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Preface

This volume contains the proceedings of the 8th International Joint Conference on
Automated Reasoning, IJCAR 2016, held in Coimbra (Portugal) during June 27 – July 2,
2016. IJCAR is the premier international conference covering all topics in automated
reasoning, including foundations, implementations, and applications. The 2016 edition
of the conference was a merger of three leading events in automated reasoning: Inter-
national Conference on Automated Deduction (CADE), International Symposium on
Frontiers of Combining Systems (FroCoS) and International Conference on Analytic
Tableaux and Related Methods (TABLEAUX). Previous IJCAR conferences were held
at Siena (Italy) in 2001, Cork (Ireland) in 2004, Seattle (USA) in 2006, Sydney (Aus-
tralia) in 2008, Edinburgh (UK) in 2010, Manchester (UK) in 2012, and Vienna
(Austria) in 2014.

The IJCAR 2016 program consisted of presentations of original research papers and
invited talks. Original papers were divided into two categories: regular papers and
system desriptions. There were 79 submissions, consisting of 65 regular papers and 14
systems descriptions. Each paper was carefully reviewed by at least three reviewers. All
reviewers were either members of the Program Committee (PC) or experts in the area
chosen by the PC members. After reviewing and discussing the submissions, the PC
accepted 26 regular papers and nine system descriptions.

The program also included four invited talks of the highest scientific value given by
Arnon Avron (Tel Aviv University), Gilles Barthe (IMDEA Madrid), Sumit Gulwani,
(MSR, Redmond) and André Platzer (CMU, Pittsburgh). The abstracts of the invited
talks are included in the present proceedings.

The peer-reviewed research papers are organized in the proceedings in the following
sections: Satisfiability of Boolean Formulas, Satisfiability Modulo Theory, Rewriting,
Arithmetic Reasoning and Mechanized Mathematics, First-Order Logic and
Proof Theory, First-Order Theorem Proving, Higher-Order Theorem Proving, Modal
and Temporal Logics, Non-Classical Logics, and Verification. The wide range of
sections reflect the variety of topics covered in IJCAR 2016 and witness the maturity
of the area of automated reasoning.

During the conference, the International Conference on Automated Deduction
(CADE) Herbrand Award for Distinguished Contributions to Automated Reasoning
was presented to Zohar Manna and Richard Waldinger. The Best Paper Award was
conferred to Jasmin Christian Blanchette (Inria, France), Mathias Fleury (MPI,
Germany), and Christoph Weidenbach (MPI, Germany) for their paper titled
“A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality.”
Several students received the Woody Bledsoe Travel Awards, named after the late
Woody Bledsoe, and funded by CADE Inc. to support student participation.

Several people helped make IJCAR 2016 a success. We want to express our grat-
itude to the conference chair, Pedro Quaresma, and to the local Organizing Committee
who made IJCAR 2016 possible: Sandra Marques Pinto (publicity chair), Reinhard



Kahle (workshop chair), Nuno Baeta, Carlos Caleiro, Nelma Moreira, João Rasga, and
Vanda Santos. We thank all the members of the PC for their active participation in the
process of evaluating and selecting papers for publication, and during the selection
of the invited speakers. We also thank the external reviewers for their precious con-
tribution. The combined expertise of the PC members and the external reviewers
ensured that the papers accepted for publication were of the highest scientific quality.
We whole-heartedly thank all the authors for submitting their work to IJCAR 2016. On
behalf of the PC, we thank the invited speakers for their contribution. We also
acknowledge the contributions of the workshop and competition organizers. We extend
our thanks to Andrei Voronkov and the EasyChair development team for providing
their conference management platform.

We finally thank the University of Coimbra, the hosting institution, and all sponsors
for their contribution to the success of the event.

April 2016 Nicola Olivetti
Ashish Tiwari
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A Logical Framework for Developing
and Mechanizing Set Theories

Arnon Avron

School of Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel
aa@cs.tau.ac.il

Abstract. We describe a framework for formalizing mathematics which is based
on the usual set theoretical foundations of mathematics. Its most important
feature is that it reflects real mathematical practice in making an extensive use of
statically defined abstract set terms, in the same way they are used in ordinary
mathematical discourse. We also show how large portions of scientifically
applicable mathematics can be developed in this framework in a straightforward
way, using just rather weak set theories which are predicatively acceptable. The
key property of those theories is that every object which is used in it is defined
by some closed term of the theory. This allows for a very concrete, computa-
tionally-oriented interpretation. However, the development is not committed to
such interpretation, and can easily be extended for handling stronger set theo-
ries, including ZFC itself.



Verification of Differential Private Computations

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Differential privacy [3, 4], is a statistical notion of privacy which achieves compelling
trade-offs between input privacy and accuracy (of outputs). Differential privacy is also
an attractive target for verification: despite their apparent simplicity, recently proposed
algorithms have intricate privacy and accuracy proofs. We present two program logics
for reasoning about privacy and accuracy properties of probabilistic computations. Our
first program logic [2] is used for proving accuracy bounds and captures reasoning
about the union bound, a simple but effective tool from probablility theory. Our second
program logic [1] is used for proving privacy and captures fine-grained reasoning about
probabilistic couplings [6, 8], a powerful tool for studying Markov chains. We illustrate
the strengths of our program logics with novel and elegant proofs of challenging
examples from differential privacy. Finally, we discuss the relationship between our
approach and general-purpose frameworks for the verification of probabilistic pro-
grams, such as PPDL [5] and pGCL [7].

References
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Programming by Examples: Applications,
Algorithms, and Ambiguity Resolution

Sumit Gulwani

Microsoft Corporation, Redmond, WA, USA
sumitg@microsoft.com

Abstract. 99 % of computer end users do not know programming, and struggle
with repetitive tasks. Programming by Examples (PBE) can revolutionize this
landscape by enabling users to synthesize intended programs from example
based specifications. A key technical challenge in PBE is to search for programs
that are consistent with the examples provided by the user. Our efficient search
methodology is based on two key ideas: (i) Restriction of the search space to an
appropriate domain-specific language that offers balanced expressivity and
readability (ii) A divide-and-conquer based deductive search paradigm that
inductively reduces the problem of synthesizing a program of a certain kind that
satisfies a given specification into sub-problems that refer to sub-programs or
sub-specifications. Another challenge in PBE is to resolve the ambiguity in the
example based specification. We will discuss two complementary approaches:
(a) machine learning based ranking techniques that can pick an intended pro-
gram from among those that satisfy the specification, and (b) active-learning
based user interaction models. The above concepts will be illustrated using
FlashFill, FlashExtract, and FlashRelate—PBE technologies for data manipu-
lation domains. These technologies, which have been released inside various
Microsoft products, are useful for data scientists who spend 80 % of their time
wrangling with data. The Microsoft PROSE SDK allows easy construction of
such technologies.



Logic and Proofs for Cyber-Physical Systems

André Platzer

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
aplatzer@cs.cmu.edu

Abstract. Cyber-physical systems (CPS) combine cyber aspects such as com-
munication and computer control with physical aspects such as movement in
space, which arise frequently in many safety-critical application domains,
including aviation, automotive, railway, and robotics. But how can we ensure
that these systems are guaranteed to meet their design goals, e.g., that an aircraft
will not crash into another one?
This paper highlights some of the most fascinating aspects of cyberphysical

systems and their dynamical systems models, such as hybrid systems that
combine discrete transitions and continuous evolution along differential equa-
tions. Because of the impact that they can have on the real world, CPSs deserve
proof as safety evidence.
Multi-dynamical systems understand complex systems as a combination of

multiple elementary dynamical aspects, which makes them natural mathematical
models for CPS, since they tame their complexity by compositionality. The
family of differential dynamic logics achieves this compositionality by providing
compositional logics, programming languages, and reasoning principles for
CPS. Differential dynamic logics, as implemented in the theorem prover KeY-
maera X, have been instrumental in verifying many applications, including the
Airborne Collision Avoidance System ACAS X, the European Train Control
System ETCS, automotive systems, mobile robot navigation, and a surgical
robot system for skullbase surgery. This combination of strong theoretical
foundations with practical theorem proving challenges and relevant applications
makes Logic for CPS an ideal area for compelling and rewarding research.
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Abstract. We describe a framework for formalizing mathematics which
is based on the usual set theoretical foundations of mathematics. Its most
important feature is that it reflects real mathematical practice in making
an extensive use of statically defined abstract set terms, in the same way
they are used in ordinary mathematical discourse. We also show how
large portions of scientifically applicable mathematics can be developed
in this framework in a straightforward way, using just rather weak set
theories which are predicatively acceptable. The key property of those
theories is that every object which is used in it is defined by some closed
term of the theory. This allows for a very concrete, computationally-
oriented interpretation. However, the development is not committed to
such interpretation, and can easily be extended for handling stronger set
theories, including ZFC itself.

Set theory is almost universally accepted as the foundational theory in which
the whole of mathematics can be developed. As such, it is the most natural
framework for MKM (Mathematical Knowledge Management). Moreover: as is
emphasized and demonstrated in [7], set theory also has a great computational
potential. However, in order to be used for these tasks it is necessary to overcome
the following serious gaps that exist between the “official” formulations of set
theory (like ZFC) and actual mathematical practice:

– Unlike the language used in real mathematical practice, the language(s) used
in official formalizations of set theories are rather poor and inconvenient.

– ZFC treats all the mathematical objects on a par, and so hid the computa-
tional significance of many of them.

– Core mathematics practically deals only with a fraction of the set-theoretical
“universe” of ZFC. Therefore easier to mechanize systems, corresponding to
universes which are better suited for computations, should do.

The goal of this paper is to present a unified, type-free, user-friendly frame-
work (originally developed in [2,3]) for formalizations of axiomatic set theories
of different strength, from rudimentary set theory to full ZFC. Our framework
makes it possible to employ in a natural way all the usual set notations and
constructs as found in textbooks on naive or axiomatic set theory (and only
such notations). Another important feature of this framework is that its set of
c© Springer International Publishing Switzerland 2016
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closed terms suffices for denoting every concrete set (including infinite ones!)
that might be needed in applications, as well as for computations with sets.

Our basic assumption is that the sets which are interesting from a computa-
tional point of view are those which can be defined by abstract terms the form
{x | ϕ}, using formulas in some, intuitively meaningful, formal language. Now
the use of such terms is also indispensible for any user-friendly treatment of set
theories. Therefore they are used in all textbooks on first-order set theories, as
well as in several computerized systems. However, whenever they are intended
to denote sets (rather than classes) they are introduced (at least partially) in a
dynamic way, with different semantic justification each time. In contrast, what
abstract set terms may be used in our framework is statically defined in a precise,
purely syntactic way, using the mechanism of safety relations.

A safety relation is a syntactic relation between formulas and sets of variables,
which provide a common generalization of the notions of domain-independence
(in database theory), absoluteness (in set theory), and decidability (in formal
arithmetics). Intuitively, ϕ is safe with respect to {y1, ..., yk} (where Fv(ϕ) =
{x1, ..., xn, y1, ..., yk} and k > 0) if for every “accepted” sets a1, ..., an, the col-
lection {〈y1, ..., yk〉 | ϕ(a1, ..., an, y1, ..., yk)} is also an “accepted” set, which can
be constructed from a1, ..., an. Safety with respect to the empty set intuitively
means “definiteness”, and should be thought of as a generalization of decidabil-
ity and of absoluteness. The differences between set theories is mainly reduced in
our framework to different interpretations of the vague notions of “acceptable”,
“can be constructed”, and “definite”.

1 Outline of the Formal Framework

1.1 Logics

We allow the use of four different types of logics in our framework. The basic two
are classical first-order logic and intuitionistic first-order logic. However, in our
opinion the first-order level is not sufficient for handling infinity in a satisfactory
way, while second-order logic is too strong. In [1] it was argued that TC-logic
(also called ancestral logic — AL) which allows the use of a transitive closure
operation TC provides a better framework for the formalization of mathematics.
This suggestion (again in two versions: classical and intuitionistic) seems partic-
ularly promising for the present project, since with TC the difference between
set theories with infinity and those without it can again be reduced to differences
in the underlying syntactic safety relations.

1.2 Languages

A language L for a set theory S should be based in our framework on some first-
order signature σ which includes ∈ and =, and it is introduced by a simultaneous
recursive definition of its terms, formulas, and the safety relation � that underlies
it. The clauses for the terms and formulas of such L always include the usual
ones, together with the following additional clauses:
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– If x is a variable, ϕ is a formula, and ϕ � {x}, then {x | ϕ} is a term.
– If the underlying logic is a TC-logic then (TCx,yϕ)(t, s) is a formula whenever

ϕ is a formula, x, y are distinct variables, and t, s are terms.

The clauses defining the safety relation � of L should include the set of syntactic
conditions given below (which generalize those used for d.i. in database theory).

1. ϕ � ∅ if ϕ is atomic.
2. ϕ � {x} if ϕ ∈ {x = t, t = x, x ∈ x, x ∈ t}, and x �∈ Fv(t).
3. ¬ϕ � ∅ if ϕ � ∅.
4. ϕ ∨ ψ � X if ϕ � X and ψ � X.
5. ϕ ∧ ψ � X ∪ Y if ϕ � X, ψ � Y and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ � X − {y} if y ∈ X and ϕ � X.
7. ∀x(ϕ → ψ) � ∅ if ϕ � {x} and ψ � ∅1

More clauses may then be added, depending on the theory S. In particular, if
TC-logic is used as the underlying logic then the following clause will also be
included: (TCx,yϕ)(x, y) � X if ϕ � X, and {x, y} ∩ X �= ∅.

Definition 1. Given an underlying logic L and a first-order signature σ which
includes ∈ and =, the language LL

σ is the minimal language which satisfies all
the above conditions.

The basic language used in our framework will be RSL = LFOL
σZF

, where FOL
denotes (classical or intuitionistic) first-order logic, and σZF = {∈,=}. Already
in this language (and in its extensions) we can introduce as abbreviations most of
the standard notations for sets used in mathematics, like: ∅, {t1, . . . , tn}, 〈t, s〉,
{x ∈ t | ϕ} in case ϕ � ∅, {t | x ∈ s}, s× t, s∩ t, s∪ t,

⋃
t,

⋂
t, ιxϕ (in case ϕ �

{x}), and λx ∈ s.t. An exact characterization (proved in [4]) of the expressive
power of RSL can be given in terms of the well-known class of rudimentary set
functions (see [8]): For any n-ary rudimentary function F there exists a formula
ϕ such that Fv(ϕ) = {y, x1, . . . , xn}, ϕ �RSL {y} and F (x1, . . . , xn) = {y | ϕ}.
Conversely, if Fv(ϕ) = {y1, . . . , yk, x1, . . . , xn}, and ϕ �RSL {y1, . . . , yk}, then
there exists a rudimentary function F s.t. F (x1, . . . , xn) = {〈y1, . . . , yk〉 | ϕ}.

1.3 The Basic Axioms and Systems

The main part of every Theory T in our framework consists of the following
axiom schemas (our version of the “ideal calculus” [10]):

Extensionality: ∀z(z ∈ x ↔ z ∈ y) → x = y
ComprehensionL: ∀x(x ∈ {x | ϕ} ↔ ϕ)

Given a signature σ and a logic L, we denote by RSTL
σ the theory in LL

σ whose
axioms are the basic ones listed above. Note that the strength of RSTL

σ depends
on the set of terms available in LL

σ , and so on the safety relation used in LL
σ .

Now the most important feature of RSTL
σ is that its two main axioms directly

lead (and are equivalent) to the following set-theoretical reduction rules:
1 In the classical case this condition is derivable from the others.
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(β) �RSTL
σ

t ∈ {x | ϕ} ↔ ϕ{t/x} (provided t is free for x in ϕ).
(η) �RSTL

σ
{x | x ∈ t} = t (provided {x | x ∈ t} is a term, i.e. x �∈ Fv(t)).

It is easy to see that the usual reduction rules of the typed λ-calculus follow from
these reduction rules. In particular: �RSTL

σ
a ∈ s → (λx ∈ s.t)(a) = t{a/x}.

1.4 Extensions by Definitions

It was argued in [12] that the language of ZFC with definitions and partial func-
tions provides the most promising “bedrock semantics for communicating and
sharing mathematical knowledge”. Regularly expanding the language employed
is indeed an essential part of every mathematical research and its presentation.
There are two principles that govern this process in our framework. First, its
static nature demands that conservatively expanding the language of a given
theory should be reduced to the use of abbreviations. Second, since the introduc-
tion of new predicates and function symbols creates new atomic formulas and
terms, one should be careful that the above conditions concerning the underlying
safety relation � are preserved. Thus only formulas ϕ such that ϕ � ∅ can be
used for defining new predicated symbols. Now in the set-theoretical context it
is more convenient to write t ∈ X (instead of X(t)) when X is a defined unary
predicate symbol2, viewing X as a class. Thus we allow the use of class terms of
the form {x̂|ϕ}, provided that ϕ � ∅. The treatment of such terms is done in the
standard way, as described, e.g., in [13]. New function symbols, corresponding
to global operations (like the “rudimentary functions”), can then be introduced
in the form λx ∈ X.t, where X is a class term. See [6] for details.

2 Handling the Axioms of ZF and ZFC

The definability of {t, s} and of
⋃

t means that �RSL suffices for the axioms of
pairing and union. Next we turn to the comprehension axioms that remain valid
if we limit ourselves to hereditarily finite sets. It can be shown ([3]) that each of
them can be captured (in a modular way) by adding to the definition of �RSL

a certain syntactic condition. The separation axiom, for example, is available
whenever ϕ � ∅ (where ϕ is the separating formula and � is the safety relation
used), and this is already quite strong. However, to capture the full power of this
schema we need to add the condition that ϕ � ∅ for every formula ϕ (implying
that we see any formula of the language as defining a “definite” property). Sim-
ilarly, the replacement schema is available whenever the corresponding function
is explicitely definable (in the form λx ∈ s.t), but a more complicated condi-
tion corresponds to the full schema. As for the non-predicative powerset axiom,
the simplest way to get it is to enrich the language with the binary relation ⊆,
add an axiom connecting it with ∈, and then add to the definition of the safety
relation the simple condition: x ⊆ t � {x} if x �∈ Fv(t).

2 The use of binary predicates etc. can be reduced, of course, to the use of unary ones.
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Next we turn to the axiom of Infinity — the only comprehension axiom
that necessarily takes us out of the realm of finite sets. As long as we stick to
first-order languages, it seems impossible to incorporate it into our systems by
just imposing new simple syntactic conditions on the safety relation. Instead,
the best way to capture it is to add to the basic signature a new constant HF
(interpreted as the collection HF of hereditarily finite sets) together with the
obvious counterparts of Peano’s axioms. On the other hand, if a TC-logic is used
as the underlying logic then we get the infinity axiom for free, since the set ω
of the finite ordinals is definable by a safe formula in this extended language:
ω = {y | ∃x.x = ∅ ∧ (TCx,yy = {z | z = x ∨ z ∈ x})(x, y)}.

The regularity axiom can best be incorporated into our framework in the
form of ε-induction. Finally, the most natural way to handle the axiom of choice
in that framework is to further extend its set of terms by allowing the use
of Hilbert’s ε symbol (together with its usual characterizing axiom, which is
equivalent to the axiom of global choice).

3 Predicative Theories and Computational Universes

Let T be a theory formulated within our framework. From the Platonist point
of view, its set of closed terms D(T ) induces some subset S(T ) of the universe
V of sets. (The identity of S(T ) depends only on the language of T and on
the interpretations of the symbols in its signature other than ∈ and =). D(T )
also determines some subset M(T ) of any transitive model M of T . We call a
theory T predicative if the set S(T ) it induces is a “universe” in the sense that
it is a transitive model of T , and in addition the identity of S(T ) is absolute in
the sense that M(T ) = S(T ) for any transitive model M of T (implying that
S(T ) is actually a minimal transitive model of T ). We call a transitive set a
computational universe if it is S(T ) for some predicative theory T . In [4,5] it is
shown that some theories which naturally arise in our framework are predicative
(and so their minimal models are computational). This includes:

RST : This is the theory RSTFOL
σZF

(which can be shown to be equivalent to
Gandy’s basic set theory [11]). Its minimal model S(RST ) is identical to HF
(the collection of hereditarily finite sets), which is J1 in Jensen’s hierarchy.

RSTHF : This is RSTFOL
σZF ∪{HF} extended with Peano’s axioms for HF . Its min-

imal model is J2.
PZF : This is RST T CL

σZF
, where T CL is some reasonable TC-logic. Its minimal

model is Jωω = Lωω .

In a series of papers (e.g. [9]), Feferman showed that predicative mathematics
is sufficient for the formalization of the scientifically applicable mathematics.
However, Feferman’s systems have the drawbacks of not using the standard
set-theoretical framework, and their languages and basic concepts are rather
complicated in comparison to ZFC. The predicative theories of our framework
seem therefore to be a better choice. This thesis has been pursued in [5,6]. [6]
is devoted to the system RSTHF , which is the minimal system that meets all
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the basic predicative principles (in particular, it allows the introduction of the
natural numbers as a complete set). It is shown there how to develop large
portions of applicable mathematics within this minimal theory and its minimal
universe J2. Not surprisingly, the restriction to this minimal framework has its
price: the development of mathematics within it involves a lot of coding, as well
as treating even the real line as a proper class. In contrast, in [5] the development
is done in a way which is very close to mathematical practice, using stronger, but
still strictly first-order, predicative theories. The next step of this project will
examine the use of PZF . PZF seems rather promising in this respect, since its
minimal model, Jωω , allows a natural interpretation of cumulative type theory,
in which Jω, Jω2 , Jω3 ,. . . are taken as the major types. Thus the real numbers
can be taken to be those that are available in Jω (which is far beyond what is
available in J2), and R itself will be an ordinary object of ‘type’ Jω2 .
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Abstract. 99 % of computer end users do not know programming, and
struggle with repetitive tasks. Programming by Examples (PBE) can rev-
olutionize this landscape by enabling users to synthesize intended pro-
grams from example based specifications. A key technical challenge in
PBE is to search for programs that are consistent with the examples
provided by the user. Our efficient search methodology is based on two
key ideas: (i) Restriction of the search space to an appropriate domain-
specific language that offers balanced expressivity and readability (ii)
A divide-and-conquer based deductive search paradigm that inductively
reduces the problem of synthesizing a program of a certain kind that sat-
isfies a given specification into sub-problems that refer to sub-programs
or sub-specifications. Another challenge in PBE is to resolve the ambigu-
ity in the example based specification. We will discuss two complemen-
tary approaches: (a) machine learning based ranking techniques that can
pick an intended program from among those that satisfy the specification,
and (b) active-learning based user interaction models. The above con-
cepts will be illustrated using FlashFill, FlashExtract, and FlashRelate—
PBE technologies for data manipulation domains. These technologies,
which have been released inside various Microsoft products, are useful
for data scientists who spend 80% of their time wrangling with data. The
Microsoft PROSE SDK allows easy construction of such technologies.

1 Introduction

Program Synthesis [4] is the task of synthesizing a program that satisfies a given
specification. The traditional view of program synthesis has been to synthesize
programs from logical specifications that relate the inputs and outputs of the
program. Programming by Examples (PBE) [6] is a sub-field of program synthe-
sis, where the specification consists of input-output examples, or more generally,
output properties over given input states. PBE has emerged as a favorable para-
digm for two reasons: (i) the example-based specification in PBE makes it more
tractable than general program synthesis. (ii) Example-based specifications are
much easier for the users to provide in many scenarios.

2 Applications

PBE has been applied to various domains [3,15], and some recent applications
include parsing [14], refactoring [17], and query construction [20]. However, the
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 9–14, 2016.
DOI: 10.1007/978-3-319-40229-1 2
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killer application of PBE today is in the broad space of data wrangling, which
refers to the tedious process of converting data from one form to another. The
data wrangling pipelines includes tasks related to extraction, transformation,
and formatting.

Extraction: A first step in a data wrangling pipeline is often that of ingesting
or extracting tabular data from semi-structured formats such as text/log files,
web pages, and XML/JSON documents. These documents offer their creators
great flexibility in storing and organizing hierarchical data by combining presen-
tation/formatting with the underlying data. However, this makes it extremely
hard to extract the relevant data. The FlashExtract technology allows extract-
ing structured (tabular or hierarchical) data out of semi-structured documents
from examples [12]. For each field in the output data schema, the user provides
positive/negative instances of that field and FlashExtract generates a program
to extract all instances of that field. The FlashExtract technology ships as the
ConvertFrom-String cmdlet in Powershell in Windows 10, wherein the user pro-
vides examples of the strings to be extracted by inserting tags around them in
test. The FlashExtract technology also ships in Azure OMS (Operations Man-
agement Suite), where it enables extracting custom fields from log files.

Transformation: The Flash Fill feature, released in Excel 2013 and beyond, is a
PBE technology for automating syntactic string transformations of the kind such
as converting “FirstName LastName” into “LastName, FirstName” [5]. PBE can
also facilitate more sophisticated string transformations that require lookup into
other tables [21]. PBE is also a very natural fit for automating transformations
of other data types such as numbers [22] and dates [24].

Formatting: Another useful application of PBE is in the space of formatting data
tables. This can be useful in converting semi-structured tables found commonly
in spreadsheets into proper relational tables [2], or for re-pivoting the underlying
hierarchical data that has been locked into a two-dimensional tabular format [10].
PBE can also be useful in automating repetitive formatting in a powerpoint slide
deck such as converting all red colored text into green, or switching the direction
of all horizontal arrows [19].

3 Algorithms

Our methodology for designing and developing PBE algorithms involves three
key insights: domain-specific languages, deductive search, and a framework that
provides rich reusable machinery.

Domain-specific Language: A key idea in program synthesis is to restrict the
search space to an underlying domain-specific language (DSL) [1,7]. The DSL
should be expressive enough to represent a wide variety of tasks in the under-
lying task domain, but also restricted enough to allow efficient search. We have
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designed many functional domain-specific languages for this purpose, each of
which is characterized by a set of operators and a syntactic restriction on how
those operators can be composed with each other (as opposed to allowing all
possible type-safe composition of those operators) [6].

Deductive Search: A simple search strategy is to enumerate all programs in
order of increasing size [27]. Another commonly used search strategy is to reduce
the search problem to constraint solving via an appropriate reduction and then
leverage off-the-shelf SAT/SMT constraint solvers [8,25,26]. None of these search
strategies work effectively for our domains: the underlying DSLs are too big for
an enumerative strategy to scale, and involve operators that are too sophisticated
for existing constraint solvers to reason about.

Our synthesis algorithms employ a novel deductive search methodology [18]
that is based on standard algorithmic paradigm of divide-and-conquer. The key
idea is to recursively reduce the problem of synthesizing a program expression e of
a certain kind and that satisfies a certain specification ψ to simpler sub-problems
(where the search is either over sub-expressions of e or over sub-specifications
of ψ), followed by appropriately combining those results. The reduction logic
for reducing a synthesis problem to simpler synthesis problems depends on the
nature of the involved expression e and the inductive specification ψ. In contrast
to enumerative search, this search methodology is top-down—it fixes the top-part
of an expression and then searches for its sub-expressions. Enumerative search is
usually bottom-up—it enumerates smaller sub-expressions before enumerating
larger expressions.

Framework: Developing a synthesis algorithm for a specific domain is an expen-
sive process: The design of the algorithm requires domain-specific insights. A
robust implementation requires non-trivial engineering. Furthermore any exten-
sions or modifications to the underlying DSL are not easy.

The divide-and-conquer strategy underneath the various synthesis algorithms
can be refactored out inside a framework. Furthermore, since the reduction logic
depends on the logical properties of the top-level operator, these properties can
be captured modularly by the framework for re-use inside synthesizers for others
DSLs that use that operator. Our PROSE framework [18] builds over these ideas
and has facilitated development of industrial-strength PBE implementations for
various domains.

4 Ambiguity Resolution

Examples are an ambiguous form of specification; there are often many programs
that are consistent with the specification provided by a user. A challenge is to
identify an intended program that has the desired behavior on the various inputs
that the user cares about. Tessa Lau presented a critical discussion of PBE
systems in 2009 noting that PBE systems are not yet widespread due to lack
of usability and confidence in such systems [11]. We present two complementary
techniques for increasing usability and confidence of a PBE system.
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Ranking: Our synthesis algorithms generate the set of all/most programs in the
underlying DSL that are consistent with the specification provided by the user.
We rank these programs and pick the top-ranked program. Ranking is a function
of both program features and data features. Program features typically capture
simplicity and size of a program. Data features are over the data that is generated
by the program when executed on various inputs. Weights over these features
can be learned using machine learning techniques in an offline manner [23].

User Interaction models: In case the ranking does not pick an intended pro-
gram, or even otherwise, we need appropriate user interaction models that can
provide the equivalent of debugging experience in standard programming envi-
ronments. We can allow the user to navigate between all programs synthesized
by the underlying synthesizer (in an efficient manner) and to pick an intended
program [16]. Another complementary technique can be to ask questions to the
user as in active learning. These questions can be generated based on the dif-
ferences in the results produced by executing the multiple synthesized programs
on the available inputs [16].

5 Conclusion and Future Work

The programming languages research community has traditionally catered to
the needs of professional programmers in the continuously evolving technical
industry. The widespread access to computational devices has brought a new
opportunity, that of enabling non-programmers to create small programs for
automating their repetitive tasks. PBE becomes a very valuable paradigm in
this setting.

It is interesting to compare PBE with Machine learning (ML) since both
involve example-based training and prediction on new unseen data. PBE learns
from very few examples, while ML typically requires large amount of training
data. The models generated by PBE are human-readable and editable programs
unlike many black-box models produced by ML. On the other hand, ML is better
suited for fuzzy/noisy tasks.

There are many interesting future directions. The next generation of pro-
gramming experience shall be built around multi-modal specifications that are
natural and easy for the user to provide. While this article has focused on
example-based specifications, natural language-based specifications can comple-
ment example-based specifications and might even be a better fit for various class
of tasks such as spreadsheet queries [9] and smartphone scripts [13]. Furthermore,
the specifications may be provided iteratively, implying the need for incremental
synthesis algorithms. Another interesting future direction is to build systems
that learn user preferences based on past user interactions across different pro-
gramming sessions. (For instance, the underlying ranking can be dynamically
updated). This can pave the way for personalization and learning across users.
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Abstract. Cyber-physical systems (CPS) combine cyber aspects such
as communication and computer control with physical aspects such as
movement in space, which arise frequently in many safety-critical appli-
cation domains, including aviation, automotive, railway, and robotics.
But how can we ensure that these systems are guaranteed to meet their
design goals, e.g., that an aircraft will not crash into another one?

This paper highlights some of the most fascinating aspects of cyber-
physical systems and their dynamical systems models, such as hybrid
systems that combine discrete transitions and continuous evolution along
differential equations. Because of the impact that they can have on the
real world, CPSs deserve proof as safety evidence.

Multi-dynamical systems understand complex systems as a combina-
tion of multiple elementary dynamical aspects, which makes them natural
mathematical models for CPS, since they tame their complexity by com-
positionality. The family of differential dynamic logics achieves this com-
positionality by providing compositional logics, programming languages,
and reasoning principles for CPS. Differential dynamic logics, as imple-
mented in the theorem prover KeYmaera X, have been instrumental in
verifying many applications, including the Airborne Collision Avoidance
System ACAS X, the European Train Control System ETCS, automo-
tive systems, mobile robot navigation, and a surgical robot system for
skull-base surgery. This combination of strong theoretical foundations
with practical theorem proving challenges and relevant applications makes
Logic for CPS an ideal area for compelling and rewarding research.

1 Logical Foundations of Cyber-Physical Systems

Can we trust a computer to control physical processes? That depends on how it
has been programmed and what will happen if it malfunctions. When a lot is at
stake, computers need to be guaranteed to interact correctly with the physical
world. So, we need ways of analyzing, designing, and guaranteeing the behavior
of such systems. Providing these ways is an intellectual grand challenge with
substantial scientific, economical, societal, and educational impact. Its solution
is the key to enabling computer assistance that we can bet our lives on.

This paper focuses on illustrating important principles of cyber-physical systems
here. Technical surveys can be found in the literature, e.g., [2,7,8,12,20,32,41,42].
This material is based upon work supported by the National Science Foundation
under NSF CAREER Award CNS-1054246.

c© Springer International Publishing Switzerland 2016
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1.1 Cyber-Physical Systems

Computer control has been suggested to remedy inefficiencies, reliability issues,
or defects for virtually all physical systems. But computer control only helps our
society if we can ensure that it works correctly. As has been argued on numerous
occasions [1–8,11,12,17,18,20,21,23–27,38,41–44], we must, thus, verify the cor-
rectness of these systems, as testing may miss bugs. This problem is confounded,
because the behavior of the system under one circumstance can radically differ
from the behavior under another, especially when complex computer decisions
for different objectives interact. It is crucial to prove the absence of bugs so that
we are confident to bet our lives on the system functioning correctly, since that
is what we do every time we get into an airplane or car.

Systems like these are called cyber-physical systems (CPS ). They combine
cyber capabilities (communication, computation and control) with physical capa-
bilities (sensing and actuation) to solve problems that neither part could solve
alone. While CPS are widely appreciated for their broad range of application
domains (e.g., automotive, aerospace, medical, transportation, civil engineering,
materials, chemistry, energy), the goal of the Logical Foundations of CPS is to
identify the common foundational core that constitutes the true essence of CPS
and their proof principles to serve as the simultaneous mathematical basis for
all those applications. The foundations of digital computer science have revolu-
tionized how systems are designed and our whole society works. We need even
stronger foundations when software reaches out into our physical world.

1.2 Multi-dynamical Systems
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Fig. 1. Dynamical aspects
of CPS

The first crucial insight for CPS foundations is the
multi-dynamical systems principle [32] of understand-
ing complex systems as a combination of multiple
elementary dynamical aspects. Mathematically, CPS
are multi-dynamical systems [32], i.e. systems char-
acterized by multiple facets of dynamical systems,
schematically summarized in Fig. 1. CPS involve com-
puter control decisions and are, thus, discrete. CPS
are continuous, because they evolve along differen-
tial equations of motion or other physical processes.
CPS are uncertain, because their behavior is sub-
ject to choices coming from environmental variabil-
ity or intentional uncertainties that simplify their
model. This uncertainty can manifest in different
ways. Uncertainties make CPS stochastic when good
information about the distribution of choices is available. Uncertainties make
CPS nondeterministic when no commitment about the resolution of choices is
made. Uncertainties make CPS adversarial when they involve multiple agents
with potentially conflicting goals or even active competition in a game. Verifying
that CPS work correctly requires dealing with all of these dynamical features—
and sometimes even more—at the same time.
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1.3 CPS Proofs

Multi-dynamical systems study complex CPS as a combination of multiple ele-
mentary dynamical aspects. This approach helps to tame the complexity of CPS
by understanding that their complexity just comes from combining lots of sim-
ple dynamical effects with one another. The overall system is quite complex, but
each of its pieces is better-behaved, since it only has one dynamics. What miracle
translates this descriptive simplification of a CPS in terms of a combination of
multiple dynamical aspects into an analytic simplification in terms of multiple
dynamical systems that can be considered side-by-side?

The key to this mystery is to integrate the CPS dynamics all within a single,
compositional logic [32]. Since compositionality is an intrinsic feature starting
from the very semantics of logic [9,10,13,14,37,39,40], logics naturally reason
compositionally, too. With suitable generalizations of logics to embrace multi-
dynamical systems [27–31,34,35], this compositionality generalizes to CPS. Ver-
ification works by constructing a proof in such a logic. The whole proof verifies a
complex CPS. Yet, each proof step only reasons separately about one dynamical
aspect at a time using, e.g., local dynamics of differential equations, the theory
of real-closed fields, symbolic logic, differential form computations [35], fixpoint
theory [34], and so on, each captured in a separate, modular axiom or proof rule.

1.4 Theory

This logical view on CPS has already made it possible to develop rich theo-
ries of hybrid systems that combine discrete change and continuous differential
equations [27,31,35], theories of distributed hybrid systems that combine distrib-
uted systems with hybrid systems [30], theories of hybrid games that combine
discrete, continuous, and adversarial dynamics [34], all of which are sound and
relatively complete, but was also used for stochastic hybrid systems [29]. The
approach was instrumental in formulating and proving the first [27] and second
[31] completeness theorem for hybrid systems, which characterize and align the
discrete and continuous challenges of hybrid systems, and reveal their funda-
mental symmetry. The theory of hybrid systems forms a proof-theoretical bridge
aligning the theory of continuous systems with the theory of discrete systems.
Proof theory was essential in the study of provability of properties of differential
equations and differential cut elimination [33], which turn out to generalize ideas
from Lie’s results on Lie groups [19] but also relate to Gentzen’s cut elimination
theorem in classical logic [10]. Logic was equally crucial for the development
of differential ghosts that create extra dimensions [33] as proof-theoretical ana-
logues of dark matter, whose existence was speculated to balance out energy
invariants in astrophysics [16].
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¬
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H → [x :=f(x)]F

F → [x = f(x)&H]F

static premise

dynamic conclusion

Fig. 2. (left) Differential invariant F (right) Proof
rule for invariance of F along differential equation
x′ = f(x) in evolution domainH

As a logical rendition of
Lie’s ideas, differential invari-
ants [28,33,35] enable induc-
tion principles for differential
equations characterizing the
rate of change of truth of a
formula in the direction of
the dynamics; see Fig. 2. Intu-
itively, F always remains true
after following the differential
equation x′ = f(x) within the
domain H (conclusion), if F started out true initially (conclusion’s assumption),
and if, within H, the differential F ′ of F (which characterizes the infinitesimal
change of F as a function of x′) holds after assigning the right-hand side f(x) of
the differential equation to its left-hand side x′ (premise). Differential invariants
lift the high descriptive power of differential equations to a high analytic power,
so that their properties can be proved even if the equations cannot be solved.
Solutions ruin the descriptive power even if the differential equations can be
solved, so that differential invariants are advantageous regardless.

1.5 Applications

Logical Foundations of CPS play an increasingly important role in practical
applications by way of their implementations in the theorem prover KeYmaera
and its clean-slate successor1 KeYmaera X. This includes finding and fixing
[36] flaws in an air traffic conflict resolution maneuver, verifying and identifying
issues in the Next-generation Airborne Collision Avoidance System ACAS X [15],
verifying the European train control system ETCS, car control systems, mobile
ground robot navigation, and finding and fixing bugs in a skull-base surgical
robot system. Logic also identified a way of correctly relating proof in a model
to truth in reality [22], which is an inevitable challenge for CPS.

Finally, multi-dynamical systems impact education in the Foundations of
Cyber-Physical Systems course that is breaking with the myth that cyber-
physical systems are too challenging to be taught at the undergraduate level.
The compositionality principles of logic and multi-dynamical systems consider-
ably tame the educational complexity of CPS by making it possible to focus on
one aspect at a time without losing the ability to combine the understanding
attained for each aspect. The rich variety of systems that the students verified
for their final course projects2 indicates that this approach effectively conveys
the principles for a successful separation of concerns for CPS.

1 http://www.keymaeraX.org/.
2 The students’ self-defined 3-week course projects and their presentations to a panel

of experts from industry in the CPS V&V Grand Prix are available from the course
web pages http://lfcps.org/course/fcps.html.

http://www.keymaeraX.org/
http://lfcps.org/course/fcps.html
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1.6 Summary

Logical foundations make a big difference for cyber-physical systems, certainly in
understanding the basic principles of CPS, but also in real applications like the
Next-generation Airborne Collision Avoidance System. Lessons from centuries of
logic and foundations research can have a huge impact on advancing CPS. Yet,
conversely, the questions that CPS pose can have an equally significant impact
on advancing logic. Cyber-physical systems serve as a catalytic integrator for
other sciences, because they benefit from combining numerous exciting areas of
logic, mathematics, computer science, and control theory that previously seemed
unrelated. The mix of enabling strong analytic foundations with the need for
practical advances of rigorous reasoning and the significance of its applications,
as well as its fruitful interactions with many other sciences, make cyber-physical
systems an ideal field for compelling and rewarding research that has only just
begun. Numerous wonders remain yet to be discovered.
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Abstract. We developed a formal framework for CDCL (conflict-driven
clause learning) in Isabelle/HOL. Through a chain of refinements, an
abstract CDCL calculus is connected to a SAT solver expressed in a
functional programming language, with total correctness guarantees. The
framework offers a convenient way to prove metatheorems and experi-
ment with variants. Compared with earlier SAT solver verifications, the
main novelties are the inclusion of rules for forget, restart, and incremen-
tal solving and the application of refinement.

1 Introduction

Researchers in automated reasoning spend a significant portion of their work
time specifying logical calculi and proving metatheorems about them. These
proofs are typically carried out with pen and paper, which is error-prone and
can be tedious. As proof assistants are becoming easier to use, it makes sense to
employ them.

In this spirit, we started an effort, called IsaFoL (Isabelle Formalization of
Logic), that aims at developing libraries and methodology for formalizing mod-
ern research in the field, using the Isabelle/HOL proof assistant [7]. Our initial
emphasis is on established results about propositional and first-order logic. In
particular, we are formalizing large parts of Weidenbach’s forthcoming textbook,
tentatively called Automated Reasoning—The Art of Generic Problem Solving .
Our inspiration for formalizing logic is the IsaFoR project, which focuses on term
rewriting [40].

The objective of formalization work is not to eliminate paper proofs, but
to complement them with rich formal companions. Formalizations help catch
mistakes, whether superficial or deep, in specifications and theorems; they make
it easy to experiment with changes or variants of concepts; and they help clarify
concepts left vague on paper.

This paper presents our formalization of CDCL from Automated Reasoning
on propositional satisfiability (SAT), developed via a refinement of Nieuwenhuis,

c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 25–44, 2016.
DOI: 10.1007/978-3-319-40229-1 4
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Oliveras, and Tinelli’s account of CDCL [29]. CDCL is the algorithm imple-
mented in modern SAT solvers. We start with a family of abstract DPLL [11]
and CDCL [2,18,28,39] transition systems (Sect. 3). Some of the calculi include
rules for learning and forgetting clauses and for restarting the search. All cal-
culi are proved sound and complete, as well as terminating under a reasonable
strategy. The abstract CDCL calculus is refined into the more concrete calcu-
lus presented in Automated Reasoning and recently published [42] (Sect. 4). The
latter specifies a criterion for learning clauses representing first unit implication
points (1UIPs) [2], with the guarantee that learned clauses are not redundant and
hence derived at most once. The calculus also supports incremental solving. This
concrete calculus is refined further, as a certified functional program extracted
using Isabelle’s code generator (Sect. 5).

Any formalization effort is a case study in the use of a proof assistant. Beyond
the code generator, we depended heavily on the following features of Isabelle:

• Isar [43] is a textual proof format inspired by the pioneering Mizar system
[27]. It makes it possible to write structured, readable proofs—a requisite for
any formalization that aims at clarifying an informal proof.

• Locales [1,19] parameterize theories over operations and assumptions, encour-
aging a modular style of development. They are useful to express hierarchies
of related concepts and to reduce the number of parameters and assumptions
that must be threaded through a formal development.

• Sledgehammer integrates superposition provers and SMT (satisfiability mod-
ulo theories) solvers in Isabelle to discharge proof obligations. The SMT
solvers, and one of the superposition provers [41], are built around a SAT
solver, resulting in a situation where SAT solvers are employed to prove their
own metatheory.

Our work is related to other verifications of SAT solvers, typically with the
aim of increasing their trustworthiness (Sect. 6). This goal has lost some of its sig-
nificance with the emergence of formats for certificates that are easy to generate,
even in highly optimized solvers, and that can be processed efficiently by verified
checkers [17]. In contrast, our focus is on formalizing the metatheory of CDCL,
to study and connect the various members of the family. The main novelties
of our framework are the inclusion of rules for forget, restart, and incremental
solving and the application of refinement to transfer results. The framework is
available online as part of the IsaFoL repository [13].

2 Isabelle

Isabelle [31,32] is a generic proof assistant that supports many object logics.
The metalogic is an intuitionistic fragment of higher-order logic (HOL) [10].
The types are built from type variables ′a, ′b, . . . and n-ary type constructors,
normally written in postfix notation (e.g., ′a list). The infix type constructor
′a ⇒ ′b is interpreted as the (total) function space from ′a to ′b. Function appli-
cations are written in a curried style (e.g., f x y). Anonymous functions x �→ yx
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are written λx. yx. The judgment t :: τ indicates that term t has type τ . Propo-
sitions are simply terms of type prop. Symbols belonging to the signature are
uniformly called constants, even if they are functions or predicates. The meta-
logical operators include universal quantification

∧
:: (′a ⇒ prop) ⇒ prop and

implication =�⇒ :: prop ⇒ prop ⇒ prop. The notation
∧

x. px is syntactic sugar
for

∧
(λx. px) and similarly for other binder notations.

Isabelle/HOL is the instantiation of Isabelle with HOL, an object logic for
classical HOL extended with rank-1 (top-level) polymorphism and Haskell-style
type classes. It axiomatizes a type bool of Booleans as well as its own set of logical
symbols (∀, ∃, False, True, ¬, ∧, ∨, −�→, ←→, =). The object logic is embedded
in the metalogic via a constant Trueprop :: bool ⇒ prop, which is normally not
printed. The distinction between the two logical levels is important operationally
but not semantically.

Isabelle adheres to the tradition initiated in the 1970s by the LCF system
[14]: All inferences are derived by a small trusted kernel; types and functions
are defined rather than axiomatized to guard against inconsistencies. High-level
specification mechanisms let us define important classes of types and functions,
notably inductive predicates and recursive functions. Internally, the system syn-
thesizes appropriate low-level definitions.

Isabelle developments are organized as collections of theory files, or mod-
ules, that build on one another. Each file consists of definitions, lemmas, and
proofs expressed in Isar, Isabelle’s input language. Proofs are specified either
as a sequence of tactics that manipulate the proof state directly or in a declar-
ative, natural deduction format. Our formalization almost exclusively employs
the more readable declarative style.

The Sledgehammer tool [4,34] integrates automatic theorem provers in Isa-
belle/HOL, including CVC4, E, LEO-II, Satallax, SPASS, Vampire, veriT, and
Z3. Upon invocation, it heuristically selects relevant lemmas from the thousands
available in loaded libraries, translates them along with the current proof obliga-
tion to SMT-LIB or TPTP, and invokes the automatic provers. In case of success,
the machine-generated proof is translated to an Isar proof that can be inserted
into the formal development.

Isabelle locales are a convenient mechanism for structuring large proofs.
A locale fixes types, constants, and assumptions within a specified scope. For
example:

locale X = fixes c :: τ ′a assumes A ′a,c

The definition of locale X implicitly fixes a type ′a, explicitly fixes a constant c
whose type τ ′a may depend on ′a, and states an assumption A ′a,c :: prop over ′a
and c. Definitions made within the locale may depend on ′a and c, and lemmas
proved within the locale may additionally depend on A ′a,c. A single locale can
introduce several types, constants, and assumptions. Seen from the outside, the
lemmas proved in X are polymorphic in type variable ′a, universally quantified
over c, and conditional on A ′a,c.

Locales support inheritance, union, and embedding. To embed Y into X, or
make Y a sublocale of X, we must recast an instance of Y into an instance of
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X, by providing, in the context of Y, definitions of the types and constants of
X together with proofs of X’s assumptions. The command sublocale Y ⊆ X t
emits the proof obligation A υ,t, where υ and t :: τυ may depend on types and
constants from Y. After the proof, all the lemmas proved in X become available
in Y, with ′a and c :: τ ′a instantiated with υ and t :: τυ.

3 Abstract CDCL

The abstract CDCL (conflict-driven clause learning) calculus by Nieuwenhuis
et al. [29] forms the first layer of our refinement chain. Our formalization relies
on basic Isabelle libraries for lists and multisets and on custom libraries for
propositional logic. Properties such as partial correctness and termination are
inherited by subsequent layers.

3.1 Propositional Logic

We represent raw and annotated literals by freely generated datatypes para-
meterized by the types ′v (propositional variable), ′lvl (decision level), and ′cls
(clause):

datatype ′v literal = datatype (′v, ′lvl, ′cls) ann literal =
Pos ′v Decided (′v literal) ′lvl

| Neg ′v | Propagated (′v literal) ′cls

The syntax is similar to that of Standard ML and other typed functional pro-
gramming languages. For example, literal has two constructors, Pos and Neg, of
type ′v ⇒ ′v literal. Informally, we write A, ¬A, and L† for positive, negative,
and decided literals, and −L for the negation of a literal, with −(¬A) = A. The
simpler calculi do not use ′lvl or ′cls; they take ′lvl = ′cls = unit, a singleton type
whose unique value is denoted by ().

A ′v clause is a (finite) multiset over ′v literal. Clauses themselves are often
stored in multisets of clauses. To ease reading, we write clauses using logical
symbols (e.g., ⊥, L, and C ∨ D for ∅, {L}, and C 
 D). Given a set I of literals,
I � C is true if and only if C and I share a literal. This is lifted to (multi)sets of
clauses: I � N ←→ ∀C∈N. I � C. A set is satisfiable if there exists a (consistent)
set of literals I such that I � N . Finally, N � N ′ ←→ ∀I. I � N −�→ I � N ′.

3.2 DPLL with Backjumping

Nieuwenhuis et al. present CDCL as a set of transition rules on states. A state
is a pair (M, N), where M is the trail and N is the set of clauses to satisfy.
The trail is a list of annotated literals that represents the partial model under
construction. In accordance with Isabelle conventions for lists, the trail grows
on the left: Adding a literal L to M results in the new trail L · M , where the
list constructor · has type ′a ⇒ ′a list ⇒ ′a list. The concatenation of two lists is
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written M @ M ′. To lighten the notation, we often build lists from elements and
other lists by simple juxtaposition, writing MLM ′ for M @ L · M ′.

The core of the CDCL calculus is defined as a transition relation DPLL+BJ,
an extension of classical DPLL (Davis–Putnam–Logemann–Loveland) [11] with
nonchronological backtracking, or backjumping. We write S =⇒DPLL+BJ S ′ for
DPLL+BJ S S ′. The DPLL+BJ calculus consists of three rules, starting from an
initial state (ε,N):

Propagate (M, N) =⇒DPLL+BJ (LM, N)
if N contains a clause C ∨ L such that M � ¬C and L is undefined in M
(i.e., neither M � L nor M � −L)

Backjump (M ′L†M, N) =⇒DPLL+BJ (L′M, N)
if N contains a conflicting clause C (i.e., M ′L†M � ¬C) and there exists a
clause C ′ ∨ L′ such that N � C ′ ∨ L′, M � ¬C ′, and L′ is undefined in M
but occurs in N or in M ′L†

Decide (M, N) =⇒DPLL+BJ (L†M, N)
if the atom of L belongs to N and is undefined in M

The Backjump rule is more general than necessary for capturing DPLL, where
it suffices to swap the leftmost decision literal. In this form, the rule can also
represent CDCL backjumping, if C ′ ∨ L′ is a new clause derived from N .

A natural representation of such rules in Isabelle is as an inductive predicate.
Isabelle’s inductive command lets us specify the transition rules as introduction
rules. From this specification, it produces elimination rules to perform a case
analysis on a hypothesis of the form DPLL+BJ S S ′. In the interest of modularity,
we formalized the rules individually as their own predicates and combined them
to obtain DPLL+BJ:

inductive DPLL+BJ :: ′st ⇒ ′st ⇒ bool where
decide S S ′ =�⇒ DPLL+BJ S S ′

| propagate S S ′ =�⇒ DPLL+BJ S S ′

| backjump S S ′ =�⇒ DPLL+BJ S S ′

The predicate operates on states (M,N) of type ′st. To allow for refinements,
this type is kept as a parameter of the calculus, using a locale that abstracts
over it and that provides basic operations to manipulate states:

locale dpll state =
fixes
trail :: ′st ⇒ (′v, unit, unit) ann literal list and
clauses :: ′st ⇒ ′v clause multiset and
prepend trail :: (′v, unit, unit) ann literal ⇒ ′st ⇒ ′st and . . . and
remove clause :: ′v clause ⇒ ′st ⇒ ′st

assumes∧
S L. trail (prepend trail L S ) = L · trail S and . . . and∧
S C. clauses (remove cls C S ) = remove mset C (clauses S )

The predicates corresponding to the individual calculus rules are phrased in
terms of such an abstract state. For example:
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inductive decide :: ′st ⇒ ′st ⇒ bool where
undefined lit L (trail S ) =�⇒ atm of L ∈ atms of (clauses S ) =�⇒
S ′ ∼ prepend trail (Decided L ()) S =�⇒ decide S S ′

States are compared extensionally: S ∼ S ′ is true if the two states have identical
trails and clause sets, ignoring other fields. This flexibility is necessary to allow
refinements with more sophisticated data structures.

In addition, each rule is defined in its own locale, parameterized by addi-
tional side conditions. Complex calculi are built by inheriting and instantiating
locales providing the desired rules. Following a common idiom, the DPLL+BJ
calculus is distributed over two locales: The first locale, DPLL+BJ ops, defines
the DPLL+BJ calculus; the second locale, DPLL+BJ, extends it with an assump-
tion expressing a structural invariant over DPLL+BJ that is instantiated when
proving concrete properties later. This cannot be achieved with a single locale,
because definitions may not precede assumptions.

Theorem 1 (Termination [13, wf dpll bj]). The relation DPLL+BJ is well
founded.

Termination is proved by exhibiting a well-founded relation ≺ such that
S ′ ≺ S whenever S =⇒DPLL+BJ S ′. Let S = (M,N) and S ′ = (M ′, N ′) with the
decompositions

M = MnL†
n · · · M1L

†
1M0 M ′ = M ′

n′L′†
n′ · · · M ′

1L
′†
1 M ′

0

where M0, . . . ,Mn,M ′
0, . . . ,M

′
n′ contain no decision literals. Let V be the num-

ber of distinct variables occurring in the initial clause set N . Now, let ν M =
V − |M |, indicating the number of unassigned variables in the trail M . Nieuw-
enhuis et al. define ≺ such that S ′ ≺ S if (1) there exists i ≤ n, n′ for which
[ν M ′

0, . . . , ν M ′
i−1] = [ν M0, . . . , ν Mi−1] and ν M ′

i<ν Mi or (2) [ν M0, . . . , ν Mn]
is a strict prefix of [ν M ′

0, . . . , ν M ′
n′ ]. This order is not to be confused with the

lexicographic order—we have [0] ≺ ε by condition (2), whereas ε<lex[0]. Yet the
authors justify well-foundedness by appealing to the well-foundedness of <lex on
bounded lists over finite alphabets. In our proof, we clarify and simplify matters
by mapping states to lists

[
|M0| , . . . , |Mn|

]
, without appealing to ν. Using the

standard lexicographic ordering, states become larger with each transition:

Propagate [k1, . . . , kn]<lex [k1, . . . , kn + 1]
Backjump [k1, . . . , kn]<lex [k1, . . . , kj + 1] with j ≤ n
Decide [k1, . . . , kn]<lex [k1, . . . , kn, 0]

The lists corresponding to possible states are ≺-bounded by the list consisting
of V occurrences of V , thereby delimiting a finite domain D = {[k1, . . . , kn] |
k1, . . . , kn, n ≤ V }. We take ≺ to be the restriction of >lex to D. A variant of
this approach is to encode lists into a measure μV M =

∑n
i=0 |Mi|V n−i and let

S ′ ≺ S ←→ μV M ′>μV M, building on the well-foundedness of > over bounded
sets of integers.
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A final state is a state from which no transitions are possible. Given a relation
=⇒, we write =⇒∗! for the right-restriction of its reflexive transitive closure to
final states.

Theorem 2 (Partial Correctness [13, full dpll backjump final state from
init state]). If (ε,N) =⇒∗!

DPLL+BJ (M,N), then N is satisfiable if and only
if M � N .

We first prove structural invariants on arbitrary states (M ′, N) reachable from
(ε,N), namely: (1) each variable occurs at most once in M ′; (2) if M ′ = M2LM1

where L is propagated, then M1, N � L. From these invariants, together with
the constraint that (M,N) is a final state, it is easy to prove the conclusion.

3.3 Classical DPLL

The locale machinery allows us to derive a classical DPLL [11] calculus from
DPLL with backjumping. This is achieved through a DPLL locale that restricts
the Backjump rule so that it performs only chronological backtracking:

Backtrack (M ′L†M, N) =⇒DPLL (−L · M, N)
if there exists a conflicting clause and M ′ contains no decided literals

Lemma 3 (Backtracking [13, backtrack is backjump]). Backtracking is a
special case of backjumping.

The Backjump rule depends on a conflict clause C and a clause C ′ ∨ L′ that
justifies the propagation of L′. The conflict clause is specified by Backtrack. As for
C ′∨L′, given a trailM ′L†M decomposable asMnL†Mn−1L

†
n−1 · · · M1L

†
1M0 where

M0, . . . ,Mn contain no decided literals, we can take C ′ = −L1 ∨ · · · ∨ −Ln−1.
Consequently, the inclusion DPLL ⊆ DPLL+BJ holds. In Isabelle, this is

expressed as a locale instantiation: DPLL is made a sublocale of DPLL+BJ, with
a side condition restricting the application of the Backjump rule. The partial
correctness and termination theorems are inherited from the base locale. DPLL
instantiates the abstract state type ′st with a concrete type of pairs. By dis-
charging the locale assumptions emerging with the sublocale command, we
also verify that these assumptions are consistent. Roughly:

locale DPLL =
begin

type synonym ′v state = (′v, unit, unit) ann literal list × ′v clause multiset

inductive backtrack :: ′v state ⇒ ′v state ⇒ bool where . . .
end

sublocale DPLL ⊆ dpll�state fst snd (λL (M, N). (L · M, N)) . . .
sublocale DPLL ⊆ DPLL+BJ�ops . . . (λC L S S ′. DPLL.backtrack S S ′) . . .
sublocale DPLL ⊆ DPLL+BJ . . .
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If a conflict cannot be resolved by backtracking, we would like to have the
option of stopping even if some variables are undefined. A state (M,N) is con-
clusive if M � N or if N contains a conflicting clause and M contains no decided
literals. For DPLL, all final states are conclusive, but not all conclusive states
are final.

Theorem 4 (Partial Correctness [13, dpll conclusive state correctness]).
If (ε,N) =⇒∗

DPLL (M,N) and (M,N) is a conclusive state, N is satisfiable if
and only if M � N .

The theorem does not require stopping at the first conclusive state. In an
implementation, testing M � N can be expensive, so a solver might continue for
a while. In the worst case, it will stop in a final state—which exists by Theorem 1.

3.4 The CDCL Calculus

The abstract CDCL calculus extends DPLL+BJ with a pair of rules for learning
new lemmas and forgetting old ones:

Learn (M, N) =⇒CDCL NOT (M, N 
 {C}) if N � C and each atom of C is in
N or M

Forget (M, N 
 {C}) =⇒CDCL NOT (M, N) if N � C

In practice, the Learn rule is normally applied to clauses built exclusively from
atoms in M , because the learned clause is false in M . This property eventu-
ally guarantees that the learned clause is not redundant (e.g., it is not already
contained in N).

We call this calculus CDCL NOT after Nieuwenhuis, Oliveras, and Tinelli.
Because of the locale parameters, it is strictly speaking a family of calculi. In
general, CDCL NOT does not terminate, because it is possible to learn and forget
the same clause infinitely often. But for some instantiations of the parameters
with suitable restrictions on Learn and Forget, the calculus always terminates.
In particular, DPLL+BJ always terminates.

Theorem 5 (Termination [13, wf cdclNOT no learn and forget infinite
chain]). Let C be an instance of the CDCL NOT calculus (i.e., C ⊆ CDCL NOT).
If C admits no infinite chains consisting exclusively of Learn and Forget tran-
sitions, then C is well founded.

In many SAT solvers, the only clauses that are ever learned are the ones used
for backtracking. If we restrict the learning so that it is always done immediately
before backjumping, we can be sure that some progress will be made between
a Learn and the next Learn or Forget. This idea is captured by the following
combined rule:

Learn+Backjump (M ′L†M, N) =⇒CDCL NOT merge (L′M, N 
 {C ′ ∨ L′})
if C, L†, L′, M , M ′, N satisfy Backjump’s side conditions
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CDCL_NOTDPLL

DPLL+BJ

CDCL_NOT+restartCDCL_NOT_merge

CDCL_NOT_merge+restartT

(a) Syntactic dependencies

CDCL_NOTDPLL

DPLL+BJ

CDCL_NOT+restartCDCL_NOT_merge

CDCL_NOT_merge+restartT

(b) Refinements

Fig. 1. Connections between the abstract calculi

The calculus variant that performs this rule instead of Learn or Backjump is called
CDCL NOT merge. Because a single Learn+Backjump transition corresponds to
two transitions in CDCL NOT, the inclusion CDCL NOT merge ⊆ CDCL NOT
does not hold. Instead, we have CDCL NOT merge ⊆ CDCL NOT+, which is
proved by simulation.

3.5 Restarts

Modern SAT solvers rely on a dynamic decision literal heuristic. They period-
ically restart the proof search to apply the effects of a changed heuristic. This
helps the calculus focus on a part of the initial clauses where it can make pro-
gress. Upon a restart, some learned clauses may be removed, and the trail is
reset to ε. Since our calculus has a Forget rule, our Restart rule needs only to
clear the trail. Adding Restart to CDCL NOT yields CDCL NOT+restart. How-
ever, this calculus does not terminate, because Restart can be applied infinitely
often.

A working strategy is to gradually increase the number of transitions between
successive restarts. This is formalized via a locale parameterized by a base cal-
culus C and an unbounded function f :: N ⇒ N. Nieuwenhuis et al. require f to
be strictly increasing, but unboundedness is sufficient.

The extended calculus C+restartT is defined by the two rules

Restart (S , n) =⇒C+restartT ((ε, N ′), n + 1) if S =⇒m
C (M ′, N ′) and m ≥ f n

Finish (S , n) =⇒C+restartT (S ′′, n + 1) if S =⇒∗!
C S ′

The T in restartT reminds us that we count the number of transitions; in Sect. 4.4,
we will review an alternative strategy based on the number of conflicts or learned
clauses. Termination relies on a measure μV associated with C that may not
increase from restart to restart: If S =⇒∗

C S ′ =⇒restartT S ′′, then μV S ′′ ≤
μV S . The measure may depend on V , the number of variables occurring in the
problem. We instantiated the locale parameter C with CDCL NOT merge and f
with the Luby sequence (1, 1, 2, 1, 1, 2, 4, . . . ) [23], with the restriction that no
clause containing duplicate literals is ever learned, thereby bounding the number
of learnable clauses and hence the number of transitions taken by C .
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Figure 1(a) summarizes the syntactic dependencies between the calculi
reviewed in this section. An arrow C −→ B indicates that C is defined in
terms of B. Figure 1(b) presents the refinements between the calculi. An arrow
C =⇒ B indicates that we proved C ⊆ B∗ or some stronger result—either by
locale embedding (sublocale) or by simulating C ’s behavior in terms of B.

4 A Refined CDCL Towards an Implementation

The CDCL NOT calculus captures the essence of modern SAT solvers without
imposing a policy on when to apply specific rules. In particular, the Backjump
rule depends on a clause C ′∨L′ to justify the propagation of a literal, but does not
specify a procedure for coming up with this clause. For Automated Reasoning ,
Weidenbach developed a calculus that is more specific in this respect, and closer
to existing implementations, while keeping many aspects unspecified [42]. This
calculus, CDCL W, is also formalized in Isabelle and connected to CDCL NOT.

4.1 The New CDCL Calculus

The CDCL W calculus operates on states (M,N,U, k,D), where M is the trail;
N and U are the sets of initial and learned clauses, respectively; k is the decision
level (i.e., the number of decision literals in M); D is a conflict clause, or the
distinguished clause � if no conflict has been detected. In M , each decision
literal is annotated with a level (Decided L k or Lk), and each propagated literal
is annotated with the clause that caused its propagation (Propagated L C or
LC). The level of a propagated literal L is the level of the closest decision literal
that follows it in the trail, or 0 if no such literal exists. The level of a clause is
the highest level of any of its literals (0 for ⊥). The calculus assumes that N
contains no duplicate literals and never produces clauses containing duplicates.

The calculus starts in a state (ε,N, ∅, 0,�). The following rules apply as long
as no conflict has been detected:

Propagate (M, N, U, k, �) =⇒CDCL W (LC∨LM, N, U, k, �)
if C ∨ L ∈ N 
 U , M � ¬C, and L is undefined in M

Conflict (M,N,U, k,�) =⇒CDCL W (M,N,U, k,D) if D ∈ N 
 U and M � ¬D
Decide (M, N, U, k, �) =⇒CDCL W (Lk+1M, N, U, k + 1, �)

if L is undefined in M and occurs in N
Restart (M,N,U, k,�) =⇒CDCL W (ε,N,U, 0,�) if M �� N
Forget (M,N,U 
 {C}, k,�) =⇒CDCL W (M,N,U, k,�)

if M �� N and M contains no literal LC

Once a conflict clause is detected and stored in the state, the following rules col-
laborate to reduce it and backtrack, exploring a first unique implication point [2]:

Skip (LCM, N, U, k, D) =⇒CDCL W (M, N, U, k, D)
if D /∈ {⊥,�} and −L does not occur in D

Resolve (LC∨LM, N, U, k, D ∨ −L) =⇒CDCL W (M, N, U, k, C ∪ D) if D is of
level k
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Backtrack
(M ′Ki+1M, N, U, k, D ∨ L) =⇒CDCL W (LD∨LM, N, U 
 {D ∨ L}, i, �)
if L is of level k and D is of level i

(In Resolve, C ∪D is the same as C ∨D, except that it avoids duplicating literals
present in both C and D.) In combination, these three rules can be simulated
by the combined learning and nonchronological backjump rule Learn+Backjump
from CDCL NOT merge.

Several structural invariants hold on all states reachable from an initial state,
including the following: The trail is consistent; the k decided literals in the trail
are annotated with levels k to 1; and the clause annotating a propagated literal
of the trail is contained in N 
 U. Some of the invariants were not mentioned
in the textbook (e.g., whenever LC occurs in the trail, L is a literal of C);
formalization helped develop a better understanding of the data structure and
clarify the book.

Like CDCL NOT, CDCL W has a notion of conclusive state. A state (M,N,U,
k,D) is conclusive if D = � and M � N or if D = ⊥ and N is unsatisfi-
able. The calculus always terminates but, without suitable strategy, it can stop
in an inconclusive state. Consider this derivation: (ε, {A, B}, ∅, 0, �) =⇒Decide

(¬A1, {A, B}, ∅, 1, �) =⇒Decide (¬B2 ¬A1, {A, B}, ∅, 2, �) =⇒Conflict (¬B2

¬A1, {A,B}, ∅, 2, A). The conflict cannot be processed by Skip or Resolve. The
calculus is blocked.

4.2 A Reasonable Strategy

To prove correctness, we assume a reasonable strategy: Propagate and Conflict are
preferred over Decide; Restart and Forget are not applied. (We will lift the restric-
tion on Restart and Forget in Sect. 4.4.) The resulting calculus, CDCL W+stgy,
refines CDCL W with the assumption that derivations are produced by a rea-
sonable strategy. This assumption is enough to ensure that the calculus can
backjump after detecting a conflict clause other than ⊥. The crucial invariant
is the existence of a literal with the highest level in any conflict, so that Resolve
can be applied.

Theorem 6 (PartialCorrectness [13, full cdclW stgy final state conclusive
from init state]). If (ε, N, ∅, 0, �) =⇒∗!

CDCL W+stgy S ′ and N contains no clauses
with duplicate literals, S ′ is a conclusive state.

Once a conflict clause has been stored in the state, the clause is first reduced
by a chain of Skip and Resolve transitions. Then, there are two scenarios: (1) the
conflict is solved by a Backtrack, at which point the calculus may resume prop-
agating and deciding literals; (2) the reduced conflict is ⊥, meaning that N is
unsatisfiable—i.e., for unsatisfiable clause sets, the calculus generates a resolu-
tion refutation.

The CDCL W+stgy calculus is designed to have respectable complexity
bounds. One of the reasons for this is that the same clause cannot be
learned twice:
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Theorem 7 (Relearning [13, cdclW stgy distinct mset clauses]). Let
(ε, N, ∅, 0, �) =⇒∗

CDCL W+stgy (M, N, U, k, D). No Backtrack transition is pos-
sible from the latter state causing the addition of a clause from N 
 U to U.

The formalization of this theorem posed some challenges. The informal proof in
Automated Reasoning is as follows (with slightly adapted notations):

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e.,
it reaches a state (M, N, U, k, D ∨ L) where Backtrack is applicable and
D ∨ L ∈ N 
 U. More precisely, the state has the form (Kn · · · K2K

k
1M2

Ki+1M1, N, U, k, D ∨ L) where the Ki, i>1 are propagated literals that
do not occur complemented in D, as for otherwise D cannot be of level
i. Furthermore, one of the Ki is the complement of L. But now, because
D ∨ L is false in Kn · · · K2K

k
1M2K

i+1M1 and D ∨ L ∈ N 
 U instead
of deciding Kk

1 the literal L should be propagated by a reasonable strat-
egy. A contradiction. Note that none of the Ki can be annotated with
D ∨ L. ��

Many details are missing. To find the contradiction, we must show that there
exists a state in the derivation with the trail M2K

i+1M1, and such that D∨L ∈
N 
 U. The textbook does not explain why such a state is guaranteed to exist.
Moreover, inductive reasoning is hidden under the ellipsis notation (Kn · · · K2).
Such a high level proof might be suitable for humans, but the details are needed
in Isabelle, and Sledgehammer alone cannot fill in such large gaps, especially if
induction is needed. The full formal proof is over 700 lines long and was among
the most difficult proofs we carried out.

Using this theorem and assuming that only backjumping has a cost, we get
a complexity of O(3V ), where V is the number of different propositional vari-
ables. If Conflict is always preferred over Propagate, the learned clause in never
redundant in the sense of ordered resolution [42], yielding a complexity bound
of O(2V ). Formalizing this is planned for future work.

In Automated Reasoning , and in our formalization, Theorem 7 is also used
to establish the termination of CDCL W+stgy. However, the argument for the
termination of CDCL NOT also applies to CDCL W irrespective of the strat-
egy, a stronger result. To lift this result, we must show that CDCL W refines
CDCL NOT.

4.3 Connection with Abstract CDCL

It is interesting to show that CDCL W refines CDCL NOT merge, to establish
beyond doubt that CDCL W is a CDCL calculus and to lift the termination
proof and any other general results about CDCL NOT merge. The states are
easy to connect: We interpret a CDCL W tuple (M, N, U, k, C) as a CDCL NOT
pair (M, N).

The main difficulty is to relate the low-level conflict-related CDCL W rules to
their high-level counterparts. Our solution is to introduce an intermediate calcu-
lus, called CDCL W merge, that combines consecutive low-level transitions into
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CDCL_WCDCL_NOT_merge

CDCL_W+stgyCDCL_W_merge

CDCL_W+stgy+restartLCDCL_W_merge+stgy

(a) Syntactic dependencies

CDCL_WCDCL_NOT_merge

CDCL_W+stgyCDCL_W_merge

CDCL_W+stgy+restartLCDCL_W_merge+stgy

(b) Refinements

Fig. 2. Connections involving the refined calculi

a single transition. This calculus refines both CDCL W and CDCL NOT merge
and is sufficiently similar to CDCL W so that we can transfer termination and
other properties from CDCL NOT merge to CDCL W through it.

Whenever the CDCL W calculus performs a low-level sequence of transitions
of the form Conflict (Skip |Resolve)∗ Backtrack?, the CDCL W merge calculus per-
forms a single transition of a new rule that subsumes all four low-level rules:

Reduce+Maybe Backtrack S =⇒CDCL�W�merge S ′′

if S =⇒Conflict S ′ =⇒∗!
Skip |Resolve |Backtrack S ′′

When simulating CDCL W merge in terms of CDCL NOT, two interesting
scenarios arise. In the first case, Reduce+Maybe Backtrack’s behavior com-
prises a backtrack. The rule can then be simulated using CDCL NOT merge’s
Learn+Backjump rule. The second scenario arises when the conflict clause is
reduced to ⊥, leading to a conclusive final state. Then, Reduce+Maybe Backtrack
has no counterpart in CDCL NOT merge. More formally, the two calculi are
related as follows: If S =⇒CDCL�W�merge S ′, either S =⇒CDCL NOT merge S ′ or S is
a conclusive state. Since CDCL NOT merge is well founded, so is CDCL W merge.
This implies that CDCL W without Restart terminates.

Since CDCL W merge is mostly a rephrasing of CDCL W, it makes sense
to restrict CDCL W merge to a reasonable strategy that prefers Propagate and
Reduce+Maybe Backtrack over Decide, yielding CDCL W merge+stgy. The two
strategy-restricted calculi have the same end-to-end behavior:

S =⇒∗!
CDCL W merge+stgy S ′ ←→ S =⇒∗!

CDCL W+stgy S ′

4.4 A Strategy with Restart and Forget

We could use the same strategy for restarts as in Sect. 3.5, but we prefer to exploit
Theorem 7, which asserts that no relearning is possible. Since only finitely many
different duplicate-free clauses can ever be learned, it is sufficient to increase the
number of learned clauses between two restarts to obtain termination. This cri-
terion is the norm in existing implementations. The lower bound on the number
of learned clauses is given by an unbounded function f :: N ⇒ N. In addition, we
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allow an arbitrary subset of the learned clauses to be forgotten upon a restart
but otherwise forbid Forget. The calculus C+restartL that realizes these ideas is
defined by the two rules

Restart (S , n) =⇒C+restartL (S ′′′, n + 1)
if S =⇒∗

C S ′ =⇒Restart S
′′ =⇒∗

Forget S
′′′ and |learned S ′| − |learned S | ≥ f n

Finish (S , n) =⇒C+restartL (S ′, n + 1) if S =⇒∗!
C S ′

We formally proved that CDCL W+stgy+restartL is partially correct and ter-
minating. Figure 2 summarizes the situation, following the conventions of Fig. 1.

4.5 Incremental Solving

SMT solvers combine a SAT solver with theory solvers (e.g., for uninterpreted
functions and linear arithmetic). The main loop runs the SAT solver on a set
of clauses. If the SAT solver answers “unsatisfiable,” the SMT solver is done;
otherwise, the main loop asks the theory solvers to provide further, theory-
motivated clauses to exclude the current candidate model and force the SAT
solver to search for another one. This design crucially relies on incremental SAT
solving: the possibility of adding new clauses to the clause set C of a conclusive
satisfiable state and of continuing from there.

As a step towards formalizing SMT, we designed a calculus CDCL W+stgy+
incr that provides incremental solving on top of CDCL W+stgy:

Add NonconflictC (M, N, U, k, �) =⇒CDCL W+stgy+incr S ′

if M �� ¬C and (M, N 
 {C}, U, k, �) =⇒∗!
CDCL W+stgy S ′

Add ConflictC (M ′LM, N, U, k, �) =⇒CDCL W+stgy+incr S ′

if LM � ¬C, −L ∈ C, M ′ contains no literal of C, L is of level i in LM , and
(LM, N 
 {C}, U, i, C) =⇒∗!

CDCL W+stgy S ′

We first run the CDCL W+stgy calculus on a set of clauses N , as usual. If
N is satisfiable, we can add a nonempty, duplicate-free clause C to the set of
clauses and apply one of the two above rules. These rules adjust the state and
relaunch CDCL W+stgy.

Theorem 8 (Partial Correctness [13, incremental conclusive state]). If S
is a conclusive state and S =⇒CDCL W+stgy+incr S ′, then S ′ is a conclusive state.

The key is to prove that the structural invariants that hold for CDCL W+stgy
still hold after adding the new clause to the state. The proof is easy because we
can reuse the invariants we have already proved about CDCL W+stgy.

5 An Implementation of CDCL

The previous sections presented variants of DPLL and CDCL as parameter-
ized transition systems, formalized using locales and inductive predicates. The
final link in our refinement chain is a deterministic SAT solver that implements
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CDCL W+stgy, expressed as a functional program in Isabelle. When implement-
ing a calculus, we must make many decisions regarding the data structures
and the order of rule applications. We choose to represent states by tuples
(M, N, U, k, D), where propositional variables are coded as natural numbers and
multisets as lists.1 Each transition rule in CDCL W+stgy is implemented by a
corresponding function. For example, the function that implements the Propa-
gate rule is given below:

definition do�propagate�step :: ′v solver state ⇒ ′v solver state where
do�propagate�step S =
(case S of

(M, N, U, k, �) ⇒
(case find�first�unit�propagation M (N @ U) of

Some (L, C) ⇒ (Propagated L C · M, N, U, k, �)
| None ⇒ S )

| S ⇒ S )

The main loop invokes the functions for the rules, looking for conflicts before
propagating literals. It is a recursive program, specified using the function
command [21]. For Isabelle to accept the recursive definition of the main loop
as a terminating program, we must discharge a proof obligation stating that
its call graph is well founded. This is a priori unprovable: The solver is not
guaranteed to terminate if starting in an arbitrary state. To work around this,
we restrict the input by introducing a subset type that contains a strong enough
structural invariant, including the duplicate-freedom of all the lists in the data
structure. With the invariant in place, it is easy to show that the call graph is
included in CDCL W+stgy, allowing us to reuse its termination argument. The
partial correctness theorem can then be lifted, meaning that the SAT solver is
a decision procedure for propositional logic.

The final step is to extract running code. Using Isabelle’s code generator
[15], we can translate the program into Haskell, OCaml, Scala, or Standard ML
code. The resulting program is syntactically analogous to the source program in
Isabelle (including its dependencies) and uses the target language’s facilities for
datatypes and recursive functions with pattern matching. Invariants on subset
types are ignored; when invoking the solver from outside Isabelle, the caller is
responsible for ensuring that the input satisfies the invariant. The entire program
is about 700 lines long in OCaml. It is not efficient, due to its extensive reliance
on lists, but it satisfies the need for a proof of concept.

6 Discussion and Related Work

Our formalization consists of about 28 000 lines of Isabelle text. It was done
over a period of 10 months almost entirely by Fleury, who also taught himself

1 We have started formalizing the two-watched-literal optimization [28] but have yet to
connect it with our SAT solver implementation. The README.md file in our repository
is frequently updated to mention the latest developments [13].
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Isabelle during that time. It covers nearly all of the metatheoretical material
of Sects. 2.6 to 2.11 of Automated Reasoning and Sect. 2 of Nieuwenhuis et al.,
including normal form transformations and ground unordered resolution [12].

It is difficult to quantify the cost of formalization as opposed to paper proofs.
For a sketchy paper proof, formalization may take an arbitrarily long time;
indeed, Weidenbach’s nine-line proof of Theorem 7 took 700 lines of Isabelle.
In contrast, given a very detailed paper proof, one can obtain a formalization
in less time than it took to write the paper proof [44]. A common hurdle to
formalization is often the lack of suitable libraries. For CDCL, we spent con-
siderable time adding definitions, lemmas, and automation hints to Isabelle’s
multiset library but otherwise did not need any special libraries. We also found
that organizing the proof at a high level—especially locale engineering—is more
challenging than discharging proof obligations.

Given the varied level of formality of the proofs in the draft of Automated
Reasoning , it is unlikely that Fleury will ever catch up with Weidenbach. But the
insights arising from formalization have already enriched the textbook in many
ways. The most damning mistake was in the proof of the resolution calculus
without reductions, where the completeness theorem was stated with “N =⇒∗

{⊥}” instead of “N =⇒∗ N ′ and ⊥ ∈ N ′.” For CDCL, the main issues were that
key invariants were omitted and some proofs were too sketchy to be accessible
to the intended audience of the book.

For discharging proof obligations, we relied extensively on Sledgehammer,
including its facility for generating detailed Isar proofs [3] and the SMT-based
smt tactic [9]. We found the SMT solver CVC4 particularly useful, corroborating
earlier empirical evaluations [36]. In contrast, the counterexample generators
Nitpick and Quickcheck [5] were seldom of any use. We often discovered flawed
conjectures by seeing Sledgehammer fail to solve an easy-looking problem. As one
example among many, we lost perhaps one hour working from the hypothesis that
converting a set to a multiset and back is the identity: set mset (mset set A) = A.
Because Isabelle multisets are finite, the property does not hold for infinite sets
A; yet Nitpick and Quickcheck fail to find a counterexample, because they try
only finite sets as values for A.

Formalizing logic in a proof assistant is an enticing, if somewhat self-
referential, prospect. Shankar’s proof of Gödel’s first incompleteness theo-
rem [37], Harrison’s formalization of basic first-order model theory [16], and
Margetson and Ridge’s formalized completeness and cut elimination theorems
[24] are among the first results in this area. Recently, SAT solvers have been
formalized in proof assistants. Marić [25,26] verified a CDCL-based SAT solver
in Isabelle/HOL, including two watched literals, as a purely functional program.
The solver is monolithic, which complicates extensions. In addition, he formal-
ized the abstract CDCL calculus by Nieuwenhuis et al. Marić’s methodology is
quite different from ours, without the use of refinements, inductive predicates,
locales, or even Sledgehammer. In his Ph.D. thesis, Lescuyer [22] presents the
formalization of the CDCL calculus and the core of an SMT solver in Coq. He
also developed a reflexive DPLL-based SAT solver for Coq, which can be used
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as a tactic in the proof assistant. Another formalization of a CDCL-based SAT
solver, including termination but excluding two watched literals, is by Shankar
and Vaucher in PVS [38]. Most of this work was done by Vaucher during a
two-month internship, an impressive achievement. Finally, Oe et al. [33] verified
an imperative and fairly efficient CDCL-based SAT solver, expressed using the
Guru language for verified programming. Optimized data structures are used,
including for two watched literals and conflict analysis. However, termination is
not guaranteed, and model soundness is achieved through a run-time check and
not proved.

7 Conclusion

The advantages of computer-checked metatheory are well known from program-
ming language research, where papers are often accompanied by formalizations
and proof assistants are used in the classroom [30,35]. This paper, like its pre-
decessors [6,8], reported on some steps we have taken to apply these methods to
automated reasoning. Compared with other application areas of proof assistants,
the proof obligations are manageable, and little background theory is required.

We presented a formal framework for DPLL and CDCL in Isabelle/HOL,
covering the ground between an abstract calculus and a certified SAT solver.
Our framework paves the way for further formalization of metatheoretical results.
We intend to keep following Automated Reasoning , including its generalization
of ordered ground resolution with CDCL, culminating with a formalization of
the full superposition calculus and extensions. Thereby, we aim at demonstrating
that interactive theorem proving is mature enough to be of use to practitioners
in automated reasoning, and we hope to help them by developing the necessary
libraries and methodology.

The CDCL algorithm, and its implementation in highly efficient SAT solvers,
is one of the jewels of computer science. To quote Knuth [20, p. iv], “The story
of satisfiability is the tale of a triumph of software engineering blended with
rich doses of beautiful mathematics.” What fascinates us about CDCL is not
only how or how well it works, but also why it works so well. Knuth’s remark is
accurate, but it is not the whole story.

Acknowledgment. Stephan Merz made this work possible. Dmitriy Traytel remotely
cosupervised Fleury’s M.Sc. thesis and provided ample advice on using Isabelle (as
opposed to developing it). Andrei Popescu gave us his permission to reuse, in a slightly
adapted form, the succinct description of locales he cowrote on a different occasion [6].
Simon Cruanes, Anders Schlichtkrull, Mark Summerfield, and Dmitriy Traytel sug-
gested textual improvements.
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Abstract. In theory and practice of modern SAT solving, clause-
elimination procedures are essential for simplifying formulas in conjunc-
tive normal form (CNF). Such procedures identify redundant clauses and
faithfully remove them, either before solving in a preprocessing phase or
during solving, resulting in a considerable speed up of the SAT solver.
A wide number of effective clause-elimination procedures is based on
the clause-redundancy property called blocked clauses. For checking if a
clause C is blocked in a formula F , only those clauses of F that are
resolvable with C have to be considered. Hence, the blocked-clauses
redundancy property can be said to be local. In this paper, we argue
that the established definitions of blocked clauses are not in their most
general form. We introduce more powerful generalizations, called set-
blocked clauses and super-blocked clauses, respectively. Both can still be
checked locally, and for the latter it can even be shown that it is the
most general local redundancy property. Furthermore, we relate these
new notions to existing clause-redundancy properties and give a detailed
complexity analysis.

1 Introduction

Over the last two decades, we have seen enormous progress in the performance
of SAT solvers, i.e., tools for solving the satisfiability problem of propositional
logic (SAT) [1]. As a consequence, SAT solvers have become attractive reasoning
engines in many user domains like the verification of hardware and software [2]
as well as in the backends of other reasoning tools like SMT solvers [3] or even
first-order theorem provers [4]. In such applications, however, SAT solvers often
reach their limits, motivating the quest for more efficient SAT techniques.

Clause-elimination procedures which simplify formulas in conjunctive nor-
mal form (CNF) play a crucial role regarding the performance of modern
SAT solvers [5–12]. Either before solving (“preprocessing”) or during solving
(“inprocessing”), such procedures identify redundant clauses and remove them
without changing the satisfiability or unsatisfiability of the formula [6,7].
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An important redundancy property is that of blocked clauses [13,14]. Infor-
mally, a clause C is blocked in a CNF-formula F if it contains a literal l such
that all possible resolvents of C on l with clauses from F are tautologies. As
only the resolution environment of a clause C and not the whole formula F has
to be considered to check whether C is blocked, the blocked-clauses condition is
said to be a local redundancy property.

Blocked clauses have not only shown to be important for speeding up the
solving process [8,14], but they also yield the basis for blocked-clause decompo-
sition which splits a CNF into two parts such that blocked-clause elimination can
solve it. Blocked-clause decomposition [9] is successfully used for gate extraction,
for efficiently finding backbone variables, and for the detection of implied binary
equivalences [10,11]. The winner of the SATRace 2015 competition, the solver
abcdSAT [12], uses blocked-clause decomposition as core technology.

These success stories motivate us to have a closer look at local redundancy
properties in general, and at blocked clauses in particular. We show in this
paper that the established definitions of local clause redundancy properties like
blocked clauses are not in their most general form and introduce more powerful
generalizations, called set-blocked clauses and super-blocked clauses. Both can
still be checked locally and for the latter we show that it is actually the most
general local redundancy property. Furthermore, we relate these new notions to
existing clause redundancy properties and give a detailed complexity analysis.

Our paper is structured as follows. After introducing the necessary prelimi-
naries in Sect. 2, we present some observations on blocked clauses in Sect. 3. In
Sect. 4, we introduce the notion of semantic blocking and show that it is the
most general local redundancy property. After this, the syntax-based notions of
set-blocking and super-blocking are introduced in Sect. 5, where we also relate
the different redundancy properties to each other and show that super-blocking
coincides with semantic blocking. In Sect. 6, we give a detailed complexity analy-
sis and in Sect. 7, we outline the relationship to existing redundancy properties
before concluding with an outlook to future work in Sect. 8.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF) which
are defined as follows. A literal is either a Boolean variable x (a positive literal)
or the negation ¬x of a variable x (a negative literal). For a literal l, we define
l̄ = ¬x if l = x and l̄ = x if l = ¬x. Accordingly, for a set L of literals, we define
L̄ = {l̄ | l ∈ L}. A clause is a disjunction of literals. A formula is a conjunction
of clauses. A clause can be seen as a set of literals and a formula as a set of
clauses. A tautology is a clause that contains both l and l̄ for some literal l. For a
literal, clause, or formula F , var(F ) denotes the variables in F . For convenience,
we treat var(F ) as a variable if F is a literal, and as a set of variables otherwise.

An assignment over a set V of variables is a function that assigns to every
variable in V either 1 or 0. If for an assignment τ and a formula F , the domain
of τ coincides with var(F ), then τ is said to be an assignment of F . Given an
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assignment τ and a literal l, τl is the assignment obtained from τ by interchanging
(“flipping”) the truth value of l, i.e., by defining τl(v) = 1 − τ(v) if v = var(l)
and τl(v) = τ(v) otherwise.

A literal l is satisfied by an assignment τ if l is positive and τ(var(l)) = 1
or if it is negative and τ(var(l)) = 0. A clause is satisfied by an assignment τ
if it contains a literal that is satisfied by τ . Finally, a formula is satisfied by an
assignment τ if all of its clauses are satisfied by τ . A formula is satisfiable if there
exists an assignment that satisfies it. Two formulas are logically equivalent if they
are satisfied by the same assignments. Two formulas F and F ′ are satisfiability
equivalent if F is satisfiable if and only if F ′ is satisfiable.

Given two clauses C1 and C2 with literal l ∈ C1 and l̄ ∈ C2, the clause
C = (C1 \ {l}) ∪ (C2 \ {l̄}) is called the resolvent of C1 and C2 on l. Given a
formula F and a clause C, the resolution environment, envF (C), of C in F is
the set of all clauses in F that can be resolved with C:

envF (C) = {C ′ ∈ F | ∃l ∈ C ′ such that l̄ ∈ C}.

The variables in var(C) are referred to as local variables and the variables in
var(envF (C)) \ var(C) are the external variables, denoted by extF (C).

Next, we formally introduce the redundancy of clauses. Intuitively, a clause
C is redundant w.r.t. a formula F if neither its addition to F nor its removal
from F changes the satisfiability or unsatisfiability of F .

