, the
following nodes get added to the graph: S, C, D (by INTRODUCE CARD), ALl B,
CmMD (by INTRODUCE EQ RIGHT). ALIB is added with children A\ B, AMB, and
B\ 4; and by adding CT1D, we also get C'\ D and D\ C, with the corresponding
edges from C and D. Now, using two applications of MERGE EQUALITY II, we
force the sets S, AUB and CT1D to have the same set of 3 leaves, labeled ST1(A\
B)n(CnD), SM(ANB)M(CMD), and ST1(B\ A)M(CMND). Let us call these nodes
l1, la, and I3 for convenience. Let us also designate [y = C'\ D and s = D\ C.
Notice that the induced arithmetic constraints now include cs =~ ¢, + ¢, + ¢y,
cor et eyt eyt a,,and cp & ¢, + ¢, + oy + ¢, With the addition of C'\ D
and D\ C to the graph, these are also added to 7. We can then deduce x £ C'\ D
and y £ D \ C using the (not shown) rules for propagation over set difference.
Finally, we can use PROPAGATE MINSIZE to deduce ¢;, >= 1 and ¢;; >= 1. It is
now not hard to see that using pure arithmetic reasoning, we can deduce that
cc + ¢p >= 10 which leads to unsat using ARITHMETIC CONTRADICTION. O

4 Calculus Correctness

Our calculus is terminating and sound for any derivation strategy, that is, regard-
less of how the rules are applied. It is also refutation complete for any fair strat-
egy, defined as a strategy that does not delay indefinitely the application of an
applicable derivation rule. For space reasons, we only outline the proof arguments
here. Complete proofs are given in [1].
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We group the derivation rules of the calculus in the following subsets.

R1: membership predicate reasoning rules, from Figs. 2 and 3.
Ro: graph rules to reason about cardinality, from Figs. 6, 7 and 8.
Rg3: rules from Fig. 9 other than Rule GUESS LOWER BOUND.
Ra4: Rule GUESS LOWER BOUND.

The rules are used to construct derivation trees. A derivation tree is a tree
over states, where the root is a state of the form (Sy, Mo, Ao, (0,0)), (and Sy,
My, Ag obey the input constraints mentioned at the beginning of Sect. 3), and
where the children of each non-root node are obtained by applying one of the
derivation rules of the calculus to that node. A branch of a derivation tree is
closed if it ends with unsat; it is saturated with respect to a set R of rules if it
is not closed and no rules in R apply to its leaf. A derivation tree is closed if all
of its branches are closed. A derivation tree derives from a derivation tree T if
it is obtained from T by the application of exactly one of the derivation rules to
one of T’s leaves.

Let S be a set of Tg-constraints. A derivation (of S) is a sequence (T})o<i<x
of derivation trees, with « finite or countably infinite, such that T} derives from
T; for all 4, and Ty is a one-node tree whose root is a state (Sp, My, Ao, (0,0))
where So U Mg U Ay is Ts-equisatisfiable with S. A refutation (of S) is a (finite)
derivation of S that ends with a closed tree.

4.1 Termination
Proposition 1 (Termination). Every derivation in the calculus is finite.

Proof (Sketch). Tt is enough to show that every application of a derivation rule
to a state produces smaller states with respect to a well-founded relation > over
states other than unsat. For simplicity, we ignore the rule GUESS LOWER BOUND,
although the proof could be extended to that rule as well. To define > we first
define the following functions, each of which maps a state o = (S, M, A, G) to a
natural number (from N).

— fi1(o): number of equalities ¢; & ¢2 in S such that either t; & V(G), t2 & V(G),

or L(tl) 7é ,C(tg)

— f2(0): cardinality of (Termsse:(S) U {0}) \ V(G).

— f3(o): cardinality of {t € Leaves (G) |t ~0 & S*,t £ 0 & S*}.

~ f4(0): number of disequalities t; % t5 in S such that the premise of SET
DiISEQUALITY holds.

— f5(0): cardinality of T' = Termsse(S) U {0} U V(G).

— fe(0): cardinality of Termsgiement(S U M).

— f7(0): 2+ fe(0)? minus the cardinality of M*.

— fs(o): 2+ f5(0)? + 2 f5(0) - f6(o) minus the cardinality of S*.”

— fo(o): cardinality of T'\ {t € Leaves (G) | A % ¢ > |ts|}-

Let (N9, > ) be the 9-fold lexicographic product of (N, >). We define > as the
relation such that o = o iff (f1(0),..., fo(o)) > (fi(d)),..., fo(c")). O

6 Note that the cardinality of M* is at most 2 - (fs(c))>.
" One can show that this value is non-negative.
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4.2 Completeness

We develop the proof in stages, proving properties about different subsets of
rules. We start with a proposition about the rule set R;.

Proposition 2. Let (S, M, A, G) be a state to which none of rules in Ry apply.
There is a model & of Tg that satisfies the constraints S and M and has the
following properties.

1. For all z,y € Vars (M) U Vars (S) of sort Element, x® = y® if and only if
TRy e M.

2. For all S € Vars (S) of sort Set, S© = {z® ’ zE S €S

3. For all cg € Vars (S) of sort Card, c§ = |SG‘.

For the next two results, let (S, M, A, G) be the leaf of a branch saturated
with respect to rules R URo UR3 in a derivation tree. The first result is about
the effects of the rules in Ro. The second is about the rules in R3.

Proposition 3. For every s € V(G) the following holds.

Ifs~teS ort~seS for somet, then L(s) = L(t).
Ifs=TUU, then LTUU)=L(T)ULU).
Ifs=TnNU, then LI'NMU)=L(T)NLWU).
Ifs=T\U, then £L(T\U) = L(T)\ L(U).

For all distinct t,u € Leaves (s), Exg tMu = 0.
{trultmueS) Frs s~ egot

Proposition 4. Let & be an interpretation as the one specified in Proposition 2
and let A be any model of Ts satisfying A. Then, for all t € L(G), ¢} > |tO].

S G o o~

Completeness is a direct consequence of the following result.

Proposition 5. Let D be a derivation tree with root (Sp, Mo, Ao, (0,0)). If D
has a branch saturated with respect to rules R1 U Ro U Rz, then there exists a
model J of Ts that satisfies So U My U Ay.

Proof (Sketch). We build the model of the leaf nodes in the graph by modifying
as needed the model obtained from Proposition 2. We add additional elements
to these sets to make the cardinalities match the model satisfying the arithmetic
constraints and the constraints induced by the graph. Propositions 3 and 4 ensure
that it is always possible to do so without violating the set constraints. a

Proposition 6 (Completeness). Under any fair derivation strategy, every
derivation of a set S of Tg-unsatisfiable constraints extends to a refutation.

Proof. Contrapositively, suppose that S has a derivation D that cannot be
extended to a refutation. By Proposition 1, D must be extensible to one that
ends with a tree with a saturated branch. By Proposition 5, S is satisfiable
in Tg. O
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4.3 Soundness
We start by showing that every rule preserves constraint satisfiability.

Lemma 1. For every rule of the calculus, the premise state is satisfied by a
model J,, of Ts iff one of its conclusion configurations is satisfied by a model J.
of Ts where I, and J. agree on the variables shared by the two states.

Proof (Sketch). Soundness of the rules in Figs.2 and 3 follows trivially from
the semantics of set operators and the definition of S*. Soundness of MERGE
EqQuALITY I follows from properties of the graph (see Proposition 3, in particular
the property that leaf terms are disjoint). The rules in Fig. 6 and rule MERGE
EQuALITY II do not modify the constraints, but we need them to establish
properties of the graph. Soundness of the induced graph constraints in ARITH-
METIC CONTRADICTION follows from Proposition 3 (in particular properties 3
and 3). Soundness of PROPAGATE MINSIZE follows from the semantics of cardi-
nality. Soundness of GUESS EMPTY SET, MEMBERS ARRANGEMENT and GUESS
LOWER BOUND is trivial. O

Proposition 7 (Soundness). FEvery set of Tg-constraints that has a refuta-
tion is Tg-unsatisfiable.

Proof (Sketch). Given Lemma 1, one can show by structural induction on deriva-
tion trees that the root of any closed derivation tree is T g-unsatisfiable. The claim
then follows from the fact that every refutation of a set .S of T g-constraints starts
with a state T g-equisatisfiable with S. O

5 Evaluation

We have implemented a decision procedure based on the calculus above in the
SMT solver CVC4 [2]. We describe a high-level, non-deterministic version of it
here, followed by an initial evaluation on benchmarks from program analysis.

5.1 Derivation Strategy

The decision procedure can be thought of as a specific strategy for applying the
rules given in Sect. 3, divided into the sets Rq, ..., R4 introduced in Sect. 4.

Our derivation strategy can be summarized as follows. We start with the
derivation from the initial state (Sp, My, Ao, Go) with Gy the empty graph, as
described in Sect. 3, and apply the steps listed below, in the given order. The
steps are described as rules being applied to a current branch. Initially, the
current branch is the only branch in tree. On application of a rule with more
than one conclusion, we select one of the branches (say, the left branch) as the
current branch.

1. If a rule that derives unsat is applicable to the current branch, we apply one
and close the branch. We then pick another open branch as the current branch
and repeat Step 1. If no open branch exists, we stop and output unsat.
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2. If a propagation rule (those with one conclusion) in R; is applicable, apply
one and go to Step 1.

3. If a split rule (those with more than one conclusion) in R; is applicable, apply

one and go to Step 1.

If Guess EMPTY SET rule is applicable, apply it and go to Step 1.

If an introduce or merge rule in R4 is applicable, apply it and go to Step 1.

If any of the remaining rules is applicable, apply one and go to Step 1.

At this point, the current branch is saturated. Stop and output sat.

oot

Note that if there are no constraints involving the cardinality operator, then
steps 1 to 3 above are sufficient for completeness.

file output| time (s.)| # V| # L| [file |output time (s.)|# V|# L
vel unsat 0.00 3 3| |vel |1 sat/4 unsat 0.02| 12 6
vc2a unsat 0.01 17 8| [vc2 |1 sat/3 unsat 0.07) 39| 23
vc2b sat 0.01 15 7| |ve3 |2 sat/2 unsat 0.09] 54| 21
ve2 unsat 0.00 8 5/ |ved |1 sat/3 unsat 0.02 0 O
veda unsat 0.00 6 0| |vcb |2 sat/2 unsat 0.08] 27| 13
ve3b sat 0.01 17 8| |vec6 |1 sat/3 unsat 0.01 0 0
ved unsat 0.00 6 0| |vc7 |2 sat/4 unsat 0.34] 56| 33
vcdb sat 0.22 45 16| |ve8 |1 sat/3 unsat 0.01 0 O
vcd unsat 0.07 57 18| |ve9 |2 sat/2 unsat 0.09] 39| 19
vehbb | sat 1.71 71 22| |vcl0 |2 sat/2 unsat 0.32] 94| 32
veh unsat 0.36 68 21

vcba unsat 0.02 34 14

vc6b sat 0.14 31 13

vcbe sat 0.06 34 14

vch sat 0.02 38 18

(a) Jahob (b) Leon

Fig. 10. Results on program verification benchmarks.

5.2 Experimental Evaluation

We evaluated our procedure on benchmarks obtained from verification of pro-
grams. The experiments were run on a machine with 3.40GHz Intel i7 CPU with
a memory limit of 3 GB and timeout of 300 seconds. We used a development
version of CVC4 for this evaluation.® Benchmarks are available on our website”.

The first set of benchmarks consists of single query benchmarks obtained from
verifying programs manipulating pointer-based data structures. These were gen-
erated by the Jahob system, and have been used to evaluate earlier work on deci-
sion procedures for finite sets and cardinality [10,11,13]. The results from run-
ning CVC4 on these benchmarks are provided in Fig. 10a. The output reported

8 Qit commit ¢833e17 at https://github.com/CVC4/CVC4/commit/c833¢176 .
9 http://cs.nyu.edu/~kshitij/setscard/.
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by CVC4 is in the second column. The third column shows the solving time.
The fourth and fifth columns give the maximum number of vertices (# V) and
leaves'? (# L) in the graph at any point during the run of the algorithm. Keep-
ing the number of leaves low is important to avoid a blowup from the MERGE
EquaLiTy II rule.

Although we have not rerun the algorithms from [10,11,13], we report here
the experimental results as stated in the respective papers. As the experiments
were run on different machines the comparison is only indicative, but it does
suggest that our algorithm has comparable performance.

In [11], the procedure from [10] is reported to solve 12 of the 15 benchmarks
with a timeout of 100 seconds, while the novel procedure in [11] is reported
to solve 11 of the 15 benchmarks with the same timeout. The best-performing
previous algorithm ([13]) can solve all 15 benchmarks in under a second.'’ As
another point of comparison, we tested the algorithm from [13] on a benchmark of
the type mentioned in Sect. 1.1: a single constraint of the form =z £ A;U. ..U As;.
As expected, the algorithm failed (it ran out of memory after 85 seconds). In
contrast, CVC4 solves this problem instantaneously.

Finally, another important difference compared to earlier work is that our
implementation is completely integrated in an actively developed and main-
tained solver, CVC4.'? To highlight the usefulness of an implementation in a
full-featured SMT solver, we did a second evaluation on a set of incremental
(i.e., multiple-query) benchmarks obtained from the Leon verification system [4].
These contain a mix of membership and cardinality constraints together with
the theories of datatypes and bitvectors. The results of this evaluation are shown
in Fig. 10b. The output column reports the number of sat and unsat queries in
each benchmark. CVC4 successfully solves all of the queries in these benchmarks
in under one second. To the best of our knowledge, no other SMT solver can
handle this combination of theories.

6 Conclusion

We presented a new decision procedure for deciding finite sets with cardinality
constraints and proved its correctness. A novel feature of the procedure is that
it can reason directly and efficiently about both membership constraints and
cardinality constraints. We have implemented the procedure in the CVC4 SMT
solver, and demonstrated the feasibility as well as some advantages of our app-
roach. We hope this work will enable the use of sets and cardinality in many new

10 The # L statistic is updated only when explicitly computed, so the numbers are
approximate. For the same reason, # L is 0 on certain benchmarks even though
# V is not. This is because CVC4 was able to report unsat before the need for
computing the set of leaves arose.

' Note that [13] includes a second set of benchmarks, but we were unable to evaluate
our algorithm on these, as they were only made available in a non-standard format
and were missing crucial datatype declarations.

12'One reason we were unable to do a more thorough comparison with previous work
is that those implementations are no longer being maintained.
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applications. We also expect to use it to drive the development of a standard
theory of sets under the SMT-LIB initiative.
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gestions. We thank Viktor Kuncak and Etienne Kneuss for valuable scientific discus-
sions and for providing the Leon benchmarks. We thank Philippe Suter for his help
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Abstract. Congruence closure procedures are used extensively in auto-
mated reasoning and are a core component of most satisfiability modulo
theories solvers. However, no known congruence closure algorithms can
support any of the expressive logics based on intensional type theory
(ITT), which form the basis of many interactive theorem provers. The
main source of expressiveness in these logics is dependent types, and
yet existing congruence closure procedures found in interactive theorem
provers based on ITT do not handle dependent types at all and only
work on the simply-typed subsets of the logics. Here we present an effi-
cient and proof-producing congruence closure procedure that applies to
every function in ITT no matter how many dependencies exist among its
arguments, and that only relies on the commonly assumed uniqueness of
identity proofs axiom. We demonstrate its usefulness by solving interest-
ing verification problems involving functions with dependent types.

1 Introduction

Congruence closure procedures are used extensively in automated reasoning,
since almost all proofs in both program verification and formalized mathematics
require reasoning about equalities [23]. The algorithm constitutes a fundamen-
tal component of most satisfiability modulo theories (SMT) solvers [4,20]; it is
often distinguished as the “core theory solver”, and is responsible for commu-
nicating literal assignments to the underlying SAT solver and equalities to the
other “satellite solvers” [10,20]. However, no known congruence closure algo-
rithms can support any of the expressive logics based on intensional type theory
(ITT). Yet despite the lack of an algorithm for congruence closure, the benefits
that ITTs confer in terms of expressiveness, elegance, and trustworthiness have
proved substantial enough that different flavors of ITT form the basis of many
interactive theorem provers, such as Coq [8], Lean [21], and Matita [2], and also
several emerging programming languages, such as Agda [5], Epigram [16], and
Idris [6]. Many of the most striking successes in both certified programming and
formalized mathematics have been in variants of ITT, such as the development
of a fully-certified compiler for most of the C language [14] and the formalization
of the odd-order theorem [11].

There are currently two main workarounds for the lack of a congruence clo-
sure algorithm for ITT, and for the lack of robust theorem proving tools for ITT
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more generally. One option is to rely much more on manual proving. Although
many impressive projects have been formalized with little to no automation, this
approach is not very attractive since the cost of manual proving can be tremen-
dous. We believe that as long as extensive manual proving is a central part of
writing certified software or formalizing mathematics, these will remain niche
activities for the rare expert. The other option is to relinquish the use of depen-
dent types whenever manual reasoning becomes too burdensome so that more
traditional automation can be used. Note that the Coq system even has a tactic
congruence that performs congruence closure, but it does not handle dependent
types at all and only works on the simply-typed subset of the language. This
sacrifice may be appropriate in certain contexts, but losing all the benefits of
dependent types makes this an unsatisfactory solution in general.

Given the limitations of these two workarounds, it would be preferable to
perform congruence closure and other types of automated reasoning directly in
the richer language of ITT. Unfortunately, equality and congruence are both
surprisingly subtle in ITT, and as we will see, the theorem that could justify
using the standard congruence closure procedure for functions with dependent
types is not provable in the core logic, nor does it follow from any of the axioms
commonly assumed in existing systems. In this paper, we introduce a new notion
of congruence that applies to every function in ITT no matter how many depen-
dencies exist among its arguments, along with a simple and efficient extension
of the standard congruence closure procedure to fully automate reasoning about
this more general notion of congruence. Our procedure is applicable to a wide
variety of projects since it only relies on the uniqueness of identity proofs axiom,
which is built into the logic of many systems including Agda, Idris, and Lean, and
which is commonly assumed in the others. We hope our procedure helps make
it possible for users to have the best of both worlds: to reap all the benefits of
dependent types while still enjoying all the power of traditional automation.

2 Preliminaries

We assume the term language is a dependent A-calculus in which terms are
described by the following grammar:

t,s ii=x | c|Type |t s]| Ax:s,t]|Tlx: st

where x is a variable and c is a constant. To simplify the presentation, we omit
type universes at sort Type. It is not relevant to this paper whether the universe
hierarchy is cumulative or not, nor whether there is a distinguished sort Prop (the
sort of all propositions). The term TTx:A, B denotes the type of functions £ that
map any element a:A to an element of B[a/x]. When x appears in B we say that
f is dependently-typed; otherwise we write TTx:A, B as A — B to denote the usual
non-dependent function space. When B is a proposition, ITx:A, B can be read as
the universally quantified formula Vx:A, B, or as the logical implication A = B
if x does not appear in B. The term f a denotes a function application, and the
lambda abstraction Ax:A, t denotes a function that given an element a of type
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A produces t[a/x]. As usual in Type Theory, a context I" is a sequence of typing
assumptions a:A and (local) definitions c:A := t, where t has type A and ¢ does
not occur in t. We often omit the type A and simply write ¢ := t to save space
when no confusion arises. Similarly, an environment A is a sequence of (global)
definitions f£:A := t. We use type(A, I',t) to denote the type of ¢ with respect to
A and I', and type(t) when no confusion arises. Given an environment A and a
context I, every term reduces to a normal form by the standard dni(-reduction
rules. For this paper we will assume a fixed environment A that contains all
definitions and theorems that we present. As usual, we write IT(a:4)(b:B),C as a
shorthand for TTa:A, (TTb:B,C). We use a similar shorthand for A-terms.

2.1 Equality

One of the reasons that congruence is subtle in ITT is that equality itself is
subtle in ITT. The single notion of equality in most other logics splits into at
least three different yet related notions in ITT.

Definitional equality. The first notion of equality in ITT is definitional equality.
We write a = b to mean that a and b are equal by definition, which is the case
whenever a and b reduce to the same normal form. For example, if we define
a function f : N — N := A n: N, 0 in the environment A, then the terms 0 and
£ 0 both reduce to the same normal form 0 and so are equal by definition. On
the other hand, (A nm: N, n + m) is not definitionally equal to (A n m: N, m + n),
since they are both in normal form and these normal forms are not the same.
Note that definitional equality is a judgment at the meta-level, and the theory
itself cannot refer to it; in particular, it is not possible to assume or negate a
definitional equality.

Homogeneous propositional equality. The second notion of equality in ITT is
homogeneous propositional equality, which we will usually shorten to homogeneous
equality since “propositional” is implied. Unlike definitional equality which is a
judgment at the meta-level, homogeneous equality can be assumed, negated, and
proved inside the logic itself. There is a constant eq : TT (A : Type), A — A — Type
in A such that, for any type A and elements a b : A, the expression eq A a b repre-
sents the proposition that a and b are “equal”. Note that we call this homogeneous
equality because the types of a and b must be definitionally equal to even state the
proposition that a and b are equal. We write a= A b as shorthand for eq A a b,
or a = b if the type A is clear from context. We say a term t of type a =b is a
proof for a =b.

The meaning of homogeneous equality is given by the introduction and elim-
ination rules for eq, which state how to prove that two elements are equal and
what one can do with such a proof respectively. The introduction rule for eq
is the dependent function refl : IT (A : Type) (a : &), a = a, which says that every
element of type A is equal to itself. We call refl the reflexivity axiom, and write
refl a whenever the type A is clear from context. Note that if a b : A are defin-
itionally equal, then refl a is a proof for a = b. The elimination principle (also
known as the recursor) for the type eq is the dependent function erec:
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erec : TT (A : Type) (a:A) (C: A — Type),Ca— Tl (b:A),a=b—Chb

This principle states that if a property € holds for an element a, and a = b for some
b, then we can conclude that ¢ must hold of b as well. We say C is the motive, and we
write (erec Cp e) instead of (erec AaCpbe) since A, a and b can be inferred easily
from e : a = b. Note that by setting C to be the identity function id : Type — Type,
erec can be used to change the type of a term to an equal type; that is, given a
term a : A and a proof e : A = B, the term (erec id a e) has type B. We call this
a cast, and say that we cast a to have type B. Note that it is straightforward
to use erec and refl to prove that eq is symmetric and transitive and hence an
equivalence relation.

Heterogeneous propositional equality. As we saw above, homogeneous equality
suffers from a peculiar limitation: it is not even possible to form the propo-
sition a = b unless the types of a and b are definitionally equal. The further
one strays from the familiar confines of simple type theory, the more severe
this handicap becomes. For example, a common use of dependent types is to
include the length of a list inside its type in order to make out-of-bounds
errors impossible. The resulting type is often called a wector and has type
vector : T (A : Type), N — Type, It is easy to define an append function on vectors:

app : IT (A: Type) (nm: N), vector An — vector Am — vector A (n + m)

However, we cannot even state the proposition that app is associative using homo-
geneous equality, since the type vector A (n + (m + k)) is not definitionally equal
to the type vector A ((n + m) + k), only propositionally equal. The same issue
arises when reasoning about vectors in mathematics. For example, we cannot
even state the proposition that concatenating zero-vectors of different lengths m
and n over the real numbers R is commutative, since the type R™*™ is not defi-
nitionally equal to the type R™™. In both cases, we could use erec to cast one
of the two terms to have the type of the other, but this approach would quickly
become unwieldy as the number of dependencies increased, and moreover every
procedure that reasoned about equality would need to do so modulo casts.
Thus there is a need for a third notion of equality in ITT, het-
erogeneous propositional equality, which we will usually shorten to het-
erogeneous equality since “propositional” is implied. There is a constant
heq : TT (A : Type) (B : Type), A — B — Type that behaves like eq except that
its arguments may have different types.! We write a==1b as short-
hand for heq A B a b. Heterogeneous equality has an introduction rule
hrefl : TT (A : Type) (a: A), a == a analogous to refl, and it is straightforward
to show that heq is an equivalence relation by proving the following theorems:

hsymm : TT (AB : Type) (a:A) (b:B),a==b—>b==a
htrans : TT (ABC: Type) (a:4) (b:B) (c:C),a==b—b==c—oa==c

! There are many equivalent ways of defining heq. One popular way is “John Major
equality” [15]. Additional formulations and formal proofs of equivalence can be found
at http://leanprover.github.io/ijcar16/congr.lean.
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Unfortunately, the flexibility of heq does not come without a cost: as we discuss
in Sect. 3, heq turns out to be weaker than eq in subtle ways and does not permit
as simple a notion of congruence.

Converting from heterogeneous equality to homogeneous equality. It is straight-
forward to convert a proof of homogeneous equality p : a = b into one of hetero-
geneous equality using the lemma

lemma ofeq (A : Type) (ab:A):a=b — a==
However, we must assume an axiom in order to prove the reverse direction
ofheq (A: Type) (ab:A):a==b—a=b

The statement is equivalent to the wuniqueness of identity proofs (UIP) prin-
ciple [26], to Streicher’s Aziom K [26], and to a few other variants as well.
Although these axioms are not part of the core logic of ITT, they have been
found to be consistent with ITT by means of a meta-theoretic argument [18],
and are built into the logic of many systems including Agda, Idris, and Lean.
They also follow from various stronger axioms that are commonly assumed,
such as proof irrelevance and excluded middle. In Coq, UIP or an axiom that
implies it is often assumed when heterogeneous equality is used, including in
the CompCert project [14]. Our approach is built upon being able to recover
homogeneous equalities from heterogeneous equalities between two terms of the
same type and so makes heavy use of ofheq.

3 Congruence

Congruence over homogeneous equality. It is straightforward to prove the fol-
lowing lemma using erec:

lemma congr : [T (AB: Type) (fg: A —B)(ab:A),f=g—a=b—fa=ghb

and thus prove that eq is indeed a congruence relation for simply-typed functions.
Thus the standard congruence closure algorithm can be applied to the simply-
typed subset of ITT without much complication. In particular, we have the
familiar property that £ a and g b can be proved equal if and only if either an
equality £ a = g b has been asserted, or if £ can be proved equal to g and a can
be proved equal to b.

Congruence over heterogeneous equality. Unfortunately, once we introduce func-
tions with dependent types, we must switch to heq and lose the familiar property
discussed above that eq satisfies for simply-typed functions. Ideally we would like
the following congruence lemma for heterogeneous equality:

hcongr_ideal : TT (A A’ : Type) (B: A — Type) (B : A" — Type)
(£:TM(a:4),Ba) (£ :TT(a" : A"),B" a') (a:4) (2 : &),
f==f —a==2a —-fa==¢f"2
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Unfortunately, this theorem is not provable in ITT [1], even when we assume
UIP. The issue is that we need to establish that B = B’ as well, and this fact does
not follow from (TT (a: A),Ba) = (TT (2’ : A'), B’ a’). Assuming hcongr_ideal as
an axiom is not a satisfactory solution because it would limit the applicability of
our approach, since as far as we know it is not assumed in any existing interactive
theorem provers based on ITT.

However, for any given n, it is straightforward to prove the following congru-
ence lemma using only erec, ofheq and href1?:

lemma hcongr,

(A1: Type)
(A2: A — Type)

(A:TTay ... ap—2, Ay_1 a1 ... an—2 — Type)
(B:May...an-1,4A, a1 ... an—1 — Type) :
M(fgMMai...ap,Bai ... a,), f =g —

T (a1 bi: Al), a; == by —

T[ (a2: AQ a1) (b22 A2 b1), ag == bQ g

M (an: Ap ar ... ap—1) (by : Ay b1 ... by_1), a3y == b, —
fa1 ... An ::gbl ...bn

The lemmas hcongr,, are weaker than hcongr_ideal because they require the
outermost functions £ and g to have the same type. Although we no longer
have the property that £ == g and a == b implies f a == g b, we show in the
next section how to extend the congruence closure algorithm to deal with the
additional restriction imposed by hcongr,,.

When using hcongr,, lemmas, we omit the parameters A;, B, a; and b; since
they can be inferred from the parameters with types £ = g and a; == b;. Note
that even if some arguments of an n-ary function £ do not depend on all previous
ones, it is still straightforward to find parameters A; and B that do depend on all
previous arguments and so fit the theorem, and yet become definitionally equal to
the types of the actual arguments of £ once applied to the preceding arguments.
We remark that we avoid this issue in our implementation by synthesizing custom
congruence theorems for every function we encounter.

4 Congruence Closure

We now have all the necessary ingredients to describe a very general congru-
ence closure procedure for I'TT. Our procedure is based on the one proposed
by Nieuwenhuis and Oliveras [24] for first-order logic, which is efficient, is proof
producing, and is used by many SMT solvers. We assume the input to our con-
gruence closure procedure is of the form I" - a == b, where I" is a context and
a == b is the goal. Note that a goal of the form a = b can be converted into

2 The formal statements and proofs for small values of n can be found at http://
leanprover.github.io/ijcar16/congr.lean, along with formal proofs of all other lemmas
described in this paper.
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a == b before we start our procedure, since when a and b have the same type,
any proof for a == b can be converted into a proof for a = b using ofheq. Sim-
ilarly, any hypothesis of the form e: a = b can be replaced with e: a == b using
ofeq. As in abstract congruence closure [3,13], we introduce new variables ¢ to
name all proper subterms of every term appearing on either side of an equal-
ity, both to simplify the presentation and to obtain the efficiency of DAG-based

implementations.? For example, we encode £ N a == £ N b using the local defini-
tions (cy := £ N) (cg := ¢1 a) (c3 := c1 b) and the equality c; == c3. We remark
that co == c3 is definitionally equal to £ N a == £ N b by (-reduction. Here is an

example problem instance for our procedure:

(N: Type) (a b: N) (£: TT A: Type, A — A) (c1 := £ N)
(c2:=c1a)(cz:=cib)(esa==Db)F ca ==c3

The term (hcongr, (reflf) (hreflN)e) is a proof for the goal ca == cs.

As in most congruence closure procedures, ours maintains a union-find data
structure that partitions the set of terms into a number of disjoint subsets such
that if a and b are in the same subset (denoted a ~ b) then the procedure can
generate a proof that a == b. Each subset is an equivalence class. The union-find
data structure computes the equivalence closure of the relation == by merging
the equivalence classes of a and b whenever e: a == b is asserted. However, the
union-find data structure alone does not know anything about congruence, and
in particular it will not automatically propagate the assertion a == b to other
terms that contain a or b; for example, it would not merge the equivalence
classes of ¢ := f a and d := £ b. Thus, additional machinery is required to find
and propagate new equivalences implied by the rules of congruence.

We say that two terms are congruent if they can be proved to be equiva-
lent using a congruence rule given the current partition of the union-find data
structure. We also say two local definitions c := f a and d := g b are congru-
ent whenever £ a and g b are congruent. We remark that congruence closure
algorithms can be parameterized by the structure of the congruence rules they
propagate. In our case, we use the family of hcongr,, lemmas as congruence rules.

We now describe our congruence closure procedure in full, although the over-
all structure is similar to the one presented in [24]. The key differences are in
how we determine whether two terms are congruent, how we build formal proofs
of congruence using hcongr,,, and what local definitions we need to visit after
merging two equivalence classes to ensure that all new congruences are detected.
The basic data structures in our procedure are

— repr: a mapping from variables to variables, where repr|z] is the representative
for the equivalence class z is in. We say variable x is a representative if and
only if repr|z] is z.

— next: a mapping from variables to variables that induces a circular list for
each equivalence class, where next[z] is the next element in the equivalence
class z is in.

3 To simplify the presentation further, we ignore the possibility that any of these
subterms themselves include partial applications of equality.
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— pr: a mapping from variables to pairs consisting of a variable and a proof,
where if pr(z] is (y, p), then p is a proof for == y or y == . We use target[z]
to denote pr|x].1. This structure implements the proof forests described in [24].

— size: a mapping from representatives to natural numbers, where for each rep-
resentative x, size[z] is the number of elements in the equivalence class rep-
resented by z.

— pending: a list of local definitions and typing assumptions to be processed. It
is initialized with the context I'.

— congrtable: a set of local definitions such that given a local definition E, the
function lookup(F) returns a local definition in congrtable congruent to FE if
one exists.

— uselists: a mapping from representatives to sets of local definitions, such that
local definition D is in uselists[z] if D might become congruent to another
definition if the equivalence class of = were merged with another equivalence
class.

Our procedure maintains the following invariants for the data structures
described above.

1. repr[next[z]] = reprirepr|z]] = repr(z]

If repr(z] = reprly], then next*[z] = y for some k.