Definition 1. A clause C is redundant w.r.t. a formula F if F \ {C} and
F ∪ {C} are satisfiability equivalent. A redundancy property is a set of pairs
(F,C) where C is redundant w.r.t. F . Finally, for two redundancy properties P1

and P2, P1 is more general than P2 if P2 ⊆ P1. Accordingly, P1 is strictly more
general than P2 if P2 ⊂ P1.

As an example, consider the formula F = {(a ∨ b), (¬a ∨ ¬b)}. The clause C =
(¬a ∨ ¬b) is redundant w.r.t. F since F \ {C} and F ∪ {C} are satisfiability
equivalent (although they are not logically equivalent). Furthermore, the set
{(F,C) | F is a formula and C is a tautology} is a redundancy property since
for every formula F and every tautology C, F \ {C} is satisfiability equivalent
to F ∪ {C}.

Also note that C is not redundant w.r.t. F if and only if F \{C} is satisfiable
and F ∪ {C} is unsatisfiable. Redundancy properties as defined above yield not
only the basis for clause-elimination but also for clause-addition procedures [7].

3 Observations on Blocked Clauses

In the following, we recapitulate the notion of blocked clauses due to Heule et al. [6]
which we will refer to as literal-blocked clauses in the rest of the paper. Motivated
by the examples given in this section, we will generalize this notion of blocking to
more powerful redundancy properties.
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∨x ∨ ∨ ¬
¬ ∨ ¬x

¬ ∨

Fig. 1. The clause (a ∨ b) from Example 3 and its resolution environment.

Definition 2. Given a formula F , a clause C, and a literal l ∈ C, l blocks C
in F if for each clause C ′ ∈ F with l̄ ∈ C ′, C ∪ (C ′ \{l̄}) is a tautology. A clause
C is literal-blocked in F if there exists a literal that blocks C in F . By BC we
denote the set {(F,C) | C is literal-blocked inF}.

Example 1. Consider the formula F = {(¬a ∨ c), (¬b ∨ ¬a)} and the clause
C = (a ∨ b). The literal b blocks C in F since the only clause in F that contains
¬b is the clause C ′ = (¬b ∨ ¬a), and C ∪ (C ′ \ {l̄}) = (a ∨ b ∨ ¬a) is a tautology.

Proposition 1. BC is a redundancy property.

Proposition 1 paraphrases results from [6] and actually follows from results in
this paper (cf. Proposition 6 and Corollary 9). Intuitively, if an assignment τ
satisfies F \ {C} but falsifies C which is blocked by literal l, then τl satisfies C.
The condition that l blocks C thereby guarantees that τl does not falsify any
other clauses in F . Hence, τl satisfies F ∪ {C} and thus F \ {C} and F ∪ {C}
are satisfiability equivalent. Next, we illustrate how a satisfying assignment of
F ∪ {C} can be obtained from one of F \ {C} [6]. This approach is used when
blocked clauses have been removed from a formula during pre- or inprocessing.

Example 2. Consider again the formula F = {(¬a∨c), (¬b∨¬a)} and the clause
C = (a ∨ b) from Example 1. We already know that b blocks C in F . So let τ be
the assignment that falsifies the variables a, b, and c. Clearly, τ satisfies F but
falsifies C. Now, the assignment τb, obtained from τ by flipping the truth value
of b, satisfies not only C but also all clauses of F : The only clause that could
have been falsified by flipping the truth value of b is (¬b ∨ ¬a), but since ¬a is
still satisfied by τb we get that τb satisfies F ∪ {C}. �	

Literal-blocked clauses generalize many other redundancy properties like pure
literal or tautology [6]. One of their particularly important properties is that for
testing if some clause C is literal-blocked in a formula F it suffices to consider
only those clauses of F that can be resolved with C, i.e., the clauses in the reso-
lution environment, envF (C), of C. This raises the question whether there exist
redundant clauses which can be identified by considering only their resolution
environment, but which are not literal-blocked. This is indeed the case:

Example 3. Let C = (a ∨ b) and F an arbitrary formula with the resolution
environment envF (C) = {(x ∨ b ∨ ¬a), (¬b ∨ ¬x), (¬b ∨ a)} (see Fig. 1). The
clause C is not literal-blocked in F but redundant: Suppose that there exists an
assignment τ that satisfies F but falsifies C. Then, τ must satisfy either x or ¬x.
If τ(x) = 1, then C can be satisfied by flipping the truth value of a, resulting in
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assignment τ ′ = τa. Thereby, τ ′(x) = 1 guarantees that the clause (x ∨ b ∨ ¬a)
stays satisfied. In contrast, if τ(x) = 0, we can satisfy C by the assignment τ ′′,
obtained from τ by flipping the truth values of both a and b: Then, τ ′′(b) = 1
guarantees that (x ∨ b ∨ ¬a) stays satisfied whereas τ ′′(x) = 0 and τ ′′(a) = 1
guarantee that both (¬b∨¬x) and (¬b∨a) stay satisfied. Since flipping the truth
values of literals in C does not affect the truth of clauses outside the resolution
environment, envF (C), we obtain in both cases a satisfying assignment of F . �	

4 A Semantic Notion of Blocking

In the examples of the preceding section, when arguing that a clause C is redun-
dant w.r.t. some formula F , we showed that every assignment τ that satisfies
F \{C}, but falsifies C, can be turned into a satisfying assignment τ ′ of F ∪{C}
by flipping the truth values of certain literals in C. Since this flipping only affects
the truth of clauses in the resolution environment, envF (C), of C, it suffices to
make sure that τ ′ satisfies envF (C) in order to guarantee that it satisfies F ∪{C}.
This naturally leads to the following semantic notion of blocking:

Definition 3. A clause C is semantically blocked in a formula F if, for every
satisfying assignment τ of envF (C), there exists a satisfying assignment τ ′ of
envF (C) ∪ {C} such that τ(v) = τ ′(v) for all v /∈ var(C). By SEMBC we denote
the set {(F,C) | C is semantically blocked inF}.

Note that clause C in Example 3 is semantically blocked in F . Note also that if
the resolution environment, envF (C), of a clause C is not satisfiable, then C is
semantically blocked.

Theorem 2. SEMBC is a redundancy property.

Proof. Let F be a formula and C a clause that is semantically blocked in F .
We show that F ∪ {C} is satisfiable if F \ {C} is satisfiable. Suppose that there
exists a satisfying assignment τ of F \ {C}. We proceed by a case distinction.

Case 1: C contains a literal l with var(l) /∈ var(F \ {C}). Then, τ can be easily
extended to a satisfying assignment τ ′ of F ∪ {C} that satisfies l.

Case 2: var(C) ⊆ var(F \ {C}). In this case, τ is an assignment of F ∪ {C}.
Suppose that τ falsifies C. It follows that C is not a tautology and so it does not
contain a literal l such that l̄ ∈ C, hence C /∈ envF (C). Thus, envF (C) ⊆ F \{C}
and so τ satisfies envF (C). Since C is semantically blocked in F , there exists
a satisfying assignment τ ′ of envF (C) ∪ {C} such that τ(v) = τ ′(v) for all
v /∈ var(C). Now, since τ ′(v) differs from τ only on variables in var(C), the only
clauses in F that could possibly be falsified by τ ′ are those with a literal l̄ such
that l ∈ C. But those are exactly the clauses in envF (C), so τ ′ satisfies F ∪{C}.

Hence, C is redundant w.r.t. F and thus SEMBC is a redundancy property. �	
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If a clause C is redundant w.r.t. some formula F and this redundancy can be
identified by considering only its resolution environment in F , then we expect
C to be redundant w.r.t. every formula F ′ in which C has the same resolution
environment as in F . This leads us to the notion of local redundancy properties.

Definition 4. A redundancy property P is local if, for any two formulas F, F ′

and every clause C with envF (C) = envF ′(C), either {(F,C), (F ′, C)} ⊆ P or
{(F,C), (F ′, C)} ∩ P = ∅.

Theorem 3. SEMBC is a local redundancy property.

Preparatory for showing that SEMBC is actually the most general local redun-
dancy property (cf. Theorem 5 below), we first prove the following lemma.

Lemma 4. Let F be a formula and C a clause that is not semantically blocked
in F . Then, there exists a formula F ′ with envF ′(C) = envF (C) such that C is
not redundant w.r.t. F ′.

Proof. Let F be a formula and C a clause that is not semantically blocked in
F , i.e., there exists a satisfying assignment τ of envF (C) but there does not
exist a satisfying assignment τ ′ of envF (C) ∪ {C} such that τ(v) = τ ′(v) for all
v /∈ var(C). We define the set T of (unit) clauses as follows:

T = {(v) | v /∈ var(C), τ(v) = 1} ∪ {(¬v) | v /∈ var(C), τ(v) = 0}.

We furthermore define F ′ = envF (C)∪{C}∪T . Clearly, since C can be falsified
and since the clauses in T contain only literals with variables that do not occur
in C, we get that neither C nor any clause of T contains a literal l̄ with l ∈ C.
We thus have that envF ′(C) = envF (C).

Now observe the following: The assignment τ satisfies envF (C) and, clearly,
also T , hence F ′\{C} is satisfiable. Furthermore, by the construction of T , every
assignment that satisfies F ′ must agree with τ on all variables v /∈ var(C). Now,
since there does not exist a satisfying assignment τ ′ of envF (C)∪{C} such that
τ(v) = τ ′(v) for all v /∈ var(C), it follows that F ′ ∪ {C} = F ′ is unsatisfiable.
Therefore, F ′ \ {C} and F ′ ∪ {C} are not satisfiability equivalent and thus C is
not redundant w.r.t. F ′. �	

Theorem 5. SEMBC is the most general local redundancy property.

Proof. Suppose there exists a local redundancy property P that is strictly more
general than SEMBC. Then, there exists some pair (F,C) such that (F,C) ∈
P but (F,C) /∈ SEMBC. Now, since (F,C) /∈ SEMBC it follows by Lemma 4
that there exists a formula F ′ with envF ′(C) = envF (C) such that C is not
redundant w.r.t. F ′. But since P is local and envF ′(C) = envF (C), it follows
that (F ′, C) ∈ P, hence P is not a redundancy property, a contradiction. �	
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5 Super-Blocked Clauses

In the following, we introduce syntax-based notions of blocking which strictly
generalize the original notion of literal-blocking as given in Definition 2. We will
first introduce the notion of set-blocking which is already a strict generalization
of literal-blocking. This notion will then be further generalized to the so-called
notion of super-blocking which, as we will prove, coincides with the notion of
semantic blocking given in Definition 3.

Definition 5. Let F be a formula and C a clause. A non-empty set L ⊆ C
blocks C in F if, for each clause C ′ ∈ F with C ′ ∩ L̄ �= ∅, (C \ L) ∪ L̄ ∪ C ′ is
a tautology. We say that a clause is set-blocked in F if there exists a set that
blocks it. We write SETBC to refer to {(F,C) | C is set-blocked inF}.

Example 4. Let C = (a∨ b) and F = {(¬a∨ b), (¬b∨a)}. Then, C is set-blocked
by L = {a, b} but not literal-blocked in F . �	

Given an assignment τ that satisfies F \ {C} but falsifies C, the existence of
a blocking set L guarantees that a satisfying assignment τ ′ of F ∪ {C} can be
obtained from τ by flipping the truth values of the literals in L. Since (C \ L) ∪
L̄ ∪ C ′ is a tautology for every C ′ in the resolution environment of C, it holds
that (i) C ′ itself is a tautology and thus satisfied by τ ′, or (ii) C ′ contains a
literal of L which is satisfied by τ ′ since its truth value is flipped, or (iii) C ′

contains a literal l which is satisfied since l̄ ∈ C is falsified by τ and the truth
value of l is not flipped. Hence, τ ′ satisfies F ∪ {C}.

Proposition 6. Set-blocking is strictly more general than literal-blocking, i.e.,
it holds that BC ⊂ SETBC.

Proof. Example 4 shows that BC �= SETBC. It remains to show that BC ⊆ SETBC.
Let F be a formula and C a literal-blocked clause in F . We distinguish two cases:
Case 1: C is a tautology. Then, l, l̄ ∈ C for some literal l. Let L = {l, l̄}. It
follows that (C \ L) ∪ L̄ ∪ C ′ is a tautology for every C ′ with C ′ ∩ L̄ �= ∅.
Case 2: C is not a tautology. Since C is literal-blocked, there exists some literal
l ∈ C such that for every clause C ′ ∈ F with l̄ ∈ C ′, C ∪ (C ′ \{l̄}) is a tautology.
Let L = {l} and let C ′ ∈ F with C ′ ∩L̄ �= ∅. Then, as C ′ contains l̄, C ∪(C ′ \{l̄})
is a tautology. Since C is not a tautology, C ′ contains some literal l′ �= l̄ such that
l̄′ ∈ C∪(C ′\{l̄}). Now, since l′ �= l̄ we have that l̄′ �= l and thus l̄′ ∈ (C\{l})∪C ′.
But then, (C \ L) ∪ L̄ ∪ C ′ is a tautology.
Thus, C is set-blocked in F and therefore BC ⊆ SETBC. �	

We already argued slightly informally why set-blocked clauses are redundant.
However, the fact that SETBC is a redundancy property follows directly from the
properties of super-blocked clauses, which we introduce next. In the following, for
a formula F and an assignment τ , we denote by F |τ the set of clauses obtained
from F by removing all clauses that are satisfied by τ . Recall that the external
variables, extF (C), are those that are contained in envF (C) but not in C.
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Definition 6. A clause C is super-blocked in a formula F if, for every assign-
ment τ over the external variables, extF (C), C is set-blocked in F |τ . We write
SUPBC for the set {(F,C) | C is super-blocked inF}.

For instance, the clause C in Example 3 is not set-blocked but super-blocked in
F since it is set-blocked in F |τ and F |τ ′ for τ(x) = 1 and τ ′(x) = 0. Again,
the idea is that from an assignment τ that satisfies F \ {C} but falsifies C, a
satisfying assignment τ ′ of F ∪{C} can be obtained by flipping the truth values
of certain literals of C. However, for making sure that the flipping does not falsify
any clauses C ′ in the resolution environment of C, also the truth values of literals
l ∈ C ′ with var(l) ∈ extF (C) are considered. This is in contrast to set-blocking,
where only the truth values of literals whose variables are contained in var(C)
are considered. Finally, note that if a clause is set-blocked in F , then it is also
set-blocked in every F ′ ⊆ F and thus in every F |τ . Hence we get:

Proposition 7. Super-blocking is strictly more general than set-blocking, i.e.,
it holds that SETBC ⊂ SUPBC.

Theorem 8. A clause is super-blocked in a formula F if and only if it is seman-
tically blocked in F , i.e., it holds that SUPBC = SEMBC.

Proof. For the “only if” direction, let F be a formula, C a clause that is super-
blocked in F , and τ a satisfying assignment of envF (C). If τ satisfies C, or C
contains a literal l with var(l) /∈ var(F ) (implying that τ can be straightfor-
wardly extended to a satisfying assignment of C), then it trivially follows that
C is semantically blocked in F . Assume thus that var(C) ⊆ var(F ) and that
τ does not satisfy C. Furthermore, let τE be obtained from τ by restricting it
to the external variables extF (C). Since C is super-blocked in F , there exists a
non-empty set L ⊆ C that blocks C in F |τE . Consider the following assignment:

τ ′(v) =

⎧
⎪⎨

⎪⎩

0 if¬v ∈ L,

1 if v ∈ L,

τ(v) otherwise.

Since τ falsifies C there is no literal l with l, l̄ ∈ L, hence τ ′ is well-defined.
Clearly, τ ′ satisfies C and τ ′(v) = τ(v) for all v /∈ var(C). It remains to show
that τ ′ satisfies envF (C). Since τ ′ differs from τ only on the truth values of
variables in var(L), τ ′ can only falsify clauses containing a literal l̄ with l ∈ L.
Let C ′ be such a clause. We proceed by a case distinction.
Case 1: C ′ contains an external literal l (i.e., var(l) ∈ extF (C)) that is satisfied
by τ . Then, since var(l) /∈ var(C) and thus l /∈ L, it follows that τ ′ agrees with
τ on the truth value of l and thus l is satisfied by τ ′.
Case 2: C ′ does not contain an external literal that is satisfied by τ . In this
case, C ′ is contained in F |τE and thus, since L set-blocks C in F |τE , we have
that (C \L)∪ L̄∪C ′ is a tautology. If C ′ is a tautology, then it is easily satisfied
by τ ′, so assume that it is not a tautology. Clearly, since C is not a tautology,
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we have that (C \ L) ∪ L̄ is not a tautology, hence there are two literals l, l̄ such
that l ∈ C ′ and l̄ is in C \ L or in L̄. If l̄ ∈ C \ L, then τ ′ agrees with τ on l̄,
hence l̄ is falsified by τ ′ and thus l is satisfied by τ ′. In contrast, if l̄ ∈ L̄, then
l ∈ L and thus l is satisfied by τ ′. In both cases τ ′ satisfies l and thus C ′.

For the “if” direction, let F be a formula and C a clause that is not super-
blocked in F , i.e., there exists an assignment τE over the external variables,
extF (C), such that C is not set-blocked in F |τE . Then, let

τ(v) =

⎧
⎪⎨

⎪⎩

1 if ¬v ∈ C,

0 if v ∈ C,

τE(v) otherwise.

Clearly, τ is well-defined since C cannot be a tautology, for otherwise it would
be set-blocked in F |τE . Furthermore, τ falsifies C and since (by definition) every
clause C ′ ∈ envF (C) contains a literal l̄ such that l ∈ C it satisfies envF (C).

Now let τ ′ be a satisfying assignment of C such that τ ′(v) = τ(v) for all
v /∈ var(C). As τ ′ satisfies C, it is obtained from τ by flipping the truth values
of some literals L ⊆ C. We show that τ ′ does not satisfy envF (C). Clearly, τ ′

agrees with τE over the external variables extF (C) and since C is not set-blocked
in F |τE , there exists a clause C ′ ∈ F |τE with C ′∩L̄ �= ∅ such that (C\L)∪L̄∪C ′

is not a tautology and neither τE nor τ ′ satisfy any external literal in C ′.
Let l ∈ C ′ be a (local) literal with var(l) ∈ var(C). Since (C \ L) ∪ L̄ ∪ C ′ is

not a tautology it follows that l̄ /∈ C \L and l̄ /∈ L̄. Since var(l) ∈ var(C) we get
that l ∈ C \ L or l ∈ L̄. In both cases, l is not satisfied by τ ′. Thus, no literal in
C ′ is satisfied by τ ′ and consequently τ ′ does not satisfy C ′ ∈ envF (C), which
then allows to conclude that C is not semantically blocked in F . �	

Corollary 9. SETBC is a (local) redundancy property.

6 Complexity Analysis

In this section, we analyze the complexity of testing whether a clause is set-
blocked or super-blocked. We further consider the complexity of testing restricted
variants of set-blocking and super-blocking which gives rise to a whole family of
blocking notions. Note that all complexity results are w.r.t. the size of a clause
and its resolution environment.

Definition 7. The set-blocking problem is the following decision problem:
Given a pair (F,C), where F is a set of clauses and C a clause such that every
C ′ ∈ F contains a literal l̄ with l ∈ C, is C set-blocked in F?

Theorem 10. The set-blocking problem is NP-complete.

Proof. We first show NP-membership followed by NP-hardness.
NP-membership: For a non-empty set L ⊆ C, it can be checked in polynomial
time whether (C \ L) ∪ L̄ ∪ C ′ is a tautology for every C ′ with C ′ ∩ L̄ �= ∅. The
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following is thus an NP-procedure: Guess a non-empty set L ⊆ C and check if
it blocks C in F .
NP-hardness (Proof Sketch): We give a reduction from SAT by defining the
following reduction function on input formula F which is w.l.o.g. in CNF:

f(F ) = (F ′, C), with C = (u ∨ x1 ∨ x′
1 ∨ · · · ∨ xn ∨ x′

n),

where var(F ) = {x1, . . . , xn} and u, x′
1, . . . , x

′
n are new variables that do not

occur in F . Furthermore, F ′ is obtained from F by

– replacing every clause D ∈ F by a clause t(D) obtained from D by adding ¬u
and replacing every negative literal ¬xi by the positive literal x′

i, and
– adding the clauses (¬xi ∨ ¬x′

i), (¬xi ∨ u), (¬x′
i ∨ u) for every xi ∈ var(F ).

The intuition behind the construction of F ′ and C is as follows. By including u
in C and adding ¬u to every t(D) with D ∈ F , we guarantee that all clauses
in F ′ contain a literal l with l̄ ∈ C. This makes (F ′, C) a valid instance of the
set-blocking problem. The main idea, however, is, that blocking-sets L of C in
F ′ correspond to satisfying assignments τ of F .

An assignment τ , obtained from a blocking set L by defining τ(xi) = 1 if
xi ∈ L and τ(xi) = 0 otherwise, satisfies F because of the following:

1. Since all C ′ = t(D) with D ∈ F , as well as C, contain—apart from ¬u—only
positive literals, (C \ L) ∪ L̄ ∪ C ′ is only a tautology if L contains a literal
of C ′. Now, the clauses (¬xi ∨ u), (¬x′

i ∨ u) force u to be contained in L and
thus L must contain a literal l �= ¬u of every t(D) with D ∈ F .

2. The reason why negative literals ¬xi are replaced by positive literals x′
i is as

follows: If C were of the form (u ∨ x1 ∨ ¬x1 ∨ · · · ∨ xn ∨ ¬xn), it would be
trivially blocked by every set L containing two complementary literals xi,¬xi.
Hence, satisfying assignments would not correspond to blocking sets.

3. The clauses (¬xi ∨ ¬x′
i) guarantee that xi and x′

i cannot both be contained
in L. Since L contains a literal of every t(D), it is thus guaranteed that τ
satisfies every D ∈ F : If L contains a positive literal xi ∈ t(D), then xi ∈ D
is satisfied by τ . If L contains a negative literal x′

i ∈ t(D), then xi /∈ L, hence
τ(xi) = 0 and thus ¬xi ∈ D is satisfied by τ .

Similarly, one can show that every set L, obtained from a satisfying assignment τ
of F by defining L = {u} ∪ {xi | τ(xi) = 1} ∪ {x′

i | τ(xi) = 0}, blocks C in F ′. �	

We next analyze the complexity of testing whether a clause is super-blocked.
To do so, we define the following problem:

Definition 8. The super-blocking problem is the following decision problem:
Given a pair (F,C), where F is a set of clauses and C a clause such that every
C ′ ∈ F contains a literal l̄ with l ∈ C, is C super-blocked in F?

Theorem 11. The super-blocking problem is ΠP
2 -complete.
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Proof. Again, we first show ΠP
2 -membership followed by ΠP

2 -hardness.
ΠP

2 -membership: The following is a ΣP
2 -procedure for testing whether C is not

super-blocked in F : Guess an assignment τ over the external variables, extF (C),
and ask an NP-oracle whether C is set-blocked in F |τ . If the oracle answers no,
then return yes, otherwise return no.
ΠP

2 -hardness (Proof Sketch): We give a reduction from ∀∃-SAT to the super-
blocking problem. Let φ = ∀X∃Y F be an instance of ∀∃-SAT and assume
w.l.o.g. that F is in CNF. We define the reduction function

f(φ) = (F ′, C), with C = (u ∨ y1 ∨ y′
1 ∨ · · · ∨ yn ∨ y′

n),

where Y = {y1, . . . , yn} and u, y′
1, . . . , y

′
n are new variables not occurring in φ.

Furthermore, F ′ is obtained from F by

– replacing every clause D ∈ F by a clause t(D) which is obtained from D by
adding ¬u and replacing every negative literal ¬yi by the positive literal y′

i

for yi ∈ Y ; and by
– adding the clauses (¬yi ∨ ¬y′

i), (¬yi ∨ u), (¬y′
i ∨ u) for every yi ∈ Y .

As super-blocking coincides with semantic blocking, we show that φ is satisfiable
if and only if C is semantically blocked in F ′.

The reduction is similar to the one used for proving Theorem 10. Here, how-
ever, only the existentially quantified variables of φ are encoded into C, hence
all xi ∈ X are external variables.

For the “only if” direction, we assume that φ is satisfiable and that we
are given some arbitrary satisfying assignment τ of F ′. By restricting τ to the
variables in X we can then obtain an assignment σX over the variables in X.
Since φ is satisfiable, there exists an assignment σY over the variables in Y
such that σX ∪ σY satisfies F . From this we can in turn obtain a satisfying
assignment τ ′ of F ′ ∪ {C} by defining τ ′(xi) = σX for xi ∈ X, τ ′(yi) = σY (yi)
and τ ′(y′

i) = 1 − σY (yi) for yi ∈ Y , and finally τ ′(u) = 1. Since τ ′ differs from τ
only on variables in var(C), C is semantically blocked in F ′.

Likewise, for showing the “if” direction, we assume that C is semantically
blocked in F ′ and that we are given some arbitrary assignment σX over the
variables in X. The crucial observation is then that for σX we can construct
an assignment τ that satisfies F ′, by defining τ(xi) = σX(xi) for all xi ∈ X
and τ(v) = 0 for all v ∈ C. The assignment τ satisfies F ′ since every C ′ ∈ F ′

contains a literal l̄ with l ∈ C. Then, since C is semantically blocked in F ′, there
exists a satisfying assignment τ ′ of F ′ ∪ {C} that corresponds with σX over X.
Since (¬yi ∨ u) and (¬y′

i ∨ u) are in F ′ for every yi ∈ Y , it is also guaranteed
that u must be satisfied by τ ′ and thus τ ′ satisfies a literal l �= ¬u in every t(D)
with D ∈ F . Finally, an assignment σY over the variables in Y can be obtained
by defining σY (yi) = 1 if and only if τ ′(yi) = 1. Then, σX ∪ σY is a satisfying
assignment of F . �	

We have already seen that the set-blocking problem is NP-complete in the general
case. However, a restricted variant of set-blocking is obtained by only allowing
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blocking sets whose size is bounded by a constant. Then, the resulting problem
of testing whether a clause C is blocked by some non-empty set L ⊆ C, whose
size is at most k for k ∈ N

+, turns out to be polynomial: For a finite set C
and k ∈ N

+, there are only polynomially many non-empty subsets L ⊆ C with
|L| ≤ k. To see this, observe (by basic combinatorics) that the exact number of
such subsets is given by the following sum which reduces to a polynomial with
degree at most k:

k∑

i=1

(
|C|
i

)

.

Hence, the number of non-empty subsets L ⊆ C with |L| ≤ k is polynomial in
the size of C. This line of argumentation is actually very common. For the sake
of completeness, however, we provide the following example:

Example 5. Let |C| = n and k = 3 (with k ≤ n). Then, the number of non-empty
subsets L ⊆ C with |L| ≤ k is given by the polynomial

∑3
i=1

(
n
i

)
= 1

6n3 + 5
6n of

degree k = 3. �	

Now, as there are only polynomially many potential blocking sets and since it
can be checked in polynomial time whether a given set L ⊆ C blocks C in F
(as argued in the proof of Theorem 10), it can be checked in polynomial time
whether for some clause C there exists a blocking set L of size at most k.

Since the definition of super-blocking is based on the definition of set-
blocking, one can also consider the complexity of restricted versions of super-
blocking where the size of the according blocking sets is bounded by a constant.
We thus define an infinite number of decision problems (one for every k ∈ N

+)
as follows:

Definition 9. For any k ∈ N
+, the k-super-blocking problem is the following

decision problem: Given a pair (F,C), where F is a set of clauses and C a clause
such that every C ′ ∈ F contains a literal l̄ with l ∈ C, does it hold that, for every
assignment τ over the external variables extF (C), there exists a non-empty set
L ⊆ C with |L| ≤ k that blocks C in F |τ?

Theorem 12. The k-super-blocking problem is in co-NP for all k ∈ N
+.

Proof. Consider the statement that has to be tested for the complement of the
k-super-blocking problem:

There exists an assignment τ over the external variables extF (C) such that
no non-empty subset of C with |C| ≤ k blocks C in F |τ .

Since it can be checked in polynomial time whether a given set L ⊆ C blocks C
in F |τ , the following is an NP-procedure:

Guess an assignment τ over the external variables extF (C) and check for
every non-empty subset of C (with |C| ≤ k) whether it blocks C in F |τ .
If there is one, return no, otherwise return yes.
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Hence, for every integer k ∈ N
+, the k-super-blocking problem is in co-NP. �	

Hardness for the complexity class co-NP can be shown already for k = 1.

Theorem 13. The 1-super-blocking problem is co-NP-hard.

Proof. By a reduction from the unsatisfiability problem of propositional logic.
Let F = {C1, . . . , Cn} be a formula in CNF and define the reduction function

f(F ) = (F ′, C), with C = (u1 ∨ · · · ∨ un),

where u1, . . . , un are new variables that do not occur in F , and F ′ =
⋃n

i=1 Fi

with Fi = {(¬ui ∨ l̄) | l ∈ Ci}. Clearly, (F ′, C) is a valid instance of the 1-super-
blocking problem and var(F ) = extF ′(C). We show that F is unsatisfiable if and
only if, for every assignment τ over extF ′(C), there exists a ui ∈ C such that
{ui} set-blocks C in F ′|τ .

For the “only if” direction, assume that F is unsatisfiable and let τ be an
assignment over extF ′(C). Since var(F ) = extF ′(C) it follows that there exists
a clause Ci in F that is falsified by τ . But then, since every clause in Fi contains
a literal l̄ with l ∈ Ci, it follows that Fi is satisfied by τ . Hence, Fi ∩ F ′|τ = ∅
and thus, since ¬ui only occurs in Fi, {ui} trivially set-blocks C in F ′.

For the “if” direction, assume that for every τ over extF ′(C), there exists a
ui ∈ C such that {ui} set-blocks C in F ′|τ . Since var(F ) = extF ′(C) it follows
that for every assignment τ of F and every clause (¬ui ∨ l̄) ∈ F ′|τ (with l ∈ Ci),
T = (C \ {ui}) ∪ {¬ui} ∪ {¬ui, l̄} is a tautology. But since T cannot contain
complementary literals it must be the case that (¬ui ∨ l̄) /∈ F ′|τ which implies
that every l ∈ Ci is falsified by τ . It follows that F is unsatisfiable. �	

Corollary 14. The k-super-blocking problem is co-NP-complete for all k ∈ N
+.

The notions of set-blocking and super-blocking, together with the correspond-
ing restrictions discussed in this section, give rise to a whole family of blocking
notions which differ in both generality and complexity. We conclude the follow-
ing: (i) Considering the assignments over external variables (as is the case for
super-blocking) leads to co-NP-hardness. (ii) If blocking sets of arbitrary size
are considered, the (sub-)problem of checking whether there exists a blocking
set is NP-hard. (iii) If the size of blocking sets is bounded by a constant k, the
(sub-)problem of testing whether there exists a blocking set turns out to be
polynomial. (iv) The problem of testing whether a clause is super-blocked in the
most general sense, where the size of blocking sets is not bounded by a constant,
is ΠP

2 -complete. Hence, we can summarize the following complexity results:

|L| is unrestricted |L| ≤ k for k ∈ N
+

Super-blocking ΠP
2 -complete co-NP-complete

Set-blocking NP-complete P
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Note that the cardinality |L| of blocking sets is of course bounded by the
length of the clauses, thus we can restrict |L| ≤ |C|. This is particularly inter-
esting for formula instances with (uniform) constant or maximal clause length.

Finally, we conclude the discussion by returning to the starting point of this
paper: literal-blocked clauses. Obviously, we can write the definition for set-
blocking with |L| ≤ 1 as follows: A set {l} ⊆ C blocks a clause C in a formula F
if for each clause C ′ ∈ F with l̄ ∈ C ′, (C \{l})∪C ′ is a tautology. (Note that we
write (C \{l})∪C ′ instead of (C \{l})∪{l̄}∪C ′ since l̄ is anyhow required to be
contained in C ′.) This is very similar to the original definition of literal-blocked
clauses which requires C ∪ (C ′ \ {l}) to be a tautology.

7 Comparison with Other Redundancy Properties

In the following, we consider several local and non-local redundancy properties
as presented in [7] and relate them to the previously discussed local redundancy
properties. From the three basic redundancy properties tautology (T), subsump-
tion (S), and literal-blocked clauses (BC), extended redundancy properties are
derived as follows.

Given a formula F and a clause C, ALA(F,C) is the unique clause obtained
from C by repeating asymmetric literal addition, as defined in the following, until
a fixed point is reached: If l1, . . . , lk ∈ C and there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈
F \{C} for some literal l, let C := C ∪{l̄}. The special case where k = 1 is called
hidden literal addition (HLA). Due to space limitations, we will not consider HLA
separately. Given a formula F and a clause C, (F,C) ∈ AT (resp., AS or ABC)
if (F,ALA(F,C)) ∈ T (resp., S or BC).

Finally, we introduce the redundancy properties prefixed with R [7]. Given a
formula F and a clause C, (F,C) ∈ RP if either (i) (F,C) ∈ P or (ii) there is a
literal l in C such that for each clause C ′ ∈ F with l̄ ∈ C ′, (F,C ∪C ′ \ {l̄}) ∈ P.
Examples are RT, RS, and RAT. Especially RAT is extremely powerful, because it
captures all known SAT solving techniques including preprocessing, inprocessing,
and clause learning [7,15].

These notions of redundancy lead to the hierarchy depicted in Fig. 2 which
we extend with the previously introduced set-blocked and super-blocked clauses.
We discuss the incomparability with redundancy properties based on T in detail;
incomparability with subsumption-based properties works analogously.

Proposition 15. AT �⊆ SETBC and SETBC �⊆ AT.

Proof. Let C = (a ∨ b ∨ c) and F = {(¬a ∨ x), (¬b ∨ x), (¬c ∨ x), (a ∨ b)}. Since
¬b ∈ ALA(F,C), it follows that (F,C) ∈ AT. Now, assume that C is set-blocked
by some set L ⊆ C, i.e., for every C ′ with C ′ ∩ L̄ �= ∅, (C \ L) ∪ L̄ ∪ C ′ is a
tautology. Since L ⊆ C is non-empty, (¬v ∨ x) ∩ L̄ �= ∅ for at least one (¬v ∨ x)
with v ∈ {a, b, c}. Let therefore C ′ be such a (¬v ∨ x). Then, v �∈ (C \ L) and
v �∈ L̄. Hence, (C \ L) ∪ L̄ ∪ C ′ is not a tautology and thus C is not set-blocked
by L, a contradiction. We conclude that (F,C) /∈ SETBC.

Finally, let F = ∅ and C = (a). Then, (F,C) ∈ SETBC, but (F,C) �∈ AT. �	
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T

AT

S

AS

RS

RAS

BC

ABC

RT

RAT

SETBC SUPBC

local

non-local

Fig. 2. Hierarchy of redundancy properties [7] extended with novel local redundancies.
For redundancy properties P1 and P2, an arrow from P1 to P2 denotes that P2 ⊆ P1.

Proposition 16. AT �⊆ SUPBC and SUPBC �⊆ AT.

Proof. Consider again the clause C = (a∨ b∨ c) and the formula F = {(¬a∨x),
(¬b ∨ x), (¬c ∨ x), (a ∨ b)} from the proof of Proposition 15, and observe that
extF (C) = {x}. Here, for the assignment τ that falsifies the external variable
x, F |τ = F and since C is not set-blocked in F (as shown in the proof of
Proposition 15), it is not set-blocked in F |τ , hence (F,C) /∈ SUPBC.

To see that SUPBC �⊆ AT, let F = ∅ and C = (a). Then, since (F,C) ∈ SETBC

and SETBC ⊂ SUPBC, we get that (F,C) ∈ SUPBC but (F,C) /∈ AT. �	

From Proposition 16 together with the fact that AT ⊂ RAT we get:

Corollary 17. RAT �⊆ SUPBC.

Proposition 18. SETBC �⊆ RAT.

Proof. Consider the clause C = (a ∨ b) and the formula F = {(a ∨ b), (¬a ∨ b),
(a∨¬b)}. Clearly, C is set-blocked by L = {a, b} in F and thus (F,C) ∈ SETBC.

Now, for the literal a there is only the clause C ′ = (¬a ∨ b) that contains ¬a
and C ∪C ′ \{¬a} = (a∨b). Furthermore, for the literal b there is only the clause
C ′′ = (a∨¬b) that contains ¬b and here again we get that C∪C ′′\{¬b} = (a∨b).
Since ALA(F \ {C}, (a ∨ b)) = (a ∨ b) is not a tautology, (F,C) /∈ RAT. �	

Corollary 19. RAT is incomparable with SETBC and SUPBC.

8 Conclusion

Previous research and recent SAT competitions have clearly revealed the power
of solving techniques based on the redundancy property of literal-blocked clauses.
One reason for the success of this redundancy property is that it is local in
the sense that it can be efficiently checked by considering only the resolution
environment of a clause [8,12,14]. In this paper, we showed that there are even
more general local redundancy properties like set-blocked clauses (SETBC) and
super-blocked clauses (SUPBC). Local redundancy properties are particularly
appealing in the context of real-world verification, where problem encodings
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into SAT often lead to very large formulas in which the resolution environments
of clauses are still small.

Our complexity analysis showed that checking the newly introduced redun-
dancy properties is computationally expensive in the worst case. This seemingly
limits their practical applicability at first glance. However, we presented bounded
variants that can be checked more efficiently and we expect them to considerably
improve the solving process when added to our SAT solvers. While the focus of
this paper lies on the theoretical investigation of local redundancy properties,
thereby contributing to gaining a deeper understanding of blocked clauses, a
practical evaluation is subject to future work.

Another direction for future work is lifting the new redundancy properties to
QSAT, the satisfiability problem of quantified Boolean formulas (QBF). There,
literal-blocked clauses have been shown to be even more effective than in SAT
solving [6,16] and we expect that this also holds for quantified variants of SETBC

and SUPBC.
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Abstract. We identify a fragment of Presburger arithmetic enriched
with free function symbols and cardinality constraints for interpreted
sets, which is amenable to automated analysis. We establish decidabil-
ity and complexity results for such a fragment and we implement our
algorithms. The experiments run in discharging proof obligations com-
ing from invariant checking and bounded model-checking benchmarks
show the practical feasibility of our decision procedure.

1 Introduction

Enriching logic formalisms with counting capabilities is an important task in view
of the needs of many application areas, ranging from database theory to formal
verification. Such enrichments have been designed both in the description logics
area and in the area of Satisfiability Modulo Theories (SMT), where some of the
most important recent achievements were decidability and complexity bounds for
BAPA [14] - the enrichment of Presburger arithmetic with the ability of talking
about finite sets and their cardinalities. As pointed out in [15], BAPA constraints
can be used for program analysis and verification by expressing data structure
invariants, simulations between program fragments or termination conditions.
The analysis of BAPA constraints was successfully extended also to formalisms
encompassing multisets [18] as well as direct/inverse images along relations and
functions [23].

A limitation of BAPA and its extensions lies in the fact that only uninter-
preted symbols (for sets, relations, functions, etc.) are allowed. On the other
hand, it is well-known that a different logical formalism, namely unary counting
quantifiers, can be used in order to reason about the cardinality of definable
(i.e. of interpreted) sets. Unary counting quantifiers can be added to Presburger
arithmetic without compromising decidability, see [19], however they might be
quite problematic if combined in an unlimited way with free function symbols.
In this paper, we investigate the extension of Presburger arithmetic including
both counting quantifiers and uninterpreted function symbols, and we isolate
fragments where we can achieve decidability and in some cases also relatively
good complexity bounds. The key ingredient to isolate such fragments is the
notion of flatness: roughly, in a flat formula, subterms of the kind a(t) (where
a is a free function symbol) can occur only if t is a variable. By itself, this naif
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flatness requirement is useless (any formula can match it to the price of intro-
ducing extra quantified variables); in order to make it effective, further syntactic
restrictions should be incorporated in it, as witnessed in [2]. This is what we are
going to do in this paper, where suitable notions of ‘flat’ and ‘simple flat’ for-
mulæ are introduced in the rich context of Presburger arithmetic enriched with
free function symbols and with unary counting quantifiers (we use free function
symbols to model arrays, see below).

The fragments we design are all obviously more expressive than BAPA, but
they do not come from pure logic motivations, on the contrary they are suggested
by an emerging application area, namely the area of verification of fault-tolerant
distributed systems. Such systems (see [8] for a good account) are modeled as
partially synchronous systems, where a finite number of identical processes oper-
ate in lock-step (in each round they send messages, receive messages, and update
their local state depending on the local state at the beginning of the round and
the received messages). Messages can be lost, processes may omit to perform
some tasks or also behave in a malicious way; for these reasons, the fact that
some actions are enabled or not, and the correctness of the algorithms them-
selves, are subject to threshold conditions saying for instance that some qualified
majority of processes are in a certain status or behave in a non-faulty way. Veri-
fications tasks thus have to handle cardinality constraints of the kind studied in
this paper (the reader interested in full formalization examples can directly go
to Sect. 5).

The paper is organized as follows: we first present basic syntax (Sect. 2),
then decidability (Sect. 3) and complexity (Sect. 4) results; experiments with
our prototypical implementation are supplied in Sect. 5, and Sect. 6 concludes
the work.

2 Preliminaries

We work within Presburger arithmetic enriched with free function symbols and
cardinality constraints. This is a rather expressive logic, whose syntax is summa-
rized in Fig. 1. Terms and formulæ are interpreted in the natural way over the
domain of integers Z; as a consequence, satisfiability of a formula φ means that
it is possible to assign values to parameters, free variables and array-ids so as
to make φ true in Z (validity of φ means that ¬φ is not satisfiable, equivalence
of φ and ψ means that φ ↔ ψ is valid, etc.). We nevertheless implicitly assume
few constraints (to be explained below) about our intended semantics.

To denote integer numbers, we have (besides variables and numerals) also
parameters: the latter denote unspecified integers. Among parameters, we always
include a specific parameter (named N) identifying the dimension of the system
- alias the length of our arrays: in other words, it is assumed that for all array
identifiers a ∈ Arr, the value a(x) is conventional (say, zero) outside the interval
[0, N) = {n ∈ Z | 0 ≤ n < N}. Although binary free function symbols are
quite useful in some applications, in this paper we prefer not to deal with them.
The operator � {x | φ} indicates the cardinality of the finite set formed by the
x ∈ [0, N) such that φ(x) holds.
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0, 1, . . . ∈ Z numerals (numeric constants)
x, y, z, . . . ∈ V ar individual variables
M, N, . . . ∈ Par parameters (free constants)
a, b, . . . ∈ Arr array ids (free unary

function symbols)
t, u, . . . ::= n | M | x | t + t | −t | a(t) | �{x | φ} terms
A, B, . . . ::= t < t | t = t | t ≡n t atoms
φ, ψ, . . . ::= A | φ ∧ φ | ¬φ | ∃x φ formulae

Fig. 1. Syntax

Notice that the cardinality constraint operator � {x | −}, as well the quantifier
∃x, bind the variable x; below, we indicate with ψ(x) (resp. t(x)) the fact that
the formula ψ (the term t) has free individual variables included in the list x.
When we speak of a substitution, we always mean ‘substitution without capture’,
meaning that, when we replace the free occurrences of a variable x with a term
u in a formula φ or in a term t, the term u should not contain free variables that
might be located inside the scope of a binder for them once the substitution is
performed; the result of the substitution is denoted with φ(u/x) and t(u/x).

The logic of Fig. 1 is far from being tractable, because even the combination
of free function symbols and Presburger arithmetic lands in a highly undecidable
class [10]. We are looking for a mild fragment, nevertheless sufficiently expressive
for our intended applications. These applications mostly come from verification
tasks, like bounded model checking or invariant checking. Our aim is to design a
decidable fragment (so as to be able not only to produce certifications, but also to
find bugs) with some minimal closure properties; from this point of view, notice
that for bounded model checking closure under conjunctions is sufficient, but
for invariant checking we need also closure under negations in order to discharge
entailments.

2.1 Flat Formulæ

We now introduce some useful subclasses of the formulæ built up according to
the grammar of Fig. 1 (all subclasses are closed under Boolean operations):

– Arithmetic formulæ : these are built up from the grammar of Fig. 1 without
using neither array-ids nor cardinality constraint operators; we use letter
α, β, . . . for arithmetic formulæ. Recall that, according to the well-known
quantifier elimination result, arithmetic formulæ are equivalent to quantifier-
free arithmetic formulæ.

– Constraint formulæ : these are built up from the grammar of Fig. 1 without
using array-ids.

– Basic formulæ : these are obtained from an arithmetic formula by simul-
taneously replacing some free variables by terms of the kind a(y), where y
is a variable and a an array-id. When we need to display full information,
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we may use the notation α(y,a(y)) to indicate basic formulæ. By this nota-
tion, we mean that y = y1, . . . , yn are variables, a = a1, . . . , as are array-ids
and that α(y,a(y)) is obtained from an arithmetic formula α(x, z) (where
z = z11, . . . , zsn) by replacing zij with ai(yj) (i = 1, . . . , s and j = 1, . . . , n).

– Flat formulæ : these are recursively defined as follows (i) basic formulæ are flat
formulæ; (ii) if φ is a flat formula, β is a basic formula, z and x are variables,
then φ(� {x | β} / z) is a flat formula. Thus in flat formulæ all dereferenced
indexes are either free or the ones defining the comprehension.1

Example 1. The formulæ a(y)+a(z) ≤ z and z = � {x | � {x′ |a(x′) < 1} = a(x)}
are flat (the former also basic) whereas z = � {x | � {x′ |a(x′) < x} = a(x)} is not
such (the binder � {x | · · · captures a free occurrence of x in � {x′ |a(x′) < x}).

The following result is proved in [19] (see also the Appendix of [1]):

Theorem 1. For every constraint formula one can compute an arithmetic
formula equivalent to it.

3 Satisfiability for Flat formulæ

We shall show that flat formulæ are decidable for satisfiability. In fact, we shall
show decidability of the slightly larger class covered by the following

Definition 1. Extended flat formulæ (briefly, E-flat formulæ) are formulæ of
the kind

∃z. α ∧ �{x | β1} = z1 ∧ · · · ∧ �{x | βK} = zK (1)

where z = z1, . . . , zK and α, β1, . . . , βK are basic formulæ and x does not occur
in α.

Notice that α and the βj in (1) above may contain further free variables y
(besides z) as well as the terms a(y) and a(z); the βj may contain occurrences
of x and of a(x).

That flat formulæ are also E-flat can be seen as follows: due to the fact that
our substitutions avoid captures, we can use equivalences like φ(t/z) ↔ ∃z (t =
z ∧ φ) in order to abstract out the terms t := � {x |α} occurring in the recursive
construction of a flat formula φ. By repeating this linear time transformation,
we end up in a formula of the kind (1). However, not all E-flat formulæ are flat
because the dependency graph associated to (1) might not be acyclic (the graph
we are talking about has the zj as nodes and has an arc zj → zi when zi occurs
in βj). The above conversion of a flat formula into a formula of the form (1) on
the other hand produces an E-flat formula whose associated graph is acyclic.

We prove a technical lemma showing how we can manipulate E-flat formulæ
without loss of generality. Formulae ϕ1, . . . , ϕK are said to be a partition iff the
1 If we want to emphasize the way the basic formula β is built up, following the

above conventions, we may write it as β(x, y,a(x), a(y)); here, supposing that a is
a1, . . . , as, since x is a singleton, the tuple a(x) is a1(x), . . . , as(x).
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formulæ
∨K

l=1 ϕl and ¬(ϕl ∧ ϕh) (for h �= l) are valid. Recall that the existential
closure of a formula is the sentence obtained by prefixing it with a string of
existential quantifiers binding all variables having a free occurrence in it.

Lemma 1. The existential closure of an E-flat formula is equivalent to a
sentence of the kind

∃z ∃y. α(y, z) ∧ �{x | β1(x,a(x), y, z)} = z1 ∧· · ·∧ �{x | βK(x,a(x), y, z)} = zK

(2)
where y and z := z1, . . . , zK are variables, α is arithmetical, and the formulæ
β1, . . . , βK are basic and form a partition.

Proof. The differences between (the matrices of) (2) and (1) are twofold: first
in (2), the βl form a partition and, second, in (1) the terms as(yi) and as(zh)
(for as ∈ a and yi ∈ y, zh ∈ z) may occur in α and in the βl.

We may disregard the as(zh) without loss of generality, because we can
include them in the as(yi): to this aim, it is sufficient to take a fresh y, to
add the conjunct y = zh to α and to replace everywhere as(zh) by as(y). In
order to eliminate also a term like as(yi), we make a guess and distinguish the
case where yi ≥ N and the case where yi < N (formally, ‘making a guess’
means to replace (1) with a disjunction - the two disjuncts being obtained by
adding to α the case description). According to the semantics conventions we
made in Sect. 2, the first case is trivial because we can just replace as(yi) by
0. In the other case, we first take a fresh variable u and apply the equivalence
γ(. . . as(yj) . . . ) ↔ ∃u (as(yj) = u ∧ γ(. . . u . . . )) (here γ is the whole (1)); then
we replace as(yj) = u by the equivalent formula �{x | x = yj ∧ as[x] = u} = 1
and finally the latter by ∃u′ (u′ = 1 ∧ � {x | x = yj ∧ as[x] = u} = u′) (the result
has the desired shape once we move the new existential quantifiers in front).

After this, we still need to modify the βl so that they form a partition (this
further step produces an exponential blow-up). Let ψ(y) be the matrix of a
formula of the kind (2), where the βl are not a partition. Let us set K :=
{1, . . . , K} and let us consider further variables u = 〈uσ〉σ, for σ ∈ 2K . Then it
is clear that the existential closure of ψ is equivalent to the formula obtained by
prefixing the existential quantifiers ∃u ∃z to the formula

⎛

⎝α ∧
K∧

l=1

zl =
∑

σ∈2K , σ(l)=1

uσ

⎞

⎠ ∧
∧

σ∈2K

�{x | βσ} = uσ (3)

where βσ; =
∧K

l=1 εσ(l)βl (here εσ(l) is ‘¬’ if σ(l) = 0, it is a blank space other-
wise). �

Theorem 2. Satisfiability of E-flat formulæ is decidable.

Proof. We reduce satisfiability of (2) to satisfiability of a constraint formula (4)
which is decidable by Theorem 1. The matrix of (2) has free variables z, y and
these are inherited by the equi-satisfiable formula (4), but the latter contains
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extra free variables zS , zl,S : variables zS count new Venn regions, whereas vari-
ables zl,S counts how many elements are taken from zS to contribute to the old
Venn region counted by zl. In detail, we show that (2) is equisatisfiable with

α ∧
∧

S∈℘(K)

⎛

⎝zS = �{x |
∧

l∈S

∃u βl(x, u, y, z) ∧
∧

l �∈S

∀u¬βl(x, u, y, z)}

⎞

⎠ ∧

∧
∧

S∈℘(K)

(

zS =
∑

l∈S

zl,S

)

∧
K∧

l=1

⎛

⎝zl =
∑

S∈℘(K),l∈S

zl,S

⎞

⎠ ∧
∧

l∈S∈℘(K)

zl,S ≥ 0

(4)
(according to our notations, the basic formulæ βl(x,a(x), y, z) from (2) were
supposed to be built up from the arithmetic formulæ βl(x, u, y, z) by replacing
the variables u = u1, . . . , us with the terms a(x) = a1x), . . . , as(x)).

Suppose that (4) is satisfiable. Then there is an assignment V to the free
variables occurring in it so that (4) is true in the standard structure of the
integers (for simplicity, we use the same name for a free variable and for the
integer assigned to it by V ). If a = a1, . . . , as, we need to define as(i) for all s
and for all i ∈ [0, N). For every l = 1, . . . ,K this must be done in such a way that
there are exactly zl integer numbers taken from [0, N) satisfying βl(x,a(x), y, z).
The interval [0, N) can be partioned by associating with each i ∈ [0, N) the set
iS = {l ∈ K | ∃u βl(i, u, y, z) holds under V }. For every S ∈ ℘(K) the number
of the i such that iS = S is zS ; for every l ∈ S, pick zl,S among them and, for
these selected i, let the s-tuple a(i) be equal to an s-tuple y such that βl(i, u, y, z)
holds (for this tuple y, since the βl are a partition, βh(i, u, y, z) does not hold,
if h �= l). Since zS =

∑
l∈S zl,S and since

∑
S zS is equal to the length of the

interval [0, N) (because the formulæ
∧

l∈S ∃u βl ∧
∧

l �∈S ∀u¬βl are a partition),
the definition of the a is complete. The formula (2) is true by construction.

On the other hand suppose that (2) is satisfiable under an assignment V ;
we need to find V (zS), V (zl,S) (we again indicate them simply as zS , zl,S) so
that (4) is true. For zS there is no choice, since zS = �{i |

∧
l∈S ∃u βl(i, u, y, z)∧∧

l �∈S ∀u¬βl(i, u, y, z)} must be true; for zl,S , we take it to be the cardinality
of the set of the i such that βl(i,a(i), y, z) holds under V and S = {h ∈ K |
∃u βh(i, u, y, z) holds under V }. In this way, for every S, the equality zS =∑

l∈S zl,S holds and for every l, the equality zl =
∑

S∈℘(K),l∈S zl,S holds too.
Thus the formula (2) becomes true under our extended V . �

Example 2. Let us test the satisfiability of

N > 3 ∧ z2 ≡5 1 ∧ z1 = �{x | x + |a(x)| < 3} ∧ z2 = �{x | x + |a(x)| ≥ 3} (5)

We have K = 2 and let us put S1 := {1, 2}, S2 := ∅, S3 := {1}, S4 := {2}. Since
the absolute value is a positive number, when writing down (4), we easily realize
that we must have zS1 = �{0, 1, 2} = 3, zS2 = zS3 = 0, zS4 = �{3, . . . , N − 1} =
N − 3. Thus (5) is satisfiable iff there are z1S1 , z2S1 , z2S4 ≥ 0 such that

N > 3 ∧ z2 ≡5 1 ∧ z1S1 + z2S1 = 3 ∧ z2S4 = N − 3 ∧ z1 = z1S1 ∧ z2 = z2S1 + z2S4
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which is in fact the case (but notice that an additional conjunct like N ≡5 0
would make (5) unsatisfiable).

4 A More Tractable Subcase

We saw that satisfiability of flat formulæ is decidable, but the complexity of the
decision procedure is very high: Lemma 1 introduces an exponential blow-up and
other exponential blow-ups are introduced by Theorem 2 and by the decision
procedure (via quantifier elimination) from [19]. Of course, all this might be
subject to dramatic optimizations (to be investigated by future reseach); in this
paper we show that there is a much milder (and still practically useful) fragment.

Definition 2. Simple flat formulæ are recursively defined as follows: (i) basic
formulæ are simple flat formulæ; (ii) if φ is a simple flat formula, β(a(x),a(y), y)
is a basic formula and x, z are variables, then φ(�{x | β} / z) is a simple flat
formula.

As an example of a simple flat formula consider the following one

a′(y) = z ∧ � {x | a′(x) = a(x)} ≥ N−1 ∧ (� {x | a′(x) = a(x)} < N → a(y) �= z)

expressing that a′ = write(a, y, z) (i.e. that the array a′ is obtained from a by
over-writing z in the entry y).

Definition 3. Simple E-flat formulæ are formulæ of the kind

∃z. α(a(y),a(z), y, z) ∧ �{x | β1(a(x),a(y),a(z), y, z)} = z1 ∧ · · ·
· · · ∧ �{x | βK(a(x),a(y),a(z), y, z))} = zK

(6)

where α and the βi are basic.

It is easily seen that (once again) simple flat formulæ are closed under
Boolean combinations and that simple flat formulæ are simple E-flat formulæ
(the converse is not true, for ciclicity of the dependence graph of the zi’s in (6)).

The difference between simple and non-simple flat/E-flat formulæ is that
in simple formulæ the abstraction variable cannot occur outside the read of an
array symbol (in other words, the β, βi from the above definition are of the
kind βi(a(x),a(y),a(z), y, z) and not of the kind βi(a(x),a(y),a(z), x, y, z)).
This restriction has an important semantic effect, namely that formulæ (6)
are equi-satisfiable to formulæ which are permutation-invariant, in the follow-
ing sense. The truth value of an arithmetical formula or of a formula like
z = �{x | α(a(x), y)} is not affected by a permutation of the values of the a(x)
for x ∈ [0, N), because x does not occur free in α (permuting the values of the
a(x) may on the contrary change the value of a flat non-simple sentence like
z = �{x |a(x) ≤ x}). This ‘permutation invariance’ will be exploited in the argu-
ment proving the correctness of decision procedure of Theorem 3 below. Formu-
lae (6) themselves are not permutation-invariant because of subterms a(z),a(y),
so we first show how to eliminate them up to satisfiability:
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Lemma 2. Simple E-flat formulæ are equi-satisfiable to disjunctions of permu-
tation-invariant formulæ of the kind

∃z. α(y, z) ∧ �{x | β1(a(x), y, z)} = z1∧· · ·∧�{x | βK(a(x), y, z))} = zK (7)

Proof. Let us take a formula like (6): we convert it to an equi-satisfiabe disjunc-
tion of formulæ of the kind (7). The task is to eliminate terms a(z), a(y) by
a series of guessings (each guessing will form the content of a disjunct). Notice
that we can apply the procedure of Lemma 1 to eliminate the a(z), but for
the a(y) we must operate differently (the method used in Lemma 1 introduced
non-simple abstraction terms).

Let us suppose that y := y1, . . . , ym and that, after a first guess, α contains
the conjunct yj < N for each j = 1, . . . ,m (if it contains yj ≥ N , we replace
as(yj) by 0); after a second series of guesses, we can suppose also that α contains
the conjuncts yj1 �= yj2 for j1 �= j2 (if it contains yj1 = yj2 , we replace yj1 by yj2

everywhere, making yj1 to disappear from the whole formula). In the next step,
(i) we introduce for every a ∈ a and for every j = 1, . . . ,m a fresh variable uaj ,
(ii) we replace everywhere a(yj) by uaj and (iii) we conjoin to α the equalities
a(yj) = uaj . In this way we get a formula of the following kind

∃z.
∧

a∈a,yj∈y

a(yj) = uaj ∧ α(y, u, z) ∧
K∧

l=1

�{x | βl(a(x), y, u, z)} = zl (8)

where u is the tuple formed by the uaj (varying a and j). We now make another
series of guesses and conjoin to α either uaj = ua′j′ or uaj �= ua′j′ for (a, j) �=
(a′, j′). Whenever uaj = ua′j′ is conjoined, uaj is replaced by ua′j′ everywhere,
so that uaj disappears completely. The resulting formula still has the form (8),
but now the map (a, j) �→ uaj is not injective anymore (otherwise said, uaj now
indicates the element from the tuple u associated with the pair (a, j) and we
might have that the same uaj is associated with different pairs (a, j)).

Starting from (8) modified in this way, let us define now the equivalence
relation among the yj that holds between yj and yj′ whenever for all a ∈ a there
is ua ∈ u such that α contains the equalities a(yj) = ua and a(y′

j) = ua. Each
equivalence class E is uniquely identified by the corresponding function fE from
a into u (it is the function that for each yj ∈ E maps a ∈ a to the ua ∈ u such
that α contains the equality a(yj) = ua as a conjunct). Let E1, . . . , Er be the
equivalence classes and let n1, . . . , nr be their cardinalities. We claim that (8) is
equisatisfiable to

∃z. α(y, u, z) ∧
r∧

q=1

�{x |
∧

a∈a

a(x) = fEq
(a)} ≥ nq ∧

∧
K∧

l=1

�{x | βl(a(x), y, u, z)} = zl

(9)

In fact, satisfiability of (8) trivially implies the satisfiability of the formula (9);
vice versa, since (9) is permutation-invariant, if it is satisfiable we can modify
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any assignment satisfying it via a simultaneous permutation of the values of the
a ∈ a so as to produce an assignment satisfying (8).

We now need just the trivial observation that the inequalities �{x |∧
a∈a a(x) = fEq

(a)} ≥ nq can be replaced by the formulæ �{x |
∧

a∈a a(x) =
fEq

(a)} = z′
q ∧ z′

q ≥ nq (for fresh z′
q) in order to match the syntactic shape

of (7). �

We can freely assume that quantifiers do not occur in simple flat formulæ: this
is without loss of generality because such formulæ are built up from arithmetic
and basic formulæ.2

Theorem 3. Satisfiability of simple flat formulæ can be decided in NP (and
thus it is an NP-complete problem).

Proof. First, by applying the procedure of the previous Lemma we can reduce
to the problem of checking the satisfiability of formulæ of the kind

α(y, z) ∧ �{x | β1(a(x), y, z)} = z1 ∧ · · · ∧ �{x | βK(a(x), y, z)} = zK (10)

where α, β1, . . . , βK are basic (notice also that each formula in the output of the
procedure of the previous Lemma comes from a polynomial guess).

Suppose that A1(a(x), y, z), . . . , AL(a(x), y, z) are the atoms occurring in
β1, . . . , βK . For a Boolean assignment σ to these atoms, we indicate with [[βj ]]σ

the Boolean value (0 or 1) the formula βl has under such assignment. We first
claim that (10) is satisfiable iff there exists a set of assignments Σ such that the
formula

α(y, z) ∧
∧

σ∈Σ

∃u

⎛

⎝
L∧

j=1

εσ(Aj)Aj(u, y, z)

⎞

⎠ ∧

⎡

⎢
⎢
⎢
⎣

z1
z2
...

zK

⎤

⎥
⎥
⎥
⎦

=
∑

σ∈Σ

vσ

⎡

⎢
⎢
⎢
⎣

[[β1]]σ

[[β2]]σ
...

[[βK ]]σ

⎤

⎥
⎥
⎥
⎦

∧

∧
∑

σ∈Σ

vσ = N ∧
∧

σ∈Σ

vσ > 0

(11)

is satisfiable (we introduced extra fresh variables vσ, for σ ∈ Σ; notation
εσ(Aj) is the same as in the proof of Lemma 1). In fact, on one side, if (10)
is satisfiable under V , we can take as Σ the set of assigments for which∧L

j=1 εσ(Aj)Aj(a(i), y, z) is true under V for some i ∈ [0, N) and for vσ the
cardinality of the set of the i ∈ [0, N) for which

∧L
j=1 εσ(Aj)Aj(a(i), y, z) holds.

This choice makes (11) true. Vice versa, if (11) is true under V , in order to
define the value of the tuple a(i) (for i ∈ [0, N)), pick for every σ ∈ Σ some uσ

such that
∧L

j=1 εσ(Aj)Aj(uσ, y, z) holds; then, supposing Σ = {σ1, . . . , σh}, let

2 By the quantifier-elimination result for Presburger arithmetic, it is well-known that
arithmetic formulæ are equivalent to quantifier-free ones. The same is true for basic
formulæ because they are obtained from arithmetic formulae by substitutions with-
out capture.
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a(i) be equal to uσ1
for i ∈ [0, vσ1), to uσ2

for i ∈ [vσ1 , vσ2), etc. Since we have
that

∑
σ∈Σ vσ = N , the definition of the interpretation of the a is complete (any

other permutation of the values a(x) inside [0, N) would fit as well). In this way,
formula (10) turns out to be true.

We so established that our original formula is satisfiable iff there is some
Σ such that (11) is satisfiable; the only problem we still have to face is that
Σ might be exponentially large. To reduce to a polynomial Σ, we use the
same technique as in [16]. In fact, if (11) is satisfiable, then the column vec-
tor (z1, . . . , zK , N)T is a linear combination with positive integer coefficients of
the 0/1-vectors ([[β1]]σ, · · · , [[βK ]]σ, 1)T and it is known from [9] that, if this is the
case, the same result can be achieved by assuming that at most 2K ′ log2(4K ′)
of the vσ are nonzero (we put K ′ := K + 1). Thus polynomially many Σ are
sufficient and for such Σ, a satisfying assignment for the existential Presburger
formula (11) is a polynomial certificate. �

4.1 Some Heuristics

We discuss here some useful heuristics for the satisfiability algorithm for simple
flat formulæ (most of these heuristics have been implemented in our prototype).

1.- The satisfiability test involves all formulæ (11) for each set of assign-
ments Σ having cardinality at most M = �2K ′ log2(4K ′)� (actually, one can
improve this bound, see [16]). If we replace in (11), for every σ, the con-
junct vσ > 0 by vσ ≥ 0 and the conjunct3 ∃u (

∧L
j=1 εσ(Aj)Aj(u, y, z)) by

vσ > 0 → ∃u (
∧L

j=1 εσ(Aj)Aj(u, y, z)), we can limit ourselves to the Σ having
cardinality equal to M . This trick is useful if, for some reason, we prefer to go
through any sufficient set of assignments (like the set of all assignments supplied
by some Boolean propagation, see below).

2.- There is no need to consider assignments σ over the set of the atoms Aj

occurring in the β1, . . . , βK : any set of formulæ generating the β1, . . . , βK by
Boolean combinations fits our purposes. As a consequence, the choice of these
‘atoms’ is subject to case-by-case evaluations.

3.- Universally quantified formulæ of the kind ∀x (0 ≤ x ∧ x < N → β)
can be turned into flat formulæ by rewriting them as N = � {x | β} (and in
fact such universally quantified formulæ often occur in our benchmarks suite).
These formulæ contribute to (10) via the conjuncts of the kind zi = N ∧ �{x |
βi(a(x), y, z)} = zi. It is quite useful to consider the {βi1 , . . . , βiL} arising in this
way as atoms (in the sense of point 2 above) and restrict to the assignments σ
such that σ(βi1) = · · · = σ(βiL) = 1.

4.- Boolean propagation is a quite effective strategy to prune useless assign-
ments. In our context, as soon as a partial assignment σ is produced inside
the assignments enumeration subroutine, an SMT solver is invoked to test the
satisfiability of α(y, z) ∧

∧
j∈dom(σ) εσ(Aj)Aj(u, y, z). Since this is implied by a

3 These conjuncts (varying σ ∈ Σ) are needed in (11) to ensure that the assignments
we are using can coexist in a model.
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(skolemized) conjunct of (11), if the test is negative the current partial assign-
ment is discarded and next partial assignment (obtained by complementing the
value of the last assigned literal) is taken instead.

5 Examples and Experiments

We implemented a prototype ArCa-Sat4 producing out of simple E-flat for-
mulæ (10) the proof obbligations (11) (written in SMT-LIB2 format), exploiting
the heuristics explained in Sect. 4.1. To experiment the feasibility of our app-
roach for concrete verification problems, we also implemented a (beta) version
of a tool called ArCa producing out of the specification of a parametric dis-
tributed system and of a safety-like problem, some E-flat simple formulæ whose
unsatisfiability formalizes invariant-checking and bounded-model checking prob-
lems. A script executing in sequence ArCa, ArCa-Sat and z3 can then solve
such problems by reporting a ‘sat/unsat’ answer.

A system is specified via a pair of flat (simple) formulæ ι(p) and τ(p, p′) and
a safety problem via a further formula υ(p) (here the p are parameters and array-
ids, the p′ are renamed copies of the p). A bounded model checking problem is
the problem of checking whether the formula

ι(p
0
) ∧ τ(p

0
, p

1
) ∧ · · · ∧ τ(p

n
, p

n+1
) ∧ υ(p

n+1
)

is satisfiable for a fixed n. An invariant-cheking problem, given also a formula
φ(p), is the problem of checking whether the three formulæ

ι(p) ∧ ¬φ(p), φ(p) ∧ τ(p, p′) ∧ ¬φ(p′), φ(p) ∧ υ(p)

are unsatisfiable. Notice that since all our algorithms terminate and are sound
and complete, the above problems are always solved by the above tool combi-
nation (if enough computation resources are available). Thus, our technique is
able both to make safety certifications and to find bugs.

To validate our technique, in the following we describe in detail the formal-
ization of the send-receive broadcast primitive (SRBP) in [21]. SRBP is used
as a basis to synchronize clocks in systems where processes may fail in sending
and/or receiving messages. Periodically, processes broadcast the virtual time to
be adopted by all, as a (session s) message. Processes that accept this message
set s as their current time. SRBP aims at guaranteeing the following properties:

Correctness: if at least f + 1 correct processes broadcast the message
(session s), all correct processes accept the message.

Unforgeability: if no correct process broadcasts (session s), no correct process
accepts the message.

Relay: if a correct process accepts (session s), all correct processes accept it.

4 ArCa stands for Array with Cardinalities.
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where f < N/2 is the number of processes failing during an algorithm run, with
N the number of processes in the system. Algorithm 1 shows the pseudo-code.

We model SRBP as follows: IT (x) is the initial state of a process x; it is
s when x broadcasts a (init, session s) message, and 0 otherwise. SE(x) = s
indicates that x has broadcast its own echo. AC(x) = s indicates that x has
accepted (session s). Let pc be the program counter, r the round number, and
G a flag indicating whether one round has been executed. We indicate with
F (x) = 1 the fact that x is faulty, and F (x) = 0 otherwise. Finally, CI(x) and
CE(x) are the number of respectively inits and echoes received. In the following,
∀x means ∀x ∈ [0, N). Some sentences are conjoined to all our proof obligations,
namely: #{x|F (x) = 0} + #{x|F (x) = 1} = N ∧ #{x|F (x) = 1} < N/2. For
the Correctness property, we write ιc as follows:

ιc := pc = 1 ∧ r = 0 ∧ G = 0 ∧ s �= 0 ∧ (12)
#{x|IT (x) = 0} + #{x|IT (x) = s} = N ∧ (13)
#{x|F (x) = 0 ∧ IT (x) = s} ≥ (#{x|F (x) = 1} + 1) ∧ (14)
∀x.SE(x) = 0 ∧ AC(x) = 0 ∧ CI(x) = 0 ∧ CE(x) = 0 (15)

where we impose that the number of correct processes broadcasting the init
message is at least the number of faulty processes, f , plus 1. It is worth to
notice that – from the above definition – our tool produces a specification that
is checked for any N ∈ N number of processes. The constraints on IT allow to
verify all admissible assignments of 0 or s to the variables. Similarly for F (x).

The algorithm safety is verified by checking that the bad properties cannot
be reached from the initial state. For Correctness, we set υc := pc = 1 ∧ G =
1∧#{x|F (x) = 0∧AC(x) = 0} > 0, that is, Correctness is not satisfied if – after
one round – some correct process exists that has yet to accept. The algorithm
evolution is described by two transitions: τ1 and τ2. The former allows to choose
the number of both inits and echoes received by each process. The latter describes
the actions in Algorithm 1.

τ1 := pc = 1 ∧ pc′ = 2 ∧ r′ = r ∧ G′ = G ∧ s′ = s ∧ ∃K1, K2, K3, K4.

K1 = #{x|F (x) = 0 ∧ IT (x) = s} ∧ K2 = #{x|F (x) = 0 ∧ SE(x) = s} ∧
K3 = #{x|F (x) = 1 ∧ IT (x) = s} ∧ K4 = #{x|F (x) = 1 ∧ SE(x) = s} ∧
∀x.F (x) = 0 ⇒ (CI ′(x) ≥ K1 ∧ CI ′(x) ≤ (K1 + K3) ∧ CE′(x) ≥ K2 ∧
CE′(x) ≤ (K2 + K4)) ∧
∀x.F (x) = 1 ⇒ (CI ′(x) ≥ 0 ∧ CI ′(x) ≤ (K1 + K3) ∧ CE′(x) ≥ 0 ∧
CE′(x) ≤ (K2 + K4)) ∧
∀x.IT ′(x) = IT (x) ∧ SE′(x) = SE(x) ∧ AC′(x) = AC(x)

τ2 := pc = 2 ∧ pc′ = 1 ∧ r′ = (r + 1) ∧ s′ = s ∧ G′ = 1 ∧
∀x.(CI(x) ≥ #{x|F (x) = 1} + 1 ⇒ SE′(x) = s ∧ AC′(x) = s) ∧
∀x.(CI(x) < #{x|F (x) = 1} + 1 ∧ CE(x) ≥ 1 ⇒ SE′(x) = s ∧ AC′(x) = s) ∧
∀x.(CI(x) < #{x|F (x) = 1} + 1 ∧ CE(x) < 1 ⇒ SE′(x) = 0 ∧ AC′(x) = 0) ∧
∀x.IT ′(x) = IT (x) ∧ CI ′(x) = CI(x) ∧ CE′(x) = CE(x)
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Algorithm 1. Pseudo-code for the send-receive broadcast primitive.
Initialization:

To broadcast a (session s) message, a correct process sends (init, session s) to all.
End Initialization
for each correct process:
1. if received (init, session s) from at least f + 1 distinct processes or
2. received (echo, session s) from any process then
3. accept (session s);
4. send (echo, session s) to all;
5. endif
end for

The same two transitions are used to verify both the Unforgeability and
the Relay properties, for which however we have to change the initial and final
formula. For Unforgeability, (13) in ι changes as ... ∧ #{x|F (x) = 0 ∧ IT (x) =
0} = #{x|F (x) = 0}∧ ...; while υu := pc = 1∧G = 1∧#{x|F (x) = 0∧AC(x) =
s} > 0. In ιu we say that all non-faulty processes have IT (x) = 0. Unforgeability
is not satisfied if some correct process accepts. For Relay, we use:

ιr := pc = 1 ∧ r = 0 ∧ s �= 0 ∧ G = 0 ∧
#{x|F (x) = 0 ∧ AC(x) = s ∧ SE(x) = s} = 1 ∧
#{x|AC(x) = 0 ∧ SE(x) = 0} = (N − 1) ∧ #{x|AC(x) = s ∧ SE(x) = s} = 1 ∧
∀x.IT (x) = 0 ∧ CI(x) = 0 ∧ CE(x) = 0

while υr = υc. In this case, we start the system in the worst condition: by the
hypothesis, we just know that one correct process has accepted. Upon accep-
tance, by the pseudo-code, it must have sent an echo. All the other processes are
initialized in an idle state. We also produce an unsafe model of Correctness: we
modify ιc by imposing that just f correct processes broadcast the init message.

In Table 1, we report the results of validating these and other models with
our tool. In the first column, the considered algorithm is indicated. The second
column indicates the property to be verified; the third column reports the con-
ditions of verification. In the fourth column, we indicate whether we consider
either a bounded model checking (bmc) or an invariant-checking (ic) problem.
The fifth column supplies the obtained results (for bmc problems, ‘safe’ means
of course ’safe up to the analyzed bound’). The sixth column shows the time
jointly spent by ArCa, ArCa-Sat and z3 for the verification, considering for
bmc the sum of the times spent for every traces of length up to 10. We used a
PC equipped with Intel Core i7 processor and operating system Linux Ubuntu
14.04 64 bits. We focused on bmc problems as they produce longer formulas thus
stressing more the tools. Specifically, following the example above, we modeled:
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Table 1. Evaluated algorithms and experimental results.

Algorithm Property Condition Problem Outcome Time (s.)

SRBP [21] Correctness ≥ (f + 1) init’s bmc safe 0.82

SRBP [21] Correctness ≤ f init’s bmc unsafe 2.21

SRBP [21] Unforgeability ≥ (f + 1) init’s bmc safe 0.85

SRBP [21] Relay ≥ (f + 1) init’s bmc safe 1.93

BBP [22] Correctness N > 3f bmc safe 6.17

BBP [22] Unforgeability N > 3f bmc safe 0.25

BBP [22] Unforgeability N ≥ 3f bmc unsafe 0.25

BBP [22] Relay N > 3f bmc safe 1.01

OT [4] Agreement threshold >2N/3 ic safe 4.20

OT [4] Agreement threshold >2N/3 bmc safe 278.95

OT [4] Agreement threshold ≤ 2N/3 bmc unsafe 17.75

OT [4] Irrevocability threshold >2N/3 bmc safe 8.72

OT [4] Irrevocability threshold ≤ 2N/3 bmc unsafe 9.51

OT [4] Weak Validity threshold >2N/3 bmc safe 0.45

OT [4] Weak Validity threshold ≤ 2N/3 bmc unsafe 0.59

UV [5] Agreement Pnosplit violated bmc unsafe 4.18

UV [5] Irrevocability Pnosplit violated bmc unsafe 2.04

UV [5] Integrity - bmc safe 1.02

UT,E,α [3] Integrity α = 0 ∧ Psafe bmc safe 1.16

UT,E,α [3] Integrity α = 0 ∧ ¬Psafe bmc unsafe 0.83

UT,E,α [3] Integrity α = 1 ∧ Psafe bmc safe 5.20

UT,E,α [3] Integrity α = 1 ∧ ¬Psafe bmc unsafe 4.93

UT,E,α [3] Agreement α = 0 ∧ Psafe bmc safe 59.80

UT,E,α [3] Agreement α = 0 ∧ ¬Psafe bmc unsafe 7.78

UT,E,α [3] Agreement α = 1 ∧ Psafe bmc safe 179.67

UT,E,α [3] Agreement α = 1 ∧ ¬Psafe bmc unsafe 31.94

MESI [17] cache coherence - ic safe 0.11

MOESI [20] cache coherence - ic safe 0.08

Dekker [6] mutual exclusion - ic safe 2.05

– the byzantine broadcast primitive (BBP) [22] used to simulate authenticated
broadcast in the presence of malicious failures of the processes,

– the one-third algorithm (OT) [4] for consensus in the presence of benign trans-
mission failures,

– the Uniform Voting (UV) algorithm [5] for consensus in the presence of benign
transmission failures,
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– the UT,E,α algorithm [3] for consensus in the presence of malicious transmis-
sion failures,

– the MESI [17] and MOESI [20] algorithms for cache coherence,
– the Dekker’s algorithm [6] for mutual exclusion.

All the models, together with our tools to verify them, are available at http://
users.mat.unimi.it/users/ghilardi/arca (for the z3 solver see http://rise4fun.
com/z3).

As far as the processing times are concerned, we observed that on average z3
accounts for around 68% of the processing time, while ArCa and ArCa-Sat
together account for the remaining 32%. Indeed, the SMT tests performed by
ArCa-Sat are lightweight – as they only prune assignments – yet effective, as
they succeed in reducing the number of assignments of at least one order of
magnitude.

6 Conclusions, Related and Further Work

We identified two fragments of the rich syntax of Fig. 1 and we showed their
decidability (for the second fragment we showed also a tight complexity bound).
Since our fragments are closed under Boolean connectives, it is possible to use
them not only in bounded model checking (where they can both give certifica-
tions and find bugs), but also in order to decide whether an invariant holds or
not. We implemented our algorithm for the weaker fragment and used it in some
experiments. As far as we know, this is the first implementation of a complete
algorithm for a fragment of arithmetic with arrays and counting capabilities for
interpreted sets. In future, we plan to extend both our tool ArCa and our results
in order to deal with more complex verification problems.

Since one of the major intended applications concerns fault-tolerant distrib-
uted systems, we briefly review and compare here some recent work in the area.
Papers [11–13] represent a very interesting and effective research line, where car-
dinality constraints are not directly handled but abstracted away using interval
abstract domains and counters. As a result, a remarkable amount of algorithms
are certified, although the method might suffer of some lack of expressiveness for
more complex examples. On the contrary, paper [4] directly handles cardinality
constraints for interpreted sets; nontrivial invariant properties are synthesized
and checked, based on Horn constraint solving technology. At the level of decision
procedures, some incomplete inference schemata are employed (completeness is
nevertheless showed for array updates against difference bounds constraints).
Paper [7] introduces a very expressive logic, specifically tailored to handle con-
sensus problems (whence the name ‘consensus logic’ CL). Such logic employs
arrays with values into power set types, hence it is situated in a higher order logic
context. Despite this, our flat fragment is not fully included into CL, because we
allow arithmetic constraints on the sort of indexes and also mixed constraints
between indexes and data: in fact, we have a unique sort for indexes and data,
leading to the possibility of writing typically non permutation-invariant formulæ

http://users.mat.unimi.it/users/ghilardi/arca
http://users.mat.unimi.it/users/ghilardi/arca
http://rise4fun.com/z3
http://rise4fun.com/z3
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like � {x | a(x)+x = N} = z. As pointed out in [2], this mono-sorted approach is
useful in the analysis of programs, when pointers to the memory (modeled as an
array) are stored into array variables. From the point of view of deduction, the
paper [7] uses an incomplete algorithm in order to certify invariants. A smaller
decidable fragment (identified via several syntactic restrictions) is introduced in
the final part of the paper; the sketch of the decidability proof supplied for this
smaller fragment uses bounds for minimal solutions of Presburger formulæ as
well as Venn regions decompositions in order to build models where all nodes in
the same Venn region share the same value for their function symbols.
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erties. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol.
8413, pp. 15–30. Springer, Heidelberg (2014)

3. Biely, M., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper, A., Widder, J.: Tol-
erating corrupted communication. In: Proceedings of PODC, pp. 244–253 (2007)

4. Bjørner, N., von Gleissenthall, K., Rybalchenko, A.: Synthesizing cardinality invari-
ants for parameterized systems (2015). https://www7.in.tum.de/∼gleissen/papers/
sharpie.pdf

5. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22, 49–71 (2009)

6. Dijkstra, E.W.: Cooperating sequential processes. In: Genuys, F. (ed.) Program-
ming Languages, pp. 43–112. Academic Press, New York (1968)
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Abstract. We consider the problem of deciding the theory of finite sets
with cardinality constraints using a satisfiability modulo theories solver.
Sets are a common high-level data structure used in programming; thus,
such a theory is useful for modeling program constructs directly. More
importantly, sets are a basic construct of mathematics and thus nat-
ural to use when formalizing the properties of computational systems.
We develop a calculus describing a modular combination of a proce-
dure for reasoning about membership constraints with a procedure for
reasoning about cardinality constraints. Cardinality reasoning involves
tracking how different sets overlap. For efficiency, we avoid considering
Venn regions directly, as done previous work. Instead, we develop a novel
technique wherein potentially overlapping regions are considered incre-
mentally as needed. We use a graph to track the interaction among the
different regions. Initial experimental results demonstrate that the new
technique is competitive with previous techniques and scales much better
on certain classes of problems.

1 Introduction

Satisfiability modulo theories (SMT) solvers are at the heart of many verifica-
tion tools. One of the reasons for their popularity is that fast, dedicated decision
procedures for fragments of first-order logic are extremely useful for reasoning
about constructs common in hardware and software verification. In particular,
they provide a good balance between speed and expressiveness. Common frag-
ments include theories such as bitvectors, arithmetic, and arrays, which are useful
both for modeling basic constructs as well as for performing general reasoning.

As the use of SMT solvers has spread, there has been a corresponding demand
for SMT solvers to support additional useful theories. Although it is possible to
encode finitely axiomatizable theories using quantifiers, the performance and
robustness gap between a custom decision procedure and an encoding using
quantifiers can be quite significant.

In this paper, we present a new decision procedure for a fragment of set
theory. Our main motivation is that sets are a common abstraction used in pro-
gramming. As with other SMT theories like the theories of arrays and bitvectors,
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we expect the theory of sets to be useful in modeling a variety of program con-
structs. Sets are also used directly in high-level programming languages like
SETL and in specification languages like Alloy, B and Z. More generally, sets
are a basic construct in mathematics and come up quite naturally when trying
to express properties of systems.

While the full language of set theory is undecidable, many interesting frag-
ments are known to be decidable. We present a calculus which can handle basic
set operations, such as membership, union, intersection, and difference, and
which can also reason efficiently about set cardinalities. The calculus is also
designed for easy integration into the DPLL(T) framework [12].

1.1 Related Work

In the SMT community, the desire to support a theory of finite sets with cardi-
nality goes back at least to a 2009 proposal [9]. However, the focus there is on
formalizing the semantics and representation of the theory within the context of
the SMT-LIB language, rather than on a decision procedure for deciding it.

There is an existing stream of research on exploring decidable fragments of
set theory (often referred to in the literature as syllogistics) [5]. One such sub-
fragment is MLSS, more precisely, the ground set-theoretic fragment with basic
Boolean set operators (union, intersection, set difference), singleton operator
and membership predicate. A tableau-based procedure for this fragment was
presented in [6], and the part of our calculus covering this same fragment builds
on that work. In [7], an extension of the theory of arrays is presented, which can
be used to encode the MLSS fragment. However, this approach cannot be used
to encode cardinality constraints.

In this paper, we consider the MLSS fragment extended with set cardinal-
ity operations. The decidability of this fragment was established in [14]. The
procedure given there involves making an up-front guess that is exponential in
the number of set variables, making it non-incremental and highly impractical.
That said, the focus of [14] is on establishing decidability and not on providing
an efficient procedure.

Another logical fragment that is closely related is the Boolean Algebra and
Presburger Arithmetic (BAPA) fragment, for which several algorithms have been
proposed [10,11,13]. Though BAPA doesn’t have the membership predicate or
the singleton operator in its language, [13, Sect. 4] shows how one can generalize
the algorithm for such reasoning. Intuitively, singleton sets can be simulated by
imposing a cardinality constraint card(X) = 1. Similarly, a membership con-
straint, say x �− S, is encoded by introducing a singleton set, say X, and then
using the subset operation: X � S.

This reduction can lead to significant inefficiencies, however. Consider the
following simple example: x �− S1 � (S2 � (. . . � (S99 � S100))). It is easy to see
that the constraint is satisfiable. In our calculus, a straightforward repeated
application of one of the rules for set unions can determine this. On the other
hand, in a reduction to BAPA, the membership reasoning is reduced to reasoning
about cardinalities of different sets. For example, the algorithm in [13] will reduce



84 K. Bansal et al.

the problem to arithmetic constraints involving variables for 2101 Venn regions
derived from S1, S2, . . ., S100, and the singleton set introduced for x.

The broader point is that reasoning about cardinalities of Venn regions is the
main bottleneck for this fragment. As we show in our calculus, it is possible to
avoid using Venn regions for membership predicates by instead reasoning about
them directly. For explicit cardinality constraints, our calculus minimizes the
number of Venn regions that need to be considered by reasoning about only a
limited number of relevant regions that are introduced lazily.

1.2 Formal Preliminaries

We work in the context of many-sorted first-order logic with equality. We assume
the reader is familiar with the following notions: signature, term, literal, formula,
free variable, interpretation, and satisfiability of a formula in an interpretation
(see, e.g., [3] for more details). Let Σ be a many-sorted signature. We will use
≈ as the (infix) logical symbol for equality—which has type σ × σ for all sorts
σ in Σ and is always interpreted as the identity relation. We write s �≈ t as an
abbreviation of ¬ s ≈ t. If e is a term or a formula, we denote by V(e) the set of
e’s free variables, extending the notation to tuples and sets of terms or formulas
as expected.

If ϕ is a Σ-formula and I a Σ-interpretation, we write I |= ϕ if I satisfies ϕ.
If t is a term, we denote by tI the value of t in I. A theory is a pair T = (Σ, I),
where Σ is a signature and I is a class of Σ-interpretations that is closed under
variable reassignment (i.e., every Σ-interpretation that differs from one in I only
in how it interprets the variables is also in I). I is also referred to as the models
of T . A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by
some (resp., no) interpretation in I. A set Γ of Σ-formulas entails in T a Σ-
formula ϕ, written Γ |=T ϕ, if every interpretation in I that satisfies all formulas
in Γ satisfies ϕ as well. We write |=T ϕ as an abbreviation for ∅ |=T ϕ. We
write Γ |= ϕ to denote that Γ entails ϕ in the class of all Σ-interpretations. The
set Γ is satisfiable in T if Γ �|=T ⊥ where ⊥ is the universally false atom. Two
Σ-formulas are equisatisfiable in T if for every model A of T that satisfies one,
there is a model of T that satisfies the other and differs from A at most over the
free variables not shared by the two formulas. When convenient, we will tacitly
treat a finite set of formulas as the conjunction of its elements and vice versa.

2 A Theory of Finite Sets with Cardinality

We consider a typed theory TS of finite sets with cardinality. In a more gen-
eral logical setting, this theory would be equipped with a parametric set type,
with a type parameter for the set’s elements, and a corresponding collection
of polymorphic set operations.1 For simplicity here, we will describe instead a
many-sorted theory of sets of sort Set whose elements are all of sort Element.

1 In fact, this is the setting supported in our implementation in CVC4.
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Constant and function symbols:

n : Card for all n ∈ N - : Card → Card + : Card × Card → Card

∅ : Set card(·) : Set → Card {·} : Element → Set , , \ : Set × Set → Set

Predicate symbols:

< : Card × Card >= : Card × Card : Set × Set − : Element × Set

Fig. 1. The signature of TS .

The theory TS can be combined with any other theory T in a standard way, i.e.,
Nelson-Oppen-style, by identifying the Element sort with a sort σ in T, with the
restriction that σ must be interpreted in T as an infinite set.2 Note that we limit
our language to consider only flat sets (i.e. no sets of sets). However, this can
be simulated by combining T with itself using the mechanism just mentioned.
The theory TS has also a sort Card for terms denoting set cardinalities. Since we
consider only finite sets, all cardinalities will be natural numbers.

Atomic formulas in TS are built over a signature with these three sorts, and
an infinite set of variables for each sort. Modulo isomorphism, TS is the theory of
a single many-sorted structure, and its models differ in essence only on how they
interpret the variables. Each model of TS interprets Element as some countably
infinite set E, Set as the set of finite subsets of E, and Card as N. The signature
of TS has the following predicate and function symbols, summarized in Fig. 1: the
usual symbols of linear integer arithmetic, the usual set composition operators,
an empty set (∅) and a singleton set ({·}) constructor, and a cardinality operator
(card(·)), all interpreted as expected. The signature includes also symbols for the
cardinality comparison (< ), subset (�) and membership (�−) predicates.

We call set term any term of sort Set or of the form card(s), and cardinality
term any term of sort Card with no occurrences of card(·). A set constraint is an
atomic formula of the form s ≈ t, s � t, e �− t or their negation, with s and t set
terms and e a term of sort Element. A cardinality constraint is a [dis]equality
[¬]c ≈ d or an inequality c < d or c >= d where c and d are cardinality terms. An
element constraint is a [dis]equality [¬]x ≈ y where x and y are variables of sort
Element. A TS-constraint is a set, cardinality or element constraint.

We will use x, y for variables of sort Element; S, T , U for variables of sort
Set; s, t, u, v for terms of sort Set; and c with subscripts for variables of sort
Card. Given C, a set of constraints, Vars (C) (respectively, Terms(C)) denotes the
set of variables (respectively, terms) in C. For notational convenience, we fix an
injective mapping from terms of sort Set to variables of sort Card that allows us
to associate to each such term s a unique cardinality variable cs.

We are interested in checking the satisfiability in TS of finite sets of TS-
constraints. While this problem is decidable, it has high worst-case time complex-

2 An extension that allows σ to be interpreted as finite by relying on polite combina-
tion [8] is planned as future work.
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ity [14]. So our efforts are in the direction of producing a solver for TS-constraints
that is efficient in practice, in addition to being correct and terminating. Our
solver relies on the modular combination of a solver for set constraints and an
off-the-shelf solver for linear integer arithmetic, which handles arithmetic con-
straints over set cardinalities.

3 A Calculus for the Theory

In this section, we describe a tableaux-style calculus capturing the essence of our
combined solver for TS . As we describe in the next section, that calculus admits
a proof procedure that decides the satisfiability of TS-constraints.

For simplicity, we consider as input to the calculus only conjunctions C of
constraints whose set constraints are in flat form. These are (well-sorted) set
constraints of the form S ≈ T , S �≈ T , S ≈ ∅, S ≈ {x}, S ≈ T � U , S ≈ T � U ,
S ≈ T \ U , x �− S, x ��− S, or cS ≈ card(S), where S, T , U , cS , and x are
variables of the expected sort. We also assume that any set variable S of C
appears in at most one union, intersection or set difference term. Thanks to
common satisfiability-preserving transformations,3 all of these assumptions can
be made without loss of generality.

The calculus is described as a set of derivation rules which modify a state
data structure. A state is either the special state unsat or a tuple of the form
〈S,M,A,G〉, where S is a set of set constraints, M is a set of element constraints,
A is a set of cardinality constraints, and G is a directed graph over set terms
with nodes V (G) and edges E(G). Since cardinality constraints can be processed
by a standard arithmetic solver, and element constraints by a simple equality
solver,4 we present and discuss only rules that deal with set constraints.

The derivation rules are provided in Fig. 2 through 9 in guarded assignment
form. In such form, the premises of a rule refer to the current state and the
conclusion describes how each state component is changed, if at all, by the rule’s
application. A derivation rule applies to a state σ if all the conditions in the rule’s
premises hold for σ and the resulting state is different from σ. In the rules, we
write S, t as an abbreviation for S ∪ {t}. Rules with two or more conclusions
separated by the symbol ‖ are non-deterministic branching rules.

The rules are such that it is possible to generate a closed tableau (or deriva-
tion tree) from an initial state 〈S0,M0,A0,G0〉, where G0 is an empty graph,
if and only if the conjunction of all the constraints in S0 ∪ M0 ∪ A0 is unsat-
isfiable in TS . Broadly speaking, the derivation rules can be divided into three
categories. First are those that reason about membership constraints (of form
x �− S). These rules only update the components S and M of the current state,
although their premises may depend on other parts of the state, in particular,
the nodes of the graph G. Second are rules that handle constraints of the form

3 Including replacing constraints of the form s � t with s ≈ (s � t).
4 Recall that TS has no terms of sort Element besides variables.



A New Decision Procedure for Finite Sets and Cardinality Constraints 87

Union Down I
x − s t ∈ S∗

S := S (x − s) (x − t)

Union Down II
x − s t ∈ S∗ {u, v} = {s, t} x − u ∈ S∗

S := S (x − v)

Union Up I
x − s ∈ S∗ x − t ∈ S∗ s t ∈ T

S := S (x − s t)

Union Up II
x − u ∈ S∗ u ∈ {s, t} s t ∈ T

S := S (x − s t)

Inter Down I
x − s t ∈ S∗

S := S (x − s) (x − t)

Inter Down II
x − s t ∈ S∗ {u, v} = {s, t} x − u ∈ S∗

S := S (x − v)

Inter Up I
x − s ∈ S∗ x − t ∈ S∗ s t ∈ T

S := S (x − s t)

Inter Up II
x − u ∈ S∗ u ∈ {s, t} s t ∈ T

S := S (x − s t)

Union split
x − s t ∈ S x − s, x − t ∈ S∗

S := S (x − s) := S (x − t)

Inter split
s t ∈ T {u, v} = {s, t} x − u ∈ S∗ x − v, x − v ∈ S∗

S := S (x − v) := S (x − v)

Fig. 2. Union and intersection rules.

cS ≈ card(S). The graph incrementally built by the calculus is central to satis-
fying these constraints. Third are rules for propagating element and cardinality
constraints respectively to M and A.

3.1 Set Reasoning Rules

Figures 2 and 3 focus on sets without cardinality. They are based on the MLSS
decision procedure by Cantone and Zarba [6], though with some key differences.
First, the rules operate over a set T of Set terms which may be larger than just
the terms in S. This generalization is required because of additional terms that
may be introduced when reasoning about cardinalities. Second, the reasoning is
done modulo equality. A final, technical difference is that we work with sets of
ur-elements rather than untyped sets.

These rules rely on the following additional notation. Given a set C of con-
straints, let TermsSort(C) refer to terms of sort Sort in C, with Terms(C) denoting
all terms in C. We define the binary relation ≈∗

C ⊆ Terms(C) × Terms(C) to be
the reflexive, symmetric, and transitive closure of the relation on terms induced
by equality constraints in C. Now, we define the following closures:
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M∗ = {x ≈ y | x ≈∗
M y} ∪ {x �≈ y | ∃x′, y′. x ≈∗

M x′, y ≈∗
M y′, x′ �≈ y′ ∈ M}

S∗ = S ∪ {x �− s | ∃x′, s′. x ≈∗
M x′, s ≈∗

S s′, x′ �− s′ ∈ S}
∪ {x ��− s | ∃x′, s′. x ≈∗

M x′, s ≈∗
S s′, x′ ��− s′ ∈ S}

where x, y, x′, y′ in TermsElement(M ∪ S), and s, s′ in TermsSet(S). Next, we
define a left-associative operator �. Intuitively, given a set of constraints C and
a literal l, C � (l) adds l to C only if l is not in C’s closure. More precisely,

C � (l) =

{
C if l ∈ C∗

C ∪ {l} otherwise.
(1)

Finally, the set of relevant terms for these rules is denoted by T and consists of
terms from S and G: T = Terms(S) ∪ V (G).

Figure 2 shows the rules for reasoning about membership in unions and
intersections. Each rule covers one case in which a new membership (or non-
membership) constraint can be deduced. The justification for these rules is
straightforward based on the semantics of the set operations. Due to space limi-
tations, we do not show the rules that process set difference constraints. However,
they are analogous to those given for union and intersection constraints. Figure 3
shows rules for singletons, disequalities, and contradictions. Note in particular
that the Set Disequality rule introduces a variable y, denoting an element
that is in one set but not in the other.

Singleton
{x} ∈ T

S := S (x − {x})

Single Member
x − {y} ∈ S∗

M := M (x ≈ y)

Single Non-member
x − {y} ∈ S∗

M := M (x ≈ y)

Set Disequality
s ≈ t ∈ S∗ x ∈ Terms(S) such that x − s ∈ S∗ and x − t ∈ S∗

x ∈ Terms(S) such that x − s ∈ S∗ and x − t ∈ S∗

S := S (y − s) (y − t) := S (y − s) (y − t)

Eq Unsat
(x ≈ x) ∈ M∗

unsat

Set Unsat
(x − s) ∈ S∗ (x − s) ∈ S∗

unsat

Empty Unsat
(x − ∅) ∈ S∗

unsat

Fig. 3. Singleton, disequality and contradiction rules. Here, y is a fresh variable.

Example 1. Let S = {S ≈ A�B,S ≈ C�D,x �− C, x ��− D, y ��− S, y �− D}. Using
the rules in Fig. 2, we can directly deduce the additional constraints: x ��− C � D
(by Inter Up II), x ��− A, x ��− B, y ��− A, y ��− B (by Union Down I), and
y ��− C (by Inter Down II). This gives a complete picture, modulo equality, of
exactly which sets contain x and y. ��
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3.2 Cardinality of Sets

The next set of rules is based on two observations: (i) the cardinality of two sets,
and that of their union, intersection and set difference are inter-related; (ii) if
two set terms are asserted to be equal, their cardinalities must match. Figure 4
shows the Venn regions for two sets, T and U . Notice the following relationships:
T is a disjoint union of T \ U and T � U ; T � U is a disjoint union of T \ U and
T � U and U \ T ; and U is a disjoint union of T � U and U \ T . Knowing that
the sets are disjoint is important; it allows us to infer the constraints:

card(T ) ≈ card(T \ U) + card(T � U)
card(T � U) ≈ card(T \ U) + card(T � U) + card(U \ T )

card(U) ≈ card(U \ T ) + card(T � U).

T U

T \ U T � U U \ T

T � U

Fig. 4. Venn regions for T and U .

T T � U U

T \ U T � U U \ T

Fig. 5. The same structure as a graph.

We can represent these same relationships using a graph. The nodes of the
graph are set terms, and each node has the property that it is the disjoint union
of its children in the graph. The graph for the regions in Fig. 4 is shown in Fig. 5.
We ensure that the graph contains all nodes whose cardinality is implicitly or
explicitly constrained by the current state. Set terms with implicit cardinality
constraints include (i) union, intersection, and set difference terms appearing in
S, for which one of the operands is already in the graph; and (ii) terms occurring
in an equality whose other member is already in the graph. A careful analysis5

reveals that we can actually avoid adding intersection terms t � u unless both t
and u are already in the graph, and set difference terms t \ u unless t is already
in the graph.

The rules in Fig. 6 make use of a function add which takes a graph G and a
term s and returns the graph G′ defined as follows:

1. For s = T or s = ∅ or s = {x}:
V (G′) = V (G) ∪ {s}
E(G′) = E(G)

2. For s = T � U or s = T \ U :
V (G′) = V2 = V (G) ∪ {T,U, T \ U, T � U,U \ T}

5 See completeness proof in [1, Chap. 2] for further details.
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E(G′) = Ee = E(G) ∪ {(T, T \ U), (T, T � U), (U, T � U), (U,U \ T )}
3. For s = T � U and V2 and E2 as above:

V (G′) = V2 ∪ {T � U}
E(G′) = E2 ∪ {(T � U, T \ U), (T � U, T � U), (T � U,U \ T )}

Recall that, by assumption, each set variable participates in at most one union,
intersection, or set difference. This ensures that edges from a set variable node
are added only once, maintaining the invariant that its children in the graph
are disjoint. Terms with explicit constraints on their cardinality are added to
the graph by Introduce Card. Terms that have implicit constraints on their
cardinality, specifically, singletons and the empty set, are added by rules Intro-
duce Singleton and Introduce Empty Set.

If two nodes s and t in the graph are asserted to be equal (that is, s ≈ t ∈ S
or t ≈ s ∈ S), we can ensure they have the same cardinality by systematically
modifying the graph. Let L(n) denote the set of leaf nodes for the subtree rooted
at node n which are not known to be empty. Formally,

L(n) = {n′ ∈ Leaves(n) | n′ ≈ ∅ �∈ S∗}, (2)

where Leaves (v) = {w ∈ V (G) | C(w) = ∅, w is reachable from v} and C(w)
denotes the children of w. We call two nodes n and n′ merged if they have the
same set of nonempty leaves, that is if L(n) = L(n′).

Introduce Eq Right
S ≈ t ∈ S S ∈ V (G) t 	∈ V (G)

G := add(G, t)

Introduce Union
S ≈ T � U ∈ S T � U 	∈ V (G)

T ∈ V (G) or U ∈ V (G)

G := add(G, T � U)

Introduce Eq Left
S ≈ t ∈ S S 	∈ V (G) t ∈ V (G)

G := add(G, S)

Introduce Inter
S ≈ T � U ∈ S T � U 	∈ V (G)

T ∈ V (G) U ∈ V (G)

G := add(G, T � U)

Introduce Card
cs ≈ card(S) ∈ S
G := add(G, S)

Introduce Singleton
{x} ∈ Terms(S)

G := add(G, {x})

Introduce Empty Set

G := add(G, ∅)

Fig. 6. Graph introduction rules.

The rules in Fig. 7 ensure that for all equalities over set terms, the correspond-
ing nodes in the graph are merged. Consider an equality s ≈ t. Rule Merge
Equality I handles the case when either L(s) or L(t) is a proper subset of the
other by constraining the extra leaves in the superset to be empty. Rule Merge
Equality II handles the remaining case where neither is a subset of the other.
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Merge Equality I
s ≈ t ∈ S s, t, ∅ ∈ V (G)

{u, v} = {s, t} L(u) L(v)

S := s ≈ ∅ s ∈ L(v) \ L(u) ∪ S

Merge Equality II
s ≈ t ∈ S s, t ∈ V (G)

L(s) L(t) L(t) L(s)

G := merge(G, s, t)

Fig. 7. Merge rules.

The graph G′ = merge(G, s, t) is defined as follows, where L1 = L(s) \ L(t) and
L2 = L(t) \ L(s):

V (G′) = V (G) ∪ {l1 � l2 | l1 ∈ L1, l2 ∈ L2}
E(G′) = E(G) ∪ {(l1, l1 � l2), (l2, l1 � l2) | l1 ∈ L1, l2 ∈ L2}

We denote by Ĝ the collection of all of the following arithmetic constraints
imposed by graph G:

1. For each set term s ∈ V (G), its corresponding cardinality is the sum of the
corresponding non-empty leaf nodes:

{
cs ≈

∑
t∈L(s) ct

∣
∣
∣ s ∈ V (G)

}
.

2. Each cardinality is non-negative: {cs >= 0 | s ∈ V (G)}.
3. A singleton set has cardinality 1: {cs ≈ 1 | s ∈ V (G), s = {x}}.
4. The empty set has cardinality 0: {cs ≈ 0 | s ∈ V (G), s = ∅}.

Rule Arithmetic contradiction, shown in Fig. 8 makes use of the arith-
metic solver to check whether the constraints in Ĝ are inconsistent with the
input constraints. Also shown is rule Guess Empty Set which can be used
to guess if a leaf node is empty. This is useful to apply early on, to reduce
the impact of merge operations on the size of the graph. Here and in Fig. 9,
Leaves (G) = {v ∈ V (G) | C(v) = ∅}.

Arithmetic contradiction
A ∪ Ĝ |=TA ⊥

unsat

Guess Empty Set
t ∈ Leaves (G)

S := S � (t ≈ ∅) ‖ S := S � (t ∅≈	 )

Fig. 8. Additional graph rules.

3.3 Cardinality and Membership Interaction

The rules in Fig. 9 propagate consequences of set membership constraints to
the sets M and A. Let E denote the set of equalities in M, and let [x]E
denote the equivalence class of x with respect to E . Then for a Set term t,
tS = {[x]E | x �− t ∈ S∗}, the set of equivalence classes of elements known to
be in t. The notation A � ct ≥ n means that ct >= k ∈ A for some concrete
constant k ≥ n.
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Members Arrangement
t ∈ Leaves (G) A 	� ct ≥ |tS | [x]E , [y]E ∈ tS [x]E 	= [y]E x 	≈ y M∈	 ∗

M := M � (x ≈ y) ‖ M := M � (x 	≈ y)

Guess Lower Bound
t ∈ Leaves (G) A 	� ct ≥ |tS |

ct < |tS A∈	|
A := ct >= |tS | , A ‖ A := ct < |tS | , A

Propagate Minsize
x1 �− s, . . . , xn �− s ∈ S∗ A 	� cs ≥ n
xi 	≈ xj ∈ M∗ for all 1 ≤ i < j ≤ n

A := cs >= n, A

Fig. 9. Cardinality and membership interaction rules.

Rule Members Arrangement is used to decide which elements of a set
should be equal or disequal. Once applied to completion, Rule Propagate Min-
size can then be used to determine a lower bound for the cardinality of that
set. Rule Guess Lower Bound can be used to short-circuit this process by
guessing a conservative lower bound based on the number of distinct equiva-
lence classes of elements known to be members of a set. If this does not lead
to a contradiction, a model can be found without resorting to extensive use of
Members Arrangement.

Example 2. Consider again the constraints from Example 1, but now augmented
with cardinality constraints {cS ≈ card(S), cC ≈ card(C), cD ≈ card(D)} and
arithmetic constraints {cS >= 4, cC + cD < 10}. Using the rules in Fig. 6, the
following nodes get added to the graph: S, C, D (by Introduce Card), A�B,
C�D (by Introduce Eq Right). A�B is added with children A\B, A�B, and
B \A; and by adding C �D, we also get C \D and D\C, with the corresponding
edges from C and D. Now, using two applications of Merge Equality II, we
force the sets S, A�B and C�D to have the same set of 3 leaves, labeled S�(A\
B)�(C�D), S�(A�B)�(C�D), and S�(B\A)�(C�D). Let us call these nodes
l1, l2, and l3 for convenience. Let us also designate l4 = C \ D and l5 = D \ C.
Notice that the induced arithmetic constraints now include cS ≈ cl1 + cl2 + cl3 ,
cC ≈ cl1 + cl2 + cl3 + cl4 , and cD ≈ cl1 + cl2 + cl3 + cl5 . With the addition of C \D
and D\C to the graph, these are also added to T . We can then deduce x �− C\D
and y �− D \ C using the (not shown) rules for propagation over set difference.
Finally, we can use Propagate Minsize to deduce cl4 >= 1 and cl5 >= 1. It is
now not hard to see that using pure arithmetic reasoning, we can deduce that
cC + cD >= 10 which leads to unsat using Arithmetic contradiction. ��

4 Calculus Correctness

Our calculus is terminating and sound for any derivation strategy, that is, regard-
less of how the rules are applied. It is also refutation complete for any fair strat-
egy, defined as a strategy that does not delay indefinitely the application of an
applicable derivation rule. For space reasons, we only outline the proof arguments
here. Complete proofs are given in [1].
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We group the derivation rules of the calculus in the following subsets.

R1: membership predicate reasoning rules, from Figs. 2 and 3.
R2: graph rules to reason about cardinality, from Figs. 6, 7 and 8.
R3: rules from Fig. 9 other than Rule Guess Lower Bound.
R4: Rule Guess Lower Bound.

The rules are used to construct derivation trees. A derivation tree is a tree
over states, where the root is a state of the form 〈S0,M0,A0, (∅, ∅)〉, (and S0,
M0, A0 obey the input constraints mentioned at the beginning of Sect. 3), and
where the children of each non-root node are obtained by applying one of the
derivation rules of the calculus to that node. A branch of a derivation tree is
closed if it ends with unsat; it is saturated with respect to a set R of rules if it
is not closed and no rules in R apply to its leaf. A derivation tree is closed if all
of its branches are closed. A derivation tree derives from a derivation tree T if
it is obtained from T by the application of exactly one of the derivation rules to
one of T ’s leaves.

Let S be a set of TS-constraints. A derivation (of S) is a sequence (Ti)0≤i≤κ

of derivation trees, with κ finite or countably infinite, such that Ti+1 derives from
Ti for all i, and T0 is a one-node tree whose root is a state 〈S0,M0,A0, (∅, ∅)〉
where S0 ∪M0 ∪A0 is TS-equisatisfiable with S. A refutation (of S) is a (finite)
derivation of S that ends with a closed tree.

4.1 Termination

Proposition 1 (Termination). Every derivation in the calculus is finite.

Proof (Sketch). It is enough to show that every application of a derivation rule
to a state produces smaller states with respect to a well-founded relation � over
states other than unsat. For simplicity, we ignore the rule Guess Lower Bound,
although the proof could be extended to that rule as well. To define � we first
define the following functions, each of which maps a state σ = 〈S,M,A,G〉 to a
natural number (from N).

– f1(σ): number of equalities t1 ≈ t2 in S such that either t1 �∈ V (G), t2 �∈ V (G),
or L(t1) �= L(t2).

– f2(σ): cardinality of (TermsSet(S) ∪ {∅}) \ V (G).
– f3(σ): cardinality of {t ∈ Leaves (G) | t ≈ ∅ �∈ S∗, t �≈ ∅ �∈ S∗}.
– f4(σ): number of disequalities t1 �≈ t2 in S such that the premise of Set
Disequality holds.

– f5(σ): cardinality of T = TermsSet(S) ∪ {∅} ∪ V (G).
– f6(σ): cardinality of TermsElement(S ∪ M).
– f7(σ): 2 · f6(σ)2 minus the cardinality of M∗.6
– f8(σ): 2 · f5(σ)2 + 2 · f5(σ) · f6(σ) minus the cardinality of S∗.7
– f9(σ): cardinality of T \ {t ∈ Leaves (G) | A �� ct ≥ |tS |}.

Let
(
N

9, >9
lex

)
be the 9-fold lexicographic product of (N, >). We define � as the

relation such that σ � σ′ iff (f1(σ), . . . , f9(σ)) >9
lex (f1(σ′), . . . , f9(σ′)) . ��

6 Note that the cardinality of M∗ is at most 2 · (f6(σ))2.
7 One can show that this value is non-negative.
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4.2 Completeness

We develop the proof in stages, proving properties about different subsets of
rules. We start with a proposition about the rule set R1.

Proposition 2. Let 〈S,M,A,G〉 be a state to which none of rules in R1 apply.
There is a model S of TS that satisfies the constraints S and M and has the
following properties.

1. For all x, y ∈ Vars (M) ∪ Vars (S) of sort Element, xS = yS if and only if
x ≈ y ∈ M∗.

2. For all S ∈ Vars (S) of sort Set, SS =
{
xS

∣
∣ x �− S ∈ S∗}.

3. For all cS ∈ Vars (S) of sort Card, cSS =
∣
∣SS

∣
∣.

For the next two results, let 〈S,M,A,G〉 be the leaf of a branch saturated
with respect to rules R1 ∪ R2 ∪ R3 in a derivation tree. The first result is about
the effects of the rules in R2. The second is about the rules in R3.

Proposition 3. For every s ∈ V (G) the following holds.

1. If s ≈ t ∈ S or t ≈ s ∈ S for some t, then L(s) = L(t).
2. If s = T � U , then L(T � U) = L(T ) ∪ L(U).
3. If s = T � U , then L(T � U) = L(T ) ∩ L(U).
4. If s = T \ U , then L(T \ U) = L(T ) \ L(U).
5. For all distinct t, u ∈ Leaves (s), |=TS

t � u ≈ ∅.
6. {t ≈ u | t ≈ u ∈ S∗} |=TS

s ≈
⊔

t∈L(s) t.

Proposition 4. Let S be an interpretation as the one specified in Proposition 2
and let A be any model of TS satisfying A. Then, for all t ∈ L(G), cAt ≥

∣
∣tS

∣
∣ .

Completeness is a direct consequence of the following result.

Proposition 5. Let D be a derivation tree with root 〈S0, M0, A0, (∅, ∅)〉. If D
has a branch saturated with respect to rules R1 ∪ R2 ∪ R3, then there exists a
model I of TS that satisfies S0 ∪ M0 ∪ A0.

Proof (Sketch). We build the model of the leaf nodes in the graph by modifying
as needed the model obtained from Proposition 2. We add additional elements
to these sets to make the cardinalities match the model satisfying the arithmetic
constraints and the constraints induced by the graph. Propositions 3 and 4 ensure
that it is always possible to do so without violating the set constraints. ��

Proposition 6 (Completeness). Under any fair derivation strategy, every
derivation of a set S of TS-unsatisfiable constraints extends to a refutation.

Proof. Contrapositively, suppose that S has a derivation D that cannot be
extended to a refutation. By Proposition 1, D must be extensible to one that
ends with a tree with a saturated branch. By Proposition 5, S is satisfiable
in TS . ��
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4.3 Soundness

We start by showing that every rule preserves constraint satisfiability.

Lemma 1. For every rule of the calculus, the premise state is satisfied by a
model Ip of TS iff one of its conclusion configurations is satisfied by a model Ic

of TS where Ip and Ic agree on the variables shared by the two states.

Proof (Sketch). Soundness of the rules in Figs. 2 and 3 follows trivially from
the semantics of set operators and the definition of S∗. Soundness of Merge
Equality I follows from properties of the graph (see Proposition 3, in particular
the property that leaf terms are disjoint). The rules in Fig. 6 and rule Merge
Equality II do not modify the constraints, but we need them to establish
properties of the graph. Soundness of the induced graph constraints in Arith-
metic contradiction follows from Proposition 3 (in particular properties 3
and 3). Soundness of Propagate Minsize follows from the semantics of cardi-
nality. Soundness of Guess Empty Set, Members Arrangement and Guess
Lower Bound is trivial. ��

Proposition 7 (Soundness). Every set of TS-constraints that has a refuta-
tion is TS-unsatisfiable.

Proof (Sketch). Given Lemma 1, one can show by structural induction on deriva-
tion trees that the root of any closed derivation tree is TS-unsatisfiable. The claim
then follows from the fact that every refutation of a set S of TS-constraints starts
with a state TS-equisatisfiable with S. ��

5 Evaluation

We have implemented a decision procedure based on the calculus above in the
SMT solver CVC4 [2]. We describe a high-level, non-deterministic version of it
here, followed by an initial evaluation on benchmarks from program analysis.

5.1 Derivation Strategy

The decision procedure can be thought of as a specific strategy for applying the
rules given in Sect. 3, divided into the sets R1, . . . , R4 introduced in Sect. 4.

Our derivation strategy can be summarized as follows. We start with the
derivation from the initial state 〈S0,M0,A0,G0〉 with G0 the empty graph, as
described in Sect. 3, and apply the steps listed below, in the given order. The
steps are described as rules being applied to a current branch. Initially, the
current branch is the only branch in tree. On application of a rule with more
than one conclusion, we select one of the branches (say, the left branch) as the
current branch.

1. If a rule that derives unsat is applicable to the current branch, we apply one
and close the branch. We then pick another open branch as the current branch
and repeat Step 1. If no open branch exists, we stop and output unsat.
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2. If a propagation rule (those with one conclusion) in R1 is applicable, apply
one and go to Step 1.

3. If a split rule (those with more than one conclusion) in R1 is applicable, apply
one and go to Step 1.

4. If Guess Empty Set rule is applicable, apply it and go to Step 1.
5. If an introduce or merge rule in R2 is applicable, apply it and go to Step 1.
6. If any of the remaining rules is applicable, apply one and go to Step 1.
7. At this point, the current branch is saturated. Stop and output sat.

Note that if there are no constraints involving the cardinality operator, then
steps 1 to 3 above are sufficient for completeness.

file output time (s.) # V # L

vc1 unsat 0.00 3 3
vc2a unsat 0.01 17 8
vc2b sat 0.01 15 7
vc2 unsat 0.00 8 5
vc3a unsat 0.00 6 0
vc3b sat 0.01 17 8
vc3 unsat 0.00 6 0
vc4b sat 0.22 45 16
vc4 unsat 0.07 57 18
vc5b sat 1.71 71 22
vc5 unsat 0.36 68 21
vc6a unsat 0.02 34 14
vc6b sat 0.14 31 13
vc6c sat 0.06 34 14
vc6 sat 0.02 38 18

(a) Jahob

file output time (s.) # V # L

vc1 1 sat/4 unsat 0.02 12 6
vc2 1 sat/3 unsat 0.07 39 23
vc3 2 sat/2 unsat 0.09 54 21
vc4 1 sat/3 unsat 0.02 0 0
vc5 2 sat/2 unsat 0.08 27 13
vc6 1 sat/3 unsat 0.01 0 0
vc7 2 sat/4 unsat 0.34 56 33
vc8 1 sat/3 unsat 0.01 0 0
vc9 2 sat/2 unsat 0.09 39 19
vc10 2 sat/2 unsat 0.32 94 32

(b) Leon

Fig. 10. Results on program verification benchmarks.

5.2 Experimental Evaluation

We evaluated our procedure on benchmarks obtained from verification of pro-
grams. The experiments were run on a machine with 3.40GHz Intel i7 CPU with
a memory limit of 3 GB and timeout of 300 seconds. We used a development
version of CVC4 for this evaluation.8 Benchmarks are available on our website9.

The first set of benchmarks consists of single query benchmarks obtained from
verifying programs manipulating pointer-based data structures. These were gen-
erated by the Jahob system, and have been used to evaluate earlier work on deci-
sion procedures for finite sets and cardinality [10,11,13]. The results from run-
ning CVC4 on these benchmarks are provided in Fig. 10a. The output reported
8 Git commit c833e17 at https://github.com/CVC4/CVC4/commit/c833e176 .
9 http://cs.nyu.edu/∼kshitij/setscard/.

https://github.com/CVC4/CVC4/commit/c833e176
http://cs.nyu.edu/~kshitij/setscard/
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by CVC4 is in the second column. The third column shows the solving time.
The fourth and fifth columns give the maximum number of vertices (# V) and
leaves10 (# L) in the graph at any point during the run of the algorithm. Keep-
ing the number of leaves low is important to avoid a blowup from the Merge
Equality II rule.

Although we have not rerun the algorithms from [10,11,13], we report here
the experimental results as stated in the respective papers. As the experiments
were run on different machines the comparison is only indicative, but it does
suggest that our algorithm has comparable performance.

In [11], the procedure from [10] is reported to solve 12 of the 15 benchmarks
with a timeout of 100 seconds, while the novel procedure in [11] is reported
to solve 11 of the 15 benchmarks with the same timeout. The best-performing
previous algorithm ([13]) can solve all 15 benchmarks in under a second.11 As
another point of comparison, we tested the algorithm from [13] on a benchmark of
the type mentioned in Sect. 1.1: a single constraint of the form x �− A1�. . .�A21.
As expected, the algorithm failed (it ran out of memory after 85 seconds). In
contrast, CVC4 solves this problem instantaneously.

Finally, another important difference compared to earlier work is that our
implementation is completely integrated in an actively developed and main-
tained solver, CVC4.12 To highlight the usefulness of an implementation in a
full-featured SMT solver, we did a second evaluation on a set of incremental
(i.e., multiple-query) benchmarks obtained from the Leon verification system [4].
These contain a mix of membership and cardinality constraints together with
the theories of datatypes and bitvectors. The results of this evaluation are shown
in Fig. 10b. The output column reports the number of sat and unsat queries in
each benchmark. CVC4 successfully solves all of the queries in these benchmarks
in under one second. To the best of our knowledge, no other SMT solver can
handle this combination of theories.

6 Conclusion

We presented a new decision procedure for deciding finite sets with cardinality
constraints and proved its correctness. A novel feature of the procedure is that
it can reason directly and efficiently about both membership constraints and
cardinality constraints. We have implemented the procedure in the CVC4 SMT
solver, and demonstrated the feasibility as well as some advantages of our app-
roach. We hope this work will enable the use of sets and cardinality in many new
10 The # L statistic is updated only when explicitly computed, so the numbers are

approximate. For the same reason, # L is 0 on certain benchmarks even though
# V is not. This is because CVC4 was able to report unsat before the need for
computing the set of leaves arose.

11 Note that [13] includes a second set of benchmarks, but we were unable to evaluate
our algorithm on these, as they were only made available in a non-standard format
and were missing crucial datatype declarations.

12 One reason we were unable to do a more thorough comparison with previous work
is that those implementations are no longer being maintained.
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applications. We also expect to use it to drive the development of a standard
theory of sets under the SMT-LIB initiative.
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sions and for providing the Leon benchmarks. We thank Philippe Suter for his help
running the algorithm from [13].

References

1. Bansal, K.: Decision Procedures for Finite Sets with Cardinality and Local Theory
Extensions. Ph.D. thesis, New York University, January 2016

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
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Abstract. Congruence closure procedures are used extensively in auto-
mated reasoning and are a core component of most satisfiability modulo
theories solvers. However, no known congruence closure algorithms can
support any of the expressive logics based on intensional type theory
(ITT), which form the basis of many interactive theorem provers. The
main source of expressiveness in these logics is dependent types, and
yet existing congruence closure procedures found in interactive theorem
provers based on ITT do not handle dependent types at all and only
work on the simply-typed subsets of the logics. Here we present an effi-
cient and proof-producing congruence closure procedure that applies to
every function in ITT no matter how many dependencies exist among its
arguments, and that only relies on the commonly assumed uniqueness of
identity proofs axiom. We demonstrate its usefulness by solving interest-
ing verification problems involving functions with dependent types.

1 Introduction

Congruence closure procedures are used extensively in automated reasoning,
since almost all proofs in both program verification and formalized mathematics
require reasoning about equalities [23]. The algorithm constitutes a fundamen-
tal component of most satisfiability modulo theories (SMT) solvers [4,20]; it is
often distinguished as the “core theory solver”, and is responsible for commu-
nicating literal assignments to the underlying SAT solver and equalities to the
other “satellite solvers” [10,20]. However, no known congruence closure algo-
rithms can support any of the expressive logics based on intensional type theory
(ITT). Yet despite the lack of an algorithm for congruence closure, the benefits
that ITTs confer in terms of expressiveness, elegance, and trustworthiness have
proved substantial enough that different flavors of ITT form the basis of many
interactive theorem provers, such as Coq [8], Lean [21], and Matita [2], and also
several emerging programming languages, such as Agda [5], Epigram [16], and
Idris [6]. Many of the most striking successes in both certified programming and
formalized mathematics have been in variants of ITT, such as the development
of a fully-certified compiler for most of the C language [14] and the formalization
of the odd-order theorem [11].

There are currently two main workarounds for the lack of a congruence clo-
sure algorithm for ITT, and for the lack of robust theorem proving tools for ITT
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 99–115, 2016.
DOI: 10.1007/978-3-319-40229-1 8
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more generally. One option is to rely much more on manual proving. Although
many impressive projects have been formalized with little to no automation, this
approach is not very attractive since the cost of manual proving can be tremen-
dous. We believe that as long as extensive manual proving is a central part of
writing certified software or formalizing mathematics, these will remain niche
activities for the rare expert. The other option is to relinquish the use of depen-
dent types whenever manual reasoning becomes too burdensome so that more
traditional automation can be used. Note that the Coq system even has a tactic
congruence that performs congruence closure, but it does not handle dependent
types at all and only works on the simply-typed subset of the language. This
sacrifice may be appropriate in certain contexts, but losing all the benefits of
dependent types makes this an unsatisfactory solution in general.

Given the limitations of these two workarounds, it would be preferable to
perform congruence closure and other types of automated reasoning directly in
the richer language of ITT. Unfortunately, equality and congruence are both
surprisingly subtle in ITT, and as we will see, the theorem that could justify
using the standard congruence closure procedure for functions with dependent
types is not provable in the core logic, nor does it follow from any of the axioms
commonly assumed in existing systems. In this paper, we introduce a new notion
of congruence that applies to every function in ITT no matter how many depen-
dencies exist among its arguments, along with a simple and efficient extension
of the standard congruence closure procedure to fully automate reasoning about
this more general notion of congruence. Our procedure is applicable to a wide
variety of projects since it only relies on the uniqueness of identity proofs axiom,
which is built into the logic of many systems including Agda, Idris, and Lean, and
which is commonly assumed in the others. We hope our procedure helps make
it possible for users to have the best of both worlds: to reap all the benefits of
dependent types while still enjoying all the power of traditional automation.

2 Preliminaries

We assume the term language is a dependent λ-calculus in which terms are
described by the following grammar:

t,s ::= x | c | Type | t s | λx : s, t | Πx : s, t

where x is a variable and c is a constant. To simplify the presentation, we omit
type universes at sort Type. It is not relevant to this paper whether the universe
hierarchy is cumulative or not, nor whether there is a distinguished sort Prop (the
sort of all propositions). The term Πx:A, B denotes the type of functions f that
map any element a:A to an element of B[a/x]. When x appears in B we say that
f is dependently-typed ; otherwise we write Πx:A, B as A → B to denote the usual
non-dependent function space. When B is a proposition, Πx:A, B can be read as
the universally quantified formula ∀x:A, B, or as the logical implication A ⇒ B

if x does not appear in B. The term f a denotes a function application, and the
lambda abstraction λx:A, t denotes a function that given an element a of type
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A produces t[a/x]. As usual in Type Theory, a context Γ is a sequence of typing
assumptions a:A and (local) definitions c:A := t, where t has type A and c does
not occur in t. We often omit the type A and simply write c := t to save space
when no confusion arises. Similarly, an environment Δ is a sequence of (global)
definitions f:A := t. We use type(Δ,Γ, t) to denote the type of t with respect to
Δ and Γ , and type(t) when no confusion arises. Given an environment Δ and a
context Γ , every term reduces to a normal form by the standard βδηιζ-reduction
rules. For this paper we will assume a fixed environment Δ that contains all
definitions and theorems that we present. As usual, we write Π(a:A)(b:B),C as a
shorthand for Πa:A,(Πb:B,C). We use a similar shorthand for λ-terms.

2.1 Equality

One of the reasons that congruence is subtle in ITT is that equality itself is
subtle in ITT. The single notion of equality in most other logics splits into at
least three different yet related notions in ITT.

Definitional equality. The first notion of equality in ITT is definitional equality.
We write a ≡ b to mean that a and b are equal by definition, which is the case
whenever a and b reduce to the same normal form. For example, if we define
a function f : N → N := λ n : N, 0 in the environment Δ, then the terms 0 and
f 0 both reduce to the same normal form 0 and so are equal by definition. On
the other hand, (λ n m: N, n + m) is not definitionally equal to (λ n m: N, m + n),
since they are both in normal form and these normal forms are not the same.
Note that definitional equality is a judgment at the meta-level, and the theory
itself cannot refer to it; in particular, it is not possible to assume or negate a
definitional equality.

Homogeneous propositional equality. The second notion of equality in ITT is
homogeneous propositional equality, which we will usually shorten to homogeneous
equality since “propositional” is implied. Unlike definitional equality which is a
judgment at the meta-level, homogeneous equality can be assumed, negated, and
proved inside the logic itself. There is a constant
in Δ such that, for any type A and elements a b : A, the expression eq A a b repre-
sents the proposition that a and b are “equal”. Note that we call this homogeneous
equality because the types of a and b must be definitionally equal to even state the
proposition that a and b are equal. We write as shorthand for eq A a b,
or a = b if the type A is clear from context. We say a term t of type a = b is a
proof for a = b.

The meaning of homogeneous equality is given by the introduction and elim-
ination rules for eq, which state how to prove that two elements are equal and
what one can do with such a proof respectively. The introduction rule for eq

is the dependent function which says that every
element of type A is equal to itself. We call refl the reflexivity axiom, and write
refl a whenever the type A is clear from context. Note that if a b : A are defin-
itionally equal, then refl a is a proof for a = b. The elimination principle (also
known as the recursor) for the type eq is the dependent function erec:
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erec : Π (A : Type) (a : A) (C : A → Type), C a → Π (b : A), a = b → C b

This principle states that if a property C holds for an element a, and a = b for some
b, then we can conclude that Cmust hold of b as well. We say C is themotive, and we
write (erec C p e) instead of (erec A a C p b e) since A, a and b can be inferred easily
from e : a = b. Note that by setting C to be the identity function
erec can be used to change the type of a term to an equal type; that is, given a
term a : A and a proof e : A = B, the term (erec id a e) has type B. We call this
a cast, and say that we cast a to have type B. Note that it is straightforward
to use erec and refl to prove that eq is symmetric and transitive and hence an
equivalence relation.

Heterogeneous propositional equality. As we saw above, homogeneous equality
suffers from a peculiar limitation: it is not even possible to form the propo-
sition a = b unless the types of a and b are definitionally equal. The further
one strays from the familiar confines of simple type theory, the more severe
this handicap becomes. For example, a common use of dependent types is to
include the length of a list inside its type in order to make out-of-bounds
errors impossible. The resulting type is often called a vector and has type

. It is easy to define an append function on vectors:

app : Π (A : Type) (n m : N), vector A n → vector A m → vector A (n + m)

However, we cannot even state the proposition that app is associative using homo-
geneous equality, since the type vector A (n + (m + k)) is not definitionally equal
to the type vector A ((n + m) + k), only propositionally equal. The same issue
arises when reasoning about vectors in mathematics. For example, we cannot
even state the proposition that concatenating zero-vectors of different lengths m
and n over the real numbers R is commutative, since the type R

m+n is not defi-
nitionally equal to the type R

n+m. In both cases, we could use erec to cast one
of the two terms to have the type of the other, but this approach would quickly
become unwieldy as the number of dependencies increased, and moreover every
procedure that reasoned about equality would need to do so modulo casts.

Thus there is a need for a third notion of equality in ITT, het-
erogeneous propositional equality, which we will usually shorten to het-
erogeneous equality since “propositional” is implied. There is a constant

that behaves like eq except that
its arguments may have different types.1 We write a == b as short-
hand for heq A B a b. Heterogeneous equality has an introduction rule

analogous to refl, and it is straightforward
to show that heq is an equivalence relation by proving the following theorems:

hsymm : Π (A B : Type) (a : A) (b : B), a == b → b == a

htrans : Π (A B C : Type) (a : A) (b : B) (c : C), a == b → b == c → a == c

1 There are many equivalent ways of defining heq. One popular way is “John Major
equality” [15]. Additional formulations and formal proofs of equivalence can be found
at http://leanprover.github.io/ijcar16/congr.lean.

http://leanprover.github.io/ijcar16/congr.lean
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Unfortunately, the flexibility of heq does not come without a cost: as we discuss
in Sect. 3, heq turns out to be weaker than eq in subtle ways and does not permit
as simple a notion of congruence.

Converting from heterogeneous equality to homogeneous equality. It is straight-
forward to convert a proof of homogeneous equality p : a = b into one of hetero-
geneous equality using the lemma

lemma ofeq (A : Type) (a b : A) : a = b → a == b

However, we must assume an axiom in order to prove the reverse direction

ofheq (A : Type) (a b : A) : a == b → a = b

The statement is equivalent to the uniqueness of identity proofs (UIP) prin-
ciple [26], to Streicher’s Axiom K [26], and to a few other variants as well.
Although these axioms are not part of the core logic of ITT, they have been
found to be consistent with ITT by means of a meta-theoretic argument [18],
and are built into the logic of many systems including Agda, Idris, and Lean.
They also follow from various stronger axioms that are commonly assumed,
such as proof irrelevance and excluded middle. In Coq, UIP or an axiom that
implies it is often assumed when heterogeneous equality is used, including in
the CompCert project [14]. Our approach is built upon being able to recover
homogeneous equalities from heterogeneous equalities between two terms of the
same type and so makes heavy use of ofheq.

3 Congruence

Congruence over homogeneous equality. It is straightforward to prove the fol-
lowing lemma using erec:

lemma congr : Π (A B : Type) (f g : A → B) (a b : A), f = g → a = b → f a = g b

and thus prove that eq is indeed a congruence relation for simply-typed functions.
Thus the standard congruence closure algorithm can be applied to the simply-
typed subset of ITT without much complication. In particular, we have the
familiar property that f a and g b can be proved equal if and only if either an
equality f a = g b has been asserted, or if f can be proved equal to g and a can
be proved equal to b.

Congruence over heterogeneous equality. Unfortunately, once we introduce func-
tions with dependent types, we must switch to heq and lose the familiar property
discussed above that eq satisfies for simply-typed functions. Ideally we would like
the following congruence lemma for heterogeneous equality:

hcongr_ideal : Π (A A′ : Type) (B : A → Type) (B′ : A′ → Type)
(f : Π (a : A), B a) (f′ : Π (a′ : A′), B′ a′) (a : A) (a′ : A′),
f == f′ → a == a′ → f a == f′ a′
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Unfortunately, this theorem is not provable in ITT [1], even when we assume
UIP. The issue is that we need to establish that B = B′ as well, and this fact does
not follow from (Π (a : A), B a) = (Π (a′ : A′), B′ a′). Assuming hcongr ideal as
an axiom is not a satisfactory solution because it would limit the applicability of
our approach, since as far as we know it is not assumed in any existing interactive
theorem provers based on ITT.

However, for any given n, it is straightforward to prove the following congru-
ence lemma using only erec, ofheq and hrefl2:

lemma hcongrn
(A1: Type)
(A2: A → Type)
. . .
(An: Π a1 . . . an−2, An−1 a1 . . . an−2 → Type)
(B: Π a1 . . . an−1, An a1 . . . an−1 → Type) :
Π (f g: Π a1 . . . an, B a1 . . . an), f = g →
Π (a1 b1: A1), a1 == b1 →
Π (a2: A2 a1) (b2: A2 b1), a2 == b2 →
. . .
Π (an: An a1 . . . an−1) (bn : An b1 . . . bn−1), an == bn →
f a1 . . . an == g b1 . . . bn

The lemmas hcongrn are weaker than hcongr ideal because they require the
outermost functions f and g to have the same type. Although we no longer
have the property that f == g and a == b implies f a == g b, we show in the
next section how to extend the congruence closure algorithm to deal with the
additional restriction imposed by hcongrn.

When using hcongrn lemmas, we omit the parameters Ai, B, ai and bi since
they can be inferred from the parameters with types f = g and ai == bi. Note
that even if some arguments of an n-ary function f do not depend on all previous
ones, it is still straightforward to find parameters Ai and B that do depend on all
previous arguments and so fit the theorem, and yet become definitionally equal to
the types of the actual arguments of f once applied to the preceding arguments.
We remark that we avoid this issue in our implementation by synthesizing custom
congruence theorems for every function we encounter.

4 Congruence Closure

We now have all the necessary ingredients to describe a very general congru-
ence closure procedure for ITT. Our procedure is based on the one proposed
by Nieuwenhuis and Oliveras [24] for first-order logic, which is efficient, is proof
producing, and is used by many SMT solvers. We assume the input to our con-
gruence closure procedure is of the form Γ � a == b, where Γ is a context and
a == b is the goal. Note that a goal of the form a = b can be converted into
2 The formal statements and proofs for small values of n can be found at http://

leanprover.github.io/ijcar16/congr.lean, along with formal proofs of all other lemmas
described in this paper.

http://leanprover.github.io/ijcar16/congr.lean
http://leanprover.github.io/ijcar16/congr.lean
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a == b before we start our procedure, since when a and b have the same type,
any proof for a == b can be converted into a proof for a = b using ofheq. Sim-
ilarly, any hypothesis of the form e: a = b can be replaced with e: a == b using
ofeq. As in abstract congruence closure [3,13], we introduce new variables c to
name all proper subterms of every term appearing on either side of an equal-
ity, both to simplify the presentation and to obtain the efficiency of DAG-based
implementations.3 For example, we encode f N a == f N b using the local defini-
tions (c1 := f N) (c2 := c1 a) (c3 := c1 b) and the equality c2 == c3. We remark
that c2 == c3 is definitionally equal to f N a == f N b by ζ-reduction. Here is an
example problem instance for our procedure:

(N: Type) (a b: N) (f: Π A: Type, A → A) (c1 := f N)
(c2 := c1 a) (c3 := c1 b) (e: a == b) � c2 == c3

The term (hcongr2 (refl f) (hrefl N) e) is a proof for the goal c2 == c3.
As in most congruence closure procedures, ours maintains a union-find data

structure that partitions the set of terms into a number of disjoint subsets such
that if a and b are in the same subset (denoted a ≈ b) then the procedure can
generate a proof that a == b. Each subset is an equivalence class. The union-find
data structure computes the equivalence closure of the relation == by merging
the equivalence classes of a and b whenever e: a == b is asserted. However, the
union-find data structure alone does not know anything about congruence, and
in particular it will not automatically propagate the assertion a == b to other
terms that contain a or b; for example, it would not merge the equivalence
classes of c := f a and d := f b. Thus, additional machinery is required to find
and propagate new equivalences implied by the rules of congruence.

We say that two terms are congruent if they can be proved to be equiva-
lent using a congruence rule given the current partition of the union-find data
structure. We also say two local definitions c := f a and d := g b are congru-
ent whenever f a and g b are congruent. We remark that congruence closure
algorithms can be parameterized by the structure of the congruence rules they
propagate. In our case, we use the family of hcongrn lemmas as congruence rules.

We now describe our congruence closure procedure in full, although the over-
all structure is similar to the one presented in [24]. The key differences are in
how we determine whether two terms are congruent, how we build formal proofs
of congruence using hcongrn, and what local definitions we need to visit after
merging two equivalence classes to ensure that all new congruences are detected.
The basic data structures in our procedure are

– repr : a mapping from variables to variables, where repr[x] is the representative
for the equivalence class x is in. We say variable x is a representative if and
only if repr[x] is x.

– next: a mapping from variables to variables that induces a circular list for
each equivalence class, where next[x] is the next element in the equivalence
class x is in.

3 To simplify the presentation further, we ignore the possibility that any of these
subterms themselves include partial applications of equality.
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– pr: a mapping from variables to pairs consisting of a variable and a proof,
where if pr[x] is (y, p), then p is a proof for x == y or y == x. We use target[x]
to denote pr[x].1. This structure implements the proof forests described in [24].

– size: a mapping from representatives to natural numbers, where for each rep-
resentative x, size[x] is the number of elements in the equivalence class rep-
resented by x.

– pending: a list of local definitions and typing assumptions to be processed. It
is initialized with the context Γ .

– congrtable: a set of local definitions such that given a local definition E, the
function lookup(E) returns a local definition in congrtable congruent to E if
one exists.

– uselists: a mapping from representatives to sets of local definitions, such that
local definition D is in uselists[x] if D might become congruent to another
definition if the equivalence class of x were merged with another equivalence
class.

Our procedure maintains the following invariants for the data structures
described above.

1. repr[next[x]] ≡ repr[repr[x]] ≡ repr[x]
2. If repr[x] ≡ repr[y], then nextk[x] ≡ y for some k.
3. targetk[x] ≡ repr[x] for some k. That is, we can view targetk[x] as a “path”

from x to repr[x]. Moreover, the proofs in pr can be used to build a proof
from x to any element along this path.

4. Let s be size[repr[x]], then nexts[x] ≡ x. That is, next does indeed induce a
set of disjoint circular lists, one for each equivalence class.

Whenever a new congruence proof for c == d is inferred by our procedure,
we add the auxiliary local definition e: c == d := p to pending, where e is a
fresh variable, and p is a proof for c == d. The proof p is always an application
of the lemma hcongrn for some n. We say e : c == d and e: c == d := p are
equality proofs for c == d. Given an equality proof E, the functions lhs(E) and
rhs(E) return the left and right hand sides of the proved equality. Given a local
definition E of the form c := f a, the function var(E) returns c, and app(E)
the pair (f, a). We say a variable c is a local definition when Γ contains the
definition c := f a, and the auxiliary partial function def (c) returns this local
definition.

Implementing congrtable. In order to implement the congruence closure proce-
dure efficiently, the congruence rules must admit a data structure congrtable
that takes a local definition and quickly returns a local definition in the table
that it is congruent to if one exists. It is easy to implement such a data structure
with a Boolean procedure congruent(D,E) that determines if two local defini-
tions are congruent, along with a congruence-respecting hash function. Although
the family of hcongrn lemmas does not satisfy the property that f a and g b are
congruent whenever f ≈ g and a ≈ b, we still have a straightforward criterion
for determining whether two terms are congruent.
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Proposition 1. Consider the terms f a and g b. If a ≈ b, then f a and g b are
congruent provided either:

1. f and g are homogeneously equal;
2. f and g are congruent.

Proof. First note that in both cases, we can generate a proof that a == b since
we have assumed that a ≈ b. In the first case, if f and g are homogeneously
equal, then no matter how many partial applications they contain, we can apply
hcongr1 to the proof of homogeneous equality and the proof that a == b. In the
second case, if f and g are congruent, it means that we can generate proofs of
all the preconditions of hcongrk for some k, and the only additional precondition
to hcongrk+1 is a proof that a == b, which we can generate as well.

D E
(f, a) ← app(D) (g, b) ← app(E)

a ≈ b
f ≈ g type(f) ≡ type(g)
f g def (f) def (g)

D
h

(f, a) ← app(D)
hashcombine(h(repr[f ]), h(repr[a]))

Fig. 1. Implementing congrtable

Proposition 1 suggests a simple recursive procedure to detect when two terms
are congruent, which we present in Fig. 1. The procedure congruent(D,E),
where D and E are local definitions of the form c := f a and d := g b, returns
true if a proof for c == d can be constructed using an hcongrn lemma for some
n. Note that although the congruence lemmas hcongrn are themselves n-ary, it is
not sufficient to view the two terms being compared for congruence as applica-
tions of n-ary functions. We must compare each pair of partial applications for
homogeneous equality as well (line 4), since two terms with n arguments each
might be congruent using hcongrm for any m such that m ≤ n. For example,
f a1 c and g b1 c are congruent by hcongr2 if f = g and a1 == b1, and yet are
only congruent by hcongr1 if all we know is f a1 = g b1. It is even possible for
two terms to be congruent that do not have the same number of arguments. For
example, f = g a implies that f b and g a b are congruent by hcongr1.

Proposition 1 also suggests a simple way to hash local definitions that respects
congruence. Given a hash function on terms, the procedure congrhash(D)
hashes a local definition of the form c := f a by simply combining the hashes of
the representatives of f and a. This hash function respects congruence because
if c := f a and d := g b are congruent, it is a necessary (though not sufficient)
condition that f ≈ g and a ≈ b.
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Γ a == b
pending ← Γ

pending
E pending

E E
E

repr[a] ≡ repr[b]

Fig. 2. Congruence closure procedure

The procedure. Fig. 2 contains the main procedure cc. It initializes pending
with the input context Γ . Variables in typing assumptions and local definitions
are processed using initialize (Fig. 3), and equality proofs are processed using
processeq (Fig. 4).

E
c ← var(E)
repr[c] ← c next[c] ← c size[c] ← 1 uselists[c] ← ∅
pr[c] ← (c, c )

E
E E

D = lookup(E)
d ← var(D) e ←

e : d == c D E pending Γ
E congrtable

E P
(f, a) ← app(E)

P uselists[f ] uselists[a]
f def (f) P

Fig. 3. Initialization procedure

The initialize(E) procedure invokes inituselist(E,E) whenever E is a
local definition c := f a. The second argument at inituselist(E,P ) represents
the parent local definition that must be included in the uselists. We must ensure
that for every local definition D that could be inspected during a call to con-
gruent(E1, E2) for some E2, we add var(E1) to the uselist of var(D) when
initializing E1. Thus the recursion in inituselist must mirror the recursion
in congruent conservatively, and always recurse whenever congruent might
recurse. For example, assume the input context Γ contains

(A: Type) (a b d: A) (g : A → A → A) (f : A → A) (c1 := g a) (c2 := c1 b) (c3 := f d).

When initialize(c2 := c1 b) is invoked, c2 := c1 d is added to the uselists of
c1, b, g and a. By a slight abuse of notation, we write ‘hrefl a’ to represent in the
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pseudocode the expression that creates the hrefl-application using as argument
the term stored in the program variable a.

The procedure processeq is used to process equality proofs a == b. If a

and b are already in the same equivalence class, it does nothing. Otherwise,
it first removes every element in uselists[repr[a]] from congrtable (procedure
removeuses). Then, it merges the equivalence classes of a and b so that for
every a′ in the equivalence class of a, repr[a′] is set to repr[b]. This operation
can be implemented efficiently using the next data structure. As in [24], the
procedure also reorients the path from a to repr[a] induced by pr (procedure
flipproofs) to make sure invariant 3 is still satisfied and locally irredundant
transitivity proofs [22] can be generated. It then reinserts the elements removed
by removeuses into congrtable (procedure reinsertuses); if any are found to
be congruent to an existing term in a different partition, it proves equivalence
using the congruence lemma hcongrn (procedure mkcongr) and puts the new
proof onto the queue. Finally, processeq updates next, uselists and size data
structures.

E
a ← lhs(E); b ← rhs(E

E
)

repr[a] ≡ repr[b]

size(repr[a]) > size(repr[b]) (a, b)

ra ← repr[a] rb ← repr[b]
ra a

a repr[a ] ≡ ra repr[a ] ← rb

pr[a] ← (b, E)
ra

(next[ra], next[rb])
uselists[ra] uselists[rb] size[rb] ← size[rb] + size[ra]

a
repr[a] ≡ a

(b, p) ← pr[a] b pr[b] ← (a, p)

a
E uselists[a] E congrtable

a
E uselists[a]

D = lookup(E)
d ← var(D) e ← var(E) p ←

p : d == e D E pending Γ
E congrtable

Fig. 4. Process equality procedure

Figure 5 contains a simple recursive procedure mkcongr to construct the
proof that two congruent local definitions are equal. The procedure takes as
input two local definitions D and E of the form c := f a and d := g b such that
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congruent(D, E), along with a possibly empty list of equality proofs es for
a1 == b1, . . . , an == bn, and returns a proof for f a a1 ... an == g b b1 ... bn.
The two cases in the mkcongr procedure mirror the two cases of the congru-
ent procedure. If the types of f and g are definitionally equal we construct an
instance of the lemma hcongr|es|+1. The procedure mkpr(a, b) (Fig. 5) creates
a proof for a == b if a and b are in the same equivalence class by finding the
common element targetn[a] ≡ targetm[b] in the “paths” from a and b to the
equivalence class representative. Note that, if congruent(D, E) is true, then
mkcongr(D, E, []) is a proof for c == d.

D E es
D E

(f, a) ← app(D) (g, b) ← app(E) eab ← a b
type(f) ≡ type(g)
n ← len(es) efg ← f g

n+1 efg eab es
def (f) def (g) es eab

a b
a ≡ b a
n m targetn[a] ≡ targetm[b]

ea ← a n eb ← b m ea eb

a n
n = 0 a

(b, eab) ← pr[a] e ← b n − 1
lhs(eab) ≡ a rhs(eab) ≡ b eab e

eab e

Fig. 5. Transitive proof generation procedure

Finally, we remark that the main loop of cc maintains the following two
invariants.

Theorem 1. If a and b are in the same equivalence class (i.e., a ≈ b), then
mkpr(a, b) returns a correct proof that a == b.

Theorem 2. If type(f) ≡ type(g), f ≈ g, a1 ≈ b1, . . .an ≈ bn, c ≡ f a1 . . . an

and d ≡ g b1 . . . bn, then c ≈ d.

Extensions. There are many standard extensions to the congruence closure pro-
cedure that are straightforward to support in our framework, such as tracking
disequalities to find contradictions and propagating injectivity and disjointness
for inductive datatype constructors [17]. Here we present a simple extension for
propagating equalities among elements of subsingleton types that is especially
important when proving theorems in ITT. We say a type A:Type is a subsingleton
if it has at most one element; that is, if for all (a b:A), we have that a = b. Sub-
singletons are used extensively in practice, and are especially ubiquitous when
proof irrelevance is assumed, in which case every proposition is a subsingleton.
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One common use of dependent types is to extend functions to take extra
arguments that represent proofs that certain preconditions hold. For example,
the logarithm function only makes sense for positive real numbers, and we can
make it impossible to even call it on a non-positive number by requiring a
proof of positivity as a second argument: c := f a. The second argument is
a proposition and hence is a subsingleton when we assume proof irrelevance.
Consider the following goal: (a b : R) (Ha : a > 0) (Hb : b > 0) (e : a = b) �
safe_log a Ha = safe_log b Hb. The core procedure we presented above would
not be able to prove this theorem on its own because it would never discover
that Ha == Hb. We show how to extend the procedure to automatically propagate
facts of this kind.

We assume we have an oracle issub(Γ,A) that returns true for subsingleton
types for which we have a proof Πa b:A, a = b. Many proof assistants implement
an efficient (and incomplete) issub using type classes [7,19], but it is beyond the
scope of this paper to describe this mechanism. Given a subsingleton type A with
proof sseA, we can prove

hsseA: Π (C:Type) (c:C) (a:A), C == A → c == a,

which we can use as an additional propagation rule in the congruence closure
procedure. The idea is to merge the equivalence classes of a:A and c:C whenever
A is a subsingleton and C ≈ A. First, we add a mapping subrep from subsingleton
types to their representatives. Then, we include the following additional code in
initialize:

C ← type(c); A ← repr[C]
if issub(Γ,A) then

if a = subrep[A] then
p ← mkpr(C, A); e ← make fresh variable
add (e : c == a := hsseA C p c a) to pending and Γ

else subrep[A] ← c

Finally, at processeq whenever we merge the equivalence classes of subsingleton
types A and C, we also propagate the equality subrep[A] == subrep[C].

With this extension, our procedure can prove safe_log a Ha = safe_log b Hb

in the example above, since the terms a > 0 and b > 0 are both subsingleton
types with representative elements Ha and Hb respectively, and when their equiv-
alence classes are merged, the subsingleton extension propagates the fact that
their representative elements are equal, i.e. that Ha == Hb.

5 Applications

We have implemented our congruence closure procedure for Lean4 along with
many of the standard extensions as part of a long-term effort to build a robust
theorem prover for ITT. Although congruence closure can be useful on its own, its

4 https://github.com/leanprover/lean/blob/master/src/library/blast/congruence
closure.cpp.

https://github.com/leanprover/lean/blob/master/src/library/blast/congruence_closure.cpp
https://github.com/leanprover/lean/blob/master/src/library/blast/congruence_closure.cpp
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power is greatly enhanced when it is combined with a procedure for automatically
instantiating lemmas so that the user does not need to manually collect all
the ground facts that the congruence closure procedure will need. We use an
approach called e-matching [10] to instantiate lemmas that makes use of the
equivalences represented by the state of the congruence closure procedure when
deciding what to instantiate, though the details of e-matching are beyond the
scope of this paper. The combination of congruence closure and e-matching is
already very powerful, as we demonstrate in the following two examples, the
first from software verification and the second from formal mathematics. The
complete list of examples we have used to test our procedure can be found at
http://leanprover.github.io/ijcar16/examples.

Vectors (indexed lists). As we mentioned in Sect. 2.1, a common use of dependent
types is to include the length of a list inside its type in order to make out-of-
bounds errors impossible. The constructors of vector mirror those of list:

nil : Π {A : Type}, vector A 0
cons : Π {A : Type} {n : N}, A → vector A n → vector A (succ n)

where succ is the successor function on natural numbers, and where curly braces
indicate that a parameter should be inferred from context. We use the notation
[x] to denote the one-element vector containing only x, i.e. cons x nil, and x::v

to denote cons x v. It is easy to define append and reverse on vector:

app : Π {A : Type} {n1 n2 : N}, vector A n1 → vector A n2 → vector A (n1 + n2)
rev : Π {n : N}, vector A n → vector A n

When trying to prove the basic property rev (app v1 v2) == app (rev v2)
(rev v1) about these two functions, we reach the following goal:

(A : Type) (n1 n2 : N) (x1 x2 : A) (v1 : vector A n1) (v2 : vector A n2)
(IH : rev (app v1 (x2::v2)) == app (rev (x2::v2)) (rev v1))
� rev (app (x1::v1) (x2::v2)) == app (rev (x2::v2)) (rev (x1::v1))

Given basic lemmas about how to push app and rev in over cons, a lemma
stating the associativity of app, and a few basic lemmas about natural numbers,
our congruence closure procedure together with the e-matcher can solve this
goal. Once the e-matcher establishes the following ground facts:

H1 : rev (x1::v1) == app (rev v1) [x1]
H2 : app (x1::v1) (x2::v2) == x1::(app v1 (x2::v2))
H3 : rev (x1::(app v1 (x2::v2))) == app (rev (app v1 (x2::v2))) [x1]
H4 : app (app (rev (x2::v2)) (rev v1)) [x1] == app (rev (x2::v2)) (app (rev v1) [x1])

as well as a few basic facts about the natural numbers, the result follows by
congruence.

Safe arithmetic. As we mentioned in Sect. 4, another common use of depen-
dent types is to extend functions to take extra arguments that represent proofs
that certain preconditions hold. For example, we can define safe versions of the
logarithm function and the inverse function as follows:

http://leanprover.github.io/ijcar16/examples
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safe_log : Π (x : R), x > 0 → R safe_inv : Π (x : R), x �= 0 → R

Although it would be prohibitively cumbersome to prove the preconditions man-
ually at every invocation, we can relegate this task to the theorem prover, so
that log x means safe log x p and y−1 means safe inv y q, where p and q are
proved automatically. Given basic lemmas about arithmetic identities, our con-
gruence closure procedure together with the e-matcher can solve many complex
equational goals like the following, despite the presence of embedded proofs:

∀ (x y z w : R), x > 0 → y > 0 → z > 0 → w > 0 → x * y = exp z + w →
log (2 * w * exp z + w2 + exp (2 * z)) / −2 = log y−1 − log x

6 Related Work

Corbineau [9] presents a congruence closure procedure for the simply-typed sub-
set of ITT and a corresponding implementation for Coq as the tactic congruence.
The procedure uses homogeneous equality and does not support dependent types
at all. Hur [12] presents a library of tactics for reasoning over a different variant
of heterogeneous equality in Coq, for which the user must manually separate the
parts of the type that are allowed to vary between heterogeneously equal terms
from those that must remain the same. The main tactic provided is Hrewritec,
which tries to rewrite with a heterogeneous equality by converting it to a cast-
equality, rewriting with that, and then generalizing the proof that the types are
equal. There does not seem to be any general notion of congruence akin to our
family of hcongrn lemmas.

Sjöberg and Weirich [25] propose using congruence closure during type check-
ing for a new dependent type theory in which definitional equality is determined
by the congruence closure relation instead of by the standard forms of reduction.
Their type theory is not compatible with any of the standard flavors of ITT such
as the calculus of inductive constructions, and so their procedure cannot be used
to prove theorems in systems such as Coq and Lean. The congruence rules they
use are also not as general as ours, since they require the two functions being
applied to be the same, whereas hcongrn allows them to differ as long as they are
homogeneously equal. As a result, given x = y, they cannot conclude f x = g y

from f = g, let alone f a x = g y from f a = g. Moreover, they do not discuss
why or whether the natural binary congruence rule (i.e. hcongr ideal) would be
unsound in their type theory, nor why their congruence rule needs to be n-ary.

7 Conclusion

We have presented a very general notion of congruence for ITT based on heterogeneous
equality that applies to all dependently typed functions. We also presented a congruence
closure procedure that can propagate the associated congruence rules efficiently and
so automatically prove a large and important set of goals. Just as congruence closure
procedures (along with DPLL) form the foundation of modern SMT solvers, we hope
that our congruence closure procedure can form the foundation of a robust theorem
prover for intensional type theory. We are building such a theorem prover for Lean,
and it can already solve many interesting problems.
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Abstract. We present two tests that solve linear integer arithmetic con-
straints. These tests are sound and efficiently find solutions for a large
number of problems. While many complete methods search along the
problem surface for a solution, these tests use cubes to explore the inte-
rior of the problems. The tests are especially efficient for constraints with
a large number of integer solutions, e.g., those with infinite lattice width.
Inside the SMT-LIB benchmarks, we have found almost one thousand
problem instances with infinite lattice width, and we have shown the
advantage of our cube tests on these instances by comparing our imple-
mentation of the cube test with several state-of-the-art SMT solvers.
Our implementation is not only several orders of magnitudes faster, but
it also solves all instances, which most SMT solvers do not. Finally,
we discovered an additional application for our cube tests: the extrac-
tion of equalities implied by a system of linear arithmetic inequalities.
This extraction is useful both as a preprocessing step for linear inte-
ger constraint solving as well as for the combination of theories by the
Nelson-Oppen method.

Keywords: Linear arithmetic · SMT · Integer arithmetic · Constraint
solving

1 Introduction

Finding an integer solution for a polyhedron that is defined by a system of
linear inequalities Ax ≤ b is a well-known NP-complete problem [18]. Systems
of linear inequalities have many real-world applications so that this problem has
been investigated in different research areas, e.g., in optimization via (mixed)
integer linear programming (MILP) [15] and in constraint solving via satisfiability
modulo theories (SMT) [2,4,7,12].

It is standard for commercial MILP implementations to integrate preprocess-
ing techniques, heuristics, and specialized tests [15]. Although these techniques
are not complete, they are much more efficient on their designated target sys-
tems of linear inequalities than a complete algorithm alone. Since there exist
specialized techniques for many classes of real-world problems representable as
polyhedra, commercial MILP solvers are efficient on many real-world inputs—
even though the problem, in general, is NP-complete.
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40229-1 9
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The constraint solving community is still in the process of developing the
same variety in specialized tests as the MILP community. The biggest chal-
lenge is to adopt the tests from the MILP community so that they still fit the
input systems relevant for constraint solving. For example, SMT theory solvers
have to solve a large number of incrementally connected, small systems of lin-
ear inequalities. Exploiting this incremental connection is key for making SMT
theory solvers efficient [11]. In contrast, MILP solvers typically target one large
system. The same holds for their specialized tests, which are not well suited to
exploit incremental connections.

In this paper, we present two tests tailored toward SMT solvers: the largest
cube test and the unit cube test. The idea is to find hypercubes that are con-
tained inside the input polyhedron and guarantee the existence of an integer
solution. Due to computational complexity, we will restrict ourselves to only
those hypercubes that are parallel to the coordinate axes. The largest cube test
finds a hypercube with maximum edge length contained in the input polyhedron,
determines its real valued center, and rounds it to a potential integer solution.
The unit cube test determines if a polyhedron contains a hypercube with edge
length one, which is the minimal edge length that guarantees an integer solution.

Most SMT linear integer arithmetic theory solvers are based on a branch-
and-bound algorithm on top of the simplex algorithm. They search for a solution
at the surface of a polyhedron. However, our tests search in the interior of the
polyhedron. This gives them an advantage on polyhedra with a large number of
integer solutions, e.g., polyhedra with infinite lattice width [16]. Since the only
difference between the input polyhedron Ax ≤ b and the associated unit cube
polyhedron Ax ≤ b′ are the row bounds, our unit cube test is especially easy to
implement and integrate into SMT theory solvers.

SMT theory solvers are designed to efficiently exchange bounds [9]. This
efficient exchange is the main reason why SMT theory solvers exploit the incre-
mental connection between the different polyhedra so well. Our unit cube test
also requires only an exchange of bounds. After applying the test, we can easily
recover the original polyhedron by reverting to the original bounds. In doing so,
the unit cube test conserves the incremental connection between the different
original polyhedra. We make a similar observation about the largest cube test.

A variant of the linear program for the unit cube test first appeared in 1969 as
a subroutine in a heuristic by Hillier for MILP optimization [13]. While Hillier
was aware of the unit cube test, he applied it only to cones, a special class
of polyhedra. His work never mentioned applications beyond cones, nor did he
prove any structural properties connected to hypercubes. As mentioned before,
the main advantage of the cube tests is that they compute interior point candi-
dates. The same can be done using an interior point method [17] instead of the
simplex algorithm. Therefore, Hillier’s heuristic tailored for MILP optimization
lost popularity as soon as interior point methods became efficient in practice.
Nonetheless, our cube tests remain relevant for SMT theory solvers because there
are no competitive incremental interior point methods.
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Also, Bobot et al. discuss relations between hypercubes, called ∞-norm balls,
and polyhedra [2]. In their paper, they detail the same relation between polyhe-
dra with infinite lattice width and hypercubes that we discovered. Their work
also includes a linear optimization program that detects polyhedra with infinite
lattice width and positive linear combinations between inequalities. Our largest
cube test can detect all of the above because it is, with some minor changes, the
dual of the linear optimization program of Bobot et al. However, our tests are a
lot closer to the original polyhedron and are, therefore, easier to construct, and
the tests produce sample points as well. Via rounding, our tests use these sample
points to compute an actual integer solution as proof. Moreover, our cube tests
also find solutions for polyhedra with finite lattice width.

Our contributions are as follows: we define the linear cube transformation
(Corollary 3) that allows us to efficiently compute whether a polyhedron Ax ≤ b
contains a hypercube of edge length e by solely changing the bounds b in Sect. 3.
Based on this transformation, we develop in Sect. 4 two tests: the largest cube
test and the unit cube test. For polyhedra with infinite lattice width, both tests
always succeed (Lemma 5). Inside the SMT-LIB benchmarks, there are almost
one thousand problem instances with infinite lattice width, and we show the
advantage of our cube tests on these instances by comparing our implementa-
tion of the cube test with several state-of-the-art SMT solvers in Sect. 5. Our
implementation is not only several orders of magnitudes faster, but it also solves
all instances, which most SMT solvers do not (Fig. 7). It is more robust than the
test suggested by Bobot et al. [2] (Fig. 7). Eventually, we introduce in Sect. 6 an
additional application for our cube tests: the extraction of equalities implied by
a system of linear arithmetic inequalities. The paper ends with a discussion on
possible directions for future research, Sect. 7.

2 Preliminaries

While the difference between matrices, vectors, and their components is always
clear in context, we generally use upper case letters for matrices (e.g., A), lower
case letters for vectors (e.g., x), and lower case letters with an index i or j (e.g.,
bi, xj) as components of the associated vector at position i or j, respectively.
The only exceptions are the row vectors aTi = (ai1, . . . , ain) of a matrix A =
(a1, . . . , am)T , which already contain an index i that indicates the row’s position
inside A. In order to save space, we write vectors only implicitly as columns
via the transpose ( )T operator, which turns all rows (b1, . . . , bm) into columns
(b1, . . . , bm)T and vice versa. We will also abbreviate (. . . , 0, . . .)T as 0.

In this paper, we treat polyhedra and their definitions through a system of
inequalities Ax ≤ b as interchangeable. For such a system of inequalities, the
row coefficients are given by A = (a1, . . . , am)T ∈ Qm×n, the inequality
bounds are given by b = (b1, . . . , bm)T ∈ Qm, and the variables are given by
x = (x1, . . . , xn)T .

We denote by PA
b = {x ∈ Rn : Ax ≤ b} the set of real solutions to the

system of inequalities Ax ≤ b and, therefore, the points inside the polyhedron.
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Similarly, we denote by Cn
e (z) =

{
x ∈ Rn : ∀j ∈ 1, . . . , n. |xj − zj | ≤ e

2

}
the set

of points contained in the n-dimensional hypercube Cn
e (z) that is parallel to

the coordinate axes, has edge length e ∈ R≥0, and has center z ∈ Rn. For the
remainder of this paper, we will consider only hypercubes that are parallel to
the coordinate axes. For simplicity, we call these restricted hypercubes cubes.
Similar to polyhedra, we will use the set of points Cn

e (z) interchangeably with
the cube defined by the set.

Besides cubes and polyhedra, we use multiple p-norms ‖.‖p in this paper [10].
These p-norms are defined as functions (‖.‖p : Rn → R) for p ≥ 1 such that

‖x‖p = (|x1|p + . . . + |xn|p)1/p. A special p-norm is the maximum norm. It is
defined by the limit of ‖.‖p for p → ∞: ‖x‖∞ = max {|x1|, . . . , |xn|}. If we
compare the maximum norm and the definition of Cn

e (z), we see that cubes and
p-norms are related:

(
‖x − z‖∞ ≤ e

2

)
⇐⇒

(
∀j ∈ 1, . . . , n. |xj − zj | ≤ e

2

)
.

Using p-norms, we define a closest integer for a point x as a point x′ ∈ Zn

with minimal distance ‖x − x′‖p for all p-norms. We also define the operators
�xj� and �x� such that they describe a closest integer for xj and x, respectively.
Formally, this means that �x� = (�x1�, . . . , �xn�)T and

�xj� =
{


xj� if xj − 
xj� < 0.5 ,
�xj� if xj − 
xj� ≥ 0.5 .

This definition of �x� is also known as simple rounding.

Lemma 1. For x ∈ Rn, �x� is a closest integer to x:

∀p ≥ 1. ∀x′ ∈ Zn. ‖x − �x�‖p ≤ ‖x − x′‖p .

Proof. We first look at the one-dimensional case, where ‖xj‖p simplifies to |xj |:

∀p ≥ 1. ∀x′
j ∈ Z. |xj − �xj�| ≤ |xj − x′

j | .

For �xj�, x′
j ∈ Z, there exists zj ∈ Z such that x′

j = �xj� − zj . For xj ∈ R, there
exists a dj ∈ [−0.5, 0.5] such that dj := xj − �xj�. The inequality trivially holds
for zj = 0:

|xj − x′
j | = |xj − �xj� + zj | = |xj − �xj�| .

Via the triangle inequality, for the remaining zj �= 0 we get :

|xj − x′
j | = |xj − �xj� + zj | = |dj + zj | ≥ |zj | − |dj | .

Since zj �= 0, and dj ∈ [−0.5, 0.5] imply |zj | ≥ 1, and |dj | ≤ 0.5, respectively, we
get:

|xj − x′
j | ≥ |zj | − |dj | ≥ 1 − |dj | ≥ 0.5 ≥ |dj | = |xj − �xj�| .

The multidimensional case follows from the p-norms’ monotonicity [10], i.e.,
if |xj − �xj�| ≤ |xj − x′

j | for all j ∈ {1, . . . , n}, then ‖x − �x�‖p ≤ ‖x − x′‖p . ��
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Fig. 1. A square (two-
dimensional cube) fitting
into an inequality aT

i x ≤
bi and the cube’s maximum
aT
i x

∗ for the objective aT
i x

Fig. 2. The vertices of an
arbitrary square parallel to
the coordinate axes (two-
dimensional cube with edge
length e and center z)

Fig. 3. The transformed
polyhedron Ax ≤ b′ for
edge length 1 together with
the original polyhedron
Ax ≤ b

3 Fitting Cubes into Polyhedra

We say that a cube Cn
e (z) fits into a polyhedron defined by Ax ≤ b if all points

inside the cube Cn
e (z) are solutions of Ax ≤ b, or formally: Cn

e (z) ⊆ PA
b . In order

to compute this, we transform the polyhedron Ax ≤ b into another polyhedron
Ax ≤ b′. For this new polyhedron, we merely have to test whether the cube’s
center point z is a solution (z ∈ PA

b′) in order to also determine whether the
cube Cn

e (z) fits into the original polyhedron (Cn
e (z) ⊆ PA

b ). This is a simple test
that requires only evaluation. We call this entire transformation the linear cube
transformation.

We start explaining the linear cube transformation by looking at the case
where the polyhedron is defined by a single inequality aTi x ≤ bi. A cube Cn

e (z)
fits into the inequality aTi x ≤ bi if all points inside the cube Cn

e (z) are solutions
of aTi x ≤ bi, or formally: ∀x ∈ Cn

e (z). aTi x ≤ bi.
We can think of aTi x as an objective function that we want to maximize and

see bi as a guard for the maximum objective of any solution in the cube. Thus,
we can express the universal quantifier in the above equation as an optimization
problem (see Fig. 1): max{aTi x : x ∈ Cn

e (z)} ≤ bi. This also means that all points
in x ∈ Cn

e (z) satisfy the inequality aTi x ≤ bi if a point x∗ ∈ Cn
e (z) with maximum

value aTi x
∗ = max{aTi x : x ∈ Cn

e (z)} for the objective function aTi x satisfies the
inequality aTi x

∗ ≤ bi. We can formalize the above optimization problem as a
linear program:

maximize aTi x
subject to zj − e

2 ≤ xj ≤ zj + e
2 for j = 1, . . . , n .

However, for the case of cubes, there is an even easier way to determine the
maximum objective value. Since every cube is a bounded polyhedron, one of the
points with maximum objective value is a vertex xv ∈ Cn

e (z). A vertex xv of
the cube Cn

e (z) is one of the points with maximum distance to the center z (see
Fig. 2), or formally: xv =

(
z1 ± e

2 , . . . , zn ± e
2

)T . If we insert the above equation
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into the objective function aTi x, we get:

aTi

(
z1 ± e

2
, . . . , zn ± e

2

)T

= aTi z +
e

2

∑n

j=1
±aij ,

which in turn is maximal if we choose xv such that ±aij is always positive:

aTi x
v = aTi z +

e

2

∑n

j=1
|aij | = aTi z +

e

2
‖ai‖1 .

Hence, we transform the inequality aTi x ≤ bi into aTi x ≤ bi − e
2 ‖ai‖1, and

Cn
e (z) fits into aTi x ≤ bi if aTi z ≤ bi − e

2 ‖ai‖1.

Corollary 2. Let Cn
e (z) be a cube and aTi x ≤ bi be an inequality. All x ∈ Cn

e (z)
fulfill aTi x ≤ bi if and only if aTi z ≤ bi − e

2 ‖ai‖1.

Next, we look at the case where multiple inequalities aTi x ≤ bi (for i =
1, . . . ,m) define the polyhedron Ax ≤ b. Since PA

b is the intersection of all P ai

bi
,

the cube fits into Ax ≤ b if and only if it fits into all inequalities aTi x ≤ bi,
respectively:

∀i ∈ {1, . . . ,m}. ∀x ∈ Cn
e (z). aTi x ≤ bi .

We can express this by m optimization problems:

∀i ∈ {1, . . . ,m}. max{aTi x : x ∈ Cn
e (z)} ≤ bi

and, after applying Corollary 2, by the following m inequalities:

∀i ∈ {1, . . . ,m}. aTi z ≤ bi − e

2
‖ai‖1 .

Hence, the linear cube transformation transforms the polyhedron Ax ≤ b into
the polyhedron Ax ≤ b′, where b′

i = bi − e
2 ‖ai‖1, and Cn

e (z) fits into Ax ≤ b if
Az ≤ b′.

Corollary 3. Let Cn
e (z) be a cube and Ax ≤ b be a polyhedron. Cn

e (z) ⊆ PA
b if

and only if Az ≤ b′, where b′
i = bi − e

2 ‖ai‖1.

Until now, we have discussed how to use the linear cube transformation to
determine if one cube Cn

e (z) with fixed center point z fits into a polyhedron
Ax ≤ b. A generalization of this problem determines whether a polyhedron
Ax ≤ b contains a cube of edge length e at all. Actually, a closer look at the
transformed polyhedron Ax ≤ b′ reveals that the linear cube transformation
(b′

i = bi− e
2 ‖ai‖1) is dependent only on the edge length e of the cube. Therefore,

the solutions PA
b′ of the transformed polyhedron Ax ≤ b′ are exactly all center

points of cubes with edge length e that fit into the original polyhedron Ax ≤
b (see Fig. 3). By determining the satisfiability of the transformed polyhedron
Ax ≤ b′, we can now also determine whether a polyhedron Ax ≤ b contains a
cube of edge length e at all. If we choose a suitable algorithm, e.g., the simplex
algorithm, then we even get the center point z of a cube Cn

e (z) that fits into
Ax ≤ b. This observation is the foundation for the cube tests that we will present
in Sect. 4.
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4 Fast Cube Tests

In contrast to arbitrary polyhedra, determining whether a cube Cn
e (z) contains

an integer point is easy. Because of the cubes symmetry, it is enough to test
whether it contains a closest integer point �z� to the center z.

Lemma 4. A cube Cn
e (z) contains an integer point if and only if it contains a

closest integer point �z� to the center z.

Proof. The implication from left to right follows directly from Lemma 1 and
from the relation between the maximum norm and cubes. The implication from
right to left is obvious. ��

Note that every point z ∈ Rn is also a cube Cn
0 (z) of edge length 0. In order

to be efficient, our tests will look only at cubes with special properties. In the
case of the largest cube test, we check for an integer solution in one of the largest
cubes fitting into the polyhedron Ax ≤ b. In the case of the unit cube test, we
look for a cube of edge length one, which always guarantees an integer solution.
Due to these restrictions, both tests are not complete but very fast to compute.

4.1 Largest Cube Test

A well-known test, implemented in most ILP solvers, is simple rounding. For
simple rounding, the ILP solver computes a real solution x for a set of inequali-
ties, rounds it to a closest integer �x�, and determines whether this point is an
integer solution. Not all types of real solutions are good candidates for this test
to be successful. Especially surface points, such as vertices, the usual output of
the simplex algorithm, are not good candidates for rounding. For many polyhe-
dra, center and interior points z are a better choice because all integer points
adjacent to z are solutions, including a closest integer point �z�.

To calculate a real center point with the simplex algorithm, we use the linear
cube transformation (Sect. 3). The center point will be the center point of a largest
cube that fits into the polyhedron Ax ≤ b (see Fig. 4). We determine the center z
of this largest cube and the associated edge length e with the following LP:

maximize xe

subject to Ax + a′ xe

2 ≤ b, where a′
i = ‖ai‖1

xe ≥ 0 .

This linear program employs the linear cube transformation from Sect. 3. The
only generalization is a variable xe for the edge length instead of a constant
value e. Additionally, this linear program maximizes the edge length as an
optimization goal.

If the resulting maximum edge length is unbounded, the original polyhedron
contains cubes of arbitrary edge length (see Fig. 5) and, thus, infinitely many
integer solutions. Since the linear program contains all solutions of the original
polyhedron (see xe = 0), the original polyhedron is empty if and only if the
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Fig. 4. The largest cube
inside a polyhedron, its cen-
ter point, and a closest inte-
ger point to the center

Fig. 5. An infinite lattice
width polyhedron, contain-
ing cubes for every edge
length e > 0.

Fig. 6. A unit cube inside
a polyhedron, its center
point, and a closest integer
point to the center

above linear program is infeasible. If the maximum edge length is a finite value
e, we use the resulting assignment z for the variables x as a center point and
Cn
e (z) is a largest cube that fits into the polyhedron. From the center point,

we round to a closest integer point �z� and determine if it fits into the original
polyhedron. If this is the case, we are done because we have found an integer
solution for Ax ≤ b. Otherwise, the largest cube test does not know whether
or not Ax ≤ b has an integer solution. An example for the latter case, are the
following inequalities: 3x1 − x2 ≤ 0, −2x1 − x2 ≤ −2, and −2x1 + x2 ≤ 1.
These inequalities have exactly one integer solution (1, 3)T , but the largest cube
contained by the inequalities has edge length e = 3

17 and center point ( 3
17 ,

3
2 )T ,

which rounds to (0, 2)T .
Instead of a cube, it is also possible to use a ball to compute a center point.

The result is the Chebyshev center [3], i.e., the center of a largest ball that fits
into the polyhedron:

maximize xr

subject to Ax + a′xr ≤ b, where a′
i = ‖ai‖2

xr ≥ 0 .

However, the coefficients a′
i are then defined via the 2-norm ‖ai‖2 =

√∑n
j=1 a

2
ij

and are, therefore, potentially irrational. As theory solvers in the SMT context
use exact rational arithmetic, the Chebyshev center is not straightforward to
integrate.

The largest cube test also upholds the incremental advantages of the dual
simplex algorithm proposed by Dutertre and de Moura [9]. The only difference
is the extra column a′ xe

2 , which the theory solver can internally create while it
is notified of all potential arithmetic literals. Adding this column from the start
does not influence the correctness of the solution because xe ≥ 0 guarantees that
the largest cube test is satisfiable exactly when the original inequalities Ax ≤ b
are satisfiable. Even for explanations of unsatisfiability, it suffices to remove the
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bound xe ≥ 0 to obtain an explanation for the original inequalities Ax ≤ b.
The only disadvantage is the additional variable xe. However, increasing xe only
shrinks the search space. Therefore, increasing xe can never resolve any conflicts
during the satisfiability search. The simplex solver recognizes this with at least
one additional pivot that sets xe to 0. Hence, adding the extra column a′ xe

2 from
the beginning has only constant influence on the theory solver’s run-time, and
is therefore negligible.

4.2 Unit Cube Test

Most SMT theory solvers implement a simplex algorithm that is specialized
towards feasibility and not towards optimization [1,6,9,12]. Therefore, a test
based on optimization, such as the largest cube test, does not fit well with
existing implementations. As an alternative, we have developed a second test
based on cubes that does not need optimization.

We avoid optimization by fixing the edge length e to the value 1 for all
the cubes Cn

e (z) we consider (see Fig. 6). We do so because cubes Cn
1 (z) of

edge length 1 are the smallest cubes to always guarantee an integer solution,
completely independent of the center point z. A cube with edge length 1 is also
called a unit cube. To prove this guarantee, we first fix e = 1 in the definition of
cubes, Cn

1 (z) =
{
x ∈ Rn : ∀j ∈ 1, . . . , n. |xj − zj | ≤ 1

2

}
, and look at the following

property for the rounding operator �.�: ∀zj ∈ R.|�zj�− zj | ≤ 1
2 . We see that any

unit cube contains a closest integer �z� to its center point z. Furthermore, 1
is the smallest edge length that guarantees an integer solution for a cube with
center point z = (. . . , 1

2 , . . .)
T . Thus, 1 is the smallest value that we can fix as

an edge length to guarantee an integer solution for all cubes Cn
1 (z).

Our second test tries to find a unit cube that fits into the polyhedron Ax ≤ b
and, thereby, a guarantee for an integer solution for Ax ≤ b. Again, we employ
the linear cube transformation from Sect. 3 and obtain the linear program:

Az ≤ b′, where b′
i = bi − 1

2 ‖ai‖1 .