3. target®[z] = repr[xz] for some k. That is, we can view target®|z] as a “path”
from z to repr[z]. Moreover, the proofs in pr can be used to build a proof
from x to any element along this path.

4. Let s be size[repr[z]], then next*[r] = x. That is, next does indeed induce a
set of disjoint circular lists, one for each equivalence class.

N

Whenever a new congruence proof for ¢ == d is inferred by our procedure,
we add the auxiliary local definition e: ¢ == d := p to pending, where e is a
fresh variable, and p is a proof for ¢ == d. The proof p is always an application
of the lemma hcongr,, for some n. We say e: c==4d and e: c ==d:=p are
equality proofs for ¢ == d. Given an equality proof E, the functions lhs(E) and
rhs(E) return the left and right hand sides of the proved equality. Given a local
definition E of the form c := £ a, the function var(FE) returns c, and app(E)
the pair (f, a). We say a variable c is a local definition when I" contains the
definition ¢ := £ a, and the auxiliary partial function def(c) returns this local
definition.

Implementing congrtable. In order to implement the congruence closure proce-
dure efficiently, the congruence rules must admit a data structure congrtable
that takes a local definition and quickly returns a local definition in the table
that it is congruent to if one exists. It is easy to implement such a data structure
with a Boolean procedure CONGRUENT(D, E) that determines if two local defini-
tions are congruent, along with a congruence-respecting hash function. Although
the family of hcongr,, lemmas does not satisfy the property that £ a and g b are
congruent whenever £ &~ g and a ~ b, we still have a straightforward criterion
for determining whether two terms are congruent.
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Proposition 1. Consider the terms f a and g b. If a~ b, then f a and g b are
congruent provided either:

1. f and g are homogeneously equal;
2. f and g are congruent.

Proof. First note that in both cases, we can generate a proof that a == b since
we have assumed that a ~ b. In the first case, if £ and g are homogeneously
equal, then no matter how many partial applications they contain, we can apply
hcongr; to the proof of homogeneous equality and the proof that a == b. In the
second case, if £ and g are congruent, it means that we can generate proofs of
all the preconditions of hcongr), for some k, and the only additional precondition
to hcongry , is a proof that a == b, which we can generate as well.

1: procedure CONGRUENT(D, E)

2. (f,a) < app(D); (9,b) — app(E)

3 return a ~ b and

4 [(f ~ g and type(f) = type(g)) or

5: (f and g are local definitions and CONGRUENT(def (f), def(g)))]
6: procedure CONGRHASH(D)

7 given: h, a hash function on terms

8:  (f,a) < app(D)

9 return hashcombine(h(repr|f]), h(repr[al))

Fig. 1. Implementing congrtable

Proposition 1 suggests a simple recursive procedure to detect when two terms
are congruent, which we present in Fig.1. The procedure CONGRUENT(D, E),
where D and E are local definitions of the form ¢ := £ a and d := g b, returns
true if a proof for ¢ == d can be constructed using an hcongr,, lemma for some
n. Note that although the congruence lemmas hcongr,, are themselves n-ary, it is
not sufficient to view the two terms being compared for congruence as applica-
tions of m-ary functions. We must compare each pair of partial applications for
homogeneous equality as well (line 4), since two terms with n arguments each
might be congruent using hcongr,, for any m such that m < n. For example,
f al c and g bl c are congruent by hcongr, if £ = g and a1 == b1, and yet are
only congruent by hcongr; if all we know is f a1 = g bl. It is even possible for
two terms to be congruent that do not have the same number of arguments. For
example, f = g a implies that £ b and g a b are congruent by hcongr;.

Proposition 1 also suggests a simple way to hash local definitions that respects
congruence. Given a hash function on terms, the procedure CONGRHASH(D)
hashes a local definition of the form ¢ := f a by simply combining the hashes of
the representatives of £ and a. This hash function respects congruence because
if c:=fa and d := gb are congruent, it is a necessary (though not sufficient)
condition that £ ~ g and a =~ b.
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1: procedure cc(I'F a ==1)

2 pending < I’

3 while pending is not empty do

4: remove next F from pending

5: if E is an equality proof then PROCESSEQ(FE)
6: else INITIALIZE(E)

7 if repr(a] = repr[b] then return MKPR(a, b)

8 else fail

Fig. 2. Congruence closure procedure

The procedure. Fig.2 contains the main procedure CccC. It initializes pending
with the input context I'. Variables in typing assumptions and local definitions
are processed using INITIALIZE (Fig. 3), and equality proofs are processed using
PROCESSEQ (Fig.4).

1: procedure INITIALIZE(E)

2 ¢ «— var(E)

3: reprc] < c; next|c] « ¢; size[c] — 1; uselists|c] —
4 pric] < (¢,*hrefl ¢?)

5: if E is a local definition then

6: INITUSELIST(E, E)

7 if D = lookup(E) then

8: d «— var(D); e «— make fresh variable

9: add (e : d == ¢ := MKCONGR(D, E, [|)) to pending and I"

10: else add F to congrtable

11: procedure INITUSELIST(E, P)

12 (f,a) < app(E)
13: add P to uselists|f] and uselists|al
14: if f is a local definition then INITUSELIST(def (f), P)

Fig. 3. Initialization procedure

The INITIALIZE(E) procedure invokes INITUSELIST(E, E) whenever E is a
local definition ¢ := f a. The second argument at INITUSELIST(E, P) represents
the parent local definition that must be included in the uselists. We must ensure
that for every local definition D that could be inspected during a call to CON-
GRUENT(F1, E3) for some Es, we add var(E;) to the uselist of var(D) when
initializing E;j. Thus the recursion in INITUSELIST must mirror the recursion
in CONGRUENT conservatively, and always recurse whenever CONGRUENT might
recurse. For example, assume the input context I" contains

(A: Type) (abd:A) (g:A—A—A)(f:A—A) (c1:=ga)(c2:=c1b)(c3:=f4d).

When INITIALIZE(ca := c1 b) is invoked, co := c; d is added to the uselists of
c1, b, g and a. By a slight abuse of notation, we write ‘hrefl a’ to represent in the
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pseudocode the expression that creates the hrefl-application using as argument
the term stored in the program variable a.

The procedure PROCESSEQ is used to process equality proofs a ==b. If a
and b are already in the same equivalence class, it does nothing. Otherwise,
it first removes every element in uselists[repr(a]] from congrtable (procedure
REMOVEUSES). Then, it merges the equivalence classes of a and b so that for
every a' in the equivalence class of a, repr[a’] is set to repr[b]. This operation
can be implemented efficiently using the next data structure. As in [24], the
procedure also reorients the path from a to repr[a] induced by pr (procedure
FLIPPROOFS) to make sure invariant 3 is still satisfied and locally irredundant
transitivity proofs [22] can be generated. It then reinserts the elements removed
by REMOVEUSES into congrtable (procedure REINSERTUSES); if any are found to
be congruent to an existing term in a different partition, it proves equivalence
using the congruence lemma hcongr,, (procedure MKCONGR) and puts the new
proof onto the queue. Finally, PROCESSEQ updates next, uselists and size data
structures.

1: procedure PROCESSEQ(E)

2: a «— lhs(E); b« rhs(E)

3: if reprla] = repr[b] then return

4: if size(reprla]) > size(repr[b]) then swap(a, b)
3: ra < reprial; ry < repr(b]

6: REMOVEUSES(r); FLIPPROOFS(a)

7 for all a s.t. repr(a’] =1, do repr(a’] «

8: prla] < (b, E)

9: REINSERTUSES(74)

10: swap (next(rq], next[rs))

11: move uselists[ry] to uselistsry]; size[ry] «— size[ry] + size[rq]
12: procedure FLIPPROOFS(a)

13: if repria] = a then return

14: (b, p) < prlal; FLIPPROOFS(b); pr(b] < (a,p)
15: procedure REMOVEUSES(a)

16: for all E in uselists[a] do remove E from congrtable

17: procedure REINSERTUSES(a)

18: for all E in uselists[a] do

19: if D = lookup(E) then

20: d «— var(D); e < var(E); p < make fresh variable

21: add (p: d == e := MKCONGR(D, E, [])) to pending and I"
22: else add E to congrtable

Fig. 4. Process equality procedure

Figure 5 contains a simple recursive procedure MKCONGR to construct the
proof that two congruent local definitions are equal. The procedure takes as
input two local definitions D and E of the form ¢ := f a and d := g b such that
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CONGRUENT(D, E), along with a possibly empty list of equality proofs es for
a; ==by, ..., a, == by, and returns a proof for f aa; ... a, ==gbby ... by,.
The two cases in the MKCONGR procedure mirror the two cases of the CONGRU-
ENT procedure. If the types of £ and g are definitionally equal we construct an
instance of the lemma hcongr|. ;1. The procedure MKPR(a, b) (Fig.5) creates
a proof for a ==b if a and b are in the same equivalence class by finding the
common element target™[a] = target™[p] in the “paths” from a and b to the
equivalence class representative. Note that, if CONGRUENT(D, E) is true, then
MKCONGR(D, E, []) is a proof for ¢ ==

1: procedure MKCONGR(D, FE, es)

2: assumption: CONGRUENT(D, E)

3 (f.a) < app(D); (9,b) < app(E); ear < MKPR(a, b)

4: if type(f) = type(g) then

5: n « len(es); efg <— MKPR(f, g)

6: return ‘hcongr,;1 (ofheq efy) €qp €8’

7 else return MKCONGR(def (f), def(g), [es, €as])

8: procedure MKPR(a, b)

9: if a = b then return ‘hrefl o’

10: let n and m be the smallest values s.t. target™[a] = target™[b)]
11: €q < MKTRANS(a, n); ey «— MKTRANS(b, m); return ‘htrans e, (hsymm e;)’

12: procedure MKTRANS(a, n)
13: if n =0 then return ‘hrefl o’

14: (b, eq) < prla]; e — MKTRANS(b, n — 1)
15: if lhs(eqs) = a and rhs(eq) = b then return ‘htrans eqy, €’
16: else return ‘htrans (hsymm e,) €’

Fig. 5. Transitive proof generation procedure

Finally, we remark that the main loop of CC maintains the following two
invariants.

Theorem 1. If a and b are in the same equivalence class (i.e., a == b), then
MKPR(a, b) returns a correct proof that a == b.

Theorem 2. If type(f) = type(g), f =g, a1 = by, ...anp by, c=f ar...ay
and d=g by ...b,, then c =~ d.

Ezxtensions. There are many standard extensions to the congruence closure pro-
cedure that are straightforward to support in our framework, such as tracking
disequalities to find contradictions and propagating injectivity and disjointness
for inductive datatype constructors [17]. Here we present a simple extension for
propagating equalities among elements of subsingleton types that is especially
important when proving theorems in ITT. We say a type A:Type is a subsingleton
if it has at most one element; that is, if for all (a b:A), we have that a = b. Sub-
singletons are used extensively in practice, and are especially ubiquitous when
proof irrelevance is assumed, in which case every proposition is a subsingleton.
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One common use of dependent types is to extend functions to take extra
arguments that represent proofs that certain preconditions hold. For example,
the logarithm function only makes sense for positive real numbers, and we can
make it impossible to even call it on a non-positive number by requiring a
proof of positivity as a second argument: ¢ := f a. The second argument is
a proposition and hence is a subsingleton when we assume proof irrelevance.
Consider the following goal: (ab:R) (Ha:a >0) (Hb:b>0) (e:a=0b)
safe_log a Ha = safe_log b Hb. The core procedure we presented above would
not be able to prove this theorem on its own because it would never discover
that Ha == Hb. We show how to extend the procedure to automatically propagate
facts of this kind.

We assume we have an oracle issub(I, A) that returns true for subsingleton
types for which we have a proof TTa b:A, a = b. Many proof assistants implement
an efficient (and incomplete) issub using type classes [7,19], but it is beyond the
scope of this paper to describe this mechanism. Given a subsingleton type A with
proof sse 4, we can prove

hssea: IT (C:Type) (c:C) (a:h), C == A — ¢ == a,

which we can use as an additional propagation rule in the congruence closure
procedure. The idea is to merge the equivalence classes of a:A and c:C whenever
A is a subsingleton and C & A. First, we add a mapping subrep from subsingleton
types to their representatives. Then, we include the following additional code in
INITIALIZE:
C — type(c); A — repr|C]
if issub(l, A) then
if a = subrep[A] then
p <— MKPR(C, A); e — make fresh variable
add (e: ¢ ==a :=hssea C p ca) to pending and I
else subrep[A] < ¢

Finally, at PROCESSEQ whenever we merge the equivalence classes of subsingleton
types A and C, we also propagate the equality subrep[A] == subrep[C].

With this extension, our procedure can prove safe_log a Ha = safe_log b Hb
in the example above, since the terms a > 0 and b > 0 are both subsingleton
types with representative elements Ha and Hb respectively, and when their equiv-
alence classes are merged, the subsingleton extension propagates the fact that
their representative elements are equal, i.e. that Ha == Hb.

5 Applications

We have implemented our congruence closure procedure for Lean* along with
many of the standard extensions as part of a long-term effort to build a robust
theorem prover for ITT. Although congruence closure can be useful on its own, its

* https://github.com/leanprover/lean /blob/master/src/library /blast /congruence_
closure.cpp.


https://github.com/leanprover/lean/blob/master/src/library/blast/congruence_closure.cpp
https://github.com/leanprover/lean/blob/master/src/library/blast/congruence_closure.cpp
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power is greatly enhanced when it is combined with a procedure for automatically
instantiating lemmas so that the user does not need to manually collect all
the ground facts that the congruence closure procedure will need. We use an
approach called e-matching [10] to instantiate lemmas that makes use of the
equivalences represented by the state of the congruence closure procedure when
deciding what to instantiate, though the details of e-matching are beyond the
scope of this paper. The combination of congruence closure and e-matching is
already very powerful, as we demonstrate in the following two examples, the
first from software verification and the second from formal mathematics. The
complete list of examples we have used to test our procedure can be found at
http://leanprover.github.io/ijcarl6/examples.

Vectors (indexed lists). As we mentioned in Sect. 2.1, a common use of dependent
types is to include the length of a list inside its type in order to make out-of-
bounds errors impossible. The constructors of vector mirror those of 1ist:

nil : TT {A : Type}, vector A 0
cons : IT {A: Type} {n: N}, A — vector A n — vector A (succ n)

where succ is the successor function on natural numbers, and where curly braces
indicate that a parameter should be inferred from context. We use the notation
[x] to denote the one-element vector containing only x, i.e. cons x nil, and x::v
to denote cons x v. It is easy to define append and reverse on vector:

app : IT {A : Type} {ni nz : N}, vector A n; — vector A ny — vector A (n1 + ns)
rev : [T {n: N}, vector An — vector An

When trying to prove the basic property rev (app vi vo) == app (rev va)
(rev v1) about these two functions, we reach the following goal:

(A : Type) (n1 n2 : N) (x1 x2 : A) (v1 : vector A ny) (v2 : vector A ny)
(IH : rev (app v1 (x2::v2)) == app (rev (x2::v2)) (rev vi))
F rev (app (x1::v1) (x2::v2)) == app (rev (x2::v2)) (rev (x1::v1))

Given basic lemmas about how to push app and rev in over coms, a lemma
stating the associativity of app, and a few basic lemmas about natural numbers,
our congruence closure procedure together with the e-matcher can solve this
goal. Once the e-matcher establishes the following ground facts:

Hy : rev (x1::v1) == app (rev v1) [x1]

Hy : app (x1::v1) (x2::v2) == x1::(app v1 (x2::v2))

Hs : rev (x1::(app v1 (x2::v2))) == app (rev (app vi (x2::v2))) [x1]

Hy : app (app (rev (x2::v2)) (rev vi)) [x1] == app (rev (x2::v2)) (app (rev vi) [x1])

as well as a few basic facts about the natural numbers, the result follows by
congruence.

Safe arithmetic. As we mentioned in Sect.4, another common use of depen-
dent types is to extend functions to take extra arguments that represent proofs
that certain preconditions hold. For example, we can define safe versions of the
logarithm function and the inverse function as follows:


http://leanprover.github.io/ijcar16/examples
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safe_log: MM (x: R),x >0 — R safe_inv:TT (x: R),x #0 — R

Although it would be prohibitively cumbersome to prove the preconditions man-
ually at every invocation, we can relegate this task to the theorem prover, so
that log x means safe_log x p and y ' means safe_inv y q, where p and q are
proved automatically. Given basic lemmas about arithmetic identities, our con-
gruence closure procedure together with the e-matcher can solve many complex
equational goals like the following, despite the presence of embedded proofs:

Vixyzw:R,x>0—-y>0—-2z2>0—->w>0—-x*y=expz+w—
log (2*w*expz +w’ +exp(2*%z)/ —2=1ogy * — logx

6 Related Work

Corbineau [9] presents a congruence closure procedure for the simply-typed sub-
set of I'TT and a corresponding implementation for Coq as the tactic congruence.
The procedure uses homogeneous equality and does not support dependent types
at all. Hur [12] presents a library of tactics for reasoning over a different variant
of heterogeneous equality in Coq, for which the user must manually separate the
parts of the type that are allowed to vary between heterogeneously equal terms
from those that must remain the same. The main tactic provided is Hrewritec,
which tries to rewrite with a heterogeneous equality by converting it to a cast-
equality, rewriting with that, and then generalizing the proof that the types are
equal. There does not seem to be any general notion of congruence akin to our
family of hcongr,, lemmas.

Sjoberg and Weirich [25] propose using congruence closure during type check-
ing for a new dependent type theory in which definitional equality is determined
by the congruence closure relation instead of by the standard forms of reduction.
Their type theory is not compatible with any of the standard flavors of ITT such
as the calculus of inductive constructions, and so their procedure cannot be used
to prove theorems in systems such as Coq and Lean. The congruence rules they
use are also not as general as ours, since they require the two functions being
applied to be the same, whereas hcongr,, allows them to differ as long as they are
homogeneously equal. As a result, given x = y, they cannot conclude £ x =g y
from f = g, let alone f ax = gy from f a =g. Moreover, they do not discuss
why or whether the natural binary congruence rule (i.e. hcongr_ideal) would be
unsound in their type theory, nor why their congruence rule needs to be n-ary.

7 Conclusion

We have presented a very general notion of congruence for ITT based on heterogeneous
equality that applies to all dependently typed functions. We also presented a congruence
closure procedure that can propagate the associated congruence rules efficiently and
so automatically prove a large and important set of goals. Just as congruence closure
procedures (along with DPLL) form the foundation of modern SMT solvers, we hope
that our congruence closure procedure can form the foundation of a robust theorem
prover for intensional type theory. We are building such a theorem prover for Lean,
and it can already solve many interesting problems.
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Abstract. We present two tests that solve linear integer arithmetic con-
straints. These tests are sound and efficiently find solutions for a large
number of problems. While many complete methods search along the
problem surface for a solution, these tests use cubes to explore the inte-
rior of the problems. The tests are especially efficient for constraints with
a large number of integer solutions, e.g., those with infinite lattice width.
Inside the SMT-LIB benchmarks, we have found almost one thousand
problem instances with infinite lattice width, and we have shown the
advantage of our cube tests on these instances by comparing our imple-
mentation of the cube test with several state-of-the-art SMT solvers.
Our implementation is not only several orders of magnitudes faster, but
it also solves all instances, which most SMT solvers do not. Finally,
we discovered an additional application for our cube tests: the extrac-
tion of equalities implied by a system of linear arithmetic inequalities.
This extraction is useful both as a preprocessing step for linear inte-
ger constraint solving as well as for the combination of theories by the
Nelson-Oppen method.

Keywords: Linear arithmetic - SMT - Integer arithmetic + Constraint
solving

1 Introduction

Finding an integer solution for a polyhedron that is defined by a system of
linear inequalities Az < b is a well-known NP-complete problem [18]. Systems
of linear inequalities have many real-world applications so that this problem has
been investigated in different research areas, e.g., in optimization via (mized)
integer linear programming (MILP) [15] and in constraint solving via satisfiability
modulo theories (SMT) [2,4,7,12].

It is standard for commercial MILP implementations to integrate preprocess-
ing techniques, heuristics, and specialized tests [15]. Although these techniques
are not complete, they are much more efficient on their designated target sys-
tems of linear inequalities than a complete algorithm alone. Since there exist
specialized techniques for many classes of real-world problems representable as
polyhedra, commercial MILP solvers are efficient on many real-world inputs—
even though the problem, in general, is NP-complete.
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The constraint solving community is still in the process of developing the
same variety in specialized tests as the MILP community. The biggest chal-
lenge is to adopt the tests from the MILP community so that they still fit the
input systems relevant for constraint solving. For example, SMT theory solvers
have to solve a large number of incrementally connected, small systems of lin-
ear inequalities. Exploiting this incremental connection is key for making SMT
theory solvers efficient [11]. In contrast, MILP solvers typically target one large
system. The same holds for their specialized tests, which are not well suited to
exploit incremental connections.

In this paper, we present two tests tailored toward SMT solvers: the largest
cube test and the unit cube test. The idea is to find hypercubes that are con-
tained inside the input polyhedron and guarantee the existence of an integer
solution. Due to computational complexity, we will restrict ourselves to only
those hypercubes that are parallel to the coordinate axes. The largest cube test
finds a hypercube with maximum edge length contained in the input polyhedron,
determines its real valued center, and rounds it to a potential integer solution.
The unit cube test determines if a polyhedron contains a hypercube with edge
length one, which is the minimal edge length that guarantees an integer solution.

Most SMT linear integer arithmetic theory solvers are based on a branch-
and-bound algorithm on top of the simplex algorithm. They search for a solution
at the surface of a polyhedron. However, our tests search in the interior of the
polyhedron. This gives them an advantage on polyhedra with a large number of
integer solutions, e.g., polyhedra with infinite lattice width [16]. Since the only
difference between the input polyhedron Az < b and the associated unit cube
polyhedron Az < b’ are the row bounds, our unit cube test is especially easy to
implement and integrate into SMT theory solvers.

SMT theory solvers are designed to efficiently exchange bounds [9]. This
efficient exchange is the main reason why SMT theory solvers exploit the incre-
mental connection between the different polyhedra so well. Our unit cube test
also requires only an exchange of bounds. After applying the test, we can easily
recover the original polyhedron by reverting to the original bounds. In doing so,
the unit cube test conserves the incremental connection between the different
original polyhedra. We make a similar observation about the largest cube test.

A variant of the linear program for the unit cube test first appeared in 1969 as
a subroutine in a heuristic by Hillier for MILP optimization [13]. While Hillier
was aware of the unit cube test, he applied it only to cones, a special class
of polyhedra. His work never mentioned applications beyond cones, nor did he
prove any structural properties connected to hypercubes. As mentioned before,
the main advantage of the cube tests is that they compute interior point candi-
dates. The same can be done using an interior point method [17] instead of the
simplex algorithm. Therefore, Hillier’s heuristic tailored for MILP optimization
lost popularity as soon as interior point methods became efficient in practice.
Nonetheless, our cube tests remain relevant for SMT theory solvers because there
are no competitive incremental interior point methods.



118 M. Bromberger and C. Weidenbach

Also, Bobot et al. discuss relations between hypercubes, called co-norm balls,
and polyhedra [2]. In their paper, they detail the same relation between polyhe-
dra with infinite lattice width and hypercubes that we discovered. Their work
also includes a linear optimization program that detects polyhedra with infinite
lattice width and positive linear combinations between inequalities. Our largest
cube test can detect all of the above because it is, with some minor changes, the
dual of the linear optimization program of Bobot et al. However, our tests are a
lot closer to the original polyhedron and are, therefore, easier to construct, and
the tests produce sample points as well. Via rounding, our tests use these sample
points to compute an actual integer solution as proof. Moreover, our cube tests
also find solutions for polyhedra with finite lattice width.

Our contributions are as follows: we define the linear cube transformation
(Corollary 3) that allows us to efficiently compute whether a polyhedron Az < b
contains a hypercube of edge length e by solely changing the bounds b in Sect. 3.
Based on this transformation, we develop in Sect.4 two tests: the largest cube
test and the unit cube test. For polyhedra with infinite lattice width, both tests
always succeed (Lemma 5). Inside the SMT-LIB benchmarks, there are almost
one thousand problem instances with infinite lattice width, and we show the
advantage of our cube tests on these instances by comparing our implementa-
tion of the cube test with several state-of-the-art SMT solvers in Sect.5. Our
implementation is not only several orders of magnitudes faster, but it also solves
all instances, which most SMT solvers do not (Fig. 7). It is more robust than the
test suggested by Bobot et al. [2] (Fig. 7). Eventually, we introduce in Sect. 6 an
additional application for our cube tests: the extraction of equalities implied by
a system of linear arithmetic inequalities. The paper ends with a discussion on
possible directions for future research, Sect. 7.

2 Preliminaries

While the difference between matrices, vectors, and their components is always
clear in context, we generally use upper case letters for matrices (e.g., A), lower
case letters for vectors (e.g., x), and lower case letters with an index ¢ or j (e.g.,
b;, x;) as components of the associated vector at position i or j, respectively.
The only exceptions are the row vectors aZT = (aj1,...,ain) of a matrix A =
(a1,...,a,)", which already contain an index i that indicates the row’s position
inside A. In order to save space, we write vectors only implicitly as columns
via the transpose ( )7 operator, which turns all rows (b1, ...,b,,) into columns
(b1,...,bm)T and vice versa. We will also abbreviate (...,0,...)T as 0.

In this paper, we treat polyhedra and their definitions through a system of
inequalities Ax < b as interchangeable. For such a system of inequalities, the

row coefficients are given by A = (ay,...,a,)T € QX" the inequality

bounds are given by b = (by,...,b,)T € Q™, and the variables are given by
_ T

x=(x1,...,2,)".

We denote by P! = {z € R® : Az < b} the set of real solutions to the
system of inequalities Az < b and, therefore, the points inside the polyhedron.
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Similarly, we denote by C2*(z) = {# € R" : Vj € 1,...,n. |z; — z;| < £} the set
of points contained in the n-dimensional hypercube CI(z) that is parallel to
the coordinate axes, has edge length e € R>o, and has center z € R". For the
remainder of this paper, we will consider only hypercubes that are parallel to
the coordinate axes. For simplicity, we call these restricted hypercubes cubes.
Similar to polyhedra, we will use the set of points C(z) interchangeably with
the cube defined by the set.

Besides cubes and polyhedra, we use multiple p-norms |. || , in this paper [10].
These p-norms are defined as functions ( : R" — R) for p > 1 such that

2], = (Jz1]P +... + |2, |P)"/?. A special p-norm is the mazimum norm. It is

11l

defined by the limit of |||, for p — oot [lz]|, = max{[z1],...,|za|}. If we
compare the maximum norm and the definition of C*(z), we see that cubes and
p-norms are related: (lz — 2| < §) < (Vj€l,...,n|z; —z| < 5).

Using p-norms, we define a closest integer for a point z as a point 2’ € Z"
with minimal distance [z — 2’|, for all p-norms. We also define the operators
[x;] and [x] such that they describe a closest integer for z; and x, respectively.
Formally, this means that [z| = ([x1],..., [2,])T and

;] = { |z ] %f z; — |z;] < 0.5,
[z;] ifx; —|x;] >0.5.
This definition of [z] is also known as simple rounding.
Lemma 1. For x € R™, [z] is a closest integer to x:
Vp>1.Va' € Z". ||z — [z]|, < [lz -2, .
Proof. We first look at the one-dimensional case, where ||z;|| simplifies to |z;]:
Vp > 1.Va € Z. |xj — ;]| < |zj — o).

For [z;|, 2, € Z, there exists z; € Z such that 2/ = [z;]| — z;. For z; € R, there
exists a d; € [—0.5,0.5] such that d; := x; — [x;]. The inequality trivially holds
for z; = 0:

lzj — 25| = |25 — [2;] + 25| = |z5 — [24]]

Via the triangle inequality, for the remaining z; # 0 we get :
v — )| = |y — [j] + 2] = |dj + 25| > 23] — |dy] .

Since z; # 0, and d; € [—0.5,0.5] imply |z;| > 1, and |d;| < 0.5, respectively, we
get:
lzj — 2] > |z = |dj] > 1 —|dj| > 0.5 > |d;| = |2; — [2]].
The multidimensional case follows from the p-norms’ monotonicity [10], i.e.,

if [z — [z;]| < |vj — ] for all j € {1,...,n}, then ||z — [z]||, <[z —2'[,. O
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Fig.1. A square (two- Fig.2. The vertices of an Fig.3. The transformed
dimensional cube) fitting arbitrary square parallel to polyhedron Az < b for
into an inequality afx < the coordinate axes (two- edge length 1 together with
b; and the cube’s maximum dimensional cube with edge the original polyhedron
alz* for the objective af  length e and center z) Az <b

3 Fitting Cubes into Polyhedra

We say that a cube C'(2) fits into a polyhedron defined by Az < b if all points
inside the cube C(2) are solutions of Az < b, or formally: C?*(z) C P In order
to compute this, we transform the polyhedron Az < b into another polyhedron
Axz < V. For this new polyhedron, we merely have to test whether the cube’s
center point z is a solution (2 € Pj) in order to also determine whether the
cube C*(z) fits into the original polyhedron (C?*(z) C P{}). This is a simple test
that requires only evaluation. We call this entire transformation the linear cube
transformation.

We start explaining the linear cube transformation by looking at the case
where the polyhedron is defined by a single inequality a} x < b;. A cube C(2)
fits into the inequality alx < b; if all points inside the cube C(z) are solutions
of al'x < b;, or formally: Vo € C"(2). al'z < b;.

We can think of al z as an objective function that we want to maximize and
see b; as a guard for the maximum objective of any solution in the cube. Thus,
we can express the universal quantifier in the above equation as an optimization
problem (see Fig. 1): max{a] z : x € C'(z)} < b;. This also means that all points
in x € C"(2) satisfy the inequality a} x < b; if a point 2* € C"(z) with maximum
value al' z* = max{al'z : € C"(2)} for the objective function al z satisfies the
inequality alz* < b;. We can formalize the above optimization problem as a
linear program:

maximize alz

subject to z; —§ <x; <z;+5 forj=1,...,n.

However, for the case of cubes, there is an even easier way to determine the
maximum objective value. Since every cube is a bounded polyhedron, one of the
points with maximum objective value is a vertex z¥ € C'(z). A vertex z¥ of
the cube C'(z) is one of the points with maximum distance to the center z (see

e

Fig.2), or formally: z¥ = (z1 +£,..,mE 2)T. If we insert the above equation



Fast Cube Tests for LIA Constraint Solving 121

into the objective function a z, we get:

T e e\T T € "
a; (zlj:§7...,zn:|:§) :aiz+§zj:1iaij’

which in turn is maximal if we choose ¥ such that +a;; is always positive:

e n (&
alz’ =alz + 3 ijl |aij| = aj z+ 9 laill; -

Hence, we transform the inequality afz < b; into alz < b; — £ |a;]|;, and
Cr(2) fits into af © < b; if al'z < b; — £ ||asl;-

Corollary 2. Let C™(2) be a cube and a¥'xz < b; be an inequality. All x € C'(z)
Sulfill af & < b; if and only if alz < by — § ||as|; .

Next, we look at the case where multiple inequalities alz < b; (for i =
1,...,m) define the polyhedron Az < b. Since Pj is the intersection of all Py,
the cube fits into Az < b if and only if it fits into all inequalities alz < b;,
respectively:

Vie{l,...,m}.Vo € C(2). alx <b;.

We can express this by m optimization problems:
Vie{l,...,m}. max{alz:2x € C"(2)} <b;
and, after applying Corollary 2, by the following m inequalities:
Vie{l,...,m}. alz <b — g sl -

Hence, the linear cube transformation transforms the polyhedron Az < b into
the polyhedron Az < V', where b; = b; — § |la;||;, and C*(z) fits into Az < b if
Az <V,

Corollary 3. Let C(z) be a cube and Az < b be a polyhedron. C™(z) C P{ if
and only if Az <V, where b = b; — 5 [|a;]|; .

Until now, we have discussed how to use the linear cube transformation to
determine if one cube C!'(z) with fixed center point z fits into a polyhedron
Ax < b. A generalization of this problem determines whether a polyhedron
Ax < b contains a cube of edge length e at all. Actually, a closer look at the
transformed polyhedron Az < b’ reveals that the linear cube transformation
(b = bi — § ||lail|;) is dependent only on the edge length e of the cube. Therefore,
the solutions Pﬁ of the transformed polyhedron Az < b’ are exactly all center
points of cubes with edge length e that fit into the original polyhedron Az <
b (see Fig.3). By determining the satisfiability of the transformed polyhedron
Az < b/, we can now also determine whether a polyhedron Az < b contains a
cube of edge length e at all. If we choose a suitable algorithm, e.g., the simplex
algorithm, then we even get the center point z of a cube CI'(z) that fits into
Az < b. This observation is the foundation for the cube tests that we will present
in Sect. 4.
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4 Fast Cube Tests

In contrast to arbitrary polyhedra, determining whether a cube C*(z) contains
an integer point is easy. Because of the cubes symmetry, it is enough to test
whether it contains a closest integer point [z] to the center z.