In addition to being a linear program without an optimization objective, we
only have to change the row bounds b′

i of the original inequalities. In the dual
simplex algorithm proposed by Dutertre and de Moura [9] and implemented in
many SMT theory solvers [1,6,9,12], such a change of bounds is already part
of the framework so that integrating the unit cube test into theory solvers is
possible with only minor adjustments to the existing implementation. Since our
unit cube test requires only an exchange of bounds, we can easily return to the
original polyhedron by reverting the bounds. In doing so, the unit cube test
upholds the incremental connection between the different original polyhedra.

5 Experiments

While our tests are useful for many types of polyhedra, the motivation for our
tests stems from a special type of polyhedra, so-called infinite lattice width poly-
hedra [16]. A polyhedron Ax ≤ b has infinite lattice width if for every objective
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c ∈ Rn \ {0}, either its maximum or minimum objective value is unbounded, or
formally:

∀c ∈ Rn \ {0}. sup
{
cTx | x ∈ PA

b

}
= ∞ or inf

{
cTx | x ∈ PA

b

}
= −∞ .

Polyhedra with infinite lattice width seem trivial at first glance because their
interior expands arbitrarily far in all directions (see Fig. 5). Therefore, a poly-
hedron with infinite lattice width contains an infinite number of integer solu-
tions [16]. Nonetheless, many SMT theory solvers have proven to be inefficient
on those polyhedra because they use a branch-and-bound approach with an
underlying simplex solver [9]. Although such an approach will terminate inside
finite a priori bounds [18], it does not explore the infinite interior, but rather
directs the search along the solutions suggested by the simplex solver: the ver-
tices of the polyhedron. Thus, the SMT theory solvers concentrate their search
on a bounded part of the polyhedron. This bounded part contains only a finite
number of integer solutions, whereas the complete interior contains infinitely
many integer solutions. The advantage of our cube tests is that they actually
exploit the infinite interior because polyhedra with infinite lattice width con-
tain cubes for every edge length (see Fig. 5). Our tests are always successful on
polyhedra with infinite lattice width and usually need only a small number of
pivoting steps before finding a solution.

Lemma 5. Let Ax ≤ b be a polyhedron. Let a′ ∈ Zm be a vector such that its
components are a′

i = ‖ai‖1. Then, the following two statements are equivalent:
(1) Ax ≤ b contains a cube Cn

e (z) for every e ∈ R≥0, and
(2) Ax ≤ b has infinite lattice width.
Or formally:
(1) ∀e ∈ R≥0. ∃x ∈ Rn. Ax ≤ b − e

2 · a′,
(2) ∀c ∈ Rn \ {0}. sup

{
cTx | x ∈ PA

b

}
= ∞ or inf

{
cTx | x ∈ PA

b

}
= −∞ .

Proof. (1) ⇒ (2): We first assume that Ax ≤ b contains a cube Cn
e (z) for every

e ∈ R≥0. Note that the center point z depends on the edge length e. Furthermore,
we define the function:

width(c, S) =
(
sup

{
cTx | x ∈ S)

}
+ sup

{
−cTx | x ∈ S)

})
(1)

for every vector c ∈ Rn \{0} and for every set of points S ⊆ Rn. Then, we prove
that:

lim e→∞width(c, Cn
e (.)) → ∞ .

In Sect. 3, we have shown that:

sup
{
cTx | x ∈ Cn

e (z)
}

= cT z +
e

2
· ‖c‖1 , and (2)

sup
{
−cTx | x ∈ Cn

e (z)
}

= −cT z +
e

2
· ‖c‖1 . (3)

Therefore, width(c, Cn
e (z)) = e · ‖c‖1, which is independent of z. After inserting

(2) and (3) into (1), we get:

lime→∞ width(c, Cn
e (.)) = lime→∞ e · ‖c‖1 → ∞ .
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Since Ax ≤ b contains cubes Cn
e (z) for all e ∈ R, it holds for all e ∈ R that

width(c, PA
b ) ≥ width(c, Cn

e (.)) ,

and, thus, width(c, PA
b ) = ∞. Since PA

b is also convex, it must hold that:

sup
{
cTx | x ∈ PA

b

}
= ∞ or inf

{
cTx | x ∈ PA

b

}
= −∞ .

(2) ⇒ (1): By contradiction. Assume that Ax ≤ b has infinite lattice width
but that there exists an e ∈ R≥0 such that Ax ≤ b contains no cube Cn

e (z) of
edge length e. By Corollary 3, Ax ≤ b contains no cube Cn

e (z) of edge length e
implies that Ax ≤ b− e

2 ·a′ is unsatisfiable. By Farkas Lemma [3], Ax ≤ b− e
2 ·a′

is unsatisfiable implies that there exists a y ∈ Rm such that: (a) yi ≥ 0 for all
i ∈ {1, . . . ,m}, (b) yk > 0 for at least one k ∈ {1, . . . ,m}, (c) yTA = 0, and (d)
0 > yT b − e

2 · yTa′. Because of (b), we can transform the equality (c) into the
following form:

ak = −
∑m

i=1,i �=k

(
yi
yk

ai

)

. (4)

By multiplying (4) with an x ∈ PA
b , we get: aTk x = −

∑m
i=1,i �=k

(
yi

yk
aTi x

)
. Since

aTi x ≤ bi and yi ≥ 0, we get a finite lower bound for aTk x:

aTk x = −
∑m

i=1,i �=k

(
yi

yk
aTi x

)
≥ −

∑m
i=1,i �=k

(
yi

yk
bi

)
.

Thus, the upper bound sup
{
aTk x | x ∈ PA

b

}
≤ bk < ∞ and the lower bound

inf
{
aTk x | x ∈ PA

b

}
≥ −

∑m
i=1,i �=k

(
yi

yk
bi

)
> −∞ are finite, which contradicts

the assumption that Ax ≤ b has infinite lattice width. ��

We have found instances of polyhedra with the infinite lattice width property
in some classes of the SMT-LIB benchmarks. These instances are 229 of the
233 dillig benchmarks designed by Dillig et al. [7], 503 of the 591 CAV-2009
benchmarks also by Dillig et al. [7], 229 of the 233 slacks benchmarks which
are the dillig benchmarks extended with slack variables [14], and 19 of the 37
prime-cone benchmarks, that is, “a group of crafted benchmarks encoding a
tight n-dimensional cone around the point whose coordinates are the first n
prime numbers” [14]. The remaining problems (4 from dillig, 88 from CAV-
2009, 4 from slacks, and 18 from prime-cone) do not fulfill the infinite lattice
width property because they are either tightly bounded or unsatisfiable. For
our experiments, we look only at the instances of those benchmark classes that
actually fulfill the infinite lattice width property.

Using these benchmark instances, we have confirmed our theoretical assump-
tions (Lemma 5) in practice. We integrated the unit cube test into our own
branch-and-bound solver SPASS-IQ1 and ran it on the infinite lattice width
instances; once with the unit cube test turned on (SPASS-IQ-0.1+uc) and once

1 http://www.spass-prover.org/spass-iq.

http://www.spass-prover.org/spass-iq
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Benchmark Name CAV-2009 DILLIG PRIME-CONE SLACKS ROTATE
#Instances 503 229 19 229 229

Solvers: solved time solved time solved time solved time solved time
SPASS-IQ-0.1+uc 503 22 229 9 19 0.4 229 26 229 9

SPASS-IQ-0.1 503 713 229 218 19 0.4 197 95 229 214
ctrl-ergo 503 12 229 5 19 0.4 229 46 24 6760
cvc4-1.4 467 12903 206 4146 18 3 152 4061 208 6964

mathsat5-3.9 503 6409 225 2314 19 3.5 181 4577 229 1513
yices-2.4.2 472 11461 213 2563 19 0.1 147 5767 180 10171
z3-4.4.0 466 764 213 525 19 0.2 158 383 213 528

Fig. 7. Experimental results

with the test turned off (SPASS-IQ-0.1 ). For every problem, SPASS-IQ-0.1+uc
applies the unit cube test exactly once. This application happens before we start
the branch-and-bound approach. We also compared our solver with some of the
state-of-the-art SMT solvers currently available for linear integer arithmetic:
cvc4-1.4 [1], mathsat5-3.9 [5], yices2.4.2 [8], and z3-4.4.0 [6]. As mentioned
before, all these solvers employ a branch-and-bound approach with an underly-
ing dual simplex solver [9].

The solvers had to solve each problem in under 10 min. For the experiments,
we used a Debian Linux server with 32 Intel Xeon E5-4640 (2.4 GHz) proces-
sors and 512 GB RAM. Figure 7 lists the results of the different solvers (column
one) on the different benchmark classes (row one). Row two lists the number
of benchmark instances we considered for our experiments. For each combina-
tion of benchmark class and solver, we have listed the number of instances the
solver could solve in the given time as well as the total time (in seconds) of the
instances solved (columns labelled with “solved” and “time”, respectively).

Our solver that employs the unit cube test solves all instances with the
application of the unit cube test and is 25 times faster than our solver without
the test. The SMT theory solvers in their standard setting were not able to solve
all instances within the allotted time. Moreover, our unit cube test was over 100
times faster than any state-of-the-art SMT solver.

We also compared our test with the ctrl-ergo solver, which includes a sub-
routine that is essentially the dual to our largest cube test [2]. As expected,
both approaches are comparable for infinite lattice width polyhedra. In order to
also compare the two approaches on benchmarks without infinite lattice width,
we created the rotate benchmarks by adding the same four inequalities to all
infinite width instances of the dillig benchmarks. These four inequalities essen-
tially describe a square bounding the variables x0 and x1 in an interval [−u, u].
For a large enough choice of u (e.g., u = 210), the square is so large that the
benchmarks are still satisfiable and not absolutely trivial for branch-and-bound
solvers. To add a challenge, we rotated the square by a small factor 1/r, which
resulted in the following four inequalities:

−b · r · r + r ≤ b · r · x0 − x1 ≤ b · r · r − r , and
−b · r · r + r ≤ x0 + b · r · x1 ≤ b · r · r − r .
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These changes have nearly no influence on SPASS-IQ, and two SMT solvers
even benefit from the proposed changes. However, the rotate benchmarks are
very hard for ctrl-ergo because its subroutine detects only infinite lattice width.
Without infinite lattice width, ctrl-ergo starts its search from the boundaries
of the polyhedron instead of looking at the polyhedron’s interior. We can even
control the number of iterations (r2) ctrl-ergo spends on the parts of the bound-
ary without any integer solutions if we choose r accordingly (e.g., r = 210).
In contrast, we use our cube tests to also extract interior points for rounding.
This difference makes our tests much more stable under consideration of small
changes to the polyhedron.

There exist alternative methods for solving linear integer constraints that do
not rely on a branch-and-bound approach [4,14]. These have not yet matured
enough to be competitive with our tests or state-of-the-art SMT theory solvers.

Most problems in the linear integer arithmetic SMT-LIB benchmarks with
finite lattice width can be solved without using any actual integer arithmetic
technique. A standard simplex solver for the reals typically finds a real solution
for such a problem that is also an integer solution. Applying the unit cube test
on these trivial problem classes is a waste of time, worst case it doubles the
eventual solution time. For these examples it is beneficial to first compute a
general real solution and to check it for integer satisfiability before applying the
unit cube test. This has the additional benefit that real unsatisfiable problems
are also filtered out before applying the unit cube test. Also, the unit cube
test is almost guaranteed to fail on problems containing boolean variables, i.e.,
variables that are either 0 or 1, unless they are absolutely trivial and describe a
unit cube themselves. Whenever the problem contains a boolean variable, it is
often beneficial to skip the unit cube test.

6 Further Cube Test Applications

Equalities are the greatest challenge for the applicability of our cube tests. A
polyhedron contains an equality aTEx = bE if aTEx = bE holds for all x ∈ PA

b .
An equality contained in Ax ≤ b is explicit if Ax ≤ b includes the inequalities
aTEx ≤ bE and −aTEx ≤ −bE . Otherwise, the equality is implicit. Polyhedra
containing equalities have only surface points and, therefore, neither an interior
nor a center. Thus, a largest cube has edge length zero and is just a point in the
original polyhedron. Similar problems occur if we allow not only inequalities but
also other types of constraints, such as negated equalities (aTi x �= bi), divisibility
constraints (d | aTi x + bi, i.e., d ∈ Z divides aTi x + bi), and negated divisibility
constraints (d � aTi x+ bi). In this section, we propose additional transformations
and strategies that are useful for resolving the aforementioned challenges and
are also applicable even beyond our tests.

First of all, we can transform any divisibility constraint and negated divisibil-
ity constraint into an equality by introducing additional variables. For divisibility
constraints d | aTi x + bi, this transformation is known as the diophantine repre-
sentation: ∃q ∈ Z. dq−aTi x = bi. For negated divisibility constraints d � aTi x+bi,
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there exists a similar transformation: ∃q ∈ Z. ∃r ∈ Z. dq + r − aTi x = bi ∧ 1 ≤
r ≤ d−1. Both of these transformations describe the formal definition of dividing
aTi x+bi by d: aTi x+bi = dq+r, where q is the quotient of the division and r the
remainder. Since the divisibility constraint enforces that d divides aTi x+ bi, the
remainder r must be zero. Likewise, the negated divisibility constraint enforces
that d does not divide aTi x + bi. Therefore, the remainder r lies between 1 and
d − 1. These transformations are useful beyond our tests because they can be
used to integrate (negated) divisibility constraints into the simplex algorithm.
The only disadvantage is that we have to introduce additional variables q (and
r) for every (negated) divisibility constraint.

Next, we eliminate all equalities from Ax ≤ b. We do so by taking an equality
aTi x = bi contained in Ax ≤ b and replacing a variable xk in Ax ≤ b by substitut-
ing with xk := 1

aik
(bi−

∑n
j=1,j �=k aijxj), where aik > 0. Naturally, replacing xk in

Ax ≤ b creates a new system of inequalities A′x′ ≤ b′, where A′ ∈ Q(m−1)×(n−1),
b′ ∈ Q(m−1), and x′ = (x1, . . . , xk−1, xk+1, . . . , xn)T . We iteratively repeat this
approach until our system of inequalities AIxI ≤ bI contains no more equalities.
As a by-product, we get a system of equalities AEx = bE consisting of all equal-
ities we have found. The two systems of constraints AIxI ≤ bI and AEx = bE

together are equivalent to Ax ≤ b, but AIxI ≤ bI contains no equalities while
AEx = bE contains (at least implicitly) all equalities of Ax ≤ b. We can now
completely eliminate the equalities AEx = bE from Ax ≤ b by combining this
approach with a diophantine equation handler [12]. The result is a new system
of inequalities that contains no equalities and has an integer solution if and only
if Ax ≤ b has one.

Extracting equalities has further applications; for instance, the derivation of
equalities is needed for the combination of theories by the Nelson-Oppen method.
We can even check whether an arbitrary equality aTEx = bE is an equality of
Ax ≤ b by transforming the equalities AEx = bE into a substitution and applying
this substitution to aTEx = bE . The equality aTEx = bE is only contained in
Ax ≤ b if aTEx = bE simplifies to 0 = 0 after the substitution.

However, we are still missing one step in our elimination approach: how do
we efficiently find an equality aTi x = bi contained in Ax ≤ b so that we can
substitute with it? The answer are cubes, presented in the below lemma.

Lemma 6. Let Ax ≤ b be a polyhedron. Then, exactly one of the following
statements is true:
(1) Ax ≤ b contains an equality aTEx = bE with aE �= 0, or
(2) Ax ≤ b contains a cube with edge length e > 0.

Proof. This proof is a case distinction over the sign of xe for the following slightly
simplified version of the largest cube test:

maximize xe

subject to Ax + a′xe ≤ b, where a′
i = 1

2 ‖ai‖1 .
(5)

If the maximum objective value is positive, Ax ≤ b contains a cube with edge
length e > 0. Therefore, we have to prove that Ax ≤ b contains no equality
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aTEx = bE with aE �= 0, which we will do by contradiction. Assume Ax ≤ b con-
tains an equality aTEx = bE with aE �= 0. Then, by transitivity of the subset rela-
tion, the polyhedron consisting of the inequalities aTEx ≤ bE and −aTEx ≤ −bE
must also contain a cube of edge length e. However, applying the transformation
from Corollary 3 to this new polyhedron results in two contradicting inequalities:
aTEx ≤ bE − ‖aE‖1 · e

2 and −aTEx ≤ −bE − ‖aE‖1 · e
2 . Thus, (1) and (2) cannot

hold at the same time.
If the maximum objective value is zero, then Ax ≤ b is satisfiable but contains

no cube with edge length e > 0. Therefore, we have to prove that Ax ≤ b contains
an equality aTEx = bE with aE �= 0. Consider the dual linear program of (5):

minimize yT b
subject to yTA = 0 ,

yTa′ = 1 , where a′
i = 1

2 ‖ai‖1 ,
y ≥ 0 .

(6)

Due to strong duality, the objectives of the dual and primal linear programs are
equal. Therefore, there exists a y ∈ Rm that has objective yT b = 0 and that
satisfies the dual (6). Since yTa′ = 1 and a′

i ≥ 0 and yi ≥ 0 holds, there exists
a k ∈ {1, . . . ,m} such that yk > 0. By multiplying yTA = 0 with an x ∈ PA

b

and isolating aTk x, we get: aTk x = −
∑m

i=1,i �=k

(
yi

yk
aTi x

)
. Using yi ≥ 0, and our

original inequalities aTi x ≤ bi, we get a finite lower bound for aTk x:

aTk x = −
∑m

i=1,i �=k

(
yi
yk

aTi x

)

≥ −
∑m

i=1,i �=k

(
yi
yk

bi

)

.

Now, we reformulate yT b = 0 analogously and get: bk = −
∑m

i=1,i �=k

(
yi

yk
bi

)
.

Thus, aTk x = bk is an equality contained in the original inequalities Ax ≤ b.
If the maximum objective value is negative, Ax ≤ b is unsatisfiable and

contains no cube with edge length e > 0. Since PA
b is now empty, Ax ≤ b

contains all equalities. ��
By Lemma 6 a polyhedron contains a cube with a positive edge length e > 0,

or an equality. Since e is arbitrarily small, the factor e
2 ‖ai‖1 is also arbitrarily

small and aTi x+ e
2 ‖ai‖1 ≤ bi converges to aTi x < bi. Therefore, Ax ≤ b contains

an equality if and only if Ax < b is unsatisfiable. We can solve this system of
strict inequalities with the dual simplex algorithm by Dutertre and de Moura [9].
In case Ax < b is unsatisfiable, the algorithm returns an explanation, i.e., a
minimal set C of unsatisfiable constraints aTi x < bi from Ax < b. If Ax ≤ b
itself was satisfiable, then we can extract equalities from this explanation: every
aTi x < bi ∈ C implies that Ax ≤ b contains the equality aTi x = bi.

Finally, we have two ways of handling negated equalities aTi x �= bi. Either we
split our set of constraints into two sets of constraints, replacing aTi x �= bi in the
first one with aTi x ≤ bi − 1 and in the second one with −aTi x ≤ −bi − 1; or, we
ignore all negated equalities during the calculation of the tests themselves and
use the negated equalities only to verify the integer solutions returned by the
tests.
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7 Conclusion

We have presented two tests based on cubes: the largest cube test and the
unit cube test. Our tests can be integrated into SMT theory solvers without
sacrificing the advantages SMT solvers gain from the incremental structure of
subsequent subproblems. Furthermore, our experiments have shown that these
tests increase efficiency on certain polyhedra such that previously hard sets of
constraints become trivial. We have even shown that major obstacles to our tests,
for example equalities, can be handled through generally useful preprocessing
steps. Moreover, these preprocessing steps led to an additional application for
our tests: finding equalities.

Our future research will investigate further applications of our tests. We
expect that we can use cubes not only for the detection of equalities, but also for
the detection of (un)bounded directions. We can likely use the largest cube test
as a selection strategy for branching by always choosing the branch containing
the largest cube. This is in all likelihood a beneficial strategy since the largest
cube is a good heuristic for the branch with the most space for integer solutions.
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Abstract. SMT solvers have recently been extended with techniques
for finding models of universally quantified formulas in some restricted
fragments of first-order logic. This paper introduces a translation that
reduces axioms specifying a large class of recursive functions, includ-
ing terminating functions, to universally quantified formulas for which
these techniques are applicable. An evaluation confirms that the app-
roach improves the performance of existing solvers on benchmarks from
three sources. The translation is implemented as a preprocessor in the
CVC4 solver and in a new higher-order model finder called Nunchaku.

1 Introduction

Many solvers based on SMT (satisfiability modulo theories) can reason about
quantified formulas using incomplete instantiation-based methods [15,31]. These
methods work well for proving the unsatisfiability of an input set of formulas,
but they are of little help for finding models of them when they are satisfiable.
Often, a single universal quantifier in one of the axioms of a problem is enough
to prevent the discovery of models.

In the past few years, techniques have been developed to find models for quan-
tified formulas in SMT. Ge and de Moura [19] introduced an instantiation-based
procedure for formulas in the essentially uninterpreted fragment. This fragment
is limited to universally quantified formulas where all variables occur as direct
subterms of uninterpreted functions, as in ∀x : Int. f(x) ≈ g(x) + 5. Other syn-
tactic criteria extend this fragment slightly, including some cases when variables
occur as arguments of arithmetic predicate symbols. Subsequently, Reynolds
et al. [32,33] introduced techniques for finding finite models for quantified for-
mulas over uninterpreted types and types having a fixed finite interpretation.
These techniques can find a model for a formula such as ∀x, y : τ. x ≈ y ∨
¬ f(x) ≈ f(y), where τ is an uninterpreted type.

Unfortunately, none of these fragments can accommodate the vast majority
of quantified formulas that correspond to recursive function definitions. The
essentially uninterpreted fragment does not allow the argument of a recursive
function to be used inside a complex term on the right-hand side of the definition,
whereas the finite model finding techniques are not applicable in the presence
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 133–151, 2016.
DOI: 10.1007/978-3-319-40229-1 10
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of functions over infinite domains such as the integers or algebraic datatypes.
A simple example where both approaches fail is

∀x : Int. p(x) ≈ ite
(
x ≤ 0, 1, 2 ∗ p(x − 1)

)

where ite is the ‘if–then–else’ operator. This state of affairs is unsatisfactory,
given the frequency of recursive definitions in practice.

We present a method for translating formulas involving recursive function
definitions to formulas where finite model finding techniques can be applied.
The definitions must meet a semantic criterion to be admissible (Sect. 2). This
criterion is general enough to include well-founded (terminating) recursive func-
tion definitions and restrictive enough to exclude inconsistent equations such as
∀x : Int. f(x) ≈ f(x) + 1.

We define a translation for a class of formulas involving admissible recursive
function definitions (Sect. 3). A recursive equation ∀x : τ. f(x) ≈ t is translated to
∀a : ατ. f(γf(a)) ≈ t[γf(a)/x], where ατ is an “abstract” uninterpreted type and
γf : ατ → τ is an uninterpreted function from ατ to the corresponding concrete
type τ. Additional constraints ensure that the abstract values that are relevant to
the formula’s satisfiability exist. The translation preserves satisfiability and, for
admissible definitions, unsatisfiability, and makes finite model finding possible
for problems in this class.

The approach is implemented as a preprocessor in the SMT solver CVC4 [2]
and in a new higher-order model finder called Nunchaku (Sect. 4). We evaluated
the two implementations on benchmarks from IsaPlanner [22], Leon [6], and
Isabelle/HOL, to demonstrate that this translation improves the effectiveness of
two SMT solvers, CVC4 and Z3 [17], in finding countermodels to verification
conditions (Sect. 5). Unlike earlier work (Sect. 6), our approach relies on off-the-
shelf SMT solvers.

An earlier version of this paper was presented at the SMT 2015 work-
shop in San Francisco [30]. This paper extends the workshop paper with proof
sketches, an expanded implementation section covering Nunchaku and relevant
CVC4 optimizations, and the evaluation on Isabelle benchmarks produced by
Nunchaku.

2 Preliminaries

Our setting is a monomorphic (or many-sorted) first-order logic like the one
defined by SMT-LIB [3]. A signature Σ consists of a set Σty of first-order types
(or sorts) and a set Σf of function symbols over these types. We assume that
signatures always contain a Boolean type Bool and constants �,⊥ : Bool for
truth and falsity, an infix equality predicate ≈ : τ× τ → Bool for each τ ∈ Σty,
standard Boolean connectives (¬ , ∧, ∨, etc.), and an if–then–else function
symbol ite : Bool × τ × τ → τ for each τ ∈ Σty. We fix an infinite set Σv

τ of
variables of type τ for each τ ∈ Σty and define Σv as

⋃
τ∈Σty Σv

τ . (Well-typed) Σ-
terms are built as usual over functions symbols in Σ and variables in Σv. Formulas
are terms of type Bool. We write t τ to denote terms of type τ and T (t) to denote
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the set of subterms of t. Given a term u, a variable tuple x = (xτ11 , . . . , x
τn
n ) and a

term tuple t = (tτ11 , . . . , t
τn
n ), we write u[t/x] to denote the result of simultaneously

replacing all occurrences of xi with ti in u, for each i = 1, . . . , n. When convenient,
we will treat a finite set of formulas as the conjunction of its elements.

A Σ-interpretation I maps each type τ ∈ Σty to a nonempty set τI, the
domain of τ in I, each function symbol f : τ1 × · · · × τn → τ in Σf to a total
function fI : τI1 × · · · × τIn → τI, and each variable x : τ of Σv to an element
of τI. A theory is a pair T = (Σ, I) where Σ is a signature and I is a class of
Σ-interpretations, the models of T , closed under variable reassignment (i.e., for
every I ∈ I, every Σ-interpretation that differs from I only on the variables of
Σv is also in I). A Σ-formula ϕ is T -satisfiable if it is satisfied by some inter-
pretation in I, which we call a T -model of ϕ. A formula ϕ T -entails ψ, written
ϕ �T ψ, if all interpretations in I that satisfy ϕ also satisfy ψ. Two formulas ϕ
and ψ are T -equivalent if each T -entails the other. We call T a Herbrand theory
if for every quantifier-free Σ-formula ψ over the variables x, {ψ[t/x] | t ground
Σ-term} �T ∀x. ψ.

If T0 = (Σ0, I0) is a theory and Σ is a signature with Σf
0 ⊆ Σf and Σty

0 ⊆ Σty,
the extension of T0 to Σ is the theory T = (Σ, I) where I is the set of all Σ-
interpretations I whose Σ0-reduct is a model of T0. Note that T is a conservative
extension of T0, in the sense that a Σ0-formula is T0-satisfiable if and only it is
T -satisfiable. We refer to the symbols of Σ that are not in Σ0 as uninterpreted.

For the rest of the paper, we fix a theory T = (Σ, I) with uninterpreted
symbols, constructed as above, and assume it is a Herbrand theory. While this
is an actual restriction, it can be shown that the theories typically considered in
SMT are Herbrand.

Unconventionally, we consider annotated quantified formulas of the form
∀f x. ϕ, where f ∈ Σf is uninterpreted. Their semantics is the same as for stan-
dard quantified formulas ∀x. ϕ. Given f : τ1 × · · · × τn → τ, a formula ∀f x. ϕ is
a function definition (for f) if x is a tuple of variables xτ11 , . . . , xτnn and ϕ is a
quantifier-free formula T -equivalent to f(x) ≈ t for some term t of type τ. We
will consider only annotated quantified formulas that are function definitions.
We write ∃x. ϕ as an abbreviation for ¬ ∀x. ¬ ϕ.

Definition 1. A formula ϕ is in definitional form with respect to {f1, . . . , fn} ⊆
Σf if it is of the form (∀f1 x1. ϕ1) ∧ · · · ∧ (∀fn xn. ϕn) ∧ ϕ0, where f1, . . . , fn are
distinct function symbols, ∀fi xi. ϕi is a function definition for i = 1, . . . , n, and ϕ0
contains no function definitions. We call ϕ0 the goal of ϕ.

In the signature Σ, we distinguish a subset Σdfn ⊆ Σf of defined uninterpreted
function symbols. We consider Σ-formulas that are in definitional form with
respect to Σdfn.

Definition 2. Given a set of function definitions Δ = {∀f1 x1. ϕ1, . . . ,∀fn xn. ϕn},
a ground formula ψ is closed under function expansion with respect to Δ if

ψ �T

∧n

i=1
{ϕi[t/xi] | fi(t) ∈ T (ψ)}
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The set Δ is admissible if for every T -satisfiable formula ψ closed under function
expansion with respect to Δ, the formula ψ ∧ Δ is also T -satisfiable.

In Definition 1, notice that the goal ϕ0 is a formula possibly containing quan-
tifiers. Given an admissible set of function definitions Δ, we may establish a
model exists for Δ ∧ ϕ0 if we are able to find a ground formula ψ0 that entails
ϕ0, and subsequently extend ψ0 to a T -satisfiable ground formula ψ that is closed
under function expansion with respect to Δ. We may obtain ψ from ψ0 by con-
joining to it ground formulas (typically, conjunctions of ground literals) that
entail instances of function definitions from Δ until the criterion in Definition 2
is met.

Admissibility is a semantic criterion that must be satisfied for each func-
tion definition before applying our translation, described in Sect. 3. It is useful
to connect it to the standard notion of well-founded function definitions, often
called terminating definitions. In such definitions, all recursive calls are decreas-
ing with respect to a well-founded relation, which must be supplied by the user or
inferred automatically using a termination prover. This ensures that the function
is uniquely defined at all points.

First-order logic has no built-in notion of computation or termination. To
ensure that a function specification is well founded, it is sufficient to require that
the defined function be terminating when seen as a functional program, under
some evaluation order. For example, the definition ∀x : Int. p(x) ≈ ite

(
x ≤ 0, 1,

2∗p(x−1)
)
, where the theory T is integer arithmetic extended with p : Int → Int,

can be shown to be well founded under a strategy that evaluates the condition of
an ite before evaluating the relevant branch, ignoring the other branch. Logically,
such dependencies can be captured by congruence rules. Krauss developed these
ideas in the general context of higher-order logic [24, Sect. 2], where theories such
as integer arithmetic can be axiomatized.

Theorem 3. If Δ is a set of well-founded function definitions for Σdfn =
{f1, . . . , fn}, then it is admissible.

Proof Sketch. Let ψ be a T -satisfiable formula closed under function expansion
with respect to Δ. We show that ψ ∧ Δ is also T -satisfiable. Let I be a T -model
of ψ, and let I0 be the reduct of I to the function symbols in Σf \Σdfn. Because
well-founded definitions uniquely characterize the interpretation of the functions
they define, there exists a model I ′ of T that extends I0 such that I ′ � Δ.
Since ψ is closed under function expansion, it already constrains the functions
in Σdfn recursively as far as is necessary for interpreting ψ. Thus, any point v for
which fIi (v) is needed for interpreting ψ will have its expected value according to
its definition and hence coincide with I ′. And since ψI does not depend on the
interpretation at the other points, I ′ is, like I, a T -model of ψ. Since I ′ � Δ
by assumption, we have I ′ � ψ

∧
Δ as desired. ��

Another useful class of function definitions is that of productive corecursive
functions. Corecursive functions are functions to a coalgebraic datatype. These
functions can be ill founded without being inconsistent. Intuitively, productive
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corecursive functions are functions that progressively reveal parts of their poten-
tially infinite output [1,38]. For instance, given a type of infinite streams of
integers constructed by scons : int × stream → stream, the function defined by
∀e x. e(x) ≈ scons(x, e(x+ 1)) falls within this class: Each call to e produces one
constructor before entering the next call. Like terminating recursion, productive
corecursion totally specifies the functions it defines, and the proof of Theorem3
can be adapted to cover that case.

Theorem 4. If Δ is a set of productive function definitions for Σdfn, then it is
admissible.

It is even possible to mix recursion and corecursion in the same function
[11] while preserving totality and admissibility. Beyond totality, an admissible
set can contain underspecified functions such as ∀f x : Int. f(x) ≈ f(x) or ∀g x.
g(x) ≈ g(x + 1). The latter is problematic operationally, because in general
the closure of a formula ψ that depends on some term f(a) is an infinite set:
{ψ} ∪ {g(a + k) ≈ g(a + k + 1) | k ≥ 0}. A similar issue arises with corecursive
definitions specifying infinite acyclic objects, such as the e stream introduced
above. Nonetheless, admissibility is still useful if a goal formula does not refer
to g or e, because it tells us that we can safely ignore their definitions. We
conjecture that it is safe to ignore all tail-recursive calls (i.e., calls that occupy
the right-hand side of the definition, potentially under some ite branch) when
establishing well-foundedness or productivity, without affecting admissibility.

An example of an inadmissible set is {∀f x : Int. f(x) ≈ f(x) + 1}, where T
is integer arithmetic extended to a set of uninterpreted symbols {f, g : Int →
Int, . . .}. The set is inadmissible because the formula � is closed under function
expansion with respect to this set (trivially, since f does not occur in �), and
yet there is no model of T satisfying f’s definition. A more subtle example is
{∀f x : Int. f(x) ≈ f(x), ∀g x : Int. g(x) ≈ g(x) + f(x)}. While this set has a model
where f and g are interpreted as the constant function 0, it is not admissible
since f(0) ≈ 1 is closed under function expansion but there is no interpretation
satisfying both f(0) ≈ 1 and g’s definition.

3 The Translation

For the rest of the section, let ϕ be a Σ-formula in definitional form with respect
to Σdfn whose definitions are admissible. We present a method that constructs
an extended signature E(Σ) and an E(Σ)-formula ϕ′ that is T ′-satisfiable if and
only if ϕ is T -satisfiable, where T ′ is the extension of T to E(Σ)—i.e., ϕ and ϕ′

are equisatisfiable (in T ′). Since T ′ is a conservative extension of T , for simplicity
we will refer to it also as T from now on. The idea behind this construction is
to use an uninterpreted type αf to abstract the set of relevant input tuples for
each defined function f, and restrict the quantification of f’s definition to a single
variable of this type. Informally, the relevant input tuples t of a function f are
the ones for which the interpretation of f(t) is relevant to the satisfiability of ϕ.
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0(t p) =
if = Bool and t = b(t1 tn) then

let (t′i i) = 0(ti pol(b i p)) for i = 1 n in
let = 1 ∧ ·· · ∧ n in
if p = pos then b(t′1 t′n)) ∧ �

)

else if p = neg then b(t′1 t′n) ∨ ¬ �
)

else b(t′1 t′n)
)

else if t = ∀f x u then
let (u′ ) = 0(u p) in ∀a : f u′[ f(a) x] �

)

else if t = ∀x u then
let (u′ ) = 0(u p) in ∀x u′ ∀x

)

else
t

∧{∃a : f f(a) ≈ s | f(s) ∈ (t) f ∈ dfn}
)

( ) = let ( ′ ) = 0( pos) in ′

Fig. 1. Definition of translation A

We construct the signature E(Σ) so that, for each f : τ1 ×· · ·×τn → τ ∈ Σdfn,
it contains an uninterpreted abstract type αf , abstracting the Cartesian product
τ1 × · · · × τn, and n uninterpreted concretization functions γf,1 : αf → τ1, . . . ,
γf,n : αf → τn.

The translation A defined in Fig. 1 converts the Σ-formula ϕ into the E(Σ)-
formula ϕ′. It relies on the auxiliary function A0, which takes two arguments:
the term t to translate and a polarity p for t, which can be pos, neg, or none.
A0 returns a pair (t′, χ), where t′ is a term of the same type as t and χ is an
E(Σ)-formula.

The translation alters the formula ϕ in two ways. First, it restricts the quan-
tification on function definitions for f to the corresponding uninterpreted type
αf , inserting applications of the concretization functions γf,i as needed. Second,
it augments ϕ with additional constraints of the form ∃a : αf . γf(a) ≈ s, where
γf(a) ≈ s abbreviates the formula

∧n
i=1 γf,i(a) ≈ si with s = (s1, . . . , sn). These

existential constraints ensure that the restricted definition for f covers all rele-
vant tuples of terms, namely those occurring in applications of f that are relevant
to the satisfiability of ϕ. The constraints are generated as deep in the formula as
possible, based on the polarities of Boolean connectives, to allow models where
the sets denoted by the αf types are as small as possible.

In the call A0(t, p), if t’s top symbol is a predicate symbol b, including the
operators ¬, ∧, ∨, ≈, and ite, A0 calls itself recursively on the arguments ti of b
and polarity pol(b, i, p) with pol defined as

pol(b, i, p) =

⎧
⎨

⎩

p if b ∈ {∧,∨}, or b = ite and i ∈ {2, 3}
−p if b = ¬
none otherwise



Model Finding for Recursive Functions in SMT 139

where −p is neg if p is pos, pos if p is neg, and none otherwise. The term t is then
reconstructed as b(t′1, . . . , t

′
n) where each t′i is the result of the recursive call with

argument ti. If the polarity p of t is pos, A0 conjunctively adds to b(t′1, . . . , t
′
n)

the constraint χ derived from the subterms, and returns � as the constraint.
Dually, if p is neg, it adds a disjunction with the negated constraint to produce
the same net effect (since ¬ (φ ∨ ¬ χ) ⇐⇒ ¬ φ ∧ χ). It p is none, it returns the
constraint χ.

If t is a function definition ∀f x. u, then A0 recursively constructs a formula u′

from u, replaces all occurrences of x in u′ with γf(a) where a is single variable of
type αf , and then quantifies a. (Since function definitions are top-level conjuncts,
χ must be � and can be ignored.) If t is an unannotated quantified formula ∀x. u,
then A0 calls itself on u with the same polarity p and returns the quantification
over x of the formula u′ and of the constraint χ returned by the recursive call.
Finally, if t is an application of an uninterpreted predicate symbol or a term of
a type other than Bool, A0 returns t together with a conjunction of constraints
of the form ∃a : αf . γf(a) ≈ s for each subterm f(s) of t such that f ∈ Σdfn. Such
constraints, when asserted positively, ensure that some element in the abstract
domain αf is the preimage of the argument tuple s.

Example 5. Let T be linear integer arithmetic with the uninterpreted symbols
{c : Int, s : Int → Int}. Let ϕ be the Σ-formula

∀s x : Int. ite
(
x ≤ 0, s(x) ≈ 0, s(x) ≈ x + s(x − 1)

)
∧ s(c) > 100 (1)

The definition of s specifies that it returns the sum of all positive integers up to
x. The formula ϕ, which is in definitional form with respect to Σdfn, states that
the sum of all positive numbers up to some constant c is greater than 100. It is
satisfied in a model of T that interprets c as 14 or more. Due to the universal
quantifier, SMT solvers cannot find a model for ϕ. The signature E(Σ) extends
Σ with the type αs and the function symbol γs : αs → Int. The result of A(ϕ),
after simplification, is the E(Σ)-formula

(
∀a : αs. ite

(
γs(a) ≤ 0, s(γs(a)) ≈ 0,
s(γs(a)) ≈ γs(a) + s(γs(a) − 1) ∧ ∃b : αs. γs(b) ≈ γs(a) − 1

))

∧ s(c) > 100 ∧ ∃a : αs. γs(a) ≈ c

(2)

The universal quantifier in Formula (2) ranges over an uninterpreted type αs, mak-
ing it amenable to the finite model finding techniques by Reynolds et al. [32,33],
implemented in CVC4, which search for a finite interpretation for αs. Furthermore,
since all occurrences of the quantified variable a are beneath applications of the
uninterpreted function γs, the formula is in the essentially uninterpreted fragment,
for which Ge and de Moura [19] provide an instantiation procedure, implemented
in Z3. Both CVC4 and Z3 run indefinitely on Formula (1), as expected. However,
they both produce a model for (2) within 100 ms. �

Note that the translation A results in formulas whose models (i.e., satisfy-
ing interpretations) are generally different from those of ϕ. One model I for
Formula (2) in the above example interprets αs as a finite set {u0, . . . , u14}, γs as a
finite map ui �→ i for i = 0, . . . , 14, c as 14, and s as the almost constant function
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λx : Int. ite(x ≈ 0, 0, ite(x ≈ 1, 1, ite(x ≈ 2, 3, ite(. . . , ite(x ≈ 13, 91, 105) . . .))))

In other words, I interprets s as a function mapping x to the sum of all positive
integers up to x when 0 ≤ x ≤ 13, and 105 otherwise. The Σ-reduct of I is not
a model of the original Formula (1), since I interprets s(n) as 105 when n < 0
or n > 14.

However, under the assumption that the function definitions in Σdfn are
admissible, A(ϕ) is equisatisfiable with ϕ for any ϕ. Moreover, the models of
A(ϕ) contain pertinent information about the models of ϕ. For example, the
model I for Formula (2) given above interprets c as 14 and s(n) as

∑n
i=1 i for

0 ≤ n ≤ 14, and there exists a model of Formula (1) that also interprets c and
s(n) in the same way (for 0 ≤ n ≤ 14). In general, for every model of A(ϕ),
there exists a model of ϕ that coincides with it on its interpretation of all func-
tion symbols in Σf \ Σdfn. Furthermore, the model of A(ϕ) will also give correct
information for the defined functions at all points belonging to the domains of
the corresponding abstract types αf . This can sometimes help users debug their
function definitions.

We sketch the correctness of translation A. For a set of ground literals L, we
write X(L) to denote the set of constraints that force the concretization functions
to have enough elements in their range to determine the satisfiability of L with
respect to the function definitions in the translation. Formally,

X(L) = {∃a : αf . γf(a) ≈ t | f(t) ∈ T (L), f ∈ Σdfn} (3)

The following lemma states the central invariant behind the translation A.

Lemma 6. Let ψ be a Σ-formula not containing function definitions, and let I
be an E(Σ)-model of T . Then, I satisfies A(ψ) if and only if it satisfies L ∪ X(L)
for some set L of ground Σ-literals such that L �T ψ.

Proof Sketch. By definition of A and case analysis on the return values of A0. ��

Lemma 7. If ψ is a Σ-formula not containing function definitions, then
A(ψ) �T ψ.

Theorem 8. If ϕ is a Σ-formula in definitional form with respect to Σdfn, the
set of function definitions Δ corresponding to Σdfn is admissible, and the goal
formula ϕ0 of ϕ is ground, then ϕ and A(ϕ) are equisatisfiable in T .

Proof Sketch. First, we show that if ϕ is satisfied by a Σ-model I of T , then A(ϕ)
is satisfied by an E(Σ)-model I ′. Given such a model I, let I ′ be the E(Σ)-
interpretation that interprets all types τ ∈ Σty as τI, all function symbols f ∈ Σf

as fI, and for each f : τ1 × · · · × τn → τ in Σdfn, interprets αf as τI1 × · · · × τIn
and each γf,i as the ith projection on such tuples for i = 1, . . . , n. Since I ′

satisfies ϕ and T is Herbrand, I ′ satisfies a set of ground literals L that entail
ϕ. Furthermore, I ′ satisfies every constraint of the form ∃a : αf . γf(a) ≈ t, since
by its construction there is a value v ∈ αfI

′
such that v = tI

′
. Thus, I ′ satisfies

L ∪ X(L), and by Lemma 6 we conclude I ′ satisfies A(ϕ).
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Second, we show that if A(ϕ) is satisfied by a E(Σ)-interpretation I ′, then ϕ
is satisfied by a Σ-interpretation I. Since ϕ is in definitional form with respect
to the functions defined by Δ, it must be of the form Δ ∧ ϕ0. First, we define
a sequence of Σ-literals sets L0 ⊆ L1 ⊆ · · · such that I ′ satisfies Li ∪ X(Li)
for i ≥ 0. Since I ′ satisfies A(ϕ0), by Lemma 6, I ′ satisfies a set of literals
L ∪ X(L) where L is a set of Σ-literals that entail ϕ0. Let L0 = L. For each i ≥ 0,
let ψi be the formula

∧
{A(ϕf [t/x]) | f(t) ∈ T (Li), f ∈ Σdfn}, where ∀f x. ϕf ∈ Δ.

Since I ′ satisfies A(∀f x. ϕf) and X(Li), we know that I ′ also satisfies ψi. Thus
by Lemma 6, I ′ satisfies a set of literals L ∪ X(L) where L is a set of Σ-literals
that entail ψi. Let Li+1 = L0 ∪ L. Let L∞ be the limit of this sequence (i.e.,

 ∈ L∞ if and only if 
 ∈ Li for some i), and let ψ be the Σ-formula

∧
L∞.

To show that ψ is closed under function expansion with respect to Δ, we first
note that by construction ψ entails ψ∞. For any function symbol f and terms t,
since ϕf [t/x] does not contain function definitions, by Lemma7, A(ϕf [t/x]) entails
ϕf [t/x]. Thus, ψ entails {ϕf [t/x] | f(t) ∈ T (ψ), f ∈ Σdfn}, meaning that ψ is
closed under function expansion with respect to Δ. Furthermore, ψ entails ϕ0
since L0 ⊆ L∞. Since ψ is a T -satisfiable formula that is closed under function
expansion and Δ is admissible, by definition there exists a Σ-interpretation I
satisfying ψ ∧ Δ, which entails Δ ∧ ϕ0, i.e., ϕ. ��

The intuition of the above proof is as follows. First, A(ϕ) cannot be unsat-
isfiable when ϕ is satisfiable since any Σ-interpretation that satisfies ϕ can be
extended in a straightforward way to an E(Σ)-interpretation that satisfies A(ϕ),
by interpreting the abstract types in the same way as the Cartesian products
they abstract, thereby satisfying all existential constraints introduced by A. Con-
versely, if a model is found for A(ϕ), existential constraints introduced by A
ensure that this model also satisfies a Σ-formula that is closed under function
expansion and that entails the goal of ϕ. This implies the existence of a model
for ϕ provided that Δ is admissible.

We give an intuition of Theorem8 in the context of an example.

Example 9. Let us revisit the formulas in Example 5. If the original Formula (1)
is T -satisfiable, the translated Formula (2) is clearly also T -satisfiable since αs
can be interpreted as the integers and γs as the identity function. Conversely,
we claim that (2) is T -satisfiable only if (1) is T -satisfiable, noting that the
set {∀s x. ϕs} is admissible, where ϕs is the formula ite

(
x ≤ 0, s(x) ≈ 0,

s(x) ≈ x+ s(x−1)
)
. Clearly, any interpretation I satisfying Formula (2) satisfies

L0 ∪ X(L0), where L0 = {s(c) > 100} and X(L0), defined by Eq. (3), consists of
the single constraint ∃a : αs. γs(a) ≈ c. Since I also satisfies both the trans-
lated function definition for s (the first conjunct of (2)) and X(L0), it must also
satisfy

ite
(
c ≤ 0, s(c) ≈ 0, s(c) ≈ c + s(c − 1) ∧ ∃b : αs. γs(b) ≈ c − 1

)

The existential constraint in the above formula ensures that whenever I satisfies
the set L1 = L0 ∪ {¬ c ≤ 0, s(c) ≈ c+ s(c−1)}, I satisfies X(L1) as well. Hence,
by repeated application of this reasoning, it follows that a model of Formula (2)
that interprets c as n must also satisfy ψ:
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s(c) > 100 ∧
∧n−1

i=0

(
¬ (c − i ≤ 0) ∧ s(c − i) ≈ c − i + s(c − i − 1)

)

∧ c − n ≤ 0 ∧ s(c − n) ≈ 0

This formula is closed under function expansion since it entails ϕs[(c − i)/x] for
i = 0, . . . , n and contains only s applications corresponding to s(c − i) for i =
0, . . . , n. Since {∀s x. ϕs} is admissible, there exists a Σ-interpretation satisfying
ψ ∧ ∀s x. ϕs, which entails Formula (1). �

4 Implementations

We have implemented the translation A in two separate systems, as a preproces-
sor in CVC4 (version 1.5 prerelease) and in the CVC4-based higher-order model
finder Nunchaku. This section describes how the translation is implemented in
each system, as well as optimizations used by CVC4 to find models of translated
problems.

4.1 CVC4

In CVC4, function definitions ∀f x. ϕ can be written using the define-fun-rec com-
mand from SMT-LIB 2.5 [3]. Formula (1) from Example 5 can be specified as

(define-fun-rec s ((x Int)) Int (ite (<= x 0) 0 (+ x (s (- x 1)))))

(declare-fun c () Int)

(assert (> (s c) 100))

When asked to check the satisfiability of the assertions above, CVC4 adds the
formula ∀s x. s(x) ≈ ite

(
x ≤ 0, 0, s(x − 1)

)
to its list of assertions, which after

rewriting becomes ∀s x. ite
(
x ≤ 0, s(x) ≈ 0, s(x) ≈ s(x − 1)

)
. By specifying the

command-line option --fmf-fun, users can enable CVC4’s finite model find-
ing mode for recursive functions. In this mode, CVC4 will rewrite the asserted
formulas according to the A translation before checking for satisfiability. Accord-
ingly, it will output the approximation of the interpretation it used for recursive
function definitions. For the example above, CVC4 outputs a model of s where
only the values of s(x) for x = 0, . . . , 14 are correctly given:

(model
(define-fun s (($x1 Int)) Int

(ite (= $x1 14) 105 (ite (= $x1 13) 91 (ite (= $x1 12) 78
(ite (= $x1 11) 66 (ite (= $x1 10) 55 (ite (= $x1 4) 10

(ite (= $x1 9) 45 (ite (= $x1 8) 36 (ite (= $x1 7) 28
(ite (= $x1 6) 21 (ite (= $x1 3) 6 (ite (= $x1 5) 15

(ite (= $x1 2) 3 (ite (= $x1 1) 1 0)))))))))))))))
(define-fun c () Int 14))
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With the --fmf-fun option enabled, CVC4 assumes that functions intro-
duced using define-fun-rec are admissible. Admissibility must be proved exter-
nally by the user—e.g., manually, using a syntactic criterion, or with the help of
a termination prover. If some function definitions are not admissible, CVC4 may
answer sat for an unsatisfiable problem. For example, if we add the inconsistent
definition

(define-fun-rec h ((x Int)) Int (+ (h x) x))

to the above problem and run CVC4 with --fmf-fun, it wrongly answers sat.
CVC4 implements a few optimizations designed to help finding finite models

of A(ϕ). As in other systems, the finite model finding capability of CVC4 incre-
mentally fixes bounds on the cardinalities of uninterpreted types and increases
these bounds until it encounters a model. When multiple types are present,
it uses a fairness scheme that bounds the sum of cardinalities of all uninter-
preted types [34]. For example, if a signature has two uninterpreted types τ1
and τ2, it will first search for models where |τ1| + |τ2| is at most 2, then 3, 4,
and so on. To accelerate the search for models, we implemented an optimization
based on statically inferring monotonic types. Intuitively, a type of a theory T is
monotonic if every model of T can be extended with additional elements of that
type and remain a model of T [9,13]. Types αf introduced by our translation A
are monotonic, because ≈ is never used directly on such types [13]. CVC4 takes
advantage of this by fixing the bounds for all monotonic types simultaneously.
That is, if τ1 and τ2 are inferred to be monotonic (regardless of whether they
are present in the original problem or introduced by our translation), the solver
fixes the bound for both types to be 1, then 2, and so on. This scheme allows
the solver greater flexibility compared with the default scheme, and comes with
no loss of generality with respect to models, since monotonic types can always
be extended to have equal cardinalities.

By default, CVC4 uses techniques to minimize the number of literals it con-
siders when constructing propositional satisfying assignments for formulas [16].
However, we have found that such techniques degrade performance for finite
model finding on problems with recursive functions defined by cases. For this
reason, we disable the techniques for problems produced from our translation.

4.2 Nunchaku

Nunchaku is a new higher-order model finder designed to be integrated with
several proof assistants. The first version was released in January 2016 with
support for (co)algebraic datatypes, (co)recursive functions, and (co)inductive
predicates. Support for higher-order functions is in the works. We have developed
an Isabelle frontend and are planning further frontends for Coq, the TLA+ Proof
System, and other proof assistants.

Nunchaku is a spiritual successor to Nitpick [10] for Isabelle/HOL, but
is developed as a standalone OCaml program, with its own input language.
Whereas Nitpick generates a succession of problems where the cardinalities of
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finite types grow at each step, Nunchaku translates its input to one first-order
logic program that targets the finite model finding fragment of CVC4, includ-
ing (co)algebraic datatypes [29]. Using CVC4 also allows Nunchaku to provide
efficient arithmetic reasoning and to detect unsatisfiability in addition to satis-
fiability. We plan to integrate other tools as backends, to exploit the strengths
of competing approaches.

The input syntax was inspired by that of other systems based on higher-
order logic (e.g., Isabelle/HOL) and by functional programming languages (e.g.,
OCaml). The following simple problem gives a taste of it:

data nat := 0 | Suc nat.

pred even : nat -> prop :=
even 0;
forall n. odd n => even (Suc n)

and odd : nat -> prop :=
forall n. even n => odd (Suc n).

val m : nat.
goal even m && ~ (m = 0).

The problem defines a datatype (nat) and two mutually recursive inductive
predicates (even and odd), declares a constant m, and specifies a goal to satisfy
(“m is even and nonzero”). Nunchaku quickly finds the following partial model:

val m := Suc (Suc 0).

val odd := fun x. if x = Suc 0 then true else ?__.

val even := fun x. if x = Suc (Suc 0) || x = 0 then true else ?__.

The partial model gives sufficient information to the user to evaluate the goal:
“2 is even if 1 is odd, 1 is odd if 0 is even, and 0 is even.” Our experience with
Nitpick is that users are mostly interested in the values assigned to uninterpreted
constants (e.g., m). Occasionally, the models of underspecified recursive functions
are instructive. A typical example is the head function that returns the first
element of a nonempty list:

data list A := Nil | Cons A (list A).

rec head : pi A. list A -> A :=
forall y ys. head (Cons y ys) = y.

goal ˜(head Nil = 0).

Nunchaku transforms the definition of head into

head xs = match xs with Nil -> head xs | Cons y ys -> y end

where the unspecified Nil case is expressed via nonterminating recursion (head
xs = head xs). The tool exhibits a model in which head Nil is interpreted as
a nonzero value.
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Internally, Nunchaku parses and types the input problem before applying
a sequence of translations, each reducing the distance to the target fragment.
In our example, the predicates even and odd are polarized (specialized into a
pair of predicates such that one is used in positive positions and the other in
negative positions), then translated into admissible recursive functions, before
another pass applies the encoding described in this paper. If a model is found,
it is translated back to the input language, with ? placeholders indicating
unknown values.

Conceptually, the sequence of transformation is a bidirectional pipeline built
by composing pairs (Encode, Decode) of transformations. For each such pair,
Encode translates a Σ-problem in a logic L to a Σ′-problem in a logic L ′, and
Decode translates a model in L ′ over Σ′ into a model in L over Σ, in the spirit
of institution theory [20]. The pipeline includes the following phases:

Type inference infers types and checks definitions;
Monomorphization specializes polymorphic definitions on their type argu-

ments and removes unused definitions;
Elimination of equations translates multiple-equation definitions of recursive

functions into a single nested pattern matching;
Specialization creates instances of functions with static arguments (i.e., an

argument that is passed unchanged to all recursive calls);
Polarization specializes predicates into a version used in positive positions and

a version used in negative positions;
Unrolling adds a decreasing argument to possibly ill-founded predicates;
Skolemization introduces Skolem symbols for term variables;
Elimination of (co)inductive predicates recasts a multiple-clause (co)induc-

tive predicate definition into a recursive equation;
Elimination of higher-order constructs eliminates λ-abstractions and sub-

stitutes arrays for higher-order functions;
Elimination of recursion performs the encoding from Sect. 3;
Elimination of pattern matching rewrites pattern-matching expressions

using datatype discriminators and selectors;
CVC4 invocation runs CVC4 to obtain a model.

5 Evaluation

In this section, we evaluate both the overall impact of the translation introduced
in Sect. 3 and the performance of individual SMT techniques. We gathered 602
benchmarks from three sources, which we will refer to as IsaPlanner, Leon, and
Nunchaku-Mut:

• The IsaPlanner set consists of the 79 benchmarks from the IsaPlanner
suite [22] that do not contain higher-order functions. These benchmarks have
been used recently as challenge problems for a variety of inductive theorem
provers. They heavily involve recursive functions and are limited to a theory
of algebraic datatypes with a signature that contains uninterpreted function
symbols over these datatypes.
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• The Leon set consists of 166 benchmarks from the Leon repository,1 which
were constructed from verification conditions on simple Scala programs. These
benchmarks also heavily involve recursively defined functions over algebraic
datatypes, but cover a wide variety of additional theories, including bit vectors,
arrays, and both linear and nonlinear arithmetic.

• The Nunchaku-Mut set consists of 357 benchmarks originating
from Isabelle/HOL. They involve (co)recursively defined functions over
(co)algebraic datatypes and uninterpreted functions but no other theories.
They were obtained by mutation of negated Isabelle theorems, as was done
for evaluating Nitpick [10]. Benchmarks created by mutation have a high like-
lihood of having small, easy-to-find models.

The IsaPlanner and Leon benchmarks are expressed in SMT-LIB 2.5 and
are in definitional form with respect to a set of well-founded functions. The
Leon tool was used to generate SMT-LIB files. A majority of these benchmarks
are unsatisfiable. For each of the 245 benchmarks, we considered up to three
randomly selected mutated forms of its goal ψ. In particular, we considered
unique formulas that are obtained as a result of exchanging a subterm of ψ at
one position with another of the same type at another position. In total, we
considered 213 mutated forms of theorems from IsaPlanner and 427 mutated
forms of theorems from Leon. We will call these sets IsaPlanner-Mut and Leon-
Mut, respectively. Each of these benchmarks exists in two versions: with and
without the A translation. Problems with A were produced by running CVC4’s
preprocessor.

For Nunchaku-Mut, the Isabelle Nunchaku frontend was used to generate
thousands of Nunchaku problems from Isabelle/HOL theory files involving lists,
trees, and other functional data structures. Nunchaku was then used to gener-
ate SMT-LIB files, again in two versions: with and without the A translation.
Problems requiring higher-order logic were discarded, since Nunchaku does not
yet support them, leaving 357 problems.

Among SMT solvers, we considered Z3 and CVC4. Z3 runs heuristic meth-
ods for quantifier instantiation [15] as well as methods for finding models for
quantified formulas [19]. For CVC4, we considered four configurations, referred
to as CVC4h, CVC4f, CVC4fh, and CVC4fm here. Configuration CVC4h runs
heuristic and conflict-based techniques for quantifier instantiation [31], but does
not include techniques for finding models. The other configurations run the
finite model finding procedure due to Reynolds et al. [32,33]. Configuration
CVC4fh additionally incorporates heuristic quantifier instantiation as described
in Sect. 2.3 of [33], and CVC4fm incorporates the fairness scheme for monotonic
types as described in Sect. 4.1.

The results are summarized in Figs. 2 and 3. The bold font indicates the
maximum value of a row. All the benchmarks and more detailed results are
available online. The figures are divided into benchmarks triggering unsat and
sat responses and further into benchmarks before and after the translation A.

1 https://github.com/epfl-lara/leon/.

https://github.com/epfl-lara/leon/
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Z3 CVC4h CVC4f CVC4fh CVC4fm
( ) ( ) ( ) ( ) ( )

IsaPlanner 0 0 0 0 0 0 0 0 0 0
IsaPlanner-Mut 0 41 0 0 0 153 0 153 0 153
Leon 0 2 0 0 0 9 0 9 0 10
Leon-Mut 11 78 6 6 6 189 6 189 6 189
Nunchaku-Mut 3 27 0 0 3 199 2 200 2 199

Total 14 148 6 6 8 550 8 551 8 551

Fig. 2. Number of sat responses on benchmarks without and with A translation

Z3 CVC4h CVC4f CVC4fh CVC4fm
( ) ( ) ( ) ( ) ( )

IsaPlanner 14 15 15 15 1 15 15 15 1 15
IsaPlanner-Mut 18 18 18 18 4 18 18 18 4 18
Leon 74 79 80 80 17 78 80 77 17 78
Leon-Mut 84 98 104 98 24 100 104 98 24 100
Nunchaku-Mut 61 59 46 53 45 59 44 59 45 59

Total 251 269 263 264 91 270 261 267 91 270

Fig. 3. Number of unsat responses on benchmarks without and with A translation

The raw evaluation data reveals no cases in which a solver answered unsat on
a benchmark ϕ and sat on its corresponding benchmark A(ϕ), or vice versa.
This is consistent with our expectations and Theorem 8, since these benchmarks
contain only well-founded function definitions.

Figure 2 shows that for untranslated benchmarks (the “ϕ” columns), the
number of sat responses is very low across all configurations. This confirms the
shortcomings of existing SMT techniques for finding models for benchmarks con-
taining recursively defined functions. The translation A (the “A(ϕ)” columns) has
a major impact. CVC4f finds 550 of the 1242 benchmarks to be satisfiable, includ-
ing 9 benchmarks in the nonmutated Leon benchmark set. The two optimizations
for finite model finding in CVC4 (configurations CVC4fh and CVC4fm) lead to
a net gain of one satisfiable benchmark each with respect to CVC4f. The per-
formance of Z3 for countermodels also improves dramatically, as Z3 finds 134
more benchmarks to be satisfiable, including 5 that are not solved by CVC4f.
We conclude that the translation A enables SMT solvers to find countermodels
for conjectures involving recursively defined functions.

Interestingly, the translation A helps all configurations for unsat responses
as well. Z3 solves a total of 269 with the translation, whereas it solves only
251 without it. Surprisingly, the configuration CVC4f, which is not tailored for
handling unsatisfiable benchmarks, solves 270 unsat benchmarks overall, which
is more than either CVC4h or Z3. These results suggest that the translation
does not degrade the performance of SMT solvers for unsatisfiable problems
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involving recursive functions, and in fact it often improves it. They also suggest
that it might be interesting to use this translation in Sledgehammer [8] and to
try Nunchaku also as a proof tool.

6 Related Work

We have already described the most closely related work, by Ge and de Moura
[19] and by Reynolds et al. [32,33], earlier in this paper. The finite model finding
support in the instantiation-based iProver [23] is also close, given the similarities
with SMT.

Some finite model finders are based on a reduction to a decidable logic, typ-
ically propositional logic. The translation is parameterized by upper or exact
finite bounds on the cardinalities of the atomic types. This procedure was pio-
neered by McCune in the earlier versions of Mace (originally styled MACE)
[28]. Other conceptually similar finders are Paradox [14] and FM-Darwin [5] for
first-order logic with equality; the Alloy Analyzer and its backend Kodkod [37]
for first-order relational logic; and Refute [39] and Nitpick [10] for higher-order
logic. An alternative is to perform an exhaustive model search directly on the
original problem. Given fixed cardinalities, the search space is represented as
multidimensional tables. The procedure tries different values in the function and
predicate tables, checking each time if the problem is satisfied. This approach
was pioneered by FINDER [36] and SEM [40] and serves as the basis of the Alloy
Analyzer’s precursor [21] and later versions of Mace [27].

Most of the above tools cannot cope with infinite types. Kuncak and Jackson
[25] presented an idiom for encoding algebraic datatypes and recursive functions
in Alloy, by approximating datatypes by finite subterm-closed substructures.
The approach finds sound (fragments of) models for formulas in the existential–
bounded-universal fragment (i.e., formulas whose prenex normal forms contain
no unbounded universal quantifiers ranging over datatypes). This idiom was
refined by Dunets et al. [18], who presented a translation scheme for primitive
recursion. Their definedness guards play a similar role to the existential con-
straints generated by our translation A.

The higher-order model finder Nitpick [10] for the Isabelle/HOL proof assis-
tant relies on another variant of Kuncak and Jackson’s approach inside a Kleene-
style three-valued logic, inspired by abstract interpretation. It was also the first
tool of its kind to support corecursion and coalgebraic datatypes [7]. The three-
valued logic approach extends each approximated type with an unknown value,
which is propagated by function application. This scheme works reasonably well
in Nitpick, but experiments with CVC4 suggest that it is more efficient to avoid
unknowns by adding existential constraints.

The Leon system [6] implements a procedure that can produce both proofs
and counterexamples for properties of terminating functions written in a subset
of Scala. Leon is based on an SMT solver. It avoids quantifiers altogether by
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unfolding recursive definitions up to a certain depth, which is increased on a
per-need basis. Our translation A works in an analogous manner, but the SMT
solver is invoked only once and quantifier instantiation is used in lieu of function
unfolding. It would be worth investigating how existing approaches for function
unfolding can inform approaches for dedicated quantifier instantiation techniques
for function definitions, and vice versa.

Model finding is concerned with satisfying arbitrary logical constraints. Some
tools are tailored for problems that correspond to total functional programs.
QuickCheck [12] for Haskell is an early example, based on random testing.
Bounded exhaustive testing [35] and narrowing [26] are other successful strate-
gies. These tools are often much faster than model finders, but they typically
cannot cope with unspecified or underspecified functions (e.g., the head func-
tion from Sect. 4.2). Another approach, which also fails in the face of under-
specification, is to take the conjecture as an axiom and to attempt to derive
a contradiction using an automatic theorem prover [4]. If the other axioms are
consistent (which can be checked syntactically in some cases), a contradiction
imples the existence of countermodels. Compared with these approaches, the
main advantage of our approach is that it can cope with underspecification and
that it exploits the SMT solver (and its SAT solver) to enumerate candidate
models efficiently.

7 Conclusion

We presented a translation scheme that extends the scope of finite model finding
techniques in SMT, allowing one to use them to find models of quantified formu-
las over infinite types, such as integers and algebraic datatypes. In future work,
it would be interesting to evaluate the approach against other counterexample
generators, notably Leon, Nitpick, and Quickcheck, and enrich the benchmark
suite with more problems exercising CVC4’s support for coalgebraic datatypes
[29]. We are also working on an encoding of higher-order functions in SMT-LIB,
as a generalization to the current translation scheme, for Nunchaku. Further
work would also include identifying additional sufficient conditions for admis-
sibility, thereby enlarging the applicability of the translation scheme presented
here.
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Abstract. The satisfiability problem for conjunctions of quantifier-free
literals in first-order theories T of interest–“T -solving” for short–has
been deeply investigated for more than three decades from both the-
oretical and practical perspectives, and it is currently a core issue of
state-of-the-art SMT solving. Given some theory T of interest, a key
theoretical problem is to establish the computational (in)tractability of
T -solving, or to identify intractable fragments of T .

In this paper we investigate this problem from a general perspective,
and we present a simple and general criterion for establishing the NP-
hardness of T -solving, which is based on the novel concept of “colorer”
for a theory T .

As a proof of concept, we show the effectiveness and simplicity of this
novel criterion by easily producing very simple proofs of the NP-hardness
for many theories of interest for SMT, or of some of their fragments.

1 Introduction

Since the pioneering works of the late 70’s and early 80’s by Nelson, Oppen,
Shostak and others [16,17,19–21,25,26], the satisfiability problem for conjunc-
tions of quantifier-free literals in first-order theories T of interest–hereafter “T -
solving” for short–has been deeply investigated from both theoretical and practi-
cal perspectives, and it is currently a core issue of state-of-the-art SMT solving.

Given some theory T of interest, or some fragment thereof, a key theoretical
problem is that of establishing the computational (in)tractability of T -solving,
or to identify (in)tractable fragments of T . Although in the pool of theories
of interest T -solving presents many levels of intractability, the main divide is
between polynomiality and NP-hardness. Despite a wide literature studying the
complexity of single theories or of families of theories (e.g. [5,7,8,10,11,13–15,
17,19–21]) and some more general work on complexity of T -solving [3,20,21],
we are not aware of any previous work explicitly addressing NP-hardness of
T -solving for a generic theory T .

In this paper we try to fill this gap, and we present a simple and general
criterion for establishing the NP-hardness of T -solving for theories with equality–
and in some cases also for theories without equality–which is based on the novel
concept of “colorer” for a theory T , inducing the notion of “colorable” theory.

This work is supported by SRC under GRC Research Project 2012-TJ-2266 WOLF.
I thank Silvio Ghilardi, Alberto Griggio and Stefano Tonetta for fruitful discussions.
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Our work started from the heuristic observation that the graph k-colorability
problem, which is NP-complete for k ≥ 3, fits very naturally as a candidate
problem to be polynomially encoded into T -solving for theories with equality.
(We believe, more naturally than the very frequently-used 3-SAT problem.) In
fact, we notice that the set of the arcs in a graph and the coloring of the ver-
texes can be encoded respectively into a conjunction of disequalities between
“vertex” variables and into a conjunction of equalities between “vertex” and
“color” variables, both of which are theory-independent. Therefore, in designing
a reduction from k-colorability to T -solving, the only facts one needs formalizing
by T -specific literals is a coherent definition of k distinct “colors” and the fact
that a generic vertex can be “colored” with and only with k colors.

Following this line of thought, in this paper we present a general framework
for producing reductions from graph k-colorability with k ≥ 3 to T -solving for
generic theories T with equality. This framework decouples the T -specific part of a
reduction from its T -independent part: the former is formalized into the definition
of a T -specific object, called “k-colorer”, the latter is formalized and proven once
forall in this paper. Thus, the task of proving the NP-hardness of a theory T via
reduction from k-colorability reduces to that of finding a k-colorer for T .

To this extent, we also provide some general criteria for producing k-colorers,
with hints and tips to achieve this simplified task. As a proof of concept, we
show the effectiveness and simplicity of this novel approach by easily producing
k-colorers with k ≥ 3 for many theories of interest for SMT, or for some of their
fragments.

We notice that this technique can be used not only to investigate the
intractability of major theories, but also to investigate that of fragments of
such theories, so that to pinpoint the subsets of constructs (i.e. functions and
predicates in the signature) which cause a theory to be intractable. We stress
the fact that the problem of identifying such intractable fragments is not only
of theoretical interest, but also of practical importance in the development of
SMT solvers, in order to drive the activation of ad-hoc techniques–including e.g.
weakened early pruning, layering, splitting-on-demand [1,4]–which partition the
search load among distinct specialized T -solvers and between the T -solvers and
the underlining SAT solver [2,23].

Note. An extended version of this paper with more details is publicly available [24].

Content. The rest of the paper is organized as follows: Sect. 2 provides the neces-
sary background knowledge and terminology for logic and graph coloring; Sect. 3
introduces our main definitions of k-colorer and k-colorability and presents our
main results; Sect. 4 explains how to produce k-colorers for given theories, pro-
viding a list of examples; Sect. 5 provides some discussion about k-colorability
vs. non-convexity; Sect. 6 extends the framework to theories without equality;
Sect. 7 discusses ongoing and future developments.
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2 Background and Terminology

Logic. We assume the reader is familiar with the standard syntax and semantics
of first-order logic. (We report a full description in [24].) We add some terminology.

Given a signature Σ, we call Σ-theory T a class of Σ-models. Given a theory
T , we call T -interpretation an extension of some Σ-model M in T which maps
free variables into elements of the domain of M. (The map is denoted by 〈.〉I .)
A Σ-formula ϕ–possibly with free variables–is T -satisfiable if I |= ϕ for some
T -interpretation I. (Hereafter we will use the symbol “|=T ” to denote the T -
satisfiability relation; we will also drop the prefix “Σ-” when the signature is
implicit by context.) We say that a set/conjunction of formulas Ψ T -entails
another formula ϕ, written Ψ |=T ϕ, if every T -interpretation T -satisfying Ψ
also T -satisfies ϕ. We say that ϕ is T -valid, written |=T ϕ, if ∅ |=T ϕ. We
call a cube any finite quantifier-free conjunction of literals. For short, we call
“T -solving” the problem of deciding the T -satisfiability of a cube.

Finally, a theory T is convex if for all cubes μ and all sets E of equalities
between variables, μ |=T

∨
e∈E e iff μ |=T e for some e ∈ E.

Remark 1. In SMT and other contexts it is often convenient to use formulas
with uninterpreted symbols (see e.g. [2]). Notice, however, that the presence of
uninterpreted function or predicate symbols of arity >0 may cause the complex-
ity of T -solving scale up (see e.g. the example in [21]). Thus, when not explicitly
specified otherwise, we implicitly assume that a theory T does not admit such
symbols. �

We are often interested in fragments of a theory obtained by restricting its
signature. Let Σ, Σ′ be two signatures s.t. Σ′ ⊆ Σ; we say that a Σ′-model M′

is a restriction to Σ′ of a Σ-model M iff M′ and M agree on all the symbols in
Σ′, and that a Σ′-theory T ′ is the signature-restriction fragment of a Σ-theory
T wrt. Σ′ iff T ′ is the set of the restrictions to Σ′ of the Σ-models in T .

Graph Coloring. We recall a few notions from [9].

Definition 1 (k-Colorability of a graph (see [9])). Let G def= 〈V, E〉 be an un-
directed graph, where V def= {V1, ..., Vn} is the set of vertexes and E def= {E1, ..., Em}
is the set of edges in the form 〈Vi, Vi′〉 for some i, i′. Let C def= {C1, ..., Ck} be a
set of distinct values, namely “colors”, for k>0. Then G is k-Colorable if and
only if there exists a total map color : V 	−→ C s.t. color(Vi) �= color(Vi′) for
every 〈Vi, Vi′〉 ∈ E. The problem of deciding if G is k-colorable is called the k-
colorability problem for G.

Lemma 1 (see [9]). The k-colorability problem for un-directed graphs is NP-
complete for k ≥ 3, it is in P for k<3.

Figure 1 (top) shows two small graph 3-colorability problems.
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G1 : G2 :

V1

V2

V3

V4C2

C1 C3

C3

V1

V2

V3

V4C2

C1 C3

??

Enc[G1⇒LA(Z)]
def
=

(c1 = 1) ∧ (c2 = 2) ∧ (c3 = 3) ∧ 4
i=1((vi ≥ 1) ∧ (vi ≤ 3))∧

¬(v1 = v2) ∧ ¬(v1 = v3) ∧ ¬(v1 = v4) ∧ ¬(v2 = v3) ∧ ¬(v2 = v4)

Enc[G2⇒LA(Z)]
def
= Enc[G1⇒LA(Z)] ∧ ¬(v3 = v4)

Fig. 1. Top Left: a small 3-colorable graph (G1), with C1 = blue, C2 = red, C3 = green.
Top Right: the same graph augmented with the vertex 〈V3, V4〉 (G2) is no more 3-
colorable. Bottom: example of encodings of the 3-colorability of G1 and G2 into LA(Z)
-solving. (Color figure online)

3 k-Colorers and k-Colorable Theories with Equality

Hereafter we focus w.l.o.g. on theories T of domain size ≥ 2, i.e., s.t. ¬(v1 = v2)
is T -consistent. In fact, if not so, then it is easy to see that T -solving is in P
(see [24]).

Definition 2 (k-Colorer, k-Colored Theory). Let T be some theory with
equality and k be some integer value s.t. k ≥ 2. Let vi be a variable, called
vertex variable, (implicitly) denoting the i-th vertex in an un-directed graph;
let c def= {c1, .., ck} be a set of variables, called color variables, denoting the set
of colors; let yi

def= {yi1, ..., yil} denote a possibly-empty set of variables, which is
indexed with the same index i of the vertex variable vi. Let AllDifferentk(c)

def=
∧k

j=1

∧k
j′=j+1 ¬(cj = cj′).

We call k-colorer for T , namely Colorerk(vi, c|yi), a finite quantifier-free
conjunction of T -literals (cube) over vi, c and yi which verify the following
properties:

Colorerk(vi, c|yi) |=T AllDifferentk(c), (1)

Colorerk(vi, c|yi) |=T
∨k

j=1
(vi = cj), (2)

there exist k T -interpretations {Ii,1, ..., Ii,k} s.t. (3)
for every j ∈ [1..k], 〈cj〉Ii,1 = 〈cj〉Ii,2 = ... = 〈cj〉Ii,k , and

for every j ∈ [1..k], Ii,j |=T Colorerk(vi, c|yi) ∧ (vi = cj).

We say that T is k-colorable if and only if it has a k-colorer.

yi is a (possibly-empty) set of auxiliary variables, one distinct set for each vertex
variable vi, which sometimes may be needed to express (1), (2) and (3) (see
Examples 7 and 9), or to make Colorerk(vi, c|yi) more readable by renaming
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internal terms (see Example 9). If yi = ∅, we may write “Colorerk(vi, c)” instead
of “Colorerk(vi, c|∅)”.1

{Ii,1, ..., Ii,k} denotes a set of T -interpretations each satisfying
Colorerk(vi, c|yi) s.t. all the T -interpretations in {Ii,1, ..., Ii,k} agree on the val-
ues assigned to the color variables in {c1, ..., ck} and s.t. each Ii,j assigns to
the vertex variable vi the same value assigned to the jth color variable cj . The
condition 〈cj〉Ii,1 = ... = 〈cj〉Ii,k of (3) expresses the fact that, when pass-
ing from the scenario Ii,j in which vi is assigned the color cj–expressed by the
equality (vi = cj) in (3)–to the scenario Ii,j′ in which vi is assigned the color
cj′–expressed by the equality (vi = cj′)– it is the value of the vertex variable vi
who must change, not those of the color variables c1, ..., ck.

Intuitively, Colorerk(vi, c|yi) expresses the following facts: (1) that c1, ..., ck
represent the names of distinct “color” values, (2) that each vertex represented
by the variable vi can be tagged (“colored”) only with one of such color names
cj , (3) that the values associated to the color names are not affected by the
choice of the color name cj tagged to vi–represented by the index j in Ii,j–and
that each tagging choice is admissible.

There may be many distinct k-colorers for a theory T , as shown in Example 1.

Example 1 (LA(Z)). We consider the theory of linear arithmetic over the inte-
gers (LA(Z)), assuming the standard model of integers, so that the symbols
+,−,≤,≥ and the interpreted constants 0, 1, ... are interpreted in the standard
way by all LA(Z)-interpretations. LA(Z) is 3-colorable, since we can define, e.g.,
k

def= 3, yi
def= ∅, and

Colorer3(vi, c1, c2, c3)
def= (c1 = 1) ∧ (c2 = 2) ∧ (c3 = 3) ∧ (v ≥ 1) ∧ (v ≤ 3). (4)

It is straightforward to see that Colorer3(vi, c1, c2, c3) verifies (1), (2) and (3),
with Ii,j

def= {c1 → 1, c2 → 2, c3 → 3, vi → j} for every j ∈ [1..3]. Notice that in
this case yi = ∅, i.e. Colorerk(vi, c|yi) requires no auxiliary variables. Notice also
that AllDifferentk(c) is implied by the usage of the interpreted constants 1, 2, 3.

An alternative 3-colorer which does not explicitly assign fixed values to the
cj ’s is:

Colorer3(vi, c1, c2, c3)
def=

(
AllDifferent3(c) ∧

∧3
j=1((cj ≥ 1) ∧ (cj ≤ 3)) ∧

(v ≥ 1) ∧ (v ≤ 3)

)

, (5)

which verifies (1), (2) and (3), e.g., with the same Ii,j ’s as above. Consider
instead:

Colorer3(vi, c1, c2, c3)
def=

(
AllDifferent3(c) ∧

∧3
j=1((cj ≥ 1) ∧ (cj ≤ 3)) ∧

(vi = 1)

)

. (6)

This is not a 3-colorer, because it does not verify (3): there is no pair of LA(Z)-
interpretations Ii,1 and Ii,2 s.t. Ii,1 |=LA(Z) Colorer3(vi, c1, c2, c3) ∧ (vi =
c1) and Ii,2 |=LA(Z) Colorer3(vi, c1, c2, c3) ∧ (vi = c2) which agree on the
values of c1, c2, c3. �
1 The symbol “|” is used to separate color and node variables from auxiliary ones.
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Remark 2. The choice of using variables c1, ..., ck to represent colors is due to the
fact that some theories do not provide k distinct interpreted constant symbols
in their signature (see Example 9). If this is not the case, then Colorerk(vi, c|yi)
can be built to force c1, ..., ck to assume fixed values expressed by interpreted
constant symbols, like 1, 2, 3 in (4), so that the condition 〈cj〉Ii,1 = ... = 〈cj〉Ii,k

of (3) is verified a priori.

The following properties of k-colorable theories follow straightforwardly.

Property 1. Let T be a k-colorable theory for some k ≥ 2. Then we have that:

(a) ∃c.AllDifferentk(c) is T -valid;
(b) T is non-convex.

Proof. Consider the definition of Colorerk(vi, c|yi) in Definition 2.

(a) By (3) Colorerk(vi, c|yi) is T -satisfiable; thus by (1) AllDifferentk(c) is T -
satisfiable, so that |=T ∃c.AllDifferentk(c);

(b) By (2), Colorerk(vi, c|yi) |=T
∨k

j=1(vi = cj). By (3), for every j1 ∈ [1..k]
there exists an interpretation Ii,j1 s.t. Ii,j1 |=T Colorerk(vi, c|yi)∧(vi = cj1).
Then, by (1), for every j2 ∈ [1..k] s.t. j2 �= j1 we have that Ii,j1 |=T
Colorerk(vi, c|yi) ∧ ¬(vi = cj2). Thus for every j ∈ [1..k] Colorerk(vi, c|yi) �|=
(vi = cj). Therefore T is non-convex. ��

Property 2. If T ′ is a k-colorable theory with equality for some k ≥ 2, and T ′ is
a signature-restriction fragment of another theory T , then T is k-colorable.

Proof. If Colorerk(vi, c|yi) is a k-colorer for T ′, then by definition of signature-
restriction fragment it is also a k-colorer for T . ��

Lemma 2. Let k be an integer value s.t. k ≥ 3. Let G and C be respectively
an un-directed graph with n vertexes V1, ..., Vn and a set of k distinct colors
C1, ..., Ck, like in Definition 1. Let T be a k-colorable theory with equality. We
consider the following conjunctions of T -literals:

Colorable(v1, ..., vn, c|y1, ...,yn) def=
∧

Vi∈V
Colorerk(vi, c|yi) (7)

Graph[G](v1, ..., vn) def=
∧

〈Vi1 ,Vi2 〉∈E
¬(vi1 = vi2) (8)

Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) def= Colorable(v1, ..., vn, c|y1, ...,yn) ∧ (9)
Graph[G](v1, ..., vn),

where v1, ..., vn, c1, ..., ck and y11, ..., y1l, ...yi1, ..., yil, ..., yn1, ..., ynl are free vari-
ables,2 and all the k-colorers Colorerk(vi, c|yi) in (7) are identical modulo the
renaming of the variables vi and yi, but not of the color variables c.

Then G is k-colorable iff Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) is T -satisfiable.

2 Notice that each cj is implicitly associated with the color Cj ∈ C for every j ∈ [1..k]
and each vi and yi is implicitly associated to the vertex Vi ∈ V for every i ∈ [1..n].
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Proof.

If: Suppose Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) is T -satisfiable, that is, there exist
an interpretation I in T s.t. I |=T Colorable(v1, ..., vn, c|y1, ...,yn) and I |=T
Graph[G](v1, ..., vn). Thus:
(i) By (7) and (1), 〈cj1〉I �= 〈cj2〉I for every j1, j2 ∈ [1, ..., k] s.t. j1 �= j2.
(ii) By (7), (2) and (1), for every i ∈ [1...n] there exists some j ∈ [1...k] s.t.

〈vi〉I = 〈cj〉I and s.t. 〈vi〉I �= 〈cj′〉I for every j′ �= j.
(iii) By (8), 〈vi1〉I �= 〈vi2〉I for every 〈Vi1 , Vi2〉 ∈ E .
Then by (i) and (ii) we can build a map color : V 	−→ C s.t., for every Vi ∈ V,
color(Vi) = Cj iff 〈vi〉I = 〈cj〉I . By (iii) we have that color(Vi1) �= color(Vi2)
for every 〈Vi1 , Vi2〉 ∈ E . Thus G is k-colorable.

Only if: Suppose G is k-colorable, that is, there exist a map color : V 	−→ C s.t.
color(Vi1) �= color(Vi2) for every 〈Vi1 , Vi2〉 ∈ E .
Consider i = 1, and let {I1,1, ..., I1,k} be the set of T -interpretations for
Colorerk(v1, c|y1) as in (3), so that:
(a) for every j ∈ [1..k], I1,j |=T Colorerk(v1, c|y1) ∧ (v1 = cj),
(b) for every j ∈ [1..k], 〈cj〉I1,1 = ... = 〈cj〉I1,k .
For every i ∈ [1..n] we consider Colorerk(vi, c|yi) and we build a replica
{Ii,1, ..., Ii,k} of the set of T -interpretations {I1,1, ..., I1,k} in such a way
that:
(i) 〈vi〉Ii,j

def= 〈v1〉I1,j = 〈cj〉I1,j (each Ii,j maps its vertex variable vi into the
same color as I1,j maps its vertex variable v1);

(ii) 〈cj〉Ii,1
def= 〈cj〉I1,1 , ..., 〈cj〉Ii,k

def= 〈cj〉I1,k , so that, by (a), 〈cj〉Ii,1 = ... =
〈cj〉Ii,k = 〈cj〉I1,1 = ... = 〈cj〉I1,k (all Ii,j agree on the values of the color
variables, for every i ∈ [1..n] and j ∈ [1..k]);

(iii) 〈yi1〉Ii,j
def= 〈y11〉I1,j , ..., 〈yil〉Ii,j

def= 〈y1l〉I1,j (each Ii,j maps its auxiliary
variables yi into the same domain values as I1,j maps y1).

Consequently, by (3), for every vi ∈ {v1, ..., vn}, {Ii,1, ..., Ii,k} are s.t.
(a) for every j ∈ [1..k], Ii,j |=T Colorerk(vi, c|yi) ∧ (vi = cj),
(b) for every j ∈ [1..k], 〈cj〉Ii,1 = ... = 〈cj〉Ii,k .
For every i ∈ [1...n], let ji ∈ [1..k] be the index s.t. Cji = color(Vi), and we
pick the T -interpretation Ii,ji . Thus, since all the Ii,jis agree on the common
variables c, we can merge them and create a global T -interpretation I as
follows:
(i) 〈vi〉I def= 〈vi〉Ii,ji = 〈cji〉Ii,ji = 〈cji〉I , for every i ∈ [1..n];
(ii) 〈cj〉I def= 〈cj〉Ii,ji , for every j ∈ [1..k];
(iii) 〈yir〉I def= 〈yir〉Ii,ji , for every i ∈ [1..n] and for every r ∈ [1..l].
By construction, for every i ∈ 1..n, I agrees with Ii,ji on c, vi, and yi, so
that, by point (a), I |=T (Colorerk(vi, c|yi) ∧ (vi = cji)).
Thus I |=T Colorable(v1, ..., vn, c|y1, ...,yn).
Since the values 〈c1〉I , ..., 〈ck〉I are all distinct, we can build a bijection linking
each domain value 〈cj〉I to the color Cj , for every j ∈ [1..k]. Hence 〈cj〉I =
〈cj′〉I iff Cj = Cj′ . For every 〈Vi, Vi′〉 ∈ E , color(Vi) �= color(Vi′), that is,
Cji �= Cji′ . Therefore 〈cji〉I �= 〈cji′ 〉I , and 〈vi〉I = 〈cji〉I �= 〈cji′ 〉I = 〈vi′〉I .
Consequently I |=T Graph[G](v1, ..., vn).
Thus Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) is T -satisfiable. ��
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Example 2. Figure 1 shows a simple example of encoding a graph 3-colorability
problem into LA(Z)-solving, using the k-colorer (4) of Example 1. (Notice that
the literals which do not contain vi and yi can be moved out of the conjunction∧

Vi∈V ... in (7).) The first formula is LA(Z)-satisfied, e.g., by an interpretation
I s.t. 〈cj〉I def= j for every j ∈ [1..3], 〈v1〉I def= 1, 〈v2〉I def= 2, 〈v3〉I def= 3 and
〈v4〉I def= 3, which mimics the coloring in Fig. 1 (left). The second formula is
LA(Z)-unsatisfiable, as expected. �

Lemma 3. Let k, n, G, C, T and Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn) be as in
Lemma 2. Then ||Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn)|| is polynomial in ||G|| def= ||V||+
||E||.3

Proof. By Definition 2 we have that ||Colorerk(vi, c|yi)|| is constant wrt. ||V|| or
||E||. From (7), (8) and (9), ||Enc[G⇒T ](v1, ..., vn, c|y1, ...,yn)|| is O(||V||+ ||E||). ��

Combining Lemmas 1, 2 and 3 we have directly the following main result.

Theorem 1. If a theory with equality T is k-colorable for some k ≥ 3, then
the problem of deciding the T -satisfiability of a quantifier-free conjunction of
T -literals is NP-hard.

Notice that the key source of hardness is condition (2) in Definition 2: intu-
itively, a k-colorable theory is expressive enough to represent with a quantifier-
free conjunction of T -literals–without disjunctions!–the fact that one variable
must assume a value among a choice of k ≥ 3 possible candidates–in addition to
the fact that a list of pairs of variables cannot pairwise assume the same value.
This source of non-deterministic choices has a high computational cost, as stated
in Theorem 1.

4 Proving k-Colorabilty

Theorem 1 suggests a general technique for proving the NP-hardness of a theory
T : pick some k ≥ 3 and then try to build a k-colorer Colorerk(vi, c|yi). Also,
when T is known to be NP-hard, one may want to identify smaller –and possibly
minimal– signature-restriction fragments T ′ which are k-colorable for some k, by
identifying increasingly-smaller subsets of the signature of T which are needed
to define a k-colorer.

We introduce some sufficient criteria for a theory to be k-colorable with some
k ≥ 3. As a proof of concept, we use these criteria to prove the k-colorability
with some k ≥ 3, and hence the NP-hardness, of some theories T of practical
interest, and of some of their signature-restriction fragments.

We remark that the ultimate goal here is not to provide fully-detailed proofs
of NP-hardness–all the main theories presented here are already well-known to
3 Notice that k is fixed a priori and as such it is a constant value for the input graph
k-colorability problem: e.g., depending on T , we are speaking of reducing graph
3-colorability–or 4-colorability, or even 264-colorability–to T -solving.



160 R. Sebastiani

be NP-hard, although to the best of our knowledge the complexity of not all
of their fragments has been investigated explicitly–rather to present proof of
concept of the convenience and effectiveness of our proposed colorability-based
technique, using various theories/fragments as examples. To this extent, for the
sake of simplicity and space needs, and when this does not affect comprehension,
sometimes we skip some formal details of the syntax and semantics of the theories
under analysis, referring the reader to the proper literature. Rather, we dedicate
a few lines to give some hints and tips on how to apply our colorability-based
technique in potentially-typical scenarios.

4.1 Exploiting Interpreted Constants, Closed Terms and
Provably-Distinct Terms

Proposition 1. Let T be a theory which admits at least k ≥ 3 terms t1(xi), ...,
tk(xi), where xi are the set of variables which are free in tj (if any), let yi being
a possibly-empty set of auxiliary variables, and let

Colorerk(vi, c|xi,yi)
def=

∧k

j=1
(cj = tj(xi)) ∧ Ψ(vi|xi,yi) (10)

be a quantifier-free conjunction of literals s.t.

|=T ∀xi. AllDifferentk({t1(xi), ..., tk(xi)}) (11)

Ψ(vi|xi,yi) |=T
∨k

j=1
(vi = tj(xi)) (12)

there exist k T -interpretations {Ii,1, ..., Ii,k} s.t. (13)
for every j ∈ [1..k], 〈cj〉Ii,1 = 〈cj〉Ii,2 = ... = 〈cj〉Ii,k , and

for every j ∈ [1..k], Ii,j |=T Colorerk(vi, c|xi,yi) ∧ (vi = tj(xi)).

Importantly, if t1, .., tk are closed terms, then (13) reduces to he following:

there exist k T -interpretations {Ii,1, ..., Ii,k} s.t. (14)
for every j ∈ [1..k], Ii,j |=T Colorerk(vi, c|yi) ∧ (vi = tj).

Then Colorerk(vi, c|xi,yi) is a k-colorer for T .

Proof. By (11),
∧k

j=1(cj = tj(xi)) |=T AllDifferentk(c), s.t. (1) holds. By (10) and
(12), Colorerk(vi, c|xi,yi) verifies (2). By (10) and (13) we have that (3) holds. ��

Theories of Arithmetic. We use Proposition 1–where t1, ..., tk are numerical
constants–to prove the k-colorability of (various signature-restriction fragments
of) the theories of arithmetic.

Example 3 (A{≥,=}(Z), LA(Z), NLA(Z)). Let A{≥,=}(Z) be the basic theory
of integers under successor [20,21], that is, whose atoms are in the form (s1 �
s2), where � ∈ {≥,=} and s1, s2 are variables or positive numerical constants.
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Then A{≥,=}(Z) is 3-colorable, because we can define a 3-colorer like that of (4)
in Example 1. (Notice that this is an instance of Proposition 1.) A{≥,=}(Z) is a
signature-restriction fragment of LA(Z) and NLA(Z) (see e.g. [24]), which are
then 3-colorable by Proposition 2. Therefore, T -solving for all these theories is
NP-hard by Theorem1.4 �

Notice that conjunctions of only positive equalities and inequalities in the form
(s1�s2), without negated literals, are instead well-known to be solvable in polyno-
mial time (see e.g. [2,18]). Notice also that, on the rational domain, the correspond-
ing theories A{≥,=}(Q) and LA(Q) are convex and hence they are not colorable by
Property 1. In fact, T -solving for such theories is notoriously in P [10].

Example 4 (NLA(R)\{≥,>},NLA(R)). Weconsider NLA(R)\{≥,>}, the signature-
restriction fragment of the non-linear arithmetic over the reals (NLA(R)) with-
out inequality symbols {≥,≤}. As an instance of Proposition 1, we show that
NLA(R)\{≥,>} is 3-colorable, because we can define, e.g., k

def= 3, y def= ∅, and

Colorer3(vi, c1, c2, c3)
def=

(
(c1 = −1) ∧ (c2 = 0) ∧ (c3 = 1)∧
(vi · (vi − 1) · (vi + 1) = 0)

)

.

By Proposition 1, it is straightforward to see that Colorer3(vi, c1, c2, c3) verifies
(1), (2) and (3), with 〈c1〉Ii,j

def= −1, 〈c2〉Ii,j
def= 0, 〈c3〉Ii,j

def= 1, and 〈vi〉Ii,j
def=

〈cj〉Ii,j s.t. j ∈ [1..3]. Then by Proposition 2 the full NLA(R) is 3-colorable, so
that T -solving for both theories is NP-hard by Theorem1. �

4.2 Exploiting Finite Domains of Fixed Size

Proposition 2. Let T be some theory with finite domain of fixed size k ≥ 3.
Then Colorerk(vi, c)

def= AllDifferentk(c) is a k-colorer for T .

Proof. Let c def= {c1, ..., ck}. Since the domain of T has fixed size k ≥ 3, we have:

AllDifferentk(c) �|=T ⊥ (15)
AllDifferentk+1(c ∪ {vi}) |=T ⊥. (16)

AllDifferentk(c) entails itself, so that (1) holds. AllDifferentk(c)∧
∧k

j=1 ¬(vi = cj)
is the same as AllDifferentk+1(c∪ {vi}) which is T -unsatisfiable by (16), so that
AllDifferentk(c) |=T

∨k
j=1(vi = cj). Hence (2) holds. By (15) there exists some

T -interpretation I s.t. I |=T AllDifferentk(c). For every j ∈ [1..k] we build an
extension Ii,j of I with the same domain s.t. 〈c1〉Ii,j

def= 〈c1〉I , ..., 〈ck〉Ii,j
def= 〈ck〉I ,

and 〈vi〉Ii,j
def= 〈cj〉I . Hence (3) holds. ��

4 Notice that NLA(Z)-solving is undecidable.
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Theories of Fixed-Width Bit-Vectors and Floating-Point Arithmetic.
We prove the k-colorability of (the signature-restriction fragments of) the the-
ories of Fixed-width Bit-vectors and Floating-point Arithmetic by instantiating
Proposition 2.

Example 5 (BVw, w>1). Let BV{=}
w be the simplest possible signature-

restriction fragment of the fixed-width bit-vectors theory with equality = and
width w>1, with no interpreted constant, function or predicate symbol in its
signature. Then by Proposition 2, BV{=}

w is k-colorable, where k = 2w. Hence,
by Property 2 all theories BV∗

w obtained by augmenting the signature of BV{=}
w

with various combinations of interpreted constants (e.g. bvw 0...00, bvw 0...01,...),
functions (e.g. bvw and, bvw or,...) and predicates (e.g. bvw ≥,...)–are k-colorable
with k = 2w. Hence, when w>1, by Theorem 1, T -solving is NP-hard for all such
theories. �

[7] shows that the T -satisfiability of quantifier-free conjunctions of atoms
for the fragment of BV involving only concatenation and partition of words is
in P. Notice however that neither Example 5 contradicts the results in [7], nor
Example 5 plus [7] build a proof of P = NP , because the polynomial procedure
in [7] does not admit negative equalities ¬(vi = v′

i) in the conjunction.

Example 6 (FPAe,s). Let FPAe,s be the theory of floating-point arithmetic
s.t. e ≥ 1 and s ≥ 1 are the number of available bits for the exponent and
the significant respectively [22]. (E.g., FPA11,53 represents the binary64 for-
mat of IEEE 754-2008 [22].) As with Example 5, let FPA=

e,s be the simplest
possible signature-restriction fragment of FPA=

e,s with equality =,5 with no
interpreted constant, function and predicate symbol in its signature. Then by
Proposition 2, FPA=

e,s is k-colorable, where k = 2e+s. Hence, by Property 2, all
theories FPA∗

e,s obtained by augmenting the signature of FPA=
e,s with various

combinations of interpreted constants, functions or predicates are k-colorable
with k ≥ 4, so that T -solving is NP-hard. �

4.3 Dealing with Collection Datatypes

A class of theories of big interest in SMT-based formal verification are these
describing collection datatypes (see e.g. [6,12])–e.g., lists, arrays, sets, etc. In
general these are “families” of theories, each being a combination of a “basic”
theory (e.g., the basic theory of lists) with one or more theories describing the
elements or the indexes of the datatype. In what follows we consider the basic
theories, where elements are represented by generic variables representing values
in some infinite domain.

One potential problem if finding k-colorers for most of these “basic” theories
is that neither we have interpreted constants in the domain of the elements, so
that we cannot apply Proposition 1 as we did with arithmetical theories, nor
5 Here “=” is the equality symbol and it is not the FPAe,s-specific symbol “==”, see

[22].
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we have any information on the size of the domain of the elements, so that we
cannot apply Proposition 2.

We analyze different potential scenarios. One first scenario is where we have
at least one “structural” interpreted constant–e.g., that representing the empty
collection–plus some function symbols, which we can use to build k ≥ 3 closed
terms t1, ..., tk and then use the schema of Proposition 1 to build a k-colorer.

Theories of Lists. The above scenario is illustrated in the next example.

Example 7 (L+). Let L be the simplest theory of lists of generic elements, with
the signature Σ

def= {nil, car(·), cdr(·), cons(·, ·)} and described by the axioms:

∀xy.(car(cons(x, y) = x)), ∀xy.(cdr(cons(x, y) = y)), (17)
∀xy.(¬(cons(x, y) = nil)), ∀x.(¬(x = nil) → (cons(car(x), cdr(x)) = x)),(18)

and let L+ be L enriched by the axioms

(car(nil) = nil), (cdr(nil) = nil). (19)

L+-solving is NP-complete whilst L-solving is in P [17]. A more general theory
of lists, which has L+ as a signature-restriction fragment, is described in [6,12].
Following Proposition 1, we prove that L+ is 4-colorable, by setting k

def= 4,
y def= {x1, x2, y1, y2},

Colorer4(vi, c11, c21, c12, c22|x1, x2, y1, y2)
def= (20)

⎛

⎜
⎜
⎝

(c11 = cons(nil, nil)) ∧ (c21 = cons(cons(nil, nil), nil))∧
(c12 = cons(nil, cons(nil, nil))) ∧ (c22 = cons(cons(nil, nil), cons(nil, nil)))∧
∧2

i=1 ((car(xi) = car(yi)) ∧ (cdr(xi) = cdr(yi)) ∧ ¬(xi = yi)) ∧
(vi = cons(x1, x2)).

⎞

⎟
⎟
⎠

To prove (11) we notice that we can deduce ¬(cons(nil, nil) = nil) from (18),
so that, by construction, all the ci’s are pairwise different. Let Ψ(viyi) be the
formula given by the last two rows in (20), so that (20) matches the definition
in Proposition 1. Then we derive (12) from the following observation [17], with
i ∈ {1, 2}:

((car(xi) = car(yi)) ∧ (cdr(xi) = cdr(yi)) ∧ ¬(xi = yi)) (21)
|=L+ (xi = nil) ∨ (xi = cons(nil, nil)),

which derives from the fact that (18) and (19) imply that either (xi = nil) or
(yi = nil) must hold. Therefore vi

def= cons(x1, x2) can consistently assume one
and only one of the values c11, ..., c22 in the first two rows in (20).

To prove (14), since the cis are closed, we deterministically define each Ii,j ’s
using the standard interpretation of nil, cons, car, and cdr: 〈c11〉Ii,j

def= (NIL.NIL),
〈c21〉Ii,j

def= ((NIL.NIL).NIL), ... 〈vi〉Ii,j
def= 〈cj〉Ii,j , checking that, for every j ∈ [1..k],

Ii,j |=L+ Colorer4(vi, c11, c21, c12, c22|x1, x2, y1, y2) ∧ (vi = cj).
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Thus L+-solving is NP-hard by Theorem 1, so that also the more general theory
described in [6,12] is NP-hard. �

Remark 3. The k-colorer (20) was produced along the following heuristic
process.

1. Look for an entailment in the form: μ1(x1,y1) |=T (x1 = t1) ∨ (x1 = t2),
s.t. t1, t2 are closed terms representing distinct values in the domain (21).

2. Define (vi = cons(x1, x2)) and (cr1r2 = cons(tr1 , tr2)), s.t. r1, r2 ∈ {1, 2}
3. Define the k-colorer as

∧

i∈{1,2}
μi(xi,yi) ∧

∧

r1,r2∈{1,2}
(cr1r2 = cons(tr1 , tr2)) ∧ (vi = cons(x1, x2)).

4. Check (11), (12), (14).

Notice that the only non-obvious step is 1, the other come out nearly determin-
istically.

Theories of Finite Sets. Another scenario is where we cannot use inter-
preted constants to build closed terms, but we can build k non-closed terms
t1(xi), ..., tk(xi) which match the requirements of Proposition 1 anyway, which
allows to build a k-colorer. This scenario is illustrated in the next example.

Example 8. Let S be the theory of finite sets as defined, e.g., in [6,12].6 Let
S{⊆,{}} be the signature-restriction fragment of the S which considers only
the subset and the enumerator operators {⊆, {}}. We show that S{⊆,{}} is
4-colorable by Proposition 1.

In fact, consider the following set of literals:

Colorer4(vi, c|y1, y2) def=

⎛

⎝
(c1 = {y1, y2}) ∧(c2 = {y1}) ∧
(c3 = {y2}) ∧(c4 = {}) ∧
¬(y1 = y2) ∧(vi ⊆ c1)

⎞

⎠ . (22)

(22) is a 4-colorer. It is easy to see from the semantics of {⊆, {}} that (11) and
(12) hold. Let Y1, Y2 s.t. Y1 �= Y2 be two domain elements so that we can set
〈yr〉Ii,j

def= Yr for every r ∈ [1..2] and j ∈ [1..k]. Then, for every j ∈ [1..k], we
define Ii,j s.t. 〈c1〉Ii,j

def= {Y1, Y2}, 〈c2〉Ii,j
def= {Y1}, 〈c3〉Ii,j

def= {Y2}, 〈c4〉Ii,j
def= {},

〈vi〉Ii,j
def= 〈cj〉Ii,j . Then Ii,1, ..., Ii,k verify (13). �

In this case the k-colorer (22) was really immediate to build, upon the obser-
vation that the operator ⊆ can produce 4 distinct subsets of a 2-element set.

6 S includes the operators {{...}), (· ⊆ ·), (· ∪ ·), (· ∩ ·), (· \ ·), (·P·), | · |, (· ∈ ·)}, follow-
ing their standard semantics. We refer the reader to [6,12] for a precise description
of the theory.
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Theories of Arrays. In the following case we cannot apply Proposition 1, so
that we apply Definition 2 directly.

Example 9. (AR). Let AR be the theory of arrays of generic elements and
indexes, with the signature Σ

def= {·[·], ·〈· ← ·〉} 7 and described by the axioms:

∀Aijv. ((i = j) → (A〈i ← v〉[j] = v), (23)
∀Aijv. (¬(i = j) → (A〈i ← v〉[j] = A[j]), (24)
∀AB. ((∀i. A[i] = B[i]) → (A = B)). (25)

AR is 3-colorable, because we can define, e.g., k def= 3, y def
= {A1, ..., A4, i1, ..., i3} and

Colorer3(vi, c1, c2, c3|A1, ..., A4, i1, ..., i3)
def=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

AllDifferent3(c) ∧
¬(i2 = i3) ∧
(A2 = A1〈i1 ← c1〉) ∧
(A3 = A2〈i2 ← c2〉) ∧
(A4 = A3〈i3 ← c3〉) ∧
(vi = A4[i1])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(26)

so that obviously (1) holds, and also (2) holds, because Colorer3(vi, c|y) entails
(vi = c1) when 〈i1〉I �= 〈i3〉I and 〈i1〉I �= 〈i2〉I , entails (vi = c2) when
〈i1〉I = 〈i2〉I , and entails (vi = c3) when 〈i1〉I = 〈i3〉I . Also (3) holds: given
three distinct domain values C1, C2, C3, the T -interpretations Ii,j can be built
straightforwardly as follows:

c1 c2 c3 vi i1 i2 i3 A4 ...
Ii,1 C1 C2 C3 C1 1 2 3 [C1, C2, C3, ...]
Ii,2 C1 C2 C3 C2 2 2 3 [∗∗, C2, C3, ...]
Ii,3 C1 C2 C3 C3 3 2 3 [∗∗, C2, C3, ...]

�

Notice that in Example 9, Colorerk(vi, c|yi) uses the auxiliary variables A1, ..., A4

representing arrays and i1, ..., i3 representing indexes. The A2, A3, A4, however,
are not strictly necessary and can be eliminated by inlining. Notice also that
Colorerk(vi, c|yi) includes explicitly AllDifferent3(c) because no interpreted con-
stants come into play.

The k-colorer (26) was produced straightforwardly by noticing that the com-
bination of (23) and (24) produces a case-split in the form “if i = j then
(A〈i ← v〉[j] = v) else (A〈i ← v〉[j] = A[j])”, which could be reiterated so that to
produce a 3-branch decision tree, producing 3 different expressions for the term
A[i1]. This could be rewritten into k-colorer by means of some term renaming.

7 We use the following notation: “A[i]” (aka “read(A, i)”) is the value returned by
reading the i-th element of the array A, whilst “A〈i ← vi〉” (aka “write(A, i, v)”) is
the array resulting from assigning the value v to the i-th element of array A.
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5 k-Colorability vs. Non-Convexity

Although related by Property 1, k-colorability and non-convexity are distinct
properties. First, we recall that the non-convexity of a theory T does not imply
the NP-hardness of T -solving. (In [24] we report a simple example.) Second,
by Property 1, having domain size ≥ 3 is a strict requirement for proving NP-
hardness via colorability, whereas there exist non-convex theories with domain
size 2 whose T -solving is NP-Hard. (E.g., the theory BV1 of bit vectors with
fixed width 1, see [24].)

In what follows we introduce a theory with domain size ≥ 3 whose T -solving
is NP-hard, which is non-convex and which is not k-colorable for any k ≥ 3. This
shows that not every theory with domain size ≥ 3 can be proven NP-hard by k-
colorability. The same example shows also that k-colorability is strictly stronger
than non-convexity, even when the theory has domain size ≥ 3.

Example 10. Consider the theory T with equality whose signature consists in
the interpreted constant symbols {0, 1, 2, ...} with the standard meaning plus
the function symbols {and(·, ·), not(·)} which are interpreted as follows:

〈and(x, y)〉I def=
{

1 if 〈x〉I>0 and 〈y〉I>0
0 otherwise , 〈not(x)〉I def=

{
0 if 〈x〉I>0
1 otherwise. (27)

(Importantly, the ≥, >,≤, < predicates are not part of the signature.) T -
satisfiability is NP-complete since you can polynomially reduce SAT to it and
you can always have a polynomial-size witness for every T -satisfied formula.

Also, as with BV1, T is non-convex, because we have:

(x0 = 0) ∧ (and(x1, x2) = 0) |=T (((x0 = x1) ∨ (x0 = x2)) (28)
(x0 = 0) ∧ (and(x1, x2) = 0) �|=T (x0 = xi) i ∈ {1, 2}. (29)

We show that T is not k-colorable for any k ≥ 3. We notice that every literal
l including vi must be in one of the following forms (modulo the symmetry of
= and and): (vi = t), (vi = not(t)), (vi = and(t1, t2)), (t = t∗(vi, ...)), and their
negations, where t, t1, t2 are generic terms in T and t∗(vi, ...) is any term in T
containing vi. Looking at the above literal forms, we notice that the presence
of the subterms not(vi) and and(vi, t2) in a term entails either 〈vi〉I>〈0〉I , or
〈vi〉I = 〈0〉I or 〈vi〉I ≥ 〈0〉I , so that one single literal l can express only the
following facts about one variable vi:8

(i) for every T -interpretation I s.t. I |=T l, 〈vi〉I = 〈n〉I for some n ∈
{0, 1, 2, 3, ...};

(ii) for every T -interpretation I s.t. I |=T l, 〈vi〉I �= 〈n〉I for some n ∈
{0, 1, 2, 3, ...};

8 Whereas (i) and (ii) can be also written as l |=T (vi = n) and l |=T (vi �= n), (iii)
and (iv) cannot be rewritten as l |=T (vi ≥ 0) and l |=T (vi>0) because ≥ and >
are not part of the signature.
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(iii) for every T -interpretation I s.t. I |=T l, 〈vi〉I ≥ 〈0〉I (equivalent to true);
(iv) for every T -interpretation I s.t. I |=T l, 〈vi〉I>〈0〉I (equivalent to 〈vi〉I �= 0);
(v) for every T -interpretation I s.t. I |=T l, 〈vi〉I = 〈vi〉I (equivalent to true);
(vi) for every T -interpretation I s.t. I |=T l, 〈vi〉I �= 〈vi〉I (equivalent to false).

Thus, for k ≥ 3, no finite conjunction of T -literals Colorerk(vi, c|yi) comply-
ing with (1) and (3) can also comply with (2). �

6 Colorable Theories without Equality

In previous sections we have restricted our interest to theories with equality. In
this section we extend the technique by dropping this restriction. The following
definition extends Definition 2 to the case of general theories.

Definition 3 (k-Colorer, k-Colored Theory). Let T be some theory and k
be some integer value s.t. k ≥ 2. Let vi be a variable, called vertex variable,
(implicitly) denoting the i-th vertex in an un-directed graph; let c def= {c1, .., ck}
be a set of variables, called color variables, denoting the set of colors; let
yi

def= {yi1, ..., yil} denote a possibly-empty set of variables, which is indexed with
the same index i of the vertex variable vi. We call k-colorer for T , namely
Colorerk(vi, c|yi), a finite quantifier-free conjunction of T -literals (cube) over vi,
c and yi which verify the following properties:

– For every T -intepretation I, if I |=T Colorerk(vi, c|yi), then:

for every j, j′ ∈ [1..k] s.t. j �= j′, 〈cj〉I �= 〈cj′〉I , (30)
for some j ∈ [1..k], 〈v〉I = 〈cj〉I , (31)

– There exist k T -interpretations {Ii,1, ..., Ii,k} s.t.

for every j ∈ [1..k], 〈cj〉Ii,1 = 〈cj〉Ii,2 = ... = 〈cj〉Ii,k , and (32)

for every j ∈ [1..k],
{

〈v〉Ii,j = 〈cj〉Ii,j and
Ii,j |=T Colorerk(vi, c|yi).

We say that T is k-colorable iff it has a k-colorer.

Notice that ifT is a theorywith equality, thenDefinitions 2 and3are equivalent.

Definition 4. We say that a theory T emulates equality [resp. disequality] if
and only if there exists a finite quantifier-free conjunction of T -literals Eq(x1, x2)
[resp. Neq(x1, x2)] such that, for every T -interpretation I, I |=T Eq(x1, x2) [resp.
I |=T Neq(x1, x2)] if and only if 〈x1〉I = 〈x2〉I [resp. 〈x1〉I �= 〈x2〉I ].

Obviously every theory T with equality emulates both equality and disequal-
ity, with Eq(x1, x2)

def= (x1 = x2) and Neq(x1, x2)
def= ¬(x1 = x2).

Theorem 2. If a theory T is k-colorable for some k ≥ 3 and T emulates equal-
ity and inequality, then the problem of deciding the T -satisfiability of a finite
conjunction of quantifier-free T -literals is T -satisfiable is NP-hard.
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Proof. Identical to that of Theorem 1, referring to Definition 3 instead of
Definition 2 and substituting every positive equality in the form (x1 = x2) with
Eq(x1, x2) and every negative equality in the form ¬(x1 = x2) with Neq(x1, x2). ��

Example 11. Let NLA(R)\{=} be the signature-restriction fragment of NLA(R)
without equality. We notice that NLA(R)\{=} emulates both equality and
inequality:

Eq(x1, x2)
def= (x1 ≥ x2) ∧ (x2 ≥ x1) (33)

Neq(x1, x2)
def= ((x1 − x2) ∗ (x1 − x2)>0). (34)

T is 3-colorable because, like in Example 4, we can define, e.g., k
def= 3, y def= ∅, and

Colorer3(vi, c1, c2, c3)
def
= Eq(c1,−1)∧Eq(c2, 0)∧Eq(c3, 1)∧Eq(v1 ∗ (v2 −1)∗ (v1 +1), 0).

Like inExample 4, it is straighforward to see thatColorer3(v, c1, c2, c3) verifies (30),
(31) and (32), with 〈c1〉Ii,j

def= −1, 〈c2〉Ii,j
def= 0, 〈c3〉Ii,j

def= 1, and 〈vi〉Ii,j
def= 〈cj〉Ii,j

for every j ∈ [1..3]. Thus NLA(R)\{=}-solving is NP-hard by Theorem 2. �

7 Open Issues, Ongoing and Future Work

We believe that our framework can be generalized along the following directions,
which we are currently working on: (i) adopt some more general notion of frag-
ment, so that to extend the range of applicability of Property 2; (ii) extend the
applicability of our technique for the case of theories without equality by pro-
viding a more general definition of Eq(., .) and Neq(., .) enriched with auxiliary
variables –or uninterpreted function/predicate symbols– adapting Theorem2
accordingly; (iii) extend Colorerk(vi, c|yi) so that to use also uninterpreted func-
tion/predicate symbols as auxiliary symbols yi; (iv) to overcome the restriction
of domain size ≥ 3, extend Colorerk(vi, c|yi) to use pairs of variables vi c1, .., ck
instead of single variables to encode vertexes and colors, including ad hoc Neq(., .)
functions.

The above work should be run in parallel and interleaved with an extensive
exploration of the pool of available NP-hard theories, proving the k-colorability
of as many theories/fragments as possible. To this extent, we would like to
investigate the boundary of k-colorability, looking for theories of domain size
≥ 3 which are not k-colorable.
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7. Cyrluk, D., Möller, M.O., Rueß, H.: An efficient decision procedure for the theory
of fixed-sized bit-vectors. In: Grumberg, O. (ed.) Computer Aided Verification.
LNCS, vol. 1254, pp. 60–71. Springer, Heidelberg (1997)
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Abstract. Nominal rewriting is a framework of higher-order rewriting
introduced in (Fernández, Gabbay &Mackie, 2004; Fernández & Gabbay,
2007). Recently, (Suzuki et al., 2015) revisited confluence of nominal
rewriting in the light of feasibility. We report on an implementation of
a confluence tool for (non-closed) nominal rewriting, based on (Suzuki
et al., 2015) and succeeding studies.
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1 Introduction

Rewriting captures various computational aspects in equational reasoning [4].
Higher-order rewriting deals with rewriting of expressions with higher-order
functions and variable binding. Various formalisms for higher-order rewriting
have been considered e.g. [12,14]. Nominal rewriting [6,7] is a formalism of
higher-order rewriting, based on the nominal approach for terms and unifica-
tion [9,16,21].

Confluence is a central property in rewriting [4]. Confluence tools for various
rewriting formalisms have been developed [2,10,17,22], and a yearly competition
for confluence tools has emerged from 2012 [1]. Some basic confluence results for
nominal rewriting have been mentioned in [6]. Recently, these results have been
revisited and extended by the authors [11,19,20] in the light of feasibility and
more-in-depth analysis. In this paper, we report on a confluence tool for nominal
rewriting based on those confluence studies.

2 Preliminaries

In this section, we recall basic notions and fix notations on nominal terms and
rewriting. We refer to [6,7,19] for omitted definitions and intuitive explanations.

A nominal signature Σ is a set of function symbols ranged over by f, g, . . . .
We fix a countably infinite set X of term variables ranged over by X,Y, . . . , and
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a countably infinite set A = {a, b, c, . . . } of atoms ranged over by a, b, c . . .
(i.e. a, b, c, . . . stand for objects and a, b, c, . . . stand for meta-variables). A
swapping is a pair (a b) of atoms. Permutations π are bijections on A with
finite support(π) = {a ∈ A | a �= π(a)}; permutations are represented by
compositions of swappings. P stands for the set of permutations. We put
ds(π, π′) = {a ∈ A | π·a �= π′·a} for any π, π′ ∈ P. Terms are generated by
the grammar

s, t ∈ T ::=a | π·X | [a]t | f t | 〈t1, . . . , tn〉
A term of form π·X is called a suspension. A suspension Id ·X is abbreviated
as X, where Id denotes the identity. We write A(t) and X (t) for the sets of
atoms and term variables occurring in a term t (or any expression t, in general)
where the former includes the atoms in abstractions [a] and in support(π) of
suspensions π·X. The subterm of t at a position p is written as t|p. The term
obtained from a term s by replacing the subterm at position p by a term t is
written as s[t]p. Action π·t and meta-action tπ are defined as follows:

π·a = π(a) aπ = π(a)
π·(π′·X) = (π ◦ π′)·X (π′·X)π = (π ◦ π′ ◦ π−1)·X
π·([a]t) = [π·a](π·t) ([a]t)π = [aπ]tπ

π·(f t) = f π·t (f t)π = f tπ

π·〈t1, . . . , tn〉 = 〈π·t1, . . . , π·tn〉 〈t1, . . . , tn〉π = 〈tπ1 , . . . , tπn〉

A substitution is a map σ : X → T with finite dom(σ) = {X ∈ X | σ(X) �= X}.
The application of a substitution σ on a term t is written as tσ.

A finite set of pairs a#X of a ∈ A and X ∈ X is called a freshness context.
For a freshness context ∇, a ∈ A and s, t ∈ T , the relations ∇ 	 a#t and
∇ 	 s ≈α t are defined as follows:

∇ 	 a#b
a �= b

∇ 	 a#t

∇ 	 a#f t

∇ 	 a#t1 · · · ∇ 	 a#tn

∇ 	 a#〈t1, . . . , tn〉

∇ 	 a#[a]t
∇ 	 a#t

∇ 	 a#[b]t
a �= b

π−1·a#X ∈ ∇
∇ 	 a#π·X

∇ 	 a ≈α a

∇ 	 t1 ≈α s1 · · · ∇ 	 tn ≈α sn

∇ 	 〈t1, . . . , tn〉 ≈α 〈s1, . . . , sn〉
∇ 	 t ≈α s

∇ 	 f t ≈α f s

∇ 	 t ≈α (a b)·s ∇ 	 a#s

∇ 	 [a]t ≈α [b]s
a �= b

∇ 	 t ≈α s

∇ 	 [a]t ≈α [a]s
∀a ∈ ds(π, π′). a#X ∈ ∇

∇ 	 π·X ≈α π′·X

Here a#t is called a freshness constraint, and s ≈α t an α-equivalence constraint.
For (freshness or α-equivalence) constraints γ1, . . . , γn, we write Δ 	 γ1, . . . , γn

if Δ 	 γi for all 1 ≤ i ≤ n. We put (a#t)σ = a#tσ and (s ≈α t)σ = sσ ≈α tσ.
Nominal unification finds a pair 〈Δ,σ〉 of a freshness context Δ and a substitu-
tion σ such that Δ 	 γ1σ, . . . , γnσ from C = {γ1, . . . , γn}; a most general such
pair is an mgu of C [21].
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A triple ∇ 	 l → r of a freshness context ∇ and l, r ∈ T such that l is not a
suspension and X (∇) ∪ X (r) ⊆ X (l) is called a nominal rewrite rule, or simply
rewrite rule. Rewrite rules are identified modulo renaming of term variables. A
nominal rewriting system (NRS for short) is a finite set of rewrite rules. Let
R = ∇ 	 l → r be a rewrite rule. For a freshness context Δ and s, t ∈ T , the
rewrite relation is defined by

Δ 	 s →〈R,π,p,σ〉 t
def⇐⇒ Δ 	 ∇πσ, Δ 	 s|p ≈α lπσ, t = s[rπσ]p

where X (l) ∩ (X (Δ) ∪ X (s)) = ∅. Here, ∇π = {π(a)#X | a#X ∈ ∇}. For an
NRS R, we write Δ 	 s →R t if there exist R ∈ R, π, p and σ such that Δ 	
s →〈R,π,p,σ〉 t. We define Δ 	 s1 ��1 s2 ��2 · · · (��n−1 sn) (��i ∈ {→R, ≈α , . . .})
in the obvious way. Δ 	 s →∗

R t stands for Δ 	 s →R · · · →R t, and Δ 	 s ↓ ≈α
t

stands for Δ 	 s →∗
R ◦ ≈α ◦ ←∗

R t. An NRS R is Church-Rosser modulo ≈α

if Δ 	 s (←R ∪ →R ∪ ≈α )∗
t implies Δ 	 s ↓ ≈α

t. An NRS R is terminating
if there is no infinite rewrite sequence Δ 	 s1 →R s2 →R · · · .

3 Computing Rewrite Steps and Basic Critical Pairs

A most fundamental ingredient in automation of confluence checking is the com-
putation of rewrite steps, that is, to compute a term t such that Δ 	 s →R t
or even (representatives of) all t such that Δ 	 s →R t, from a given NRS R,
a freshness context Δ and a term s. The main challenge here is to find suitable
π and σ such that Δ 	 ∇πσ and Δ 	 s|p ≈α lπσ, when fixing ∇ 	 l → r ∈ R
and a position p in s. Another key ingredient is the computation of basic critical
pairs:

Definition 3.1 (Basic critical pair [20]). Let Ri = ∇i 	 li → ri (i = 1, 2) be
rewrite rules. We assume w.l.o.g. X (l1) ∩ X (l2) = ∅. Let ∇1 ∪ ∇π

2 ∪ {l1 ≈ lπ2 |p}
be unifiable for some permutation π and a non-variable position p and let 〈Γ, σ〉
be an mgu. Then, Γ 	 〈lπ2σ[r1σ]p, rπ

2 σ〉 is called a basic critical pair (BCP for
short) of R1 and R2. The set of BCP of rules in R is denoted by BCP(R).

Again, the main challenge for the computation of (representatives of) all BCPs
is to find suitable π and σ when fixing R1, R2 ∈ R and a position p.

Since π is not fixed here, these problems are not computed by nominal unifi-
cation but by equivariant nominal unification [5]. In what follows, we present our
formalization of equivariant nominal unification and then explain how BCPs are
computed. (The computation of rewrite steps is done by replacing equivariant
unification by equivariant matching, obtained by adding constraints on instan-
tiation.)

3.1 Equivariant Unification

We extend our language by countably infinite sets XA and XP of atom variables
ranged over by A,B, . . . and permutation variables ranged over by P,Q . . .. Ele-
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ments of A ∪ XA are ranged over by α, β, . . . and called atom expressions. Per-
mutation/atomic/term expressions (EP /EA/ET ) are generated by the grammar:

Π,Ψ ∈ EP := P | Id | (v w) | Π ◦ Ψ | Π−1

v, w ∈ EA := Π·α
S, T ∈ ET := v | Π·X | [v]T | f T | 〈T1, . . . , Tn〉

Note here that “Id” etc. are not meta-operations but new constructs. For exam-
ple, we have (((P ◦ Q)−1 · A) B) ∈ EP , (((P ◦ Q)−1 · A) B) · c ∈ EA and
[(((P ◦ Q)−1 · A) B) · c](f 〈P−1 · X,Q−1 · c〉) ∈ ET .

An instantiation is a pair θ = 〈θA, θP 〉 of mappings θA : XA → A and
θP : XP → P. For each Π ∈ EP , v ∈ EA, S ∈ ET , their interpretations [[Π]]θ ∈ P,
[[v]]θ ∈ A, [[S]]θ ∈ T by an instantiation θ are defined by the following:

[[P ]]θ = θP (P ) [[Π·α]]θ = [[Π]]θ·[[α]]θ [[a]]θ = a
[[Id]]θ = Id [[Π·X]]θ = [[Π]]θ·X [[A]]θ = θA(A)

[[(v w)]]θ = ([[v]]θ [[w]]θ) [[[v]T ]]θ = [[[v]]θ][[T ]]θ
[[Π ◦ Ψ ]]θ = [[Π]]θ ◦ [[Ψ ]]θ [[f T ]]θ = f [[T ]]θ
[[Π−1]]θ = [[Π]]−1

θ [[〈T1, . . . , Tn〉]]θ = 〈[[T1]]θ, . . . , [[Tn]]θ〉

Note here that “Id” etc. in the rhs’s of the definitions are not constructs but
meta-operations. For example, if we take θP (P ) = (a b), θP (Q) = (b c) and
θA(A) = a, θA(B) = b then we have [[(((P ◦ Q)−1 · A) B)]]θ = (c b) ∈ P,
[[(((P ◦ Q)−1 · A) B) · c]]θ = b ∈ A and [[[(((P ◦ Q)−1 · A) B) · c](f 〈P−1 · X,Q−1 ·
c〉)]]θ = [b](f 〈(a b) · X, b〉) ∈ T . For a permutation expression Π ∈ EP and a
term expression T ∈ ET , we define action Π·T ∈ ET and meta-action TΠ ∈ ET

as follows:

Π·(Π ′·α) = (Π ◦ Π ′)·α (Π ′·α)Π = (Π ◦ Π ′)·α
Π·(Π ′·X) = (Π ◦ Π ′)·X (Π ′·X)Π = (Π ◦ Π ′ ◦ Π−1)·X
Π·([v]T ) = [Π·v](Π·T ) ([v]T )Π = [vΠ ]TΠ

Π·(f T ) = f Π·T (f T )Π = f TΠ

Π·〈T1, . . . , Tn〉 = 〈Π·T1, . . . , Π·Tn〉 〈T1, . . . , Tn〉Π = 〈TΠ
1 , . . . , TΠ

n 〉

A freshness constraint expression is a pair v#T of v ∈ EA and T ∈ ET and an
α-equivalence constraint expression is a pair S ≈ T of S, T ∈ ET . An equivariant
unification problem (EUP) is a finite set of (freshness or α-equivalence) con-
straint expressions. We put [[v#T ]]θ = [[v]]θ#[[T ]]θ and [[S ≈ T ]]θ = [[S]]θ ≈α [[T ]]θ.
A model of an EUP C = {γ1, . . . , γn} is a triple 〈θ, σ,Δ〉 of an instantiation θ, a
substitution σ and a freshness context Δ such that Δ 	 [[γi]]θσ for all 1 ≤ i ≤ n.
We write 〈θ, σ,Δ〉 |= C if 〈θ, σ,Δ〉 is a model of C.

An answer constraint is a finite set of expressions of the following forms:

A �→ v | P : α �→ β | α �≈ β | X �→ T | α#X | #(X,Π,Π ′)

A triple 〈θ, σ,Δ〉 is a model of an answer constraint S, written as 〈θ, σ,Δ〉 |= S,
if θA(A) = [[v]]θ for any A �→ v ∈ S, θP (P )([[α]]θ) = [[β]]θ for any P : α �→
β ∈ S, [[α]]θ �= [[β]]θ for any α �≈ β ∈ S, σ(X) = [[T ]]θ for all X �→ T ∈ S,
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Δ 	 [[α]]θ#Xσ for all α#X ∈ S, and Δ 	 a#Xσ for any a ∈ ds([[Π]]θ, [[Π ′]]θ)
and #(X,Π,Π ′) ∈ S. For a given EUP C, equivariant unification [5] computes
a finite set M = Sol(C) of answer constraints such that, for any triple 〈θ, σ,Δ〉,
〈θ, σ,Δ〉 |= C iff ∃S ∈ M. 〈θ, σ,Δ〉 |= S.

3.2 Computing Basic Critical Pairs

We now proceed to explain how the representative set of BCPs are computed
using equivariant unification, from two given rewrite rules Ri = ∇i 	 li → ri

(i = 1, 2) and a position p. The procedure consists of the following two steps.

1. Equivariant Unification. We solve the following EUP:

C = ∇1 ∪ ∇P
2 ∪ {l1 ≈ lP2 |p} ∪ {P · ai ≈ Ai | ai ∈ A(l2[ ]p) ∪ A(r1) ∪ A(r2)}

where P ∈ XP , and each Ai is a fresh atom variable. The last component of
the union is added to specify P (a) for all a required to construct lπ2σ[r1σ]p
and rπ

2 σ. If Sol(C) = ∅ then we return the empty set of BCPs.
2. Instantiation. For each S ∈ Sol(C), we compute all (representative of) BCPs

obtained by models of answer constraints S ∈ Sol(C), more formally, a finite
set TS representing {Γ 	 〈lθP (P )

2 σ[r1σ]p, r
θP (P )
2 σ〉 | 〈θ, σ, Γ 〉 |= S}. We obtain

a set BCPS of BCPs from S, l2, r1 and r2 by successively instantiating each
atom variable and atomic expression P ·α in S by all atoms already used
and one new fresh atom (as the representative of all other non-used atoms),
where any instantiation must satisfy Γ 	 γ for all freshness constraints γ
obtained from α#X ∈ S and #(X,Π, Ψ) ∈ S. Note also that due to the
form of the input, all occurrences of P in #(X,Π, Ψ) ∈ S have the form
P ·α. Therefore, any #(X,Π, Ψ) can be replaced with {a#X | a ∈ ds(Π,Ψ)}
when instantiations are completed. (This is not always possible for general
equivariant unification problems e.g. consider #(X, (a b), P ).) Finally, we put
BCPC =

⋃
S∈Sol(C) BCPS .

Example 3.2. Let forall ∈ Σ and consider the following NRS:

Rcom∀ =
{

	 forall [a]forall [b]X → forall [b]forall [a]X}

Consider the overlap at position 11. In the first step, we solve an EUP:

C = {forall [a]forall [b]X ≈ (forall [P ·b]Y )} ∪ {P · a ≈ A}

Then we obtain

Sol(C) =
⎧
⎨

⎩

{Y �→ (forall [b]X), P : a �→ A,P : b �→ a},
{Y �→ (forall [a][(a b)]X), P : a �→ A,P : b �→ b},
{Y �→ (forall [(a C)·b][(a C)]X), C#X,C �≈ a, C �≈ b, P : a �→ A,P : b �→ C}

⎫
⎬

⎭
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By instantiating A (by a, b and c) and C (by a, b, c and d) successively, we
obtain the following seven BCPs from this overlap:

BCPC =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� 〈forall[b]forall[b]forall[a]X, forall[a]forall[b]forall[b]X〉
� 〈forall[c]forall[b]forall[a]X, forall[a]forall[c]forall[b]X〉
� 〈forall[a]forall[b]forall[a]X, forall[b]forall[a]forall[a][(a b)]X〉
� 〈forall[c]forall[b]forall[a]X, forall[b]forall[c]forall[a][(a b)]X〉
c#X � 〈forall[b]forall[b]forall[a]X, forall[c]forall[b]forall[b](a c)·X〉
c#X � 〈forall[a]forall[b]forall[a]X, forall[c]forall[a]forall[b](a c)·X〉
d#X � 〈forall[c]forall[b]forall[a]X, forall[d]forall[c]forall[b](a d)·X〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

4 Proving Confluence Automatically

4.1 Confluence Criteria

We prove (non-)confluence based on the following confluence criteria.

Proposition 4.1 [19]. Let R be an orthogonal NRS that is abstract skeleton
preserving (ASP). Then, R is Church-Rosser modulo ≈α .

Proposition 4.2 [20]. Let R be a linear uniform NRS. Then R is Church-
Rosser modulo ≈α if Γ 	 u →= ◦ ≈α ◦ ←∗ v and Γ 	 u →∗ ◦ ≈α ◦ ←= v for
any Γ 	 〈u, v〉 ∈ BCP(R).

Proposition 4.3 [20]. Let R be a terminating uniform NRS. Then R is
Church-Rosser modulo ≈α if and only if Γ 	 u ↓ ≈α

v for any Γ 	 〈u, v〉 ∈
BCP(R).

Proposition 4.4 [11]. Let R be a left-linear uniform NRS. Then R is Church-
Rosser modulo ≈α if Γ 	 u −→� ◦ ≈α v for any Γ 	 〈u, v〉 ∈ BCPin(R) and
Γ 	 u −→� ◦ ≈α ◦ ←∗ v for any Γ 	 〈u, v〉 ∈ BCPout(R).

Here, an NRS is orthogonal if it is left-linear and has no proper BCPs [19];
Γ 	 s →= t stands for Γ 	 s → t or s = t; Γ 	 s −→� t stands for the parallel
rewrite relation [19]; and BCPin(R) and BCPout(R) denote the sets of inner and
outer BCPs [11], respectively.

The ASP condition and uniformness of NRSs are decidable [6,19]. To check
the joinability conditions in Propositions 4.2 and 4.4, sets {w | Γ 	 u →= w}
and {w | Γ 	 u −→� w} are computed using the procedure for computing rewrite
steps. For checking confluence criteria of Proposition 4.3, termination checking
is required, which we explain in the next subsection.

4.2 Proving Termination

In this subsection, we present a simple technique to show termination of NRSs.
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Definition 4.5. Let Σ be a nominal signature, and F a arity-fixed first-order
signature given by F = {f | f ∈ Σ}∪{�, λ}∪{pairn | n ≥ 0}, where � is of arity
0, λ and all f ∈ Σ are of arity 1, and pairn is of arity n for each n. We define a
translation Φ from nominal terms over Σ to first-order terms over F (with the
set X of variables) as follows:

Φ(a) = � Φ(π·X) = X Φ([a]t) = λ(Φ(t))
Φ(f t) = f(Φ(t)) Φ(〈t1, . . . , tn〉) = pairn(Φ(t1), . . . , Φ(tn))

For an NRS R, we define a first-order term rewriting system Φ(R) by: Φ(R) =
{Φ(l) → Φ(r) | ∇ 	 l → r ∈ R}.

Theorem 4.6. If Φ(R) is terminating then R is terminating modulo ≈α .

Proof. The claim follows from the fact that for any Δ, s, t, (i) Δ 	 s ≈α t implies
Φ(s) = Φ(t) and (ii) Δ 	 s →R t implies Φ(s) →Φ(R) Φ(t). ��

Remark 4.7. In [8], nominal terms are given by the following grammar:

t, s ::=a | π·X | [a]t | f(t1, . . . , tn)

It is easy to modify the translation Φ to adapt to this definition. In [8, Definition
6], recursive path order on nominal terms for proving termination of “closed
rewriting” has been given. It is easy to see that the order can be obtained by
combining the translation Φ and recursive path order on first-order terms.

5 Implementation and Experiments

Our tool nrbox (nominal rewriting toolbox) is implemented in Standard ML of
New Jersey1. It reads an NRS R from the input and tries to prove whether it is
Church-Rosser modulo ≈α or not—it prints out “YES” (“NO”) if it successfully
proves that R is (resp. is not) Church-Rosser modulo ≈α and “MAYBE” if it
fails to prove or disprove that R is Church-Rosser modulo ≈α .

The source code of the tool is obtained from http://www.nue.ie.niigata-u.ac.
jp/tools/nrbox/. It consists of about 4500 lines of code, and roughly one third of
the code is devoted to equivariant unification. The format of input NRSs follows
a specification bundled in the distribution. To prove the termination of NRSs
by the method described in Sect. 4.2, the tool requires an external termination
prover for first-order term rewriting systems.

We have tested our confluence prover with 30 NRSs, collected from the liter-
ature [3,6,8] and constructed during our studies [11,18–20]. All tests have been
performed in a PC with one 2.50 GHz CPU and 4G memory. We have used TTT
[13] with 20 s timeout as the external termination prover for first-order term
rewriting systems.

Summary of experiments is shown in Table 1. The column below “NRS”
shows descriptions of the input NRSs. The columns below “Orth.”, “Strong”,
1 http://www.smlnj.org/

http://www.nue.ie.niigata-u.ac.jp/tools/nrbox/
http://www.nue.ie.niigata-u.ac.jp/tools/nrbox/
http://www.smlnj.org/
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Table 1. Summary of experiments

NRS Orth. Strong K.-B. Parallel

1 α-reduction rule ([6] Intro.) MAYBE YES MAYBE YES

2 Eta: η-reduction rule ([6] Intro.) YES YES YES YES

3 η-expansion rule ([6] Intro.) MAYBE MAYBE MAYBE MAYBE

4 R∗
σ: subst. for λ with σε (Ex. 43 [6]) MAYBE MAYBE YES YES

5 β-reduction {Beta} ∪ R∗
σ (Ex. 43 [6]) MAYBE MAYBE MAYBE MAYBE

6 a fragment of ML (Ex. 43 [6]) MAYBE MAYBE MAYBE MAYBE

7 PNF of FOF (Ex. 44 [6]) MAYBE MAYBE NO MAYBE

8 PNF of FOF with addition (Ex. 44 [6]) MAYBE MAYBE NO MAYBE

9 non-joinable trivial CP (Lem. 56 [6]) MAYBE MAYBE MAYBE MAYBE

10 {a#X � X → [a]X} (Lem. 56 [6]) MAYBE MAYBE MAYBE MAYBE

11 {Eta, ⊥} (Ex. 5 [8]) MAYBE MAYBE NO MAYBE

12 {Eta, ⊥} with CP (Ex. 5 [8]) MAYBE YES YES YES

13 summation (Ex. 6 [8]) MAYBE MAYBE NO MAYBE

14 summation with CP (Ex. 6 [8]) MAYBE MAYBE YES MAYBE

15 {� f(X) → [a]X} (Ex. 1.2 [18]) MAYBE MAYBE NO MAYBE

16 {a#X � f(X) → [a]X} (Ex. 4.7 [18]) YES YES YES YES

17 Rσ: subst. for λ with σvarε (Ex. 8 [19]) YES MAYBE YES YES

18 β-reduction {Beta} ∪ Rσ MAYBE MAYBE MAYBE MAYBE

19 βη-reduction {Beta} ∪ {Eta} ∪ Rσ MAYBE MAYBE MAYBE MAYBE

20 Ruc-η (Ex. 17 [19]) MAYBE MAYBE MAYBE MAYBE

21 Ruc-η−exp (Ex. 19 [19]) MAYBE MAYBE NO MAYBE

22 μ-substitution for λμ-term ([15]) YES MAYBE YES YES

23 {� f(X) → f([a]X)} (Ex. 4.3 [3]) MAYBE MAYBE MAYBE MAYBE

24 NNF of {¬, ∀, ∧}-form. with swap (Ex. 5.5 [3]) MAYBE YES YES YES

25 Com∀: com. rule for ∀ (Ex. 5 [20]) MAYBE YES MAYBE MAYBE

26 PNF of {∀, ∧}-form. (Ex. 7 [20]) MAYBE MAYBE NO MAYBE

27 PNF of {∀, ∧}-form. + Com∀ (Ex. 12 [20]) MAYBE MAYBE MAYBE MAYBE

28 NNF of {¬, ∀, ∃}-form. (Ex. 29 [20]) MAYBE MAYBE YES MAYBE

29 NNF of FOF MAYBE MAYBE YES MAYBE

30 NNF of FOF without DNE YES YES YES YES

(�YES, �NO) (5,0) (7,0) (11,7) (9,0)
∑

time (msec.) 611 1367 4377 2217
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“K.-B.” and “Parallel” show the results of applying the confluence proving meth-
ods from Propositions 4.1, 4.2 (with an approximation of →∗ by →=), 4.3 and
4.4 (with an approximation of →∗ by −→� ), respectively—YES denotes for the
success for proving, NO denotes for the success of disproving, and MAYBE denotes
failure. For each method, the last two lines of the table show the number of
successes for proving/disproving confluence and the total time for checking all
of the examples.

Using the combination of all the methods, our prover succeeded in prov-
ing confluence of 13 examples and non-confluence of 7 examples. All details of
the experiments are available on the webpage http://www.nue.ie.niigata-u.ac.
jp/tools/nrbox/experiments/ijcar16/.
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Abstract. This paper introduces some novel features of Maude 2.7.
We have added support for: (i) built-in order-sorted unification modulo
associativity, commutativity, and identity, (ii) built-in variant generation,
(iii) built-in order-sorted unification modulo a finite variant theory, and
(iv) symbolic reachability modulo a finite variant theory.

1 Introduction

Maude1 is a language and a system based on rewriting logic [5]. Maude provides
a precise mathematical model thanks to its logical basis and its initial model
semantics, allowing its formal tool environment to be used in three, mutually
reinforcing ways: as a declarative programming language, as an executable formal
specification language, and as a formal verification system.

Order-sorted unification and narrowing modulo axioms were first available in
2009 as part of the Maude 2.4 release [4]. Unification was available as a built-in
feature in Maude while narrowing was available in Full Maude, an extension
of Maude written in Maude itself. Unification worked for any combination of

F. Durán was partially supported by Spanish MINECO under grant TIN 2014-
52034-R and Universidad de Málaga (Campus de Excelencia Internacional Andalućıa
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symbols being either free or associative-commutative (AC). Narrowing worked
for modules having only rules and axioms and relied on the built-in unification
algorithm. It supported the concept of symbolic reachability analysis of terms
with logical variables, computing suitable substitutions for the variables in both
the origin and the destination terms [11].

Unification and narrowing were updated in 2011 as part of the Maude 2.6
release [7]. First, the built-in unification was extended to allow any combination
of symbols being either free, commutative (C), associative-commutative (AC),
or associative-commutative with an identity symbol (ACU). The performance
was dramatically improved, allowing further development of other techniques in
Maude. Second, the concept of variant [6] was added to Maude. The introduc-
tion of variants led to a significant improvement in the reasoning capabilities in
Maude: variant generation, variant-based unification, and symbolic reachability
based on variant-based unification were all available for the first time. However,
all the variant-based features and the narrowing-based reachability were only
available in Full Maude, and for a restricted class of theories called strongly
right irreducible.

In this paper, we present the new unification and narrowing features available
in the most recent Maude 2.7 version. First, the built-in unification algorithm
allows any combination of symbols being free, C, AC, ACU, CU (commutativity
and identity), U (identity), Ul (left identity), and Ur (right identity). Second,
variant generation and variant-based unification are implemented as built-in
features in Maude. This built-in implementation works for any convergent the-
ory modulo the axioms described above, both allowing very general equational
theories (beyond the strongly right irreducible) and boosting the performance
not only of these features but of their applications, described in Sect. 6. Third,
narrowing-based reachability is still only available in Full Maude but uses the
built-in variant-based unification.

2 Built-in Order-Sorted Unification Modulo Axioms

Maude currently provides an order-sorted Ax-unification algorithm for all order-
sorted theories (Σ, Ax) such that the order-sorted signature Σ is preregular mod-
ulo Ax (see [9, Footnote 2]) and the axioms Ax associated to function symbols
can have any combination (even empty) of the following equational attributes:
the comm attribute (C), the assoc comm attributes (AC), the assoc comm id
attributes (ACU), the comm id attributes (CU), the id attribute (U), the left
id attribute (Ul), and the right id attribute (Ur). The reason for excluding
the assoc attribute without comm is the fact that associative unification is not
finitary. Maude 2.7 provides an Ax-unification command of the form

unify [n] in 〈ModId 〉 :

〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k 〉 =? 〈Term’-k 〉 .

where k ≥ 1, n is an optional argument providing a bound on the number of
unifiers requested, and ModId is the module where the command takes place.
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Let us show some examples of unification with an identity attribute, which
is the new feature available in Maude 2.7. Let us consider first a module using
the left id attribute.

mod LEFTID -UNIFICATION -EX is
sorts Magma Elem . subsorts Elem < Magma .
op : Magma Magma -> Magma [left id: e] .
ops a b c d e : -> Elem .

endm

Then the following two unification problems have a different meaning, where
we have swapped the position of the variables. First, when we unify two terms
where variables of sort Magma are at the left of the terms, we have both a syn-
tactic unifier and a unifier modulo identity; note that unification may require
the introduction of new variables in the modulo case and they are indicated in
Maude using the notation #n:Sort, where new variables start with number 1.

Maude> unify in LEFTID-UNIFICATION-EX : X:Magma a =? (Y:Magma a) a .
Solution 1 Solution 2
X:Magma --> a X:Magma --> #1:Magma a
Y:Magma --> e Y:Magma --> #1:Magma

When the variables are instead at the right side of the terms of sort Magma ,
there is clearly no unifier.

Maude> unify in LEFTID-UNIFICATION-EX : a X:Magma =? (a a) Y:Magma .
No unifier.

Symmetric results could be obtained for a module with right identity (right
id: e ) instead of left identity. And similar results could be obtained for a module
with an identity symbol (id: e) instead of left or right identity. A different result
is obtained when we add commutativity.

mod COMM -ID-UNIFICATION -EX is
sorts Magma Elem . subsorts Elem < Magma .
op : Magma Magma -> Magma [comm id: e] .
ops a b c d e : -> Elem .

endm

When we unify two terms where variables of sort Magma are at the left of the
terms, we have both a syntactic unifier (Solution 2) and a unifier modulo identity
and commutativity (Solution 1), but the latter is duplicated (Solution 3) because
most general unifiers may not always be returned.

Maude> unify in COMM-ID-UNIFICATION-EX : X:Magma a =? (Y:Magma a) a .
Solution 1 Solution 2 Solution 3
X:Magma --> a X:Magma --> a #1:Magma X:Magma --> a
Y:Magma --> e Y:Magma --> #1:Magma Y:Magma --> e

3 Built-in Variant Generation

Given an equational theory (Σ, E ∪ Ax) where
−→
E is a set of convergent oriented

equations modulo the axioms Ax, the (E,Ax)-variants [6,12] of a term t are the
set of all pairs consisting, each one, of a substitution σ and the (E,Ax)-canonical
form of tσ. A preorder relation of generalization that holds between such pairs
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provides a notion of most general variants and also of completeness of a set of
variants. An equational theory has the finite variant property (or it is called a
finite variant theory) iff there is a finite and complete set of most general variants
for each term. Whether an equational theory has the finite variant property is
undecidable [2] but a technique based on the dependency pair framework has
been developed in [12] and a semi-decision procedure that works well in practice
was introduced in [3].

At a practical level, variants are generated using a narrowing strategy. Nar-
rowing with oriented equations E (with or without modulo Ax) enjoys well-
known completeness results. But narrowing can be quite inefficient, generating a
huge search space, and different narrowing strategies have been devised to reduce
the search space while remaining complete. The folding variant narrowing strat-
egy is proved in [12] to be complete for variants and it is able to terminate for
all inputs if the theory has the finite variant property.

The equational theories that are admissible for variant generation are as
follows. Let fmod (Σ, E ∪Ax) endfm be an order-sorted functional module where
E is a set of equations specified with the eq keyword and the attribute variant,
and Ax is a set of axioms such that the axioms satisfy the restrictions explained in
Sect. 2. Furthermore, the equations E must be unconditional, not using the owise
attribute, and confluent, terminating, sort-decreasing, and coherent modulo Ax
(we then call the equational theory convergent).

Any system module mod (Σ, G ∪ E ∪ Ax,R) endm where G is an additional
set of equations and R is a set of rules, is also considered admissible for variant
generation if the equational part (Σ, E ∪ Ax) satisfies the conditions described
above. Note that Maude requires that the equations E used for variant generation
(and variant-based unification) should be clearly distinguished from the standard
equations G in Maude by using the attribute variant (both E and G are used
for term simplification but R not).

Maude provides a variant generation command of the form:

get variants [ n ] in 〈ModId 〉 : 〈Term 〉 .

where n is an optional argument providing a bound on the number of variants
requested, so that if the cardinality of the set of variants is greater than the
specified bound, the variants beyond that bound are omitted; and ModId is the
module where the command takes place.

For example, consider the following equational theory for exclusive or.
fmod EXCLUSIVE-OR is

sorts Nat NatSet . subsort Nat < NatSet .
op 0 : -> Nat .
op s : Nat -> Nat .
op mt : -> NatSet .
op _*_ : NatSet NatSet -> NatSet [assoc comm] .
vars X Z : [NatSet] .
eq [idem] : X * X = mt [variant] .
eq [idem-Coh] : X * X * Z = Z [variant] .
eq [id] : X * mt = X [variant] .

endfm

We can check that the EXCLUSIVE-OR module above has the finite variant prop-
erty by simply generating the variants for the exclusive-or symbol ∗.
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Maude> get variants in EXCLUSIVE-OR : X * Y .
Variant 1 Variant 7
[NatSet]: #1:[NatSet] * #2:[NatSet] ......... [NatSet]: %1:[NatSet]
X --> #1:[NatSet] X --> %1:[NatSet]
Y --> #2:[NatSet] Y --> mt

The above output illustrates a difference between unifiers returned by the
built-in unification modulo axioms and substitutions (or unifiers) returned by
variant generation or variant-based unification: two forms of fresh variables, the
former #n:Sort and the new %n:Sort . Note that the two forms have different
counters.

We can consider a more complex equational theory such as the one of Abelian
groups specified in the following module; this theory could not be handled by
Maude 2.6 because it is not strongly right irreducible.

fmod ABELIAN-GROUP is
sorts Elem .
op _+_ : Elem Elem -> Elem [comm assoc] .
op -_ : Elem -> Elem .
op 0 : -> Elem .
vars X Y Z : Elem .
eq X + 0 = X [variant] .
eq X + (- X) = 0 [variant] .
eq X + (- X) + Y = Y [variant] .
eq - (- X) = X [variant] .
eq - 0 = 0 [variant] .
eq (- X) + (- Y) = -(X + Y) [variant] .
eq -(X + Y) + Y = - X [variant] .
eq -(- X + Y) = X + (- Y) [variant] .
eq (- X) + (- Y) + Z = -(X + Y) + Z [variant] .
eq -(X + Y) + Y + Z = (- X) + Z [variant] .

endfm

The generation of the variants for the addition symbol provides 47 variants:

Maude> get variants in ABELIAN-GROUP : X + Y .
Variant 1 Variant 47
Elem: #1:Elem + #2:Elem ................. Elem: - (%2:Elem + %3:Elem)
X --> #1:Elem X --> %4:Elem + - (%1:Elem + %2:Elem)
Y --> #2:Elem Y --> %1:Elem + - (%3:Elem + %4:Elem)

And the minus sign symbol has four variants:

Maude> get variants in ABELIAN-GROUP : - X .
Variant 1 Variant 2 Variant 3 Variant 4
Elem: - #1:Elem Elem: %1:Elem Elem: 0 Elem: %1:Elem + - %2:Elem
X --> #1:Elem X --> - %1:Elem X --> 0 X --> %2:Elem + - %1:Elem

Another interesting feature is that variant generation is incremental. In this
way we are able to support general convergent equational theories modulo axioms
that need not have the finite variant property. Let us consider the following
functional module for addition NAT-VARIANT that does not have the finite variant
property.

fmod NAT-VARIANT is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
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vars X Y : Nat .
eq [base] : 0 + Y = Y [variant] .
eq [ind] : s(X) + Y = s(X + Y) [variant] .

endfm

On the one hand, it is possible to have a term with a finite number of most
general variants although the theory does not have the finite variant property.
For instance, the term s(0) + X has the single variant s(X).

Maude> get variants in NAT-VARIANT : s(0) + X .
Variant 1
Nat: s(#1:Nat)
X --> #1:Nat

On the other hand, we can incrementally generate the variants of a term that we
suspect does not have a finite number of most general variants. For instance, the
term X + s(0) has an infinite number of most general variants. In such a case,
Maude can either output all the variants to the screen (and the user can stop
the process whenever she wants), or generate the first n variants by including a
bound n in the command.

Maude> get variants [10] in NAT-VARIANT : X + s(0) .
Variant 1 Variant 10
Nat: #1:Nat + s(0) ....................................... Nat: s(s(s(s(s(0)))))
X --> #1:Nat X --> s(s(s(s(0))))

Note that a third approach is to incrementally increase the bound and, if we
obtain a number of variants smaller than the bound, then we know for sure that
it had a finite number of most general variants.

4 Built-in Variant-Based Unification

The most natural application of variant generation is unification in an equational
theory (Σ, E ∪ Ax) where the equations E can be oriented into convergent rules−→
E modulo Ax. Intuitively, when we extend such an equational theory (Σ, E∪Ax)
with a new equation eq(x,x) = true, two terms t and t′ unify with substitution
α modulo the equational theory if and only if (true, α) is a variant of the term
eq(t, t′). The key distinction is one between dedicated unification algorithms for a
limited set of axioms Ax (as in Sect. 2) and generic unification algorithms which
can be applied to a much wider range of user-definable theories (namely conver-
gent theories modulo axioms) and can even deal with incremental generation of
infinite sets of unifiers.

Given a module ModId satisfying the requirements of Sect. 3 and being a
finite variant theory, Maude provides a command for equational unification:

variant unify [ n ] in 〈ModId 〉 :

〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k 〉 =? 〈Term’-k 〉 .

where k ≥ 1 and n is an optional argument providing a bound on the number of
unifiers requested, so that if the cardinality of the set of unifiers is greater than
the specified bound, the unifiers beyond that bound are omitted.
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Similarly to the incremental generation of variants, one can obtain an incre-
mental number of unifiers for a given unification problem. Let us consider again
the NAT-VARIANT module that does not have the finite variant property. On the
one hand, it is possible to have a finite number of most general unifiers for a
unification problem although the theory does not have the finite variant property.

Maude> variant unify in NAT-VARIANT : s(0) + X =? s(s(s(0))) .
Unifier #1
X --> s(s(0))

On the other hand, we can approximate the number of unifiers of a unification
problem that we suspect does not have a finite number of most general unifiers.
For instance, the unification problem between terms X + s(0) and s(s(s(0)))
has only one solution X �→ s(s(0)) and we can obtain that solution by including
a bound in the command, as it is also done for variant generation.

Maude> variant unify [1] in NAT-VARIANT : X + s(0) =? s(s(s(0))) .
Unifier #1
X --> s(s(0))

However, if we tried to obtain a second unifier, Maude would not stop because
it would keep trying to generate a second unifier for a unification problem that
has only one unifier, without knowing that it could stop.

5 Narrowing-Based Symbolic Reachability Analysis

The modern application of narrowing, when the rules R are understood as transi-
tion rules, is that of symbolic reachability analysis [15]. Specifically, we consider
transition systems specified by order-sorted rewrite theories of the form mod
(Σ, E ∪ Ax,R) endm where: (i) E ∪ Ax satisfies the requirements of Sect. 3, and
(ii) the transition rules R are E ∪ Ax-coherent and topmost (so that rewriting
is always done at the top of the term). Then, narrowing modulo E ∪ Ax is a
complete deductive method [15] for symbolic reachability analysis, i.e., for solv-
ing existential queries of the form ∃x : t →∗ t′ where x are all the variables
appearing in t and t′, in the sense that the formula holds for (Σ, E ∪ Ax,R) iff
there is a narrowing sequence t �∗

R,E∪Ax u such that u and t′ have an (E ∪Ax)-
unifier. Narrowing-based reachability was already introduced in Maude 2.4 [4]
and Maude 2.6 [7] but now can be performed modulo theories with the finite
variant property.

This symbolic reachability is supported by Full Maude’s search command:

(search [ n,m ] in 〈ModId 〉 : 〈Term-1 〉 〈SearchArrow 〉 〈Term-2 〉 .)

where: n and m are optional arguments providing, respectively, a bound on the
number of solutions and the maximum depth of the search; ModId is the mod-
ule where the search takes place; Term-1 is the starting term, which cannot be
a variable but may contain variables; Term-2 is the term specifying the pattern
that has to be reached (some variables possibly shared with the starting term);
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and SearchArrow is an arrow indicating the form of the narrowing proof,
where ~>1 indicates a narrowing proof consisting of exactly one step; ~>+ indi-
cates a proof of one or more steps; ~>* indicates a proof of none, one, or more
steps; and ~>! indicates that the reached term cannot be further narrowed.

Consider again the typical example in Maude of a vending machine (e.g. in
[7]) but now extended with the theory for Abelian groups shown above; the rules
are coherent modulo the Abelian group theory by using a generic variable Money.
(mod AG-VENDING is

sorts Item Items State Coin Money .
subsort Item < Items . subsort Coin < Money .
op : Items Items -> Items [assoc comm id: mt] . op mt : -> Items .
op <_|_> : Money Items -> State .
ops a c : -> Item . ops q $ : -> Coin .

rl < M:Money | I:Items > => < M:Money + - $ | I:Items c > .
rl < M:Money | I:Items > => < M:Money + - q + - q + - q | I:Items a > .

eq $ = q + q + q + q [variant] . --- Property of the original vending
machine example

op _+_ : Money Money -> Money [comm assoc] .
op -_ : Money -> Money .
op 0 : -> Money .
vars X Y Z : Money .
... (here come the variant equations shown before for Abelian Group)

endm)

We can use the narrowing search command to answer the question: Is there any
combination of one or more coins that returns exactly an apple and a cake? This
can be done by searching for states that are reachable from a term < M:Money
| mt > and match the pattern < 0 | a c > at the end.

Maude> (search [1] in AG-VENDING : < M:Money | mt > ~>* < 0 | a c > .)
Solution 1
M:Money --> q + q + q + q + q + q + q

Note that we must restrict the search to just one solution, because narrowing
does not terminate for this reachability problem.

6 Applications

Unification and narrowing in Maude have opened up many applications. First,
variant-based unification itself as described in Sect. 4. Several formal reasoning
tools that either rely on unification capabilities, such as termination proofs [8]
and proofs of local confluence and coherence [9], or rely on narrowing capabilities
such as narrowing-based theorem proving [17] or testing [16]. Also, narrowing-
based reachability analysis has evolved into logical model checking [1,11], where
standard model checking cannot handle either infinite sets of initial states or infi-
nite sets of reachable states but performing model checking from initial states
with logical variables can handle these broader possibilities symbolically. The
area of cryptographic protocol analysis has also benefited: the Maude-NPA
tool [10] is the most successful example of combining narrowing and unifica-
tion features in Maude. The Tamarin tool [13] also uses a variant-generation
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algorithm, although only for the Diffie-Hellman theory. Finally, several deci-
sion procedures for formula satisfiability modulo equational theories have been
provided based on narrowing [18] or by variant generation in finite variant the-
ories [14].
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Abstract. An algorithm for generating interpolants for formulas which
are conjunctions of quadratic polynomial inequalities (both strict and
nonstrict) is proposed. The algorithm is based on a key observation that
quadratic polynomial inequalities can be linearized if they are concave.
A generalization of Motzkin’s transposition theorem is proved, which is
used to generate an interpolant between two mutually contradictory con-
junctions of polynomial inequalities, using semi-definite programming in
time complexity O(n3 + nm), where n is the number of variables and
m is the number of inequalities (This complexity analysis assumes that
despite the numerical nature of approximate SDP algorithms, they are
able to generate correct answers in a fixed number of calls.). Using the
framework proposed in [22] for combining interpolants for a combination
of quantifier-free theories which have their own interpolation algorithms,
a combination algorithm is given for the combined theory of concave
quadratic polynomial inequalities and the equality theory over uninter-
preted functions (EUF ).

Keywords: Program verification · Interpolant · Concave quadratic
polynomial · Motzkin’s theorem · SOS · Semi-definite programming

1 Introduction

It is well known that the bottleneck of existing verification techniques includ-
ing theorem proving, model-checking, abstraction and so on is the scalability.
Interpolation-based technique provide a powerful mechanism for local and mod-
ular reasoning, which provides an effective solution to this challenge. The study
of interpolation was pioneered by Kraj́ic̆ek [14] and Pudlák [19] in connection
with theorem proving, by McMillan in connection with model-checking [16], by
Graf and Säıdi [9], McMillan [17] and Henzinger et al. [10] in connection with
abstraction like CEGAR, by Wang et al. [11] in connection with machine-learning
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based invariant generation. Since then, developing efficient algorithms for gener-
ating interpolants for various theories and their use in verification have become
an active research area [3,10,12,13,17,18,20,26,26]. In addition, D’Silva et al.
[6] investigated strengths of various interpolants.

Methods have been developed for generating interpolants for Presburger
arithmetic, decidable fragments of first-order logic, theory of equality over unin-
terpreted functions as well as their combination. However, in the literature, there
is little work on how to synthesize non-linear interpolants, although nonlinear
polynomials inequalities have been found useful to express invariants for software
involving number theoretic functions as well as hybrid systems [27,28]. In [5],
Dai et al. had a first try and gave an algorithm for generating interpolants for
conjunctions of mutually contradictory nonlinear polynomial inequalities based
on the existence of a witness guaranteed by Stengle’s Positivstellensatz [23] that
can be computed using semi-definite programming (SDP). Their algorithm is
incomplete in general but if every variable ranges over a bounded interval (called
Archimedean condition), then their algorithm is complete. A major limitation of
their work is that two mutually contradictory formulas α, β must have the same
set of variables.

We propose an algorithm to generate interpolants for quadratic polynomial
inequalities (including strict inequalities). Based on the insight that for analyz-
ing the solution space of concave quadratic polynomial inequalities, it suffices
to linearize them. A generalization of Motzkin’s transposition theorem is proved
to be applicable for concave quadratic polynomial inequalities (both strict and
nonstrict). Using this, we prove the existence of an interpolant for two mutually
contradictory conjunctions α, β of concave quadratic polynomial inequalities.
The proposed algorithm is recursive with the basis step of the algorithm relying
on an additional condition (called the NSC condition). In this case, an inter-
polant output by the algorithm is a strict or a nonstrict inequality similar to the
linear case. If NSC is not satisfied, then linear equalities on variables are derived
resulting in simpler interpolation problems over fewer variables; the algorithm
is recursively invoked on these smaller problem. The output of this recursive
algorithm is in general an interpolant that is a disjunction of conjunction of
polynomial inequalities. NSC can be checked in polynomial time by SDP algo-
rithms; even though such algorithms are not exact and produce numerical errors,
they often generate acceptable results in a few calls. It is proved that the inter-
polation algorithm is of polynomial time complexity in the number of variables
and polynomial inequalities given that the time complexity of SDP algorithms is
polynomial in the size of their input; this assumes that an SDP tool returns an
approximate answer sufficient to generate a correct interpolant in a fixed number
of calls.

Later, we develop a combination algorithm for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial inequali-
ties and equality theory over uninterpreted function symbols (EUF ). We use the
hierarchical calculus framework proposed in [22] and used in [20] for combining
linear inequalities with EUF. We show that concavity condition on quadratic
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polynomials inequalities disallows derivation of nonlinear equalities of degree
≥ 2; further, under NSC on concave quadratic polynomial inequalities, only
linear inequalities can be used to derive possible linear equalities. As a result,
the algorithm for deducing equalities from linear inequalities in [20] as well as
the SEP algorithm for separating terms expressed in common symbols in α, β
can be used for interpolation generation for the combined theory of quadratic
polynomial inequalities and EUF.

A prototypical implementation indicates the scalability and efficiency of the
proposed approach.

The paper is organized as follows. After introducing some preliminaries in
the next section, Sect. 3 discusses the linearization of concave quadratic polyno-
mial. Section 4 presents an approach for computing an interpolant for two mutu-
ally contradictory conjunctions α, β of concave quadratic polynomial inequalities
using SDP. Section 5 extends this algorithm to the combined theory of concave
quadratic inequalities and EUF. Section 6 presents a preliminary implementation
of the proposed algorithms and gives some comparison with related work. We
draw a conclusion in Sect. 7. Because of space limit, we omit all proofs, please
refer to the full version [8] for the details.

2 Preliminaries

Let Q and R be the set of rational and real numbers, respectively. Let R[x] be the
polynomial ring over R with variables x = (x1, · · · ,xn). An atomic polynomial
formula ϕ is of the form p(x) � 0, where p(x) ∈ R[x], and � can be any of >,≥.
Let PT(R) be a first-order theory of polynomials with real coefficients. In this
paper, we are focusing on quantifier-free fragment of PT(R). Later we discuss
quantifier-free theory of equality of terms over uninterpreted function symbols
and its combination with the quantifier-free fragment of PT(R). Let Σ be a set
of (new) function symbols and PT(R)Σ be the extension of the quantifier-free
theory with uninterpreted function symbols in Σ.

For convenience, we use ⊥ to stand for false and � for true in what follows.
Craig showed that given two formulas φ and ψ in a first-order logic T s.t.

φ |= ψ, there always exists an interpolant I over the common symbols of φ and ψ
s.t. φ |= I, I |= ψ. In the verification literature, this terminology has been abused
following [17], where a reverse interpolant (coined by Kovács and Voronkov in
[13]) I over the common symbols of φ and ψ is defined by

Definition 1. Given φ and ψ in a theory T s.t. φ ∧ ψ |=T ⊥, a formula I is a
(reverse) interpolant of φ and ψ if (i) φ |=T I; (ii) I ∧ ψ |=T ⊥; and (iii) I only
contains common symbols and free variables shared by φ and ψ.

Clearly, φ |=T ψ iff φ ∧ ¬ψ |=T ⊥. Thus, I is an interpolant of φ and ψ iff I is
a reverse interpolant of φ and ¬ψ. We abuse the terminology by calling reverse
interpolants as interpolants.
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2.1 Motzkin’s Transposition Theorem

Motzkin’s transposition theorem [21] is one of the fundamental results about
linear inequalities; it also served as a basis of the interpolant generation algorithm
for the quantifier-free theory of linear inequalities in [20].

Theorem 1 (Motzkin’s transposition theorem [21]). Let A and B be
matrices and let α and β be column vectors. Then there exists a vector x with
Ax ≥ α and Bx > β, iff for all row vectors y, z ≥ 0:

(i) if yA + zB = 0 then yα + zβ ≤ 0;

(ii) if yA + zB = 0 and z �= 0 then yα + zβ < 0.

The following variant of Theorem 1 is used later.

Corollary 1. Let A ∈ Rr×n and B ∈ Rs×n be matrices and α ∈ Rr and β ∈ Rs

be column vectors, where Ai, i = 1, . . . , r is the ith row of A and Bj , j = 1, . . . , s
is the jth row of B. There does not exist a vector x with Ax ≥ α and Bx > β,
iff there exist real numbers λ1, . . . , λr ≥ 0 and η0, η1, . . . , ηs ≥ 0 s.t.

r∑

i=1

λi(Aix − αi) +
s∑

j=1

ηj(Bjx − βj) + η0 ≡ 0 with
s∑

j=0

ηj > 0. (1)

3 Concave Quadratic Polynomials and their Linearization

Given n × n-matrix A, we say A is negative semi-definite, written as A 	 0, if
for every vector x, xTAx ≤ 0, and positive semi-definite, written as A 
 0, if
for every vector x, xTAx ≥ 0. Let A = (aij) and B = (bij) be two matrices in
Rm×n, the inner product of A and B, denoted by 〈A,B〉, is defined as 〈A,B〉 =
m∑

i=1

n∑

j=1

aij × bij .

Definition 2 (Concave Quadratic). A polynomial f ∈ R[x] is called concave
quadratic (CQ) if the following two conditions hold:

(i) f has total degree at most 2, i.e., it has the form f = xTAx+2αTx+a, where
A is a real symmetric matrix, α is a column vector and a ∈ R;

(ii) the matrix A is negative semi-definite.

It is easy to see that if f ∈ R[x] is linear, then f is CQ because its total degree
is 1 and the corresponding A is 0 which is of course negative semi-definite.

A quadratic polynomial f(x) = xTAx + 2αTx + a can also be represented as

an inner product of matrices, i.e.,
〈

P,

(
1 xT

x xxT

)〉

, with P as
(

a αT

α A

)

.
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3.1 Linearization

Given a quadratic polynomial f(x) =
〈

P,

(
1 xT

x xxT

)〉

, its linearization is defined

as f(x) =
〈

P,

(
1 xT

x X

)〉

, where X is a symmetric matrix and
(

1 xT

x X

)


 0.

Let X = (X (1,1), X (2,1), X (2,2), . . . , X (k,1), . . . , X (k,k), . . . , X (n,1), . . . , X (n,n)) be
the vector variable with dimension n(n+1)

2
corresponding to the matrix X . Since

X is a symmetric matrix,
〈

P,

(
1 xT

x X

)〉

is a linear expression in x, X .

Consider quadratic polynomials fi and gj (i = 1, . . . , r, j = 1, . . . , s),

fi = xTAix + 2αT
i x + ai, gj = xTBjx + 2βT

j x + bj ,

where Ai, Bj are symmetric n × n matrices, αi, βj ∈ Rn, and ai, bj ∈ R. Then

fi(x) =

〈

Pi,

(
1 xT

x xxT

)〉

, gj(x) =

〈

Qj ,

(
1 xT

x xxT

)〉

,

where Pi =

(
ai αT

i

αi Ai

)

, Qj =

(
bj βT

j

βj Bj

)

are (n + 1) × (n + 1) matrices.

For CQ polynomials fis and gjs, let

K=̂{x ∈ R
n | f1(x) ≥ 0, . . . , fr(x) ≥ 0, g1(x) > 0, . . . , gs(x) > 0}, (2)

K1=̂ {x | ∃X .

(
1 xT

x X

)


 0 ∧
r∧

i=1

〈

Pi,

(
1 xT

x X

)〉

≥ 0 ∧
s∧

j=1

〈

Qj ,

(
1 xT

x X

)〉

> 0}. (3)

In [7,15], when K and K1 are defined only with fis without gjs, i.e., only
with nonstrict inequalities, it is proved that K = K1. By Theorem 2 below, we
show that K = K1 also holds even in the presence of strict inequalities when fi

and gj are CQ. So, when fis and gjs are CQ, the CQ polynomial inequalities
can be transformed equivalently to a set of linear inequality constraints and a
positive semi-definite constraint.

Theorem 2. Let f1, . . . , fr, g1, . . . , gs ∈ R[x] be CQ, K and K1 as above, then
K = K1.

3.2 Motzkin’s Theorem in Matrix Form

If
〈

P,

(
1 xT

x X

)〉

is seen as a linear expression in x, X , then Corollary 1 can be

reformulated as:

Corollary 2. Let x be a column vector variable with dimension n and X be an
n × n symmetric matrix variable. Suppose P1, . . . , Pr and Q1, . . . , Qs are (n + 1) ×
(n + 1) symmetric matrices. Let

V =̂ {(x, X) |
r∧

i=1

〈

Pi,

(
1 xT

x X

)〉

≥ 0,
s∧

i=1

〈

Qj ,

(
1 xT

x X

)〉

> 0},
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then V = ∅ iff there exist λ1, . . . , λr ≥ 0 and η0, η1, . . . , ηs ≥ 0 such that
r∑

i=1

λi

〈

Pi,

(
1 xT

x X

)〉

+
s∑

j=1

ηj

〈

Qj ,

(
1 xT

x X

)〉

+ η0 ≡ 0, η0 + η1 + . . . + ηs > 0.

4 Interpolants for Concave Quadratic Polynomial
Inequalities

Problem 1: Given two formulas φ and ψ on n variables with φ ∧ ψ |= ⊥, where

φ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,

ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,

in which f1, . . . , fr, g1, . . . , gs are all CQ. Our goal is to develop an algorithm to
generate a (reverse) Craig interpolant I for φ and ψ, on the common variables
of φ and ψ, s.t. φ |= I and I ∧ ψ |= ⊥. We use x = (x1, . . . , xd) to stand for the
common variables appearing in both φ and ψ, y = (y1, . . . , yu) for the variables
appearing only in φ and z = (z1, . . . , zv) for the variables appearing only in ψ,
where d+u+v = n. We call the conjunctive theory of CQ polynomial inequalities
as CQI.

The proposed Algorithm IG-CQI in Sect. 4.5 is recursive: the base case is
when no sum of squares (SOS) polynomial can be generated by a nonpositive
constant combination of the polynomials in nonstrict inequalities in φ∧ψ. When
this condition is not satisfied, then identify variables which can be eliminated
by replacing them by linear expressions in terms of other variables and gener-
ate equisatisfiable problem with fewer variables on which the algorithm can be
recursively invoked.

4.1 NSC Condition and Generalization of Motzkin’s Theorem

Definition 3. Formulas φ and ψ in Problem 1 satisfy the non-existence of an
SOS polynomial condition (NSC) iff there do not exist δ1 ≥ 0, . . . , δr ≥ 0, s.t.
−(δ1f1 + . . . + δrfr) is a non-zero SOS.

Note that nonnegative quadratic polynomials are all SOS. So, the above con-
dition implies that there is no nonnegative constant combination of nonstrict
inequalities which is always nonpositive. If quadratic polynomials appearing in
φ and ψ are linearized, then the above condition is equivalent to requiring that
every nonnegative linear combination of the linearization of nonstrict inequalities
in φ and ψ is negative.

The following theorem is a generalization of Motzkin’s theorem to CQI and
gives a method when NSC is satisfied, for generating an interpolant by consid-
ering linearization of φ, ψ in Problem 1 and using Corollary 2.
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Theorem 3. Let f1, . . . , fr, g1, . . . , gs be CQ polynomials in Problem 1. If NSC
holds, then there exist λi ≥ 0 (i = 1, · · · , r), ηj ≥ 0 (j = 0, 1, · · · , s) and a quadratic
SOS polynomial h ∈ R[x,y, z] such that

r∑

i=1

λifi +

s∑

j=1

ηjgj + η0 + h ≡ 0, η0 + η1 + . . . + ηs = 1. (4)

4.2 Base Case: Generating Interpolant when NSC is Satisfied

Using Theorem 3, an interpolant for φ and ψ is generated from the SOS polyno-
mial h by splitting it into two SOS polynomials as shown below.

Theorem 4. Let φ and ψ be as in Problem 1 with φ∧ϕ |= ⊥, which satisfy NSC.
Then there exist λi ≥ 0 (i = 1, · · · , r), ηj ≥ 0 (j = 0, 1, · · · , s) and two quadratic
SOS polynomial h1 ∈ R[x,y] and h2 ∈ R[x, z] such that

r∑

i=1

λifi +

s∑

j=1

ηjgj + η0 + h1 + h2 ≡ 0, η0 + η1 + . . . + ηs = 1. (5)

Let I =
∑r1

i=1 λifi +
∑s1

j=1 ηjgj + η0 + h1. Then I ∈ R[x], and if
∑s1

j=0 ηj > 0, then
I > 0 is an interpolant otherwise I ≥ 0 is an interpolant.

Further, we can prove that h, h1, h2 have the following form:

(H) : h(x,y, z) = a1(y1 − l1(x, y2, . . . , yu))2 + · · · + au(yu − lu(x))2 +

au+1(z1 − lu+1(x, z2, . . . , zv))2 + · · · + au+v(zv − lu+v(x))2 + au+v+1(x1 −
lu+v+1(x2, . . . , xd))2 + · · · + au+v+d(xd − lu+v+d)2 + au+v+d+1,

(H1) : h1(x,y) = a1(y1 − l1(x, y2, . . . , yu))2 + · · · + au(yu − lu(x))2 +
au+v+1

2
(x1 −

lu+v+1(x2, . . . , xd))2 + · · · +
au+v+d

2
(xd − lu+v+d)2 +

au+v+d+1
2

,

(H2) : h2(x, z) = au+1(z1 − lu+1(x, z2, . . . , zv))2 + · · · + au+v(zv − lu+v(x))2 +
au+v+1

2
(x1 − lu+v+1(x2, . . . , xd))2 + · · · +

au+v+d

2
(xd − lu+v+d)

2 +
au+v+d+1

2
,

where ai ≥ 0 and lj ’s are linear expressions. These forms of h1, h2 are used to
generate equalities among variables later in the algorithm when NSC is not
satisfied.

4.3 Computing Interpolant Using Semi-definite Programming

Let W =

⎛

⎜
⎜
⎝

1 xT yT zT

x xxT xyT xzT

y yxT yyT yzT

z zxT zyT zzT

⎞

⎟
⎟
⎠, fi = 〈Pi, W 〉, gj = 〈Qj , W 〉, where Pi and Qj are

(n + 1) × (n + 1) matrices, and h1 = 〈M, W 〉, h2 = 〈M̂, W 〉, M = (Mij)4×4, M̂ =

(M̂ij)4×4 with appropriate dimensions, e.g., M12 ∈ R1×d and M̂34 ∈ Ru×v. Then,
with NSC, by Theorem 4, computing the interpolant is reduced to the following
SDP feasibility problem.
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Find: λ1, . . . , λr, η1, . . . , ηs ∈ R and symmetric matrices M, M̂ ∈ R(n+1)×(n+1) s.t.
⎧
⎪⎪⎨

⎪⎪⎩

∑r
i=1 λiPi +

∑s
j=1 ηjQj + η0E(1,1) + M + M̂ = 0,

∑s
j=1 ηj = 1,

M41 = (M14)
T = 0, M42 = (M24)

T = 0, M43 = (M34)
T = 0, M44 = 0,

M̂31 = (M̂13)
T = 0, M̂32 = (M̂23)

T = 0, M̂33 = 0, M̂34 = (M̂43)
T = 0,

M 
 0, M̂ 
 0, λi ≥ 0, ηj ≥ 0, for i = 1, . . . , r, j = 1, . . . , s,

where E(1,1) is a (n+1)×(n+1) matrix, whose all entries are 0 except for (1, 1) = 1.
This standard SDP feasibility problem can be efficiently solved by SDP

solvers such as CSDP [1], SDPT3 [24], etc. A major weakness of these algorithms
is their incompleteness, however.

Approximate Nature of SDP Algorithms. Even though known SDP algo-
rithms are of polynomial complexity, they are numerical and are not guaranteed
to produce exact answers; they are however able to generate results within a very
small threshold in a fixed number of iterations. Such techniques are thus consid-
erably more attractive than solving the Problem 1 using exact symbolic methods
of high complexity. This is especially critical for scaling our approach. To guar-
antee the soundness of our approach, we check results produced by approximate
numerical algorithms by symbolic checking [4] and numeric-symbolic method
[25] to verify whether an interpolant so computed does indeed satisfy the con-
ditions in Definition 1. If not, we can tone down the threshold of the SDP and
repeat the above procedure.