Lemma 4. A cube CI'(z) contains an integer point if and only if it contains a
closest integer point [z] to the center z.

Proof. The implication from left to right follows directly from Lemma 1 and
from the relation between the maximum norm and cubes. The implication from
right to left is obvious. O

Note that every point z € R™ is also a cube C{(z) of edge length 0. In order
to be efficient, our tests will look only at cubes with special properties. In the
case of the largest cube test, we check for an integer solution in one of the largest
cubes fitting into the polyhedron Az < b. In the case of the unit cube test, we
look for a cube of edge length one, which always guarantees an integer solution.
Due to these restrictions, both tests are not complete but very fast to compute.

4.1 Largest Cube Test

A well-known test, implemented in most ILP solvers, is simple rounding. For
simple rounding, the ILP solver computes a real solution x for a set of inequali-
ties, rounds it to a closest integer [z], and determines whether this point is an
integer solution. Not all types of real solutions are good candidates for this test
to be successful. Especially surface points, such as vertices, the usual output of
the simplex algorithm, are not good candidates for rounding. For many polyhe-
dra, center and interior points z are a better choice because all integer points
adjacent to z are solutions, including a closest integer point [z].

To calculate a real center point with the simplex algorithm, we use the linear
cube transformation (Sect. 3). The center point will be the center point of a largest
cube that fits into the polyhedron Az < b (see Fig.4). We determine the center z
of this largest cube and the associated edge length e with the following LP:

maximize .
subject to Az +a'% < b, where aj = ||a|,
T > 0.

This linear program employs the linear cube transformation from Sect.3. The
only generalization is a variable z. for the edge length instead of a constant
value e. Additionally, this linear program maximizes the edge length as an
optimization goal.

If the resulting maximum edge length is unbounded, the original polyhedron
contains cubes of arbitrary edge length (see Fig.5) and, thus, infinitely many
integer solutions. Since the linear program contains all solutions of the original
polyhedron (see x. = 0), the original polyhedron is empty if and only if the
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Fig.4. The largest cube Fig.5. An infinite lattice Fig.6. A unit cube inside
inside a polyhedron, its cen- width polyhedron, contain- a polyhedron, its center
ter point, and a closest inte- ing cubes for every edge point, and a closest integer
ger point to the center length e > 0. point to the center

above linear program is infeasible. If the maximum edge length is a finite value
e, we use the resulting assignment z for the variables = as a center point and
C"(z) is a largest cube that fits into the polyhedron. From the center point,
we round to a closest integer point [z] and determine if it fits into the original
polyhedron. If this is the case, we are done because we have found an integer
solution for Az < b. Otherwise, the largest cube test does not know whether
or not Ax < b has an integer solution. An example for the latter case, are the
following inequalities: 3x1 — x2 < 0, =27 — x2 < —2, and —2z; + z2 < 1.
These inequalities have exactly one integer solution (1,3)7, but the largest cube
contained by the inequalities has edge length e = % and center point (%, %)T
which rounds to (0,2)7.

Instead of a cube, it is also possible to use a ball to compute a center point.
The result is the Chebyshev center [3], i.e., the center of a largest ball that fits
into the polyhedron:

)

maximize x,
subject to Az + a'z, < b, where a] = [|a;l|,
z, > 0.
However, the coefficients a are then defined via the 2-norm |la;|l, = /327, af;
and are, therefore, potentially irrational. As theory solvers in the SMT context
use exact rational arithmetic, the Chebyshev center is not straightforward to
integrate.

The largest cube test also upholds the incremental advantages of the dual
simplex algorithm proposed by Dutertre and de Moura [9]. The only difference
is the extra column a’%:, which the theory solver can internally create while it
is notified of all potential arithmetic literals. Adding this column from the start
does not influence the correctness of the solution because z. > 0 guarantees that
the largest cube test is satisfiable exactly when the original inequalities Az < b
are satisfiable. Even for explanations of unsatisfiability, it suffices to remove the
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bound x. > 0 to obtain an explanation for the original inequalities Az < b.
The only disadvantage is the additional variable x.. However, increasing z. only
shrinks the search space. Therefore, increasing x. can never resolve any conflicts
during the satisfiability search. The simplex solver recognizes this with at least
one additional pivot that sets z. to 0. Hence, adding the extra column a’ % from
the beginning has only constant influence on the theory solver’s run-time, and
is therefore negligible.

4.2 Unit Cube Test

Most SMT theory solvers implement a simplex algorithm that is specialized
towards feasibility and not towards optimization [1,6,9,12]. Therefore, a test
based on optimization, such as the largest cube test, does not fit well with
existing implementations. As an alternative, we have developed a second test
based on cubes that does not need optimization.

We avoid optimization by fixing the edge length e to the value 1 for all
the cubes CI'(z) we consider (see Fig.6). We do so because cubes CJ'(z) of
edge length 1 are the smallest cubes to always guarantee an integer solution,
completely independent of the center point z. A cube with edge length 1 is also
called a unit cube. To prove this guarantee, we first fix e = 1 in the definition of
cubes, Cf*(z) = {x eR":Vjel,...,n |z; — z| < %}, and look at the following
property for the rounding operator [.]: Vz; € R.|[2;] — z;| < 1. We see that any
unit cube contains a closest integer [z] to its center point z. Furthermore, 1
is the smallest edge length that guarantees an integer solution for a cube with
center point z = (..., %, ...)T. Thus, 1 is the smallest value that we can fix as
an edge length to guarantee an integer solution for all cubes CJ*(z).

Our second test tries to find a unit cube that fits into the polyhedron Ax <b
and, thereby, a guarantee for an integer solution for Az < b. Again, we employ
the linear cube transformation from Sect.3 and obtain the linear program:

Az < b/, where b} =b; — 3 [la;]|; -

In addition to being a linear program without an optimization objective, we
only have to change the row bounds b} of the original inequalities. In the dual
simplex algorithm proposed by Dutertre and de Moura [9] and implemented in
many SMT theory solvers [1,6,9,12], such a change of bounds is already part
of the framework so that integrating the unit cube test into theory solvers is
possible with only minor adjustments to the existing implementation. Since our
unit cube test requires only an exchange of bounds, we can easily return to the
original polyhedron by reverting the bounds. In doing so, the unit cube test
upholds the incremental connection between the different original polyhedra.

5 Experiments

While our tests are useful for many types of polyhedra, the motivation for our
tests stems from a special type of polyhedra, so-called infinite lattice width poly-
hedra [16]. A polyhedron Ax < b has infinite lattice width if for every objective
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c € R™\ {0}, either its maximum or minimum objective value is unbounded, or
formally:

Ve e R"\ {0}. sup {2 |z € Pj'} = oo or inf {¢"z |2 € P} = —cc.

Polyhedra with infinite lattice width seem trivial at first glance because their
interior expands arbitrarily far in all directions (see Fig.5). Therefore, a poly-
hedron with infinite lattice width contains an infinite number of integer solu-
tions [16]. Nonetheless, many SMT theory solvers have proven to be inefficient
on those polyhedra because they use a branch-and-bound approach with an
underlying simplex solver [9]. Although such an approach will terminate inside
finite a priori bounds [18], it does not explore the infinite interior, but rather
directs the search along the solutions suggested by the simplex solver: the ver-
tices of the polyhedron. Thus, the SMT theory solvers concentrate their search
on a bounded part of the polyhedron. This bounded part contains only a finite
number of integer solutions, whereas the complete interior contains infinitely
many integer solutions. The advantage of our cube tests is that they actually
exploit the infinite interior because polyhedra with infinite lattice width con-
tain cubes for every edge length (see Fig.5). Our tests are always successful on
polyhedra with infinite lattice width and usually need only a small number of
pivoting steps before finding a solution.

Lemma 5. Let Az < b be a polyhedron. Let a’ € Z™ be a vector such that its
components are a; = |la;||,. Then, the following two statements are equivalent:
(1) Az < b contains a cube C'(z) for every e € R>q, and

(2) Ax <b has infinite lattice width.

Or formally:

(1) VeeRyp. Ix € R". Az <b—§ -d,

(2) Ve e R"\ {0}. sup {cTz |z € P} = 00 or inf {c"'z |z € P{!} = —cc.

Proof. (1) = (2): We first assume that Az < b contains a cube C'(z) for every
e € R>¢. Note that the center point z depends on the edge length e. Furthermore,
we define the function:

width(c,S) = (sup {c"z |z € §)} +sup {—c"z |z € 5)}) (1)

for every vector ¢ € R™\ {0} and for every set of points S C R™. Then, we prove
that:
lim ., oo width(c, C*(.)) — 0.

In Sect. 3, we have shown that:
sup {2 |z € Cl(2)} =c"z+ g “lelly » and (2)

sup{—c'z |z € Cl(2)} =—c"z+ g lelly - (3)

Therefore, width(c, C’(z)) = e - ||c||;, which is independent of z. After inserting
(2) and (3) into (1), we get:

lim,_, o width(c, C7'(.)) = lime—oo € - ||c]]; — 00.
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Since Az < b contains cubes C(z) for all e € R, it holds for all e € R that
width(c, P{') > width(c, C™(.)),
and, thus, width(c, P{') = co. Since P{! is also convex, it must hold that:
sup {cTz |2 € P} =coor inf {¢Tz |z € P} =—o0.

(2) = (1): By contradiction. Assume that Az < b has infinite lattice width
but that there exists an e € Rx¢ such that Az < b contains no cube CJ*(z) of
edge length e. By Corollary 3, Az < b contains no cube C!*(z) of edge length e
implies that Az < b— §-a’ is unsatisfiable. By Farkas Lemma (3], Az <b—§-d’
is unsatisfiable implies that there exists a y € R™ such that: (a) y; > 0 for all
i€{l,...,m}, (b) yr > 0 for at least one k € {1,...,m}, (c) y"A =0, and (d)
0> y"b— £ -yTd'. Because of (b), we can transform the equality (c) into the

following form:
- _\" Yi,
=0 (o) @

By multiplying (4) with an z € P{, we get: al'z = — i itk <5—;a?m) Since
aiTx < b; and y; > 0, we get a finite lower bound for afx:

T, — m Yi ,T _\m Yip.
apT = — Zi:l,z‘;ﬁk (yk a; 1’) 2 Zi:l,z‘;ﬁk (yk bz>~

Thus, the upper bound sup {agx |z € P?} < b < oo and the lower bound
inf {afz |z € P!} > — Dt itk (g—kbz) > —oo are finite, which contradicts
the assumption that Az < b has infinite lattice width. O

We have found instances of polyhedra with the infinite lattice width property
in some classes of the SMT-LIB benchmarks. These instances are 229 of the
233 dillig benchmarks designed by Dillig et al. [7], 503 of the 591 CAV-2009
benchmarks also by Dillig et al. [7], 229 of the 233 slacks benchmarks which
are the dillig benchmarks extended with slack variables [14], and 19 of the 37
prime-cone benchmarks, that is, “a group of crafted benchmarks encoding a
tight n-dimensional cone around the point whose coordinates are the first n
prime numbers” [14]. The remaining problems (4 from dillig, 88 from CAV-
2009, 4 from slacks, and 18 from prime-cone) do not fulfill the infinite lattice
width property because they are either tightly bounded or unsatisfiable. For
our experiments, we look only at the instances of those benchmark classes that
actually fulfill the infinite lattice width property.

Using these benchmark instances, we have confirmed our theoretical assump-
tions (Lemma 5) in practice. We integrated the unit cube test into our own
branch-and-bound solver SPASS-IQ' and ran it on the infinite lattice width
instances; once with the unit cube test turned on (SPASS-1Q-0.1+wuc) and once

! http://www.spass-prover.org/spass-iq.
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Benchmark Name CAV-2009 DILLIG PRIME-CONE SLACKS ROTATE
F#Instances 503 229 19 229 229

Solvers: solved] time [[solved[time[[solved] time [[solved[time[[solved]time

SPASS-1Q-0.1+uc|| 503 22 229 9 19 0.4 229 26 229 9
SPASS-1Q-0.1 503 713 229 218 19 0.4 197 95 229 214
ctrl-ergo 503 12 229 5 19 0.4 229 46 24 6760
cved-1.4 467 |12903|| 206 [4146 18 3 152 |4061 208 | 6964
mathsat5-3.9 503 | 6409 225 [2314 19 3.5 181 |4577 229 1513
yices-2.4.2 472 11461 213 [2563 19 0.1 147 | 5767 180 |10171
z3-4.4.0 466 764 213 525 19 0.2 158 383 213 528

Fig. 7. Experimental results

with the test turned off (SPASS-1Q-0.1). For every problem, SPASS-1Q-0.14+uc
applies the unit cube test exactly once. This application happens before we start
the branch-and-bound approach. We also compared our solver with some of the
state-of-the-art SMT solvers currently available for linear integer arithmetic:
cved-1.4 (1], mathsat5-3.9 [5], yices2.4.2 [8], and z3-4.4.0 [6]. As mentioned
before, all these solvers employ a branch-and-bound approach with an underly-
ing dual simplex solver [9].

The solvers had to solve each problem in under 10 min. For the experiments,
we used a Debian Linux server with 32 Intel Xeon E5-4640 (2.4 GHz) proces-
sors and 512 GB RAM. Figure 7 lists the results of the different solvers (column
one) on the different benchmark classes (row one). Row two lists the number
of benchmark instances we considered for our experiments. For each combina-
tion of benchmark class and solver, we have listed the number of instances the
solver could solve in the given time as well as the total time (in seconds) of the
instances solved (columns labelled with “solved” and “time”, respectively).

Our solver that employs the unit cube test solves all instances with the
application of the unit cube test and is 25 times faster than our solver without
the test. The SMT theory solvers in their standard setting were not able to solve
all instances within the allotted time. Moreover, our unit cube test was over 100
times faster than any state-of-the-art SMT solver.

We also compared our test with the ctrl-ergo solver, which includes a sub-
routine that is essentially the dual to our largest cube test [2]. As expected,
both approaches are comparable for infinite lattice width polyhedra. In order to
also compare the two approaches on benchmarks without infinite lattice width,
we created the rotate benchmarks by adding the same four inequalities to all
infinite width instances of the dillig benchmarks. These four inequalities essen-
tially describe a square bounding the variables xy and x; in an interval [—u, u].
For a large enough choice of u (e.g., u = 2'°), the square is so large that the
benchmarks are still satisfiable and not absolutely trivial for branch-and-bound
solvers. To add a challenge, we rotated the square by a small factor 1/r, which
resulted in the following four inequalities:

—b-r-r+r<b-r-zg—x1<b-r-r—r, and
—b-rr+r<zo+b-r-z;<b-r-r—r.
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These changes have nearly no influence on SPASS-1Q, and two SMT solvers
even benefit from the proposed changes. However, the rotate benchmarks are
very hard for ctrl-ergo because its subroutine detects only infinite lattice width.
Without infinite lattice width, ctrl-ergo starts its search from the boundaries
of the polyhedron instead of looking at the polyhedron’s interior. We can even
control the number of iterations (r?) ctrl-ergo spends on the parts of the bound-
ary without any integer solutions if we choose r accordingly (e.g., r = 219).
In contrast, we use our cube tests to also extract interior points for rounding.
This difference makes our tests much more stable under consideration of small
changes to the polyhedron.

There exist alternative methods for solving linear integer constraints that do
not rely on a branch-and-bound approach [4,14]. These have not yet matured
enough to be competitive with our tests or state-of-the-art SMT theory solvers.

Most problems in the linear integer arithmetic SMT-LIB benchmarks with
finite lattice width can be solved without using any actual integer arithmetic
technique. A standard simplex solver for the reals typically finds a real solution
for such a problem that is also an integer solution. Applying the unit cube test
on these trivial problem classes is a waste of time, worst case it doubles the
eventual solution time. For these examples it is beneficial to first compute a
general real solution and to check it for integer satisfiability before applying the
unit cube test. This has the additional benefit that real unsatisfiable problems
are also filtered out before applying the unit cube test. Also, the unit cube
test is almost guaranteed to fail on problems containing boolean variables, i.e.,
variables that are either 0 or 1, unless they are absolutely trivial and describe a
unit cube themselves. Whenever the problem contains a boolean variable, it is
often beneficial to skip the unit cube test.

6 Further Cube Test Applications

Equalities are the greatest challenge for the applicability of our cube tests. A
polyhedron contains an equality aLz = bg if aLz = bg holds for all z € P,‘f‘.
An equality contained in Ax < b is explicit if Az < b includes the inequalities
abr < bp and —aLz < —bp. Otherwise, the equality is implicit. Polyhedra
containing equalities have only surface points and, therefore, neither an interior
nor a center. Thus, a largest cube has edge length zero and is just a point in the
original polyhedron. Similar problems occur if we allow not only inequalities but
also other types of constraints, such as negated equalities (al z # b;), divisibility
constraints (d | alx + b;, i.e., d € Z divides al x + b;), and negated divisibility
constraints (d { al z +b;). In this section, we propose additional transformations
and strategies that are useful for resolving the aforementioned challenges and
are also applicable even beyond our tests.

First of all, we can transform any divisibility constraint and negated divisibil-
ity constraint into an equality by introducing additional variables. For divisibility
constraints d | al z + b;, this transformation is known as the diophantine repre-
sentation: 3q € Z. dg—al'z = b;. For negated divisibility constraints d { al z+b;,
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there exists a similar transformation: 3¢ € Z. Ir € Z.dg+r —alx =b; A 1 <
r < d—1. Both of these transformations describe the formal definition of dividing
alz+b; by d: al'z+b; = dg+r, where q is the quotient of the division and r the
remainder. Since the divisibility constraint enforces that d divides alz + b;, the
remainder r must be zero. Likewise, the negated divisibility constraint enforces
that d does not divide al x + b;. Therefore, the remainder r lies between 1 and
d — 1. These transformations are useful beyond our tests because they can be
used to integrate (negated) divisibility constraints into the simplex algorithm.
The only disadvantage is that we have to introduce additional variables ¢ (and
r) for every (negated) divisibility constraint.

Next, we eliminate all equalities from Ax < b. We do so by taking an equality
x = b; contained in Az < b and replacing a variable x in Az < b by substitut-
ﬁ(brzyzl,#k a;jx;), where a;; > 0. Naturally, replacing zj, in
Az < b creates a new system of inequalities Az’ < b, where A’ € Q(m—1x(n-1),
¥ e QY and 2’ = (21,...,%k_1,Thi1,---,Tn)" . We iteratively repeat this
approach until our system of inequalities A7z’ < b! contains no more equalities.
As a by-product, we get a system of equalities APz = b¥ consisting of all equal-
ities we have found. The two systems of constraints A’z! < b’ and APz = bF
together are equivalent to Az < b, but A’z! < b contains no equalities while
APz = bP contains (at least implicitly) all equalities of Az < b. We can now
completely eliminate the equalities APz = b¥ from Az < b by combining this
approach with a diophantine equation handler [12]. The result is a new system
of inequalities that contains no equalities and has an integer solution if and only
if Az < b has one.

Extracting equalities has further applications; for instance, the derivation of
equalities is needed for the combination of theories by the Nelson-Oppen method.
We can even check whether an arbitrary equality aLz = bg is an equality of
Az < b by transforming the equalities APz = b¥ into a substitution and applying
this substitution to aLz = bp. The equality aLz = bg is only contained in
Az <bif agx = bg simplifies to 0 = 0 after the substitution.

However, we are still missing one step in our elimination approach: how do
we efficiently find an equality alz = b; contained in Az < b so that we can
substitute with it? The answer are cubes, presented in the below lemma.

T
a;

ing with x, :=

Lemma 6. Let Ax < b be a polyhedron. Then, ezxactly one of the following
statements s true:

(1) Az < b contains an equality aLx = bp with ag # 0, or

(2) Az < b contains a cube with edge length e > 0.

Proof. This proof is a case distinction over the sign of z. for the following slightly
simplified version of the largest cube test:

maximize T,
subject to Az + a’z. < b, where a; = 1 ||a;|; -

()

If the maximum objective value is positive, Az < b contains a cube with edge
length e > 0. Therefore, we have to prove that Az < b contains no equality
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aLz = bp with ag # 0, which we will do by contradiction. Assume Az < b con-
tains an equality aLz = bp with ag # 0. Then, by transitivity of the subset rela-
tion, the polyhedron consisting of the inequalities aLx < bp and —aLz < —bp
must also contain a cube of edge length e. However, applying the transformation
from Corollary 3 to this new polyhedron results in two contradicting inequalities:
ahx < bg — |lag|, - § and —afx < —bp — ||agll; - §&. Thus, (1) and (2) cannot
hold at the same time.

If the maximum objective value is zero, then Az < b is satisfiable but contains
no cube with edge length e > 0. Therefore, we have to prove that Az < b contains
an equality aLz = bp with ap # 0. Consider the dual linear program of (5):

minimize y7b

subject to yTA =0,
yTa' =1, where a} = 3 |lai||; .
y=>0.

(6)

Due to strong duality, the objectives of the dual and primal linear programs are
equal. Therefore, there exists a y € R™ that has objective y7b = 0 and that
satisfies the dual (6). Since yTa’ = 1 and a} > 0 and y; > 0 holds, there exists
a k€ {1,...,m} such that y, > 0. By multiplying 474 = 0 with an = € P}
and isolating ajf , we get: afx = =37, (;’—kalTx

original inequalities az < b;, we get a finite lower bound for a} z:

T m Yi T m Yi
= — = a: > 22 }h. .
Ay v Zi:l,iyﬁk < @i w) = Zi:l,i;ék: ( bl)

Yk Yk

). Using y; > 0, and our

Now, we reformulate y7b = 0 analogously and get: b, = —ZZ’;L#k (;’—kbz)

Thus, a} z = by, is an equality contained in the original inequalities Az < b.

If the maximum objective value is negative, Ax < b is unsatisfiable and
contains no cube with edge length e > 0. Since Pf is now empty, Ax < b
contains all equalities. a

By Lemma 6 a polyhedron contains a cube with a positive edge length e > 0,
or an equality. Since e is arbitrarily small, the factor § ||a;||; is also arbitrarily
small and af z + £ ||a;; < b; converges to a] # < b;. Therefore, Az < b contains
an equality if and only if Az < b is unsatisfiable. We can solve this system of
strict inequalities with the dual simplex algorithm by Dutertre and de Moura [9].
In case Az < b is unsatisfiable, the algorithm returns an explanation, i.e., a
minimal set C' of unsatisfiable constraints aZTx < b; from Az < b. If Az <)
itself was satisfiable, then we can extract equalities from this explanation: every
al'z < b; € C implies that Ax < b contains the equality alz = b;.

Finally, we have two ways of handling negated equalities al x # b;. Either we
split our set of constraints into two sets of constraints, replacing al = # b; in the
first one with aiT:v < b; — 1 and in the second one with —alTx < —b; — 1; or, we
ignore all negated equalities during the calculation of the tests themselves and
use the negated equalities only to verify the integer solutions returned by the
tests.
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7 Conclusion

We have presented two tests based on cubes: the largest cube test and the
unit cube test. Our tests can be integrated into SMT theory solvers without
sacrificing the advantages SMT solvers gain from the incremental structure of
subsequent subproblems. Furthermore, our experiments have shown that these
tests increase efficiency on certain polyhedra such that previously hard sets of
constraints become trivial. We have even shown that major obstacles to our tests,
for example equalities, can be handled through generally useful preprocessing
steps. Moreover, these preprocessing steps led to an additional application for
our tests: finding equalities.

Our future research will investigate further applications of our tests. We
expect that we can use cubes not only for the detection of equalities, but also for
the detection of (un)bounded directions. We can likely use the largest cube test
as a selection strategy for branching by always choosing the branch containing
the largest cube. This is in all likelihood a beneficial strategy since the largest
cube is a good heuristic for the branch with the most space for integer solutions.
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Abstract. SMT solvers have recently been extended with techniques
for finding models of universally quantified formulas in some restricted
fragments of first-order logic. This paper introduces a translation that
reduces axioms specifying a large class of recursive functions, includ-
ing terminating functions, to universally quantified formulas for which
these techniques are applicable. An evaluation confirms that the app-
roach improves the performance of existing solvers on benchmarks from
three sources. The translation is implemented as a preprocessor in the
CVC4 solver and in a new higher-order model finder called Nunchaku.

1 Introduction

Many solvers based on SMT (satisfiability modulo theories) can reason about
quantified formulas using incomplete instantiation-based methods [15,31]. These
methods work well for proving the unsatisfiability of an input set of formulas,
but they are of little help for finding models of them when they are satisfiable.
Often, a single universal quantifier in one of the axioms of a problem is enough
to prevent the discovery of models.

In the past few years, techniques have been developed to find models for quan-
tified formulas in SMT. Ge and de Moura [19] introduced an instantiation-based
procedure for formulas in the essentially uninterpreted fragment. This fragment
is limited to universally quantified formulas where all variables occur as direct
subterms of uninterpreted functions, as in Vx : Int. f(x) ~ g(x) + 5. Other syn-
tactic criteria extend this fragment slightly, including some cases when variables
occur as arguments of arithmetic predicate symbols. Subsequently, Reynolds
et al. [32,33] introduced techniques for finding finite models for quantified for-
mulas over uninterpreted types and types having a fixed finite interpretation.
These techniques can find a model for a formula such as Vx,y : 7. x =~ y V
- f(x) = f(y), where 7 is an uninterpreted type.

Unfortunately, none of these fragments can accommodate the vast majority
of quantified formulas that correspond to recursive function definitions. The
essentially uninterpreted fragment does not allow the argument of a recursive
function to be used inside a complex term on the right-hand side of the definition,
whereas the finite model finding techniques are not applicable in the presence
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of functions over infinite domains such as the integers or algebraic datatypes.
A simple example where both approaches fail is

Vax @ Int. p(x) ~ite(x <0, 1, 2% p(x — 1))

where ite is the ‘if-then—else’ operator. This state of affairs is unsatisfactory,
given the frequency of recursive definitions in practice.

We present a method for translating formulas involving recursive function
definitions to formulas where finite model finding techniques can be applied.
The definitions must meet a semantic criterion to be admissible (Sect.2). This
criterion is general enough to include well-founded (terminating) recursive func-
tion definitions and restrictive enough to exclude inconsistent equations such as
Vo Int. f(x) =~ f(x) + 1.

We define a translation for a class of formulas involving admissible recursive
function definitions (Sect. 3). A recursive equation Vx : 7. f(x) ~ t is translated to
Va : a;. f(ys(a)) =~ t[ys(a)/x], where a; is an “abstract” uninterpreted type and
vf 1 @y — T is an uninterpreted function from «; to the corresponding concrete
type 7. Additional constraints ensure that the abstract values that are relevant to
the formula’s satisfiability exist. The translation preserves satisfiability and, for
admissible definitions, unsatisfiability, and makes finite model finding possible
for problems in this class.

The approach is implemented as a preprocessor in the SMT solver CVC4 [2]
and in a new higher-order model finder called Nunchaku (Sect. 4). We evaluated
the two implementations on benchmarks from IsaPlanner [22], Leon [6], and
Isabelle/HOL, to demonstrate that this translation improves the effectiveness of
two SMT solvers, CVC4 and Z3 [17], in finding countermodels to verification
conditions (Sect. 5). Unlike earlier work (Sect. 6), our approach relies on off-the-
shelf SMT solvers.

An earlier version of this paper was presented at the SMT 2015 work-
shop in San Francisco [30]. This paper extends the workshop paper with proof
sketches, an expanded implementation section covering Nunchaku and relevant
CVC4 optimizations, and the evaluation on Isabelle benchmarks produced by
Nunchaku.

2 Preliminaries

Our setting is a monomorphic (or many-sorted) first-order logic like the one
defined by SMT-LIB [3]. A signature Y consists of a set X% of first-order types
(or sorts) and a set Xf of function symbols over these types. We assume that
signatures always contain a Boolean type Bool and constants T, 1 : Bool for
truth and falsity, an infix equality predicate ~ : t x T — Bool for each 7 € X%,
standard Boolean connectives (— , A, V, etc.), and an if-then—else function
symbol ite : Bool x 7 x 7 — 7 for each 7 € X%. We fix an infinite set XV of
variables of type T for each T € X% and define XV as (J 5y Y. (Well-typed) X-
terms are built as usual over functions symbols in ¥ and variables in XV. Formulas
are terms of type Bool. We write ¢* to denote terms of type T and 7 (¢) to denote
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Tn

the set of subterms of ¢. Given a term u, a variable tuple ¥ = (x]*,...,x7") and a
term tuple 7 = (¢, ...,£"), we write u[f/X] to denote the result of simultaneously
replacing all occurrences of x; with #; in u, for each i = 1,...,n. When convenient,
we will treat a finite set of formulas as the conjunction of its elements.

A S-interpretation % maps each type T € % to a nonempty set 77, the
domain of T in .#, each function symbol f : 7; x --- x 7, — 7 in Xf to a total
function ¥ : 77 x --- x 77 — 77, and each variable x : 7 of £V to an element
of 7. A theory is a pair T = (X,1) where ¥ is a signature and I is a class of
Y-interpretations, the models of T, closed under variable reassignment (i.e., for
every . € 1, every Y-interpretation that differs from .# only on the variables of
YV is also in I). A ¥-formula ¢ is T-satisfiable if it is satisfied by some inter-
pretation in I, which we call a T-model of ¢. A formula ¢ T-entails , written
¢ Er ¢, if all interpretations in I that satisfy ¢ also satisfy . Two formulas ¢
and Y are T-equivalent if each T-entails the other. We call T a Herbrand theory
if for every quantifier-free X-formula ¢ over the variables X, {y[f/%] | #ground
Y-term} Fr VX. 4.

If Ty = (X0, 1p) is a theory and ¥ is a signature with ¥f C ¥f and Egy Ccxw,
the extension of To to ¥ is the theory T = (X,I) where I is the set of all X-
interpretations .# whose Y-reduct is a model of Tj. Note that T is a conservative
extension of Ty, in the sense that a Yg-formula is T-satisfiable if and only it is
T-satisfiable. We refer to the symbols of ¥ that are not in Xy as uninterpreted.

For the rest of the paper, we fix a theory T = (%,I) with uninterpreted
symbols, constructed as above, and assume it is a Herbrand theory. While this
is an actual restriction, it can be shown that the theories typically considered in
SMT are Herbrand.

Unconventionally, we consider annotated quantified formulas of the form
V; X. ¢, where f € X is uninterpreted. Their semantics is the same as for stan-
dard quantified formulas Vx. ¢. Given f : 79 X .-+ X 7, — 7, a formula % X. ¢ is
a function definition (for f) if X is a tuple of variables x7', ..., x7 and ¢ is a
quantifier-free formula T-equivalent to f(X) ~ ¢ for some term ¢ of type 7. We
will consider only annotated quantified formulas that are function definitions.
We write J%. ¢ as an abbreviation for = VX. — ¢.

Definition 1. A formula ¢ is in definitional form with respect to {f1,...,f,} C
Yt if it is of the form (W, X1. ¢1) A --- A (%, %o @n) A @0, where fy,...,f, are
distinct function symbols, ¥, X;. ¢; is a function definition for i = 1,...,n, and ¢¢
contains no function definitions. We call ¢g the goal of ¢.

In the signature 3, we distinguish a subset X4 C %f of defined uninterpreted
function symbols. We consider X-formulas that are in definitional form with
respect to R4,

Definition 2. Given a set of function definitions A = {*, X1. ¢1,...,%, Xy. ¢n},
a ground formula ¢ is closed under function expansion with respect to A if

vEr N {eli/®) | 0) € 7))
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The set A is admissible if for every T-satisfiable formula ¢ closed under function
expansion with respect to A, the formula ¢ A A is also T-satisfiable.

In Definition 1, notice that the goal ¢g is a formula possibly containing quan-
tifiers. Given an admissible set of function definitions A, we may establish a
model exists for A A ¢q if we are able to find a ground formula i that entails
©o, and subsequently extend ¢ to a T-satisfiable ground formula ¢ that is closed
under function expansion with respect to A. We may obtain ¢ from g by con-
joining to it ground formulas (typically, conjunctions of ground literals) that
entail instances of function definitions from A until the criterion in Definition 2
is met.