4.4 General Case

The case of Var(φ) ⊂ Var(ψ) is easy: φ itself serves as an interpolant of φ and ψ.
We thus assume that Var(φ) � Var(ψ). If φ and ψ do not satisfy NSC, then an
SOS polynomial h(x,y, z) = −(

∑r
i=1 λifi) can be computed which can be split

into two SOS polynomials h1(x,y) and h2(x, z) as discussed in Subsect. 4.2. Then
an SOS polynomial f(x) s.t. φ |= f(x) ≥ 0 and ψ |= −f(x) ≥ 0 can be constructed
by setting f(x) = (

∑r1
i=1 δifi) + h1 = −(

∑r
i=r1+1 δifi) − h2, δi ≥ 0. We show below

how “simpler” interpolation subproblems φ′, ψ′ are constructed from φ and ψ
using f .

Lemma 1. If NSC is not satisfied, then there exists f ∈ R[x] s.t. φ ⇔ φ1 ∨ φ2

and ψ ⇔ ψ1 ∨ ψ2, where,

φ1 = (f > 0 ∧ φ), φ2 = (f = 0 ∧ φ), ψ1 = (−f > 0 ∧ ψ), ψ2 = (f = 0 ∧ ψ). (6)

It easily follows that an interpolant I for φ and ψ can be constructed from an
interpolant I2,2 for φ2 and ψ2.

Theorem 5. Let φ, ψ, φ1, φ2, ψ1, ψ2 be same as in Lemma 1, I2,2 be an inter-
polant for φ2 and ψ2, then I := (f > 0) ∨ (f ≥ 0 ∧ I2,2) is an interpolant for φ
and ψ.
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If h and hence h1, h2 have a positive constant au+v+d+1 > 0, then f cannot
be 0, implying that φ2 and ψ2 are ⊥. We thus have

Theorem 6. With φ, ψ, φ1, φ2, ψ1, ψ2 as in Lemma 1 and h has au+v+d+1 > 0,
then f > 0 is an interpolant for φ and ψ.

In case h does not have a constant, i.e., au+v+d+1 = 0, from the fact that h1

is an SOS and has the form (H1), each nonzero square term in h1 is identically
0. This implies that some of the variables in x,y can be linearly expressed in
term of other variables; the same argument applies to h2 as well. In particular,
at least one variable is eliminated in both φ2 and ψ2, reducing the number of
variables appearing in φ and ψ, which ensures the termination of the algorithm.

Theorem 7. If h above does not have a constant, i.e., if au+v+d+1 = 0, by elim-
inating (at least one) variables in φ and ψ in terms of other variables as derived
from h1 = 0, h2 = 0, mutually contradictory formulas φ′, ψ′ with fewer variables
are derived by

φ′ =
∧r1

i=1
f̂i ≥ 0 ∧

∧s1

j=1
ĝj > 0, ψ′ =

∧r

i=r1+1
f̂i ≥ 0 ∧

∧s

j=s1+1
ĝj > 0,

where f̂is and ĝjs are derived from the respective fi and gi by replacing the
eliminated variable(s) with the corresponding resulting expression(s).

The following simple example illustrates how the above construction works.

Example 1. Let f1 = x1, f2 = x2, f3 = −x2
1 − x2

2 − 2x2 − z2, g1 = −x2
1 + 2x1 − x2

2 +

2x2 −y2. Two formulas φ := (f1 ≥ 0)∧ (f2 ≥ 0)∧ (g1 > 0), ψ := (f3 ≥ 0). φ∧ψ |= ⊥.
NSC does not hold, since h = −(0f1 +2f2 +f3) = x2

1 +x2
2 + z2 is an SOS; h is split

into h1 = 1
2
x2
1+ 1

2
x2
2, h2 = 1

2
x2
1+ 1

2
x2
2+z2. Thus f = 0f1+2f2+h1 = 1

2
x2
1+ 1

2
x2
2+2x2.

For the recursive call, we construct φ′ from φ by adding x1 = 0, x2 = 0 derived
from h1 = 0; similarly ψ′ is constructed from ψ by adding x1 = x2 = 0, z = 0

derived from h2 = 0. That is, φ′ = 0 ≥ 0 ∧ 0 ≥ 0 ∧ −y2 > 0 = ⊥, ψ′ = 0 ≥ 0 = �.
Thus, I(φ′, ψ′) := (0 > 0) = ⊥ is an interpolant for (φ′, ψ′).

An interpolant for φ and ψ is thus (f(x) > 0) ∨ (f(x) = 0 ∧ I(φ′, ψ′)), which is
1
2
x2
1 + 1

2
x2
2 + 2x2 > 0.

4.5 Algorithms

The above recursive approach is formally described as Algorithm 2. For the base
case when φ, ψ satisfy NSC, it invokes Algorithm 1 using known SDP algorithms.
For a predefined threshold, an SDP problem can be solved in polynomial time, say
g(k), where k is the input size [7]. Further its solution can be checked to determine
whether a formula thus generated is indeed an interpolant; in case of failure, the
process is repeated typically leading to convergence in a few iterations.
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Algorithm 1. Interpolation Generation for NSC Case (IG-NSC)

input : φ and ψ satisfying NSC, and φ ∧ ψ |= ⊥, where
φ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,
ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,
f1, . . . , fr, g1, . . . , gs are all CQ polynomials,
f1, . . . , fr1 , g1, . . . , gs1 ∈ R[x,y], fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]

output: A formula I to be an interpolant for φ and ψ

1 Find λ1, . . . , λr ≥ 0, , η0, η1, . . . , ηs ≥ 0, h1 ∈ R[x,y], h2 ∈ R[x, z] by SDP s.t.

r∑

i=1

λifi +
s∑

j=1

ηjgj + η0 + h1 + h2 ≡ 0, η0 + η1 + . . . + ηs = 1,

where h1, h2 are SOS polynomials;

2 f :=
∑r1

i=1 λifi +
∑s1

j=1 ηjgj + η0 + h1;

3 if
∑s1

j=0 ηj > 0 then I := (f > 0); else I := (f ≥ 0);

4 return I

Algorithm 2. Interpolation Generation for CQ Formulas (IG-CQI)

input : φ and ψ with φ ∧ ψ |= ⊥, where
φ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,
ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,
f1, . . . , fr, g1, . . . , gs are all CQ polynomials,
f1, . . . , fr1 , g1, . . . , gs1 ∈ R[x,y], and
fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]

output: A formula I to be an interpolant for φ and ψ

1 if Var(φ) ⊆ Var(ψ) then I := φ; return I;
2 Find δ1, . . . , δr ≥ 0, h ∈ R[x,y, z] by SDP s.t.

∑r
i=1 δifi + h ≡ 0 and h is SOS;

/* Check the condition NSC */

3 if no solution then I := IG-NSC(φ, ψ); return I;
/* NSC holds */

4 Construct h1 ∈ R[x,y] and h2 ∈ R[x, z] with the forms (H1) and (H2);
5 f :=

∑r1
i=1 δifi + h1 = −∑r

i=r1+1 δifi − h2;

6 Construct φ′ and ψ′ using Theorems 6 & 7 by eliminating variables due to
h1 = h2 = 0;

7 I ′ := IG-CQI(φ′, ψ′) ;
8 I := (f > 0) ∨ (f ≥ 0 ∧ I ′);
9 return I

Theorem 8 (Soundness and Completeness). Algorithm 2 computes an
interpolant I if it exists for any given φ and ψ with φ ∧ ψ |= ⊥.
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Theorem 9. The complexity of IG-NSC and IG-CQI are O(g(r + s + n2))1, and
O(ng(r + s + n2)), respectively, where r is the number of nonstrict inequalities, s

is the number of strict inequalities, and n is the number of variables.

5 Combination: CQI with EUF

This section combines the conjunctive theory of concave quadratic polynomial
inequalities (CQI ) with the theory of equality over uninterpreted function sym-
bols (EUF ). Algorithm 4 for generating interpolants for the combined theo-
ries is patterned after the algorithm INTERLI(Q)Σ in Fig. 3 in [20] following the
hierarchical reasoning and interpolation generation framework in [22] with the
following key differences2:

1. To generate interpolants for CQI, Algorithm 2 is called.
2. If NSC is satisfied by nonstrict polynomial inequalities, linear equalities

are deduced only from the linear inequalities; it is thus possible to use
INTERLI(Q)Σ in Fig. 3 in [20] for deducing equalities; separating terms for
mixed equalities are computed in the same way as in the algorithm SEP in
[20]. Further, it can be proved that a nonlinear polynomial equality of degree
≥ 2 cannot be generated from CQI.

3. If NSC is not satisfied, as in Algorithm 2, a polynomial f(x) s.t. φ |= f(x) ≥ 0

and ψ |= −f(x) ≥ 0 can be constructed by letting f(x) = (
∑r1

i=1 δifi) + h1 =

−(
∑r

i=r1+1 δifi) − h2, δi ≥ 0, as discussed in Sect. 4.4. Using Lemma 1, reduce
the interpolation problem for φ and ψ to a simpler interpolation problem for
φ′ and ψ′ with fewer variables.

5.1 Problem Formulation

Let Ω = Ω1 ∪ Ω2 ∪ Ω3 be a finite set of uninterpreted function symbols in EUF;

further, denote Ω1∪Ω2 by Ω12 and Ω1∪Ω3 by Ω13. Let R[x,y, z]Ω be the extension
of R[x,y, z] in which polynomials can have terms built using function symbols in
Ω and variables in x,y, z.

Problem 2: Suppose two formulas φ and ψ with φ ∧ ψ |= ⊥, where φ =

f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0, ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥
0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0, in which f1, . . . , fr, g1, . . . , gs are all CQ polynomi-
als, f1, . . . , fr1 , g1, . . . , gs1 ∈ R[x,y]Ω12 , fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]Ω13 , the
goal is to generate an interpolant I for φ and ψ, over the common symbols x, Ω1,
i.e., I contains only polynomials in R[x]Ω1 .

1 Under the assumption that SDP tool returns an approximate but correct answer in
a fixed number of calls.

2 The proposed algorithm and its way of handling of combined theories do not crucially
depend upon using algorithms in [20]; however, adopting their approach makes proofs
and presentation totally on CQI.
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Flatten and Purify: Flatten and purify φ and ψ by introducing fresh vari-
ables for each term starting with uninterpreted symbols as well as for the terms
containing uninterpreted symbols. Keep track of new variables introduced exclu-
sively for φ and ψ as well as new common variables.

Let φ∧ψ∧∧D be obtained from φ∧ψ by flattening and purification where D
consists of unit clauses of the form ω(c1, . . . , cn) = c, where c1, . . . , cn are variables
and ω ∈ Ω. Following [20,22], using the axiom of an uninterpreted function
symbol, a set N of Horn clauses are generated as follows, N = {∧n

k=1 ck = bk →
c = b | ω(c1, . . . , cn) = c ∈ D, ω(b1, . . . , bn) = b ∈ D}. The set N is partitioned
into Nφ, Nψ, Nmix with all symbols in Nφ, Nψ appearing in φ, ψ, respectively, and
Nmix consisting of symbols from both φ, ψ. It is easy to see that for every Horn
clause in Nmix, each of equalities in the hypothesis as well as the conclusion is
also mixed.

φ ∧ ψ |= ⊥ iff φ ∧ ψ ∧ D |= ⊥ iff (φ ∧ Nφ) ∧ (ψ ∧ Nψ) ∧ Nmix |= ⊥. (7)

Notice that (φ ∧ Nφ) ∧ (ψ ∧ Nψ) ∧ Nmix |= ⊥ has no uninterpreted function
symbols. If Nmix can be replaced by Nφ

sep and Nψ
sep as in [20] using separating

terms, then IG-CQI can be applied. An interpolant generated for this problem3

can be used to generate an interpolant for φ, ψ after uniformly replacing all new
symbols by their corresponding expressions from D.

5.2 Combination Algorithm

If Nmix is empty, Algorithm 4 invokes Algorithm 2 (IG-CQI) on a finite set of sub-
problems generated from a disjunction of conjunction of polynomial inequalities
by expanding Horn clauses in Nφ and Nψ, and applying De Morgan’s rules. The
resulting interpolant is a disjunction of conjunction of the interpolants generated
for each subproblem.

The case when Nmix is nonempty has the same structure as the algorithm
INTERLI(Q)Σ in [20]. The following lemma proves that if a conjunction of polyno-
mial inequalities satisfies NSC and an equality on variables can be deduced from
it, then it suffices to consider only linear inequalities in the conjunction. This
property enables us to use Algorithm INTERLI(Q)Σ in Fig. 3 in [20] for deduc-
ing equalities; separating terms for the constants appearing in mixed equalities
are computed in the same way as in Algorithm SEP in [20] (Lines 2 and 3 in
Algorithm 3 where INTERp, a modified version of INTERLI(Q)Σ , is used solely
to deduce equalities and separating terms and not interpolants, thus generating
Nφ

sep, Nψ
sep). Then Algorithm 4 is called.

3 After properly handling Nmix since Horn clauses have symbols both from φ and ψ.
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Algorithm 3. IG-CQI-EUF

input : φ and ψ constructed respective from φ and ψ by flattening and purification,

D : definitions of fresh variables introduced during flattening and purifying φ, ψ,

N : instances of functionality axioms for functions in D,

φ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,

ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,
where φ ∧ ψ |= ⊥, f1, . . . , fr, g1, . . . , gs are all CQ polynomials,

f1, . . . , fr1 , g1, . . . , gs1 ∈ R[x,y], and fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]
output: A formula I to be a Craig interpolant for φ and ψ

1 if NSC holds then

2 L1 := LP(φ); L2 := LP(ψ);

3 INTERp(L1, L2, N, ∅, ∅, D, ∅);

/* INTERp is a modified version of the INTERΣ
LI(Q) algorithm given in Figure 3 in

[20] which is used here to separate every mixed Horn clause in N of the form

∧n
i=1ci = di ⇒ c = d into ∧n

i=1ci = t+i ⇒ c = f(t+1 , · · · , t+n ),
∧n

i=1di = t+i ⇒ d = f(t+1 , · · · , t+n ). It does not call INTERLI(Q) to generate

an interpolant (line 29 of INTERΣ
LI(Q)). When INTERp terminates Nmix with

initial value N is separated into Nφ and Nψ with entailed equalities in Δ.

Because of space limitations, we are not reproducing lines 1-28 of the code in

INTERΣ
LI(Q). */

4 I := IG-NMIX(φ, ψ, Nφ, Nψ);
5 else
6 Find δ1, . . . , δr ≥ 0 and an SOS polynomial h by SDP s.t.

∑r
i=1 δifi + h ≡ 0;

7 Construct h1 ∈ R[x,y] and h2 ∈ R[x, z] with form (H1) and (H2);

8 f :=
∑r1

i=1 δifi + h1 = −∑r
i=r1+1 δifi − h2;

9 Construct φ′ and ψ′ by Theorem 7 by eliminating variables from h1 = h2 = 0;

10 I ′ := IG-CQI-EUF(φ′, ψ′, D, N0); Ī := (f > 0) ∨ (f ≥ 0 ∧ I ′);
11 end

12 Obtain I from I; return I

Algorithm 4. Invariant Generation without Nmix (IG-NMIX)

input : φ and ψ, constructed respectively from φ and ψ by flattening and
purification,
Nφ : instances of functionality axioms for functions in Dφ,
Nψ : instances of functionality axioms for functions in Dψ,
where φ ∧ ψ ∧ Nφ ∧ Nψ |= ⊥

output: A formula I to be a Craig interpolant for φ and ψ

1 Transform φ ∧ Nφ to a DNF ∨iφi;

2 Transform ψ ∧ Nψ to a DNF ∨jψj ;
3 return I := ∨i ∧j IG-CQI(φi, ψj)

Lemma 2. Let φ and ψ be obtained as above satisfying NSC. If φ ∧ ψ is sat-
isfiable, φ ∧ ψ |= ck = bk, then LP(φ) ∧ LP (ψ) |= ck = bk, where LP(θ) is the
conjunction of the linear constraints in θ.
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If NSC is not satisfied, then linear equalities from SOS polynomials h, h1, h2

and f as explained above and discussed in Sect. 4.4 (Lines 6–8 in Algorithm 3) are
used to generate simpler subproblems φ′ and ψ′ from φ and ψ, and Algorithm 3
is recursively called (Lines 9–10 in Algorithm 3).

Theorem 10 (Soundness and Completeness). IG-CQI-EUF computes an
interpolant I of mutually contradictory φ, ψ with CQ polynomial inequalities and
EUF if it exists.

Example 2. Let φ := (f1 = −(y1 − x1 + 1)2 − x1 + x2 ≥ 0) ∧ (y2 = α(y1) + 1) ∧
(g1 = −x2

1 − x2
2 − y2

2 + 1 > 0), ψ := (f2 = −(z1 − x2 + 1)2 + x1 − x2 ≥ 0) ∧
(z2 = α(z1) − 1) ∧ (g2 = −x2

1 − x2
2 − z2

2 + 1 > 0). Flattening and purification gives
φ := (f1 ≥ 0 ∧ y2 = y + 1 ∧ g1 > 0), ψ := (f2 ≥ 0 ∧ z2 = z − 1 ∧ g2 > 0), where
D = {y = α(y1), z = α(z1)}, N = (y1 = z1 → y = z).

NSC is not satisfied, since h = −f1 − f2 = (y1 − x1 + 1)2 + (z1 − x2 + 1)2 is an
SOS. We follow the steps given in Sect. 4.4 (Lines 6–8 of IG-CQI-EUF) and obtain
h1 = (y1−x1+1)2 , h2 = (z1−x2+1)2. This gives f := f1+h1 = −f2−h2 = −x1+x2.

By Lemma 1, an interpolant for φ, ψ is an interpolant of ((φ∧f > 0)∨ (φ∧f =

0)) and ((ψ ∧ −f > 0) ∨ (φ ∧ f = 0)), that is (f > 0) ∨ (f ≥ 0 ∧ I2), where I2 is
an interpolant for φ ∧ f = 0 and ψ ∧ f = 0. It is easy to see that φ ∧ f = 0 |=
y1 = x1 − 1 , ψ ∧ f = 0 |= z1 = x2 − 1. Thus, it follows φ′ : −x1 + x2 ≥ 0 ∧ y2 =

y + 1 ∧ g1 > 0 ∧ y1 = x1 − 1, and ψ′ : x1 − x2 ≥ 0 ∧ z2 = z − 1 ∧ g2 > 0 ∧ z1 = x2 − 1.
At Line 10, recursively call IG-CQI-EUF. Now NSC holds (Line 1); from

linear inequalities in φ′ and ψ′, y1 = z1 is deduced. Separating terms for y1, z1
are constructed by: φ′ |= x1 − 1 ≤ y1 ≤ x2 − 1, ψ′ |= x2 − 1 ≤ z1 ≤ x1 − 1.
Let t = α(x2 − 1), then y1 = z1 → y = z is separated into two parts, i.e.,
y1 = t+ → y = t and t+ = z1 → t = z. Add them to φ′ and ψ′ respectively,
we have φ′

1 = −x1 + x2 ≥ 0 ∧ y2 = y + 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ y1 = x2 − 1 → y = t,
ψ′

1 = x1 − x2 ≥ 0 ∧ z2 = z − 1 ∧ g2 > 0 ∧ z1 = x2 − 1 ∧ x2 − 1 = z1 → t = z. Then
φ′

1 = −x1+x2 ≥ 0∧y2 = y+1∧g1 > 0∧y1 = x1−1∧(x2−1 > y1∨y1 > x2−1∨y = t),
ψ′

1 = x1 −x2 ≥ 0∧z2 = z−1∧g2 > 0∧z1 = x2 −1∧ t = z. Thus, φ′
1 = φ′

2 ∨φ′
3 ∨φ′

4,
where φ′

2 = −x1 + x2 ≥ 0 ∧ y2 = y + 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ x2 − 1 > y1,
φ′

3 = −x1 +x2 ≥ 0∧ y2 = y +1∧ g1 > 0∧ y1 = x1 − 1∧ y1 > x2 − 1, φ′
4 = −x1 +x2 ≥

0 ∧ y2 = y + 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ y = t. Since φ′
3 = ⊥, it follows φ′

1 =

φ′
2 ∨ φ′

4. Find interpolants I(φ′
2, ψ

′
1) and I(φ′

4, ψ
′
1), then I(φ′

2, ψ
′
1) ∨ I(φ′

4, ψ
′
1)

is an interpolant.

6 Implementation and Experimental Results

We are currently developing a state of the art implementation of the above
algorithms using C. In the meantime, for experimentation purposes, we have
developed a prototype for putting together existing tools in Mathematica. An
optimization library AiSat [5] built on CSDP [1] is used for solving SOS and
SDP problems. We give some performance data about this prototype on some
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Table 1. The output formulas in the last column have been verified using the approach
given in [4] to be the true interpolants w.r.t. their corresponding problems in the third
column.

Ex Type Problem Synthesized interpolant

5 NLA

φ : −y1 + x1 − 2 ≥ 0 ∧ 2x2 − x1 − 1 > 0

∧ − y2
1 − x2

1 + 2x1y1 − 2y1 + 2x1 ≥ 0

∧ − y2
2 − y2

1 − x2
2 − 4y1 + 2x2 − 4 ≥ 0

ψ : −z1 + 2x2 + 1 ≥ 0 ∧ 2x1 − x2 − 1 > 0

∧ − z2
1 − 4x2

2 + 4x2z1 + 3z1 − 6x2 − 2 ≥ 0

∧ − z2
2 − x2

1 − x2
2 + 2x1 + z1 − 2x2 − 1 ≥ 0

−x1 + x2 > 0

6 NLA
φ : 4 − x2 − y2 ≥ 0 ∧ y ≥ 0 ∧ x + y − 1 > 0

ψ : x ≥ 0 ∧ 1 − x2 − (y + 1)2 ≥ 0

1
2 (x

2 + y2 + 4y) > 0

7 LA
φ : z − x ≥ 0 ∧ x − y ≥ 0 ∧ −z > 0

ψ : x + y ≥ 0 ∧ −y ≥ 0
−0.8x − 0.2y > 0

8 LA+EUF
φ : f(x) ≥ 0 ∧ x − y ≥ 0 ∧ y − x ≥ 0

ψ : −f(y) > 0
f(y) ≥ 0

9 Ellipsoid

φ : −x1
2 + 4x1 + x2 − 4 ≥ 0

∧ − x1 − x2 + 3 − y2 > 0

ψ : −3x1
2 − x2

2 + 1 ≥ 0 ∧ x2 − z2 ≥ 0

−3 + 2x1 + x1
2 + 1

2x2
2 > 0

10 Ellipsoid
φ : 4 − (x − 1)2 − 4y2 ≥ 0 ∧ y − 1

2 ≥ 0

ψ : 4 − (x + 1)2 − 4y2 ≥ 0 ∧ x + 2y ≥ 0

−15.93 + 19.30x − 9.65x2

+91.76y − 38.60y2 > 0

11 Octagon

φ : −3 ≤ x ≤ 1 ∧ −2 ≤ y ≤ 2 ∧ −4 ≤ x − y ≤ 2

∧ − 4 ≤ x + y ≤ 2 ∧ x + 2y + 1 ≤ 0

ψ : −1 ≤ x ≤ 3 ∧ −2 ≤ y ≤ 2 ∧ −2 ≤ x − y ≤ 4

∧ − 2 ≤ x + y ≤ 4 ∧ 2x − 5y + 6 ≤ 0

−88.08 − 649.94x

−1432.44y > 0

12 Octagon

φ : 2 ≤ x ≤ 7 ∧ 0 ≤ y ≤ 3 ∧ 0 ≤ x − y ≤ 6

∧3 ≤ x + y ≤ 9 ∧ 23 − 3x − 8y ≤ 0

ψ : 0 ≤ x ≤ 5 ∧ 2 ≤ y ≤ 5 ∧ −4 ≤ x − y ≤ 2

∧3 ≤ x + y ≤ 9 ∧ y − 3x − 2 ≤ 0

562.10 + 1244.11x

−869.83y > 0

examples (see Table 1), which have been evaluated on a 64-bit Linux computer
with a 2.93 GHz Intel Core-i7 processor and 4 GB of RAM.

The performance of the prototype is compared on the same platform to those
of three publicly available interpolation procedures for linear-arithmetic cases,
i.e. Rybalchenko’s tool CLP-Prover in [20], McMillan’s procedure Foci in [17],
and Beyer’s tool CSIsat in [2]. As Table 2 shows, our approach can successfully
solve all these examples rather efficiently. It is especially the completeness and
generality that makes the approach competitive for synthesizing interpolants.
In particular, the prototype performs, in linear cases, with the same complexity
as CSIsat and even better than CLP-Prover and Foci. Whilst in nonlinear
cases, the method developed in [5] is limited and incomplete even though it works
for nonlinear polynomials (using SDP) since it requires bounds on variables as
well as uncommon variables are not allowed.
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Table 2. Evaluation results of the presented examples

Example Type Time (sec)

CLP-prover Foci CSIsat Our approach

Example 1 NLA – – – 0.003

Example 2 NLA+EUF – – – 0.036

Example 5 NLA – – – 0.014

Example 6 NLA – – – 0.003

Example 7 LA 0.023 × 0.003 0.003

Example 8 LA+EUF 0.025 0.006 0.007 0.003

Example 9 Ellipsoid – – – 0.002

Example 10 Ellipsoid – – – 0.002

Example 11 Octagon 0.059 × 0.004 0.004

Example 12 Octagon 0.065 × 0.004 0.004

– means interpolant generation fails, and × specifies particularly
wrong answers (satisfiable).

7 Conclusion

The paper proposes a polynomial time algorithm for generating interpolants from
mutually contradictory conjunctions of concave quadratic polynomial inequali-
ties over the reals. Under a technical condition that if no nonpositive constant
combination of nonstrict inequalities is a sum of squares polynomials, then such
an interpolant can be generated essentially using the linearization of concave
quadratic polynomials. Otherwise, if this condition is not satisfied, then the
algorithm is recursively called on smaller problems after deducing linear equali-
ties relating variables. The resulting interpolant is a disjunction of conjunction
of polynomial inequalities.

Using the hierarchical calculus framework proposed in [22], we give an inter-
polation algorithm for the combined quantifier-free theory of concave quadratic
polynomial inequalities and equality over uninterpreted function symbols. The
combination algorithm is patterned after a combination algorithm for the com-
bined theory of linear inequalities and equality over uninterpreted function
symbols.

A prototype has been built, and experimental results indicate our approach
is applicable to all existing abstract interpretation domains widely used in ver-
ification for programs and hybrid systems like octagon, polyhedra, ellipsoid and
so on, which is encouraging for using this approach in the state of the art of
verification techniques based on interpolation4.

4 The tool and all case studies can be found at http://lcs.ios.ac.cn/∼chenms/tools/
InterCQI v1.1.tar.bz2.

http://lcs.ios.ac.cn/~chenms/tools/InterCQI_v1.1.tar.bz2
http://lcs.ios.ac.cn/~chenms/tools/InterCQI_v1.1.tar.bz2
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Abstract. This paper introduces a benchmark problem library for
mechanized math technologies including computer algebra and auto-
mated theorem proving. The library consists of pre-university math prob-
lems taken from exercise problem books, university entrance exams, and
the International Mathematical Olympiads. It thus includes problems
in various areas of pre-university math and with a variety of difficulty.
Unlike other existing benchmark libraries, this one contains problems
that are formalized so that they are obtainable as the result of mechan-
ical translation of the original problems expressed in natural language.
In other words, the library is designed to support the integration of
the technologies of mechanized math and natural language processing
towards the goal of end-to-end automatic math problem solving. The
paper also presents preliminary experimental results of our prototype
reasoning component of an end-to-end system on the library. The library
is publicly available through the Internet.

1 Introduction

One of the ultimate goals of automated theorem proving is to produce computer
programs that allow a machine to conduct mathematical reasoning like human
beings. It seems that a tacit understanding exists on how we should interpret this
goal. First, the input of the programs is assumed to be expressed in some formal
language, but not in a natural language. Second, the term “human beings” is
used to mean gifted mathematicians rather than ordinary people. In this paper,
we propose a different interpretation of the goal by providing a new problem
library for benchmarking automated math reasoners, and showing experimental
results on the problem set.

Though traditionally ignored in the framework of automated theorem proving
and computer algebra, interpreting given problems is as important as solving
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 213–227, 2016.
DOI: 10.1007/978-3-319-40229-1 15
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(Find (x)
(exists (A B C D E)

(& (exists (F)
(& (exists (U T S R Q P)

(& (= (polygon (list-of A B C D E F))
(polygon (list-of P Q R S T U)))

(is-regular-polygon (polygon (list-of P Q R S T U)))))
(is-diagonal-of (seg A C) (polygon (list-of A B C D E F)))
(exists (U T S R Q P)

(& (= (polygon (list-of A B C D E F))
(polygon (list-of P Q R S T U)))

(is-regular-polygon (polygon (list-of P Q R S T U)))))
(is-diagonal-of (seg C E) (polygon (list-of A B C D E F)))))

(exists (M N)
(& (exists (r)

(& (= (/ (length-of (seg A M)) (length-of (seg A C)))
(/ (length-of (seg C N)) (length-of (seg C E))))

(= (/ (length-of (seg C N)) (length-of (seg C E))) r)
(on M (seg A C))
(= (/ (length-of (seg A M)) (length-of (seg A C)))

(/ (length-of (seg C N)) (length-of (seg C E))))
(= (/ (length-of (seg C N)) (length-of (seg C E))) r)
(on N (seg C E))
(= x r)))

(~ (= M A)) (~ (= M C))
(~ (= N C)) (~ (= N E))
(points-colinear (list-of B M N)))))))

Fig. 1. Mechanical translation result of IMO 1982, Problem 5

Fig. 2. Syntactic/Semantic analysis of problem (CCG derivation tree)

them in mathematical reasoning; it took almost a century to determine the
language and axioms required to express the Jordan curve theorem, and this is
exactly how long it took to solve the problem. This is also the case in curriculum
math. Hence, it is fair to assume the problems are expressed in a natural language
but not in a formal language if we want to seriously argue about whether or not
a machine is as intelligent as high school graduates in math problem solving.

Given this situation, we developed a new problem library of real pre-
university math problems. It is designed to cover various sub-areas of curriculum
math and a diverse range of difficulty. The initial release of the data set includes
more than 700 problems taken from three sources: popular high school math
exercise book series, entrance examinations of seven top universities in Japan,
and the past problems from International Mathematical Olympiads (IMO). Our
choice of the three problem sources is motivated by the desire to measure the
performance of mechanized math systems with high school students of different
skill and intellectual levels as reference points.

Although problems in the library are formalized in a formal language so that
the automatic reasoning (AR) and computer algebra system (CAS) communities
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Table 1. Number of problems and directives

Chart Univ IMO Total

#Problems 288 245 212 745

#Directives Find 473 438 110 1021

Draw 28 16 0 44

Show 78 73 134 285

Table 2. Subject areas (IMO)

Algebra 57

Number Theory 38

Analysis 1

Geometry 105

Combinatorics 11

will find it appealing to challenge the problems, the formalization is designed so
that the problems can be obtained as the result of mechanical translation of
their originals. This might have sounded unrealistic in the previous century but
is now within the range of contemporary research, thanks to the recent progress
that has been made in deep linguistic processing (e.g., [2,3,9]). Figure 1 presents
an output from the translation module under development and Fig. 2 depicts
a part of the process that derives the logical translation of a Japanese phrase
“6/regular-hexagon ABCDEF /of /diagonal”, that corresponds to “diagonal(s)
of the regular hexagon ABCDEF .” Problems in the library were formalized
manually according to the design of the aforementioned translation module. That
is, they were translated manually into the formal language by word-by-word and
sentence-by-sentence basis without any inference and paraphrasing.

The formalized problem set and the accompanying axioms are publicly
available at http://github.com/torobomath/benchmark. The problems and the
axioms are formulated in a higher-order language that is mostly compatible with
the TPTP’s typed higher-order format (THF) [13]. The data and the axioms are
distributed both in the TPTP’s THF syntax and an S-expression format. For
readability, we use the S-expression format for presenting the data. Several basic
elements such as logical connectives and quantifiers are renamed following the
TPTP’s convention.

The rest of the paper is structured as follows. We first describe how we
collected and formalized curriculum math problems in Sect. 2. Several problems
are shown in Sect. 3 to exemplify what aspects of mechanized math are necessary.
Besides proof problems, the benchmark includes many “Find X”-type problems.
Technical issues in formalizing such problems are discussed in Sect. 4. Section 5
provides an overview of a prototype solver system built on an integration of a
simple logical inference system with computer algebra systems. Experimental
results on the initial release of the data by our solver system are presented in
Sect. 6. Finally, we conclude the paper and discuss future directions in Sect. 7.

http://github.com/torobomath/benchmark
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Table 3. Subject areas (Chart
& Univ)

Chart Univ

Algebra 51 10

Linear Algebra 28 62

Geometry 136 65

Pre-Calculus 15 74

Calculus 42 33

Combinatorics 16 1

Table 4. Distribution of theory
labels

Chart Univ IMO

PA 84 0 42

RCF 174 245 115

ZF 30 0 55

RCF+PA 1 0 8

Transc 23 0 6

PA+Transc 5 0 1

Comb 0 0 10

other 1 0 30

Table 5. Statistics on the syntactic properties (min/avg/max/median)

Todai robot project math benchmark TPTP-THF

Chart Univ IMO All

# of formulae 1/ 2/ 7/ 2 1/ 2/ 8/ 2 1/ 1/ 5/ 1 1/ 2/ 8/ 1 1/103/ 5639/10

# of atoms 14/80/485/65 14/125/652/95 11/85/2658/65 11/97/2658/72 1/819/64867/88

Avg atoms/formula 9/42/161/38 14/ 58/232/54 10/77/2658/56 9/57/2658/48 1/ 22/ 811/ 6

# of symbols 3/16/ 31/16 6/ 19/ 34/19 4/19/1332/12 3/18/1332/15 1/ 45/ 1442/ 9

# of variables 1/12/ 55/ 9 1/ 17/ 72/13 0/ 9/ 35/ 8 0/13/ 72/ 9 0/154/11290/19

λ 0/ 4/ 22/ 3 0/ 4/ 23/ 3 0/ 1/ 9/ 1 0/ 3/ 23/ 2 0/ 22/ 385/ 2

∀ 0/ 2/ 49/ 0 0/ 2/ 24/ 0 0/ 5/ 22/ 4 0/ 3/ 49/ 0 0/123/10753/ 9

∃ 0/ 5/ 38/ 4 0/ 9/ 50/ 6 0/ 2/ 20/ 1 0/ 6/ 50/ 4 0/ 8/ 496/ 2

# of connectives 11/67/416/55 13/105/476/78 11/77/2655/58 11/82/2655/61 0/574/51044/52

Max formula depth 8/20/ 50/19 12/ 25/ 59/23 9/28/1327/20 8/24/1327/21 2/ 36/ 359/11

Avg formula depth 0/ 5/ 9/ 4 0/ 5/ 9/ 4 0/ 5/ 9/ 5 0/ 5/ 9/ 5 0/ 5/ 9/ 6

2 Pre-university Math Problems as a Benchmark
for Mechanized Math Systems

In this section, we first describe the sources and the types of the benchmark prob-
lems. We then explain how we encoded the problems other than proof problems.
Finally, the representation language is described.

2.1 The Problem Library

The initial release of the data set consists of 745 problem files containing 1,353
directives, and 1,897 axioms defining 1,040 symbols (functions, predicates, and
constants). The problems were taken from three sources: “Chart-shiki” (Chart),
Japanese university entrance exams (Univ), and International Mathematical
Olympiads (IMO).

“Chart-shiki” is a popular problem book series containing more than ten
thousand problems in total. In the first release of the data set, the Chart divi-
sion consists of arithmetic problems and various types of geometry problems
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(including those involving calculus and linear algebra) (Table 3). Every problem
in “Chart-shiki” is marked with one to five stars by the editors of the book
series according to its difficulty. We sampled the problems so that their levels of
difficulty would be uniformly distributed.

The Univ division of the data consists of the past entrance exams of seven top
Japanese national universities. Unlike in most countries, in Japan each national
university prepares its entrance exam by itself. As a result, several hundreds
of brand-new problems are produced every year for the entrance exams. In the
first release, the Univ division includes the problems that were manually clas-
sified as ‘most likely expressible’ in the first-order theory of real-closed fields
(RCF) (Table 3). Two hundred more Univ problems involving transcendental
functions and integers arithmetic (often as a mixture with reals) are currently
under preparation for the second release of the data set.

The IMO division consists of about 2/3 of the past IMO problems. The
initial release includes all of the geometry and real algebra problems, and some
of the problems in number theory, function equations, and combinatorics.

Each problem is labeled by its subject domain name such as geometry or cal-
culus (Tables 2 and 3), and also by its formal theory name. The problems that are
naturally expressible (by humans) in the theories of RCF or Peano Arithmetic
(PA) are labeled so, and the rest of the problems are tentatively labeled ZF,
standing for Zermelo-Fraenkel Set Theory. We scrutinized the problems labeled
ZF and classified them into several groups such as ‘RCF+PA’ (mixture of inte-
ger and real arithmetics) and ‘Transc’ (problems involving transcendental func-
tions that cannot be reformulated in RCF), though they are not formal theories

IMO 1982, Problem 5

The diagonals AC and CE of the regular hexagon ABCDEF are divided by the
inner points M and N , respectively, so that AM

AC
= CN

CE
= r. Determine r if B, M ,

and N are collinear.

;;--------------------------------------------------------------
(def-directive problem_IMO_1982_2

(Find (r)
(exists (A B C D E F M N)

(& (is-regular-polygon (polygon (list-of A B C D E F)))
(on M (seg A C))
(on N (seg C E))
(~ (= M A)) (~ (= M C))
(~ (= N C)) (~ (= N E))
(= (/ (length-of (seg A M)) (length-of (seg A C)))

(/ (length-of (seg C N)) (length-of (seg C E))))
(= (/ (length-of (seg A M)) (length-of (seg A C)))

r)
(colinear B M N)))))

(def-answer problem_IMO_1982_2
(lambda r (= r (/ 1 3))))

;;--------------------------------------------------------------

Fig. 3. Problem file example (IMO 1982, problem 5)
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Table 6. Logical translations in ZF set theory and Peano arithmetic

(a) There are infinitely many prime numbers greater than 4

ZF: |{n ∈ N | prime(n) ∧ n > 4}| = ω

PA: ∀N∃n(n > N ∧ prime(n) ∧ n > 4)

(b) There is an even number of prime numbers less than 4

ZF: ∃k ∈ N(even(k) ∧ |{n | prime(n) ∧ n < 4}| = k)

PA: ∃k(even(k) ∧ num of(prime less than(4)) = k)

(c) There are two prime numbers less than 4

ZF: |{n ∈ N | prime(n) ∧ n < 4}| = 2

PA1: ∃n1∃n2

(
prime(n1) ∧ prime(n2) ∧ n1 < 4 ∧ n2 < 4 ∧ n1 �= n2

∧∀m((prime(m) ∧ m < 4) → (m = n1 ∨ m = n2))

)

PA2: num of(prime less than(4)) = 2

(Table 4). Table 5 lists statistics for the formalized problems. For reference, it also
lists those for the typed-higher order format (THF) problems in TPTP version
6.1.0.

2.2 A Formalization of Curriculum Math Problems

We formalize a problem as a pair of a directive and its answer. By surveying the
problems, we identified three major types of directives:

– Show [φ] is a proof problem to prove φ.
– Find(v) [φ(v)] is a problem to find all values for v that satisfy condition φ(v).
– Draw(v) [φ(v)] requests a geometric object v defined by φ(v) be drawn.

Show directives must be familiar to the reader, though the set of problems
requiring proofs is a minority in curriculum math. Table 1 shows that students
are asked to find some values more frequently than to prove propositions. The
answer to a Find problem, Find(v)[φ(v)], is expected to be a characteristic func-
tion f(v) that returns true if v satisfies φ(v). The answer to a Draw problem
Draw(v)[φ(v)] should be the geometric object v expressed as a characteristic
function on R2. Figure 3 is an example of a Find problem taken from IMO 1982.

To use a problem set in the above format as benchmark data, we need a rule
to judge whether a system’s output is acceptable or not. It is clear for the Show
directives: true or false. We regard a Draw directive as a variant of Find problems
for which the system is supposed to find a formula that defines the geometric
object. Then, what is “to solve a Find problem?” Roughly speaking, a solver
is supposed to give a correct solution in its simplest form. We will discuss the
properties an answer formula for a Find problem has to satisfy in Sect. 4.

2.3 Representation Language

We formalized all the problems in a single theory on the basis of ZF regardless
of their context. In formality, it is a typed lambda calculus with parametric
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;; tangent(S1, S2, P) <-> geometric objects
;; S1 and S2 are tangent at point P
(def-pred

tangent :: Shape -> Shape -> Point => Bool)

(axiom
def_tangent_line_and_circle
(p q c r P)
(<-> (tangent (line p q) (circle c r) P)

(& (on P (line p q))
(perpendicular (line c P) (line p q))
(= (distance^2 P c) (^ r 2)))))

;; maximum(S, m) <->
;; m is the maximum element of set S
(def-pred

maximum :: (SetOf R) -> R => Bool)

(axiom
def_maximum
(set max)
(<-> (maximum set max)

(& (elem max set)
(forall (v)

(-> (elem v set)
(<= v max))))))

Fig. 4. Type definitions and axioms

polymorphism. This is again due to the fully automatic, end-to-end task setting.
Table 6 demonstrates why a higher-order language is appropriate as the target
language. Mechanical translation assumes a systematic correspondence between
the syntactic structures of the input and output languages; the results of the
mechanical translations of (a), (b), and (c) into ZF in Table 6 are expected to
have the same or at least a similar structure thanks to the set builder notation
such as {n ∈ N | prime(n) ∧ n > 4}, which is expressed using λ-abstraction
in the dataset. However, the expressions of the three sentences in PA must be
different since the concept of finiteness cannot be expressed in first-order logic.
Meanwhile, the expressibility of ZF allows almost word-by-word translations for
all sentences. Parametric polymorphism is utilized to have polymorphic lists
and sets in the language and define various operations on them while keeping
the axioms and the lexicon (i.e., the mapping table from words to their semantic
representations) concise.

We believe the vast majority of our benchmark problems can be eventually
expressed in first-order logic. To mechanically fill the gap between the heavy-
duty language and the relatively simple content is however a mandatory step
to connect natural language processing and automated reasoning together for
end-to-end automatic problem solving.

Since our mechanical translator is still under development, the problems were
formalized manually at the current stage. Operators, all majored in computer
science and/or mathematics, were trained to translate the problems as faith-
fully as possible to the original natural language statements following the NLP
design. The sets of new symbols and their defining axioms were introduced in
parallel with the problem formalization, to match the problem formula as close
as possible to the problem text.

In the language, we currently have 31 types including Bool(ean), Z (inte-
gers), Q (rational numbers), R(eals), C(omplex numbers), ListOf(α) (polymor-
phic lists), SetOf(α) (polymorphic sets), Point (in 2D and 3D spaces), Shape
(sets of Points), Equation (in real domain), and so on. The types are somewhat
redundant in that we can represent, e.g., Equation simply by a function of type
R → R by regarding f : R → R as representing f(x) = 0. The abundance of types,
however, helped a lot in organizing the axioms and debugging the formalized
problems. Figure 4 presents an excerpt from an axiom file that includes two type
definitions (two def-preds) and two axioms.
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All in all, the language shall be understood as a conservative extension of ZF
set theory. It thus has some overlap with previous efforts toward formalizing a
large part math, such as Mizar’s math library [5]. However, some essential parts
of the system (e.g., the definition of the real numbers and arithmetic) are left
undefined although nothing prevents the users of the problem library from doing
so. Instead of writing all the inference rules explicitly, we delegated computer
algebra systems to take care of it. Although it is not within our current research
focus, full formalization of the system (maybe by embedding it into an existing
formalized math library) is an interesting future direction.

2.4 Related Work

Development of a well-designed benchmark is doubtlessly a crucial part of AR.
The most notable example is the “Thousands of Problems for Theorem Provers”
(TPTP, [12]), which covers various domains and several problem formats includ-
ing CNF, first-order formula with quantifiers, and typed higher-order logic. Pre-
vious efforts have also accumulated benchmarks for various branches of AR, such
as SAT [6], satisfiability modulo theory [1], inductive theorem proving [4], and
geometry problems [11]. However, the current study is the first attempt to offer a
large collection of curriculum math problems including not only proof problems
but also Find and Draw problems with a wide range of difficulties as a benchmark
for AR technologies.

3 Problem Samplers

We provide several sample problems taken from the first release of the library.

In the data set, the above problem is formalized as shown in Fig. 5.
It is not difficult to obtain an equivalent formula in the language of first-order

RCF by rewriting the predicates and functions using their defining axioms. How-
ever, it results in a formula including 22 variables and 22 atoms, that is way above
the ability of existing RCF-QE solvers to deal with. It is not very surprising see-
ing that the time complexity of RCF-QE, a key step in the solution process, is
doubly exponential in the number of variables in a given formula. We enhanced
existing RCF-QE algorithms to overcome the difficulty. Fortunately, our proto-
type system successfully solved this problem. We will explain the enhancement
in detail in Sect. 5.
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;; FILE: Univ-Hokkaido-2011-Ri-3.lsp
(def-directive

hokudai_2011_Ri_3_2
(Find (abc)

(exists (a b c O A B C l S)
(& (= abc (list-of a b c))

(line-type l)
(= l (shape-of-cpfun (lambda p (exists (t) (= p (point (+ t 2) (+ t 2) t))))))
(sphere-type S)
(= O (point 0 0 0)) (= A (point 2 1 0)) (= B (point 1 2 0))
(on O S) (on A S) (on B S)
(= C (point a b c))
(= C (center-of S))
(intersect l S)))))))

Fig. 5. Hokkaido university, 2011, science course, problem 3 (2)

In the data set, the above problem is formalized as follows:

∀a ∈ Q∃n ∈ Z(n > 0 ∧ n = |{(x, y) ∈ Z
2 | P (int2real(x), int2real(y))}|)

where P = λ(x, y) ∈ R
2(x > 0∧y > 0∧0 < |ax−y|√

1+a2 < 2
√
2

x+y ). Several ∈’s preceding
to domain names in the formula signify their types. Despite the seeming mixture
of reals, integers, and rational numbers, we can easily find an equivalent formula
in the language of PA. The mechanization of processes such as this is one of our
ongoing research topics.

In the data set, this problem is formalized using a higher-order function
prod from to :: (Z → R) → Z → Z → R, which corresponds to Πto

from in the com-
mon notation. This problem apparently requires some kind of inductive reasoning
but the domain includes both real numbers and integers. Problems of this type
are abundant in curriculum math. We believe they will prove to be new and
interesting and challenging problems for automated inductive reasoning, both
theoretically (e.g., formalizing them in a suitable local theory other than ZF)
and practically.
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It is straightforward to translate the above-mentioned problem in ZF:

∀A

(
A ⊂ S ∧ |A| = 101

→ ∃X (X ⊂ S ∧ |X| = 100 ∧ pairwise disjoint( {{a + x | a ∈ A} | x ∈ X}))

)

where S = {n ∈ N | 1 ≤ n ≤ 1000000}. Moreover, it can be expressed in PA,
too. However, the effort to reformulate it in PA does little help in solving it.

Table 7. Preference hierarchy on answer form

Directive type Syntactic condition on the answer formula

Find(v : R)[φ(v,p)] 1.
∨

i

(∧
j (v ρij αij) ∧ ψi(p)

)

2.
∨

i

(∧
j fij(v) ρij 0 ∧ ψi(p)

)

3.
∨

i

(
∃(n : Z).

(∧
j (v ρij αij(n)) ∧ (n ρi γi)

)
∧ ψi(p)

)

4.
∨

i

(
∃(r : R).

(∧
j (v ρij αij(r)) ∧ (r ρi γi)

)
∧ ψi(p)

)

Find(v : Z)[φ(v,p)] 1.
∨

i

(∧
j (v ρij αij) ∧ ψi(p)

)

2.
∨

i (∃(n : Z). (v = αi(n) ∧ (n ρi γi)) ∧ ψi(p))

Find(v : SetOf(Point))[φ(v,p)]
∨

i (v = {(x, y) | ξi(x, y)} ∧ ψi(p))

(ρ∗ ∈ {=, <, ≤, ≥, >}; α∗, α∗(·), γ∗, ξ∗(·, ·): first-order terms not including v, x, y;
fij(v): first-order term; ψi(p): quantifier-free first-order formula)

4 What Constitutes an Answer to a Find Problem?

In Subsect. 2.2, the properties an answer formula for a Find problem has to
satisfy for it to be regarded as acceptable (correctness and simplicity) were briefly
discussed. Now we will discuss these in detail. In [14], Sutcliffe et al. proposed
the conditions which answers of answer-extraction problems have to satisfy. Our
definition of ‘answer’ encompasses theirs in spirit and covers more complicated
cases beyond the extraction of a finite number of answers.

The definition of the correctness of an answer is straightforward. Given a
problem Find(x)[ψ(x,p)], where p stands for zero or more free parameters, an
answer formula φ(x,p) must satisfy:

∀x∀p(ψ(x,p) ↔ φ(x,p)). (1)

An example of a correct answer formula φ′(x,p) is provided for each Find prob-
lem in the library. If φ′(x,p) is used instead of ψ(x,p), the proof task for (1)
should generally be easy.
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The simplicity of an answer is harder to define. Suppose that you are given a
problem, Find(v : R)[v2 = a], in a math test. Then, λv.(v2 = a) is of course not
an acceptable answer. However, test-takers are expected to answer, for example,

λv.
(
(a ≥ 0 ∧ v = a1/2) ∨ (a ≥ 0 ∧ v = −a1/2)

)
.

An answer to a problem asking to find all real numbers v satisfying a formula
φ(v) in the first-order language of RCF is called simple when it is in the form
λv.ψ(v) satisfying the following conditions.

– ψ(v) is a quantifier-free formula in disjunctive normal form, and
– each dual clause in ψ(v) consists of atoms of the form of v ρ α or β ρ 0,

where ρ ∈ {=, <,>,≤,≥}, and α and β are first-order terms not includ-
ing v and comprises numbers, variables (i.e., parameters) and functions in
{+, −, ·, /, ^(power)}.

The aforementioned syntactic conditions for a problem classified in RCF
should be acceptable because RCF allows quantifier elimination [15]. Further-
more, the statistics tell us that almost all pre-university math problems have
explicit solutions (i.e., in the form of x = α, β > x > γ, etc.)

For problems other than those expressible in RCF, we tried our best to
capture a loose, common understanding in the form of acceptable answers by
examining the model answers (for humans) to the benchmark problems. Our
tentative definition of ‘simple answers’ is as follows:

– Simplicity of the sub-language: an answer formula should be in a language
consisting of Boolean connectives, equality and inequalities, numbers, vari-
ables, and the four arithmetic operations and power calculations, sin, cos, tan,
exp, log, ‘type coercion functions’ such as int to real, and a minimal use of
lambda abstractions and quantifications.

– Explicitness: whenever possible within the above restriction imposed on the
language, the answer to a problem of the form Find(x)[φ(x)] should be given
using atoms such as x = α and x > α, where α does not include x.

Note that we need quantification in general unless the problem is expressible
in a theory that allows quantifier elimination. For instance, in the sub-language
defined above, there is no way to express the answer to “Determine all positive
numbers v that are divisible by three and also by two,” other than, e.g., ∃k(v =
6k ∧ k > 0). As for “minimal use of λ,∀,∃”, we define the preference of answer
form tentatively (Table 7). The answer-check routine compares a solver’s answer
and the model answer in the data set, and checks whether the solver’s answer
ranks equal (or higher) in the hierarchy.

5 Prototype Solver

While developing the benchmark data set, we also developed a prototype math
problem solver system (overviewed in Fig. 6). Given a formalized problem, the
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Fig. 6. System overview

Table 8. Overall results

Succeeded Failed

Success % Time (sec) Timeout Wrong Other

Min/Med/Avg/Max

Chart RCF 63.8% (111/174) 13/18.0/ 37.4/ 343 10.9% 1.7% 23.6%

PA 57.1% ( 48/ 84) 12/17.0/ 20.3/ 172 0.0% 0.0% 42.9%

Other 10.0% ( 3/ 30) 13/14.0/ 17.7/ 26 0.0% 0.0% 90.0%

All 56.3% (162/288) 12/17.0/ 32.0/ 343 6.6% 1.0% 36.1%

Univ All (RCF only) 58.0% (142/245) 12/26.5/ 85.5/1417 15.5% 2.9% 23.7%

IMO RCF 16.5% ( 19/115) 14/25.0/ 51.8/ 197 29.6% 0.9% 53.0%

PA 4.8% ( 2/ 42) 25/29.5/ 29.5/ 34 16.7% 0.0% 78.6%

Other 3.6% ( 2/ 55) 17/24.5/ 24.5/ 32 12.7% 0.0% 83.6%

All 10.8% ( 23/212) 14/25.0/ 47.5/ 197 22.6% 0.5% 66.0%

system first rewrites it iteratively using the axioms and several equivalence-
preserving transformation rules such as beta-reduction, extensional equality
between functions (λx.M = λx.N ⇔ ∀x(M = N)), variable elimination by
substitution (∀x(x = f → φ(x)) ⇔ φ(f), and (∃x(x = f ∧ φ(x)) ⇔ φ(f) where
x does not occur free in f). In the course of the rewriting process, several types
of terms, such as multiplication and division of polynomials and integration, are
evaluated (simplified) by CASs such as Mathematica 9.0 and Maple 18. Once the
input is rewritten to a formula in the language of RCF, quantifier-elimination
(QE) algorithms are invoked; we utilized the RCF-QE algorithm implemented
in SyNRAC [8]. When QE is proceeded successfully, the remaining tasks, solving
equations and inequalities in many cases, will be taken care by the CASs. When
the input is rewritten in the language of PA, we apply the Reduce command of
Mathematica.

As mentioned in Sect. 3, the first-order formulas generated by mechanical
translation are much larger than expected [7,10]. We enhanced the RCF-QE
algorithms by numerous techniques to handle them: choice of the computation
order of sub-formulas, specialized QE algorithms for restricted input formulas,
simplification of the intermediate formulas by utilizing the interim results, and
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Table 9. Breakdown of results on Chart RCF problem by number of stars

# of Succeeded Failed

Stars Success % Time (sec) Timeout Wrong Other

Min/Med/Avg/Max

1 82.4 % (28/34) 13/17.0/20.4/ 65 2.9 % 0.0 % 14.7 %

2 79.4 % (27/34) 16/18.0/28.1/230 2.9 % 2.9 % 14.7 %

3 57.6 % (19/33) 15/17.0/36.1/341 6.1 % 0.0 % 36.4 %

4 47.4 % (18/38) 15/19.0/62.1/343 23.7 % 2.6 % 26.3 %

5 54.3 % (19/35) 16/28.0/53.6/279 17.1 % 2.9 % 25.7 %

Table 10. Breakdown of results on Univ RCF problems by university

University # of All RCF Overall Success % on

Problems Problems % Success % RCF Problems

Hokkaido 72 44.4 % (32/ 72) 25.0 % (18/ 72) 56.3 % (18/32)

Tohoku 80 52.5 % (42/ 80) 30.0 % (24/ 80) 57.1 % (24/42)

Tokyo 160 38.8 % (62/160) 18.8 % (30/160) 48.4 % (30/62)

Nagoya 72 41.7 % (30/ 72) 20.8 % (15/ 72) 50.0 % (15/30)

Osaka 64 37.5 % (24/ 64) 32.8 % (21/ 64) 87.5 % (21/24)

Kyoto 88 43.2 % (38/ 88) 33.0 % (29/ 88) 76.3 % (29/38)

Kyushu 96 36.5 % (35/ 96) 18.8 % (18/ 96) 51.4 % (18/35)

Table 11. Results for IMO problems by decade

Years Human Machine Succeeded Failed
efficency efficiency Timeout Wrong Other

1959-69 58.23 % 21.11 % 26.3 % (15/57) 22.8 % 1.8 % 49.1 %

1970-79 46.57 % 7.00 % 13.3 % ( 4/30) 26.7 % 0.0 % 60.0 %

1980-89 44.35 % 1.85 % 3.1 % ( 1/32) 31.2 % 0.0 % 65.6 %

1990-99 38.27 % 3.33 % 5.7 % ( 2/35) 11.4 % 0.0 % 82.9 %

2000-13 34.31 % 1.19 % 1.9 % ( 1/54) 22.2 % 0.0 % 75.9 %

so on. Additionally, we developed an algorithm for computing the area enclosed
by a set of curves and an extended RCF-QE command to reduce some of the
problems involving trigonometric functions to RCF-QE problems.

6 Experiments

The prototype system was run on the benchmark problems with a time limit
of 3600 s per problem (including the time spent on checking the correctness of
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the answers). Table 8 shows the number of successfully solved problems, mini-
mum, median, average, and maximum (wallclock) time spent on solved problems,
number of failures due to timeout, wrong answers (disproofs for Show or wrong
answers for Find or Draw directives), and those not solved due to various reasons
(the column headed ‘Other’). Approximately one-third of the ‘Other’ cases were
due to a failure in the problem reformulation phase; i.e., for those problems,
the system could not find an equivalent formula expressible in either RCF or
PA. Explicitly wrong answers were due to bugs in our formula rewriting system
module and/or malfunctions of Maple’s equation/inequality solving command.

Overall, the performances for the Chart, Univ, and IMO divisions seem to
well reflect the inherent differences in their difficulty levels. Tables 9, 10, and 11
show further analysis of the results obtained for the three divisions. Table 9 lists
the performance figures for the RCF problem subsets in the Chart division that
are rated level 1 to 5 in the exercise books. We see a clear difference between
those rated level 1 or 2, and 4 or 5, especially in the percentages of the problems
that had a timeout. Table 10 lists the performance figures for each university
from which the exam problems were taken. Although average scores etc. of the
entrance exams are not published, a statistical analysis undertaken by major
prep schools tells us that the average score of successful applicants to the top
universities is around 30–60% depending on schools and departments. Hence, it
is very plausible that a machine will come to have the ability to pass the entrance
math exams of top universities if it is able to cover areas other than RCF.

Finally, Table 11 lists the results on IMO problems taken from different time
periods. Human and Machine Efficiency in the table shows the ratio between the
attained points (by all contestants in a year and by our system, respectively)
and all possible points1. It seems that the IMO problems are getting harder year
by year not only for human participants but more so for our system.

We believe that these experimental results support our decision on the library
organization, and encourage us to further proceed toward the goal of end-to-end
math problem solving with the monolithic logical language based on ZF.

7 Conclusion and Prospects

In this paper, we introduced a benchmark problem library for mechanized math
technologies. The library consists of curriculum math problems taken from exer-
cise problem books, university entrance exams, and International Mathematical
Olympiads. Unlike other existing benchmark libraries, this one contains prob-
lems that are formalized so that they are obtainable as the result of mechanical
translation of the original problems expressed in natural language. Preliminary
experimental results we obtained for our prototype system on the benchmark
show that its performance is comparable to that of candidates for admission to
top universities, at least for problems in real-closed fields.

1 The statistics were taken from the official IMO website: https://www.imo-official.
org/results year.aspx.

https://www.imo-official.org/results_year.aspx
https://www.imo-official.org/results_year.aspx
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Our future plan includes the expansion of the library with more problems
on integer arithmetic, transcendental functions, combinatorics, and a mixture
of real and integer arithmetics as well as development of the natural language
processing module for an end-to-end system.
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Abstract. This paper presents the raSAT SMT solver for polynomial
constraints, which aims to handle them over both reals and integers with
simple unified methodologies: (1) raSAT loop for inequalities, which
extends the interval constraint propagation with testing to accelerate
SAT detection, and (2) a non-constructive reasoning for equations over
reals, based on the generalized intermediate value theorem.

1 Introduction

Polynomial constraint solving is to find an instance that satisfies a given sys-
tem of polynomial inequalities/equations. Various techniques for solving such
a constraint are implemented in SMT solvers, e.g., Cylindrical algebraic
decomposition (RAHD [18,19], Z3 4.3 [13]), Virtual substitution (SMT-
RAT [5], Z3 3.1), Interval constraint propagation [2] (iSAT3 [7], dReal [9,10],
RSolver [20], RealPaver [11]), and CORDIC (CORD [8]). For integers, Bit-
blasting (MiniSmt [23]) and Linearization (Barcelogic [3]) can be used.

This paper presents the raSAT SMT solver1 for polynomial constraints over
reals. For inequalities, it applies a simple iterative approximation refinement,
raSAT loop, which extends the interval constraint propagation (ICP) with test-
ing to boost SAT detection (Sect. 3). For equations, a non-constructive reason-
ing based on the generalized intermediate value theorem [17] is applied (Sect. 4).
Implementation with soundness guarantee and optimizing strategies is evaluated
by experiments (Sect. 5).

Although raSAT has been developed for constraints over reals, constraints
over integers are easily adopted, e.g., by stopping interval decompositions when
the width becomes smaller than 1, and generating integer-valued test instances.

raSAT has participated SMT Competition 2015, in two categories of main
tracks, QF NRA and QF NIA. The results, in which Z3 4.4 is a reference, are,

– 3rd in QF NRA, raSAT solved 7952 over 10184 (where Z3 4.4, Yices-NL
and SMT-RAT solved 10000, 9854 and 8759, respectively.)

1 Available at http://www.jaist.ac.jp/∼s1310007/raSAT/index.html.
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– 2nd in QF NIA, raSAT solved 7917 over 8475 (where Z3 4.4 and AProVE
solved 8459 and 8270, respectively).

A preliminary version of raSAT was orally presented at SMT workshop 2014 [22].

2 SMT Solver for Polynomial Constraints

Definition 1. A polynomial constraint ψ is defined as follow

ψ ::= g(x1, ..., xn) � 0 | ψ ∧ ψ | ψ ∨ ψ | ¬ψ (1)

where (� ∈ {>,≥, <,≤,=, �=}) and g(x1, · · · , xn) is a polynomial with integer
coefficients over variables x1, · · · , xn. We call g(x1, · · · , xn) � 0 an atomic poly-
nomial constraint (APC). When x1, · · · , xn are clear from the context, we denote
g for g(x1, · · · , xn), and var(g) for the set of variables appearing in g.

An SMT solver decides whether ψ is satisfiable (SAT), i.e., whether there
exists an assignment of reals (resp. integers) to variables that makes ψ true. We
organize the raSAT SMT solver in a very lazy approach for an arithmetic theory
T over reals (resp. integers). As a preprocessing, raSAT converts a polynomial
constraint into conjunctive normal form (CNF) by Tseitin conversion [21]. In
addition, the APCs are preprocessed so that the constraint becomes a CNF
containing only > and =. Then, first, each APC is assigned a Boolean value
(true or false) by an SAT solver such that ψ is evaluated to true. Second, the
boolean assignment is checked for consistency against the theory T .

raSAT is one of the interval constraint propagation (ICP) based SMT
solvers, as well as iSAT [7] and dReal [10]. In ICP [2], interval arithmetic
(IA) [16] plays a central role. raSAT implements Classical Interval (CI) [16]
and four kinds of Affine Intervals (AI) [4,14]. We fix their notations. Let R be
the set of real numbers and R

∞ = R ∪ {−∞,∞}. We naturally extend the
standard arithmetic operations on R to those on R

∞ as in [16]. The set of all
intervals is denoted by I = {[l, h] | l ≤ h ∈ R

∞}. A box for a sequence of variables
x1, · · · , xn is B = I1 × · · · × In for I1, · · · , In ∈ I.

A conjunction ϕ of APCs is IA-valid (resp. IA-UNSAT ) in a box B if ϕ is
evaluated to true (resp. false) by IA over B. In this case, B is called a IA-valid
(resp. IA-UNSAT ) box with respect to ϕ. Since IA is an over approximation
of arithmetical results, IA-valid (resp. IA-UNSAT) in B implies valid (resp.
UNSAT) in B. If neither of them holds, we call IA-SAT (as shown below),
which cannot decide the satisfiability at the moment. Note that if ϕ is IA-valid
in B, ϕ is SAT.
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3 ICP and raSAT Loop for Inequality

Since ICP is based on IA, which is an over-approximation, it can be applied to
decide SAT/UNSAT of inequalities and UNSAT of equalities, but not for SAT
of equalities. We first explain ICP for (a conjunction of) inequalities and then
extend it as a raSAT loop for SAT detection acceleration. Handling the presence
of equations will be shown in Sect. 4.

Starting with a box B ((−∞,∞)n by default), ICP [2] tries to detect SAT
of ϕ in B by iteratively contracting boxes (by backward propagation of inter-
val constraints) and decomposing boxes (when neither IA-valid nor IA-UNSAT
detected) until either an IA-valid box is found or no boxes remain to explore.

The raSAT loop [14] intends to accelerate ICP for SAT detection by testing.
Figure below illustrates the raSAT loop, in which “Test-SAT” in B means that
a satisfiable instance is found by testing in B, and “Test-UNSAT”, otherwise.

Limitation of ICP and raSAT Loop for Inequality. ICP concludes SAT
when it identifies a valid box by IA. Although the number of boxes may be
exponential, if I1, · · · , In are bounded, ICP always detects SAT of the inequalities
ψ as Fig. (a) and detects UNSAT of ψ if not touching as illustrated in Fig. (b,c).
If I1, · · · , In are not bounded, adding to touching cases, a typical case of failure
in UNSAT detection is a converging case as Fig. (d).

(a) SAT detection (b) UNSAT detection (c) Touching case (d) Convergent case

4 Generalized Intermediate Value Theorem for Equations

Handle equations in raSAT is illustrated by the intermediate value theorem
(IVT) for a single equation g(x) = 0. If we find t1, t2 with g(t1) > 0 and g(t2) < 0,
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g = 0 holds in between. For multi-variant equations, we apply a custom version
(Theorem 1) of the generalized IVT [17, Theorem 5.3.7].

4.1 Generalized Intermediate Value Theorem

Let B = [l1, h1] × · · · [ln, hn] be a box over V = {x1, · · · , xn}, and let V ′ =
{xi1 , · · · , xik

} be a subset of V . We denote B↓V ′ = {(r1, · · · , rn) ∈ B | ri =
li for i = i1, ..., ik} and B↑V ′ = {(r1, · · · , rn) ∈ B | ri = hi for i = i1, ..., ik}.
Given an assignment θ : V ′ 
→ R, which assigns a real value to each variable
in V ′, B|θ = {(r1, · · · , rn) ∈ B | ri = θ(xi) if xi ∈ V ′}.

Definition 2. Let
m∧

j=1

gj = 0 be a conjunction of equations over V . A sequence

(V1, · · · , Vm) is a check basis of (g1, · · · , gm) in B, if, for each j, j′ ≤ m,

1. ∅ �= Vj ⊆ var(gj),
2. Vj ∩ Vj′ = ∅ if j �= j′, and
3. either gj < 0 on B↑Vj

and gj > 0 on B↓Vj
, or gj < 0 on B↑Vj

and gj > 0 on
B↓Vj

.

Theorem 1. For a conjunction of polynomial inequalities/equations

ϕ =
m∧

j=1

gj > 0 ∧
m′
∧

j=m+1

gj = 0

and B = [l1, h1] × · · · [ln, hn], assume that the followings hold.

1. For ϕ1 ∧ ϕ2 =
m∧

j=1

gj > 0, ϕ1 is IA-valid in B and ϕ2 is Test-SAT in B with

an assignment θϕ2 : Vϕ2 
→ R such that θϕ2(xi) ∈ [li, hi] for each xi ∈ Vϕ2 ,
where Vϕ2 is the set of variables in ϕ2.

2. A check basis (Vm+1, · · · , Vm′) over V \Vϕ2 of (gm+1, · · · , gm′) in B|θϕ2
exists.

Then, ϕ has a SAT instance in B.

Example 1 illustrates Theorem 1 for V = {x, y} with m = 0 and m′ = n = 2.

Example 1. Given two equations g1(x, y) = 0 and
g2(x, y) = 0. Assuming that there exists a box
B = [c1, d1] × [c2, d2] such that

– g1(c1, y) < 0 for y ∈ [c2, d2], g1(d1, y) > 0 for y ∈ [c2,
d2], and

– g2(x, c2) < 0 for x ∈ [c1, d1], g2(x, d2) > 0 for x ∈ [c1,
d1].

Thus, g1(x, y) = 0 and g2(x, y) = 0 share a root in B.
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Limitation of the Generalized IVT for Equality.
There are two limitations on applying Theorem1.
– The number of variables (dimensions) must be no

less than the number of equations.
– Trajectories of equations must be crossing. For

instance, it may fail to show SAT if two equation
g1 = 0, g2 = 0 are touching, as in the right figure.

4.2 raSAT Loop with Generalized IVT

Theorem 1 is added into the raSAT loop as in Figure below. We borrow nota-
tions ϕ, ϕ1, and ϕ2 from Theorem 1. The label “> : IA-valid” means that the
conjunction of inequalities appearing in the input is IA-valid. Similar for “=: IA-
SAT” and “> : Test-SAT”. The label “Test-SAT over Vϕ2 ⊆ V ” means that a
test instance to conclude Test-SAT of ϕ2 is generated on Vϕ2 and the generalized
IVT is applied over V \Vϕ2 in the box B|θϕ2

(described by “IVT over V \Vϕ2”).

ϕ ϕ2 ϕ

Example 2. Suppose ϕ is g1 > 0∧g2 = 0∧g3 = 0 where g1 = cd−d, g2 = a−c−2,
and g3 = bc−ad−2. The initial box storage contains only B = [−2, 3.5]×[−5, 0]×
[0, 1.5] × [−5,−0.5] as the initial range of (a, b, c, d).
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Figure above shows the flow of the raSAT loop with IVT, where a label
[...], B is for a pair of a box storage and a currently exploring box B, and θ for a
test instance. The backward interval constraint propagation reduces B, B1, and
B3 to B′, B′

1, and B′
3, respectively.

5 Implementation and Experiments

5.1 Implementation of raSAT

In raSAT implementation, the SAT solver miniSAT [6] manages the Boolean
part of the DPLL procedure. There are several notable features of raSAT.

Soundness. raSAT uses the floating point arithmetic, and round-off errors may
violate the soundness. To get rid of such pitfalls, raSAT integrates an IA library
[1] which applies outward rounding [12] of intervals. For the soundness of Test-
SAT, iRRAM2, which guarantees the round-off error bounds, confirms that a
SAT instance found by the floating point arithmetic is indeed SAT.

Affine Interval. Various IAs, including Classical Interval (CI) [16] and 4 vari-
ations, AF1, AF2, EAI,CAI, of Affine Intervals (AI) [4,14,15], are implemented
as a part of raSAT. At the moment, AF2 and CI are used by default, and the
choice option will be prepared in the future releases.

AI introduces noise symbols ε’s, which are interpreted as values in [−1, 1].
Variations of AIs come from how to (over) approximate the multiplication of
noise symbols in a linear formula. Although the precision is incomparable, AI
partially preserve the dependency among values, which is lost in CI. For instance,
let x ∈ [2, 4] = 3 + ε. Then, x − x is evaluated to [−2, 2] by CI, but [0, 0] by AI.
The example below shows the value dependency. Let h(x, y) = x3 − 2xy for x =
[0, 2] = 1 + ε1 and y = [1, 3] = 2 + ε2. CI estimates h(x, y) as [−12, 8], and AF2

does as −3−ε1 −2ε2 +3ε+ +3ε± (evaluated to [−9, 6]). Such information is used
to design SAT-directed heuristics for choosing a variable at a box decomposition.

SAT-Directed Heuristics. The variable selection strategy is, (1) select the
least likely satisfiable APC with respect to SAT-likelihood, and (2) choose the
most likely influential variable in the APC with respect to the sensitivity.

Suppose AI estimates the range range(g,B) of a polynomial g in a box B as
[c1, d1]ε1 + · · · + [cn, dn]εn, which is evaluated by instantiating [−1, 1] to εi.

– The SAT-likelihood of an APC g > 0 is |range(g,B) ∩ (0,∞)|/|range(g,B)|.
– The sensitivity of a variable xi in g > 0 is max(|ci|, |di|).

For instance, the SAT-likelihood of h(x, y) above is 0.4 = 6
9−(−6) by AF2 and

the sensitivity of x and y are 1 and 2 by AF2, respectively.
When selecting a box, raSAT adopts the largest SAT-likelihood, where the

SAT-likelihood of a box is the least SAT-likelihood among APCs on it. Thus, the
box storage in the raSAT loop with IVT is implemented as a priority queue.

2 Available at http://irram.uni-trier.de.

http://irram.uni-trier.de
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The effect of the heuristics is examined with 18 combinations of the least,
largest (with respect to measures), and random variable/box choices. Among
them, only the combination above shows visible differences from the random
choices, especially on SAT detection for quite large problems, such that it detects
11 SAT (including 5 problems marked “unknown”) in Zankl/Matrix2∼5, whereas
others detect at most 5 SAT (with at most 1 problem marked “unknown”).

5.2 Experiments

Comparison with Other SMT Solvers. Our comparison has two views, (1)
ICP-based solvers, e.g., iSAT3 and dReal, and (2) other SMT-solvers, which
are superior than raSAT at the SMT competition 2015, e.g., Z3 4.4 and SMT-
RAT 2.03. After the competition, raSAT has been improved on the backward
interval constraint propagation [2]. They are compared on SMT-LIB benchmarks
2015-06-014 with timeout of 2500 s on an Intel Xeon E7-8837 2.66 GHz and 8 GB
RAM. Note that

– iSAT3 requires bounded intervals, and its bound of variables is set to
[−1000, 1000]. For other tools (including raSAT), it is kept (−∞,∞).

– dReal decides δ-SAT, instead of SAT, which allows δ-deviation on the evalu-
ation of polynomials for some δ > 0. Note that δ-SAT does not imply SAT. δ
for dReal is set to its default value (0.001).

Table 1 shows the numbers of solved problems in each benchmark of the QF NRA
category in SMT-LIB. The “Time” row shows the cumulative running time of
successful cases. In the “Benchmark” column, the numbers of SAT/UNSAT prob-
lems are associated if already known. “*” means δ-SAT.

Unknown Problems in SMT-LIB. In SMT-LIB benchmark, many prob-
lems are marked “unknown”. Among such unknown inequality problems, raSAT
solves 15 (5 SAT, 10 UNSAT), Z3 4.4 solves 36 (13 SAT, 23 UNSAT), and SMT-
RAT 2.0 solves 15 (3 SAT, 12 UNSAT). For problems with equations, raSAT
and SMT-RAT 2.0 solve 3 UNSAT problems, and Z3 4.4 solves 492 (276 SAT,
216 UNSAT). For large problems, UNSAT can be detected by finding a small
UNSAT core among APCs, whereas SAT detection requires to check all APCs.

For unknown problems, SAT results are easy to check. Although Z3 4.4
outperforms others, it is worth mentioning that raSAT also detects SAT on
several quite large problems in Zankl/Matrix-2∼5, which often have more than
50 variables (Meta-Tarski and Matrix-1 have mostly less than 10 and 30 vari-
ables, respectively). For instance, Z3 4.4 solely solves Matrix-3-7, 4-12, and 5-6
(which have 75, 200, and 258 variables), and raSAT solely solves Matrix-2-3, 2-
8, 3-5, 4-3, and 4-9 (which have 57, 17, 81, 139, and 193 variables). SMT-RAT
2.0 shows no new SAT detection in Zankl/Matrix-2∼5.

3 https://github.com/smtrat/smtrat/releases/download/v2.0/rat1 linux64.zip.
4 http://smtlib.cs.uiowa.edu/benchmarks.shtml.

https://github.com/smtrat/smtrat/releases/download/v2.0/rat1_linux64.zip
http://smtlib.cs.uiowa.edu/benchmarks.shtml
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Table 1. Comparison among SMT solvers on SMT-LIB benchmark (∗ = δ-SAT)

Benchmark (inequality only) raSAT iSAT3 dReal Z3 4.4 SMT-RAT

zankl (SAT) 28 16 103∗ 54 15

zankl (UNSAT) 10 12 0 23 13

meti-Tarski (SAT)(3220) 2940 2774 3534∗ 3220 3055

meti-Tarski (UNSAT)(1526) 1138 1242 1172 1523 1298

hong (UNSAT)(20) 20 20 20 8 3

Total 4136 4064 1192 4828 4384

Time(s) 12363.34 1823.83 11145.23 64634.91 124823.17

Benchmark (with equations) raSAT iSAT3 dReal Z3 4.4 SMT-RAT

zankl (SAT)(11) 11 0 11∗ 11 11

zankl (UNSAT)(4) 4 4 4 4 4

meti-Tarski (SAT)(1805) 1313 1 1994∗ 1805 1767

meti-Tarski (UNSAT)(1162) 1011 1075 965 1162 1114

kissing (SAT)(42) 6 0 18∗ 36 7

kissing (UNSAT)(3) 0 0 1 0 0

hycomp (SAT) 0 0 317∗ 254 33

hycomp (UNSAT) 1931 2279 2130 2200 1410

LassoRanker (SAT) 0 16 0∗ 120 0

LassoRanker (UNSAT) 0 27 0 118 0

Total 4276 3750 3100 5710 4346

Time(s) 5978.58 4522.84 32376.47 124960.95 102940.90

6 Conclusion

This paper presented an SMT solver raSAT for polynomial constraints over reals
using simple techniques, i.e., interval arithmetic and the generalized intermediate
value theorem. Among ICP based SMT solvers, iSAT3 requires bounded inter-
vals for inputs and SAT detection of equations is limited (e.g., a SAT instance in
integers). dReal handles only δ-SAT. raSAT pursues the theoretical limitation
of SAT/UNSAT detection based on ICP.

ICP-based techniques have essential limitations on completeness. These lim-
itations often appear with multiple roots and/or 0-dimensional ideals, and our
next step is to combine computer algebraic techniques as a last resort. For
instance, we observe during experiments that raSAT fails the touching cases
with generally a rapid convergence until a box cannot be decomposed further
(e.g., a box becomes smaller than the roundoff error limit). When such a box is
detected, we plan to apply an existing package of Gröbner basis.
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Abstract. Schematic cut-elimination is a method of cut-elimination
which can handle certain types of inductive proofs. In previous work,
an attempt was made to apply the schematic CERES method to a
formal proof with an arbitrary number of Π2 cuts (a recursive proof
encapsulating the infinitary pigeonhole principle). However the derived
schematic refutation for the characteristic clause set of the proof could
not be expressed in the schematic resolution calculus developed so far.
Without this formalization a Herbrand system cannot be algorithmically
extracted. In this work, we provide a restriction of infinitary pigeonhole
principle, the ECA-schema (Eventually Constant Assertion), or ordered
infinitary pigeonhole principle, whose analysis can be completely carried
out in the existing framework of schematic CERES. This is the first
time the framework is used for proof analysis. From the refutation of the
clause set and a substitution schema we construct a Herbrand system.

1 Introduction

For his famous Hauptsatz [14], Gerhard Gentzen developed the sequent calculus
LK. Gentzen went on to show that the cut inference rule is redundant and in
doing so, was able to show several results on consistency and decidability. The
method he developed for eliminating cuts from LK-derivations works by induc-
tively reducing the cuts in a given LK-derivation to cuts which either have a
reduced formula complexity and/or reduced rank [17]. This method of cut elimi-
nation is sometimes referred to as reductive cut elimination. A useful consequence
of cut elimination for the LK-calculus is that cut-free LK-derivations have the
subformula property, i.e. every formula occurring in the derivation is a subfor-
mula of some formula in the end sequent. This property admits the construction
of Herbrand sequents and other objects which are essential in proof analysis.

By using the technique of cut-elimination, it is also possible to gain math-
ematical knowledge concerning the connection between different proofs of the
same theorem. For example, Jean-Yves Girard’s application of cut elimination
to the Fürstenberg-Weiss’ proof of van der Waerden’s theorem [15] resulted in
the analytic proof of van der Waerden’s theorem as found by van der Waerden
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 241–256, 2016.
DOI: 10.1007/978-3-319-40229-1 17
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himself. From the work of Girard, it is apparent that interesting results can be
derived by eliminating cuts in “mathematical” proofs.

A more recently developed method of cut elimination, the CERES method [3],
provides the theoretic framework to directly study the cut structure of LK-
derivations, and in the process reduces the computational complexity of deriving
a cut-free proof. The cut structure is transformed into a clause set allowing for
a clausal analysis of the resulting clause form. Methods of reducing clause set
complexity, such as subsumption and tautology elimination can be applied to
the characteristic clause set to increase the efficiency. It was shown by Baaz &
Leitsch in “Methods of cut Elimination” [4] that this method of cut elimination
has a non-elementary speed up over reductive cut elimination.

In the same spirit as Girard’s work, the CERES method was applied to
a formalization of Fürstenberg’s proof of the infinitude of primes [1]. Instead
of formalizing the proof as a single proof (in second-order arithmetic) it was
represented as a sequence of first-order proofs enumerated by a single numeric
parameter indexing the number of primes assumed to exist (leading to a con-
tradiction). The resulting schema of clause sets was refuted for the first few
instances by the system CERES. The general refutation schema, resulting in
Euclid’s method of prime construction (constructing a larger prime from the
primes already constructed), was specified on the mathematical meta-level. At
that time no object-level construction of the resolution refutation schema existed.

A straightforward mathematical formalization of Fürstenberg’s proof requires
induction. In higher-order logic, induction is easily formalized via the compre-
hension principle. However in first-order logic, an induction rule or induction
axioms have to be added to the LK-calculus. As was shown in [13], ordinary
reductive cut elimination does not work in the presence of an induction rule
in the LK-calculus. There are, however, other systems [16] which provide cut-
elimination in the presence of an induction rule; but these systems do not produce
proofs with the subformula property, which is necessary for Herbrand system
extraction. Also, there have been other investigations focusing on similar forms
of proof representation [5–7,11], though cut-elimination, and especially CERES
cut-elimination was not the primary focus of these works.

In “Cut-Elimination and Proof Schemata” [13], a version of the LK-calculus
was introduced (LKS-calculus) allowing for the formalization of sequences of
proofs as a single object level construction, i.e. proof schema, as well as a frame-
work for performing a CERES-type cut elimination on proof schemata. Cut elim-
ination performed within the framework of [13] results in cut-free proof schemata
with the subformula property.

In previous work, we applied the schematic CERES method of [13] to a
proof formalized in the LKS-calculus [8,10]. We referred to this formal proof
as the Non-injectivity Assertion (NiA) schema. A well known variation of the
NiA-schema, of which has been heavily studied in literature, is the infinitary
Pigeonhole Principle (PHP). Though a resolution refutation schema was found
and mathematically specified [8], it was not possible to express this refutation
schema within the language of [13]. The main problem was the specification of
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a unification and refutation schema. This issue points to a fundamental prop-
erty of CERES-based schematic cut-elimination, namely that the language for
specifying the refutation schema is more complex than that specifying the proof
schema.

In this work we construct a formal proof for a weaker variant of the NiA-
schema which we call the Eventually Constant Assertion schema (ECA-schema).
The ECA-schema is an encapsulation of the infinitary pigeonhole principle where
the holes are ordered. For the ECA-schema a specification of the resolution
refutation schema within the formalism of [13] turned out to be successful. In
particular, we are able to extract a Herbrand system and complete the proof
analysis of the ECA-schema.

The paper is structured as follows: In Sect. 2, we introduce the LKS-calculus
and the essential concepts from [13] concerning the schematic clause set analysis.
In Sect. 3, we mathematically prove the ECA-schema. The formal proof written
in the LKS-calculus can be found in [9]. In Sect. 4, we extract the characteristic
clause set from the ECA-schema and perform normalization and tautology elim-
ination. In Sect. 5, we provide a refutation of the extracted characteristic clause
set. In Sect. 6, we extract a Herbrand system for the refutation of Sect. 5. In
Sect. 7, we conclude the paper and discuss our conjecture concerning sufficient
conditions allowing for the application of the schematic CERES method to a
given proof schema.

2 The LKS-Calculus and Clause Set Schema

In this section we introduce the LKS-calculus, which will be used to formalize
the ECA-schema, and the schematic CERES method.

2.1 Schematic Language, Proofs, and the LKS-Calculus

The LKS-calculus is based on the LK-calculus constructed by Gentzen [14].
When one grounds the parameter indexing an LKS-derivation, the result is an
LK-derivation [13]. The term language used is extended to accommodate the
schematic constructs of LKS-derivations. We work in a two-sorted setting con-
taining a schematic sort ω and an individual sort ι. The schematic sort contains
numerals constructed from the constant 0 : ω, a monadic function s(·) : ω → ω
as well as ω-variables Nv, of which one variable, the free parameter, will be used
to index LKS-derivations. When it is not clear from context, we will represent
numerals as m. The free parameter will be represented by n unless otherwise
noted.

The individual sort is constructed in a similar fashion to the standard first
order language [17] with the addition of schematic functions. Thus, ι contains
countably many constant symbols, countably many constant function symbols,
and defined function symbols. The constant function symbols are part of the
standard first order language and the defined function symbols are used for
schematic terms. However, defined function symbols can also unroll to numerals
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and thus can be of type ωn → ω. The ι sort also has free and bound variables
and an additional concept, extra variables [13]. These are variables introduced
during the unrolling of defined function (predicate) symbols. We do not use
extra variables in the formalization of the ECA-schema. Also important are the
schematic variable symbols which are variables of type ω → ι. Essentially second
order variables, though, when evaluated with a ground term from the ω sort
we treat them as first order variables. Our terms are built inductively using
constants and variables as a base.

Formulae are constructed inductively using countably many predicate con-
stants, logical operators ∨,∧,→,¬,∀, and ∃, as well as defined predicate symbols
which are used to construct schematic formulae. In this work iterated

∨
is the

only defined predicate symbol used. Its formal specification is:

ε∨ =
s(y)∨

i=0

P (i) ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s(y)∨

i=0

P (i) ⇒
y∨

i=0

P (i) ∨ P (s(y))

0∨

i=0

P (i) ⇒ P (0)

(1)

As proof theoretical framework we use the sequent calculus LK [14,17] (note
that, as we using CERES for proof analysis the specific form of structural rules
does not matter). To obtain more flexibility in formalizing mathematical theo-
rems we extend LK to a calculus LKE, essentially the LK-calculus [17] under
an equational theory ε (in our case ε∨ Eq. 1). This equational theory, concerning
our particular usage, is a primitive recursive term algebra describing the struc-
ture of the defined function (predicate) symbols. The LKE-calculus is the base
calculus for the LKS-calculus which also includes proof links.

Definition 1 (ε-inference rule)

S [t]
(ε)

S [t′]

In the ε inference rule, the term t in the sequent S is replaced by a term t′ such
that, given the equational theory ε, ε |= t = t′.

To extend the LKE-calculus with proof links we need a countably infinite set
of proof symbols denoted by ϕ,ψ, ϕi, ψj . . .. Let S(x̄) by a sequent with a vector
of schematic variables x̄, by S(t̄) we denote the sequent S(x̄) where each of the
variables in x̄ is replaced by the terms in the vector t̄ respectively, assuming that
they have the appropriate type. Let ϕ be a proof symbol and S(x̄) a sequent,

then the expression
(ϕ(t̄))
S(t̄)

is called a proof link. For a variable n : ω, proof

links such that the only ω-variable is n are called n-proof links.

Definition 2 (LKE-calculus [13]). The sequent calculus LKS consists of the
rules of LKE, where proof links may appear at the leaves of a proof.
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Definition 3 (Proof schemata [13]). Let ψ be a proof symbol and S(n, x̄) be
a sequent such that n : ω. Then a proof schema pair for ψ is a pair of LKS-
proofs (π, ν(k)) with end-sequents S(0, x̄) and S(k + 1, x̄) respectively such that
π may not contain proof links and ν(k) may contain only proof links of the

form
(ψ(k, ā))
S(k, ā)

and we say that it is a proof link to ψ. We call S(n, x̄) the

end sequent of ψ and assume an identification between the formula occurrences
in the end sequents of π and ν(k) so that we can speak of occurrences in the
end sequent of ψ. Finally a proof schema Ψ is a tuple of proof schema pairs
for ψ1, · · · ψα written as 〈ψ1, · · · ψα〉, such that the LKS-proofs for ψβ may also
contain n-proof links to ψγ for 1 ≤ β < γ ≤ α. We also say that the end sequent
of ψ1 is the end sequent of Ψ .

We will not delve further into the structure of proof schemata and instead
refer the reader to [13]. We now introduce the characteristic clause set schema.

2.2 Characteristic Clause Set Schema

The construction of the characteristic clause set as described for the CERES
method [3] required inductively following the formula occurrences of cut ances-
tors up the proof tree to the leaves. The cut ancestors are sub-formulas of any
cut in the given proof. However, in the case of proof schemata, the concept of
ancestors and formula occurrence is more complex. A formula occurrence might
be an ancestor of a cut formula in one recursive call and in another it might
not. Additional machinery is necessary to extract the characteristic clause term
from proof schemata. A set Ω of formula occurrences from the end-sequent of
an LKS-proof π is called a configuration for π. A configuration Ω for π is called
relevant w.r.t. a proof schema Ψ if π is a proof in Ψ and there is a γ ∈ N such that
π induces a subproof π ↓ γ of Ψ ↓ γ such that the occurrences in Ω correspond to
cut-ancestors below π ↓ γ [12]. By π ↓ γ, we mean substitute the free parameter
of π with γ ∈ N and unroll the proof schema to an LKE-proof. We note that
the set of relevant cut-configurations can be computed given a proof schema Ψ .
To represent a proof symbol ϕ and configuration Ω pairing in a clause set we
assign them a clause set symbol clϕ,Ω(a, x̄), where a is a term of the ω sort.