Admissibility is a semantic criterion that must be satisfied for each func-
tion definition before applying our translation, described in Sect. 3. It is useful
to connect it to the standard notion of well-founded function definitions, often
called terminating definitions. In such definitions, all recursive calls are decreas-
ing with respect to a well-founded relation, which must be supplied by the user or
inferred automatically using a termination prover. This ensures that the function
is uniquely defined at all points.

First-order logic has no built-in notion of computation or termination. To
ensure that a function specification is well founded, it is sufficient to require that
the defined function be terminating when seen as a functional program, under
some evaluation order. For example, the definition Vx : Int. p(x) = ite (x <o, 1,
2xp(x— 1)), where the theory T is integer arithmetic extended with p : Int — Int,
can be shown to be well founded under a strategy that evaluates the condition of
an ite before evaluating the relevant branch, ignoring the other branch. Logically,
such dependencies can be captured by congruence rules. Krauss developed these
ideas in the general context of higher-order logic [24, Sect. 2], where theories such
as integer arithmetic can be axiomatized.

Theorem 3. If A is a set of well-founded function definitions for R =
{f1,.... T}, then it is admissible.

Proof Sketch. Let ¢ be a T-satisfiable formula closed under function expansion
with respect to A. We show that ¢ A A is also T-satisfiable. Let .# be a T-model
of ¥, and let .#y be the reduct of .# to the function symbols in Xf\ 4. Because
well-founded definitions uniquely characterize the interpretation of the functions
they define, there exists a model .#’ of T that extends .#; such that .#’ E A.
Since ¢ is closed under function expansion, it already constrains the functions
in £97 recursively as far as is necessary for interpreting . Thus, any point v for
which f(v) is needed for interpreting ¥ will have its expected value according to
its definition and hence coincide with .#’. And since ¥ does not depend on the
interpretation at the other points, .#” is, like .#, a T-model of . Since .#’ £ A
by assumption, we have £’ E ¢y A A as desired. O

Another useful class of function definitions is that of productive corecursive
functions. Corecursive functions are functions to a coalgebraic datatype. These
functions can be ill founded without being inconsistent. Intuitively, productive
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corecursive functions are functions that progressively reveal parts of their poten-
tially infinite output [1,38]. For instance, given a type of infinite streams of
integers constructed by scons : int x stream — stream, the function defined by
Ve x. e(x) & scons(x, e(x+ 1)) falls within this class: Each call to e produces one
constructor before entering the next call. Like terminating recursion, productive
corecursion totally specifies the functions it defines, and the proof of Theorem 3
can be adapted to cover that case.

Theorem 4. If A is a set of productive function definitions for XU then it is
admissible.

It is even possible to mix recursion and corecursion in the same function
[11] while preserving totality and admissibility. Beyond totality, an admissible
set can contain underspecified functions such as ¥ x : Int. f(x) ~ f(x) or V x.
g(x) =~ g(x + 1). The latter is problematic operationally, because in general
the closure of a formula ¢ that depends on some term f(a) is an infinite set:
{ytU{gla+k)~gla+k+1)|k>0} A similar issue arises with corecursive
definitions specifying infinite acyclic objects, such as the e stream introduced
above. Nonetheless, admissibility is still useful if a goal formula does not refer
to g or e, because it tells us that we can safely ignore their definitions. We
conjecture that it is safe to ignore all tail-recursive calls (i.e., calls that occupy
the right-hand side of the definition, potentially under some ite branch) when
establishing well-foundedness or productivity, without affecting admissibility.

An example of an inadmissible set is {V x : Int. f(x) =~ f(x) + 1}, where T
is integer arithmetic extended to a set of uninterpreted symbols {f,g : Int —
Int, ...}. The set is inadmissible because the formula T is closed under function
expansion with respect to this set (trivially, since f does not occur in T), and
yet there is no model of T satisfying f’s definition. A more subtle example is
{Vx:Int. f(x) = f(x), Vzx:Int. g(x) =~ g(x)+ f(x)}. While this set has a model
where f and g are interpreted as the constant function 0, it is not admissible
since f(0) ~ 1 is closed under function expansion but there is no interpretation
satisfying both f(0) ~ 1 and g’s definition.

3 The Translation

For the rest of the section, let ¢ be a ¥-formula in definitional form with respect
to L4 whose definitions are admissible. We present a method that constructs
an extended signature £(X) and an E(X)-formula ¢’ that is T’-satisfiable if and
only if ¢ is T-satisfiable, where T’ is the extension of T to E£(X)—i.e., ¢ and ¢’
are equisatisfiable (in T'). Since T’ is a conservative extension of T, for simplicity
we will refer to it also as T from now on. The idea behind this construction is
to use an uninterpreted type as to abstract the set of relevant input tuples for
each defined function f, and restrict the quantification of f’s definition to a single
variable of this type. Informally, the relevant input tuples ¢ of a function f are
the ones for which the interpretation of f(7) is relevant to the satisfiability of ¢.
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A(t7, p) =
if 7= Bool and t = b(1y,...,1,) then
let (7, x;) = Ao(t;, pol(b, i, p)) fori=1,...,nin
let y=x; A~ A x,in
if p=pos then (b(#},....1,)) A x, T)
else if p = neg then (b(#{,....7,) V= x, T)
else (b(#{.....1,), x)
else if t = V¢ X. u then
let (u', x) = Ao(u, p) in (Va: as. u'[ye(a) /], T)
else if = Vx. u then
let (', x) = Ao(u, p) in (VX. ', VX. x)
else
(t, N{3a:ar.7¢(a) 5| f(5) € T(t), f € £IM})

A(p) =let (¢, x) = Ao(p, pos) in ¢’

Fig. 1. Definition of translation 4

We construct the signature £(X) so that, for each f : 7y x - - x 1, — 7 € X0
it contains an uninterpreted abstract type as, abstracting the Cartesian product
Ty X -+ X Ty, and n uninterpreted concretization functions ye1 @ af — 71, ...,
Yt Af = T

The translation 4 defined in Fig. 1 converts the Y-formula ¢ into the £(¥)-
formula ¢’. It relies on the auxiliary function 4y, which takes two arguments:
the term ¢ to translate and a polarity p for #, which can be pos, neg, or none.
4y returns a pair (¢, ), where ¢ is a term of the same type as ¢t and y is an
Z(X)-formula.

The translation alters the formula ¢ in two ways. First, it restricts the quan-
tification on function definitions for f to the corresponding uninterpreted type
as, inserting applications of the concretization functions y¢; as needed. Second,
it augments ¢ with additional constraints of the form Ja : af. ¥¢(a) ~ 5, where
¥¢(a) ~ 5 abbreviates the formula A_, yf;(a) = s; with 5§ = (s1,...,s,). These
existential constraints ensure that the restricted definition for f covers all rele-
vant tuples of terms, namely those occurring in applications of f that are relevant
to the satisfiability of ¢. The constraints are generated as deep in the formula as
possible, based on the polarities of Boolean connectives, to allow models where
the sets denoted by the as types are as small as possible.

In the call 4y(t, p), if £’s top symbol is a predicate symbol b, including the
operators -, A, V, &, and ite, 4y calls itself recursively on the arguments ¢; of b
and polarity pol(b, i, p) with pol defined as

p if be {A,V}, or b=ite and i € {2,3}
pol(b,i,p) =< —p ifb=—
none otherwise
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where —p is neg if p is pos, pos if p is neg, and none otherwise. The term 7 is then
reconstructed as b(#,,...,1,) where each # is the result of the recursive call with
argument ;. If the polarity p of ¢ is pos, 4y conjunctively adds to b(#;,...,1)
the constraint y derived from the subterms, and returns T as the constraint.
Dually, if p is neg, it adds a disjunction with the negated constraint to produce
the same net effect (since = (¢ V = x) <= = ¢ A x). It p is none, it returns the
constraint y.

If ¢ is a function definition V X. u, then 4y recursively constructs a formula u’
from u, replaces all occurrences of X in u’ with ¥,(a) where a is single variable of
type af, and then quantifies a. (Since function definitions are top-level conjuncts,
x must be T and can be ignored.) If 7 is an unannotated quantified formula VX. u,
then A4, calls itself on u with the same polarity p and returns the quantification
over x of the formula u’ and of the constraint y returned by the recursive call.
Finally, if ¢ is an application of an uninterpreted predicate symbol or a term of
a type other than Bool, 4y returns ¢ together with a conjunction of constraints
of the form 3a : as. ¥(a) ~ 5 for each subterm f(3) of ¢ such that f € X4, Such
constraints, when asserted positively, ensure that some element in the abstract
domain as is the preimage of the argument tuple .

Ezample 5. Let T be linear integer arithmetic with the uninterpreted symbols
{c:Int, s: Int — Int}. Let ¢ be the Y-formula

Vx:Int. ite(x <0, s(x) &~ 0, s(x) ~ x+s(x—1)) As(c)> 100 (1)

The definition of s specifies that it returns the sum of all positive integers up to
x. The formula ¢, which is in definitional form with respect to L4 states that
the sum of all positive numbers up to some constant c is greater than 100. It is
satisfied in a model of T that interprets c as 14 or more. Due to the universal
quantifier, SMT solvers cannot find a model for ¢. The signature E(X) extends
Y with the type @ and the function symbol ys : @s — Int. The result of A(y),
after simplification, is the £(X)-formula

(Va : as. ite(ys(a) <0, s(ys(a)) =0,

S(’Ys(a)) ~ 75((1) + s('}/s(a) - 1) A b : as. ys(b) ~ ys(a) - 1)) (2)
As(c) > 100 A Ja: as. ys(a) = c

The universal quantifier in Formula (2) ranges over an uninterpreted type as, mak-
ing it amenable to the finite model finding techniques by Reynolds et al. [32,33],
implemented in CVC4, which search for a finite interpretation for @g. Furthermore,
since all occurrences of the quantified variable a are beneath applications of the
uninterpreted function ys, the formula is in the essentially uninterpreted fragment,
for which Ge and de Moura [19] provide an instantiation procedure, implemented
in Z3. Both CVC4 and Z3 run indefinitely on Formula (1), as expected. However,
they both produce a model for (2) within 100 ms. ]

Note that the translation 4 results in formulas whose models (i.e., satisfy-
ing interpretations) are generally different from those of ¢. One model .# for
Formula (2) in the above example interprets as as a finite set {ug, ..., u14}, ys as a
finite map u; — i fori = 0,...,14, c as 14, and s as the almost constant function
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Ax :Int.ite(x = 0, 0, ite(x = 1,1, ite(x = 2, 3, ite(..., ite(x = 13, 91, 105)...))))

In other words, . interprets s as a function mapping x to the sum of all positive
integers up to x when 0 < x < 13, and 105 otherwise. The Y-reduct of .# is not
a model of the original Formula (1), since .# interprets s(n) as 105 when n < 0
or n> 14.

However, under the assumption that the function definitions in 2™ are
admissible, 4(yp) is equisatisfiable with ¢ for any ¢. Moreover, the models of
A(p) contain pertinent information about the models of ¢. For example, the
model .# for Formula (2) given above interprets ¢ as 14 and s(n) as > ;_, i for
0 < n < 14, and there exists a model of Formula (1) that also interprets c and
s(n) in the same way (for 0 < n < 14). In general, for every model of 4(yp),
there exists a model of ¢ that coincides with it on its interpretation of all func-
tion symbols in Xf \ 24 Furthermore, the model of 4(y) will also give correct
information for the defined functions at all points belonging to the domains of
the corresponding abstract types @f. This can sometimes help users debug their
function definitions.

We sketch the correctness of translation 4. For a set of ground literals L, we
write X(L) to denote the set of constraints that force the concretization functions
to have enough elements in their range to determine the satisfiability of L with
respect to the function definitions in the translation. Formally,

X(L) = {3a: ar. y(a) = 7| f(7) € T(L), f € 2} (3)
The following lemma states the central invariant behind the translation 4.

Lemma 6. Let ¢ be a X-formula not containing function definitions, and let &
be an E(X)-model of T. Then, & satisfies A(Y) if and only if it satisfies L U X (L)
for some set L of ground X-literals such that L F7 .

Proof Sketch. By definition of 4 and case analysis on the return values of 4. O

Lemma 7. If ¢ is a X-formula mnot containing function definitions, then

aAY) Fry.

Theorem 8. If ¢ is a ¥-formula in definitional form with respect to X9, the
set of function definitions A corresponding to XY™ is admissible, and the goal
formula ¢y of ¢ is ground, then ¢ and A(p) are equisatisfiable in T.

Proof Sketch. First, we show that if ¢ is satisfied by a ¥-model .# of T, then A(y)
is satisfied by an £(X)-model .#’. Given such a model .7, let .#’ be the £(3)-
interpretation that interprets all types T € 3% as 7, all function symbols f € ©f
as f7, and for each f : 71 x --- x 7, — 7 in 2 interprets af as 77" x --- x 7
and each yf; as the ith projection on such tuples for i = 1,...,n. Since &’
satisfies ¢ and T is Herbrand, .#’ satisfies a set of ground literals L that entail

. Furthermore, .#’ satisfies every constraint of the form Ja : as. ¥¢(a) ~ 1, since

by its construction there is a value v € a5’ "such that v =77 . Thus, ¢’/ satisfies
L UX(L), and by Lemma 6 we conclude .#’ satisfies 4(y).
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Second, we show that if 4(y) is satisfied by a E(X)-interpretation .#’, then ¢
is satisfied by a X-interpretation .#. Since ¢ is in definitional form with respect
to the functions defined by A, it must be of the form A A ¢q. First, we define
a sequence of Y-literals sets Ly C Ly C --- such that %’ satisfies L; U X(L;)
for i > 0. Since .’ satisfies 4(¢g), by Lemma6, .#’ satisfies a set of literals
L U X(L) where L is a set of X-literals that entail ¢¢. Let Ly = L. For each i > 0,
let ¥; be the formula A {A(¢:[t/%]) | f(7) € T(L), f € X0}, where % X. ¢f € A.
Since ¥’ satisfies 4(% X. ¢f) and X(L;), we know that .#’ also satisfies ¢;. Thus
by Lemma6, .#’ satisfies a set of literals L U X(L) where L is a set of X-literals
that entail ¢;. Let L1 = Ly U L. Let Lo, be the limit of this sequence (i.e.,
¢ € Ly if and only if ¢ € L; for some i), and let ¥ be the X-formula A L.
To show that ¢ is closed under function expansion with respect to A, we first
note that by construction ¢ entails ¥ ,. For any function symbol f and terms ?,
since ¢¢[f/x] does not contain function definitions, by Lemma 7, 4(¢pf[f/X]) entails
@e[t/X]. Thus, ¥ entails {g¢[t/x] | f(f) € T(¥),f € LI}, meaning that y is
closed under function expansion with respect to A. Furthermore, ¥ entails ¢q
since Ly C L. Since ¢ is a T-satisfiable formula that is closed under function
expansion and A is admissible, by definition there exists a Y-interpretation .
satisfying ¢ A A, which entails A A ¢, i.e., ¢. O

The intuition of the above proof is as follows. First, 4(y) cannot be unsat-
isfiable when ¢ is satisfiable since any Y-interpretation that satisfies ¢ can be
extended in a straightforward way to an £(X)-interpretation that satisfies 4(p),
by interpreting the abstract types in the same way as the Cartesian products
they abstract, thereby satisfying all existential constraints introduced by 4. Con-
versely, if a model is found for 4(yp), existential constraints introduced by 4
ensure that this model also satisfies a 3-formula that is closed under function
expansion and that entails the goal of ¢. This implies the existence of a model
for ¢ provided that A is admissible.

We give an intuition of Theorem 8 in the context of an example.

Ezample 9. Let us revisit the formulas in Example 5. If the original Formula (1)
is T-satisfiable, the translated Formula (2) is clearly also T-satisfiable since as
can be interpreted as the integers and ys as the identity function. Conversely,
we claim that (2) is T-satisfiable only if (1) is T-satisfiable, noting that the
set {Wx. s} is admissible, where ¢ is the formula ite(x < 0, s(x) = 0,
s(x) & x+s(x—1)). Clearly, any interpretation .# satisfying Formula (2) satisfies
Lo U X(Ly), where Ly = {s(c) > 100} and X (L), defined by Eq. (3), consists of
the single constraint Ja : as. ys(a) ~ c. Since .# also satisfies both the trans-
lated function definition for s (the first conjunct of (2)) and X(Lg), it must also
satisfy

ite(c <0, s(c) =0, s(c) mc+s(c—1) ATb:as. ys(b) c—1)

The existential constraint in the above formula ensures that whenever .# satisfies
theset L1 = Lo U {—c <0, s(c) ~c+s(c—1)}, #satisfies X(L;) as well. Hence,
by repeated application of this reasoning, it follows that a model of Formula (2)
that interprets c as n must also satisfy y:
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100 A <0 j j 1
s(c) > /\/\izo(ﬂ(c—z_ JAs(c—i)mc—i+s(c—i—1))
ANc—n<0As(c—n)=0

This formula is closed under function expansion since it entails ¢g[(c — i)/x] for

i = 0,...,n and contains only s applications corresponding to s(c — i) for i =
0,...,n. Since {V x. ¢s} is admissible, there exists a Y-interpretation satisfying
W A Vs x. ¢s, which entails Formula (1). ]

4 Implementations

We have implemented the translation 4 in two separate systems, as a preproces-
sor in CVC4 (version 1.5 prerelease) and in the CVC4-based higher-order model
finder Nunchaku. This section describes how the translation is implemented in
each system, as well as optimizations used by CVC4 to find models of translated
problems.

4.1 CVC4

In CVC4, function definitions ¥ X. ¢ can be written using the define-fun-rec com-
mand from SMT-LIB 2.5 [3]. Formula (1) from Example 5 can be specified as

(define-fun-rec s ((x Int)) Int (ite (<= x 0) 0 (+ x (s (- x 1)))))
(declare-fun c¢ () Int)
(assert (> (s c) 100))

When asked to check the satisfiability of the assertions above, CVC4 adds the
formula ¥ x. s(x) ~ ite(x <0, 0, s(x— 1)) to its list of assertions, which after
rewriting becomes ¥ x. ite(x < 0, s(x) = 0, s(x) = s(x — 1)). By specifying the
command-line option --fmf-fun, users can enable CVC4’s finite model find-
ing mode for recursive functions. In this mode, CVC4 will rewrite the asserted
formulas according to the 4 translation before checking for satisfiability. Accord-
ingly, it will output the approximation of the interpretation it used for recursive
function definitions. For the example above, CVC4 outputs a model of s where
only the values of s(x) for x =0,...,14 are correctly given:

(model

(define-fun s (($x1 Int)) Int
(ite (= $x1 14) 105 (ite (= $x1 13) 91 (ite (= $x1 12) 78
(ite (= $x1 11) 66 (ite (= $x1 10) 55 (ite (= $x1 4) 10
(ite (= $x1 9) 45 (ite (= $x1 8) 36 (ite (= $x1 7) 28
(ite (= $x1 6) 21 (ite (= $x1 3) 6 (ite (= $x1 5) 15
(ite (= $x1 2) 3 (dte (= $x1 1) 1 .0))))))I))IN))

(define-fun ¢ () Int 14))
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With the --fmf-fun option enabled, CVC4 assumes that functions intro-
duced using define-fun-rec are admissible. Admissibility must be proved exter-
nally by the user—e.g., manually, using a syntactic criterion, or with the help of
a termination prover. If some function definitions are not admissible, CVC4 may
answer sat for an unsatisfiable problem. For example, if we add the inconsistent
definition

(define-fun-rec h ((x Int)) Int (+ (h x) x))

to the above problem and run CVC4 with --fmf-fun, it wrongly answers sat.

CVC4 implements a few optimizations designed to help finding finite models
of 4(yp). As in other systems, the finite model finding capability of CVC4 incre-
mentally fixes bounds on the cardinalities of uninterpreted types and increases
these bounds until it encounters a model. When multiple types are present,
it uses a fairness scheme that bounds the sum of cardinalities of all uninter-
preted types [34]. For example, if a signature has two uninterpreted types 71
and 7o, it will first search for models where |11| 4 |72 is at most 2, then 3, 4,
and so on. To accelerate the search for models, we implemented an optimization
based on statically inferring monotonic types. Intuitively, a type of a theory T is
monotonic if every model of T can be extended with additional elements of that
type and remain a model of T [9,13]. Types a5 introduced by our translation 4
are monotonic, because & is never used directly on such types [13]. CVC4 takes
advantage of this by fixing the bounds for all monotonic types simultaneously.
That is, if 71 and 72 are inferred to be monotonic (regardless of whether they
are present in the original problem or introduced by our translation), the solver
fixes the bound for both types to be 1, then 2, and so on. This scheme allows
the solver greater flexibility compared with the default scheme, and comes with
no loss of generality with respect to models, since monotonic types can always
be extended to have equal cardinalities.

By default, CVC4 uses techniques to minimize the number of literals it con-
siders when constructing propositional satisfying assignments for formulas [16].
However, we have found that such techniques degrade performance for finite
model finding on problems with recursive functions defined by cases. For this
reason, we disable the techniques for problems produced from our translation.

4.2 Nunchaku

Nunchaku is a new higher-order model finder designed to be integrated with
several proof assistants. The first version was released in January 2016 with
support for (co)algebraic datatypes, (co)recursive functions, and (co)inductive
predicates. Support for higher-order functions is in the works. We have developed
an Isabelle frontend and are planning further frontends for Coq, the TLA' Proof
System, and other proof assistants.

Nunchaku is a spiritual successor to Nitpick [10] for Isabelle/HOL, but
is developed as a standalone OCaml program, with its own input language.
Whereas Nitpick generates a succession of problems where the cardinalities of
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finite types grow at each step, Nunchaku translates its input to one first-order
logic program that targets the finite model finding fragment of CVC4, includ-
ing (co)algebraic datatypes [29]. Using CVC4 also allows Nunchaku to provide
efficient arithmetic reasoning and to detect unsatisfiability in addition to satis-
fiability. We plan to integrate other tools as backends, to exploit the strengths
of competing approaches.

The input syntax was inspired by that of other systems based on higher-
order logic (e.g., Isabelle/HOL) and by functional programming languages (e.g.,
OCaml). The following simple problem gives a taste of it:

data nat := 0 | Suc nat.

pred even : nat -> prop :=

even O;

forall n. odd n => even (Suc n)
and odd : nat -> prop :=

forall n. even n => odd (Suc n).

val m : nat.
goal even m && ~ (m = 0).

The problem defines a datatype (nat) and two mutually recursive inductive
predicates (even and odd), declares a constant m, and specifies a goal to satisfy
(“m is even and nonzero”). Nunchaku quickly finds the following partial model:

val m := Suc (Suc 0).
val odd := fun x. if x = Suc O then true else 7__.
val even := fun x. if x = Suc (Suc 0) || x = 0 then true else 7__.

The partial model gives sufficient information to the user to evaluate the goal:
“2is even if 1 is odd, 1 is odd if 0 is even, and 0 is even.” Our experience with
Nitpick is that users are mostly interested in the values assigned to uninterpreted
constants (e.g., m). Occasionally, the models of underspecified recursive functions
are instructive. A typical example is the head function that returns the first
element of a nonempty list:

data list A := Nil | Cons A (list A).

rec head : pi A. list A -> A :=
forall y ys. head (Cons y ys) =y.

goal ~(head Nil = 0).
Nunchaku transforms the definition of head into
head xs = match xs with Nil -> head xs | Cons y ys -> y end

where the unspecified Nil case is expressed via nonterminating recursion (head
xs = head xs). The tool exhibits a model in which head Nil is interpreted as
a nonzero value.
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Internally, Nunchaku parses and types the input problem before applying
a sequence of translations, each reducing the distance to the target fragment.
In our example, the predicates even and odd are polarized (specialized into a
pair of predicates such that one is used in positive positions and the other in
negative positions), then translated into admissible recursive functions, before
another pass applies the encoding described in this paper. If a model is found,
it is translated back to the input language, with ?__ placeholders indicating
unknown values.

Conceptually, the sequence of transformation is a bidirectional pipeline built
by composing pairs (Encode, Decode) of transformations. For each such pair,
Encode translates a ¥-problem in a logic . to a ¥'-problem in a logic ./, and
Decode translates a model in %’ over ¥’ into a model in .Z over X, in the spirit
of institution theory [20]. The pipeline includes the following phases:

Type inference infers types and checks definitions;

Monomorphization specializes polymorphic definitions on their type argu-
ments and removes unused definitions;

Elimination of equations translates multiple-equation definitions of recursive
functions into a single nested pattern matching;

Specialization creates instances of functions with static arguments (i.e., an
argument that is passed unchanged to all recursive calls);

Polarization specializes predicates into a version used in positive positions and
a version used in negative positions;

Unrolling adds a decreasing argument to possibly ill-founded predicates;

Skolemization introduces Skolem symbols for term variables;

Elimination of (co)inductive predicates recasts a multiple-clause (co)induc-
tive predicate definition into a recursive equation;

Elimination of higher-order constructs eliminates A-abstractions and sub-
stitutes arrays for higher-order functions;

Elimination of recursion performs the encoding from Sect. 3;

Elimination of pattern matching rewrites pattern-matching expressions
using datatype discriminators and selectors;

CVC(C4 invocation runs CVC4 to obtain a model.

5 Evaluation

In this section, we evaluate both the overall impact of the translation introduced
in Sect. 3 and the performance of individual SMT techniques. We gathered 602
benchmarks from three sources, which we will refer to as IsaPlanner, Leon, and
Nunchaku-Mut:

e The IsaPlanner set comsists of the 79 benchmarks from the IsaPlanner
suite [22] that do not contain higher-order functions. These benchmarks have
been used recently as challenge problems for a variety of inductive theorem
provers. They heavily involve recursive functions and are limited to a theory
of algebraic datatypes with a signature that contains uninterpreted function
symbols over these datatypes.
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o The Leon set consists of 166 benchmarks from the Leon repository,’ which
were constructed from verification conditions on simple Scala programs. These
benchmarks also heavily involve recursively defined functions over algebraic
datatypes, but cover a wide variety of additional theories, including bit vectors,
arrays, and both linear and nonlinear arithmetic.

e The Nunchaku-Mut set consists of 357 benchmarks originating
from Isabelle/HOL. They involve (co)recursively defined functions over
(co)algebraic datatypes and uninterpreted functions but no other theories.
They were obtained by mutation of negated Isabelle theorems, as was done
for evaluating Nitpick [10]. Benchmarks created by mutation have a high like-
lihood of having small, easy-to-find models.

The IsaPlanner and Leon benchmarks are expressed in SMT-LIB 2.5 and
are in definitional form with respect to a set of well-founded functions. The
Leon tool was used to generate SMT-LIB files. A majority of these benchmarks
are unsatisfiable. For each of the 245 benchmarks, we considered up to three
randomly selected mutated forms of its goal . In particular, we considered
unique formulas that are obtained as a result of exchanging a subterm of ¢ at
one position with another of the same type at another position. In total, we
considered 213 mutated forms of theorems from IsaPlanner and 427 mutated
forms of theorems from Leon. We will call these sets IsaPlanner-Mut and Leon-
Mut, respectively. Each of these benchmarks exists in two versions: with and
without the 4 translation. Problems with 4 were produced by running CVC4’s
preprocessor.

For Nunchaku-Mut, the Isabelle Nunchaku frontend was used to generate
thousands of Nunchaku problems from Isabelle/HOL theory files involving lists,
trees, and other functional data structures. Nunchaku was then used to gener-
ate SMT-LIB files, again in two versions: with and without the 4 translation.
Problems requiring higher-order logic were discarded, since Nunchaku does not
yet support them, leaving 357 problems.

Among SMT solvers, we considered Z3 and CVC4. Z3 runs heuristic meth-
ods for quantifier instantiation [15] as well as methods for finding models for
quantified formulas [19]. For CVC4, we considered four configurations, referred
to as CVC4h, CVC4f, CVC4fth, and CVC4fm here. Configuration CVC4h runs
heuristic and conflict-based techniques for quantifier instantiation [31], but does
not include techniques for finding models. The other configurations run the
finite model finding procedure due to Reynolds et al. [32,33]. Configuration
CVC4fh additionally incorporates heuristic quantifier instantiation as described
in Sect. 2.3 of [33], and CVC4fm incorporates the fairness scheme for monotonic
types as described in Sect. 4.1.

The results are summarized in Figs.2 and 3. The bold font indicates the
maximum value of a row. All the benchmarks and more detailed results are
available online. The figures are divided into benchmarks triggering unsat and
sat responses and further into benchmarks before and after the translation 4.

! https://github.com/epfl-lara/leon/.
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73 CVC4h CVC4f CVC4th CVC4fm

e Alp) ¢ Alg) ¢ Alp) ¢ Alp) ¢ Alp)

IsaPlanner 0 0 0 0 0 0 0 0 0 0
IsaPlanner-Mut 0 41 0 0 0 153 0 153 0 153
Leon 0o 2 0 0 0 9 0 9 0 10
Leon-Mut 11 78 6 6 6 189 6 189 6 189
Nunchaku-Mut 3 27 0 0 3 199 2 200 2 199
Total 14 148 6 6 8 550 8 551 8 551

Fig. 2. Number of sat responses on benchmarks without and with 4 translation

73 CVC4h CVC4ft CVC4th CVC4fm

e Alg) ¢ Ale) ¢ Ale) ¢ Ale) ¢ Alp)

IsaPlanner 14 15 15 15 1 15 15 15 1 15
IsaPlanner-Mut 18 18 18 18 4 18 18 18 4 18
Leon 74 79 80 80 17 78 80 77 17 78
Leon-Mut 84 98 104 98 24 100 104 98 24 100
Nunchaku-Mut 61 59 46 53 45 39 44 59 45 59
Total 251 269 263 264 91 270 261 267 91 270

Fig. 3. Number of unsat responses on benchmarks without and with 4 translation

The raw evaluation data reveals no cases in which a solver answered unsat on
a benchmark ¢ and sat on its corresponding benchmark A4(y), or vice versa.
This is consistent with our expectations and Theorem 8, since these benchmarks
contain only well-founded function definitions.

Figure2 shows that for untranslated benchmarks (the “@” columns), the
number of sat responses is very low across all configurations. This confirms the
shortcomings of existing SMT techniques for finding models for benchmarks con-
taining recursively defined functions. The translation 4 (the “4(¢)” columns) has
amajor impact. CVCA4f finds 550 of the 1242 benchmarks to be satisfiable, includ-
ing 9 benchmarks in the nonmutated Leon benchmark set. The two optimizations
for finite model finding in CVC4 (configurations CVC4th and CVC4fm) lead to
a net gain of one satisfiable benchmark each with respect to CVC4f. The per-
formance of Z3 for countermodels also improves dramatically, as Z3 finds 134
more benchmarks to be satisfiable, including 5 that are not solved by CVCA4f.
We conclude that the translation 4 enables SMT solvers to find countermodels
for conjectures involving recursively defined functions.

Interestingly, the translation 4 helps all configurations for unsat responses
as well. Z3 solves a total of 269 with the translation, whereas it solves only
251 without it. Surprisingly, the configuration CVC4f, which is not tailored for
handling unsatisfiable benchmarks, solves 270 unsat benchmarks overall, which
is more than either CVC4h or Z3. These results suggest that the translation
does not degrade the performance of SMT solvers for unsatisfiable problems
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involving recursive functions, and in fact it often improves it. They also suggest
that it might be interesting to use this translation in Sledgehammer [8] and to
try Nunchaku also as a proof tool.

6 Related Work

We have already described the most closely related work, by Ge and de Moura
[19] and by Reynolds et al. [32,33], earlier in this paper. The finite model finding
support in the instantiation-based iProver [23] is also close, given the similarities
with SMT.

Some finite model finders are based on a reduction to a decidable logic, typ-
ically propositional logic. The translation is parameterized by upper or exact
finite bounds on the cardinalities of the atomic types. This procedure was pio-
neered by McCune in the earlier versions of Mace (originally styled MACE)
[28]. Other conceptually similar finders are Paradox [14] and FM-Darwin [5] for
first-order logic with equality; the Alloy Analyzer and its backend Kodkod [37]
for first-order relational logic; and Refute [39] and Nitpick [10] for higher-order
logic. An alternative is to perform an exhaustive model search directly on the
original problem. Given fixed cardinalities, the search space is represented as
multidimensional tables. The procedure tries different values in the function and
predicate tables, checking each time if the problem is satisfied. This approach
was pioneered by FINDER [36] and SEM [40] and serves as the basis of the Alloy
Analyzer’s precursor [21] and later versions of Mace [27].

Most of the above tools cannot cope with infinite types. Kuncak and Jackson
[25] presented an idiom for encoding algebraic datatypes and recursive functions
in Alloy, by approximating datatypes by finite subterm-closed substructures.
The approach finds sound (fragments of) models for formulas in the existential—
bounded-universal fragment (i.e., formulas whose prenex normal forms contain
no unbounded universal quantifiers ranging over datatypes). This idiom was
refined by Dunets et al. [18], who presented a translation scheme for primitive
recursion. Their definedness guards play a similar role to the existential con-
straints generated by our translation 4.

The higher-order model finder Nitpick [10] for the Isabelle/HOL proof assis-
tant relies on another variant of Kuncak and Jackson’s approach inside a Kleene-
style three-valued logic, inspired by abstract interpretation. It was also the first
tool of its kind to support corecursion and coalgebraic datatypes [7]. The three-
valued logic approach extends each approximated type with an unknown value,
which is propagated by function application. This scheme works reasonably well
in Nitpick, but experiments with CVC4 suggest that it is more efficient to avoid
unknowns by adding existential constraints.

The Leon system [6] implements a procedure that can produce both proofs
and counterexamples for properties of terminating functions written in a subset
of Scala. Leon is based on an SMT solver. It avoids quantifiers altogether by
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unfolding recursive definitions up to a certain depth, which is increased on a
per-need basis. Our translation 4 works in an analogous manner, but the SMT
solver is invoked only once and quantifier instantiation is used in lieu of function
unfolding. It would be worth investigating how existing approaches for function
unfolding can inform approaches for dedicated quantifier instantiation techniques
for function definitions, and vice versa.

Model finding is concerned with satisfying arbitrary logical constraints. Some
tools are tailored for problems that correspond to total functional programs.
QuickCheck [12] for Haskell is an early example, based on random testing.
Bounded exhaustive testing [35] and narrowing [26] are other successful strate-
gies. These tools are often much faster than model finders, but they typically
cannot cope with unspecified or underspecified functions (e.g., the head func-
tion from Sect.4.2). Another approach, which also fails in the face of under-
specification, is to take the conjecture as an axiom and to attempt to derive
a contradiction using an automatic theorem prover [4]. If the other axioms are
consistent (which can be checked syntactically in some cases), a contradiction
imples the existence of countermodels. Compared with these approaches, the
main advantage of our approach is that it can cope with underspecification and
that it exploits the SMT solver (and its SAT solver) to enumerate candidate
models efficiently.

7 Conclusion

We presented a translation scheme that extends the scope of finite model finding
techniques in SMT, allowing one to use them to find models of quantified formu-
las over infinite types, such as integers and algebraic datatypes. In future work,
it would be interesting to evaluate the approach against other counterexample
generators, notably Leon, Nitpick, and Quickcheck, and enrich the benchmark
suite with more problems exercising CVC4’s support for coalgebraic datatypes
[29]. We are also working on an encoding of higher-order functions in SMT-LIB,
as a generalization to the current translation scheme, for Nunchaku. Further
work would also include identifying additional sufficient conditions for admis-
sibility, thereby enlarging the applicability of the translation scheme presented
here.
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Abstract. The satisfiability problem for conjunctions of quantifier-free
literals in first-order theories 7 of interest—“7 -solving” for short—has
been deeply investigated for more than three decades from both the-
oretical and practical perspectives, and it is currently a core issue of
state-of-the-art SMT solving. Given some theory 7 of interest, a key
theoretical problem is to establish the computational (in)tractability of
T -solving, or to identify intractable fragments of 7.

In this paper we investigate this problem from a general perspective,
and we present a simple and general criterion for establishing the NP-
hardness of 7-solving, which is based on the novel concept of “colorer”
for a theory 7.

As a proof of concept, we show the effectiveness and simplicity of this
novel criterion by easily producing very simple proofs of the NP-hardness
for many theories of interest for SMT, or of some of their fragments.

1 Introduction

Since the pioneering works of the late 70’s and early 80’s by Nelson, Oppen,
Shostak and others [16,17,19-21,25,26], the satisfiability problem for conjunc-
tions of quantifier-free literals in first-order theories 7 of interest—hereafter “7 -
solving” for short—has been deeply investigated from both theoretical and practi-
cal perspectives, and it is currently a core issue of state-of-the-art SMT solving.

Given some theory 7 of interest, or some fragment thereof, a key theoretical
problem is that of establishing the computational (in)tractability of T-solving,
or to identify (in)tractable fragments of 7. Although in the pool of theories
of interest 7-solving presents many levels of intractability, the main divide is
between polynomiality and NP-hardness. Despite a wide literature studying the
complexity of single theories or of families of theories (e.g. [5,7,8,10,11,13-15,
17,19-21]) and some more general work on complexity of 7-solving [3,20,21],
we are not aware of any previous work explicitly addressing NP-hardness of
T -solving for a generic theory 7.

In this paper we try to fill this gap, and we present a simple and general
criterion for establishing the NP-hardness of 7 -solving for theories with equality—
and in some cases also for theories without equality—which is based on the novel
concept of “colorer” for a theory 7, inducing the notion of “colorable” theory.

This work is supported by SRC under GRC Research Project 2012-TJ-2266 WOLF'.
I thank Silvio Ghilardi, Alberto Griggio and Stefano Tonetta for fruitful discussions.
© Springer International Publishing Switzerland 2016
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Our work started from the heuristic observation that the graph k-colorability
problem, which is NP-complete for k£ > 3, fits very naturally as a candidate
problem to be polynomially encoded into 7-solving for theories with equality.
(We believe, more naturally than the very frequently-used 3-SAT problem.) In
fact, we notice that the set of the arcs in a graph and the coloring of the ver-
texes can be encoded respectively into a conjunction of disequalities between
“vertex” variables and into a conjunction of equalities between “vertex” and
“color” variables, both of which are theory-independent. Therefore, in designing
a reduction from k-colorability to 7 -solving, the only facts one needs formalizing
by 7 -specific literals is a coherent definition of k distinct “colors” and the fact
that a generic vertex can be “colored” with and only with k colors.

Following this line of thought, in this paper we present a general framework
for producing reductions from graph k-colorability with & > 3 to 7-solving for
generic theories 7 with equality. This framework decouples the 7 -specific part of a
reduction from its 7 -independent part: the former is formalized into the definition
of a T -specific object, called “k-colorer”, the latter is formalized and proven once
forall in this paper. Thus, the task of proving the NP-hardness of a theory 7 via
reduction from k-colorability reduces to that of finding a k-colorer for 7.

To this extent, we also provide some general criteria for producing k-colorers,
with hints and tips to achieve this simplified task. As a proof of concept, we
show the effectiveness and simplicity of this novel approach by easily producing
k-colorers with k£ > 3 for many theories of interest for SMT, or for some of their
fragments.

We notice that this technique can be used not only to investigate the
intractability of major theories, but also to investigate that of fragments of
such theories, so that to pinpoint the subsets of constructs (i.e. functions and
predicates in the signature) which cause a theory to be intractable. We stress
the fact that the problem of identifying such intractable fragments is not only
of theoretical interest, but also of practical importance in the development of
SMT solvers, in order to drive the activation of ad-hoc techniques—including e.g.
weakened early pruning, layering, splitting-on-demand [1,4]-which partition the
search load among distinct specialized 7 -solvers and between the 7 -solvers and
the underlining SAT solver [2,23].

Note. An extended version of this paper with more details is publicly available [24].

Content. The rest of the paper is organized as follows: Sect. 2 provides the neces-
sary background knowledge and terminology for logic and graph coloring; Sect. 3
introduces our main definitions of k-colorer and k-colorability and presents our
main results; Sect. 4 explains how to produce k-colorers for given theories, pro-
viding a list of examples; Sect.5 provides some discussion about k-colorability
vs. non-convexity; Sect.6 extends the framework to theories without equality;
Sect. 7 discusses ongoing and future developments.
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2 Background and Terminology

Logic. We assume the reader is familiar with the standard syntax and semantics
of first-order logic. (We report a full description in [24].) We add some terminology.

Given a signature X', we call X-theory T a class of X-models. Given a theory
T, we call T-interpretation an extension of some YX-model M in 7 which maps
free variables into elements of the domain of M. (The map is denoted by (.)Z.)
A Y-formula p—possibly with free variables—is 7-satisfiable if T |= ¢ for some
T -interpretation Z. (Hereafter we will use the symbol “=7" to denote the 7-
satisfiability relation; we will also drop the prefix “X-” when the signature is
implicit by context.) We say that a set/conjunction of formulas ¥ T-entails
another formula ¢, written ¥ =7 ¢, if every T-interpretation 7 -satisfying ¥
also 7-satisfies p. We say that ¢ is 7 -valid, written =7 ¢, if 0 7 . We
call a cube any finite quantifier-free conjunction of literals. For short, we call
“T -solving” the problem of deciding the 7 -satisfiability of a cube.

Finally, a theory 7 is convez if for all cubes p and all sets E of equalities
between variables, i =1 \ e iff u =7 e for some e € E.

Remark 1. In SMT and other contexts it is often convenient to use formulas
with uninterpreted symbols (see e.g. [2]). Notice, however, that the presence of
uninterpreted function or predicate symbols of arity >0 may cause the complex-
ity of 7-solving scale up (see e.g. the example in [21]). Thus, when not explicitly
specified otherwise, we implicitly assume that a theory 7 does mot admit such
symbols. o

We are often interested in fragments of a theory obtained by restricting its
signature. Let X, X’ be two signatures s.t. X’ C X; we say that a X’-model M’
is a restriction to X’ of a X-model M iff M’ and M agree on all the symbols in
XY, and that a X'-theory 7" is the signature-restriction fragment of a X-theory
T wrt. X/ iff T is the set of the restrictions to X’ of the X-models in 7.

Graph Coloring. We recall a few notions from [9].

Definition 1 (k-Colorability of a graph (see [9])). Let G = (V,€) be an un-
directed graph, where V < {Vi,..., Vi, } is the set of vertexzes and € o {Er, ..., En}
is the set of edges in the form (Vi, Vi) for some i,i'. Let C 2 {C1,...,Ci} be a
set of distinct values, namely “colors”, for k>0. Then G is k-Colorable if and
only if there exists a total map color : V —— C s.t. color(V;) # color(Vir) for
every (V;,Vi/) € £. The problem of deciding if G is k-colorable is called the k-
colorability problem for G.

Lemma 1 (see [9]). The k-colorability problem for un-directed graphs is NP-
complete for k > 3, it is in P for k<3.

Figure 1 (top) shows two small graph 3-colorability problems.
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(1 =1) A2 =2) Aes = 3) AN (v > 1) A (0 <3))A )
=(v1 = v2) A=(v1 = wv3) A =(v1 = wva) A = (v2 = v3) A= (v2 = v4)

Encig,=ca@) = (

Encig,=ca@) = Encig, = ca@) A (v3 = v4)

Fig. 1. Top Left: a small 3-colorable graph (G ), with C1 = blue, C> = red, Cs = green.
Top Right: the same graph augmented with the vertex (V3, Vi) (G2) is no more 3-
colorable. Bottom: example of encodings of the 3-colorability of Gi and G» into LA(Z)
-solving. (Color figure online)

3 k-Colorers and k-Colorable Theories with Equality

Hereafter we focus w.l.o.g. on theories 7 of domain size > 2, i.e., s.t. =(vy = v)
is T-consistent. In fact, if not so, then it is easy to see that 7-solving is in P
(see [24]).

Definition 2 (k-Colorer, k-Colored Theory). Let 7 be some theory with
equality and k be some integer value s.t. k > 2. Let v; be a wvariable, called
vertex variable, (implicitly) denoting the i-th vertex in an un-directed graph;
let ¢ {c1,..,c} be a set of variables, called color variables, denoting the set
of colors; let y; < {yi1, ..., ya} denote a possibly-empty set of variables, which is
indexed with the same index i of the vertex variable v;. Let AllDifferenty(c) o
/\?:1 /\_];':_j+1 —(cj =cjr).

We call k-colorer for T, namely Colorery(v;, cly;), a finite quantifier-free
conjunction of T -literals (cube) over v;, ¢ and y; which verify the following
properties: o

Colorery (v;, cly:) =1 AllDifferenty(c), (1)
k
Colorery(vi, cly:) Fr \/jzl(vi =), (2)
there exist k T -interpretations {Z; 1,...,Z; 1} s.t. (3)
for every j € [L.k], (c;)F = (c;)F2 = ... = (c;)F*, and

for every j € [1..k], Z; ; =1 Colorery (v, clyi) A (v = ¢;).
We say that T is k-colorable if and only if it has a k-colorer.

Yi is a (possibly-empty) set of auxiliary variables, one distinct set for each vertex
variable v;, which sometimes may be needed to express (1), (2) and (3) (see
Examples 7 and 9), or to make Colorerg(v;,cly;) more readable by renaming
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” instead

internal terms (see Example9). If y; = (), we may write “Colorery(v;, ¢)’
of “Colorery,(v;, c|0)”.!

{Zi1,...T;1,} denotes a set of T-interpretations each satisfying
Colorery, (v, c|y;) s.t. all the 7T-interpretations in {Z; 1, ...,Z; 1 } agree on the val-
ues assigned to the color variables in {c1,...,cx} and s.t. each Z; ; assigns to
the vertex variable v; the same value assigned to the jth color variable c;. The
condition (c;)*1 = ... = (c;)F* of (3) expresses the fact that, when pass-
ing from the scenario Z; ; in which v; is assigned the color c;—expressed by the
equality (v; = ¢;) in (3)-to the scenario Z; j in which v; is assigned the color
cj—expressed by the equality (v; = ¢;/)— it is the value of the vertex variable v;
who must change, not those of the color variables ¢, ..., cg.

Intuitively, Colorery(v;, cly;) expresses the following facts: (1) that ¢q,...,cx
represent the names of distinct “color” values, (2) that each vertex represented
by the variable v; can be tagged (“colored”) only with one of such color names
¢;, (3) that the values associated to the color names are not affected by the
choice of the color name c; tagged to v;-represented by the index j in Z; ;—and
that each tagging choice is admissible.

There may be many distinct k-colorers for a theory 7, as shown in Example 1.

Ezxample 1 (LA(Z)). We consider the theory of linear arithmetic over the inte-
gers (LA(Z)), assuming the standard model of integers, so that the symbols
+,—,<,> and the interpreted constants 0, 1, ... are interpreted in the standard
way by all LA(Z)-interpretations. L.A(Z) is 3-colorable, since we can define, e.g.,

k<3, Vi <0, and

Colorers(v;, e1,¢a,¢3) = (c1 = 1) A(ca =2) Ales =3) A (v > 1) A (v < 3). (4)
It is straightforward to see that Colorers(v;, c1,co,c3) verifies (1), (2) and (3),
with Z; ; = {e1 — 1,¢0 — 2,63 — 3,v; — j} for every j € [1..3]. Notice that in
this case y; = 0, i.e. Colorer(v;, c|y;) requires no auxiliary variables. Notice also
that AllDifferenty, (c) is implied by the usage of the interpreted constants 1,2, 3.

An alternative 3-colorer which does not explicitly assign fixed values to the
cj’s is:

Colorers(v;, ¢1, ¢, ¢3) = (2}”2']({;;6\”:5(2)3/)\ Nj=1lle; 2 1) A (ej <3)) A) ,(5)

which verifies (1), (2) and (3), e.g., with the same Z; ;’s as above. Consider
instead:

. 3
Colorerg(vi, 1., 63) def (g!D:Iffle)rentg(C) N /\jzl((cj >1)A (Cj <3)) /\) . (6)

This is not a 3-colorer, because it does not verify (3): there is no pair of LA(Z)-
interpretations I@l and _7:1'72 s.t. 11'71 ':E.A(Z) COlOFerg(Ui,Cl,CQ,Cg) A (’Ui =
c1) and Z; o =) Colorers(vi,ci,ca,c3) A (v; = c¢2) which agree on the
values of ¢1, ¢, 3. o

! The symbol “|” is used to separate color and node variables from auxiliary ones.
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Remark 2. The choice of using variables cy, ..., ¢, to represent colors is due to the
fact that some theories do not provide k£ distinct interpreted constant symbols
in their signature (see Example 9). If this is not the case, then Colorery(v;, cly;)
can be built to force c1, ..., ¢, to assume fixed values expressed by interpreted
constant symbols, like 1,2,3 in (4), so that the condition (c;)i1 = ... = (¢;)Tir
of (3) is verified a priori.

The following properties of k-colorable theories follow straightforwardly.
Property 1. Let T be a k-colorable theory for some k& > 2. Then we have that:

(a) Jc.AllDifferenty(c) is 7-valid;
(b) T is non-convex.

Proof. Consider the definition of Colorer(v;, cly;) in Definition 2.

(a) By (3) Colorery(v;,cly;) is T-satisfiable; thus by (1) AllDifferent,(c) is 7-
satisfiable, so that ):;Hg.AllDifFerentk(g);

(b) By (2), Colorery(vs,cly:) Fr \/?Zl(vi = ¢;). By (3), for every j; € [1..k]
there exists an interpretation Z; j, s.t. Z; j, =1 Colorery(v;, cly:)A(v; = ¢j,).
Then, by (1), for every jo € [l..k] s.t. jo # ji we have that Z,,, =1
Colorery(v;, cly:) A =(vi = ¢j,). Thus for every j € [1..k] Colorery(v;, cly;) =
(v; = ¢;). Therefore 7 is non-convex. O

Property 2. If T' is a k-colorable theory with equality for some k > 2, and 7" is
a signature-restriction fragment of another theory 7, then 7 is k-colorable.

Proof. 1f Colorery,(vs, c|y;) is a k-colorer for 77, then by definition of signature-
restriction fragment it is also a k-colorer for 7. O

Lemma 2. Let k be an integer value s.t. k > 3. Let G and C be respectively
an un-directed graph with n vertexes Vq,...,V, and a set of k distinct colors
Cq,...,Ck, like in Definition 1. Let T be a k-colorable theory with equality. We
consider the following conjunctions of T -literals:

Colorable(vy, ..., vn, €ly1, .-, ¥n) dzef/\v_ev Colorery (v, cly:) (7)
def e — o
Graphg(v1, ..., vp) = /\(Vil,\/iQ)eS (vi, = iy) (8)

Encig—71(v1, s Un, €Y1, s ¥Yn) = Colorable(vy, ..., vn, €ly1, .., yn) A (9)
Graph[g](vl,...,un),

WRHETE V1, ..y Uy CLy vy Clo QI Y11y eoes YLy o+ Yily ooy Yils ooy Ynils -y Yt ATE freEC VATI-
ables,> and all the k-colorers Colorer(v;,cly;) in (7) are identical modulo the
renaming of the variables v; andy;, but not of the color variables c.

Then G is k-colorable iff EnC[g;T] (V1500 Un, €|Y1, -0, Yn) s T -satisfiable.

2 Notice that each ¢; is implicitly associated with the color C; € C for every j € [1..k]
and each v; and y; is implicitly associated to the vertex V; € V for every i € [1..n].
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Proof.

If: Suppose Encig—.7)(v1, ..., Un, €|y1, ..., ¥n) is T-satisfiable, that is, there exist
an interpretation Z in 7 s.t. Z =7 Colorable(vy, ..., Un, €|y1, ..., ¥n) and Z 7
Graphg(v1, ..., vp). Thus: o
() By (7) and (1), (07 ()7 for evey ju i € 1o H 4.1 s
(ii) By (7), (2) and (1), for every i € [1...n] there exists some j € [1...k] s.t.

< )I: (c;)T and s.t. (v;)T # (c;)T for every j' # j.

(iii) By (8), (vi, )T # (v;,)T for every (V;,,V;,) € €.

Then by (i) and (ii) we can build a map color : V +— C s.t., for every V; € V,

color(V;) = Cj iff (v;)T = (¢;)*. By (iii) we have that color(V;,) # color(Vi,)

for every <V“,V ) € £. Thus G is k-colorable.

Only if: Suppose G is k-colorable, that is, there exist a map color : V — C s.t.
color(V;,) # color(V,,) for every (V;,,Vi,) € E.

Consider ¢ = 1, and let {Z;1,...,71 x} be the set of 7-interpretations for

Colorery(v1,cly1) as in (3), so that:

(a) for every j € [1..k], Z1 ; =1 Colorerg (v, cly1) A (vi = ¢;),

(b) for every j € [1.K], (c NI = L= (e Tk,

For every i € [1..n] we consider Colorerk(vz,c\yl) and we build a replica

{Zi1,....,T; 1} of the set of T-interpretations {Zj1,...,Z71 %} in such a way

that:

(i) (v;)Ti = (v1)715 = (¢;)T19 (each Z; ; maps its vertex variable v; into the
same color as 7; ; maps its vertex variable vq);

(i) (e} 2 (e) T3,y (e} 2 ()i, s0 that, by (a), (e} 1 = ... =
{cjyfir = (cjyTrr = .. = (¢;)Fr* (all 7;,; agree on the values of the color
Variables for every i € [1..n] and j € [1..k]);

(iii) (yi)Td = (yri) T, (ya) 0 = (y1)T9 (each Z; ; maps its auxiliary
variables y; into the same domain values as Z; ; maps y1).

Consequently, by (3), for every v; € {v1,...,vn}, {Zi1, ..., Zi i} are s.t.

(a) for every j € [1.k], Z; ; =1 Colorery(v;, cly:) A (vi = ¢;),

(b) for every j € [1..k], ( j>L L= = {cj)Tin.

For every i € [1...n], let j; € [1. k] be the index s.t. C;, = color(V;), and we

pick the 7-interpretation Z; ;,. Thus, since all the Z; ;s agree on the common

variables ¢, we can merge them and create a global 7 -interpretation Z as
follows:

(1) (o) 2 ()T = (e, )T = (e5,)7, for every i € [Ln;

(ii) (c;)T = (¢;)%in, for every j € [1..k];

(iii) (yir)T = (yir)Tiii, for every i € [1..n] and for every r € [1..1].

By construction, for every i € 1..n, I agrees with Z; ;, on ¢, v;, and y;, so

that, by point (a), T =7 (Colorers (v, cly:) A (v; = ¢;,). B

Thus Z =7 Colorable(vy, ..., Un, €|y1, .. Y )-

Since the values (c1)7, ..., (cx )7 are all distinct, we can build a bijection linking

each domain value {c;) to the color C;, for every j € [1..k]. Hence (c;)% =

(cj)* iff C; = Cj. For every (V;, Vi) € &, color(V;) # color(Vy), that is,

Cj, # Cj,. Therefore (c;,)* # (c;,,)*, and (vi)* = (¢;,)* # (¢;,)" = (vir)".

Consequently Z 7 Graphg)(v1, ..., vn).

Thus Encig—71(v1, .., Un, €|y1, ..., ¥n) is 7-satisfiable. O
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Ezxample 2. Figure 1 shows a simple example of encoding a graph 3-colorability
problem into LA(Z)-solving, using the k-colorer (4) of Example 1. (Notice that
the literals which do not contain v; and y; can be moved out of the conjunction

v, ... in (7).) The first formula is LA(Z)-satisfied, e.g., by an interpretation
Viev

T sit. {¢;)T = j for every j € [1.3], (v1)T = 1, (v2)T = 2, (v3)? = 3 and
(vs)T = 3, which mimics the coloring in Fig.1 (left). The second formula is
LA(Z)-unsatisfiable, as expected. o

Lemma 3. Let k, n, G, C, T and Encig—7)(v1, ..., Un,Cly1, ..., ¥yn) be as in

Lemma 2. Then |[Encig—1)(01, ..., Vn, €[y1, ., ¥n)|| is polynomial in ||G|| £ ||V||+
€112

Proof. By Definition 2 we have that ||Colorer(v;, cly;)|| is constant wrt. ||V|| or
|€]]. From (7), (8) and (9), [|[Encig=1)(v1, --v; Un, €ly1, ., ¥a) || 38 O([VI| + [[€]]). B

Combining Lemmas 1, 2 and 3 we have directly the following main result.

Theorem 1. If a theory with equality T is k-colorable for some k > 3, then
the problem of deciding the T -satisfiability of a quantifier-free conjunction of
T -literals is NP-hard.

Notice that the key source of hardness is condition (2) in Definition 2: intu-
itively, a k-colorable theory is expressive enough to represent with a quantifier-
free conjunction of 7 -literals—without disjunctions!-the fact that one variable
must assume a value among a choice of k > 3 possible candidates—in addition to
the fact that a list of pairs of variables cannot pairwise assume the same value.
This source of non-deterministic choices has a high computational cost, as stated
in Theorem 1.

4 Proving k-Colorabilty

Theorem 1 suggests a general technique for proving the NP-hardness of a theory
T: pick some k > 3 and then try to build a k-colorer Colorery(v;,cly;). Also,
when 7 is known to be NP-hard, one may want to identify smaller —and possibly
minimal— signature-restriction fragments 7’ which are k-colorable for some k, by
identifying increasingly-smaller subsets of the signature of 7 which are needed
to define a k-colorer.

We introduce some sufficient criteria for a theory to be k-colorable with some
k > 3. As a proof of concept, we use these criteria to prove the k-colorability
with some k > 3, and hence the NP-hardness, of some theories 7 of practical
interest, and of some of their signature-restriction fragments.

We remark that the ultimate goal here is not to provide fully-detailed proofs
of NP-hardness—all the main theories presented here are already well-known to

3 Notice that k is fixed a priori and as such it is a constant value for the input graph
k-colorability problem: e.g., depending on 7, we are speaking of reducing graph
3-colorability—or 4-colorability, or even 2%*-colorability-to T-solving.
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be NP-hard, although to the best of our knowledge the complexity of not all
of their fragments has been investigated explicitly-rather to present proof of
concept of the convenience and effectiveness of our proposed colorability-based
technique, using various theories/fragments as examples. To this extent, for the
sake of simplicity and space needs, and when this does not affect comprehension,
sometimes we skip some formal details of the syntax and semantics of the theories
under analysis, referring the reader to the proper literature. Rather, we dedicate
a few lines to give some hints and tips on how to apply our colorability-based
technique in potentially-typical scenarios.

4.1 Exploiting Interpreted Constants, Closed Terms and
Provably-Distinct Terms

Proposition 1. Let T be a theory which admits at least k > 3 terms t1(x;), ...,
tr(x;), where x; are the set of variables which are free in t; (if any), let y; being
a possibly-empty set of auziliary variables, and let

def k
Colorery (v, elxi,y2) £ A\ (6 = t5(x:)) AP (v, y2) (10)

be a quantifier-free conjunction of literals s.t.

E1 Vx,. AllDifferenty ({¢1(x;), ..., tr(x;)}) (11)
k
¥ (vilx;,yi) Fr \/jzl(Uz‘ = tj(x;)) (12)
there exist k T -interpretations {Z; 1,...,Z; 1} s.t. (13)
for every j € [1.k], (c;)T* = (¢;)F2 = ... = (¢;)T"*, and

for every j € [1.k], T; ; =1 Colorery(vs, c|x;,y:) A (vi = t;(x;)).
Importantly, if t1,..,tr are closed terms, then (13) reduces to he following:

there exist k T -interpretations {Z; 1,...,Z; } s.t. (14)
for every j € [1..k], T; ; =1 Colorery(vs, cly:) A (vi = t;).

Then Colorery,(vs, c|X;,yi) is a k-colorer for T.
Proof. By (11), /\?Zl(cj =t;(x;)) =7 AllDifferent(c), s.t. (1) holds. By (10) and
(12), Colorery,(vs, c|x;, y:) verifies (2). By (10) and (13) we have that (3) holds. O

Theories of Arithmetic. We use Proposition 1-where ¢4, ..., 5, are numerical
constants—to prove the k-colorability of (various signature-restriction fragments
of) the theories of arithmetic.

Ezample 3 (A\Z2=XZ), LA(Z), NLA(Z)). Let A1Z=}(Z) be the basic theory
of integers under successor [20,21], that is, whose atoms are in the form (s; ®
s2), where ® € {>,=} and s1, sy are variables or positive numerical constants.
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Then A{==}(Z) is 3-colorable, because we can define a 3-colorer like that of (4)
in Example 1. (Notice that this is an instance of Proposition1.) A{Z=}(Z) is a
signature-restriction fragment of LA(Z) and NLA(Z) (see e.g. [24]), which are
then 3-colorable by Proposition 2. Therefore, 7-solving for all these theories is
NP-hard by Theorem 1.4 o

Notice that conjunctions of only positive equalities and inequalities in the form
(81 ® s2), without negated literals, are instead well-known to be solvable in polyno-
mial time (see e.g. [2,18]). Notice also that, on the rational domain, the correspond-
ing theories A{==}(Q) and £.A(Q) are convex and hence they are not colorable by
Property 1. In fact, 7-solving for such theories is notoriously in P [10].

Example 4 (NLAR)\MZ>Y NLA(R)). We consider NLA(R)\Z>} | the signature-
restriction fragment of the non-linear arithmetic over the reals (N LA(R)) with-
out inequality symbols {>, <}. As an instance of Proposition 1, we show that

NLAR)\MZ>1} is 3-colorable, because we can define, e.g., k 3, y <0, and

o, * ({07, D15

By Proposition 1, it is straightforward to see that Colorers(v;, c1,ca,c3) verifies
(1), (2) and (3), with (¢;)% = —1, ()% = 0, (es)%9 = 1, and (v;)T9 =
(¢;j)T3 s.t. j € [1..3]. Then by Proposition 2 the full NLA(R) is 3-colorable, so
that 7-solving for both theories is NP-hard by Theorem 1. o

4.2 Exploiting Finite Domains of Fixed Size

Proposition 2. Let 7 be some theory with finite domain of fized size k > 3.
Then Colorer,(v;, ¢) =< AllDifferenty(c) is a k-colorer for T.

Proof. Let c S {c1, ..., ci}. Since the domain of 7 has fixed size k > 3, we have:

AlIDifferent(c) 1 L (15)
AllDifferenty41(c U {v;}) =1 L. (16)

AllDifferenty (c) entails itself, so that (1) holds. AllDifferenty(c )/\/\ 1 (v = ¢)
is the same as AllDifferentj41(c U {v;}) which is T-unsatisfiable by (16), so that
AlIDifferent(c) =1 V§:1(Ui = ¢;). Hence (2) holds. By (15) there exists some
T-interpretation Z s.t. Z =7 AllDifferent(c). For every j € [1..k] we build an
extension Z; ; of Z with the same domain s.t. {c;)%5 = (¢1)7, ..., {ep) T = (ep)T,
and (v;)%i = (¢;)T. Hence (3) holds. O

4 Notice that N'LA(Z)-solving is undecidable.
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Theories of Fixed-Width Bit-Vectors and Floating-Point Arithmetic.
We prove the k-colorability of (the signature-restriction fragments of) the the-
ories of Fixed-width Bit-vectors and Floating-point Arithmetic by instantiating
Proposition 2.

Ezample 5 (BV,,, w>1). Let BVfU:} be the simplest possible signature-
restriction fragment of the fixed-width bit-vectors theory with equality = and
width w>1, with no interpreted constant, function or predicate symbol in its
signature. Then by Proposition 2, BVEU:} is k-colorable, where k = 2". Hence,
by Property 2 all theories BV, obtained by augmenting the signature of BV;{U:}
with various combinations of interpreted constants (e.g. bv,,_0...00, bv,,_0...01,...),
functions (e.g. bvy,-and, bvy_or,...) and predicates (e.g. bv,,_>,...)—are k-colorable
with & = 2%. Hence, when w>1, by Theorem 1, 7-solving is NP-hard for all such
theories. o

[7] shows that the T-satisfiability of quantifier-free conjunctions of atoms
for the fragment of BV involving only concatenation and partition of words is
in P. Notice however that neither Example5 contradicts the results in [7], nor
Example 5 plus [7] build a proof of P = NP, because the polynomial procedure
in [7] does not admit negative equalities —(v; = v}) in the conjunction.

Ezample 6 (FPA.s). Let FPA. s be the theory of floating-point arithmetic
st. e > 1 and s > 1 are the number of available bits for the exponent and
the significant respectively [22]. (E.g., FP.A11 53 represents the binary64 for-
mat of IEEE 754-2008 [22].) As with Example5, let FPA_ be the simplest
possible signature-restriction fragment of FPA_ with equality =5 with no
interpreted constant, function and predicate symbol in its signature. Then by
Proposition 2, FPA_  is k-colorable, where k = 2¢Ts Hence, by Property 2, all
theories FPA; , obtained by augmenting the signature of FPA_  with various
combinations of interpreted constants, functions or predicates are k-colorable
with k& > 4, so that 7-solving is NP-hard. o

4.3 Dealing with Collection Datatypes

A class of theories of big interest in SMT-based formal verification are these
describing collection datatypes (see e.g. [6,12])—e.g., lists, arrays, sets, etc. In
general these are “families” of theories, each being a combination of a “basic”
theory (e.g., the basic theory of lists) with one or more theories describing the
elements or the indexes of the datatype. In what follows we consider the basic
theories, where elements are represented by generic variables representing values
in some infinite domain.