Definition 4 (Characteristic clause term [13]). Let π be an LKS-proof and
Ω a configuration. In the following, by ΓΩ, ΔΩ and ΓC , ΔC we will denote
multisets of formulas of Ω- and cut-ancestors respectively. Let r be an inference
in π. We define the clause-set term Θπ,Ω

r inductively:

– if r is an axiom of the form ΓΩ , ΓC , Γ � ΔΩ ,ΔC ,Δ, then
Θπ,Ω

r = {ΓΩ , ΓC � ΔΩ ,ΔC}
– if r is a proof link of the form

ψ(a, ū)
ΓΩ , ΓC , Γ � ΔΩ ,ΔC ,Δ

then define Ω′ as

the set of formula occurrences from ΓΩ , ΓC � ΔΩ ,ΔC and Θπ,Ω
r = clψ,Ω(a, ū)

– if r is a unary rule with immediate predecessor r′ , then Θπ,Ω
r = Θπ,Ω

r′
– if r is a binary rule with immediate predecessors r1, r2, then
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• if the auxiliary formulas of r are Ω- or cut-ancestors, then Θπ,Ω
r = Θπ,Ω

r1
⊕

Θπ,Ω
r2

• otherwise, Θπ,Ω
r = Θπ,Ω

r1
⊗ Θπ,Ω

r2

Finally, define Θπ,Ω = Θπ,Ω
r0

where r0 is the last inference in π and Θπ = Θπ,∅.
We call Θπ the characteristic term of π.

Clause terms evaluate to sets of clauses by |Θ| = Θ for clause sets Θ, |Θ1 ⊕
Θ2| = |Θ1| ∪ |Θ2|, |Θ1 ⊗ Θ2| = {C ◦ D | C ∈ |Θ1|,D ∈ |Θ2|}.

The characteristic clause term is extracted for each proof symbol in a given
proof schema Ψ , and together they make the characteristic clause set schema for
Ψ , CL(Ψ).

Definition 5 (Characteristic Term Schema [13]). Let Ψ = 〈ψ1, · · · , ψα〉 be
a proof schema. We define the rewrite rules for clause-set symbols for all proof
symbols ψβ and configurations Ω as clψβ ,Ω(0, u) → Θπβ ,Ω and clψβ ,Ω(k+1, u) →
Θνβ ,Ω where 1 ≤ β ≤ α. Next, let γ ∈ N and clψβ ,Ω ↓γ be the normal form
of clψβ ,Ω(γ, u) under the rewrite system just given extended by rewrite rules
for defined function and predicate symbols. Then define Θψβ ,Ω = clψβ ,Ω and
ΘΨ,Ω = clψ1,Ω and finally the characteristic term schema ΘΨ = ΘΨ,∅.

2.3 Resolution Proof Schemata

From the characteristic clause set we can construct clause schemata which are
an essential part of the definition of resolution terms and resolution proof schema
[13]. Clause schemata serve as the base for the resolution terms used to construct
a resolution proof schema. One additional notion needed for defining resolution
proof schema is that of clause variables. The idea behind clause variables is that
parts of the clauses at the leaves can be passed down a refutation to be used later
on. The definition of resolution proof schemata uses clause variables as a way to
handle this passage of clauses. Substitutions on clause variables are defined in
the usual way.

Definition 6 (Clause Schema [13]). Let b be a numeric term, u a vector of
schematic variables and X a vector of clause variables. Then c(b, u,X) is a
clause schema w.r.t. the rewrite system R:

c(0, u,X) → C ◦ X and c(k + 1, u,X) → c(k, u,X) ◦ D

where C is a clause with V (C) ⊆ {u} and D is a clause with V (D) ⊆ {k, u}.
Clauses and clause variables are clause schemata w.r.t. the empty rewrite system.

Definition 7 (Resolution Term [13]). Clause schemata are resolution terms;
if ρ1 and ρ2 are resolution terms, then r(ρ1; ρ2;P ) is a resolution term, where
P is an atom formula schema.

The idea behind the resolution terms is that in the term r(ρ1; ρ2;P ), P is the
resolved atom of the resolvents ρ1, ρ2. The notion of most general unifier has not
yet been introduced since we introduce the concept as a separate schema from
the resolution proof schema.
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Definition 8 (Resolution Proof Schema [13]). A resolution proof schema
R(n) is a structure (�1, · · · , �α) together with a set of rewrite rules R = R1 ∪
· · · ∪ Rα , where the Ri (for 1 ≤ i ≤ α) are pairs of rewrite rules

�i(0, w,u,X) → ηi

and

�i(k + 1,w, u,X) → η′
i

where, w, u, and X are vectors of ω, schematic, and clause variables respectively,
ηi is a resolution term over terms of the form �j(aj ,m, t, C) for i < j ≤ α, and
η′

i is a resolution term over terms of the form �j(aj ,m, t, C) and �i(k,m, t, C)
for i < j ≤ α; by aj, we denote a term of the ω sort.

The idea behind the definition of resolution proof schema is that the defini-
tion simulates a recursive construction of a resolution derivation tree and can be
unfolded into a tree once the free parameter is instantiated. The expected prop-
erties of resolution and resolution derivations hold for resolution proof schema,
more detail can be found in [13].

Definition 9 (Substitution Schema [13]). Let u1, · · · , uα be schematic vari-
able symbols of type ω → ι and t1, · · · , tα be term schemata containing no other
ω-variables than k. Then a substitution schema is an expression of the form
[u1/λk.t1, · · · , uα/λk.tα].

Semantically, the meaning of the substitution schema is for all γ ∈ N we have
a substitution of the form [u1(γ)/λk.t1 ↓γ , · · · , uα(γ)/λk.tα ↓γ ]. For the resolu-
tion proof schema the semantic meaning is as follows, Let R(n) = (�1, · · · , �α)
be a resolution proof schema, θ be a clause substitution, ν an ω-variable substi-
tution, ϑ be a substitution schema, and γ ∈ N, then R(γ) ↓ denotes a resolution
term which has a normal form of �1(n,w, u,X)θνϑ[n/γ] w.r.t. R extended by
rewrite rules for defined function and predicate symbols.

2.4 Herbrand Systems

From the resolution proof schema and the substitution schema we can exact a
so-called Herbrand system. The idea is to generalize the mid sequent theorem of
Gentzen to proof schemata [4,17]. This theorem states that a proof (cut-free or
with quantifier-free cuts) of a prenex end-sequent can be transformed in a way
that there is a midsequent separating quantifier inferences from propositional
ones. The mid-sequent is propositionally valid (w.r.t. the axioms) and contains
(in general several) instances of the matrices of the prenex formulae; it is also
called a Herbrand sequent. The aim of this paper is to extract schematic Herbrand
sequents from schematic cut-elimination via CERES. We restrict the sequents
further to skolemized ones. In the schematization of these sequents we allow
only the matrices of the formulae to contain schematic variables (the number of
formulae in the sequents and the quantifier prefixes are fixed).
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Definition 10 (skolemized prenex sequent schema). Let

S(n) = Δn, ϕ1(n), · · · , ϕk(n) � ψ1(n), · · · , ψl(n),Πn, for k, l ∈ Nwhere

ϕi(n) = ∀xi
1 · · · ∀xi

αi
Fi(n, xi

1, · · · , xi
αi
), ψj(n) = ∃xj

1 · · · ∃yj
βj

Ej(n, yj
1, · · · , yj

βj
),

for αi, βj ∈ N, Fi and Ej are quantifier-free schematic formulae and Δn,Πn are
multisets of quantifier-free formulae of fixed size; moreover, the only free variable
in any of the formulae is n : ω. Then S(n) is called a skolemized prenex sequent
schema (sps-schema).

Definition 11 (Herbrand System). Let S(n) be a sps-schema as in
Definition 10. Then a Herbrand system for S(n) is a rewrite system R (con-
taining the list constructors and unary function symbols wx

i , for x ∈ {ϕ,ψ}),
such that for each γ ∈ N, the normal form of wx

i (γ) w.r.t R is a list of list of
terms ti,x,γ (of length m(i, x)) such that the sequent

Δγ , Φ1(γ), . . . , Φk(γ) � Ψ1(γ), . . . , Ψl(γ)

for

Φj(γ) =
m(j,ϕ)∧

p=1

Ej(γ, tj,ϕ,γ(p, 1), . . . , tj,ϕ,γ(p, αj)) (j = 1, . . . , k),

Ψj(γ) =
m(j,ψ)∨

p=1

Fj(γ, tj,ψ,γ(p, 1), . . . , tj,ψ,γ(p, βj)) (j = 1, . . . , l),

is LKE-provable.

Though our definition of a Herbrand system differs from the definition intro-
duced in [13] (where only purely existential schemata are treated), it is only a
minor syntactic generalization. All results proven in [13] carry over to this more
general form above.

3 “Mathematical” Proof of the ECA Statement
and Discussion of Formal Proof

For lack of space, we will not provide a formal proof of the ECA-schema in
the LKS-calculus (see [9]), but rather a mathematical argument proving the
statement, of which closely follows the intended formal proof. The ECA-schema
can be stated as follows:

Theorem 1 (Eventually Constant Assertion). Given a total monotonically
decreasing function f : N → {0, · · · , n}, for n ∈ N, there exists an x ∈ N such
that for all y ∈ N, where x ≤ y, it is the case that f(x) = f(y).
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Proof. If the range only contains 0 then the theorem trivially holds. Let us
assume it holds for a codomain with n elements and show that it holds for a
codomain with n + 1 elements. If for all positions x, f(x) = n then the theorem
holds, else if at some y, f(y) �= n then from that point on f cannot map to
n because the function is monotonically decreasing, thus, f will only have n
elements in its codomain and the theorem holds in this case by the induction
hypothesis.

The cut consists of the case distinction made in the stepcase. When written
in the LKS-calculus, it is as follows:

∃x∀y (((x ≤ y) → n + 1 = f(y)) ∨ f(y) < n + 1)

Notice that if we are to formalize the statement in the LKS-calculus the
consequent has a ∃∀ quantifier prefix:

∀x(
∨n+1

i=0 i = f(x)),∀x∀y
(
x ≤ y → f(y) ≤ f(x)

)
� ∃x∀y(x ≤ y → f(x) = f(y))

The CERES method (as well as the schematic CERES method) was designed
for proofs without strong quantification in the end sequent. To get around this
problem the proofs have to be skolemized [2]. We will not go into details of proof
skolemization in this work, but to note, in the formal proof g(·), is the introduced
skolem symbol.

4 Extraction of the Characteristic Term Schema

Each of the proof schema pairs of the formal proof (see [9]) have one cut config-
uration. In the case of ψ it is the empty configuration, and in the case of ϕ(n)
it is

Ω(n) ≡ ∃x∀y (((x ≤ y) → n + 1 = f(y)) ∨ f(y) < n + 1) .

This holds for the base cases as well as the step cases. Thus, we have the following
clause set terms:

CLECA(0) ≡ Θψ,∅(0) ≡ clϕ,Ω(0)(0) ⊕ ({� f(α) < 0} ⊗ {� 0 = f(α)} ⊗
{0 ≤ β �})

(2a)

clϕ,Ω(0)(0) ≡ Θϕ,Ω(0)(0) ≡ {f(α) < 0 �} ⊕ {f(g(α)) < 0 �} ⊕ {� α ≤ α}
⊕{� α ≤ g(α)} ⊕ {0 = f(α), 0 = f(g(α)) �} (2b)

CLECA(n + 1) ≡ Θψ,∅(n + 1) ≡ clϕ,Ω(n+1)(n + 1) ⊕ ({� f(α) < n + 1}
⊗{� n + 1 = f(α)} ⊗ {0 ≤ β �})

(2c)

clϕ,Ω(n+1)(n + 1) ≡ Θϕ,Ω(n+1)(n + 1) ≡ clϕ,Ω(n)(n)⊕{n+1=f(α),n+1=f(g(α))�}⊕
{�α≤α}⊕{α≤g(α)}⊕{n+1=f(β)�n+1=f(β)}⊕{α≤β�α≤β}⊕{f(β)<n+1�f(β)<n+1}⊕
{f(α)<n+1,α≤β�n=f(β),f(β)<n}

(2d)
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In the characteristic clause set schema CLECA(n+1) presented in Eq. 2 tautology
and subsumption elimination have not been applied. Applying both types of
elimination to CLECA(n) and normalizing the clause set yields the following
clause set C(n):

C1(x, k) ≡ � x(k) ≤ x(k)
C2(x, k) ≡ � x(k) ≤ g(x(k))

C3(x, i, k) ≡ i = f(x(k)), i = f(g(x(k))) �
C4(x, y, i, k) ≡ y(k) ≤ x(k), f(y(k)) < i + 1 �

f(x(k)) < i, i = f(x(k))
C4′(x, y, i, k) ≡ y(k) ≤ x(k + 1), f(y(k)) < i + 1 �

f(x(k + 1)) < i, i = f(x(k + 1))
C5(x, k) ≡ f(x(k)) < 0 �
C6(x, k) ≡ f(g(x(k))) < 0 �
C7(x, k) ≡ 0 ≤ x(k) � f(x(k)) < n, f(x(k)) = n

We have introduced clause names, schematic variables, and an additional
ω-variable which will be used in the refutation of Sect. 5.

5 Refutation of the Characteristic Clause Set
of the ECA-Schema

We discovered the resolution refutation schema which we present here with the
help of the SPASS theorem prover [18] in default mode, and with the flags
for standard resolution and ordered resolution set. Various other modes of the
theorem prover were tested, however, given that we needed to translate the
resulting proof into the simple resolution language of [13], the chosen modes
provided the easiest proofs for translation. After running the theorem prover
on five instances of the clause set, we were able to extract an invariant for the
resolution refutation schema. Essentially, the refutation differentiates between
the symbols occurring in the codomain of f and not occurring. This is denoted
using the function g. The excerpt from the SPASS output in Table 1 indicates the
invariant. However, even though SPASS was able to provide a refutation for each
instance, we could not use these refutations directly in the resolution refutation
schema being that the SPASS output ignores the structural importance of the
ω sort. Unlike the ordering problem of the NiA-schema [8,10], this choice made
by SPASS was not necessary to the refutation of the ECA-schema and we were
able find a suitable refutation.

Our resolution refutation schema of the ECA-schema is R = (�1, · · · , �10),
where we use one clause variable Y , two schematic variables, and one ω-variable.
Our substitution schema is as follows:

ϑ = {x(k) ← λk.(h(k)), y(k) ← λk.(h(k))}

where h(·) is defined as h(0) → 0, h(s(k)) → g(h(k)). The components are as
follows:
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Table 1. Excerpt from SPASS output for the clause set instance C(5) indicating the
invariant.

310[0:MRR:309.0,306.1] � f(α) < 3

311[0:MRR:10.1,310.0] α ≤ β � 2 = f(β) f(β) < 2

312[0:Res:2.0,311.0] � 2 = f(α) f(α) < 2

314[0:Res:312.0,6.1] 2 = f(α) � f(g(β)) < 2

315[0:Res:314.1,11.1] 2 = f(α) g(α) ≤ β � 1 = f(β) f(β) < 1

316[0:Res:312.0,315.0] g(α) ≤ β � f(α) < 2 1 = f(β) f(β) < 1

317[0:Res:2.0,316.0] � f(α) < 2 1 = f(g(α)) f(g(α)) < 1

318[0:Res:3.0,316.0] � f(α) < 2 1 = f(g(g(α))) f(g(g(α))) < 1

321[0:Res:318.1,7.1] 1 = f(g(α)) � f(α) < 2 f(g(g(α))) < 1

322[0:Res:321.2,14.1] 1 = f(g(α)) g(g(α)) ≤ β � f(α) < 2 0 = f(β)

325[0:Res:317.1,322.0] g(g(α)) ≤ β � f(α) < 2 f(g(α)) < 1 f(α) < 2 0 = f(β)

327[0:Obv:325.1] g(g(α)) ≤ β � f(g(α)) < 1 f(α) < 2 0 = f(β)

328[0:Res:2.0,327.0] � f(g(α)) < 1 f(α) < 2 0 = f(g(g(α)))

329[0:Res:3.0,327.0] � f(g(α)) < 1 f(α) < 2 0 = f(g(g(g(α))))

335[0:Res:329.2,8.1] 0 = f(g(g(α))) � f(g(α)) < 1 f(α) < 2

336[0:MRR:335.0,328.2] � f(g(α)) < 1 f(α) < 2

337[0:Res:336.0,14.1] g(α) ≤ β � f(α) < 2 0 = f(β)

338[0:Res:2.0,337.0] � f(α) < 2 0 = f(g(α))

339[0:Res:3.0,337.0] � f(α) < 2 0 = f(g(g(α)))

344[0:Res:339.1,8.1] 0 = f(g(α)) � f(α) < 2

345[0:MRR:344.0,338.1] � f(α) < 2

�1(n + 1, k, x, y, Y ) ⇒ r(�2(n + 1, k, x, y, Y ); �5(n, k, x, y, Y ◦
(f(x(k)) < n + 1 �)); f(x(k)) < n + 1)

�1(0, k, x, y, Y ) ⇒ r(�2(0, k, x, y, Y );C5(x, k); f(x(k)) < 0)

�2(n + 1, k, x, y, Y ) ⇒ r(�3(n + 1, k, x, y, Y ); r(C1(x, k);
C7(x, k);x(k) ≤ x(k));n + 1 = f(x(k)))

�2(0, k, x, y, Y ) ⇒ r(�3(0, k, x, y, Y ); r(C1(x, k);C7(x, k);x(k) ≤ x(k));
n + 1 = f(x(k)))
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�3(n + 1, k, x, y, Y ) ⇒ r(�4(n + 1, k, x, y, Y );C3(x, n + 1, k);
n + 1 = f(g(x(k))))

�3(0, k, x, y, Y ) ⇒ r(�4(0, k, x, y, Y );C3(x, 0, k); 0 = f(g(x(k))))

�4(n + 1, k, x, y, Y ) ⇒ r(�5(n, k + 1, x, y, Y ◦ f(x(k + 1)) < n + 1 �);
r(C2(x, k);C7(x, k + 1); f(x(k + 1)) < n + 1)

�4(0, k, x, y, Y ) ⇒ r(C6(x, k); r(C2(x, k);C7(x, k + 1); f(g(x(k))) < 0)

�5(n + 1, k, x, y, Y ) ⇒ r(�6(n + 1, k, x, y, Y ); �5(n, k, x, y, Y ◦
(f(x(k)) < n + 1 �)); f(x(k)) < n + 1)

�5(0, k, x, y, Y ) ⇒ r(�6(0, k, x, y, Y );C5(x, k); f(x(k)) < 0)

�6(n + 1, k, x, y, Y ) ⇒ r(�7(n + 1, k, x, y, Y ); �8(n + 1, k, x, y, Y );
n + 1 = f(x(k)))

�6(0, k, x, y, Y ) ⇒ r(�7(0, k, x, y, Y ); �8(0, k, x, y, Y ); 0 = f(x(k))

�7(n + 1, k, x, y, Y ) ⇒ r(�9(n + 1, k, x, y, Y );C3(x, n + 1, k);
n + 1 = f(g(x(k))))

�7(0, k, x, y, Y ) ⇒ r(�9(0, k, x, y, Y );C3(x, 0, k); 0 = f(g(x(k))))

�8(n + 1, k, x, Y ) ⇒ r(C1(x, k);Y ◦ C4(x, y, n, k);x(k) ≤ x(k))

�8(0, k, x, y, Y ) ⇒ r(C1(x, k);Y ◦ C4(x, y, 0, k);x(k) ≤ x(k))

�9(n + 1, k, x, y, Y ) ⇒ r(�5(n, k + 1, x, y, Y ′ ◦ f(g(x(k))) < n + 1 �);
�10(n + 1, x, y, Y ); f(g(x(k))) < n + 1)

�9(0, k, x, y, Y ) ⇒ r(C6(x, k); �10(0, k, x, y, Y ); f(g(x(k))) < 0)

�10(n + 1, k, x, y, Y ) ⇒ r(C2(x, k);Y ◦ C4′(x, y, n, k);x(k) ≤ g(x(k)))

�10(0, k, x, y, Y ) ⇒ r(C2(x, k);Y ◦ C4′(x, y, 0, k);x(k) ≤ g(x(k)))

One can find a graphical representation of the refutation in Fig. 1. The clause
substitution is θ = {Y ← �}, the ω-variable substitution is ν = {k ← μ} for any
μ ∈ N. The normal form of the refutation for γ ∈ N is

�1(n, k, x, y, Y )θνϑ [n ← γ] = �1(γ, μ, λk.(is(k)), λk.(h(k)),�),
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where is(0) = 0, is(s(k)) = s(is(k)). Substitution of the empty clause into Y
suffices for every instance, i.e. {Y ← �}. This property makes extraction of the
Herbrand system much easier.

4 6 8

3

5 7

2

1 9 10

(n
+
1, k

+
1)

(n
, k
)

(n
+
1,k

)

(n
+

1
,k

)

(n
+ 1, k

)

(m
+
1,
l)

(m
+
1, l)

(m
+
1,l)

(m
,l
+
1)

(m+ 1, l)

(m+ 1, l)

(m
, l
)

Fig. 1. A graph representation of the resolution refutation. The variable n is the free
parameter, k is the ω-variable used in the refutation and the variables m and l are
dependent on the position in the computation.

6 The Herbrand System for the ECA-Schema

Now we move on to the construction of a Herbrand system for the sequent

S(n) ≡ (∀x
∨n

i=0 i = f(x),∀y (0 ≤ y → f(y) ≤ f(0))) �
∃x (x ≤ g(x) → f(x) = f(g(x)))

based on our proof analysis. The sequent S(n) is an sps-schema of the form
ϕ1(n), ϕ2(n) � ψ1(n). Note that we dropped one of the quantifiers from the
antecedent since it is obvious from the proof itself what the substitution would
be, see [9]. Each formula in S(n) is derived along with a set of clauses in the
proof schemata Ψ = 〈(ψ(n + 1), ψ(0)), (ϕ(n + 1), ϕ(0))〉. By observing the con-
struction of the formulae in the formal proof [9], one can see that ϕ1(n), ϕ2(n),
and C7(x, k) as constructed together, while ψ1(n), C2(x, k), and C3(x, i, k) are
constructed together. We will only consider the case when the ω-variable substi-
tution is ν = {k → 0} to simplify the derivation.

Notice that C7(x, k) is used at the top of the refutation and only twice. Once
as C7(x, 0) and once as C7(x, 1). On the other hand, C2(x, k) is used in �10 and
C3(x, i, k) is use in �7. For every pair (i, l) in the ranges 0 ≤ i ≤ n + 1,0 ≤ l <
n + 1, the clauses C2(x, l) and C3(x, i, l), and C2(x, l + 1) and C3(x, i, l + 1)
are used in the refutation. This implies, by the substitution schema that ψ1(n)
will have its quantifier replaced by the term derived from h(i), for all i ∈ [0, n],
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in the Herbrand system. This information can be used to construct the required
rewrite system:

R =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wϕ
1 (k + 1) ⇒ [[0]; [g(0)]]

wϕ
1 (0) ⇒ [[0]; [g(0)]]

wϕ
2 (k + 1) ⇒ [[0]; [g(0)]]

wϕ
2 (0) ⇒ [[0]; [g(0)]]

wψ
1 (k + 1) ⇒ [[h(k + 1)];wψ

1 (k)]
wψ

1 (0) ⇒ [0]

To finish our construction of the Herbrand system using Definition 11 we need
to put all of the parts together as a single sequent as follows

n∨

i=0

i = f(0),
n∨

i=0

i = f(g(0)), (0 ≤ 0 → f(0) ≤ f(0)) ,

(0 ≤ g(0) → f(g(0)) ≤ f(0)) �
n∨

i=0

(h(i) ≤ g(h(i)) → f(h(i)) = f(g(h(i)))) .

At first this does not seem to be LKE provable, However, one has to remem-
ber that for the construction of our cut formula we made an assumption that
f is monotonically decreasing and has a codomain consisting of elements in the
interval [0, n]. These assumptions are represented by the following axiom found
in [9]:

AX ≡ f(α) < n + 1, α ≤ β � n = f(β), f(β) < n

It is not used in the construction of the end sequent but is used for the
construction of the cut formulae. We just need to find a set of axioms which
correspond to these semantic assumptions, the following set suffices:

A1(i) :
∨j−1

i=0 i = f(α), j = f(g(α)), f(g(α)) < f(α) �
A2(i) : i = f(α),

∨i−1
j=0 j = f(g(α)), α ≤ g(α) �

A3(i) : i = f(α), i = f(g(α)) � f(α) = f(g(α))
A4(i) : f(g(α)) = f(α) � f(α) = f(g(α))
A5(i) : � α ≤ α
A6(i) : f(α) < f(α) �

The first pair of axioms enforce the required properties of f and g, the next
pair provide the needed properties of equality, and the last pair provide the
needed properties of linear orderings. Interesting enough, using these axioms,
we are able to prove the derived Herbrand sequent using only a single nesting
of g, thus making the majority of the consequent redundant. This is a result of
our usage of the clause C7(x, k). Thus, it turns out that a minimal Herbrand
sequent is the following:
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n∨

i=0

i = f(0),
n∨

i=0

i = f(g(0)), (0 ≤ g(0) → f(g(0)) ≤ f(0)) ,

(0 ≤ 0 → f(0) ≤ f(0)) � 0 ≤ g1(0) → f(0) = f(g1(0)).

The Herbrand sequent can be derived for deeper nestings of g by changing the
ω-variable substitution used.

7 Conclusion

Weakening the NiA-schema of [8] by reducing the complexity of the cuts allowed
for extraction of the Herbrand system using the concepts of [13]. As a case study
of the schematic CERES method, to the best of our knowledge this is the first
one. From the analysis of the ECA-schema there are two issues which seem to
influence the applicability of the schematic CERES method. The first issue, as
we pointed out earlier, is the ordering of the terms in the ω sort. However,
a second issue arising in this work is the complexity of the terms, specifically
what is the highest arity function symbol allowed. In the case of the NiA-schema,
terms were constructed from both an arity two and an arity one function symbol,
but in the case of the ECA-schema only arity one function symbols were used.
When only arity one function symbols are used nesting of the function symbols
does not require the addition of extra variables in a given term, of which were
used in the NiA-schema [8,10]. This seems to allow for the creation of more
complex orderings of the ω sort. We conjecture a sufficient condition that proof
schema containing only arity one function symbols can be analysed using the
schematic CERES method. Also, an open problem we plan to address in future
work is a generalization of the resolution refutation calculus of [13] which can
handle more complex ordering structures [10]. It seems necessary to handle more
complex ordering structure if one wants to formalize and analyse more complex
mathematical arguments such as Fürstenberg’s proof of the infinitude of primes.
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Abstract. In an implementation of geometric resolution, the most
costly operation is subsumption (or matching): One has to decide for a
three-valued, geometric formula, whether this formula is false in a given
interpretation. The formula contains only atoms with variables, equality,
and existential quantifiers. The interpretation contains only atoms with
constants.

Because the atoms have no term structure, matching for geometric
resolution is a hard problem. We translate the matching problem into a
generalized constraint satisfaction problem, and give an algorithm that
solves it efficiently. The algorithm uses learning techniques, similar to
clause learning in propositional logic. Secondly, we adapt the algorithm
in such a way that it finds solutions that use a minimal subset of the
interpretation.

The techniques presented in this paper may have applications in con-
straint solving.

1 Introduction

Geometric logic as a theorem proving strategy was introduced in [1]. (The infini-
tary variant is called coherent logic.) Bezem and Coquand were motivated mostly
by the desire to obtain a theorem proving strategy with a simple normal form
transformation, which makes that many natural problems need no transforma-
tion at all, others have a much simpler transformation, and which makes that
in all cases Skolemization can be avoided. This results in more readable proofs,
and proofs that can be backtranslated more easily.

Our motivation for using geometric resolution is different, more engineering-
oriented. We hope that three-valued, geometric resolution can be used as a
generic reasoning core, into which different kinds of two- or three-valued reason-
ing or decision problems (e.g. problems representing type correctness, two-valued
decision problems, simply typed classical problems) can be solved. Because we
want the geometric reasoning core to be generic, we are willing to accept trans-
formations that do not preserve much of the structure of the original formula.
Subformulas are freely renamed, and functional expressions are flattened and
replaced by relations.

We start by giving a definition of three-valued, geometric formulas. The def-
inition that we give here is too general, but it is easier to understand than the
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 257–272, 2016.
DOI: 10.1007/978-3-319-40229-1 18
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correct definition in [3], which contains some additional, technical restrictions
that are required by other parts of the search algorithm.

Definition 1. A geometric literal has one of the following four forms:

1. A simple atom of form pλ(x1, . . . , xn), where x1, . . . , xn are variables (with
repetitions allowed) and λ ∈ {f , e, t}. (denoting false, error and true.)

2. An equality atom of form x1 ≈ x2, with x1, x2 distinct variables.
3. A domain atom #f x, with x a variable.
4. An existential atom of form ∃y pλ(x1, . . . , xn, y) with λ ∈ {f , e, t}, and such

that y occurs at least once in the atom, not necessarily on the last place.

A geometric formula has form A1, . . . , Ap | B1, . . . , Bq, where the Ai are simple
or domain atoms, and the Bj are atoms of arbitrary type.

We require that geometric formulas are range restricted, which means that
every variable that occurs free in a Bj must occur in an Ai as well.

The intuitive meaning of A1, . . . , Ap | B1, . . . , Bq is ∀x A1∨· · ·∨Ap∨B1∨· · ·∨
Bq, where x are all the free variables. The vertical bar (|) has no logical meaning.
Its only purpose is to separate the two types of atoms.

A geometric formula that is not range restricted, can always be made range
restricted by inserting suitable #f atoms into the left hand side. This is the only
purpose of the #-predicate. Interpretations contain predicates of form #t c, for
every domain element c. Atoms in geometric formulas are variable-only, and are
labeled with truth-values, as in [11]. It is shown in [3,4] that formulas in classical
logic with partial functions ([2]) can be translated into sets of geometric formulas.

Definition 2. We define an interpretation I as a finite set of atoms of forms
# c with c a constant, or form pλ(c1, . . . , cn), where c1, . . . , cn are constants (rep-
etitions allowed). Interpretations must be range restricted as well. This means
that every constant c occurring in the interpretation must occur in an atom of
form #t c.

Matching searches for false formulas. These are formulas whose premises
A1, . . . , Ap clash with I, while none of the Bj is true in I.

Definition 3. Let I be an interpretation. Let A be a geometric literal. Let Θ
be a substitution that assigns constants to variables, and that is defined on the
variables in A. We say that AΘ conflicts(or is in conflict with) I if (1) A has
form pλ(x1, . . . , xn), and there is an atom of form pμ(x1Θ, . . . , xnΘ) ∈ I with
λ �= μ, (2) A has form x1 ≈ x2 and x1Θ �= x2Θ, or (3) A has form #f x and
(#t xΘ) ∈ I.
We say that AΘ is true in I if
(1) A has form pλ(x1, . . . , xn) and pλ(x1Θ, . . . , xnΘ) ∈ I, (2) A has form x1 ≈
x2 and x1Θ = x2Θ, (3) A has form #t x and (#t xΘ) ∈ I, or (4) A has form
∃y Bλ(x1, . . . , xn, y) and there exists a constant c, s.t. Bλ(x1Θ, . . . , xnΘ, c) ∈ I.

In the definitions of truth and conflict, # is treated as a usual predicate.
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Definition 4. Let I be an interpretation. Let B be a geometric atom. Let Θ be
a substitution that instantiates all free variables of B, and for which BΘ is not
true in I. We define the extension set E(B,Θ) as follows:

– If B has form pλ(x1, . . . , xn) or #t x, then E(B,Θ) = {BΘ}.
– If B has form x1 ≈ x2, then E(B,Θ) = ∅.
– If B has form ∃y Bλ(x1, . . . , xn, y), then

E(B,Θ) = { BΘ{y := c} | c ∈ I } ∪ { BΘ{y := ĉ} }.

By c ∈ I we mean: c is a constant occurring in an atom of I. We assume that
ĉ is the first constant for which ĉ �∈ I.

Intuitively, if for a geometric formula φ = A1, . . . , Ap | B1, . . . , Bq and a sub-
stitution Θ, the AiΘ are in conflict with I, while none of the BjΘ is true in
I, then φΘ is false in I. If there exist a Bj and an atom C ∈ E(Bj , Θ) that
is not in conflict with I, then φΘ can be made true by adding C. If no such
C exists, a conflict was found. If more than one C exists, the search algorithm
has to backtrack through all possibilities. The search algorithm tries to extend
an initial interpretation I into an interpretation I ′ ⊃ I that makes all formulas
true. At each stage of the search, it looks for a formula and a substitution that
make the formula false. If no formula and substitution can be found, the current
interpretation is a model. Otherwise, search continues either by extending I, or
by backtracking. Details of the procedure are described in [5] for the two-valued
case, and in [3] for the three-valued case. Experiments with the current three-
valued version, and the previous two-valued version ([6]) show that the search
for false formulas consumes nearly all of the resources of the prover.

Definition 5. An instance of the matching problem consists of an interpreta-
tion I and a geometric formula A1, . . . , Ap | B1, . . . , Bq.

Determine if there exists a substitution Θ that brings all Ai in conflict with I,
and makes none of the Bj true in Θ. If yes, then return such substitution.

Example 1. Consider an interpretation I consisting of atoms

Pt(c0, c0), Pe(c0, c1), Pt(c1, c1), Pe(c1, c2), Qt(c2, c0).

The formula φ1 = Pf (X,Y ), Pf (Y,Z) | Qt(Z,X) can be matched in five ways:

Θ1 = { X := c0, Y := c0, Z := c0 }
Θ2 = { X := c0, Y := c0, Z := c1 }
Θ3 = { X := c0, Y := c1, Z := c1 }
Θ4 = { X := c1, Y := c1, Z := c1 }
Θ5 = { X := c1, Y := c1, Z := c2 }

The substitution Θ6 = { X := c0, Y := c1, Z := c2 } would make the conclusion
Qt(Z,X) true. Next consider the formula φ2 = Pf (X,Y ), Pt(Y,Z) | X ≈ Y .
The substitution Θ = { X := c0, Y := c1, Z := c2 } is the only matching of φ2

into I. Finally, the formula φ3 = Pt(X,Y ) | ∃Z Qt(Y,Z) can be matched with
Θ = { X := c0, Y := c1 }, and in no other way.
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The first formula φ1 in Example 1 has five matchings. In case there exists
more than one matching, it matters for the geometric prover which matching
is returned. This is because the prover analyses which ground atoms in the
interpretation I contributed to the matching, and will consider only those in
backtracking. In general, the set of conflicting atoms in I should be as small as
possible, and should depend on as few as possible decisions. (Decisions in the
sense of propositional reasoning, see [10].) The simplest solution for finding the
best matching would be to enumerate all matchings, and use some preference
relation � to keep the best one. Unfortunately, this approach is not practical
because the number of matchings can be extremely high. We will address this
problem in Sect. 5.

Even if one is interested in the decision problem only, matching is still
intractable because the decision problem is already NP-complete. This can be
shown by a simple reduction from SAT.

In this paper, we introduce an algorithm for efficiently solving the matching
problem. Earlier versions of the algorithm have been implemented in the two-
valued version of Geo ([6]). The three-valued version of Geo that took part in
CASC 25 (see [13]) used a very naive implementation of matching.

In Sect. 2, we will translate the matching problem into a structure called
generalized constraint satisfaction problem (GCSP). The generalization consists
of the fact that it contains additional constraints, that a solution must not make
true. These constraints correspond to the conclusions of the geometric formula
that one is trying to match.

After that, we give in Sect. 3 a backtracking algorithm for solving GCSP,
which is based on local consistency checking and backtracking. It makes use of
a data structure that we will call choice stack. Choice stacks can be used for
controlling the backtracking process, but also for keeping track of changes that
occur during local consistency checking, and which may induce further changes.

In Sect. 4, we add lemma learning to the algorithm of Sect. 3. In Sect. 5, we
show how the algorithm of Sect. 3, or any other algorithm for solving GCSP, can
be modified for efficiently finding optimal matchings.

2 Translation into Generalized Constraint Satisfaction
Problem

We introduce the generalized constraint satisfaction problem, and show how
instances of the matching problem can be translated. It is ‘generalized’ because
there are additional, negative constraints (called blockings), which a solution
is not allowed to satisfy. The blockings originate from translations of the
B1, . . . , Bq.

Definition 6. A substlet s is a (small) substitution. We usually write s in the
form v/c, where v is a sequence of variables without repetitions, and c is a
sequence of constants of same length as v.

We say that two substlets v1/c1 and v2/c2 are in conflict if there exist i, j
s.t. v1,i = v2,j and c1,i �= c2,j .
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If v1/c1, . . . , vn/cn is a sequence of substlets not containing a conflicting pair,
then one can merge them into a substitution as follows:

⋃
{v1/c1, . . . , vn/cn} =

{vi,j := ci,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ‖vi‖}.
If Θ is a substitution and s = v/c is a substlet, we say that Θ makes s true

if every vi := ci is present in Θ.
We say that Θ and s are in conflict if there is a vi/ci with 1 ≤ i ≤ ‖v‖, s.t.

viΘ is defined and distinct from ci.
A clause C is a finite set of substlets. We say that a substitution Θ makes

C true (notation Θ |= C) if Θ makes a substlet (v/c) ∈ C true. We say that Θ
makes C false (notation Θ |= ¬C) if every substlet (v/c) ∈ C is in conflict with
Θ. In the remaining case, we call C undecided by Θ.

Definition 7. A generalized constraint satisfaction problem (GCSP) is a pair
of form (Σ+, Σ−) in which Σ+ is a finite set of clauses, and Σ− is a finite set
of substlets.

A substitution Θ is a solution of (Σ+, Σ−), if every clause in Σ+ is true in
Θ, and there is no σ ∈ Σ−, s.t. Θ makes σ true.

Definition 8. Let (Σ+, Σ−) a GCSP. We call (Σ+, Σ−) range restricted if for
every variable v that occurs in a substlet σ ∈ Σ−, there exists a clause c ∈ Σ+

s.t. every substlet s ∈ c has v in its domain.

We now explain how a matching instance is translated into a generalized con-
straint satisfaction problem.

Definition 9. Assume that I and φ = A1, . . . , Ap | B1, . . . , Bq together form
an instance of the matching problem. The translation (Σ+, Σ−) of (I, φ) into
GCSP is obtained as follows:

– For every Ai, let vi denote the variables of Ai. Then Σ+ contains the clause

{ vi/viΘ | AiΘ is in conflict with I }.

– For every Bj , let wj denote the variables of Bj . For every Θ that makes BjΘ
true in I, Σ− contains the substlet wj/(wjΘ).

Theorem 1. A matching instance (I, φ) has a matching iff its corresponding
GCSP has a solution.

In theory, the set of blockings Σ− can be removed, because a blocking σ can
always be replaced by a clause as follows: Let σ be a blocking, let v be its
variables. Define σ1 = σ, and let σ2, . . . , σn ∈ Σ− be the blockings whose domain
is also v. One can replace σ1, . . . , σn by the clause { v/c | v/c conflicts all σi (1 ≤
i ≤ n) }.

We prefer to keep Σ−, because in the worst case, the resulting clause has
size m‖v‖, where m is the size of the domain. For example, if σ1, . . . , σn result
from an equality X ≈ Y, then σi has form (X,Y )/(ci, ci). The resulting clause
C = {(X,Y )/(ci, cj) | i �= j} has size n(n − 1) ≈ n2.

Clauses resulting from a matching problem have the following trivial, but
essential property:
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Lemma 1. Let (Σ+, Σ−) be obtained by the translation in Definition 9. Let
s1, s2 ∈ C ∈ Σ+. Then either s1 = s2, or s1 and s2 are in conflict with each
other.

Lemma 1 holds because s1 and s2 have the same domain.

Example 2. In Example 1, the matching problem (I, φ1) can be translated into
the GCSP below. The clauses are above the horizontal line, and the blockings are
below it. Because substlets in the same clause always have the same variables,
we write the variables of a clause only once.

(X,Y ) / (c0, c0) | (c0, c1) | (c1, c1) | (c1, c2)
(Y,Z) / (c0, c0) | (c0, c1) | (c1, c1) | (c1, c2)
(X,Z) / (c0, c2)

Translating (I, φ2) results in:

(X,Y ) / (c0, c0) | (c0, c1) | (c1, c1) | (c1, c2)
(Y,Z) / (c0, c1) | (c1, c2)
(X,Y ) / (c0, c0)
(X,Y ) / (c1, c1)
(X,Y ) / (c2, c2)

Translation of (I, φ3) results in:

(X,Y ) / (c0, c1) | (c1, c2)
(Y ) / (c2)

Before one runs any algorithms on a GCSP, it is useful to do some simplifications.
If the GCSP contains a propositional clause (not containing any variables), this
clause is either the empty clause, or a tautology. In the first case, the problem
is trivially unsolvable. In the second case, the clause can be removed.

Similarly, if Σ− contains a propositional blocking, then (Σ+, Σ−) is trivially
unsolvable. Such blockings originate from a Bj that is purely propositional, or
that has form ∃y Pλ(y).

A third important preprocessing step is removal of unit blockings. Let σ ∈ Σ−

be a blocking whose domain is included in the domain of some clause C ∈ Σ+.
In that case, one can remove every substlet v/c from C, that has

⋃
{v/c} |= σ.

If this results in C being empty, then (Σ+, Σ−) trivially has no solution. If no
v/c in any clause C ∈ Σ+ implies σ, then σ can be removed from Σ−, because
of Lemma 1.

Applying removal of unit blockings to the translation of (I, φ2) above results in

(X,Y ) / (c0, c1) | (c1, c2)
(Y,Z) / (c0, c1) | (c1, c2)

It is worth noting that removal of propositional blockings can be viewed as a
special case of removal of unit blockings.
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A GCSP can be solved by backtracking, similar to SAT solving. A backtrack-
ing algorithm for GCSP can be either variable or clause based. A variable based
algorithm maintains a substitution Θ, which it tries to extend into a solution. It
backtracks by picking a variable v and trying to assign it in all possible ways. It
backtracks when Θ makes a clause C ∈ Σ+ false, or a blocking σ ∈ Σ− true.

A clause based algorithm maintains a consistent set S of substlets (whose
union defines a substitution). It backtracks by picking an undecided clause C ∈
Σ+, and consecutively inserting all substlets that are consistent with S into S.
It backtracks when there is a clause C all of whose atoms are in conflict with S,
or when

⋃
S makes a blocking true.

Our experiments suggest that there is no significant difference in perfor-
mance, nor in programming effort, between the two variants. We will stick with
clause based algorithms, because it seems that they can be more easily combined
with local consistency checking.

Local consistency checking (see [7,9,12]) is a pre-check that comes in many
variations. They all have in common that one enumerates small subsets Σ′ of
Σ+, for each subset Σ′ generates all solutions, and then checks for each substlet
occurring in a C ∈ Σ′ whether it occurs in a solution for Σ′. If some substlet
s ∈ C does not occur in a solution for Σ′, then it certainly does not occur in a
solution for Σ, so that it can be removed from C.

Experiments with geo show that a simple filtering using all subsets Σ′ of
size 2 whose clauses share a variable, a priori rejects a large fraction of matching
instances. On those that are not immediately rejected, the next stage of search
based on backtracking is much more efficient.

In [7] (Chap. 3), local consistency checking is done with subsets of variables
(instead of clauses). Using subsets of two variables is called arc consistency check-
ing, while considering subsets of three variables is called path consistency check-
ing. In general, using bigger subsets is a more effective precheck, but also more
costly because it gets closer to the original problem. It still may be worth it to
try subsets of bigger size than size 2.

3 Matching Using Choice Stacks

We first present a matching algorithm without learning, and introduce learning
in the next section. The non-learning algorithm is based on a combination of local
consistency checking and backtracking. At each level, it first tries to reduce the
set of clauses by local consistency checking. During local consistency checking,
it checks all subsets of size two for variable conflicts, and subsets of arbitrary
size, of which all but one are unit, for conflicts based on blockings. After local
checking has been exhaustively applied, it picks a clause, splits it into two parts,
and backtracks using the two resulting clauses.

Local consistency checking is a change-driven process. Whenever some clause
C gets replaced by a C ′ ⊂ C, one has to check for all clauses D that share a
variable with C ′, whether D now contains substlets that are in conflict with
every substlet in C ′. If yes, then D can be replaced by a D′ ⊂ D, which in turn
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may result in further replacements. This means that the search algorithm needs
to maintain a set of changed clauses, and using this set of changed clauses, check
which more clauses it can change. When the set of changed clauses is empty,
it either has a solution, or it needs to backtrack, which will introduce a new
changed clause. Instead of maintaining a set of changed clauses, we use a data
structure that we call choice stack.

Definition 10. A choice stack C is a data structure consisting of a sequence of
clauses C1, . . . , Cn.

A choice stack supports refinement of clauses: Refining Ci into C ′ means
replacing C = C1, . . . , Cn by C1, . . . , [Ci], . . . , Cn, C ′, where C ′ ⊂ Ci, and the
square brackets indicate that Ci has been refined. We write C[i/C ′] for the result-
ing choice stack.

Restoring a choice stack to size n means removing all clauses at positions > n,
and removing all square brackets that resulted from adding the clauses at positions
> n. We use a predicate Ai for querying whether the i-th clause is actual (is not in
brackets). We use the notation Ri for the original, initial clause from which Ci is
obtained by successive refinements.

The size of a choice stack is the total number of clauses in it (with or without
brackets).

Given a choice stack C and a substitution Θ, we say that Θ agrees with C if
Θ does not make any Ci false.

Choice stacks can be efficiently implemented without need to copy clauses. They
support all features needed by a search algorithm based on backtracking and local
consistency checking. Change driven inspection is implemented by the fact that
changed clauses are blocked and reinserted at a higher position. If one starts at
the position of the latest change, and iteratively proceeds towards the end of
the choice stack, checking all clauses on positions i that have Ai true, one will
exhaustively inspect all changes.

Definition 11. If v/c is a substlet, and C a clause, we call v/c in conflict with
C if v/c is in conflict with every s ∈ C.

Definition 12. A call to findmatch(C, k,Σ−) either returns ⊥, or constructs
a solution of the GCSP (C,Σ−). For simplicity, we assume that findmatch
stops when it finds a solution, instead of returning it. findmatch(C, k,Σ−) is
recursively defined as follows:

LOCAL: As long as k ≤ ‖C‖, do the following: If Ak holds, then
LOC-CONFL: For every Ci for which Ai holds, and which shares a variable

with Ck, partition Ci into two parts as follows:

C−
i = {s ∈ Ci | s is in conflict with Ck},

C+
i = {s ∈ Ci | s is not in conflict with Ck}.

If C+
i = ∅, then return ⊥. Otherwise, refine C into C[i/C+

i ].
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LOC-BLOCKING: If ‖Ck‖ = 1, then define Θ =
⋃

{sj | 1 ≤ j ≤
‖C‖ and Cj has form {sj} }. (Note that the unique element of Ck also
contributes to Θ.) For every σ ∈ Σ− that shares a variable with Ck, for
every Ci, for which Ai holds and which shares a variable with σ, partition
Ci into two parts as follows:

C−
i = {s′ ∈ Ci | Θ ∪

⋃
{s′} |= σ},

C+
i = {s′ ∈ Ci | Θ ∪

⋃
{s′} �|= σ}.

If C+
i = ∅, then return ⊥. Otherwise, refine C into C[i/C+

i ].
Assign k = k + 1.

SOLUTION: If all i for which Ai holds, have ‖Ci‖ = 1, then Θ =
⋃

{sj | 1 ≤
j ≤ ‖C‖ and Cj has form {sj}} is a solution.

BACKTRACK: Otherwise, pick an i for which Ai holds, and which has
‖Ci‖ > 1. Partition Ci into two parts C1, C2, s.t. neither C1 nor C2 is empty.
Recursively call findmatch(C[i/C1], ‖C‖, Σ−). If this call does not result
in a solution, then also call findmatch(C[i/C2], ‖C‖, Σ−).

Before findmatch can be called on (Σ+, Σ−), one must first check for propo-
sitional clauses, propositional blockings and apply unit blocking removal. Let
(Σ′+, Σ′−) be the result. Call findmatch(Σ′+, 1, Σ′−).

Algorithm findmatch is similar to DPLL in that it tries to postpone backtrack-
ing as long as possible by giving preference to deterministic reasoning. It differs
from DPLL in the fact that it does not rely on interpretations. (which would be
substitutions Θ in our case.) Instead of gradually building an interpretation by
adding assignments, algoritm findmatch gradually refines a set of clauses into
an interpretation by removing substlets from the clauses, until every clause is
unit.

Deterministic reasoning is done by deleting substlets from clauses that are
in conflict with one of the other clauses. When deterministic reasoning fails to
solve the problem, we pick a non-unit clause Ci, and remove some part C1 from
it, and apply deterministic reasoning again. If this fails to give a solution, we
replace C1 by C\C1.

4 Matching with Conflict Learning

The matching algorithm in the two-valued version of Geo ([6]) was already
equipped with a weak form of conflict learning. Before releasing it, we had exper-
imented with naive matching, the algorithm in [8], and a lot of ad hoc methods.
Matching with conflict learning is the only approach that gives acceptable per-
formance. Despite this, matching is still a critical operation in the two-valued
version of Geo, which will need significant improvement in the three-valued ver-
sion. The algorithm in the current paper tries to obtain this in several ways:
Firstly, algorithm findmatch mixes local consistency checking with backtrack-
ing. The algorithm in the two-valued version never attempted any deterministic
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reasoning. It always backtracked on a randomly picked variable. Secondly, in the
two-valued version of Geo, lemmas have form v1/c1, . . . , vn/cn → ⊥, i.e. they
consist of a single, negated substlet. The lemmas that we will introduce shortly,
are more expressive because they are positive. A negative substlet refutes only
the substlets that it is included in, while a positive substlet rejects all substlets
that it conflicts with. We hence expect that a single lemma will reject more
matching attempts, and that, as a consequence, less lemmas will be generated.
Thirdly, the algorithm in the two-valued version of Geo is unable to find optimal
solutions. It always stops on the first solution, which frequently causes unpre-
dictable behaviour. In Sect. 5, we give an algorithm that will turn every algoritm
that can find some solution, into an algorithm that can find an optimal solution.

Definition 13. A lemma is defined in the same way as a clause. For a substi-
tution Θ, the notions of truth, falsehood, and undecidedness are defined in the
same way as for clauses.

We distinguish between clauses and lemmas because they serve different func-
tions in the algorithm, which makes it useful to implement them as different
classes. There is also a technical distinction, namely that all substlets in a clause
always have the same domain, while in a lemma they can be different.

Definition 14. Let (Σ+, Σ−) be a GCSP. Let λ be a lemma. We say that λ is
valid in (Σ+, Σ−) if every solution Θ of (Σ+, Σ−) makes λ true.

Let C be a choice stack, let λ be a lemma. We say that C makes λ false if λ
is false in every substitution Θ that makes all clauses in C true.

If C is choice stack, and there exists a valid lemma that is false in C, then there
exists no solution Θ of (Σ+, Σ−) that agrees with C, and one can backtrack.

Our extended matching algorithm will be similar to DPLL with conflict learn-
ing. It derives valid lemmas that are used to guide the search process. For the
derivation of lemmas, we use two variants of lemma resolution that we will intro-
duce shortly.

There is a technical complication arising from the fact that algorithm find-
match is not based on substitutions, but on choice stacks. A substitution can
play the same role as an interpretation in DPLL, and checking whether a lemma
is false in a substitution is easy. A choice stack lazily refines a set of clauses
into a substitution. This has the advantage that commitment can be postponed,
but it has a major disadvantage that checking falsehood of a lemma becomes
harder. In fact, if the choice stack C has no solutions, then every lemma is false
in C, which renders checking falsehood NP-complete. It follows that one needs
a stronger notion than falsehood.

Definition 15. Let C = (C1, . . . , Cn) be a choice stack. Let λ be a lemma. We
call λ a conflict lemma of C if for every substlet s ∈ λ, there is a Ci in C, such
that s is in conflict with Ci.

Checking whether a given λ is a conflict lemma is a cheap operation. In addition,
one can use a watching scheme based on the changes in C, and recheck only the



Subsumption Algorithms for Three-Valued Geometric Resolution 267

lemmas whose watched substlets might be affected by a refinement. (See [10]).
Conflict lemmas are created by resolution rules:

Definition 16. Let λ1 and λ2 be lemmas. Let μ1 ⊆ λ1. We define RES(λ1, μ1, λ2),
the conflict resolvent of λ1 and λ2 based on μ1. First define μ2 and μ′

1 as follows:
{

μ2 = { (v2/c2) ∈ λ2 | (v2/c2) conflicts every (v1/c1) ∈ μ1 },
μ′
1 = { (v1/c1) ∈ λ1 | (v1/c1) conflicts every (v2/c2) ∈ μ2 }.

Then RES(λ1, μ1, λ2) = (λ1\μ′
1) ∪ (λ2\μ2).

Suppose that one wants to resolve λ1 = { (x, y)/(1, 2), (x, y)/(2, 1), (x, y)/
(3, 3) } with λ2 = { (y, z)/(1, 2), (y, z)/(2, 1) } based on μ1 = { (x, y)/(1, 2) }.
In that case, μ2 = { (y, z)/(1, 2) }. It turns out that (x, y)/(3, 3) can also
resolve with μ2, so we have μ′

1 = { (x, y)/(1, 2), (x, y)/(3, 3) }. The resolvent is
{ (x, y)/(2, 1), (y, z)/(1, 2) }.

Definition 17. Let σ ∈ Σ− be a blocking. Let C1, . . . , Cn be a sequence of
clauses. Let μ1 ⊆ C1, . . . , μn ⊆ Cn be subsets of C1, . . . , Cn, s.t. for every
sequence of substlets s1 ∈ μ1, . . . , sn ∈ μn, we have

⋃
{s1, . . . , sn} |= σ. Then

(C1\μ1) ∪ · · · ∪ (Cn\μn) is a σ-resolvent of C1, . . . , Cn.
We will write RES(C1, . . . , Cn, μ1, . . . , μn, σ) for the result.

It is easy to see that both conflict resolution and σ-resolution are valid reasoning
rules.

In order to extend algorithm findmatch, so that it will generate conflict
lemmas, we assume a set of conflict lemmas Λ, which is initially empty. When-
ever the modified algorithm findmatch backtracks, it extends Λ with a conflict
lemma λ that conflicts the current choice stack C. The following extensions are
be made to findmatch:

– If at any stage, there is a lemma λ ∈ Λ, that is in conflict with C, the algorithm
backtracks.

– Assume that the algorithm passes through LOC-CONFL. If C+ = ∅, the
algorithm can insert the original version Ri of Ci into Λ. This is a conflict
lemma of C, because it can be written as Ci∪(Ri\Ci). Choice stack C contains
the clause Ci, with which every s ∈ (Ri\Ci) is in conflict, by Lemma 1. Every
s ∈ Ci is in conflict with Ck, which follows from the fact that Ci = C−

i .
If C+ �= ∅, algorithm findmatch continues, and by induction, one can

assume that it inserts a conflict lemma of C[i/C+
i ] into to Λ.

If λ already is a closing lemma of C, nothing needs to be done. Otherwise,
let μ ⊆ λ be the substlets in λ that are in conflict with C+

i . Let λ′ = λ\μ.
Every substlet in λ′ is in conflict with C, because λ conflicts C[i/C+

i ]. We can
insert RES(λ, μ,Ci) into Λ. The resolvent has form (λ\μ′) ∪ (Ci\μ2), where
μ ⊆ μ′ and μ2 ⊆ C+

i . It follows that λ\μ′ ⊆ λ′ and (Ci\μ2) ⊆ C−
i , which is

by its construction in conflict with Ck.
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– Assume that clause Ci was partitioned into two parts (C+
i , C−

i ) at LOC-
BLOCKING. We first apply σ-resolution: Let

S ⊆ {sj | 1 ≤ j ≤ ‖C‖ and Cj has form {sj}}

be the set of singletons that contribute to truth of the blocking σ, i.e. for every
s′ ∈ C−

i ,
⋃

S ∪ {s′} |= σ, and there is no S′ ⊂ S for which this is still the
case.

Let j1, . . . , jm be an enumeration of the clauses from which the elements
of S originate. We can construct the σ-resolvent

λσ = (Rj1\{sj1}) ∪ · · · ∪ (Rjm\{sjm}) ∪ (Ri\C−
i ).

It follows from the construction of S, that λσ is indeed a σ-resolvent. By
Lemma 1, the elements in each Rjz\{sjz} are in conflict with {sjz}. By the
same lemma, the substlets in Ri\C−

i that are not in conflict with Ci, are
contained in C+

i .
If C+

i is empty, we are done. Otherwise, algorithm findmatch continues,
and by induction it inserts a conflict lemma λ of C[i/C+] into Λ. If λ is a
closing lemma of C, then nothing needs to be done. (and we constructed λσ

without reason.)
If λ is not a closing lemma of C, we can define μ ⊆ λ as the substlets in

λ that are in conflict with C+
i . Construct λ′ = RES(λ, μ, λσ) and insert λ′

into Λ. The argument that λ′ is a conflict lemma, is similar to the case for
LOC-CONFLICT.

– At BACKTRACK, one can assume by induction that the first recursive call
inserts a closing lemma λ1 of C[i/C1] into Λ. If λ1 is a closing lemma of C,
nothing more needs to be done. Otherwise, the second recursive call will insert
a closing lemma λ2 of C[i/C2] into Λ. Again, if λ2 is a closing lemma of C,
we are done. Otherwise, we can insert λ′ = RES(RES(Ri, C1, λ1), C2, λ2) into
Λ. The proof that λ′ is indeed a closing lemma is analogous to the proof for
LOC-CONFLICT.

Example 3. Consider the choice stack C, consisting of C1 = { (X,Y ) / (c0, c1) |
(c1, c2)} and C2 = { (Y,Z) / (c0, c1) | (c1, c2)}. At k = 1, C2 will be refined
into C3 = { (Y,Z) / (c1, c2)}. At k = 2, we have A2 is false, so it is skipped. At
k = 3, the clause C1 is refined into C4 = { (X,Y ) / (c0, c1)}. At k = 4, nothing
is done, and after that we reach SOLUTION.

Example 4. Consider C1 = { (X,Y ) / (c0, c1) | (c1, c2)}, C2 = { (Y,Z, T ) / (c1,
c2, c3) | (c1, c2, c4)} with a blocking σ = (X,Z) / (c0, c2).

At k = 1, nothing is changed. At k = 2, clause C1 is refined into C3 =
{ (X,Y ) / (c0, c1) } by LOC-CONFLICT. At k = 3, clause C2 can be refined
into the empty clause by LOC-BLOCKING.

In order to obtain a conflict lemma, we σ-resolve R3 = C1 with R2 = C2.
The result is λ1 = { (X,Y ) / (c1, c2) } which conflicts (C2, C3). Back at level 2,
the returned lemma λ1 is not a conflict lemma of (C1, C2). It can resolve with
R2 = C2 and the result is { }.
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5 Finding Optimal Matchings

In this section we address the problem of finding optimal matchings. For the
effectiveness of geometric resolution, it is important that a minimal matching
is returned, in case more than one exists. A minimal matching is a matching
that uses the smallest possible set of assumptions. In terminology of DPLL,
assumptions represent decision levels. The assumptions contributing to a con-
flict represent choice options, which will be replaced by other options during
backtracking. In addition to being as few as possible, assumptions at a lower
decision level should always be preferred over assumptions at a higher decision
level. The reason for this is the fact that in other branches of the search tree,
there is a risk that more assumptions will be used, and when assumptions are
at a lower level, there is less room for this.

Definition 18. Let I be an interpretation. A weight function α is a function
that assigns finite subsets of natural numbers to the atoms of I.

Let A be a geometric literal. Let Θ be a substitution such that AΘ is in
conflict with I. Referring to Definition 3, we define α(pλ(x1, . . . , xn)Θ, I) =
α(pμ(x1Θ, . . . , xnΘ)), α((x1 ≈ x2)Θ, I) = {}, and α((#fx)Θ, I) = α((#txΘ)).

Definition 19. Let I and φ = A1, . . . , Ap | B1, . . . , Bq together form an
instance of the matching problem (Definition 5). Assume that Θ is a solution.
The weight of Θ, for which we write α(I, φ,Θ), is defined as

⋃ {
{ α(AiΘ, I) | 1 ≤ i ≤ p}
{ α(C, I) | 1 ≤ j ≤ q, C ∈ E(Bj , Θ), and C conflicts I }

Solving optimal matching means: First establish if (I, φ) has a solution. If it has,
then find a solution Θ for which α(I, φ,Θ) is multiset minimal.

One could try to impose further selection criteria that are harder to explain and
whose advantage is less evident.

Solving the minimal matching problem is non-trivial, because the number of
possible solutions can be very large. The straightforward solution is to use some
efficient algorithm (e.g. the one in this paper) that enumerates all solutions, and
keeps the best solution. Unfortunately, this approach is completely impractical
because some instances have a very high number of solutions. One frequently
encounters instances with > 109 solutions.

In order to find a minimal solution without enumerating all solutions, one
can use any algorithm that stops on the first solution in the following way: The
first call is used to find out whether a solution exists. If not, then we are done.
Otherwise, the algorithm is called again with its input restricted in such a way
that it has to find a better solution than the previous. One can continue doing
this, until all possibilities to improve the solution have been exhausted. It can
be shown that the number of calls needed to obtain an optimal solution is linear
in the size of the assumption set of solution. In this way, it can be avoided that
all solutions have to be enumerated.
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Definition 20. Let I be an interpretation that is equipped with a weight function
α. Let φ = A1, . . . , Ap | B1, . . . , Bq be a geometric formula. Let α be a fixed set
of natural numbers. We define the α-restricted translation (Σ+, Σ−) of (I, φ) as
follows:

– For every Ai, let vi be the variables of Ai. Then Σ+ contains the clause

{vi/viΘ | AiΘ is in conflict with I and α(AiΘ, I) ⊆ α}.

– For each Bj , let wj denote the variables of Bj . For every Θ that makes BjΘ
true in I, Σ− contains the substlet wj/(wjΘ). In addition, if there exists a
C ∈ E(Bj , Θ) that is in conflict with I and for which α(C,Θ) �⊆ α, then
Σ− contains the substlet wj/(wjΘ).

The α-restricted translation ensures that only conflicts involving atoms C with
α(C) ⊆ α are considered, and (independently of α), that no Bj is made true.
The translation of Definition 9 can be viewed as a special case of α-restricted
translation with α = N .

Theorem 2. Let (Σ+, Σ−) be obtained by α-restricted translation of (I, φ). For
every substitution Θ, Θ is a solution of (Σ+, Σ−) iff Θ is a solution of (I, φ),
and it has α(I, φ,Θ) ⊆ α.

Using α-restricted translation, we can define the optimal matching algorithm:

Definition 21. Let solve(Σ+, Σ−) be a function that returns some solution of
(Σ+, Σ−) if it has a solution, and ⊥ otherwise.

We define the algorithm optimal( I, φ ) that returns an optimal solution of
(I, φ) if one exists and ⊥ otherwise.

– Let (Σ+, Σ−) be the GCSP obtained by the translation of Definition 9. If
Σ+ contains an empty clause, then return ⊥. If Σ− contains a propositional
blocking, then return ⊥. Otherwise, remove unit blockings from (Σ+, Σ−). If
this results in Σ+ containing an empty clause, then return ⊥.

– Let Θ = solve(Σ+, Σ−). If Θ = ⊥, then return ⊥.
– Let α = α(I, φ,Θ), and let k := sup(α).
– As long as k �= 0, do the following:

• Set k = k − 1. If k ∈ α, then do
* Let α′ = (α\{k}) ∪ {0, 1, 2, . . . , k − 1}.
* Let (Σ+, Σ−) be the α′-restricted translation of (I, φ).
* If Σ+ contains an empty clause or Σ− contains a propositional blocking,

then skip the rest of the loop. Otherwise, remove the unit blockings from
(Σ+, Σ−). If this results in Σ+ containing the empty clause, then skip
the rest of the loop.

* Let Θ′ = solve(Σ+, Σ−). If Θ′ �= ⊥, then set Θ = Θ′ and α = α(I, φ,Θ).
– Now Θ is an optimal solution, so we can return Θ.
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Algorithm optimal first solves (I, φ) without restriction. If this results in a
solution Θ, it checks for each k ∈ α(I, φ,Θ) if k can be removed. The invariant
of the main loop is: There exists no k′ ≥ k that occurs in α(I, φ,Θ), and no
Θ′ that is a solution of (I, φ) with k′ �∈ α(I, φ,Θ′). In addition, the invariant
α = α(I, φ,Θ) is maintained.

Example 5. Assume that in Example 1, the atoms have weights as follows:

α( Pt(c0, c0) ) = {1}, α( Pe(c0, c1) ) = {2}, α( Pt(c1, c1) ) = {3},
α( Pe(c1, c2) ) = {4}, α( Qt(c2, c0) ) = {5}.

We have α(I, φ1, Θ1) = {1}, α(I, φ1, Θ2) = {1, 2}, and α(I, φ1, Θ3) = {2, 3}.
If Θ3 is the first solution generated, solve will construct the {1, 2}-restricted
translation of (I, φ1), which equals

(X,Y ) / (c0, c0) | (c0, c1)
(Y,Z) / (c0, c0) | (c0, c1)
(X,Z) / (c0, c2)

If the next solution found is Θ2, then solve will construct the {1}-restricted
translation

(X,Y ) / (c0, c0)
(Y,Z) / (c0, c0)
(X,Z) / (c0, c2)

whose only solution is Θ1.

6 Conclusions

The problem of matching a geometric formula into an interpretation is currently
the most time consuming part of our implementations of geometric resolution.
We gave a method for solving the matching problem by translating it into GCSP,
and by providing efficient algorithms for GCSP. The algorithm in this paper will
be implemented in the nearest future.

One might argue that a calculus that uses an NP-complete problem as its
basic operation is not viable, but there is room for interpretation: The complexity
of the matching problem is caused by the fact that as result of flattening, geomet-
ric formulas and interpretations have DAG-structure instead of tree-structure.
This increased expressiveness means that a geometric formula possibly represents
exponentially many formulas with tree-structure. This may very well result in
shorter proofs. Only experiments can determine which of the two effects will be
stronger.
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logics. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 275–
284. Springer, Heidelberg (1993)

12. Scheffer, T., Herbrich, R., Wysotzki, F.: Efficient Θ-subsumption based on graph
algorithms. In: Muggleton, S. (ed.) ILP 1996. LNCS(LNAI), vol. 1314, pp. 212–228.
Springer, Heidelberg (1996)

13. Sutcliffe, G.: The CADE ATP system competition, August 2015. http://www.cs.
miami.edu/∼tptp/CASC/25/

http://logcom.oxfordjournals.org/
http://www.ii.uni.wroc.pl/~nivelle/
http://www.ii.uni.wroc.pl/~nivelle/
http://www.cs.miami.edu/~tptp/CASC/25/
http://www.cs.miami.edu/~tptp/CASC/25/


On Interpolation and Symbol Elimination
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Abstract. In this paper we study possibilities of interpolation and sym-
bol elimination in extensions of a theory T0 with additional function
symbols whose properties are axiomatised using a set of clauses. We
analyze situations in which we can perform such tasks in a hierarchical
way, relying on existing mechanisms for symbol elimination in T0. This is
for instance possible if the base theory allows quantifier elimination. We
analyze possibilities of extending such methods to situations in which
the base theory does not allow quantifier elimination but has a model
completion which does. We illustrate the method on various examples.

1 Introduction

Many problems in computer science (e.g. in program verification) can be reduced
to checking satisfiability of ground formulae w.r.t. a theory which can be a stan-
dard theory (e.g. linear arithmetic) or a complex theory (typically the extension
of a base theory T0 with additional function symbols axiomatized by a set K
of formulae, or a combination of theories). SMT solvers are tuned for efficiently
checking satisfiability of ground formulae in increasingly complex theories; the
output can be “satisfiable”, “unsatisfiable”, or “unknown” (if incomplete meth-
ods are used, or termination cannot be guaranteed). More interesting is to go
beyond yes/no answers, i.e. to consider parametric systems and infer constraints
on parameters (which can be values or functions) which guarantee that cer-
tain properties are met (e.g. guarantee the unsatisfiability of ground clauses in
suitable theory extensions). In [22,23] – in a context specially tailored for the
parametric verification of safety properties in increasingly more complex systems
– we showed that such constraints could be generated in extensions of a theory
allowing quantifier elimination. In this paper, we propose a symbol elimination
method in theory extensions and analyze its properties. We also discuss possi-
bilities of applying such methods to extensions of theories which do not allow
quantifier elimination provided that they have a model completion which does.

Another problem we analyze is interpolation (widely used in program verifica-
tion [11,15–17]). Intuitively, interpolants can be used for describing separations
between the sets of “good” and “bad” states; they can help to discover relevant
predicates in predicate abstraction with refinement and for over-approximation
in model checking. It often is desirable to obtain “ground” interpolants of ground
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formulae. The first algorithms for interpolant generation in program verification
required explicit constructions of proofs [12,16] (in general a relatively diffi-
cult task). In [11] the existence of ground interpolants for arbitrary formulae is
studied – which is proved to be equivalent to the theory having quantifier elim-
ination. This limits the applicability of the results in [11] to situations in which
the involved theories allow quantifier elimination. Symbol elimination (e.g. using
resolution and/or superposition) has been used for interpolant generation in e.g.
[7]. In [21] we identify classes of local theory extensions in which interpolants
can be computed hierarchically, using a method of computing interpolants in the
base theory. [18] proposes an algorithm for the generation of interpolants for lin-
ear arithmetic with uninterpreted function symbols which reduces the problem
to constraint solving in linear arithmetic. In both cases, when considering theory
extensions T0 ⊆ T0 ∪ K we devise ways of “separating” the instances of axioms
in K and of the congruence axioms. There also exist results which relate ground
interpolation to amalgamation (cf. e.g. [1,2]). We use such results for obtaining
criteria which allow us to recognize theories with ground interpolation. However,
in general just knowing that ground interpolants exist is not sufficient: we want
to construct the interpolants fast (in a hierarchical or modular way) and char-
acterize situations in which we know which (extension) terms these interpolants
contain. For this, [25] introduces the notion of W -separability and studies its
links to a form of hierarchical interpolation. We here make the results in [25]
more precise, and extend them.

The main results of this paper can be summarized as follows:

– We link the existence (and computation) of ground interpolants in a theory
T to their existence (and computation) in a model completion T ∗ of T .

– We study possibilities of effective symbol elimination in theory extensions
(based on quantifier elimination in the base theory or in a model completion
thereof) and analyze the properties of the formulae obtained this way.

– We analyze possibilities of hierarchical interpolation in local theory exten-
sions. Our analysis extends both results in [21] and results in [25] by avoiding
the restriction to convex base theories. We explicitly point out all conditions
needed for hierarchical interpolation and show how to check them.

The paper is structured as follows. In Sect. 2 we present the main results on
model theory needed in the paper. In Sect. 3 we first present existing results
linking (sub-)amalgamation, quantifier elimination and the existence of ground
interpolants, which we then combine to obtain efficient ways of proving ground
interpolation and computing ground interpolants. Section 4 contains the main
definitions and results on local theory extensions; these are used in Sect. 5 for
symbol elimination and in Sect. 6 for ground interpolation in theory extensions.

2 Preliminaries

We assume known standard definitions from first-order logic such as
Π-structures, models, homomorphisms, logical entailment, satisfiability,
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unsatisfiability. We consider signatures of the form Π = (Σ,Pred), where Σ is a
family of function symbols and Pred a family of predicate symbols. In this paper,
(logical) theories are simply sets of sentences. We denote “falsum” with ⊥. If
F and G are formulae we write F |= G (resp. F |=T G – also written as
T ∪ F |= G) to express the fact that every model of F (resp. every model of F
which is also a model of T ) is a model of G. F |=⊥ means that F is unsatisfiable;
F |=T ⊥ means that there is no model of T in which F is true. If there is a model
of T which is also a model of F we say that F is T -consistent.

If T is a theory over a signature Π = (Σ,Pred) we denote by T∀ (the universal
theory of T ) the set of all universal sentences which are logical consequences of
T . For Π-structures A and B, ϕ : A → B is an embedding if and only if it is
an injective homomorphism and has the property that for every P ∈ Pred with
arity n and all (a1, . . . , an) ∈ An, (a1, . . . , an) ∈ PA iff (ϕ(a1), . . . , ϕ(an)) ∈ PB.
In particular, an embedding preserves the truth of all literals. An elementary
embedding between two Π-structures is an embedding that preserves the truth
of all first-order formulae over Π. Two Π-structures are elementarily equivalent
if they satisfy the same first-order formulae over Π.

Let A = (A, {fA}f∈Σ , {PA}P∈Pred) be a Π-structure. In what follows, we
will sometimes denote the universe A of the structure A by |A|. The diagram
Δ(A) of A is the set of all literals true in the extension AA of A where we have
an additional constant for each element of A (which we here denote with the
same symbol) with the natural expanded interpretation mapping the constant a
to the element a of |A| (this is a set of sentences over the signature ΠA obtained
by expanding Π with a fresh constant a for every element a from |A|). Note that
if A is a Π-structure and T a theory and Δ(A) is T -consistent then there exists
a Π-structure B which is a model of T and in which A embeds.

A theory T over signature Π allows quantifier elimination if for every formula
φ over Π there exists a quantifier-free formula φ∗ over Π which is equivalent to
φ modulo T . Quantifier elimination can, in particular, be used for eliminating
certain constants from ground formulae:

Theorem 1. Let T be a theory with signature Π and A(c1, . . . , cn, d1, . . . , dm) a
ground formula over an extension ΠC of Π with additional constants c1, . . . , cn,
d1, . . . , dm. If T has quantifier elimination then there exists a ground formula
Γ (c1, . . . , cn) containing only constants c1, . . . , cn, which is satisfiable w.r.t. T
iff A(c1, . . . , cn, d1, . . . , dm) is satisfiable w.r.t. T .

Proof Idea: Γ (c1, . . . , cn) can be obtained from ∃d1, . . . , dmA(c1, . . . , cn, d1,
. . . , dm) by quantifier elimination (where d1, . . . , dn are now regarded as
variables). �	
A model complete theory has the property that all embeddings between its mod-
els are elementary. Every theory which allows quantifier elimination (QE) is
model complete (cf. [8], Theorem 7.3.1).

Example 2. Presburger arithmetic with congruence mod. n, rational linear arith-
metic, the theories of real closed fields and of algebraically closed fields, the the-
ory of finite fields and the theory of acyclic lists in the signature {car, cdr, cons}
([6,13]) allow QE, hence are model complete.
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A theory T ∗ is called a model companion of T if (i) T and T ∗ are co-theories
(i.e. every model of T can be extended to a model of T ∗ and vice versa), (ii)
T ∗ is model complete. T ∗ is a model completion of T if it is a model companion
of T with the additional property (iii) for every model A of T , T ∗ ∪ Δ(A) is a
complete theory (where Δ(A) is the diagram of A). Several examples of model
completions are mentioned later, in Example 12.

Lemma 3. Let T1 and T2 be two co-theories with signature Π, and A(c1, . . . , cn)
be a ground formula over an extension ΠC of Π with new constants c1, . . . , cn.
Then A is satisfiable w.r.t. T1 if and only if it is satisfiable w.r.t. T2.

Proof: Consequence of the fact that if T and T ′ are co-theories then T∀ = T ′
∀. �	

3 Ground Interpolation and Quantifier Elimination

A Π-theory T has interpolation if, for all Π-formulae φ and ψ if φ |=T ψ then
there exists a formula I containing only symbols common to φ and ψ such that
φ |=T I and I |=T ψ. First order logic has interpolation [4]. It is often important
to identify theories for which ground formulae have ground interpolants.

Definition 4. A theory T has the ground interpolation property (for short: T
has ground interpolation) if for every pair of ground formulae A(c, a) (containing
constants c, a) and B(c, b) (containing constants c, b), if A(c, a) ∧ B(c, b) |=T ⊥
then there exists a ground formula I(c), containing only the constants c occurring
both in A and B, such that A(c, a) |=T I(c) and B(c, b) ∧ I(c) |=T ⊥ .

Let T be a theory in a signature Σ and Σ′ a signature disjoint from Σ. We
denote by T ∪ UIFΣ′ the extension of T with uninterpreted symbols in Σ′.

Definition 5 ([2]). We say that a theory T in a signature Σ has the general
ground interpolation property (or, shorter, that T has general ground interpola-
tion) if for every signature Σ′ disjoint from Σ and every pair of ground Σ ∪Σ′-
formulae A and B, if A ∧ B |=T ∪UIFΣ′ ⊥ then there exists a ground formula I,
such that (i) all predicate, constants and function symbols from Σ′ occurring in
I also occur in A and B; (ii) A |=T ∪UIFΣ′ I and (iii) B ∧ I |=T ∪UIFΣ′ ⊥.

There exist results which relate ground interpolation to amalgamation (cf. e.g.
[1,2]) and thus allow us to recognize many theories with ground interpolation.

Definition 6 ([2]). A theory T has the sub-amalgamation property iff whenever
we are given models M1 and M2 of T with a common substructure A, there
exists a further model M of T endowed with embeddings μi : Mi → M , i = 1, 2
whose restrictions to A coincide. T has the strong sub-amalgamation property
if the preceding embeddings μ1, μ2 and the preceding model M can be chosen
so as to satisfy the following additional condition: if for some m1,m2 we have
μ1(m1) = μ2(m2), then there exists an element a ∈ A such that m1 = m2 = a.
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Definition 7 ([2]). A theory T is equality interpolating iff it has the ground
interpolation property and has the property that for all tuples x = x1, . . . , xn,
y1 = y1

1 , . . . , y
1
n1

, z1 = z11 , . . . , z
1
m1

, y2 = y2
1 , . . . , y

2
n2

, z2 = z21 , . . . , z
2
m2

of con-
stants, and for every pair of ground formulae A(x, z1, y1) and B(x, z2, y2) such

that A(x, z1, y1) ∧ B(x, z2, y2) |=T

n1∨

i=1

n2∨

j=1

y1
i = y2

j there exists a tuple of terms

containing only the constants in x, v(x) = v1, . . . , vk such that

A(x, z1, y1) ∧ B(x, z2, y2) |=T

n1∨

i=1

k∨

u=1

y1
i = vk ∨

n2∨

j=1

k∨

u=1

vk = y2
j

Theorem 8 ([1–3]). The following hold for any theory T :

(1) If T is universal and has the amalgamation property then T has ground
interpolation [1].

(2) T has the sub-amalgamation property iff it has ground interpolation [2].
(3) T is strongly sub-amalgamable iff it has general ground interpolation [2].
(4) If T has ground interpolation, then T is strongly sub-amalgamable iff it is

equality interpolating [2].
(5) If T is universal and allows QE, T is equality interpolating [2].
(6) If T ∗ is a model companion of T then (i) T ∗ is a model completion of T

iff (ii) T has the amalgamation property. If, additionally, T has universal
axiomatization, either of the equivalent conditions (i), (ii) above is equivalent
to the fact that T ∗ allows quantifier elimination [3].

Clearly, if a theory T allows quantifier elimination then it has ground interpola-
tion (Assume A∧B |=T ⊥. We can simply use quantifier elimination to eliminate
the non-shared constants from A w.r.t. T and obtain an interpolant). The con-
verse is not true (the theory of uninterpreted function symbols over a signature
Σ has ground interpolation but does not allow quantifier elimination).

Theorem 9. If T is a universal theory which allows quantifier elimination then
T has general ground interpolation.

Proof: If T allows QE, it has ground interpolation. By Theorem 8(5), T is equal-
ity interpolating. But by Theorem 8(4), a theory that has ground interpolation
and is equality interpolating has the strong sub-amalgamation property, hence
by Theorem 8(3) it has general ground interpolation. �	

Example 10.

(1) All theories in Example 2 allow QE, so have ground interpolation.
(2) The theory of pure equality has the strong (sub-)amalgamation property,

hence by Theorem 8 it allows general ground interpolation.
(3) The theory of absolutely-free data structures [13] is universal and has quan-

tifier elimination, hence by Theorem9 it has general ground interpolation.
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Model Companions and Ground Interpolation. In what follows we estab-
lish links between ground interpolation resp. quantifier elimination in a theory
and in its model companions (if they exist).

Theorem 11. Let T be a theory and T ∗ a model companion of T .

(1) If T is universal and has ground interpolation, then T ∗ allows QE.
(2) If T ∗ has ground interpolation then so does T ; the ground interpolants com-

puted w.r.t. T ∗ are also interpolants w.r.t. T .
(3) A universal theory T has ground interpolation iff T ∗has ground interpolation.
(4) If T ∗ allows quantifier elimination then T has ground interpolation.

Proof: (1) By Theorem 8(1), T has the amalgamation property so Theorem 8(6)
can be used. (2) Let A, B be ground formulae s.t. T ∪ A ∪ B |=⊥. As T∀ = T ∗

∀ ,
by Lemma 3, T ∗ ∪ A ∪ B |=⊥, so an interpolant I (in theory T ∗) exists. By
Lemma 3, I is an interpolant w.r.t. T . (3) The direct implication follows from
(1), the converse from (2). (4) follows from Theorem 9 and (2). �	

Example 12. The following theories have ground interpolation:

(1) The pure theory of equality (its model completion is the theory of an infinite
set, which allows QE).

(2) The theory of total orderings (its model completion is the theory of dense
total orders without endpoints, which allows QE [6]).

(3) The theory of Boolean algebras (its model completion is the theory of atom-
less Boolean algebras, which allows QE [3]).

(4) The theory of fields (its model completion is the theory of algebraically closed
fields, which allows QE [3,8]).

Until now, we discussed possibilities for symbol elimination and ground interpo-
lation in arbitrary theories. However, often the theories we consider are exten-
sions of a “base” theory with additional function symbols satisfying certain
properties axiomatized using clauses; we now analyze such theories. In Sect. 4 we
recall the main definitions and results related to (local) theory extensions. We
use these results in Sect. 5 to study possibilities of symbol elimination in theory
extensions and in Sect. 6 to identify theory extensions with ground interpolation.

4 Local Theory Extensions

Let Π0=(Σ0,Pred) be a signature, and T0 be a “base” theory with signature Π0.
We consider extensions T := T0∪K of T0 with new function symbols Σ (extension
functions) whose properties are axiomatized using a set K of (universally closed)
clauses in the extended signature Π = (Σ0 ∪ Σ,Pred), which contain function
symbols in Σ. Let C be a fixed countable set of fresh constants. We will denote
by ΠC the extension of Π with constants in C. If G is a finite set of ground ΠC-
clauses and K a set of Π-clauses, we will denote by st(K, G) (resp. est(K, G)) the
set of all ground terms (resp. extension ground terms, i.e. terms starting with a
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function in Σ) which occur in G or K. In this paper we regard every finite set G
of ground clauses as the ground formula

∧
C∈G C. If T is a set of ground terms

in the signature ΠC , we denote by K[T ] the set of all instances of K in which the
terms starting with a function symbol in Σ are in T . Let Ψ be a map associating
with every finite set T of ground terms a finite set Ψ(T ) of ground terms. For any
set G of ground ΠC-clauses we write K[ΨK(G)] for K[Ψ(est(K, G))]. We define:

(LocΨ
f ) For every finite set G of ground clauses in ΠC it holds that

T0 ∪ K ∪ G |= ⊥ if and only if T0 ∪ K[ΨK(G)] ∪ G is unsatisfiable.

Extensions satisfying condition (LocΨ
f ) are called Ψ -local. If Ψ is the identity

(in which case K[ΨK(G)] = K[G] = K[est(K, G)]) we obtain the notion of local
theory extensions [19,20], which generalizes the notion of local theories [5,14].

Hierarchical Reasoning. Consider a Ψ -local theory extension T0 ⊆ T0 ∪ K.
Condition (LocΨ

f ) requires that for every finite set G of ground ΠC clauses,
T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[ΨK(G)] ∪ G |=⊥. In all clauses in K[ΨK(G)] ∪ G the
function symbols in Σ only have ground terms as arguments, so K[ΨK(G)]∪G can
be flattened and purified by introducing, in a bottom-up manner, new constants
ct ∈ C for subterms t = f(c1, . . . , cn) where f∈Σ and ci are constants, together
with definitions ct = f(c1, . . . , cn). We thus obtain a set of clauses K0∪G0∪Def,
where K0 and G0 do not contain Σ-function symbols and Def contains clauses
of the form c = f(c1, . . . , cn), where f∈Σ, c, c1, . . . , cn are constants.

Theorem 13 ([9,19,20]). Let K be a set of clauses. Assume that T0 ⊆ T1 =
T0 ∪ K is a Ψ -local theory extension. For any finite set G of ground clauses, let
K0 ∪ G0 ∪ Def be obtained from K[ΨK(G)] ∪ G by flattening and purification, as
explained above. Then the following are equivalent to T1 ∪ G |=⊥:

(1) T0∪K[ΨK(G)]∪G |=⊥.

(2) T0 ∪K0 ∪G0 ∪Con0 |=⊥, where Con0={
n∧

i=1

ci≈di → c≈d | f(c1, . . . , cn)≈c∈Def

f(d1, . . . , dn)≈d∈Def
}.

Since local extensions can be recognized by showing that certain partial models
embed into total ones, we introduce the main definitions here.

Partial Structures. Let Π = (Σ,Pred) be a first-order signature with set of
function symbols Σ and set of predicate symbols Pred. A partial Π-structure
is a structure A = (A, {fA}f∈Σ , {PA}P∈Pred), where A is a non-empty set, for
every n-ary f ∈ Σ, fA is a partial function from An to A, and for every n-
ary P ∈ Pred, PA ⊆ An. We consider constants (0-ary functions) to be always
defined. A is called a total structure if the functions fA are all total. Given a
(total or partial) Π-structure A and Π0 ⊆ Π we denote the reduct of A to Π0

by A|Π0 .
The notion of evaluating a term t with variables X w.r.t. an assignment

β : X → A for its variables in a partial structure A is the same as for total
algebras, except that the evaluation is undefined if t = f(t1, . . . , tn) and at least
one of β(ti) is undefined, or else (β(t1), . . . , β(tn)) is not in the domain of fA.
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A weak Π-embedding between partial Π-structures A = (A, {fA}f∈Σ ,
{PA}P∈Pred) and B = (B, {fB}f∈Σ , {PB}P∈Pred) is a total map ϕ : A →
B such that (i) ϕ is an embedding w.r.t. Pred ∪ {=} and (ii) whenever
fA(a1, . . . , an) is defined (in A), then fB(ϕ(a1), . . . , ϕ(an)) is defined (in B) and
ϕ(fA(a1, . . . , an)) = fB(ϕ(a1), . . . , ϕ(an)), for all f ∈ Σ.

Let A be a partial Π-structure and β : X→A be a variable assignment. (A, β)
weakly satisfies a clause C (notation: (A, β) |=w C) if either some of the literals
in β(C) are not defined or otherwise all literals are defined and for at least one
literal L in C, L is true in A w.r.t. β. A is a weak partial model of a set of clauses
K if (A, β) |=w C for every variable assignment β and every clause C in K.

Recognizing Ψ-local theory extensions. In [19] we proved that if all weak
partial models of an extension T0∪K of a base theory T0 with total base functions
can be embedded into a total model of the extension, then the extension is local.
In [9] we lifted these results to Ψ -locality.

Let A = (A, {fA}f∈Σ0∪Σ∪C , {PA}P∈Pred) be a partial ΠC-structure with
total Σ0-functions. Let ΠA be the extension of the signature Π with constants
from A. We denote by T (A) the following set of ground ΠA-terms:

T (A) := {f(a1, ..., an) | f ∈ Σ, ai ∈ A, i = 1, . . . , n, fA(a1, ..., an) is defined}.

Let PModΨ
w,f (Σ, T ) be the class of all weak partial models A of T0∪K, such that

A|Π0 is a total model of T0, the Σ-functions are partial, T (A) is finite and all
terms in Ψ(est(K, T (A))) are defined (in the extension AA with constants from
A). We consider the following embeddability property of partial structures:

(EmbΨ
w,f ) Every A ∈ PModΨ

w,f (Σ, T ) weakly embeds into a total model of T .

We also consider the properties (EEmbΨ
w,f ), which additionally requires the

embedding to be elementary and (Compf ) which requires that every structure
A ∈ PModΨ

w,f (Σ, T ) embeds into a total model of T with the same support.
When establishing links between locality and embeddability we require that

the clauses in K are flat and linear w.r.t. Σ-functions. We distinguish between
ground and non-ground clauses. An extension clause D is flat when all symbols
below a Σ-function symbol in D are variables. D is linear if whenever a variable
occurs in two terms of D starting with Σ-functions, the terms are equal, and
no term contains two occurrences of a variable. A ground clause D is flat if all
symbols below a Σ-function in D are constants. A ground clause D is linear if
whenever a constant occurs in two terms in D whose root symbol is in Σ, the
two terms are identical, and if no term which starts with a Σ-function contains
two occurrences of the same constant.