One potential problem if finding k-colorers for most of these “basic” theories
is that neither we have interpreted constants in the domain of the elements, so
that we cannot apply Proposition1 as we did with arithmetical theories, nor

5 Here “=" is the equality symbol and it is not the FP.A. .-specific symbol “==", see
[22].
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we have any information on the size of the domain of the elements, so that we
cannot apply Proposition 2.

We analyze different potential scenarios. One first scenario is where we have
at least one “structural” interpreted constant—e.g., that representing the empty
collection—plus some function symbols, which we can use to build k£ > 3 closed
terms tq, ..., t; and then use the schema of Proposition 1 to build a k-colorer.

Theories of Lists. The above scenario is illustrated in the next example.

Ezxample 7 (LT ). Let L be the simplest theory of lists of generic elements, with
the signature X = {nil, car(-), cdr(-), cons(-,-)} and described by the axioms:

Vay.(car(cons(x,y) = z)), Vry.(cdr(cons(z,y) = vy)), (17)
Vxy.(—(cons(x,y) = nil)), Ya.(=(x = nil) — (cons(car(z), cdr(z)) = z)),(18)

and let £T be £ enriched by the axioms
(car(nil) = nil), (cdr(nil) = nil). (19)

LT -solving is NP-complete whilst £-solving is in P [17]. A more general theory
of lists, which has LT as a signature-restriction fragment, is described in [6,12].

Following Proposition 1, we prove that £%* is 4-colorable, by setting k &y,
XdZet {z1, 22,91, 92},

Colorery(v;, c11, €21, C12, Ca2|T1, T2, Y1, y2) = (20)
(¢11 = cons(nil, nil)) A (c21 = cons(cons(nil, nil), nil))A
(c12 = cons(nil, cons(nil, nil))) A (¢22 = cons(cons(nil, nil), cons(nil, nil)))A

{\?_1 <<cargzi> =)c)ar<yi>> A (cdr(@;) = cdr(y:)) A (2 = ;) A

To prove (11) we notice that we can deduce —(cons(nil, nil) = nil) from (18),
so that, by construction, all the ¢;’s are pairwise different. Let ¥(v;y;) be the
formula given by the last two rows in (20), so that (20) matches the definition
in Proposition 1. Then we derive (12) from the following observation [17], with
ie {12}

((car(z;) = car(y;)) A (cdr(z;) = cdr(y;)) A —(z; = i) (21)
Ec+ (x; = nil) V (z; = cons(nil, nil)),

which derives from the fact that (18) and (19) imply that either (z; = nil) or

(y; = nil) must hold. Therefore v; = cons(z1,x3) can consistently assume one
and only one of the values c11, ..., coo in the first two rows in (20).
To prove (14), since the ¢;s are closed, we deterministically define each Z; ;’s

using the standard interpretation of nil, cons, car, and cdr: (c;1 )% £ (NIL.NIL),
(c21)Ti3 = ((NIL.NIL).NIL), ... (v;)Tis = (¢;)%13, checking that, for every j € [1..k],

Z;; |:£+ C0|0rer4(Uz‘, C11,C21,C12, Cz2|331,$27 y17y2) A (Uz‘ = Cj)-
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Thus LT -solving is NP-hard by Theorem 1, so that also the more general theory
described in [6,12] is NP-hard. o

Remark 3. The k-colorer (20) was produced along the following heuristic
process.

1. Look for an entailment in the form: pi(x1,y1) Fr (21 =t1) V (x1 = t2),

s.t. t1,ty are closed terms representing distinct values in the domain (21).
2. Define (v; = cons(z1,22)) and (¢p,p, = cons(ty,, ty,)), s.t. 71,72 € {1,2}
3. Define the k-colorer as

/\ie{l,Q} N’Z(xlv&) A /\rl,rge{l,Z}(Chrz = cons(tmatm)) A (Ui = COI'IS(:L'l, SUQ))

4. Check (11), (12), (14).

Notice that the only non-obvious step is 1, the other come out nearly determin-
istically.

Theories of Finite Sets. Another scenario is where we cannot use inter-
preted constants to build closed terms, but we can build k£ non-closed terms
t1(x;), ..., tx(x;) which match the requirements of Proposition 1 anyway, which
allows to build a k-colorer. This scenario is illustrated in the next example.

Example 8. Let S be the theory of finite sets as defined, e.g., in [6,12].5 Let
SIS be the signature-restriction fragment of the S which considers only
the subset and the enumerator operators {C,{}}. We show that SIS} is
4-colorable by Proposition 1.

In fact, consider the following set of literals:

o [l =AY 2}) Alez = {y1}) A
Colorery(vi, clyr,y2) = | (s ={y2}) Alea={}) A |. (22)
(1 =y2) A Ce)

(22) is a 4-colorer. It is easy to see from the semantics of {C, {}} that (11) and
(12) hold. Let Y3,Y> s.t. Y1 # Y5 be two domain elements so that we can set

)T ZY, for every r € [1..2] and j € [1..k]. Then, for every j € [1..k], we
define Z; ; s.t. (c1)™9 = {¥1, Y2}, (e2)™9 = {¥1}, (es)7 = {Ya}, (ea)™s = {3,
(vi)Tii = (c;)%3. Then T, 4, ..., T j, verify (13). o

—~
<
~

In this case the k-colorer (22) was really immediate to build, upon the obser-
vation that the operator C can produce 4 distinct subsets of a 2-element set.

6 S includes the operators {{...}), (- C-),(-U-), (- N ), -\ ), (-P), | - |, (- € )}, follow-
ing their standard semantics. We refer the reader to [6,12] for a precise description
of the theory.
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Theories of Arrays. In the following case we cannot apply Proposition 1, so
that we apply Definition 2 directly.

Ezample 9. (AR). Let AR be the theory of arrays of generic elements and

indexes, with the signature X = {.[],-(- « )} 7 and described by the axioms:
VAiju. (6 = §) — (Al — 0)[j] = v), (23)
VAijo. (- = ) — (Al — v)[j] = AL, (24)
VAB. ((Vi. Ali] = Bli]) — (A = B)). (25)

def

AR is 3-colorable, because we can define, e.g., k = 3,y LAy, .., Ag,in, ... is)} and

AllDifferents(c) A

(ig = i3) AN
CO|OI’eI’3(Uz‘,Cl,CQ,63|A1,...,A4,i1,...,ig) d:Cf E 22; :E;i§ (26)
(A4 = A3<’Lg «— Cg>)
(v; = A4lin])

so that obviously (1) holds, and also (2) holds, because Colorers(v;,cly) entails
(v; = ¢1) when (i) # (i3)% and (i1)T # (i2)%, entails (v; = c3) when
(i1)T = (ig)?, and entails (v; = c3) when (i;)? = (i3)%. Also (3) holds: given
three distinct domain values C1, Ca, Cs, the T-interpretations Z; ; can be built
straightforwardly as follows:

C1 |C2 |C3 |U; il ’ig 13 A4
Ii,l Ol CQ 03 Cl 11213 [01,02,03, ]
ILQ Cl CQ C3 C2 212 3 [**702,03, }
Il"g Cl CQ 03 Cg 31213 [**702,03, }

<&

Notice that in Example 9, Colorery, (v;, c|y;) uses the auxiliary variables Ay, ..., A4
representing arrays and iy, ..., 3 representing indexes. The As, A3, A4, however,
are not strictly necessary and can be eliminated by inlining. Notice also that
Colorery (v;, c|y;) includes explicitly AllDifferents(c) because no interpreted con-
stants come into play.

The k-colorer (26) was produced straightforwardly by noticing that the com-
bination of (23) and (24) produces a case-split in the form “if i = j then
(A{i — v)[j] = v) else (A{i «— v)[j] = A[4])”, which could be reiterated so that to
produce a 3-branch decision tree, producing 3 different expressions for the term
Aliq]. This could be rewritten into k-colorer by means of some term renaming.

" We use the following notation: “A[i]” (aka “read(A,i)”) is the value returned by
reading the i-th element of the array A, whilst “A(i «— v;)” (aka “write(A,i,v)”) is
the array resulting from assigning the value v to the i-th element of array A.
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5 k-Colorability vs. Non-Convexity

Although related by Property 1, k-colorability and non-convexity are distinct
properties. First, we recall that the non-convexity of a theory 7 does not imply
the NP-hardness of 7-solving. (In [24] we report a simple example.) Second,
by Property 1, having domain size > 3 is a strict requirement for proving NP-
hardness via colorability, whereas there exist non-convex theories with domain
size 2 whose 7-solving is NP-Hard. (E.g., the theory BY; of bit vectors with
fixed width 1, see [24].)

In what follows we introduce a theory with domain size > 3 whose 7 -solving
is NP-hard, which is non-convex and which is not k-colorable for any k& > 3. This
shows that not every theory with domain size > 3 can be proven NP-hard by k-
colorability. The same example shows also that k-colorability is strictly stronger
than non-convexity, even when the theory has domain size > 3.

Example 10. Consider the theory 7 with equality whose signature consists in
the interpreted constant symbols {0,1,2,...} with the standard meaning plus
the function symbols {and(-, ), not(-)} which are interpreted as follows:

(27)

» (not(z))” = 1 otherwise.

o [1if (2)T>0 and (y)T>0
T def
(and(z,y))" = {O otherwise

T def {O if <CE>I>O

(Importantly, the >, > < < predicates are not part of the signature.) 7-

satisfiability is NP-complete since you can polynomially reduce SAT to it and

you can always have a polynomial-size witness for every 7 -satisfied formula.
Also, as with BV, 7 is non-convex, because we have:

(o = 0) A (and(z1,22) = 0) E1 (((xog = 1) V (20 = T2)) (28)
(.230 = O) A (and(xl,xg) = O) bé'j (JJQ = J?Z) 1€ {1,2} (29)

We show that 7 is not k-colorable for any k& > 3. We notice that every literal
! including v; must be in one of the following forms (modulo the symmetry of
= and and): (v; = t), (v; = not(t)), (v; = and(t1,t2)), (t = t*(vy,...)), and their
negations, where t,t1,ts are generic terms in 7 and t*(v;,...) is any term in 7
containing v;. Looking at the above literal forms, we notice that the presence
of the subterms not(v;) and and(v;,t2) in a term entails either (v;)Z>(0)%, or
(v;)T = (0)F or (v;)T > (0)%, so that one single literal [ can express only the
following facts about one variable v;:

(i) for every T-interpretation Z s.t. T =7 I, (v;)f = (n)T for some n €
{07 1’2737"'};

(ii) for every 7-interpretation Z s.t. Z 7 [, (v;)T # (n)T for some n €
{0,1,2,3,...};

8 Whereas (i) and (ii) can be also written as [ =7 (v; = n) and | =1 (v; # n), (iii)
and (iv) cannot be rewritten as | =7 (v; > 0) and ! =7 (v;>0) because > and >
are not part of the signature.
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(iii) for every 7-interpretation Z s.t. Z =7 [, (v;)% >
>(0

) )T (equivalent to true);
(iv) forevery T-interpretation Zs.t. Z =7 1, (v;)% < (e

)

)

qu1valent to (v;)T # 0);
) (equivalent to true);
)T (equivalent to false).

v) for every 7-interpretation Z s.t. Z =7 I, (v > =
(vi) for every T-interpretation 7 s.t. Z =7 [, {v;)T

(0
T
(v;
# (v
Thus, for k& > 3, no finite conjunction of 7-literals Colorer(v;, cly;) comply-
ing with (1) and (3) can also comply with (2). o

6 Colorable Theories without Equality

In previous sections we have restricted our interest to theories with equality. In
this section we extend the technique by dropping this restriction. The following
definition extends Definition 2 to the case of general theories.

Definition 3 (k-Colorer, k-Colored Theory). Let T be some theory and k
be some integer value s.t. k > 2. Let v; be a variable, called vertex variable,
(implicitly) denoting the i-th vertex in an un-directed graph; let c o {c1,., ek}
be a set of variables, called color variables, denoting the set of colors; let
yi & {yi1, .., ya} denote a possibly-empty set of variables, which is indexed with
the same index i of the vertex variable v;. We call k-colorer for T, namely
Colorery (v, clyq), a finite quantifier-free conjunction of T -literals (cube) over v;,
¢ and y; which verify the following properties:

~ For every T -intepretation I, if T =1 Colorery(vs, cly:), then:
for every j, 5" € [1.k] s.t. §# 5", {(c;))F # (c;)7, (30)
for some j € [1.k],  (v)F = (¢;)%, (31)
— There exist k T -interpretations {Z; 1, ..., Lk} .t
for every j € [1.k],  (c;)F* = (c;)F2 = ... = (¢;)T*, and  (32)

. (yTii = (¢;)Fii and
for every j € [1..K], {Ii,j = Colorer(vi, cly:)-

We say that T is k-colorable iff it has a k-colorer.
Notice that if 7 is a theory with equality, then Definitions 2 and 3 are equivalent.

Definition 4. We say that a theory T emulates equality [resp. disequality/ if
and only if there exists a finite quantifier-free conjunction of T -literals Eq(x1, x2)
[resp. Neq(x1, x2)/ such that, for every T -interpretation T, T =1 Eq(x1,x2) [resp.
T =1 Neq(z1,22)] if and only if (x1)* = (x2)" [resp. (x1)* # (w2)"].

Obviously every theory 7 with equality emulates both equality and disequal-
ity, with Eq(z1,22) = (21 = 2) and Neq(z1,22) = = (21 = 22).

Theorem 2. If a theory T is k-colorable for some k > 3 and T emulates equal-
ity and inequality, then the problem of deciding the T -satisfiability of a finite
conjunction of quantifier-free T -literals is T -satisfiable is NP-hard.
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Proof. Identical to that of Theorem 1, referring to Definition3 instead of
Definition 2 and substituting every positive equality in the form (x; = xz9) with
Eq(z1, z2) and every negative equality in the form —(z; = x2) with Neq(z1,22). O

Ezample 11. Let N LA(R)\=! be the signature-restriction fragment of N'LA(R)
without equality. We notice that NLA(R)\M=} emulates both equality and
inequality:

Eq(z1,72) & (21 > @2) A (22 > 21) (33)
Neq(xl, 3;‘2) &of ((331 — .’132) * (331 — $2)>0). (34)

T is 3-colorable because, like in Example 4, we can define, e.g., k 3, Yy = (), and

Colorer (vi, 1, ¢2, c3) = Eq(c1, —1) AEq(ca, 0) AEq(es, 1) AEq(vr * (v2 — 1) * (v1 4 1), 0).

Like in Example 4, it is straighforward to see that Colorers (v, ¢1, co, ¢3) verifies (30),
def

(31) and (32), with {e1)79 = —1, (e9)5 =0, {e3) ™9 = 1, and (v;)T19 = (e;)T0s
for every j € [1..3]. Thus N'LA(R)\{=}-solving is NP-hard by Theorem 2. o

7 Open Issues, Ongoing and Future Work

We believe that our framework can be generalized along the following directions,
which we are currently working on: (i) adopt some more general notion of frag-
ment, so that to extend the range of applicability of Property 2; (ii) extend the
applicability of our technique for the case of theories without equality by pro-
viding a more general definition of Eq(.,.) and Neq(.,.) enriched with auxiliary
variables —or uninterpreted function/predicate symbols— adapting Theorem 2
accordingly; (iii) extend Colorery (v;, cly;) so that to use also uninterpreted func-
tion/predicate symbols as auxiliary symbols y;; (iv) to overcome the restriction
of domain size > 3, extend Colorery (v;, c|y;) to use pairs of variables v, ¢, .., ¢,
instead of single variables to encode vertexes and colors, including ad hoc Neq(.,.)
functions.

The above work should be run in parallel and interleaved with an extensive
exploration of the pool of available NP-hard theories, proving the k-colorability
of as many theories/fragments as possible. To this extent, we would like to
investigate the boundary of k-colorability, looking for theories of domain size
> 3 which are not k-colorable.
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Abstract. Nominal rewriting is a framework of higher-order rewriting
introduced in (Fernédndez, Gabbay & Mackie, 2004; Fernéandez & Gabbay,
2007). Recently, (Suzuki et al., 2015) revisited confluence of nominal
rewriting in the light of feasibility. We report on an implementation of
a confluence tool for (non-closed) nominal rewriting, based on (Suzuki
et al., 2015) and succeeding studies.

Keywords: Confluence - Nominal rewriting - Automation - Variable
binding - Higher-order rewriting

1 Introduction

Rewriting captures various computational aspects in equational reasoning [4].
Higher-order rewriting deals with rewriting of expressions with higher-order
functions and variable binding. Various formalisms for higher-order rewriting
have been considered e.g. [12,14]. Nominal rewriting [6,7] is a formalism of
higher-order rewriting, based on the nominal approach for terms and unifica-
tion [9,16,21].

Confluence is a central property in rewriting [4]. Confluence tools for various
rewriting formalisms have been developed [2,10,17,22], and a yearly competition
for confluence tools has emerged from 2012 [1]. Some basic confluence results for
nominal rewriting have been mentioned in [6]. Recently, these results have been
revisited and extended by the authors [11,19,20] in the light of feasibility and
more-in-depth analysis. In this paper, we report on a confluence tool for nominal
rewriting based on those confluence studies.

2 Preliminaries

In this section, we recall basic notions and fix notations on nominal terms and
rewriting. We refer to [6,7,19] for omitted definitions and intuitive explanations.

A nominal signature X is a set of function symbols ranged over by f,g,....
We fix a countably infinite set X" of term variables ranged over by X,Y, ..., and
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a countably infinite set A = {a,b,c,...} of atoms ranged over by a,b,c...
(i.e. a,b,c,... stand for objects and a,b,c,... stand for meta-variables). A
swapping is a pair (a b) of atoms. Permutations 7 are bijections on A with
finite support(m) = {a € A | a # w(a)}; permutations are represented by
compositions of swappings. P stands for the set of permutations. We put
ds(m,m') = {a € A | ma # «'-a} for any m,n' € P. Terms are generated by
the grammar
s,t €T v=a|mX |[a]t| ft]{tr,...,tn)

A term of form 7 X is called a suspension. A suspension Id-X is abbreviated
as X, where Id denotes the identity. We write A(t) and X(t) for the sets of
atoms and term variables occurring in a term ¢ (or any expression ¢, in general)
where the former includes the atoms in abstractions [a] and in support(w) of
suspensions m-X. The subterm of ¢ at a position p is written as ¢|,. The term
obtained from a term s by replacing the subterm at position p by a term ¢ is
written as s[t],. Action 7t and meta-action t™ are defined as follows:

ma = 7(a) a™ = 7(a)
m(n'X)=(ron’)X (7" X)"=(rom o)X
m([alt) = [r-al(n1) ([alt)" = a7t
([ 1) = f ot (7 =71
Tty .oy tn) = (Tt1, .., Toty) (1, oytn)™ = (T, ... tF)

A substitution is a map o : X — T with finite dom(c) ={X € X | 0(X) # X }.
The application of a substitution o on a term ¢ is written as to.

A finite set of pairs a# X of a € A and X € X is called a freshness context.
For a freshness context V, a € A and s,t € 7, the relations V F a#t and
V F s =, t are defined as follows:

: V F adt VEa#t, - VFEakt,
Viam O7 VEaftft YV a#(ts,. .. tn)
VI as#t a#b T lha#X eV
VF a#alt Y a# bt VF afn X
VEti =y -+ VEt, =, sn
Vka=,a VE{ty, .. tn) ®o (81,...,8)
Vit s VEta, (ab)s F a#s 4y
VFftmafs Y F [alt ~a [bs “
_ Vhtmas Va € ds(m, 7). atX € V
V + [a]t =4 [a]s VErnX ~, 71X

Here a#t is called a freshness constraint, and s =, t an a-equivalence constraint.
For (freshness or a-equivalence) constraints 71, ..., v,, we write A F y1,..., 7,
if AF~; for all 1 < i <n. We put (a#t)o = a#to and (s =, t)o = so =, to.
Nominal unification finds a pair (A, o) of a freshness context A and a substitu-
tion o such that A F yi0,..., 7,0 from C = {71,...,7v,}; a most general such
pair is an mgu of C [21].
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A triple V F [ — r of a freshness context V and [, € 7 such that [ is not a
suspension and X (V) U X (r) C X(I) is called a nominal rewrite rule, or simply
rewrite rule. Rewrite rules are identified modulo renaming of term variables. A
nominal rewriting system (NRS for short) is a finite set of rewrite rules. Let
R =V k1l — r be a rewrite rule. For a freshness context A and s,t € 7, the
rewrite relation is defined by

Ab s —papoyt &5 AL V70, Ak s|, ~, 70, t = s[r" o],

where X (1) N (X(A) U X(s)) = 0. Here, V™ = {w(a)#X | a#X € V}. For an
NRS R, we write A F s —5 t if there exist R € R, 7, p and ¢ such that A -
5 = (Rmpo) b We define AF sy 41 5309 -+ (-1 5p) (5 € {—=R, Ra,...})
in the obvious way. A - s —% tstandsfor AFs —g -+ -gt,and AbFs | ~, ¢
stands for A+ s =% o xq o «—% t. An NRS R is Church-Rosser modulo =~

if AFs(—rU—rU a9, )" timplies Al s |~ t. An NRS R is terminating
if there is no infinite rewrite sequence A F s; —g so —g +--.

3 Computing Rewrite Steps and Basic Critical Pairs

A most fundamental ingredient in automation of confluence checking is the com-
putation of rewrite steps, that is, to compute a term ¢ such that A+ s —x ¢t
or even (representatives of) all ¢ such that A F s —g ¢, from a given NRS R,
a freshness context A and a term s. The main challenge here is to find suitable
7 and o such that A+ V™o and A+ s, =, {"0o, when fixing VFI —-reR
and a position p in s. Another key ingredient is the computation of basic critical
pairs:

Definition 3.1 (Basic critical pair [20]). Let R; = V; F1; —r; (i=1,2) be
rewrite rules. We assume w.l.o.g. X(l1) N X(l2) = 0. Let V1 UVE U{lL = 5|,}
be unifiable for some permutation m and a non-variable position p and let (I, o)
be an mgu. Then, I' - (I5o[ric],,r50) is called a basic critical pair (BCP for
short) of Ry and Ry. The set of BCP of rules in R is denoted by BCP(R).

Again, the main challenge for the computation of (representatives of) all BCPs
is to find suitable m and ¢ when fixing R;, Ry € R and a position p.

Since 7 is not fixed here, these problems are not computed by nominal unifi-
cation but by equivariant nominal unification [5]. In what follows, we present our
formalization of equivariant nominal unification and then explain how BCPs are
computed. (The computation of rewrite steps is done by replacing equivariant
unification by equivariant matching, obtained by adding constraints on instan-
tiation.)

3.1 Equivariant Unification

We extend our language by countably infinite sets X4 and Xp of atom variables
ranged over by A, B, ... and permutation variables ranged over by P, Q.. .. Ele-
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ments of AU X4 are ranged over by «, 3, ... and called atom expressions. Per-
mutation/atomic/term expressions (Ep/Ea/Er) are generated by the grammar:

IVeEp:=P|ld|(vw) | How | !
v,w € &y =1«
SSTeér =v|II-X|WT|fT|{T,...,Ty)

Note here that “ld” etc. are not meta-operations but new constructs. For exam-
ple, we have ((PoQ)™'-A) B) € &p, (PoQ)™'-A) B)-c € £4 and
(Po@) - 4) B)-d(t (P1-X,Q 1)) € &.

An instantiation is a pair 6 = (04,0p) of mappings 04 : X4 — A and
Op : Xp — P. Foreach IT € Ep, v € £4, S € Er, their interpretations [II]y € P,
[v]o € A, [S]o € T by an instantiation 6 are defined by the following:

[Plo = 0p(P) [11-a]o = []o-[a]e lalo = a
[id]y = 1d [II-X]g = [II]o-X [Alo = 04(A)
[(v w)]o = ([v]e [w]o) [[v]T]e = [[[Uﬂe}[[T]]G
[{I oW]e = [1I]g o [¥]e [f Tlo = f [TT]e
HH71H9 = [[H]]gl [[<T17 P % >]]9 = <[[T1]]97 R HTRH9>

Note here that “Id” etc. in the rhs’s of the definitions are not constructs but
meta-operations. For example, if we take p(P) = (a b), 0p(Q) = (b ¢) and
0a(A) = a, 04(B) = b then we have [((Po Q)" !-A) B)]s = (c b) € P,
[(Po@)'-A) B)-clo = be Aand [(PoQ) - A) B)-dJ(£ (P X,Q L
c))]e = [b](£f ((a b) - X,b)) € 7. For a permutation expression II € Ep and a
term expression T' € Er, we define action IT-T € & and meta-action T € Ep
as follows:

(') ={Ioll')a (II"a)" = (Il o IT')-cx
( X)) = (IToIl')-X (II''X)T = (ITo IT' o II71)-X
I-([v]T) = [HT-v](1I-T) (7)™ = ™1™
n-(fT)=fII.T (fnit =yrr"
mo-(Ty,....\T,) = (II'Ty,... . II'T,)) ~ (Ty,...,T,)" = (T2,...,TH)

A freshness constraint expression is a pair v#71 of v € £4 and T € Ep and an
a-equivalence constraint expression is a pair S = T of S,T € Ep. An equivariant
unification problem (EUP) is a finite set of (freshness or a-equivalence) con-
straint expressions. We put [v#T g = [v]e#[T]e and [S = T = [S]o ~a [T]e-
A model of an EUP C = {v1,...,7,} is a triple (0, 0, A) of an instantiation 6, a
substitution ¢ and a freshness context A such that A+ [y;]go for all 1 < i <n.
We write (6,0, A) = C if (6,0, A) is a model of C.

An answer constraint is a finite set of expressions of the following forms:

A v|Pramflagf| X —T|a#X | #(X,11,1T)

A triple (8,0, A) is a model of an answer constraint S, written as (0,0, A) = S,
if 04(A) = [v]p for any A — v € S, 0p(P)([o]e) = [B]o for any P : o —
Be€S, [ao # [Bl forany o % B € S, o(X) = [T]p for all X — T € S,
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AF [a)o#Xo for all a#X € S, and A+ a#Xo for any a € ds([I], [II']e)
and #(X,II,II') € S. For a given EUP C, equivariant unification [5] computes
a finite set M = Sol(C) of answer constraints such that, for any triple (6, o, A),
(0,0,A) ECiff 3§ € M. (0,0,4)  S.

3.2 Computing Basic Critical Pairs

We now proceed to explain how the representative set of BCPs are computed
using equivariant unification, from two given rewrite rules R; = V; F [; — r;
(i =1,2) and a position p. The procedure consists of the following two steps.

1. Equivariant Unification. We solve the following EUP:
C= V1 U V§ U {l1 ~ l§|p} U {P Ty X Ai ‘ a; € A(ZQ[]I)) U A(Tl) @] .A(’/‘Q)}

where P € Xp, and each A; is a fresh atom variable. The last component of
the union is added to specify P(a) for all a required to construct I5o[ri0],
and rZo. If Sol(C) = @ then we return the empty set of BCPs.

2. Instantiation. For each § € Sol(C), we compute all (representative of) BCPs
obtained by models of answer constraints S € Sol(C), more formally, a finite
set Ts representing {I" F <lgP(P)J[7’10']p,TgP(P)U> | (0,0,") = S}. We obtain
a set BCPg of BCPs from S, lo, 71 and ro by successively instantiating each
atom variable and atomic expression P-a in § by all atoms already used
and one new fresh atom (as the representative of all other non-used atoms),
where any instantiation must satisfy I' - + for all freshness constraints -~
obtained from a#X € S and #(X,II,¥) € S. Note also that due to the
form of the input, all occurrences of P in #(X,II,¥) € S have the form
P-a. Therefore, any #(X, IT,¥) can be replaced with {a#X | a € ds(II,¥)}
when instantiations are completed. (This is not always possible for general
equivariant unification problems e.g. consider #(X, (a b), P).) Finally, we put
BCPc¢ = Usesol(c) BCPs.

Example 3.2. Let forall € X and consider the following NRS:
Reomv = { + forall [a]forall [b]X — forall [bjforall [a]X}
Consider the overlap at position 11. In the first step, we solve an EUP:
C = {forall [a]forall [b]X = (forall [P-b]Y)}U{P -a~ A}
Then we obtain

{Y — (forall [b]X),P:a+— A,P:b+ a},
Sol(C) = { {Y — (forall [a]{(a b)]X),P:a— A,P:bw~— b},
{Y — (forall [(a C)-b][(a C)]X),C#X,C #a,C%b,P:ar— A P:b— C}
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By instantiating A (by a,b and ¢) and C (by a,b,c and d) successively, we
obtain the following seven BCPs from this overlap:

F (forall|b]forall|b]forall[a]X, forall[a]forall[b]forall[b]X)

F (forall|c]forall|b]forall[a]X, forallla]forall|c|forall[b]X)

F (forall[a]forall[b]forallla]X, foralllb]forallla|forallla][(a b)]X)
BCP¢ = { F (forallc]forall|b]forall[a]X, forall[b]forall[c|forallla]{(a b)]X)

c#X + (foralllb]forall[b|forallla]X, forall|c|foralllb]foralllb](a c)-X)

c#X b (forallla]forall|b]forallla]X, forall|c]forall[a|forall[b](a c)-X)

d#X F (forall[c|forall[b|forallla]X, forall[d|forall[c|forall[b](a d)-X)

4 Proving Confluence Automatically

4.1 Confluence Criteria
We prove (non-)confluence based on the following confluence criteria.

Proposition 4.1 [19]. Let R be an orthogonal NRS that is abstract skeleton
preserving (ASP). Then, R is Church-Rosser modulo =2, .

Proposition 4.2 [20]. Let R be a linear uniform NRS. Then R is Church-
Rosser modulo =, if 'Fu—"o=x,o0o«* vand 'Fu—"0o~y 0«= v for
any I' + (u,v) € BCP(R).

Proposition 4.3 [20]. Let R be a terminating uniform NRS. Then R is
Church-Rosser modulo =, if and only if ' b u | ~, v for any I' F (u,v) €
BCP(R).

Proposition 4.4 [11]. Let R be a left-linear uniform NRS. Then R is Church-
Rosser modulo =~o if I' - u —> 0 =, v for any I' F (u,v) € BCP;,,(R) and
'k u—0 =y 0«*v for any I' F (u,v) € BCPy, (R).

Here, an NRS is orthogonal if it is left-linear and has no proper BCPs [19];
I'ts—=tstands for ' s —tor s =t; [' - s — t stands for the parallel
rewrite relation [19]; and BCP;,,(R) and BCP,,:(R) denote the sets of inner and
outer BCPs [11], respectively.

The ASP condition and uniformness of NRSs are decidable [6,19]. To check
the joinability conditions in Propositions 4.2 and 4.4, sets {w | I' - ©v == w}
and {w | I' F u —+> w} are computed using the procedure for computing rewrite
steps. For checking confluence criteria of Proposition 4.3, termination checking
is required, which we explain in the next subsection.

4.2 Proving Termination

In this subsection, we present a simple technique to show termination of NRSs.
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Definition 4.5. Let X be a nominal signature, and F a arity-fived first-order
signature given by F = {f | f € X} U{o, A} U{pair,, | n > 0}, where © is of arity
0, A and oll f € X are of arity 1, and pair,, is of arity n for each n. We define a
translation @ from nominal terms over X to first-order terms over F (with the
set X of variables) as follows:

B(a) = o B(m-X) = X ([a]t) = \(@(1)
@(f t) = f(é(t)) @(<t17 s 7tn>) = pairn(@(tl)v s 7¢(tn)

For an NRS R, we define a first-order term rewriting system ®(R) by: P(R) =
{o(l1) > P(r) | VEI—1reR}.

~—

Theorem 4.6. If $(R) is terminating then R is terminating modulo =, .

Proof. The claim follows from the fact that for any A, s, ¢, (i) A F s =, ¢ implies
?(s) = &(t) and (ii) At s —x t implies @(s) —ar) (). O

Remark 4.7. In [8], nominal terms are given by the following grammar:
t,s n=a|mX | [a]t | f(t1,. .. tn)

It is easy to modify the translation @ to adapt to this definition. In [8, Definition
6], recursive path order on nominal terms for proving termination of “closed
rewriting” has been given. It is easy to see that the order can be obtained by
combining the translation ¢ and recursive path order on first-order terms.

5 Implementation and Experiments

Our tool nrbox (nominal rewriting toolbox) is implemented in Standard ML of
New Jersey'. It reads an NRS R from the input and tries to prove whether it is
Church-Rosser modulo =, or not—it prints out “YES” (“N0”) if it successfully
proves that R is (resp. is not) Church-Rosser modulo =, and “MAYBE” if it
fails to prove or disprove that R is Church-Rosser modulo =, .

The source code of the tool is obtained from http://www.nue.ie.niigata-u.ac.
jp/tools/nrbox/. It consists of about 4500 lines of code, and roughly one third of
the code is devoted to equivariant unification. The format of input NRSs follows
a specification bundled in the distribution. To prove the termination of NRSs
by the method described in Sect. 4.2, the tool requires an external termination
prover for first-order term rewriting systems.

We have tested our confluence prover with 30 NRSs, collected from the liter-
ature [3,6,8] and constructed during our studies [11,18-20]. All tests have been
performed in a PC with one 2.50 GHz CPU and 4G memory. We have used TTT
[13] with 20s timeout as the external termination prover for first-order term
rewriting systems.

Summary of experiments is shown in Table 1. The column below “NRS”
shows descriptions of the input NRSs. The columns below “Orth.”, “Strong”,

! http://www.smlnj.org/
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Table 1. Summary of experiments
NRS Orth. | Strong | K.-B. | Parallel
1 | a-reduction rule ([6] Intro.) MAYBE | YES MAYBE | YES
2 | Eta: n-reduction rule ([6] Intro.) YES | YES YES YES
3 | p-expansion rule ([6] Intro.) MAYBE | MAYBE |MAYBE | MAYBE
4 | R;: subst. for A with o. (Ex. 43 [6]) MAYBE | MAYBE | YES YES
5 | B-reduction {Beta} UR} (Ex. 43 [6]) MAYBE | MAYBE |MAYBE | MAYBE
6 |a fragment of ML (Ex. 43 [6]) MAYBE | MAYBE |MAYBE | MAYBE
7 | PNF of FOF (Ex. 44 [6]) MAYBE | MAYBE | NO MAYBE
8 | PNF of FOF with addition (Ex. 44 [6]) MAYBE | MAYBE | NO MAYBE
9 |non-joinable trivial CP (Lem. 56 [6]) MAYBE | MAYBE |MAYBE | MAYBE
10 {a#X - X — [a]X} (Lem. 56 [6]) MAYBE | MAYBE |MAYBE | MAYBE
11 | {Eta, 1} (Ex. 5 [8]) MAYBE | MAYBE |NO MAYBE
12 | {Eta, L} with CP (Ex. 5 [8]) MAYBE YES |YES |YES
13 | summation (Ex. 6 [8]) MAYBE | MAYBE | NO MAYBE
14 | summation with CP (Ex. 6 [8]) MAYBE | MAYBE | YES MAYBE
15 {F f(X) — [a] X} (BEx. 1.2 [18]) MAYBE | MAYBE | NO MAYBE
16 | {a#X F f(X) — [a] X} (Ex. 4.7 [18]) YES | YES YES YES
17 | R,: subst. for X\ with ovare (Ex. 8 [19]) YES | MAYBE |YES |YES
18 | B-reduction {Beta} U R, MAYBE | MAYBE | MAYBE| MAYBE
19 | Bn-reduction {Beta} U {Eta} U R, MAYBE | MAYBE |MAYBE | MAYBE
20 | Rucn (Ex. 17 [19]) MAYBE |MAYBE |MAYBE | MAYBE
21 | Rucn—exp (Ex. 19 [19]) MAYBE | MAYBE | NO MAYBE
22 | p-substitution for Ap-term ([15]) YES | MAYBE |YES YES
23 | {F f(X) — f([a]X)} (Ex. 4.3 [3]) MAYBE | MAYBE |MAYBE | MAYBE
24 |NNF of {—,V, A}-form. with swap (Ex. 5.5 [3]) | MAYBE | YES YES YES
25 | Comy: com. rule for V (Ex. 5 [20]) MAYBE | YES MAYBE | MAYBE
26 | PNF of {V, A}-form. (Ex. 7 [20]) MAYBE | MAYBE | NO MAYBE
27 | PNF of {¥, A}-form. + Comy (Ex. 12 [20]) MAYBE | MAYBE |MAYBE | MAYBE
28 | NNF of {—,V,3}-form. (Ex. 29 [20]) MAYBE MAYBE |YES |MAYBE
29 | NNF of FOF MAYBE | MAYBE | YES MAYBE
30 | NNF of FOF without DNE YES YES YES YES
(#YES, #NO) (5,0) | (7,0) |(11,7) | (9,0)
> time (msec.) 611 | 1367 4377 |2217
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“K.-B.” and “Parallel” show the results of applying the confluence proving meth-
ods from Propositions 4.1, 4.2 (with an approximation of —* by —~), 4.3 and
4.4 (with an approximation of —* by —>), respectively—YES denotes for the
success for proving, NO denotes for the success of disproving, and MAYBE denotes
failure. For each method, the last two lines of the table show the number of
successes for proving/disproving confluence and the total time for checking all
of the examples.

Using the combination of all the methods, our prover succeeded in prov-
ing confluence of 13 examples and non-confluence of 7 examples. All details of
the experiments are available on the webpage http://www.nue.ie.niigata-u.ac.
jp/tools/nrbox/experiments/ijcar16/.
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Abstract. This paper introduces some novel features of Maude 2.7.
We have added support for: (i) built-in order-sorted unification modulo
associativity, commutativity, and identity, (ii) built-in variant generation,
(iii) built-in order-sorted unification modulo a finite variant theory, and
(iv) symbolic reachability modulo a finite variant theory.

1 Introduction

Maude! is a language and a system based on rewriting logic [5]. Maude provides
a precise mathematical model thanks to its logical basis and its initial model
semantics, allowing its formal tool environment to be used in three, mutually
reinforcing ways: as a declarative programming language, as an executable formal
specification language, and as a formal verification system.

Order-sorted unification and narrowing modulo axioms were first available in
2009 as part of the Maude 2.4 release [4]. Unification was available as a built-in
feature in Maude while narrowing was available in Full Maude, an extension
of Maude written in Maude itself. Unification worked for any combination of
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symbols being either free or associative-commutative (AC). Narrowing worked
for modules having only rules and axioms and relied on the built-in unification
algorithm. It supported the concept of symbolic reachability analysis of terms
with logical variables, computing suitable substitutions for the variables in both
the origin and the destination terms [11].

Unification and narrowing were updated in 2011 as part of the Maude 2.6
release [7]. First, the built-in unification was extended to allow any combination
of symbols being either free, commutative (C), associative-commutative (AC),
or associative-commutative with an identity symbol (ACU). The performance
was dramatically improved, allowing further development of other techniques in
Maude. Second, the concept of variant [6] was added to Maude. The introduc-
tion of variants led to a significant improvement in the reasoning capabilities in
Maude: variant generation, variant-based unification, and symbolic reachability
based on variant-based unification were all available for the first time. However,
all the variant-based features and the narrowing-based reachability were only
available in Full Maude, and for a restricted class of theories called strongly
right irreducible.

In this paper, we present the new unification and narrowing features available
in the most recent Maude 2.7 version. First, the built-in unification algorithm
allows any combination of symbols being free, C, AC, ACU, CU (commutativity
and identity), U (identity), Ul (left identity), and Ur (right identity). Second,
variant generation and variant-based unification are implemented as built-in
features in Maude. This built-in implementation works for any convergent the-
ory modulo the axioms described above, both allowing very general equational
theories (beyond the strongly right irreducible) and boosting the performance
not only of these features but of their applications, described in Sect.6. Third,
narrowing-based reachability is still only available in Full Maude but uses the
built-in variant-based unification.

2 Built-in Order-Sorted Unification Modulo Axioms

Maude currently provides an order-sorted Az-unification algorithm for all order-
sorted theories (3, Azx) such that the order-sorted signature X is preregular mod-
ulo Az (see [9, Footnote 2]) and the axioms Ax associated to function symbols
can have any combination (even empty) of the following equational attributes:
the comm attribute (C), the assoc comm attributes (AC), the assoc comm id
attributes (ACU), the comm id attributes (CU), the id attribute (U), the left
id attribute (Ul), and the right id attribute (Ur). The reason for excluding
the assoc attribute without comm is the fact that associative unification is not
finitary. Maude 2.7 provides an Az-unification command of the form

unify [n] in (ModId) :
(Term-1) =? (Term’-1) /\ ... /\ (Term-k) =7 (Term’-k) .

where £ > 1, n is an optional argument providing a bound on the number of
unifiers requested, and ModId is the module where the command takes place.
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Let us show some examples of unification with an identity attribute, which
is the new feature available in Maude 2.7. Let us consider first a module using
the left id attribute.

mod LEFTID-UNIFICATION-EX is

sorts Magma Elem . subsorts Elem < Magma .
op — : Magma Magma -> Magma [left id: el
ops a b cde : -> Elem .

endm

Then the following two unification problems have a different meaning, where
we have swapped the position of the variables. First, when we unify two terms
where variables of sort Magma are at the left of the terms, we have both a syn-
tactic unifier and a unifier modulo identity; note that unification may require
the introduction of new variables in the modulo case and they are indicated in
Maude using the notation #n:Sort, where new variables start with number 1.

Maude> unify in LEFTID-UNIFICATION-EX : X:Magma a =7 (Y:Magma a) a .

Solution 1 Solution 2
X:Magma --> a X:Magma --> #1:Magma a
Y:Magma --> e Y:Magma --> #1:Magma

When the variables are instead at the right side of the terms of sort Magma ,
there is clearly no unifier.

Maude> unify in LEFTID-UNIFICATION-EX : a X:Magma =7 (a a) Y:Magma .
No unifier.

Symmetric results could be obtained for a module with right identity (right
id: e ) instead of left identity. And similar results could be obtained for a module
with an identity symbol (id: e) instead of left or right identity. A different result
is obtained when we add commutativity.

mod COMM-ID-UNIFICATION-EX is

sorts Magma Elem . subsorts Elem < Magma .
op — : Magma Magma -> Magma [comm id: el
ops a b cde : -> Elem .

endm

When we unify two terms where variables of sort Magma are at the left of the
terms, we have both a syntactic unifier (Solution 2) and a unifier modulo identity
and commutativity (Solution 1), but the latter is duplicated (Solution 3) because
most general unifiers may not always be returned.

Maude> unify in COMM-ID-UNIFICATION-EX : X:Magma a =? (Y:Magma a) a .

Solution 1 Solution 2 Solution 3
X:Magma --> a X:Magma --> a #1:Magma X:Magma --> a
Y:Magma --> e Y:Magma --> #1:Magma Y:Magma --> e

3 Built-in Variant Generation

Given an equational theory (X, E'U Az) where E is a set of convergent oriented
equations modulo the axioms Az, the (E, Az)-variants [6,12] of a term ¢ are the
set of all pairs consisting, each one, of a substitution o and the (E, Az)-canonical
form of to. A preorder relation of generalization that holds between such pairs
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provides a notion of most general variants and also of completeness of a set of
variants. An equational theory has the finite variant property (or it is called a
finite variant theory) iff there is a finite and complete set of most general variants
for each term. Whether an equational theory has the finite variant property is
undecidable [2] but a technique based on the dependency pair framework has
been developed in [12] and a semi-decision procedure that works well in practice
was introduced in [3].

At a practical level, variants are generated using a narrowing strategy. Nar-
rowing with oriented equations E (with or without modulo Azx) enjoys well-
known completeness results. But narrowing can be quite inefficient, generating a
huge search space, and different narrowing strategies have been devised to reduce
the search space while remaining complete. The folding variant narrowing strat-
egy is proved in [12] to be complete for variants and it is able to terminate for
all inputs if the theory has the finite variant property.

The equational theories that are admissible for variant generation are as
follows. Let fmod (3, EU Ax) endfm be an order-sorted functional module where
FE is a set of equations specified with the eq keyword and the attribute variant,
and Az is a set of axioms such that the axioms satisfy the restrictions explained in
Sect. 2. Furthermore, the equations £ must be unconditional, not using the owise
attribute, and confluent, terminating, sort-decreasing, and coherent modulo Ax
(we then call the equational theory convergent).

Any system module mod (X,GU E U Az, R) endm where G is an additional
set of equations and R is a set of rules, is also considered admissible for variant
generation if the equational part (3, E U Ax) satisfies the conditions described
above. Note that Maude requires that the equations F used for variant generation
(and variant-based unification) should be clearly distinguished from the standard
equations G in Maude by using the attribute variant (both E and G are used
for term simplification but R not).

Maude provides a variant generation command of the form:

get variants [ n ] in (ModId) : (Term) .

where n is an optional argument providing a bound on the number of variants
requested, so that if the cardinality of the set of variants is greater than the
specified bound, the variants beyond that bound are omitted; and ModId is the
module where the command takes place.

For example, consider the following equational theory for exclusive or.

fmod EXCLUSIVE-OR is
sorts Nat NatSet . subsort Nat < NatSet .
op 0 : -> Nat .
op s : Nat -> Nat .

op mt : -> NatSet .

op _*_ : NatSet NatSet -> NatSet [assoc comm] .

vars X Z : [NatSet] .

eq [idem] : X * X =mt [variant] .

eq [idem-Coh] : X * X * Z = Z [variant] .

eq [id] : X *mt = X [variant] .
endfm

We can check that the EXCLUSIVE-0R module above has the finite variant prop-
erty by simply generating the variants for the exclusive-or symbol .
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Maude> get variants in EXCLUSIVE-OR : X * Y .

Variant 1 Variant 7

[NatSet]: #1:[NatSet] * #2:[NatSetl ......... [NatSet]: %1:[NatSet]
X -=> #1:[NatSet] X -=> %1:[NatSet]

Y --> #2:[NatSet] Y --> mt

The above output illustrates a difference between unifiers returned by the
built-in unification modulo axioms and substitutions (or unifiers) returned by
variant generation or variant-based unification: two forms of fresh variables, the
former #n:Sort and the new sn:Sort. Note that the two forms have different
counters.

We can consider a more complex equational theory such as the one of Abelian
groups specified in the following module; this theory could not be handled by
Maude 2.6 because it is not strongly right irreducible.

fmod ABELIAN-GROUP is
sorts Elem .

op _*+_ : Elem Elem -> Elem [comm assoc]

op -_ : Elem -> Elem .

op O : -> Elem .

vars X Y Z : Elem

eq X + 0 = X [variant]

eq X + (- X) = 0 [variant]

eq X + (- X) + Y =Y [variant]

eq - (- X) =X [varlant]

eq - 0 = 0 [variant]

eq (- X) + (- Y) = -(X +Y) [variant]

eq (X + Y) + Y =- X [variant] .

eq (- X +Y) =X+ (-Y) [variant]

eq (-X) + (-Y) +Z =-(X+Y) + Z [variant]

eq -(X +Y) + Y+ Z=(-X) + Z [variant]
endfm

The generation of the variants for the addition symbol provides 47 variants:

Maude> get variants in ABELIAN-GROUP : X + Y .

Variant 1 Variant 47

Elem: #1:Elem + #2:Elem  ................. Elem: - (%2:Elem + %3:Elem)

X --> #1:Elem X -=> %4:Elem + - (%1:Elem + %2:Elem)
Y --> #2:Elem Y --> %1:Elem + - (%3:Elem + %4:Elem)

And the minus sign symbol has four variants:

Maude> get variants in ABELIAN-GROUP : - X .

Variant 1 Variant 2 Variant 3 Variant 4

Elem: - #1:Elem Elem: %1:Elem Elem: O Elem: %1:Elem + - %2:Elem
X --> #1:Elem X --> - %1:Elem X -->0 X --> %2:Elem + - %1:Elem

Another interesting feature is that variant generation is incremental. In this
way we are able to support general convergent equational theories modulo axioms
that need not have the finite variant property. Let us consider the following
functional module for addition NAT-VARIANT that does not have the finite variant

property.

fmod NAT-VARIANT is
sort Nat .
op O : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
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vars X Y : Nat .

eq [base] : 0 + Y = Y [variant] .

eq [ind] : s(X) + Y = s(X + Y) [variant] .
endfm

On the one hand, it is possible to have a term with a finite number of most
general variants although the theory does not have the finite variant property.
For instance, the term s(0) + X has the single variant s(X).

Maude> get variants in NAT-VARIANT : s(0) + X .
Variant 1

Nat: s(#1:Nat)

X -=> #1:Nat

On the other hand, we can incrementally generate the variants of a term that we
suspect does not have a finite number of most general variants. For instance, the
term X + s(0) has an infinite number of most general variants. In such a case,
Maude can either output all the variants to the screen (and the user can stop
the process whenever she wants), or generate the first n variants by including a
bound n in the command.

Maude> get variants [10] in NAT-VARIANT : X + s(0) .

Variant 1 Variant 10
Nat: #1:Nat + SC0) ottt e Nat: s(s(s(s(s(0)))))
X --> #1:Nat X -—> s(s(s(s(0))))

Note that a third approach is to incrementally increase the bound and, if we
obtain a number of variants smaller than the bound, then we know for sure that
it had a finite number of most general variants.

4 Built-in Variant-Based Unification

The most natural application of variant generation is unification in an equational
theory (¥, F'U Ax) where the equations F can be oriented into convergent rules

E modulo Az. Intuitively, when we extend such an equational theory (3, EUAx)
with a new equation eq(x,x) = true, two terms t and ¢’ unify with substitution
a modulo the equational theory if and only if (true,a) is a variant of the term
eq(t,t’). The key distinction is one between dedicated unification algorithms for a
limited set of axioms Az (as in Sect. 2) and generic unification algorithms which
can be applied to a much wider range of user-definable theories (namely conver-
gent theories modulo axioms) and can even deal with incremental generation of
infinite sets of unifiers.

Given a module ModId satisfying the requirements of Sect.3 and being a
finite variant theory, Maude provides a command for equational unification:

variant unify [ n ] in (ModId) :
(Term-1) =7 (Term’-1) /\ ... /\ (Term-k) =7 (Term’-k) .

where k£ > 1 and n is an optional argument providing a bound on the number of
unifiers requested, so that if the cardinality of the set of unifiers is greater than
the specified bound, the unifiers beyond that bound are omitted.
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Similarly to the incremental generation of variants, one can obtain an incre-
mental number of unifiers for a given unification problem. Let us consider again
the NAT-VARIANT module that does not have the finite variant property. On the
one hand, it is possible to have a finite number of most general unifiers for a
unification problem although the theory does not have the finite variant property.

Maude> variant unify in NAT-VARIANT : s(0) + X =7 s(s(s(0)))

Unifier #1
X --> s(s(0))

On the other hand, we can approximate the number of unifiers of a unification
problem that we suspect does not have a finite number of most general unifiers.
For instance, the unification problem between terms X + s(0) and s(s(s(0)))
has only one solution X — s(s(0)) and we can obtain that solution by including
a bound in the command, as it is also done for variant generation.

Maude> variant unify [1] in NAT-VARIANT : X + s(0) =7 s(s(s(0)))

Unifier #1
X --> s(s(0))

However, if we tried to obtain a second unifier, Maude would not stop because
it would keep trying to generate a second unifier for a unification problem that
has only one unifier, without knowing that it could stop.

5 Narrowing-Based Symbolic Reachability Analysis

The modern application of narrowing, when the rules R are understood as transi-
tion rules, is that of symbolic reachability analysis [15]. Specifically, we consider
transition systems specified by order-sorted rewrite theories of the form mod
(3, E U Az, R) endm where: (i) E' U Ax satisfies the requirements of Sect. 3, and
(ii) the transition rules R are E'U Az-coherent and topmost (so that rewriting
is always done at the top of the term). Then, narrowing modulo F U Az is a
complete deductive method [15] for symbolic reachability analysis, i.e., for solv-
ing existential queries of the form 3% : ¢ —* ¢’ where T are all the variables
appearing in ¢ and ', in the sense that the formula holds for (X, E U Az, R) iff
there is a narrowing sequence ¢t ~+% g4,  such that u and ¢’ have an (E'U Azx)-
unifier. Narrowing-based reachability was already introduced in Maude 2.4 [4]
and Maude 2.6 [7] but now can be performed modulo theories with the finite
variant property.
This symbolic reachability is supported by Full Maude’s search command:

(search [ n,m ] in (ModId) : (Term-1) (SearchArrow) (Term-2) .)

where: n and m are optional arguments providing, respectively, a bound on the
number of solutions and the maximum depth of the search; ModId is the mod-
ule where the search takes place; Term-1 is the starting term, which cannot be
a variable but may contain variables; Term-2 is the term specifying the pattern
that has to be reached (some variables possibly shared with the starting term);



190 F. Duréan et al.

and SearchArrow is an arrow indicating the form of the narrowing proof,
where “>1 indicates a narrowing proof consisting of exactly one step; ">+ indi-
cates a proof of one or more steps; “>* indicates a proof of none, one, or more
steps; and ~>! indicates that the reached term cannot be further narrowed.
Consider again the typical example in Maude of a vending machine (e.g. in
[7]) but now extended with the theory for Abelian groups shown above; the rules
are coherent modulo the Abelian group theory by using a generic variable Money.

(mod AG-VENDING is
sorts Item Items State Coin Money

subsort Item < Items . subsort Coin < Money

op — : Items Items -> Items [assoc comm id: mt] . op mt : -> Items

op <_|_> : Money Items -> State

ops a ¢ : -> Item . ops q $ : -> Coin

rl < M:Money | I:Items > => < M:Money + - $ | I:Items c > .

rl < M:Money | I:Items > => < M:Money + - q + - q + - q | I:Items a >

eq $ =g+ q+ q+ q [variant] . --- Property of the original vending
machine example

op _+_ Money Money -> Money [comm assoc]
op -_ : Momney -> Money
op 0 : -> Money

vars X Y Z : Money
(here come the variant equations shown before for Abelian Group)
endm)

We can use the narrowing search command to answer the question: Is there any
combination of one or more coins that returns exactly an apple and a cake? This
can be done by searching for states that are reachable from a term < M:Money
| mt > and match the pattern < 0 | a ¢ > at the end.

Maude> (search [1] in AG-VENDING : < M:Money | mt > ">* < 0 | ac > .)
Solution 1

M:Money --> q+q+q+q+q+q+q

Note that we must restrict the search to just one solution, because narrowing
does not terminate for this reachability problem.

6 Applications

Unification and narrowing in Maude have opened up many applications. First,
variant-based unification itself as described in Sect.4. Several formal reasoning
tools that either rely on unification capabilities, such as termination proofs [§]
and proofs of local confluence and coherence [9], or rely on narrowing capabilities
such as narrowing-based theorem proving [17] or testing [16]. Also, narrowing-
based reachability analysis has evolved into logical model checking [1,11], where
standard model checking cannot handle either infinite sets of initial states or infi-
nite sets of reachable states but performing model checking from initial states
with logical variables can handle these broader possibilities symbolically. The
area of cryptographic protocol analysis has also benefited: the Maude-NPA
tool [10] is the most successful example of combining narrowing and unifica-
tion features in Maude. The Tamarin tool [13] also uses a variant-generation
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algorithm, although only for the Diffie-Hellman theory. Finally, several deci-
sion procedures for formula satisfiability modulo equational theories have been
provided based on narrowing [18] or by variant generation in finite variant the-

ories [14].
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Abstract. An algorithm for generating interpolants for formulas which
are conjunctions of quadratic polynomial inequalities (both strict and
nonstrict) is proposed. The algorithm is based on a key observation that
quadratic polynomial inequalities can be linearized if they are concave.
A generalization of Motzkin’s transposition theorem is proved, which is
used to generate an interpolant between two mutually contradictory con-
junctions of polynomial inequalities, using semi-definite programming in
time complexity O(n® + nm), where n is the number of variables and
m is the number of inequalities (This complexity analysis assumes that
despite the numerical nature of approximate SDP algorithms, they are
able to generate correct answers in a fixed number of calls.). Using the
framework proposed in [22] for combining interpolants for a combination
of quantifier-free theories which have their own interpolation algorithms,
a combination algorithm is given for the combined theory of concave
quadratic polynomial inequalities and the equality theory over uninter-
preted functions (EUF).

Keywords: Program verification - Interpolant - Concave quadratic
polynomial + Motzkin’s theorem - SOS - Semi-definite programming

1 Introduction

It is well known that the bottleneck of existing verification techniques includ-
ing theorem proving, model-checking, abstraction and so on is the scalability.
Interpolation-based technique provide a powerful mechanism for local and mod-
ular reasoning, which provides an effective solution to this challenge. The study
of interpolation was pioneered by Krajicek [14] and Pudlak [19] in connection
with theorem proving, by McMillan in connection with model-checking [16], by
Graf and Saidi [9], McMillan [17] and Henzinger et al. [10] in connection with
abstraction like CEGAR, by Wang et al. [11] in connection with machine-learning
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based invariant generation. Since then, developing efficient algorithms for gener-
ating interpolants for various theories and their use in verification have become
an active research area [3,10,12,13,17,18,20,26,26]. In addition, D’Silva et al.
[6] investigated strengths of various interpolants.

Methods have been developed for generating interpolants for Presburger
arithmetic, decidable fragments of first-order logic, theory of equality over unin-
terpreted functions as well as their combination. However, in the literature, there
is little work on how to synthesize non-linear interpolants, although nonlinear
polynomials inequalities have been found useful to express invariants for software
involving number theoretic functions as well as hybrid systems [27,28]. In [5],
Dai et al. had a first try and gave an algorithm for generating interpolants for
conjunctions of mutually contradictory nonlinear polynomial inequalities based
on the existence of a witness guaranteed by Stengle’s Positivstellensatz [23] that
can be computed using semi-definite programming (SDP). Their algorithm is
incomplete in general but if every variable ranges over a bounded interval (called
Archimedean condition), then their algorithm is complete. A major limitation of
their work is that two mutually contradictory formulas «,  must have the same
set of variables.

We propose an algorithm to generate interpolants for quadratic polynomial
inequalities (including strict inequalities). Based on the insight that for analyz-
ing the solution space of concave quadratic polynomial inequalities, it suffices
to linearize them. A generalization of Motzkin’s transposition theorem is proved
to be applicable for concave quadratic polynomial inequalities (both strict and
nonstrict). Using this, we prove the existence of an interpolant for two mutually
contradictory conjunctions «, 3 of concave quadratic polynomial inequalities.
The proposed algorithm is recursive with the basis step of the algorithm relying
on an additional condition (called the NSC condition). In this case, an inter-
polant output by the algorithm is a strict or a nonstrict inequality similar to the
linear case. If NSC is not satisfied, then linear equalities on variables are derived
resulting in simpler interpolation problems over fewer variables; the algorithm
is recursively invoked on these smaller problem. The output of this recursive
algorithm is in general an interpolant that is a disjunction of conjunction of
polynomial inequalities. NSC can be checked in polynomial time by SDP algo-
rithms; even though such algorithms are not exact and produce numerical errors,
they often generate acceptable results in a few calls. It is proved that the inter-
polation algorithm is of polynomial time complexity in the number of variables
and polynomial inequalities given that the time complexity of SDP algorithms is
polynomial in the size of their input; this assumes that an SDP tool returns an
approximate answer sufficient to generate a correct interpolant in a fixed number
of calls.

Later, we develop a combination algorithm for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial inequali-
ties and equality theory over uninterpreted function symbols (EUF'). We use the
hierarchical calculus framework proposed in [22] and used in [20] for combining
linear inequalities with FUF. We show that concavity condition on quadratic
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polynomials inequalities disallows derivation of nonlinear equalities of degree
> 2; further, under NSC on concave quadratic polynomial inequalities, only
linear inequalities can be used to derive possible linear equalities. As a result,
the algorithm for deducing equalities from linear inequalities in [20] as well as
the SEP algorithm for separating terms expressed in common symbols in «, 3
can be used for interpolation generation for the combined theory of quadratic
polynomial inequalities and EUF.

A prototypical implementation indicates the scalability and efficiency of the
proposed approach.

The paper is organized as follows. After introducing some preliminaries in
the next section, Sect. 3 discusses the linearization of concave quadratic polyno-
mial. Section 4 presents an approach for computing an interpolant for two mutu-
ally contradictory conjunctions «, 3 of concave quadratic polynomial inequalities
using SDP. Section 5 extends this algorithm to the combined theory of concave
quadratic inequalities and EUF. Section 6 presents a preliminary implementation
of the proposed algorithms and gives some comparison with related work. We
draw a conclusion in Sect. 7. Because of space limit, we omit all proofs, please
refer to the full version [8] for the details.

2 Preliminaries

Let Q and R be the set of rational and real numbers, respectively. Let R[x] be the
polynomial ring over R with variables x = (x1, -+ ,x,). An atomic polynomial
formula ¢ is of the form p(x) ¢ 0, where p(x) € R[x]|, and ¢ can be any of >, >.
Let PT(R) be a first-order theory of polynomials with real coefficients. In this
paper, we are focusing on quantifier-free fragment of PT(R). Later we discuss
quantifier-free theory of equality of terms over uninterpreted function symbols
and its combination with the quantifier-free fragment of PT(R). Let X be a set
of (new) function symbols and PT(R)* be the extension of the quantifier-free
theory with uninterpreted function symbols in X.

For convenience, we use L to stand for false and T for true in what follows.

Craig showed that given two formulas ¢ and % in a first-order logic 7 s.t.
@ = 1, there always exists an interpolant I over the common symbols of ¢ and v
s.t. ¢ = I, 1 |= . In the verification literature, this terminology has been abused
following [17], where a reverse interpolant (coined by Kovacs and Voronkov in
[13]) I over the common symbols of ¢ and ¢ is defined by

Definition 1. Given ¢ and ¢ in a theory T s.t. o Ay =7 L, a formula I is a
(reverse) interpolant of ¢ and ¢ if (i) ¢ =7 I; (ii) I Ay E7 L; and (iii) I only
contains common symbols and free variables shared by ¢ and .

Clearly, ¢ =7 ¢ iff ¢ A0 =7 L. Thus, I is an interpolant of ¢ and ¢ iff I is
a reverse interpolant of ¢ and —p. We abuse the terminology by calling reverse
interpolants as interpolants.
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2.1 Motzkin’s Transposition Theorem

Motzkin’s transposition theorem [21] is one of the fundamental results about
linear inequalities; it also served as a basis of the interpolant generation algorithm
for the quantifier-free theory of linear inequalities in [20].

Theorem 1 (Motzkin’s transposition theorem [21]). Let A and B be
matrices and let o and B be column vectors. Then there exists a vector x with
Ax > « and Bx > 3, iff for all row vectors y,z > 0:

(7) if yA+zB =0 then ya + z3 < 0;
(i) if yA+2zB =0 and z # 0 then ya + z3 < 0.

The following variant of Theorem 1 is used later.

Corollary 1. Let A € R™*" and B € R**"™ be matrices and o € R" and 3 € R®
be column vectors, where A, i =1,...,r is the ith row of A and B;j,j =1,...,s
is the jth row of B. There does not exist a vector x with Ax > a and Bx > 3,
iff there exist real numbers \i,..., A\ >0 and ng,n1,...,ns > 0 s.t.

Z/\i(Aix_ai)+an(BjX_ﬂj)+n0 =0 with Z??j > 0. (1)
i=1 j=1

Jj=0

3 Concave Quadratic Polynomials and their Linearization

Given n X n-matrix A, we say A is negative semi-definite, written as A < 0, if
for every vector x, xTAx < 0, and positive semi-definite, written as A > 0, if
for every vector x, x" Ax > 0. Let A = (a;;) and B = (b;;) be two matrices in
R™>*™ the inner product of A and B, denoted by (A, B), is defined as (A, B) =
m n

> 2 aij X by

i=15=1

Definition 2 (Concave Quadratic). A polynomial f € R[x] is called concave
quadratic (CQ) if the following two conditions hold:

(i) f has total degree at most 2, i.e., it has the form f = xT Ax+2a™x+a, where
A is a real symmetric matriz, o is a column vector and a € R;
(ii) the matrix A is negative semi-definite.

It is easy to see that if f € R[x] is linear, then f is CQ because its total degree
is 1 and the corresponding A is 0 which is of course negative semi-definite.
A quadratic polynomial f(x) = x"Ax + 2a™x + a can also be represented as

T T
an inner product of matrices, i.e., <P, (1 x T>> ,with P as <a @ >

X XX a A
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3.1 Linearization

T
Given a quadratic polynomial f(x) = <P, (1 x T) >, its linearization is defined

X XX

T T
as f(x) = <P, <)1( };) >, where X is a symmetric matrix and ()1( };(> > 0.

Let Y: (X(171),X(271)7X(2’2),...,X(k’l),...,X(k’k,),,,.,X(n’l),...,X(n’n)) be

the vector variable with dimension % corresponding to the matrix X . Since
. . . IxT\\ .. . I—
X is a symmetric matrix, ( P, x );) > is a linear expression in x, X.

Consider quadratic polynomials f; and g; (i=1,...,7,5=1,...,s

fi = xTAx 4 2a)x + a, gj = xTBjx + 2,8;-Fx + by,

where A;, B; are symmetric n x n matrices, a;,3; € R", and a;,b; € R. Then

=0 (5} o= (o (L))

a; OC;F bj ,GJT .
where P; = (ozi Ai) , Q5 = (53' B]-> are (n+ 1) x (n+ 1) matrices.

For CQ polynomials f;s and g;s, let

KE{xeR"| fi(x)>0,..., fr(x) >0,91(x) > 0,...,9:(x) > 0}, (2)

o120 ()0 A ()00 A 0 (500

In [7,15], when K and K are defined only with f;s without g;s, i.e., only
with nonstrict inequalities, it is proved that K = K;. By Theorem 2 below, we
show that K = K also holds even in the presence of strict inequalities when f;
and g; are CQ. So, when f;s and g;s are CQ, the CQ polynomial inequalities
can be transformed equivalently to a set of linear inequality constraints and a
positive semi-definite constraint.

Theorem 2. Let fi,...,fr, g1,...,9s € R[x] be CQ, K and Ki as above, then
K=K;.

3.2 Motzkin’s Theorem in Matrix Form

x X
reformulated as:

T
If <P7 (1 X >> is seen as a linear expression in x, X, then Corollary 1 can be

Corollary 2. Let x be a column vector variable with dimension n and X be an
n x n symmetric matrix variable. Suppose Py, ..., P, and Q1,...,Qs are (n+1) X
(n+ 1) symmetric matrices. Let

V=t A( () 20 Ao () > o
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then V = 0 iff there exist A\1,..., A\ >0 and no,m,-..,ns > 0 such that

ET x(e (2% +§s o (P ) bm=0 motmt. .m0
. 7 (2 XX . 1”]] J XX 7]0* ) 770 7]1 773 .
= p

4 Interpolants for Concave Quadratic Polynomial
Inequalities

Problem 1: Given two formulas ¢ and + on n variables with ¢ Ay = L, where

¢=f>20AN... ANfr;, 20N >0A ... Ags, >0,
YV=fr41 20N .. Afr >20ANGgs;41 >0A...ANgs >0,

in which fi,..., fr, g1,...,9s are all CQ. Our goal is to develop an algorithm to
generate a (reverse) Craig interpolant I for ¢ and ¢, on the common variables
of g and ¥, st. o =T and T Ay = L. We use x = (z1,...,zq4) to stand for the
common variables appearing in both ¢ and ¥, y = (y1,...,y.) for the variables
appearing only in ¢ and z = (21,...,2,) for the variables appearing only in 1,
where d+u+v = n. We call the conjunctive theory of CQ polynomial inequalities
as CQL

The proposed Algorithm IG-CQI in Sect. 4.5 is recursive: the base case is
when no sum of squares (SOS) polynomial can be generated by a nonpositive
constant combination of the polynomials in nonstrict inequalities in ¢ A+). When
this condition is not satisfied, then identify variables which can be eliminated
by replacing them by linear expressions in terms of other variables and gener-
ate equisatisfiable problem with fewer variables on which the algorithm can be
recursively invoked.

4.1 NSC Condition and Generalization of Motzkin’s Theorem

Definition 3. Formulas ¢ and 1 in Problem 1 satisfy the non-existence of an
SOS polynomial condition (NSC) iff there do not exist 61 > 0,...,8, > 0, s.t.
—(81f1 + ...+ 6-fr) is a non-zero SOS.

Note that nonnegative quadratic polynomials are all SOS. So, the above con-
dition implies that there is no nonnegative constant combination of nonstrict
inequalities which is always nonpositive. If quadratic polynomials appearing in
¢ and 1 are linearized, then the above condition is equivalent to requiring that
every nonnegative linear combination of the linearization of nonstrict inequalities
in ¢ and v is negative.

The following theorem is a generalization of Motzkin’s theorem to CQI and
gives a method when NSC is satisfied, for generating an interpolant by consid-
ering linearization of ¢, in Problem 1 and using Corollary 2.
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Theorem 3. Let fi,...,fr,01,--.,9s be CQ polynomials in Problem 1. If NSC
holds, then there exist \; >0 (i=1,---,7),1m; >0 (j =0,1,--- ,s) and a quadratic
SOS polynomial h € R[x,y,z] such that

ZAif¢+angj+no+hEO, no+m+...+ns=1 (4)
=1 J=1

4.2 Base Case: Generating Interpolant when NSC is Satisfied

Using Theorem 3, an interpolant for ¢ and 1 is generated from the SOS polyno-
mial h by splitting it into two SOS polynomials as shown below.

Theorem 4. Let ¢ and ) be as in Problem 1 with $A¢ = L, which satisfy NSC.
Then there exist \; >0 (i=1,---,7),7; >0 (j =0,1,---,s) and two quadratic
SOS polynomial hi € R[x,y] and hs € R[x,z| such that

Z)\ifi+znjgj+770+hl+h2507 Nno+m-+...+ns =1 (5)

i=1 j=1

Let I =377 Nifi + 3255 m9; +no + hi. Then I € Rx], and if 351, n; > 0, then
I >0 is an interpolant otherwise I > 0 is an interpolant.

Further, we can prove that h, h1, ha have the following form:

(H): hooyiz) = aln — hlom w4 o 4 aulye — LGP +
aur1(z1 = bug1(X,22,. ., 20))° + -+ + Guio(20 = lupo(X))® + Guporr(zr —
lutor1 (T2, 2a))2 4 + Gugora(Ta = lutora)® + Gupotdi,

(H1) : ha(x,y) = a1(yr — (X, 92, 00)® + -0 + @u(yu — lu(x))® + 2524 (2 —
lugot1 (@2, @a))? + oo 4 P (g — lyqypg)? + TuESEEEL
(HQ) D he(x,2) = auti(z1 — lugi(x, zz,...,zv))2 + o+ Guto(ze — lu_‘_v(x))2 +

au+2v+1 (ml _ lu+v+l(m27 L 7xd))2 N llu+21)+d (md _ l11.+v+(i)2 + Llu+1;2+d+1 ,

where a; > 0 and [;’s are linear expressions. These forms of hy, hy are used to
generate equalities among variables later in the algorithm when NSC is not
satisfied.

4.3 Computing Interpolant Using Semi-definite Programming

Let W = T ,fi = <PZ,W>, g = <Qj,VV>7 where P; and Q]' are

(n+1) x (n+ 1) matrices, and hy = (M, W), hy = (M, W), M = (M;;)axa, M =
(M;;)ax4 with appropriate dimensions, e.g., M2 € R**? and Mz, € R**?. Then,
with NSC, by Theorem 4, computing the interpolant is reduced to the following
SDP feasibility problem.
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Find: A1,..., A\, 71, ..., 75 € R and symmetric matrices M, M € RFDx 0+ g ¢

D NP+ 370 miQi +moEay + M+ M=0,37_,n =1,
May = (Mis)" =0, Mz = (Ma4)" =0, Mys = (Msa)" =0, Mas =0,
Mzy = (Mi3)T =0, M3y = (Ma3)T =0, Maz = 0, Mzs = (Maz)* =0,
M=0,M=0,X>0,m>0 fori=1,...,r,j=1,...,s,

where F(; 1 is a (n+1) x (n+1) matrix, whose all entries are 0 except for (1,1) = 1.

This standard SDP feasibility problem can be efficiently solved by SDP
solvers such as CSDP [1], SDPT3 [24], etc. A major weakness of these algorithms
is their incompleteness, however.

Approximate Nature of SDP Algorithms. Even though known SDP algo-
rithms are of polynomial complexity, they are numerical and are not guaranteed
to produce exact answers; they are however able to generate results within a very
small threshold in a fixed number of iterations. Such techniques are thus consid-
erably more attractive than solving the Problem 1 using exact symbolic methods
of high complexity. This is especially critical for scaling our approach. To guar-
antee the soundness of our approach, we check results produced by approximate
numerical algorithms by symbolic checking [4] and numeric-symbolic method
[25] to verify whether an interpolant so computed does indeed satisfy the con-
ditions in Definition 1. If not, we can tone down the threshold of the SDP and
repeat the above procedure.

4.4 General Case

The case of Var(¢) C Var(v) is easy: ¢ itself serves as an interpolant of ¢ and .
We thus assume that Var(¢) ¢ Var(y). If ¢ and ¢ do not satisfy NSC, then an
SOS polynomial h(x,y,z) = —(3_/_, Xif:) can be computed which can be split
into two SOS polynomials ki (x,y) and ha(x,z) as discussed in Subsect. 4.2. Then
an SOS polynomial f(x) s.t. ¢ E f(x) > 0 and ¢ = —f(x) > 0 can be constructed
by setting f(x) = (3;1, 0ifi) + ha = =301, 1 0ifi) — h2,d; > 0. We show below
how “simpler” interpolation subproblems ¢’, 1’ are constructed from ¢ and v
using f.

Lemma 1. If NSC is not satisfied, then there exists f € R[x] s.t. ¢ < ¢1V ¢
and ¥ < 1 V 2, where,
dr=(f>0N¢), p2=(f=0A9), Y1 =(—f>0A%), 2= (f=0A%). (6)

It easily follows that an interpolant I for ¢ and v can be constructed from an
interpolant I o for ¢2 and ,.

Theorem 5. Let ¢, ¢, ¢1,¢2,91,92 be same as in Lemma 1, I2 o be an inter-
polant for ¢o and e, then I := (f > 0)V (f > 0A I2) is an interpolant for ¢
and 1.
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If h and hence hi, hy have a positive constant ay4vta+1 > 0, then f cannot
be 0, implying that ¢» and > are 1. We thus have

Theorem 6. With ¢, v, ¢1,d2,%1,v%2 as in Lemma 1 and h has ay+ytra+1 > 0,
then f > 0 is an interpolant for ¢ and .

In case h does not have a constant, i.e., dyyyt+q+1 = 0, from the fact that hq
is an SOS and has the form (H1), each nonzero square term in h; is identically
0. This implies that some of the variables in x,y can be linearly expressed in
term of other variables; the same argument applies to hy as well. In particular,
at least one variable is eliminated in both ¢5 and 15, reducing the number of
variables appearing in ¢ and v, which ensures the termination of the algorithm.

Theorem 7. If h above does not have a constant, i.e., if aytvtar1 = 0, by elim-
inating (at least one) variables in ¢ and v in terms of other variables as derived
from h1 =0, ha = 0, mutually contradictory formulas ¢',+" with fewer variables
are derived by

L oA s1 R r ~ s .
o = /\i:1 fi>on /\jzlgj >0, ¢ = /\i:Tﬁ1 fi>0n /\j:SIng >0,

where fis and ;s are derived from the respective f; and gi by replacing the
eliminated variable(s) with the corresponding resulting expression(s).

The following simple example illustrates how the above construction works.

Example 1. Let fi = x1, fo = @2, fs = —27 — 23 — 200 — 22,91 = —x5 + 231 — 25 +
222 —y*. Two formulas ¢ := (f1 > 0)A(fa > 0)A(g1 > 0), ¥ := (f3 > 0). pAY | L.
NSC does not hold, since h = —(0f1 +2f2 + f3) = x5 + 23 + 22 is an SOS; h is split
into hy = %x%Jr%x%, ho = %x%Jr%x%Jer. Thus f =0f1+2f2+h1 = %x%+%x§+2x2.

For the recursive call, we construct ¢’ from ¢ by adding z; = 0,22 = 0 derived
from hy = 0; similarly +’ is constructed from + by adding z; = 22 = 0,2 = 0
derived from hy = 0. That is, ¢’ =0>0A0>0A -2 >0=1, ' =0>0=T.
Thus, I(¢',9") := (0 > 0) = L is an interpolant for (¢, ").

An interpolant for ¢ and ¢ is thus (f(z) > 0) vV (f(z) =0A I(¢’,4’)), which is
17+ 123 + 222 > 0.

4.5 Algorithms

The above recursive approach is formally described as Algorithm 2. For the base
case when ¢, ¢ satisfy NSC, it invokes Algorithm 1 using known SDP algorithms.
For a predefined threshold, an SDP problem can be solved in polynomial time, say
g(k), where k is the input size [7]. Further its solution can be checked to determine
whether a formula thus generated is indeed an interpolant; in case of failure, the
process is repeated typically leading to convergence in a few iterations.
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Algorithm 1. Interpolation Generation for NSC Case (IG-NSC)

input : ¢ and 1 satisfying NSC, and ¢ A ¢ = L, where
¢=fi>0AN...ANfr, 20ANg1 >0A...Ags, >0,
YV=Ffr+1 20N ANfr>20Ags;+1 >0A...Ags >0,
fi,.-os fry91,-..,9s are all CQ polynomials,
f17"'7f7“1191a"'7951 GR[va]’ leJrlv"'7f7‘7gs1+17"'7gs € R[X7Z]
output: A formula I to be an interpolant for ¢ and v

1 Find M\q,..., A\ >0,,70,71,...,ms > 0,h1 € R[x,y], h2 € R[x,2z] by SDP s.t.

Z)\ifi+z77jgj +mo+hi+he=0, o+m+...+n =1,
i=1

— =
where h1, he are SOS polynomials;

2 f=300 Nifi+ 2?:1 n;9; +no + hi;

3 if >>°L,m; >0 then I:=(f>0);elsel:=(f2>0);

4 return /

Algorithm 2. Interpolation Generation for CQ Formulas (IG-CQI)

input : ¢ and ¢ with ¢ Ay = L, where
¢:f1 20/\”~/\fr1 >0A g >0/\.../\gs1 >0,
YV=Ffr+1>20AN...ANfr>0Ags;+1 >0A...Ags >0,
fi,.-o s fry91,-..,9s are all CQ polynomials,
f17”‘7f7“11917"'7g-51 GR[va]a and
fritts--os fryGoit1,---,9s € R[x, 2]

output: A formula I to be an interpolant for ¢ and v

1 if Var(¢) C Var(y) then I := ¢; return [;

2 Find 61,...,6, > 0,h € R[x,y,2z] by SDP s.t. >7_, 6;fi + h =0 and h is SOS;
*/

/* Check the condition NSC

3 if no solution then I := IG-NSC(¢,v); return I;
/* NSC holds

4 Construct h1 € R[x,y] and hs € R[x,z] with the forms (H1) and (H2);

5 f=2000fi + =~ Z:r1+1 difi = ho;

6 Construct ¢’ and 1’ using Theorems 6 & 7 by eliminating variables due to
hl = hz = 0;

7 I' = 1G-CQI(¢', ") ;

I=(f>0)V(f>0AL);

9 return /

®

*/

Theorem 8 (Soundness and Completeness). Algorithm 2 computes

interpolant I if it exists for any given ¢ and v with ¢ AN = L.

an
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Theorem 9. The complexity of IG-NSC and IG-CQI are O(g(r +s+n?))', and
O(ng(r + s +n?)), respectively, where r is the number of nonstrict inequalities, s
s the number of strict inequalities, and n is the number of variables.

5 Combination: CQI with EUF

This section combines the conjunctive theory of concave quadratic polynomial
inequalities (CQI) with the theory of equality over uninterpreted function sym-
bols (EUF). Algorithm 4 for generating interpolants for the combined theo-
ries is patterned after the algorithm INTER ;= in Fig.3 in [20] following the
hierarchical reasoning and interpolation generation framework in [22] with the
following key differences?:

1. To generate interpolants for CQI, Algorithm 2 is called.

2. If NSC is satisfied by nonstrict polynomial inequalities, linear equalities
are deduced only from the linear inequalities; it is thus possible to use
INTER ()= in Fig.3 in [20] for deducing equalities; separating terms for
mixed equalities are computed in the same way as in the algorithm SEP in
[20]. Further, it can be proved that a nonlinear polynomial equality of degree
> 2 cannot be generated from CQI.

3. If NSC is not satisfied, as in Algorithm 2, a polynomial f(x) s.t. ¢ = f(x) >0
and ¢ = —f(x) > 0 can be constructed by letting f(x) = (3°/1, 0ifi) + h1 =
—(Xi=r 41 0ifi) — h2,0; > 0, as discussed in Sect. 4.4. Using Lemma 1, reduce
the interpolation problem for ¢ and 1 to a simpler interpolation problem for
¢’ and v’ with fewer variables.

5.1 Problem Formulation

Let 2 = 21 U £2; U 23 be a finite set of uninterpreted function symbols in EUF;
further, denote 2, U2, by 212 and 2, U3 by ;3. Let R[x,y, z]? be the extension
of R[x,y,z] in which polynomials can have terms built using function symbols in
2 and variables in x,y, z.

Problem 2: Suppose two formulas ¢ and ¢ with ¢ Ay E L, where ¢ =
fi 20N ANfry, 20Ag1 >0AN...AGsy, >0, % = frip1 > 0AN.OAfr >
OAgs;41 > 0A...Ags >0, in which fi,...,fr,¢1,...,9s are all CQ polynomi-
als, fi,.ooy fry G- or 951 € RX Y2, frovtyenns fryGsyity- - gs € R[x,2]?13, the
goal is to generate an interpolant I for ¢ and v, over the common symbols x, {21,
i.e., I contains only polynomials in R[x]“!.

! Under the assumption that SDP tool returns an approximate but correct answer in
a fixed number of calls.

2 The proposed algorithm and its way of handling of combined theories do not crucially
depend upon using algorithms in [20]; however, adopting their approach makes proofs
and presentation totally on CQIL
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Flatten and Purify: Flatten and purify ¢ and 1 by introducing fresh vari-
ables for each term starting with uninterpreted symbols as well as for the terms
containing uninterpreted symbols. Keep track of new variables introduced exclu-
sively for ¢ and v as well as new common variables.

Let ¢ Ay A A\ D be obtained from ¢ A4 by flattening and purification where D
consists of unit clauses of the form w(ci,...,cn) = ¢, where c, ..., ¢, are variables
and w € 2. Following [20,22], using the axiom of an uninterpreted function
symbol, a set N of Horn clauses are generated as follows, N = {A;_, cx = bx —
¢c=b|wla,...,cn) =c € Dyw(bi,...,b,) = b € D}. The set N is partitioned
into Ng, Ny, Nmix with all symbols in Ng, Ny, appearing in ¢, v, respectively, and
Nmix consisting of symbols from both ¢,. It is easy to see that for every Horn
clause in Npix, each of equalities in the hypothesis as well as the conclusion is
also mixed.

dAYEL M dAYADE L iff (AN AW AN A Nmix = L. (7)

Notice that (¢ A Ng) A (1 A Ny) A Nmix = L has no uninterpreted function
symbols. If Niix can be replaced by N and N¥, as in [20] using separating
terms, then IG-CQI can be applied. An interpolant generated for this problem?
can be used to generate an interpolant for ¢, vy after uniformly replacing all new

symbols by their corresponding expressions from D.

5.2 Combination Algorithm

If Nmix is empty, Algorithm 4 invokes Algorithm 2 (IG-CQI) on a finite set of sub-
problems generated from a disjunction of conjunction of polynomial inequalities
by expanding Horn clauses in Ny and Ny, and applying De Morgan’s rules. The
resulting interpolant is a disjunction of conjunction of the interpolants generated
for each subproblem.

The case when Nuix is nonempty has the same structure as the algorithm
INTER;(q)= in [20]. The following lemma proves that if a conjunction of polyno-
mial inequalities satisfies NSC and an equality on variables can be deduced from
it, then it suffices to consider only linear inequalities in the conjunction. This
property enables us to use Algorithm INTER ;)= in Fig.3 in [20] for deduc-
ing equalities; separating terms for the constants appearing in mixed equalities
are computed in the same way as in Algorithm SEP in [20] (Lines 2 and 3 in
Algorithm 3 where INTERp, a modified version of INTER )=, is used solely
to deduce equalities and separating terms and not interpolants, thus generating
N&,,N%,). Then Algorithm 4 is called.

3 After properly handling Nuyix since Horn clauses have symbols both from ¢ and ).
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Algorithm 3. IG-CQI-EUF

input : % and @ constructed respective from (]5 and ’Lb by flattening and purification,

D : definitions of fresh variables introduced during flattening and purifying ¢, 1,

N : instances of functionality axioms for functions in D,

d=f>20AN...ANfr, 20ANg1 >0A...Ags, >0,

V= r+1 20N ... ANfr>20Ags ;41 >0A...Ags >0,

where ¢ A Y ): 1, f1, ceey fm gi,...,3s are all CQ polynomials,

flv' . '7f7‘13917’ <1 9s1 € R[XaY]’ and f”‘1+17' . 'afTagsl+17' - 9s € R[X,Z]
output: A formula I to be a Craig interpolant for ¢ and

1 if NSC holds then
2 Ly = LP(¢), Ly = LP(l/J),
3 INTERp(L1, L2, N, 0,0, D, 0);

/* INTERp is a modified version of the INTERLEI(Q) algorithm given in Figure 3 in

[20] which is used here to separate every mixed Horn clause in N of the form
Nieici =d; = ¢ =d into Njq¢; = tj— =c= f(tr,' .- ,t;;),
Nieqd; = t;r =d= f(t;r, ce ,t:';). It does not call INTERi (@) to generate
an interpolant (line 29 of INTER.LEI(Q))‘ Wwhen INTERp terminates Nuix with
initial value N is separated into N¢ and Nw with entailed equalities in A.
Because of space limitations, we are not reproducing lines 1-28 of the code in
INTER;; g - */

T :=1G-NMIX (¢, %, Ns, Ny);

else

Find 61, ey dr > 0 and an SOS polynomial h by SDP s.t. Z;:l 5,f1 +h =0;

Construct b1 € R[x,y] and he € R[x, 2] with form (H1) and (H2);

f= Z:;Ldzfz -th = - Z::”H difi — ha;

9 Construct @’ and ¥’ by Theorem 7 by eliminating variables from h1 = he = 0;
10 | I' :=1G-CQI-EUF(¢, 9", D,No); I := (f > 0)V (f > 0AT');

11 end

® N o a B

12 Obtain I from T; return I

Algorithm 4. Invariant Generation without Npix (IG-NMIX)

input : ¢ and 1, constructed respectively from ¢ and v by flattening and
purification,
Ny : instances of functionality axioms for functions in Dy,
Ny : instances of functionality axioms for functions in Dy,
where ¢ A A Ny ANy = L
output: A formula I to be a Craig interpolant for ¢ and
1 Transform ¢ A Ny to a DNF V;¢;;
2 Transform ¢ A Ny to a DNF V;4);;
3 return I := V; A; IG-CQI(¢s, v;)

Lemma 2. Let ¢ and ¢ be obtained as above satisfying NSC. If ¢ A is sat-
isfiable, ¢ N |= cx = bx, then LP(¢) A LP(¥) = cp = by, where LP(6) is the
conjunction of the linear constraints in 0.
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If NSC is not satisfied, then linear equalities from SOS polynomials h, k1, ho
and f as explained above and discussed in Sect. 4.4 (Lines 6-8 in Algorithm 3) are
used to generate simpler subproblems ¢’ and v’ from ¢ and v, and Algorithm 3
is recursively called (Lines 9-10 in Algorithm 3).

Theorem 10 (Soundness and Completeness). IG-CQI-EUF computes an
interpolant I of mutually contradictory ¢, with CQ polynomial inequalities and
EUF if it exists.

Ezxample 2. Let ¢ == (fi = —(y1 — 21 + 1) =21+ 22 > 0) A (y2 = ayn) + 1) A
1= a3 —x3 —y34+1>0), ¢ = (fo = —(z1 —x2+1)>+21 —22 > 0) A
2 =a(z1) — 1) A (g2 = —x3 — 23 — 25 + 1 > 0). Flattening and purification gives
=(fi>20Aypa=y+1Ag >0), Y :=(fo >0A2s=2—1Ags > 0), where
={y=a(),z=a(z)}, N=@Wm=21—y=2).

NSC is not satisfied, since h = —f1 — fo = (y1 — 1 + 1)* + (21 — 22+ 1)% is an
SOS. We follow the steps given in Sect. 4.4 (Lines 6-8 of IG-CQI-EUF) and obtain
hi = (y1—z1+1)%, he = (21 —22+1)%. This gives f := fi+h1 = —fo—he = —x1+22.

By Lemma 1, an interpolant for ¢, is an interpolant of (¢ A f > 0)V(pA f =
0)) and (A —f > 0)V (¢ A f=0)), that is (f > 0) V (f > 0 A I2), where I, is
an interpolant for ¢ A f = 0 and ¥ A f = 0. It is easy to see that ¢ A f =0 |
yi=x1—1, YANf=0F 2z =2z — 1. Thus, it follows ¢’ : —z1 + 22 > 0Ay2 =
y+1Ag >0Ay1 =21 — 1, and@:xl—xg >0Nzeo=2—1Ag2>0A21 =22 — 1.

At Line 10, recursively call IG-CQI-EUF. Now NSC holds (Line 1); from
linear inequalities in ¢ and ¢/, y1 = 2 is deduced. Separating terms for yi, z;
are constructed by: ¢ = 21 —1 < y1 < 22— 1,90 = aa -1 < 23 < 27 — 1.
Let t = a(xze — 1), then y1 = 21 — y = z is separated into two parts, i.e.,
yp =t - y=tand t" = 21 — t = z. Add them to ¢’ and ¢’ respectively,
we have ¢/, = —z1+22 > 0Aye =y+1Ag >0Ay =21 — LAy =220 — 1 — y =1,
Jl::El—ZL’QZO/\ZQ:Z—l/\QQ>O/\21:IL‘2—1/\I2—1:Z1—>t:Z. Then
¢ = —x1+x2 > 0Ay2 = y+1Ag1 > 0Ay1 = 21— 1A (z2—1 > g1 Vyr > 22— 1Vy = t),
P =21 —22 >0Az2 =2—1Aga >0A2z = 22— 1At =z Thus, ¢, = $2v$3v$4,
where ¢/, = —x1+ 22 > 0Aye =y +1Ag1 > 0Ay =21 — LAz —1 > yi,
33:—@—1—9{:2 >0ANy2=y+1Ag1 >0Ay1 =21 —1Ay >x2—1,$4:—x1+$2 >
OAye =y+1Ag1 >0Ay1 =21 — 1Ay =t Since ¢, = L, it follows ¢/, =
¢,V ¢/, Find interpolants 1(¢/,,4",) and 1(¢/y,9",), then I(¢'5,9",) V I(¢/4,9"1)
is an interpolant.

(9
(7,2
¢

D

6 Implementation and Experimental Results

We are currently developing a state of the art implementation of the above
algorithms using C. In the meantime, for experimentation purposes, we have
developed a prototype for putting together existing tools in Mathematica. An
optimization library AiSat [5] built on CSDP [1] is used for solving SOS and
SDP problems. We give some performance data about this prototype on some
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Table 1. The output formulas in the last column have been verified using the approach
given in [4] to be the true interpolants w.r.t. their corresponding problems in the third
column.

Ex | Type Problem Synthesized interpolant
¢p:—y1+x1 —22>20AN22x0 —21 —1>0
A=y —af + 20y — 251 + 221 > 0
A—y2—y? 224 20 —4 >0
5 | NLA e —z1 + a2 >0
Y:—z14+202+1>0A221 —2z2—1>0
/\—zf—4z§+4z221+3z1—6$2—220
AN—2z23—aF —al 42z +21 —222—1>0
4—22 —9y? >0AYy>0A -1>0
6 |NLA ¢ ey 20Ay20ne+y L@ 4y®+4y) >0
Pz >0A1l -z —(y+1)2>0
iz—2>0AT—y>0A—2>0
7 LA ¢iz-e20nz—y2 # 0.8 — 0.2y > 0
pir+y>0A—-y>0
: >0Az—y>0Ay—a>0
8 | LA+EUF ¢ f(2) = oY= yor= fly) >0
P —f(y) >0
¢:—x1% t 4z Fxy—4>0
9 | Ellipsoid AN—z1—z2+3—9y2>0 =3+ 221 + 212 + 3222 >0
Y =312 — 222 4+1>0Azp —22>0
d—(z—1)2—4y>>0Ay—L1>0 —15.93 4+ 19.30z — 9.65z°
10 | Ellipsoid | © (@ )2 YooY s + e
Yid—(x+1)2—4y2>0Az+2y >0 +91.76y — 38.60y2 > 0
¢p:—3<zrz<IN-2<y<2A—-4<z—y<2
AN—d<z4+y<2Az+2y+1<0 —88.08 — 649.94x
11 | Octagon
P:—1<z<3AN-2<y<2A-2<z—y<4| —1432.44y >0
N—2<z+4+y<4AN2z—-5y+6<0
$:2<z<TA0<y<3A0<z—y<6
AN3<z4+y<9IA23—3x—8y<0 562.10 4+ 1244.11x
12 | Octagon
P:0<z<BH5A2<y<BA-4<z—y<2 —869.83y > 0
N<z+y<9Ay—-3z—-2<0

examples (see Table 1), which have been evaluated on a 64-bit Linux computer
with a 2.93 GHz Intel Core-i7 processor and 4 GB of RAM.

The performance of the prototype is compared on the same platform to those
of three publicly available interpolation procedures for linear-arithmetic cases,
i.e. Rybalchenko’s tool CLP-PROVER in [20], McMillan’s procedure Focr in [17],
and Beyer’s tool CSISAT in [2]. As Table 2 shows, our approach can successfully
solve all these examples rather efficiently. It is especially the completeness and
generality that makes the approach competitive for synthesizing interpolants.
In particular, the prototype performs, in linear cases, with the same complexity
as CSISAT and even better than CLP-PROVER and Foci. Whilst in nonlinear
cases, the method developed in [5] is limited and incomplete even though it works
for nonlinear polynomials (using SDP) since it requires bounds on variables as
well as uncommon variables are not allowed.
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Table 2. Evaluation results of the presented examples

Example Type Time (sec)
CLP-prover | Foci | CSIsat | Our approach

Example 1 | NLA - - - 0.003
Example 2 | NLA+FEUF |- — — 0.036
Example 5 | NLA - - - 0.014
Example 6 | NLA - - - 0.003
Example 7 | LA 0.023 X 0.003 |0.003
Example 8 |LA+EUF | 0.025 0.006 | 0.007 |0.003
Example 9 | Ellipsoid - - - 0.002
Example 10 | Ellipsoid - - - 0.002
Example 11 | Octagon 0.059 X 0.004 |0.004
Example 12 | Octagon 0.065 X 0.004 |0.004

— means interpolant generation fails, and X specifies particularly
wrong answers (satisfiable).

7 Conclusion

The paper proposes a polynomial time algorithm for generating interpolants from
mutually contradictory conjunctions of concave quadratic polynomial inequali-
ties over the reals. Under a technical condition that if no nonpositive constant
combination of nonstrict inequalities is a sum of squares polynomials, then such
an interpolant can be generated essentially using the linearization of concave
quadratic polynomials. Otherwise, if this condition is not satisfied, then the
algorithm is recursively called on smaller problems after deducing linear equali-
ties relating variables. The resulting interpolant is a disjunction of conjunction
of polynomial inequalities.

Using the hierarchical calculus framework proposed in [22], we give an inter-
polation algorithm for the combined quantifier-free theory of concave quadratic
polynomial inequalities and equality over uninterpreted function symbols. The
combination algorithm is patterned after a combination algorithm for the com-
bined theory of linear inequalities and equality over uninterpreted function
symbols.

A prototype has been built, and experimental results indicate our approach
is applicable to all existing abstract interpretation domains widely used in ver-
ification for programs and hybrid systems like octagon, polyhedra, ellipsoid and
so on, which is encouraging for using this approach in the state of the art of
verification techniques based on interpolation®.

* The tool and all case studies can be found at http://lcs.ios.ac.cn/~chenms/tools/
InterCQI_v1.1.tar.bz2.


http://lcs.ios.ac.cn/~chenms/tools/InterCQI_v1.1.tar.bz2
http://lcs.ios.ac.cn/~chenms/tools/InterCQI_v1.1.tar.bz2
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