Theorem 14 ([9,10]). Let T0 be a first-order theory and K a set of universally
closed flat clauses in the signature Π. The following hold:

(1) If all clauses in K are linear and Ψ is a term closure operator (for definition
cf. [10]) with the property that for every flat set of ground terms T , Ψ(T ) is
flat then either of the conditions (EmbΨ

w,f ) and (EEmbΨ
w,f ) implies (LocΨ

f ).
(2) If the extension T0 ⊆ T =T0∪K satisfies (LocΨ

f ) then (EmbΨ
w,f ) holds.

Property (EEmbΨ
w,f) is preserved if we enrich T0 (cf. [10]).
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5 Symbol Elimination in Theory Extensions

We show that in theory extensions T0 ⊆ T = T0 ∪ K for which T0 (resp. its
model completion T ∗

0 ) allows quantifier elimination, for every ground formula G
containing function symbols considered to be “parameters” we can generate a
(universal) constraint Γ on the parameters of G such that T ∪ Γ ∪ G |=⊥.

Let Π0 = (Σ0,Pred). Let T0 be a Π0-theory and ΣP be a set of parameters
(function and constant symbols). Let Σ be a signature such that Σ∩(Σ0∪ΣP ) =
∅, containing functions not in (Σ0∪ΣP ). Let K be a set of clauses in the signature
Π0∪ΣP ∪Σ in which all variables occur also below functions in Σ1 = ΣP ∪ Σ.
Let G be a finite set of ground clauses, and T a finite set of ground terms over
the signature Π0∪ΣP ∪Σ∪C, where C is a set of additional constants.

We construct a universal formula ∀y1 . . . ynΓT (y1, . . . , yn) over the signature
Π0∪ΣP by following the Steps 1–5 below:

Step 1: Let K0 ∪ G0 ∪ Con0 be the set of ΠC
0 clauses obtained from K[T ] ∪ G

after the purification step in Theorem 13 (with set of extension symbols Σ1).
Step 2: Let G1 = K0∪G0∪Con0. Among the constants in G1, we identify (i) the

constants cf , f ∈ ΣP , where either cf = f ∈ ΣP is a constant parameter, or
is introduced by a definition cf := f(c1, . . . , ck) in the hierarchical reasoning
method, and (ii) all constants cp occurring as arguments of functions in
ΣP in such definitions. Let c be the remaining variables. We replace the
constants in c with existentially quantified variables x in G1, i.e. replace
G1(cp, cf , c) with G1(cp, cf , x), and consider the formula ∃xG1(cp, cf , x).

Step 3: Using the method for quantifier elimination in T0 we can construct a
formula Γ1(cp, cf ) equivalent to ∃xG1(cp, cf , x) w.r.t. T0.

Step 4: Let Γ2(cp) be the formula obtained by replacing back in Γ1(cp, cf ) the
constants cf introduced by definitions cf := f(c1, . . . , ck) with the terms
f(c1, . . . , ck). We replace cp with existentially quantified variables y and
obtain the formula ∃yΓ2(y).

Step 5: Let ∀yΓT (y) be ¬(∃yΓ2(y)), i.e. ∀y¬Γ2(y).

A similar approach is used in [22] for generating constraints on parameters which
guarantee safety of parametric systems. We show that ∀yΓT (y) guarantees unsat-
isfiability of G and further study the properties of these formulae. At the end of
Sect. 6 we briefly indicate how this can be used for interpolant generation.

We first analyze the case in which T0 allows quantifier elimination.

Theorem 15. Assume that T0 allows quantifier elimination. For every finite set
of ground clauses G, and every finite set T of terms over the signature Π0 ∪Σ ∪
ΣP ∪C with est(G) ⊆ T , Steps 1–5 yield a universally quantified Π0∪ΣP -formula
∀xΓT (x) with the following properties:

(1) For every structure A with signature Π0 ∪ Σ ∪ ΣP ∪ C which is a model of
T0 ∪ K, if A |= ∀yΓT (y) then A |= ¬G.

(2) T0 ∪ ∀yΓT (y) ∪ K ∪ G is unsatisfiable.
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Proof: The proof is given in [24]. �	
From the proof of Theorem 15 we can see that (with the notation used in Steps
1–5) the formulae ∃xG1(cp, cf , x) ∧ Def and Γ2(cp) are equivalent w.r.t. T0 ∪
UIFΣP

.

Theorem 16. If T1 ⊆ T2 then ∀yΓT1(y) entails ∀yΓT2(y) (modulo T0).

Proof: The proof is given in [24]. �	
In what follows, ∀yΓG(y) denotes the formula obtained when T = est(K, G).

Theorem 17. If the extension T0 ⊆ T0∪K satisfies condition (Compf ) and K is
flat and linear then ∀yΓG(y) is entailed by every conjunction Γ of clauses such
that T0 ∪ Γ ∪ K ∪ G is unsatisfiable (i.e. it is the weakest such constraint).

Proof: The proof is given in [24]. �	

Example 18. Let T0 be the theory of dense total orderings without endpoints.
Consider the extension of T0 with functions Σ1 = {f, g, h, c} whose properties
are axiomatized by K := {∀x(x ≤ c → g(x) = f(x)),∀x(c < x → g(x) = h(x))}.
Assume ΣP = {f, h, c} and Σ = {g}. We are interested in generating a set
of constraints on the parameters f, h and c which ensure that g is monotone,
e.g. satisfies Mon(g) : ∀x, y(x ≤ y → g(x) ≤ g(y)), i.e. a set Γ of Σ0 ∪ ΣP -
constraints such that T0 ∪Γ ∪K∪{c1 ≤ c2, g(c1) > g(c2)} is unsatisfiable, where
G = {c1 ≤ c2, g(c1) > g(c2)} is the negation of Mon(g).

Step 1: We compute T0 ∪ K[G] ∪ G, then purify it. We obtain Def = {g1 =
g(c1), g2 = g(c2), f1 = f(c1), f2 = f(c2), h1 = h(c1), h2 = h(c2)} and:
K0 ∪ Con0 ∪ G0 := { c1 ≤ c → g1 = f1, c2 ≤ c → g2 = f2, c < c1 → g1 = h1,

c < c2 → g2 = h2, c1 = c2 → g1 = g2, c1 = c2 → f1 = f2,
c1 = c2 → h1 = h2, c1 ≤ c2, g1 > g2}

Step 2: ΣP = {f, h, c}. To eliminate g we replace g1, g2 with existentially quan-
tified variables z1, z2 and obtain ∃z1, z2G1(c1, c2, c, f1, f2, h1, h2, z1, z2) =
∃z1, z2(c1 ≤ c → z1=f1 ∧c2 ≤ c → z2=f2 ∧c1=c2 → f1=f2 ∧c1 = c2 → h1=h2

c < c1 → z1=h1 ∧c < c2 → z2=h2 ∧c1=c2 → z1=z2 ∧c1 ≤ c2 ∧ z1 > z2)
Step 3: After simplification followed by the method for QE for dense total

orderings without endpoints we obtain the formula Γ1(c1, c2, c, f1, f2, h1, h2)
((c1 ≤ c ∧ c2 ≤ c ∧ c1 ≤ c2 ∧ f1 > f2 ∧ c1 �= c2) ∨
(c1 ≤ c ∧ c < c2 ∧ c1 ≤ c2 ∧ f1 > h2 ∧ c1 �= c2) ∨
(c < c1 ∧ c2 ≤ c ∧ c1 ≤ c2 ∧ h1 > f2 ∧ c1 �= c2) ∨
(c < c1 ∧ c < c2 ∧ c1 ≤ c2 ∧ h1 > h2 ∧ c1 �= c2))

Step 4: We construct the formula Γ2(c1, c2, c) from Γ1 by replacing fi by f(ci)
and hi by h(ci), i = 1, 2. We obtain (after further minor simplification and
rearrangement for facilitating reading):

((c1<c2 ≤ c ∧ f(c1)>f(c2)) ∨ (c1≤c < c2 ∧ f(c1)>h(c2)) ∨ (c<c1<c2 ∧ h(c1)>h(c2)))

Step 5: Then ∀z1, z2ΓT (z1, z2) is ∀z1, z2[(z1 < z2 ≤ c → f(z1) ≤ f(z2)) ∧ (z1 ≤
c < z2 → f(z1) ≤ h(z2)) ∧ (c < z1 < z2 → h(z1) ≤ h(z2))].
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We now analyze the case in which T0 does not necessarily allow quantifier elim-
ination, but has a model completion which allows quantifier elimination.

Theorem 19. Let T0 be a theory having a model completion T ∗
0 with T0 ⊆ T ∗

0 .
Let T = T0 ∪ K be an extension of T0 with new function symbols Σ1 = ΣP ∪ Σ
whose properties are axiomatized by a set of clauses K in which all variables
occur also below extension functions in Σ1. Assume that (i) every model of T0∪K
embeds into a model of T ∗

0 ∪ K, and (ii) T ∗
0 allows quantifier elimination.

Then, for every finite set of ground clauses G, and every finite set T of terms
over the signature ΠC = Π0 ∪ Σ ∪ ΣP ∪ C with est(G) ⊆ T we can construct a
universally quantified Π0 ∪ ΣP -formula ∀xΓT (x) such that:

(1) For every structure A with signature Π0 ∪ Σ ∪ ΣP ∪ C which is a model of
T0 ∪ K, if A |= ∀xΓT (x) then A |= ¬G.

(2) T0 ∪ ∀yΓT (y) ∪ K ∪ G is unsatisfiable.

Proof: This follows from Theorem 15 (applied to T ∗
0 ) and the properties of T ∗

0 ,
details are given in [24]. �	

Example 20. Consider the problem in Example 18 when the base theory T0 is
the theory of total orderings. It can be checked that (i) and (ii) hold. By
Theorem 19, the formula ∀z1, z2ΓT (z1, z2) constructed in Example 18 ensures
that g is monotone also in this case.

Unfortunately, under the assumptions of Theorem 19 we cannot guarantee that
∀yΓG(y) is the weakest set of constraints in the set of all Γ with T0∪Γ∪K∪G |=⊥.

Example 21. Let T0 be the theory of total orderings and G := {a<g(a), g(a)<
h(a)}. Using Steps 1–5 for T ∗

0 we obtain the following formula ∀yΓG(y) =
∀x(h(x) ≤ x). Let Γ := ∀x, y, z(x < y → y ≥ z). Then Γ ∧ G is unsatisfiable,
but there exists a structure with two elements a1 < a2 such that h(a1) = a2

which satisfies Γ but not ΓG. (Note that this situation cannot occur when T0

has quantifier elimination: Then the formula ∃xG1(x) is either true or false in T0.
If it is true then to achieve unsatisfiability we have to add Γ =⊥, which entails
any other constraint. If it is false then we do not need to add any constraints to
achieve unsatisfiability. so Γ = �, which is entailed by any other constraint).

6 Ground Interpolation in Theory Extensions

In this section we present criteria for recognizing whether a theory extension
T = T0 ∪ K has ground interpolation provided that T0 has (general) ground
interpolation. In [21] we identified classes of local extensions in which ground
interpolants can be computed hierarchically (for this, we had to find ways of
separating the instances of axioms in K and of the congruence axioms). Crite-
ria linking hierarchical ground interpolation to an amalgamability property for
partial algebras were given in [25]. We here extend the results in [21,25].



284 V. Sofronie-Stokkermans

Definition 22 ([25]). An amalgamation closure for a theory extension T =
T0 ∪ K is a function W associating with finite sets of ground terms TA and TB,
a finite set W (TA, TB) of ground terms such that

(1) all ground subterms in K and TA are in W (TA, TB);
(2) W is monotone, i.e., for all TA ⊆ T ′

A, TB ⊆ T ′
B, W (TA, TB) ⊆ W (T ′

A, T ′
B);

(3) W is a closure, i.e., W (W (TA, TB),W (TB , TA)) ⊆ W (TA, TB);
(4) W is compatible with any map h between constants satisfying h(c1) �= h(c2),

for all constants c1 ∈ st(TA), c2 ∈ st(TB) that are not shared between TA and
TB, i.e., for any such h we require W (h(TA), h(TB)) = h(W (TA, TB)); and

(5) W (TA, TB) only contains TA-pure terms.

For sets of ground clauses A,B we write W (A,B) for W (st(A), st(B)). In this
paper when we use W we always refer to an amalgamation closure.

Definition 23 ([25]). A theory extension T = T0 ∪ K is W -separable if for all
sets of ground clauses A and B, T0 ∪ K ∪ A ∪ B |=⊥ iff T0 ∪ K[W (A,B)] ∪ A ∪
K[W (B,A)] ∪ B |=⊥.

Example 24. Let T0 be the theory TOrd of total orderings. We consider the
extension of T0 with K = {SGC(f, g),Mon(f, g)} (cf. also [21]), where:

– SGC(f, g) : ∀x, y(x ≤ g(y) → f(x) ≤ y);
– Mon(f, g) : ∀x, y(x ≤ y → f(x) ≤ f(y)) ∧ ∀x, y(x ≤ y → g(x) ≤ g(y)).

TOrd is ≤-interpolating [21]: If A0 and B0 are sets of ground clauses in the
signature of TOrd and A0 ∧ B0 |=TOrd a ≤ b, where a is a constant in A0

and b a constant in B0 then there exists a constant d (common to A0 and
B0) such that A0 ∧ B0 |=TOrd a ≤ d ∧ d ≤ b. Let A and B sets of ground
clauses in the signature of T0 ∪ K. If CI are the terms corresponding to the
common constants used for ≤-interpolating the premises of the mixed instances
of SGC(f, g)[A∪B]∧Mon(f, g)[A∪B] after the hierarchical reduction, the results
in [21] show that T0∪K is W -separable where W (A,B) = st(A)∪{f(c) | c ∈ CI}
and W (B,A) = st(B) ∪ {f(c) | c ∈ CI}.

W-Separability and Partial Amalgamation. In [25] it is shown that if T =
T0 ∪ K is W -separable, and K flat and linear, then the extension T0 ⊆ T0 ∪ K is
Ψ -local where Ψ(T ) = W (T, T ) for all sets of ground terms T . Also, a notion of
partial amalgamability is defined; it is shown that if T0 ⊆ T1 = T0∪K is a theory
extension with K flat and linear and T1 has the partial amalgamation property
w.r.t. W , then T1 is W -separable. We make the last result more precise.

Definition 25. A theory extension T = T0 ∪ K has the partial amalgama-
tion property for models with the same Π0-reduct if whenever MA,MB ,MC ∈
PModw,f (Σ, T ) are such that:

(1) MA,MB and MC have the same reduct to Π0;
(2) MC is a (partial) substructure of MA,MB in which fMC

(m1, . . . ,mn) is
defined and is equal to m iff both fMA

(m1, . . . ,mn) and fMB
(m1, . . . ,mn)

are defined and equal to m;
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(3) The sets TMA
= {f(a1, . . . , an) | a1, . . . , an ∈ MA, fMA

(a1, . . . , an) defined}
and TMB

= {f(a1, . . . , an) | a1, . . . , an ∈ MB , fMB
(a1, . . . , an) defined} of

terms which are defined in MA resp. MB are closed under the operator W ,
i.e. W (TMA

, TMB
) ⊆ TMA

and W (TMB
, TMA

) ⊆ TMB
;

there exists a model MD of T0 ∪ K and weak embeddings hA : MA → MD, hB :
MB → MD such that hA|MC

= hB |MC
.

Theorem 26. Assume that T0 is a first-order theory and let K be a set of clauses
over Π0 ∪ Σ. If T0 ∪ K has the partial amalgamation property for models with
the same Π0-reduct then T0 ∪ K is W -separable.

Proof: Proof similar to the one in [25] (but we dropped some hypotheses). �	

Example 27. In [25] it was proved that the theory of arrays with difference func-
tion and the theory of linked lists with reachability have partial amalgamation,
hence are W -separable (for suitable versions of W , described in [25]).

Theorem 28. Assume that T0 is a first-order theory which allows general
ground interpolation and has the property that for every set Σ of additional
function symbols and ground Σ0 ∪ Σ-formulae A,B, the interpolant I contains
only Σ-terms in W (A,B) ∩ W (B,A). Let K be a set of clauses over Π0 ∪ Σ,
such that all variables occur below an extension symbol.

If T = T0 ∪ K is W -separable then it has the partial amalgamation property
for models with the same Π0-reduct.

Proof: The proof is given in [24]. �	
Separability, Locality and Interpolant Computation. We now show that
if the extension T0 ⊆ T0 ∪ K is W -separable and T0 has ground interpolation,
then we can hierarchically compute interpolants in T0 ⊆ T0 ∪ K.

Theorem 29. Assume that the theory T0 has general ground interpolation, and
there is a method for effectively computing general ground interpolants w.r.t. T0.
Let T0 ∪ K be a W -separable extension of T0 with a set of clauses K in which
every variable occurs below an extension function. Let A and B be two ground
Σ0∪Σ-formulae. Assume that A∧B |=T0 ∪K⊥. Then we can effectively compute
a ground interpolant for A and B, by computing an interpolant of K[W (A,B)]∪A
and K[W (B,A)] ∪ B.

Proof: By W -separability A ∧ B |=T0 ∪K⊥ iff K[W(A,B)]∪A∪K[W(B,A)]∪
B |=T0⊥, a ground interpolation problem; it can be shown that the interpolant
I0 w.r.t. T0 is an interpolant for A and B w.r.t. T0 ∪ K. �	

Corollary 30. Let T0∪K be a W -separable extension of T0 with a set of clauses
K in which every variable occurs below an extension function. Then T0 ∪ K has
ground interpolation in each of the following cases:

(1) T0 has ground interpolation and is equality interpolating.
(2) T0 allows quantifier elimination and is equality interpolating.
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(3) T0 is universal and allows quantifier elimination.

Ground Interpolation and Model Completions. It is sometimes difficult to
check directly whether the theory T0 has ground interpolation. If T0 has a model
completion with good properties, this becomes easier to check (we can then also
use quantifier elimination in the model completion to compute the interpolant).

Theorem 31. Let T0 ∪K be a W -separable extension of T0 with a set of clauses
K in which every variable occurs below an extension function. Assume that T0

has a model companion T ∗
0 with the following properties: (i) T0 ⊆ T ∗

0 ; (ii) every
model of T0 ∪UIFΣ embeds into a model of T ∗

0 ∪UIFΣ; and (iii) T ∗
0 has general

ground interpolation. (This can happen for instance when T ∗
0 allows quantifier

elimination and is equality interpolating.)
Then T0 ∪ K has ground interpolation.

Proof: The proof is given in [24]. �	

Example 32. Consider the theory in Example 24. Let A : d ≤ g(a) ∧ a ≤ c and
B : b ≤ d ∧ c < f(b). It is easy to see that A ∧ B |=T0∪K⊥. To show this, as
T0 ∪ K is a local extension of T0, after instantiation and purification we obtain:

Extension Base
DA ∧ DB A0 ∧ B0 ∧ SGc0 ∧ Mon0 ∧Con0
a1 ≈ g(a) A0 = d ≤ a1 ∧ a ≤ c SGc0 = b ≤ a1 → b1 ≤ a
b1 ≈ f(b) B0 = b ≤ d ∧ c < b1 ConA ∧ MonA = a � a → a1 � a1,� ∈ {≈,≤}

ConB ∧ MonB = b � b → b1 � b1, � ∈ {≈,≤}

Then A0∧B0 |= b ≤ a1, and we can show that A0∧B0 |= b ≤ d∧d ≤ a1, where
d is shared. W (A,B) = {a, c, d, g(a), f(d)} and W (B,A) = {b, c, d, f(b), f(d)}.
After W -separation and purification (using d1 for f(d)) we obtain:

(1) A0 = d ≤ a1 ∧ a ≤ c ∧ (d ≤ a1 → d1 ≤ a) equiv. to (d ≤ a1 ∧ a ≤ c ∧ d1 ≤ a)
(2) B0 = b ≤ d ∧ c < b1 ∧ (b ≤ d → b1 ≤ d1) equiv. to (b ≤ d ∧ c < b1 ∧ b1 ≤ d1)

We can use a method for ground interpolation in TOrd to obtain an interpolant
I0. However, it might be more efficient to use QE in the model completion of
TOrd (the theory of dense total orderings without endpoints) for eliminating the
constants a, a1 from A0. We obtain the interpolant I0 = d1 ≤ c. Since d1 is an
abbreviation for f(d), we replace it back and obtain the interpolant I = f(d) ≤ c.

Symbol Elimination and Interpolation. For W -separable theories we can
use the method for symbol elimination in Sect. 5 for computing interpolants.
If T0 ∪ K[W (A,B)] ∪ A ∪ K[W (B,A)] ∪ B |=⊥, the formula Γ2 obtained using
Steps 1–4 in Sect. 5 for T0 ∪K[W (A,B)]∪A (with ΣP consisting of the common
constants) is an interpolant. The following Theorem is proved in [24].

Theorem 33. If T0 ∪ K[W (A,B)] ∪ A ∪ K[W (B,A)] ∪ B |=⊥, the formula Γ2

obtained using Steps 1–4 in Sect. 5 for T0 ∪K[W (A,B)]∪A (with ΣP consisting
of the common constants) is an interpolant of A and B w.r.t. T0 ∪ K.
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Example 34. Consider the theory T0 ∪ K in Example 18. Let A := {c1 ≤
c2, g(c1) = a1, g(c2) = a2, a1 > a2} and B := {c1 ≤ c ≤ c2, f(c1) = b1, f(c2) =
b2, b1 ≤ b2}. It is easy to check that T0 ∪ K ∪ A ∪ B |=⊥. We can compute an
interpolant as follows. Let Γ2 be the formula computed in Step 4 in Example 18,
namely: ((c1<c2 ≤ c ∧ f(c1)>f(c2)) ∨ (c1≤c < c2 ∧ f(c1)>h(c2)) ∨ (c<c1<c2 ∧
h(c1)>h(c2))). By Theorem 33, this formula is an interpolant of A and B.

7 Conclusions

In this paper we studied several problems related to symbol elimination and
ground interpolation in theories and theory extensions. It is well-known that if
a theory has quantifier elimination then this can be used for symbol elimination
and also for computing ground interpolants of ground formulae. However, the
great majority of logical theories do not have quantifier elimination. We showed
that if a theory T has a model completion T ∗, then ground interpolants com-
puted w.r.t. T ∗ are also interpolants w.r.t. T . As there are many examples of
model completions of theories T which allow quantifier elimination, this can be
used for computing interpolants w.r.t. T . We analyzed how this approach can
be lifted to extensions of a theory T , by identifying situations in which we can
use existing methods for symbol elimination in T for symbol elimination or for
ground interpolation in the extension. If T has a model completion T ∗, we ana-
lyzed under which conditions we can use possibilities of symbol elimination in
T ∗ for such tasks. In the study of ground interpolation in extensions T ∪K of
a theory T with a set of clauses K we followed an approach proposed in [25],
in which the terms needed to separate the instances of K are described using a
closure operator. Our analysis extends both the results in [21] and those in [25]
mainly by avoiding the restriction to convex base theories. (In addition, when
formulating our theorems we explicitly pointed out all conditions needed for
hierarchical interpolation which were missing or only implicit in [25]). In future
work we would like to also apply these ideas in the study of uniform interpolation
in logical theories and theory extensions.
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systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 171–187.
Springer, Heidelberg (2010)



On Interpolation and Symbol Elimination in Theory Extensions 289

23. Sofronie-Stokkermans, V.: Hierarchical reasoning and model generation for the
verification of parametric hybrid systems. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS, vol. 7898, pp. 360–376. Springer, Heidelberg (2013)

24. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory
extensions. AVACS Technical Report 102, SFB/TR 14 AVACS (2016)

25. Totla, N., Wies, T.: Complete instantiation-based interpolation. In: Giacobazzi,
R., Cousot, R. (eds.) POPL 2013. ACM (2013)



First-Order Theorem Proving



System Description: GAPT 2.0

Gabriel Ebner1(B), Stefan Hetzl1, Giselle Reis2, Martin Riener3,
Simon Wolfsteiner1, and Sebastian Zivota1

1 Vienna University of Technology, Vienna, Austria
gebner@gebner.org,{stefan.hetzl,simon.wolfsteiner}@tuwien.ac.at,

sebastian.zivota@mailbox.org
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Abstract. GAPT (General Architecture for Proof Theory) is a proof
theory framework containing data structures, algorithms, parsers and
other components common in proof theory and automated deduction.
In contrast to automated and interactive theorem provers whose focus
is the construction of proofs, GAPT concentrates on the transformation
and further processing of proofs. In this paper, we describe the current
2.0 release of GAPT.

1 Introduction

This paper describes the system GAPT (General Architecture for Proof Theory).
GAPT is a versatile proof theory framework containing data structures, algo-
rithms, parsers and other components common in proof theory and automated
deduction. In contrast to automated and interactive theorem provers whose focus
is the construction of proofs, GAPT concentrates on the transformation and fur-
ther processing of proofs.

We are convinced that such a system is of importance to computational
proof theory and automated deduction because of the growing interest in the
output of provers. It is no longer enough for a prover to answer with yes or no
as often a proof object (or a countermodel) is sought for further processing.
For example, the use of SAT-solvers for solving various problems in NP needs
the solver to return a propositional interpretation or a refutation as certificate
of unsatisfiability. The use of interpolation in software verification needs proofs
(or interpolants) as output. The use of automated reasoning systems in proof
assistants—e.g., Sledgehammer in Isabelle—needs to provide proofs to incor-
porate in the proof script. This change in role of automated theorem provers
is also reflected in the growing interest in proof certificates, e.g., in research
projects like ProofCert [16], Dedukti [4], in common formats for proofs shared

Supported by the Vienna Science Fund (WWTF) project VRG12-04, the Austrian
Science Fund (FWF) projects P25160 and W1255-N23, and the ERC Advanced
Grant ProofCert.

c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 293–301, 2016.
DOI: 10.1007/978-3-319-40229-1 20



294 G. Ebner et al.

between provers like TPTP derivations [21] and OpenTheory [13] and in confer-
ence series like Certified Programs and Proofs (CPP). It is also reflected in CASC
(the CADE ATP System Competition) evaluating theorem provers considering
the number of problems solved presenting a solution, i.e. a proof [20].

GAPT provides a rich reservoir of functionality for the transformation and
further processing of formal proofs in a uniform framework. GAPT contains
interfaces to a variety of automated reasoning systems including first-order
provers, SAT-solvers and SMT-solvers. Thus it provides a platform which is
well-suited not only for computational proof theory but also for the cooperation
of automated provers.

GAPT has been used as an environment to experiment with the imple-
mentation of several specific algorithms and tools: cut elimination by resolu-
tion [2,3,10], post-processing of resolution proofs [12,14], cut introduction [7–
9,11], and inductive theorem proving based on tree grammars [6]. In addition
to these applications, the graphical user interface has been described in detail
in [5,14] and GAPT’s use of expansion trees for proof import in [17]. Using a
single system for these applications had a synergistic effect since all these algo-
rithms share a common basis. This basis has been developed and extended into
the GAPT system which has now reached a level of maturity to be of interest
for its own sake. We mark this occasion by the release of version 2.01 and the
first system description of GAPT as a whole. GAPT is implemented in Scala
and licensed under the GNU General Public License. It is available at https://
logic.at/gapt.

2 Features

Formulas. Terms and formulas are uniformly represented as expressions in a sim-
ply typed lambda calculus with multiple base sorts. This representation allows
considerable code reuse: for example, substitutions are only defined once for
terms, atoms, formulas, etc. While these are all represented as lambda expres-
sions, they are each instance of a more specific Scala type as well: FOLAtom is a
subtype of HOLFormula, which is in turn a subtype of LambdaExpression. These
Scala types are determined at run-time using smart constructors. In this way,
we support type-safe programming with defined subsets of LambdaExpression.
GAPT allows arbitrary Unicode strings as names for constants, variables, pred-
icate symbols, etc.

Proofs. GAPT contains an implementation of a standard sequent calculus LK
for classical higher-order logic as well as a version of the sequent calculus
using Skolem terms instead of eigenvariables (LKsk, see [10] for details). In
addition, it contains resolution calculi: Ral (see [10]) which is a labelled vari-
ant of Andrew’s R [1] and a standard first-order resolution calculus. GAPT

1 For a list of changes and new features in the 2.0 release specifically, please refer to the
release notes: https://github.com/gapt/gapt/blob/master/RELEASE-NOTES.md.

https://logic.at/gapt
https://logic.at/gapt
https://github.com/gapt/gapt/blob/master/RELEASE-NOTES.md
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also contains expansion proofs [15], a generalisation of the notion of Herbrand-
disjunction to arbitrary formulas in higher-order logic. The proof objects in these
calculi are automatically validated during the construction of each inference, pre-
venting ill-formed proofs. This eager validation has been highly valuable for the
early detection of bugs. Our main focus is on tree-like proofs in first and higher-
order logic, these usually have less than 1000 inferences. In resolution, GAPT
can work with dag-like proofs of about 10000 inferences.

Algorithms. GAPT contains a number of basic algorithms like transformations
between the above-mentioned proof calculi, Skolemisation and regularisation of
sequent calculus proofs, naive and structural first-order clause normal form trans-
formations, proof pruning, etc. More advanced algorithms include: Gentzen-style
cut elimination in the sequent calculus, interpolation in first-order proofs and
a built-in tableaux prover for (classical) propositional logic as a quick way to
generate propositional sequent calculus proofs.

First-order Theorem Proving. GAPT interfaces with several first-order theo-
rem provers: it can invoke and import proofs from Vampire, the E prover, and
Prover9. There is specific proof import code for Prover9, which successfully
imports more than 99 % of the Prover9 solutions in the TSTP [19] as GAPT
resolution proofs. In addition, there is a general purpose import for TPTP-
proofs based on proof replay, which currently imports 34 % of the FOF and
CNF solutions in the TSTP from a total of 12 different provers. We are cur-
rently also developing leanCoP-specific import code [17] to have reliable import
for non-resolution first-order provers.

SAT- and SMT-solving. GAPT is able to export formulas as SMT-LIB bench-
marks and can check their satisfiability modulo QF UF with an arbitrary SMT-
LIB compliant SMT-solver. This interface natively supports many-sorted logic,
and works with at least Z3, CVC4, and veriT. Proof import is implemented
for the QF UF logic for veriT, see [17]. For propositional formulas, GAPT writes
DIMACS files and can use any DIMACS-compliant SAT-solver to check their
satisfiability and import satisfying assignments. We support Glucose, Sat4j, and
miniSAT out of the box—adding support for other solvers usually only requires
specifying the executable path. In addition, GAPT also provides an interface
to solvers for the MaxSAT optimization problem, such as OpenWBO and the
MaxSAT solver in Sat4j.

User Interfaces. GAPT comes with two user interfaces: the system’s full func-
tionality is available via a customised Scala shell, thus providing a flexible and
scriptable command-line interface. In addition, GAPT provides a graphical user
interface, prooftool, to conveniently display large proofs and other objects. For
example, prooftool also includes a viewer for expansion trees with a point-and-
click interface to selectively expand quantifiers, see [12]. Large proofs in LK can
be visualized using a so-called Sunburst viewer [14]. Sunburst visualisations are
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radial, space-filling representations of hierarchical information [18]: instead of a
tree, the inferences in a proof are displayed as concentric rings.

These logics, proof systems and interfaces with other provers are not intended
to be a final fixed set of features in GAPT. The system’s architecture allows the
implementation of extensions, so new logics and proof systems can be added
as they become necessary while having a versatile collection of tools readily
available for tests and analysis.

3 Example

Figure 1 shows a first-order prover utilising the GAPT API. This example is not
meant to implement a practically relevant, efficient, or short prover, but to illus-
trate the features provided by GAPT. The prover continuously generates new
instances of clauses in the input clause set by unifying literals of opposite polar-
ity. The done set contains the clauses where the pairwise unifiers have already
been computed, in each iteration we pick a clause from the todo queue and
unify it with all clauses in done. When the set of instances becomes proposition-
ally unsatisfiable (which we check using the Sat4j SAT solver2), we minimize the
number of instances using minimalExpansionSequent and convert the instances
to a proof in LK using ExpansionProofToLK. The resulting proof is then dis-
played in a GUI window using prooftool.

Utilising the functionality already provided by GAPT, we can concentrate on
the actual algorithm, while the interface and “glue code” is already implemented
for us, such as:

– formula parsing
– robust structural clausification (including Skolemisation)
– unification, matching and substitution
– SAT solver interface
– proof construction (and validation)
– proof simplification
– graphical visualisation of the resulting proof

This example prover can be immediately executed from the binary distrib-
ution of GAPT3, without installing any other extra dependencies. It will read
the problem from standard input (Fig. 2), refute it, and then open the resulting
proof in the graphical user interface (Fig. 3):

./gapt.sh instprover.scala <example.in

This usage of GAPT scripts is convenient for early prototyping. But should
our prototype develop into a larger project, we are not stuck with developing

2 We use Sat4j as it is bundled with GAPT. To use another solver, it is enough to
replace Sat4j with Glucose or MiniSAT in the source code.

3 This example is included in the examples/scriptability directory in the binary
distribution of GAPT.
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Fig. 1. instprover.scala: Instantiation-based first-order prover with graphical proof
output

p(0,y) & (p(x,f(y)) -> p(s(x),y))

(p(x,c) -> q(x,g(x))) & (q(x,y) -> r(x)) & -r(s(s(s(s(0)))))

Fig. 2. example.in: Example input for the prover from Fig. 1
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Fig. 3. Graphical visualisation of the resulting proof using the expansion tree viewer.

it as a single file. Since GAPT is available as a Scala library from the JCenter
repository, it can be added as a dependency for another project by adding a
single line to its sbt build script. This way, we can seamlessly move from a small
prototype to a full-fledged separate project.

4 Applications

We have used GAPT primarily as a basis for prototype implementations of newly
developed algorithms. We briefly review these applications here, highlighting the
aspects of the GAPT-system which are of particular relevance.

Cut Elimination by Resolution (CERES). This is a method for cut elimina-
tion which is based on using a resolution theorem prover to generate a skele-
ton structure for a cut-free proof. This method has been applied to show that
Fürstenberg’s topological proof of the infinity of primes can be transformed into
Euclid’s original proof by cut elimination [2]. The CERES method depends heav-
ily on several non-trivial proof transformation like the Skolemisation of proofs
with cut or the combination of a resolution refutation of a clause set C with
cut-free sequent calculus proofs ψC of Γ � Δ ◦ C for C ∈ C to a sequent cal-
culus proof with only atomic cuts. To analyse the results produced by CERES,
expansion tree extraction and visualisation is used.
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Cut Introduction. GAPT has been used as basis for the implementation of a
method for cut introduction (i.e., lemma generation) [8,9,11]. This method is
based on a structural analysis of expansion trees using tree grammars. It relies
heavily on the flexible use of expansion trees and on the interface to MaxSAT-
solvers which are used to compute minimal tree grammars. Hence GAPT also
contains an implementation of some tree grammars. As database for the testing
and evaluation this algorithm, the TSTP and the reliable Prover9 import have
proved indispensable.

Inductive Theorem Proving Based on Tree Grammars. Currently, GAPT is used
for a prototype implementation of an inductive theorem prover based on the
method described in [6]. This being a generalisation of the method for cut intro-
duction to induction, it also benefits from the availability of proof transforma-
tions and the flexible handling of expansion trees and tree grammars as described
above. In addition, for this application, the use of resolution provers and SMT-
solvers for generating instance proofs is necessary.

Teaching. GAPT is used, along with several automated theorem provers, in a
graduate course on automated deduction taught at the Vienna University of
Technology. The students are asked to perform various computational experi-
ments relating run-time, size of output, and other parameters of various algo-
rithms. For example: naive clause form transformation by distributivity vs.
Tseitin transformation, a SAT-solver on sequences of propositional tautologies
of varying proof complexity, a first-order resolution prover vs. a SAT-solver on
a propositional clause set and on ground instances of a first-order clause set.
Such comparisons crucially rely on having a uniform framework with interfaces
to different automated reasoning systems.

5 Future Work and Conclusion

We are currently implementing a tactics language for the more convenient input
of formal proofs which will make it into the next release. A built-in superposition-
based theorem prover will be included in the next release as well, enabling more
efficient proof replay without external dependencies. As further future work, we
plan to implement support for a wider variety of different proof calculi (e.g., nat-
ural deduction) and logics (e.g., intuitionistic logic). In addition, we are looking
to extend the existing support for multiple uninterpreted base sorts to inter-
preted sorts such as integers and arrays, and interface them with the built-in
theories of SMT solvers. We will continue to use the system for the applications
described in Sect. 4.

The power of GAPT comes from the integration of a wide variety of different
systems (e.g. SAT-solvers, SMT-solvers, resolution and connection provers) and
the flexibility of combining them using a large number of standard algorithms
and transformations, all within one uniform framework. GAPT is developed in
Scala which, on the one hand, permits elegant functional code close to mathe-
matical definitions, but on the other hand also provides access to the whole Java
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library, including, e.g., Swing, on which prooftool is based. GAPT has already
proved very useful for the development of and experiments with new algorithms
in computational proof theory and automated deduction and we are convinced
that it will continue to do so.

While GAPT already interfaces with a large number of external provers, we
always try to expand our support to other provers. As next steps we plan to add
support for the DRUP format used by SAT solvers, and to add proof import
for first-order provers that employ inferences rules that go beyond the standard
resolution calculus, such as the splitting rule in SPASS. Adding support for a new
prover takes a considerable amount of work, ranging from minute details such as
recognizing different headers in the output files to supporting new proof systems.
We hope that GAPT will benefit from further efforts in the standardisation of
proof output.
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Abstract. Most of the popular efficient proof search calculi work on
formulae that are in clausal form, i.e. in disjunctive or conjunctive nor-
mal form. Hence, most state-of-the-art fully automated theorem provers
require a translation of the input formula into clausal form in a pre-
processing step. Translating a proof in clausal form back into a more
readable non-clausal proof of the original formula is not straightforward.
This paper presents a non-clausal theorem prover for classical first-order
logic. It is based on a non-clausal connection calculus and implemented
with a few lines of Prolog code. By working entirely on the original
structure of the input formula, the resulting non-clausal proofs are not
only shorter, but can also be more easily translated into, e.g., sequent
proofs. Furthermore, a non-clausal proof search is more suitable for some
non-classical logics.

1 Introduction

Automated theorem proving in classical first-order logic is a core research area
in the field of Automated Reasoning. Most efficient fully automated theorem
provers implement proof search calculi that require the input formula to be in
a clausal form, i.e. disjunctive or conjunctive normal form. In the core first-
order category “FOF” at the most recent ATP competition, CASC-25, only the
Muscadet prover implements a proof search that works on the original formula
structure. First-order formulae that are not in this clausal form are translated
into clausal form in a preprocessing step. While the use of a clausal form techni-
cally simplifies the proof search and the required data structures, it also has some
disadvantages. The standard translation into clausal form as well as the defin-
itional translation [19], which introduces definitions for subformulae, introduce
a significant overhead for the proof search [14]. Furthermore, a translation into
clausal form modifies the structure of the original formula and the translation of
the clausal proof back into one of the original formula is not straightforward [20].
On the other hand, fully automated theorem provers that use non-clausal cal-
culi, such as standard tableau or sequent calculi, are usually not suitable for an
efficient proof search.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40229-1 21
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The present paper describes the non-clausal connection prover nanoCoP for
classical first-order logic. By performing the proof search on the original struc-
ture of the input formula, it combines the advantages of more natural non-clausal
provers with a more efficient goal-oriented connection-based proof search. The
prover is based on a non-clausal connection calculus for classical first-order logic
[15] (Sect. 2) that generalizes the clausal connection (tableau) calculus [4,5]. This
non-clausal calculus is implemented in a very compact way (Sect. 3) following
the lean methodology. An experimental evaluation (Sect. 4) shows a solid per-
formance of nanoCoP.

2 The Non-clausal Connection Calculus

The standard notation for first-order formulae is used. Terms (denoted by t) are
built up from functions (f, g, h, i), constants (a, b, c), and variables (x, y, z). An
atomic formula (denoted by A) is built up from predicate symbols (P,Q,R, S)
and terms. A (first-order) formula (denoted by F,G,H) is built up from atomic
formulae, the connectives ¬, ∧, ∨, ⇒, and the standard first-order quantifiers ∀
and ∃. A literal L has the form A or ¬A. Its complement L is A if L is of the
form ¬A; otherwise L is ¬L.

A connection is a set {A,¬A} of literals with the same predicate symbol but
different polarity. A term substitution σ assigns terms to variables. A formula in
clausal form has the form ∃x1 . . . ∃xn(C1 ∨ . . . ∨ Cn), where each clause Ci is a
conjunction of literals L1, . . . , Lmi

. It is usually represented as a set of clauses
{C1, . . . , Cn}, which is called a (clausal) matrix. The polarity 0 or 1 is used to
represent negation in a matrix, i.e. literals of the form A and ¬A are represented
by A0 and A1, respectively,

The non-clausal connection calculus uses non-clausal matrices. In a non-
clausal matrix a clause consists of literals and (sub)matrices. Let F be a formula
and pol be a polarity. The non-clausal matrix M(F pol) of a formula F pol is a set
of clauses, in which a clause is a set of literals and (sub-)matrices, and is defined
inductively according to Table 1. In Table 1, x∗ is a new variable, t∗ is the skolem
term f∗(x1, . . . , xn) in which f∗ is a new function symbol and x1, . . . , xn are the
free variables in ∀xG or ∃xG. The non-clausal matrix M(F ) of a formula F
is the matrix M(F 0). In the graphical representation its clauses are arranged
horizontally, while the literals and (sub-)matrices of each clause are arranged
vertically.

For example, the formula F#

P (a)∧(¬((Q(f(f(c)))∧∀x(Q(f(x))⇒Q(x))) ⇒ Q(c))∨∀y(P (y)⇒P (g(y)))) ⇒ ∃z P (g(g(z)))

has the simplified (i.e. redundant brackets are removed) non-clausal matrix
M# =M(F#):

{{P (a)1}, {{{Q(f(f(c)))1},{Q(f(x))0, Q(x)1},{Q(c)0}}, {{P (y)0, P (g(y))1}}}, {P (g(g(z)))0}}.

The graphical representation of the matrix M# is depicted in Fig. 1. It already
contains two clause copies using the fresh variables x′ and y′ and represents
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Table 1. The definition of the non-clausal matrix

Type F pol M(F pol)

Atomic A0 {{A0}}
A1 {{A1}}

α (¬G)0 M(G1)

(¬G)1 M(G0)

(G ∧ H)1 {{M(G1)}, {M(H1)}}
(G ∨ H)0 {{M(G0)}, {M(H0)}}
(G ⇒ H)0 {{M(G1)}, {M(H0)}}

β (G ∧ H)0 {{M(G0), M(H0)}}
(G ∨ H)1 {{M(G1), M(H1)}}
(G ⇒ H)1 {{M(G0), M(H1)}}

γ (∀xG)1 M(G[x\x∗]1)

(∃xG)0 M(G[x\x∗]0)

δ (∀xG)0 M(G[x\t∗]0)

(∃xG)1 M(G[x\t∗]1)

Fig. 1. Graphical representation of a non-clausal matrix and its non-clausal connection
proof

a non-clausal connection proof, in which the literals of each connection are
connected with a line, using the substitution σ with σ(x) = f(c), σ(x′) = c,
σ(y) = σ(z) = a, σ(y′) = g(a).

The axiom and the rules of the non-clausal connection calculus [15] are given
in Fig. 2. It works on tuples “C,M,Path”, where M is a non-clausal matrix, C is
a (subgoal) clause or ε and (the active) Path is a set of literals or ε; σ is a term
substitution. A non-clausal connection proof of M is a non-clausal connection
proof of ε,M, ε.

The non-clausal connection calculus for classical logic is sound and complete
[15]. It has the same axiom, start rule, and reduction rule as the formal clausal
connection calculus [18]. The extension rule is slightly modified and a decompo-
sition rule is added. A few additional concepts are required as follows in order
to specify which clauses C1 can be used within the non-clausal extension rule.
See [15] for details and examples.

A clause C contains a literal L if and only if (iff) L∈ C or C ′ contains
L for a matrix M ′ ∈C with C ′∈ M . A clause C is α-related to a literal L iff
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Fig. 2. The non-clausal connection calculus

{C ′, C ′′}⊆ M ′ for a clause C ′ and matrix M ′ such that C ′ contains L and C ′′

contains C. A copy of the clause C in the matrix M is made by renaming all
free variables in C. M [C1\C2] denotes the matrix M , in which the clause C1 is
replaced by the clause C2. C ′ is a parent clause of C iff M ′ ∈C ′ and C ∈M ′ for
some matrix M ′. C is an extension clause (e-clause) of the matrix M with respect
to a set of literals Path, only if either (a) C contains a literal of Path, or (b) C
is α-related to all literals of Path occurring in M and if C has a parent clause,
it contains a literal of Path. In the β-clause of C2 with respect to L2, denoted
by β-clauseL2(C2), L2 and all clauses that are α-related to L2 are deleted from
C2, as these clauses do not need to be considered in the subgoal clause C3 in the
premise of the extension rule.

The analytic, i.e. bottom-up proof search in the non-clausal calculus is carried
out in the same way as in the clausal calculus. Additional backtracking might
be required when choosing C1 in the decomposition rule; no backtracking is
required when choosing M1. The rigid term substitution σ is calculated whenever
a connection is identified in an application of the reduction or extension rule.
On formulae in clausal form, the non-clausal connection calculus coincides with
the clausal connection calculus. Optimization techniques, such as positive start
clauses, regularity, lemmata and restricted backtracking, can be employed in a
way similar to the clausal connection calculus [14].

3 The Implementation

The implementation of the non-clausal connection calculus of Fig. 2 follows the
lean methodology [3], which is already used for the clausal connection prover
leanCoP [18]. It uses very compact Prolog code to implement the basic calculus
and adds a few essential optimization techniques in order to prune the search
space. The resulting natural nonclausal connection prover nanoCoP is available
under the GNU General Public License and can be downloaded at http://www.
leancop.de/nanocop/.

http://www.leancop.de/nanocop/
http://www.leancop.de/nanocop/
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Non-clausal Matrices. In a first step the input formula F is translated into a
non-clausal (indexed) matrix M(F ) according to Table 1; redundant brackets of
the form “{{. . .}}” are removed [15]. Additionally, every (sub-)clause (I, V ) : C
and (sub-)matrix J : M is marked with a unique index I and J ; clause C is
also marked with a set of variables V that are newly introduced in C but not
in any subclause of C. Atomic formulae are represented by Prolog atoms, term
variables by Prolog variables and the polarity 1 by “-”. Sets, e.g. clauses and
matrices, are represented by Prolog lists (representing multisets). For example,
the matrix M# from Sect. 2 is represented by the Prolog term

[(1^K)^[]:[-(p(a))],

(2^K)^[]:[3^K:[(4^K)^[]:[-(q(f(f(c))))],(5^K)^[X]:[q(f(X)), -(q(X))],

(6^K)^[]:[q(c)]], 7^K:[(8^K)^[Y]:[p(Y), -(p(g(Y)))]]],

(9^K)^[Z]:[p(g(g(Z)))]]

in which the Prolog variable K is used to enumerate clause copies. In the second
step the matrix M = M(F ) is written into Prolog’s database. For every literal
Lit in M the fact

lit(Lit,ClaB,ClaC,Grnd)

is asserted into the database where ClaC ∈ M is the (largest) clause in which
Lit occurs and ClaB is the β-clause of ClaC with respect to Lit. Grnd is set to
g if the smallest clause in which Lit occurs is ground, i.e. does not contain any
variables; otherwise Grnd is set to n. Storing literals of M in the database in
this way is called lean Prolog technology [14] and integrates the advantages of
the Prolog technology approach [23] into the lean theorem proving framework.
No other modifications or simplifications of the original formula (structure) are
done during these two preprocessing steps.

Non-clausal Proof Search. The nanoCoP source code is shown in Fig. 3.
It uses only the standard Prolog predicates member, append, length, assert,
retract, copy term, unify with occurs check, and the additional predicate
positiveC(Cla,Cla1), which returns the clause Cla1 in which all clauses that
are not positive in Cla are deleted. A clause is positive if all of its elements
(matrices and literals) are positive; a matrix is positive if it contains at least one
positive clause; a literal is positive if its polarity is 0.

The predicate prove(Mat,PathLim,Set,Proof) implements the start rule
(lines 1–8 ). Mat is the matrix generated in the preprocessing step. PathLim is
the maximum size of the active path used for iterative deepening, Set is a list
of options used to control the proof search, and Proof contains the returned
connection proof. Start clauses are restricted to positive clauses (line 2 ) before
the actual proof search is invoked (line 3 ). If no proof is found with the current
active path limit PathLim and this limit was reached, then PathLim is increased
and the proof search starts over again (lines 4–8 ).

The predicate prove(Cla,Mat,Path,PathI,PathLim,Lem,Set,Proof) imple-
ments the axiom (line 9), the decomposition rule (lines 10–14), the reduction
rule (lines 15–18, 21–22, 31), and the extension rule (lines 15–18, 24–42) of the
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non-clausal connection calculus in Fig. 2. Cla, Mat, and Path represent the sub-
goal clause C, the (indexed) matrix M and the (active) Path. The indexed path
PathI contains the indices of all clauses and matrices that contain literals of Path;
it is used for calculating extension clauses. The list Lem is used for the lemmata
rule and contains all literals that have been “solved” already [14]. Set is a list
of options and may contain the elements “cut” and “comp(I)” for I ∈ IN , which
are used to control the restricted backtracking technique [14]. This prove pred-
icate succeeds iff there is a connection proof for the tuple (Cla, Mat, Path) with
|Path|< PathLim. In this case Proof contains a compact connection proof. The
input matrix Mat has to be stored in Prolog’s database (as explained above).

When the decomposition rule is applied, a clause Cla1 of the first matrix
of the subgoal clause [J:Mat|Cla] is selected (line 11). The search continues
with clause Cla1 (line 12) using the extended indexed path [I,J|PI], and the
remaining elements of Cla (line 13). For the reduction and extension rules the
complement NegLit of the first literal Lit of the subgoal clause is calculated
(line 18) and used for the following reduction and extension step. When the
reduction rule is applied, it is checked whether the active Path contains a literal
NegL that unifies with NegLit (line 21). In this case the proof search continues
with the clause Cla for the premise of the reduction rule (line 31). When the
extension rule is applied, the predicate lit(NegLit,ClaB,Cla,Grnd1) is called
to find a clause in Prolog’s database that contains the complement NegLit of
the literal Lit (line 24). For this operation sound unification has to be switched
on (in, e.g., ECLiPSe Prolog this is done by calling “set flag(occur check,on)”
before the proof search starts). The predicate prove ec calculates an appropriate
extension clause and returns its β-clause ClaB1 with respect to NegLit (line 27).
The proof search continues with ClaB1 as new subgoal clause for the left premise
of the extension rule with the literal Lit added to the active Path (line 28),
and with the remaining subgoal clause Cla for the right premise (line 31). The
substitution σ is stored implicitly by Prolog.

The predicate prove ec(ClaB,Cla1,Mat,ClaB1,Mat1) is used to calculate
extension clauses (lines 32–42). Starting with the (largest possible) extension
clause Cla1, its β-clause ClaB, and the current (indexed) matrix Mat, this predi-
cate returns an appropriate extension clause Cla, copies it into Mat and returns
its β-clause ClaB1 and the new matrix Mat1. The extension clause has to fulfil
the conditions described in Sect. 2: it has to be (a) large enough to contain a
literal of Path or (b) small enough to be α-related to all literals of Path occurring
in Mat and again large enough that in case it has a parent clause, this contains
a literal of Path; in both cases the extension clause has to be large enough such
that the literal Lit unifies with the literal NegLit in the current matrix. As an
optimization only extension clauses that introduce new variables are considered.

Prolog depth-first search results in an incomplete proof search. In order to
regain completeness nanoCoP performs an iterative deepening on the size of the
active path. When the extension rule is applied and the extension clause is not
ground, it is checked whether the size K of the active Path exceeds the current
path limit PathLim (line 25). In this case the predicate pathlim is written into
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Fig. 3. Source code of the nanoCoP prover

Prolog’s database (line 26) indicating the need to increase the path limit if the
proof search fails for the current path limit.

nanoCoP uses additional optimization techniques that are already used in the
classical (clausal) connection prover leanCoP [14]: regularity (line 17), lemmata
(line 19), and restricted backtracking (line 30). Regularity ensures that no literal
occurs more than once in the active path. The idea of lemmata (or factorization)
is to reuse subproofs during the proof search. Restricted backtracking is a very
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effective technique for pruning the search space in connection calculi [14]. It is
switched on if the list Set contains the element “cut”. If it also contains “comp(I)”
for I ∈ IN , then the proof search restarts again without restricted backtracking
if the path limit PathLim exceeds I.

4 Experimental Evaluation

These evaluations were conducted on a 3.4 GHz Xeon system with 4 GB of RAM
running Linux 3.13.0 and ECLiPSe Prolog 5.10, and a CPU time limit of 100 s.

The following formula Fn is a slightly extended version of the formula F# in
Sect. 2, where fn, gn, hn, and in are abbreviations for n nested applications of
these functions:

Fn ≡ P (a) ∧ (¬((Q(f
n
(c)) ∧ ∀x(Q(f(x))⇒Q(x))) ⇒ Q(c))

∨ ¬((R(h
n
(c)) ∧ ∀x(R(h(x))⇒R(x))) ⇒ R(c)) ∨ ¬((S(i

n
(c)) ∧ ∀x(S(i(x))⇒S(x))) ⇒ S(c))

∨ ∀y(P (y)⇒P (g(y)))) ⇒ ∃z P (g
n
(z)) .

Table 2 shows the results on this (valid) formula class for n = 10, n = 30,
and n = 90 for the following provers: the lean (non-clausal) tableau prover
leanTAP [3], the resolution prover Prover9 [12], the superposition prover E [22]
(using options “--auto --tptp3-format”), leanCoP [14,18], and nanoCoP. The
leanCoP core prover with the standard (“[nodef]”) and the definitional (“[def]”)
translation into clausal form were tested. For nanoCoP restricted backtracking
was switched off (Set=[ ]). Times are given in seconds; “size” is the number of
nodes in the returned proof tree.

Table 2. Results on formula class Fn

n= leanTAP Prover9 E leanCoP 2.2 nanoCoP

2.3 2009-02A 1.9 [nodef] [def] [ ]

10 time (size) 0.17 (128) – 1.22 (2916) – – 0.09 (45)

30 time (size) – – 84.57 (57628) – – 0.12 (125)

90 time (size) – – – – – 0.42 (365)

Table 3. Results on TPTP library v3.7.0

leanTAP Prover9 E leanCoP 2.2 nanoCoP 1.0

2.3 2009-02A 1.9 [nodef] [def] “full” [ ] [cut,comp(6)]

Proved 404 1611 2782 1134 1065 1710 1232 1485

0 to 1 sec. 379 1285 2104 938 865 1215 1001 1172

1 to 10 sec. 13 200 338 113 125 216 139 157

10 to 100 sec. 4 126 340 83 75 279 92 156
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Table 3 shows the test results on all 5051 first-order (FOF) problems in the
TPTP library v3.7.0 [24]. For leanTAP, leanCoP, and nanoCoP, the required
equality axioms were added in a preprocessing step (which is included in the
timings). The full leanCoP prover (“full”) additionally uses strategy scheduling
[14]. For nanoCoP, a restricted backtracking strategy, i.e. Set=[cut,comp(6)],
was tested as well. The nanoCoP core prover perform significantly better than
both clausal form translations of the leanCoP core prover. 40 %/51 % of the proofs
found by nanoCoP (without restricted backtracking) are shorter than those of
leanCoP [nodef]/[def], respectively; as many of these problems are (mostly) in
clausal form, 56 %/47 % of the proofs have the same size. The nanoCoP proofs are
up to 96 %/74 % shorter than those of leanCoP [nodef]/[def], respectively. The
classical version of the non-clausal connection prover JProver [21] has a lower
performance than leanTAP (also reflected in its intuitionistic performance [13]).

5 Conclusion

This paper presents nanoCoP, a non-clausal connection prover for classical first-
order logic. Using non-clausal matrices the proof search works directly on the
original structure of the input formula. No translation steps to any clausal or
other normal form are required. This combines the advantages of more natural
non-clausal tableau or sequent provers with the goal-oriented efficiency of con-
nection provers.

Even though the non-clausal inferences introduce a slight overhead, nanoCoP
outperforms both clausal form translations of the leanCoP core prover on a large
set of TPTP problems. It is expected that the integration of strategy schedul-
ing will also outperform the “full” leanCoP prover. About half of the returned
non-clausal proofs are up to 96 % shorter than their clausal counterparts. By
using the standard translation, i.e. applying the distributive laws, the size of the
resulting formula might grow exponentially with respect to the size of the origi-
nal formula, which is not feasible for some formulae. The definitional translation
[19] introduces definitions for subformulae, which results in a significant over-
head for the proof search as well [14]. Other clausal form translations that work
well for resolution provers, e.g. the ones used in E or Flotter, have a significant
lower performance when used in with a connection prover [14].

Both clausal form translations modify the structure of the original formula,
which makes it difficult to translate the (clausal) proof back into a proof of
the original formula [20]. nanoCoP returns a compact non-clausal connection
proof, which directly represents a free-variable tableau proof. A connection in
the nanoCoP proof corresponds to a closed branch in the tableau calculus [7] or
an axiom in the sequent calculus [6]. The translation into, e.g., a sequent proof is
straightforward, when skolemization is seen as a way to encode the eigenvariable
condition of the sequent calculus. This close relationship to the sequent calculus
makes nanoCoP an ideal tool to be used within interactive proof systems, such
as Coq, Isabelle, HOL or NuPRL. The compact size of nanoCoP makes it also
a suitable tool for the development of verifiably correct software [17], as its
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correctness can be proven much more easily than that of a large proof system
consisting of several thousand lines of source code.

Only few research work investigates non-clausal connection calculi and their
implementations. Other non-clausal calculi [1,5,8,11] work only on ground for-
mulae. For first-order formulae, copies of subformulae have to be added iter-
atively, which introduces a huge redundancy into the proof search, as already
observed with JProver [21]. For an efficient proof search, clauses have to be added
dynamically during the proof search. Some older non-clausal implementations
[9] are not available anymore.

Another important application of nanoCoP is its usage within non-classical
logics, such as intuitionistic or modal first-order logic, for which the use of a
clausal form is either not desirable or not possible. Hence, future work includes
the combination of the non-clausal approach with the prefix (unification) tech-
nique for some non-classical logics, as already done for leanCoP [13,16]. In order
to improve performance, further optimization techniques need to be integrated
into nanoCoP, such as strategy scheduling [14], learning [10] or variable split-
ting [2].

Acknowledgements. The author would like to thank Wolfgang Bibel for his helpful
comments on a preliminary version of this paper.
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Abstract. Modern saturation-based Automated Theorem Provers typically
implement the superposition calculus for reasoning about first-order logic with
or without equality. Practical implementations of this calculus use a variety of
literal selections and term orderings to tame the growth of the search space and
help steer proof search. This paper introduces the notion of lookahead selec-
tion that estimates (looks ahead) the effect of selecting a particular literal on the
number of immediate children of the given clause and selects to minimize this
value. There is also a case made for the use of incomplete selection strategies that
attempt to restrict the search space instead of satisfying some completeness cri-
teria. Experimental evaluation in the VAMPIRE theorem prover shows that both
lookahead selection and incomplete selection significantly contribute to solving
hard problems unsolvable by other methods.

1 Introduction

This paper considers the usage of literal selection strategies in practical implementa-
tions of the superposition calculus (and its extensions). The role of literal selection in
arguments for completeness have been known for a long time [1], but there has been
little written about their role in proof search. This paper is concerned with the proper-
ties of literal selections that lead to the quick proofs i.e. those that restrict proof search
in a way that can make finding a proof quickly more likely. In fact, our disregard for
completeness is strong enough to suggest incomplete literal selections as a fruitful route
to such fast proofs. Our approach is based on the (experimental) observation that it is
generally most helpful to perform inferences that lead to as few new clauses as possible.
The main conclusion of this is a notion of lookahead selection that selects exactly the
literal that is estimated to take part in as few inferences as possible.

The setting of this work is saturation-based first-order theorem provers based on the
superposition calculus. These are predominant in the area of first-order theorem prov-
ing (see the latest iteration of the CASC competition [16]). Provers such as E [11],
SPASS [18], and VAMPIRE [7,10] work by saturating a clause search space with respect
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to an inference system (the superposition calculus) with the aim of deriving the empty
clause (witnessing unsatisfiability of the initial clause set). Various techniques are vital
to avoid explosion of the search space. Predominant among these is redundancy elim-
ination (such as subsumption) used to remove clauses. One can also consider methods
to restrict the number of generated clauses, this is where we will consider the role of
literal selection. The idea is that inferences are only performed on selected literals and
literals are selected in a way to restrict the growth of the search space. Another effect of
literal selection is to avoid obtaining the same clauses by permutations of inferences.

For the resolution calculus there is a famous result about completeness with respect
to selection and term orderings [1] that supposes properties of the selection strategy to
construct a model given a saturated set of clauses. This result carries over to superposi-
tion. As a consequence, particular selections and orderings can be used to show decid-
ability of certain fragments of first-order logic, see e.g. [3,5]. However, the requirements
placed on selection by this completeness result are some times at odds with the aim of
taming proof search. This paper presents different selection strategies (including the
aforementioned lookahead selection) that aim to effectively control proof search and
argues that dropping the completeness requirements can further this goal.

The main contributions of this paper can be summarised as follows: (a) we formu-
late a new version of the superposition calculus which captures the notion of incomplete
selections while being general enough to subsume the standard presentation (Sect. 3);
(b) we introduce quality selections, an easy to implement compositional mechanism for
defining literal selections based on a notion of quality (Sect. 4), and (c) we introduce
lookahead selection and describe how it can be efficiently implemented (Sect. 5). These
ideas have been realised within VAMPIRE and complemented by several selections
adapted from other theorem provers (Sect. 6). Our experimental evaluation (Sect. 7)
shows that these new selections (incomplete and lookahead) are good at both solving
the most problems overall and solving problems uniquely.

2 Preliminaries

We consider the standard first-order predicate logic with equality. Terms are of the form
f(t1, . . . , tn), c or x where f is a function symbol of arity n ≥ 1, t1, . . . , tn are terms, c
is a zero arity function symbol (i.e. a constant) and x is a variable. The weight of a term t
is defined as w(t) = 1 if t is a variable or a constant and as w(t) = 1+

∑
i=1,...,n w(ti)

if t is of the form f(t1, . . . , tn). In other words, the weight or a term is the number of
symbols in it. Atoms are of the form p(t1, . . . , tn), q or t1 � t2 where p is a predicate
symbol of arity n, t1, . . . , tn are terms, q is a zero arity predicate symbol and � is the
equality symbol. The weight function naturally extends to atoms: w(p(t1, . . . , tn)) =
1 +

∑
i=1,...,n w(ti), w(t1 � t2) = w(t1) + w(t2), and w(q) = 1. A literal is either

an atom A, in which case we call it positive, or a negation ¬A, in which case we call it
negative. We write negated equalities as t1 �� t2. The weight of a literal is the weight
of the corresponding atom. We write t[s]p and L[s]p to denote that a term s occurs in a
term t (in a literal L) at a position p.

A clause is a disjunction of literals L1 ∨ . . . ∨ Ln for n ≥ 0. We disregard the
order of literals and treat a clause as a multiset. When n = 0 we speak of the empty
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clause, which is always false. When n = 1 a clause is called a unit clause. Variables in
clauses are considered to be universally quantified. Standard methods exist to transform
an arbitrary first-order formula into clausal form.

A substitution is any expression θ of the form {x1 �→ t1, . . . , xn �→ tn}, where
n ≥ 0, and Eθ is the expression obtained from E by the simultaneous replacement of
each xi by ti. By an expression here we mean a term, an atom, a literal, or a clause. An
expression is ground if it contains no variables.

A unifier of two expressions E1 and E2 different from clauses is a substitution θ
such that E1θ = E2θ. It is known that if two expressions have a unifier, then they have
a so-called most general unifier. Let mgu be a function returning a most general unifier
of two expressions if it exists.

A simplification ordering (see, e.g. [4]) on terms is an ordering that is well-founded,
monotonic, stable under substitutions and has the subterm property. Such an ordering
captures a notion of simplicity i.e. t1 ≺ t2 implies that t1 is in some way simpler than
t2. VAMPIRE uses the Knuth-Bendix ordering [6]. Such term orderings are usually total
on ground terms and partial on non-ground ones. There is a simple extension of the
term ordering to literals, the details of which are not relevant here.

3 The Superposition Calculus and Literal Selection

The superposition calculus as implemented in modern theorem provers usually derives
from the work of Bachmair and Ganzinger [1] (see also [2,8]). There, the inference
rules of the calculus come equipped with a list of side conditions which restrict the
applicability of each rule. The rules are sound already in their pure form, but the addi-
tional side conditions are essential in practice as they prevent the clause search space
from growing too fast. At the same time, it is guaranteed that the calculus remains refu-
tationally complete, i.e. able to derive the empty clause from every unsatisfiable input
clause set.

Here we are particularly interested in side conditions concerning individual literals
within a clause on which an inference should be performed. The formulation by Bach-
mair and Ganzinger derives these conditions from a simplification ordering ≺ on terms
and its extension to literals, and from a so called selection function S which assigns to
each clauseC a possibly empty multiset S(C) of negative literals inC, which are called
selected. The ordering and the selection function should be understood as parameters
of the calculus.

The calculus is designed in such a way that an inference on a positive literalLwithin
a clause C must only be performed when L is a maximal literal in C (i.e. there is no
literal L′ in C such that L ≺ L′) and there is no selected literal in C. Complementarily,
an inference on a negative literal L within a clause C must only be performed when L
is a maximal literal in C and there is no selected literal in C or L is selected in C. Such
conditions are shown to be compatible with completeness.

In this paper, we take a different perspective on literal selection. We propose the
notion of a literal selection strategy, or literal selection for short, which is a procedure
that assigns to a non-empty clause C a non-empty multiset of its literals. We avoid the
use of the word “function” on purpose, since it is not guaranteed that we select the same
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Fig. 1. The rules of the superposition and resolution calculus.

multiset even if the same clause occurs in a search space again after being deleted. In
addition, we do not want the selection to depend just on the clause itself, but potentially
also on a broader context including the current state of the search space.

We formulate the inference rules of superposition such that an inference on a literal
within a clause is only performed when that literal is selected. This is evidently a simpler
concept, which primarily decouples literal selection from completeness considerations
as it also allows incomplete literal selection. At the same time, however, it is general
enough so that completeness can be easily taken into account when a particular selection
strategy is designed.

The Calculus. Our formulation of the superposition and resolution calculus with literal
selection is presented in Fig. 1. It consists of the resolution and factoring rules for deal-
ing with non-equational literals and the superposition, equality resolution and equality
factoring rules for equality reasoning. Although resolution and factoring can be simu-
lated by the remaining rules provided non-equational atoms are encoded in a suitable
way, we prefer to present them separately, because they also have separate implemen-
tations in VAMPIRE for efficiency reasons.

The calculus in Fig. 1 is parametrised by a simplification ordering ≺ and a lit-
eral selection strategy, which we indicate here (and also in the rest of the paper) by
underlining. In more detail, literals underlined in a clause must be selected by the
strategy. Literals without underlying may be selected as well. Generally, inferences are
only performed between selected literals with the exception of the two factoring rules.
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There only one atom needs to be selected and factorings are performed with other unifi-
able atoms.

We remark that further restrictions on the calculus can be added on top of those
mentioned in Fig. 1. In particular, if literal selection captures the maximality condition
of a specific literal in a premise, this maximality may be required to also hold for the
instance of the premise obtained by applying the mgu θ. We observed that these addi-
tional restrictions did not affect the practical performance of our prover in a significant
way and for simplicity kept them disabled during our experiments.

We also note that the calculi based on the standard notion of selection function can
be captured by our calculi – all we have to do is to select all maximal literals in clauses
with no literals selected by the function.

Selection and Completeness.We now reformulate the previously mentioned side con-
ditions on literals which are required by the completeness proof of Bachmair and
Ganzinger [1] in terms of literal selection strategies. In the rest of the paper we refer to
strategies satisfying the following completeness condition as complete selections:

Select either a negative literal or allmaximal literals with respect to ≺ . (1)

Although selections which violate Condition (1) cannot be used for showing satisfiabil-
ity of a clause set by saturation, our experimental results will demonstrate that incom-
plete selections are invaluable ingredients for solving many problems.

As an example of what can happen if Condition (1) is violated, consider the follow-
ing unsatisfiable set of clauses where all selected literals are underlined.

p ∨ q p ∨ ¬q ¬p ∨ q ¬p ∨ ¬q

Note that this set is clearly unsatisfiable as one can easily derive p and ¬p and then the
empty clause. However, using the given selection it is only possible to derive tautolo-
gies. The selection strategy does not fulfill the above requirements as either p 	 q and
p must be selected in p ∨ q, or q 	 p and ¬q must be selected in p ∨ ¬q.

4 Quality Selections

Vampire implements various literal selections in a uniform way, using preorders on
literals, which try to reflect certain notions of quality. We convert such a preorder to
a linear order by breaking ties in an arbitrary but fixed way. This order on literals
(a quality order) induces two selections, one incomplete and one complete. Essentially,
the incomplete one simply selects the literal greatest in this order and the complete one
modifies the incomplete literal selection where the latter violates the sufficient condi-
tions for completeness. We call the resulting class of selections quality selections. We
believe that this is a new way of defining literal selections that has not been reported in
the literature or observed in other systems before.

The preorders we use capture various notions of quality the literals we want to select
should have. Let us now discuss what it is that we want to achieve from selection. The
perfect selection strategy contains an oracle that knows the exact inferences necessary
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to derive the empty clause in the shortest possible time. Without such an oracle we can
employ heuristics to suggest those inferences that are more desirable.

There is a general insight that a slowly growing search space is superior to a faster
growing one, provided completeness is not compromised too much. It should be evident
that a search space that grows too quickly will soon become unmanageable, reducing
the likelihood that a proof is found. This has been repeatedly observed in practice. This
insight holds despite the fact that the shortest proofs for some formulas may theoreti-
cally become much longer in the restricted (slowly growing) setting. Therefore, the aim
of a selection strategy in our setting is to generate the fewest new clauses.

4.1 Quality Orderings

Let us consider several preorders � on literals that capture notions of preference for
selection i.e. l1 � l2 means we should prefer selecting l1 to l2. If they are equally
preferable, that is l1 � l2 and l2 � l1, we will write l1 ≡ l2. We are interested in
preorders that prefer literals having as few children as possible, this means decreasing
the likelihood that we can apply the inferences in Fig. 1.

Unifiability. Firstly we note that all inferences require the selected literal (or one of its
subterms) to unify with something in another clause. Therefore, we prefer literals that
are potentially unifiable with fewer literals in the search space.

To this end, we first note that a heavy literal is likely to have a complex structure
containing multiple function symbols. It is therefore unlikely that two heavy literals
will be unifiable. This observation is slightly superficial because, for example, a lit-
eral p(x1, . . . , xn) for large n has a large weight but unifies with all negative literals
containing p. Let l1 �weight l2 if the weight of l1 is greater than the weight of l2.

Next, we note that the fewer variables a literal contains the less chance it has to
unify with other literals e.g. p(f(x), y) will unify with every literal that p(f(a), y) will
unify with, and potentially many more. Let l1 �vars l2 if l1 has fewer variables than l2.

However, we can observe that not all variables are equal, the literal p(x) will unify
with more than p(f(f(x))). As a simple measure of this we can consider only variables
that occur at the top-level i.e. immediately below a predicate symbol. Let l1 �top l2 if
l1 has fewer top-level variables than l2. Similarly, p(f(x), f(y)) will unify with more
than p(f(x), f(x)) as the repetition of x constrains the unifier. To capture this effect we
can prefer literals with fewer distinct variables. Let l1 �dvar l2 if l1 has fewer distinct
variables than l2.

Equality and Polarity. We can observe from the inference rules in Fig. 1 that positive
equality is required for superposition, which can be a prolific inference as it can rewrite
inside a clause many times. Therefore, we should prefer not to select positive equality
where possible. Let L �nposeq s � t, where L is a non-equality literal, and s ��
t �nposeq s′ � t′.

In a similar spirit, we observe that negative equality otherwise only appears in
Equality Resolution which is in general a non-problematic inference as it is performed
on a single clause and decreases the number of its literals. Therefore, in certain cases we
should prefer negative equalities. Let s �� t �neq L where L is a non-equality literal.
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Finally, for non-equality literals it is best to default to selecting a single polarity as
literals with the same polarity cannot resolve. Furthermore, selecting negative literals
seems to be preferable as it keeps the corresponding selection strategy from compro-
mising the completeness condition. We let ¬A �neg A′.

4.2 Quality-Based Selections

We want to compose different notions of quality so that we can break ties when the first
notion is too coarse to distinguish literals. We define the composition of two preorders
�a and �b, denoted by �a ◦ �b, by l1 (�a ◦ �b) l2 if and only l1 �a l2, or l1 ≡a l2
and l1 �b l2. Evidently, a composition of two preorders is also a preorder.

Given a preorder � we define a selection strategy π� that selects the greatest (high-
est quality) literal with respect to � breaking ties arbitrarily, but in a deterministic fash-
ion. We call such strategies quality selections.

4.3 Completing the Selection

Quality selections are not necessarily complete i.e. they do not satisfy the completeness
Condition (1) introduced in Sect. 3. It is our hypothesis that these incomplete selection
strategies are practically useful. However, there are cases where complete selection is
desirable. One obvious example is where we are attempting to establish satisfiability.1

Given a quality selection π�, it is possible to also define a complete selection strat-
egy using the following steps. Let N initially be the set of all literals in a clause and M
be the subset of N consisting of all its literals maximal in the simplification ordering.

1. If π�(N) is negative then select π�(N)
2. If π�(N) ∈ M and all literals in M are positive then select M
3. If M contains a negative literal then set N to be the set of all negative literals in M

and goto 1
4. Remove π�(N) from N and goto 1

This attempts to, where possible, select a single negative literal that is maximal with
respect to the quality ordering. The hypothesis being that it is always preferable to
select a single negative literal rather than several maximal ones.

5 Lookahead Selection

In this section we introduce a general notion of lookahead selection and describe an
efficient implementation of the idea. Our discussion in the previous section suggested
that we try to find preorders that potentially minimize the number of children of a
selected literal. Essentially, lookahead selection tries to select literals that result in the
smallest number of children. Note that this idea requires a considerable change in the
design and implementation, because the number of children depends on the current state
of the search space rather than on measures using only the clause we are dealing with.

1 It should be noted that VAMPIRE always knows when it is incomplete and therefore returns
Unknown when obtaining a saturated set with the help of an incomplete strategy.
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5.1 Given-Clause Algorithms and Term Indexing

Before we can describe lookahead selection we give some context about how VAMPIRE

and other modern provers implement saturation-based proof search.
VAMPIRE implements a given-clause algorithm that maintains a set of passive and

a set of active clauses and executes a loop where (i) a given clause is chosen from the
passive set and added to the active set, (ii) all (generating) inferences between the given
clause and clauses in active are performed, and (iii) new clauses are considered for
forward and backward simplifications and added to passive if they survive. The details
of (iii) are not highly relevant to this discussion, but are very important for effective
proof search.

Generating inferences are implemented using term indexing techniques (see e.g.
[13]) that index a set of clauses (the active clauses in this case) and can be queried for
clauses containing subexpressions that match or unify with a given expression.

We can view a term index T for an inference rule as a map that takes a clause l ∨ D
with a selected literal l and returns a list of candidate clauses, which is a set containing
all clauses that can have this inference against l ∨ D. VAMPIRE maintains two term
indexes for superposition and a separate one for binary resolution. Term indexes are not
required for factoring or equality resolution as these are performed on a single clause.

5.2 General Idea Behind Lookahead Selection

The idea of lookahead selection is that we directly estimate for each literal l in C how
many children the clause C would have when selecting l and applying inferences on l
against active clauses.

Ideally we would have access to a function children(C, l) that would return the
number of children of clause C resulting from inferences with active clauses, given that
the literal l was selected in C. We discuss how we practically estimate such a value
below.

Given this value we can define a preorder2 that minimises the number of children:

l1 �lmin l2 iff children(C, l1) < children(C, l2)

This is based on our previous assertion that we want to produce as few children as pos-
sible. But now we have an effective way of steering this property we can also consider
the opposite i.e. introduce a quality ordering that maximises the number of children:

l1 �lmax l2 iff children(C, l1) > children(C, l2)

Our hypothesis is that a selection strategy based on this second ordering will perform
poorly, as the search space would grow too quickly.

2 Note that this is not a preorder in the same sense as before as it requires the context of a clause
and active clause set. In other words, this preorder is a relation that changes during the proof
search process.
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5.3 Completing the Selection... Differently

In Sect. 4.3 selection strategies were made complete by searching for the best negative
literal where possible. The same approach is taken for selection strategies based on
lookahead selection but because it is now relatively much more expensive to compare
literals it is best to decide on the literals to compare beforehand.

Firstly, if there are no negative literals all maximal literals must be selected and
no lookahead selection is performed. Otherwise, selection is performed on all negative
literals and a single maximal positive literal (if there is only one). This ignores the com-
plex case where the combination of all maximal literals would lead to fewer children
than the best negative literal.

5.4 Efficiently Estimating Children

To efficiently estimate the number of children that would arise from selecting a partic-
ular literal in a clause we make use of the term indexing structures.

Let T1, . . . , Tn be a set of term indexes capturing the current active clause set. An
estimate for children(C, l) can then be given by:

estimate(l) = Σn
i=1|Ti[l]|.

This is an overestimate as the term indexes do not check side-conditions related to
orderings after substitution. For example, if we apply a superposition from l � r with
θ = mgu(l, r) and we have r �
 l, rθ 
 lθ, the index will select l � r ∨ C1 as a
candidate clause but the rule does not apply. In addition, the number of children is not
the same as the number of children that survive retention tests (those neither deleted nor
simplified away). However, applying all rules and simplifying children for every literal
can be very time-consuming, so we use an easier-to-compute approximation instead.

It is possible to extend the estimate to include inferences that do not rely on indexes.
We have done this for equality resolution but not factoring, due to the comparative
effort required. In general, our initial hypothesis was that selection should be a cheap
operation and so it is best to perform as few additional checks as possible.

In VAMPIRE term indexes return iterators over clauses. This allows us to compute
estimate in a fail-fast fashion where we search all literals at once and terminate as
soon as the estimate for a single literal is finished. This assumes we are minimising
(i.e. computing maximal literals with respect to �lmin), otherwise we must exhaust the
iterators of all but one of the literals.

Of course, as selecting literals in this way now depends on the active clauses it
is desirable to do selection as late as possible to maximise accuracy of the estimate.
Therefore, VAMPIRE performs literal selection at the point when it chooses a clause
from the passive set for activation.

Note that the technique described here can be extended to any setting that uses
indexes for generating inferences.
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6 Concrete Literal Selection Strategies

In this section we briefly describe concrete literal selection strategies. To have a more
general view of selections, we also implemented some selections found in other sys-
tems. Of course, when considering selections adapted from other systems we cannot
draw conclusions about their utility in the original system as the general implemen-
tation is different. But it is useful to compare the general ideas. Strategies have been
given numbers to identify them that is based on an original numbering in VAMPIRE,
these numbers are used in the next section.

6.1 Vampire

We give a brief overview of the selection strategies currently implemented in VAMPIRE.

Total Selection. The most trivial literal selection strategy is to select everything. This
corresponds to the calculus without a notion of selection and is obviously complete.
This is referred to by number 0.

Maximal Selection. VAMPIRE’s version of maximal selection either selects one maxi-
mal negative literal, if one of the maximal literals is negative, or all maximal literals, in
which case they will all be positive. This is referred to by number 1.

Quality Selections. VAMPIRE uses four quality selections obtained by combining pre-
orders defined in the previous section as follows:

�2 = �weight

�3 = �noposeq ◦ �top ◦ �dvar

�4 = �noposeq ◦ �top ◦ �var ◦ �weight

�10 = �neq ◦ �weight ◦ �neg

VAMPIRE uses both the incomplete versions of the selection strategies, which it num-
bers 1002, 1003, 1004 and 1010, and the complete versions, which it numbers 2, 3,
4 and 10. We note that not all combinations of the preorders discussed in Sect. 4 are
used. As may be suggested by the numbering, previous experimentation introduced and
removed various combinations thereof, leaving the current four.

Lookahead Selection. VAMPIRE uses two lookahead selections based on preorders
defined as follows

�11 = �lmin ◦ �3

�12 = �lmax ◦ �3

The incomplete versions of the associated strategies are numbered 1011 and 1012 whilst
the complete versions are numbered 11 and 12.

6.2 SPASS Inspired

We consider three literal selection strategies adapted from SPASS (as found in the
prover’s source code)3:

3 SPASS also has “select from list”, which requires the user to specify predicates that will be
preferred for selection. We did not implement this for the obvious reason.
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– Selection off (20) selects all the maximal literals. From the perspective of the origi-
nal Bachmair and Ganzinger theory nothing is selected, but in our setting this effec-
tively amounts to selecting all the maximal literals.

– Selection always (22) selects a negative literal with maximal weight, if there is one.
Otherwise it selects all the maximal ones.

– If several maximal (21) selects a unique maximal, if there is one. Otherwise it
selects a negative literal with maximal weight, if there is one. And otherwise it
selects all the maximal ones.

6.3 E Prover Inspired

We consider the following five literal selection strategies adapted from E (as mentioned
in the prover’s manual [12]):

– SelectNegativeLiterals (30) selects all negative literals, if there are any. Otherwise
it selects all the maximal ones.

– SelectPureVarNegLiterals (31) selects a negative equality between variables, if
there is one. Otherwise it selects all the maximal literals.

– SelectSmallestNegLit (32) selects a negative literal with minimal weight, if there is
one. Otherwise it selects all the maximal literals.

– SelectDiffNegLit (33) selects a negative literal which maximises the difference
between the weight of the left-hand side and the right-hand side,4 if there is a nega-
tive literal at all. Otherwise it selects all the maximal literals.

– SelectGroundNegLit (34) selects a negative ground literal for which the weight
difference between the left-hand side and the right-hand side terms is maximal, if
there is a negative literal at all. Otherwise it selects all the maximal literals.

– “SelectOptimalLit” (35) selects as (34) if there is a ground negative literal and as
(33) otherwise.

It should be noted that our adaptations of E’s selections are only approximate,
because E uses a different notion of term weight than VAMPIRE, defining constants
and function symbols to have basic weight 2 and variables to have weight 1. Also we
do not consider E’s NoSelection strategy separately as it is the same as SPASS’s Selec-
tion off and E’s SelectLargestNegLit strategy as it is the same as SPASS’s Selection
always (modulo the notion of term weight).

7 Experimental Evaluation

Here we report on our experiments with selection strategies using the theorem prover
VAMPIRE. Our aim is to look for strategies which help to solve many problems, but
also for strategies which solve problems other strategies cannot solve. This is because
we are ultimately interested in constructing a portfolio combining several strategies
which solve as many problems as possible within a reasonably short amount of time.

4 In E, all literals are represented as equalities. A non-equational atom p(t) is represented as
p(t) = �, where � is a special constant true. Thus it makes sense to talk about left-hand and
right-hand side of a literal even in the non-equational case.
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Experimental Setup. For our experiments we took all the problems from the TPTP
[15] library version 6.3.0 which are in the FOF or CNF format, excluding only unit
equality problems (for which literal selection does not play any role) and problems of
rating 0.0 (which are trivial to solve). This resulted in a collection of 11 107 problems.5

We ran VAMPIRE on these problems with saturation algorithm set to discount and
age-weight ratio to 1 : 5 (cf. [7,10]), otherwise keeping the default settings and varying
the choice of literal selection. By default, VAMPIRE employs the AVATAR architecture
to perform clause splitting [9,17]. AVATAR was also enabled in our experiments.

The time limit was set to 10 seconds for a strategy-problem pair. This should be suf-
ficient for obtaining a realistic picture of relative usefulness of each selection strategy,
given the empirical observation pertaining to first-order theorem proving in general, that
a strategy usually solves a problem very fast if at all. The experiments were run on the
StarExec cluster [14], whose nodes are equipped with Intel Xeon 2.4GHz processors.
Experiments used Vampire’s default memory limit of 3GB.

Result Overview. In total, we tested 23 selection strategies i.e. those summarised in
Sect. 6. With AVATAR, VAMPIRE never considers clauses with ground literals for selec-
tion, therefore selection 34 behaves the same as 20 and 35 the same as 33. Consequently,
results for 34 and 35 are left out from initial discussions, but will be discussed later
when we consider what happens when AVATAR is not used.

Out of our problem set, 5 908 problems were solved by at least one strategy.6 This
includes 31 problems of TPTP rating 1.0. Out of the solved problems, 5 621 are unsat-
isfiable and 287 satisfiable. Because we are mainly focusing on theorem proving, i.e.
showing unsatisfiability, we will first restrict our attention to the unsatisfiable problems.

Ranking the Selections. Table 1 (left) shows the performance of the individual selec-
tion strategies. We report the number of problems solved by each strategy (which deter-
mines the order in the table), the percentage with respect to the above reported overall
total of problems solved, the number of problems solved by only the given strategy
(unique), and an indicator we named u-score. U-score is a more refined version of the
number of uniquely solved problems. It accumulates for each problem solved by a strat-
egy the reciprocal of the number of strategies which solve that problem. This means that
each uniquely solved problem contributes 1.0, each problem solved also by one other
strategy adds 0.5, etc. It also means that the sum of u-scores in the whole table equals
the number of problems solved in total.

By looking at Table 1 we observe that 1011, the incomplete version of the lookahead
selection, is a clear winner both with respect to the number of solved problems and
the number of uniques. It solves more than 80% of problems solvable by at least one
strategy and accumulates by far the highest u-score. Other very successful selections
are the incomplete 1010 and 1002, and 11, the complete version of lookahead.

Inverted lookahead in the incomplete (1012) and complete (12) version end up last
in the table, which can be seen as a confirmation of our hypothesis from Sect. 5. Sim-
ilarly the experimental selection 0, which selects all the literals in a clause, and the

5 A list of the selected problems, the executable of our prover as well as the results of the
experiment are available at http://www.cs.man.ac.uk/∼sudam/selections.zip.

6 And 1 952 problems were solved by every strategy.

http://www.cs.man.ac.uk/~sudam/selections.zip
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Table 1. Left: performance of the individual selection strategies. Right: statistics collected from
the runs: #child is the average number of children of an activated clause, %incomp is the average
percentage of the cases when an incomplete selection violates the completeness condition. The
values marked ‘s.o.’ (solved only) are collected only from runs which solved a problem, the values
marked ‘all’ are collected from all runs.

selection #solved %total #unique u-score #child (s.o./all) %incomp. (s.o./all)

1011 4718 83.9 156 563.6 4.2 / 9.9 3.3 / 4.5

1010 4461 79.3 31 384.1 9.4 / 14.6 2.1 / 2.5

11 4333 77.0 26 354.7 6.5 / 13.6

1002 4327 76.9 62 396.1 8.7 / 15.4 9.7 / 7.6

10 4226 75.1 8 283.3 9.9 / 14.5

21 4113 73.1 6 274.2 10.7 / 13.8

2 4081 72.6 1 261.0 10.3 / 14.9

1004 4009 71.3 8 276.2 6.3 / 14.1 19.5 / 7.3

4 3987 70.9 2 247.2 7.8 / 13.7

3 3929 69.8 1 235.5 8.7 / 13.8

1003 3907 69.5 6 258.2 6.5 / 14.7 22.6 / 8.6

33 3889 69.1 1 239.2 7.1 / 18.3

22 3885 69.1 0 236.2 7.0 / 18.4

1 3778 67.2 6 227.9 9.4 / 19.9

31 3702 65.8 0 218.2 13.4 / 23.1

20 3682 65.5 0 217.1 13.3 / 23.2

30 3559 63.3 3 204.9 16.6 / 28.8

32 3538 62.9 5 209.8 6.3 / 19.9

0 3362 59.8 8 203.1 35.8 / 48.7

12 3308 58.8 3 183.4 14.0 / 24.5

1012 2532 45.0 5 146.1 13.9 / 30.8 7.6 / 5.8

selection 32 adapted from E, which selects the smallest negative literal, inverting the
intuition that large (with large weight) literals should be selected, end up at the end
of the table.7 Interestingly, however, to each of these “controversial” selections we can
attribute several uniquely solved problems.

Table 1 also shows that, with the exception of selection 3 (and 12), the incomplete
version of a selection always solves more problems than the complete one.

Additional Statistics. Table 1 (right) displays for each selection two interesting aver-
ages obtained across the runs. The first is the average number of children of an activated
clause and the results confirm that the lookahead selections (1011 and 11), in accord
with their design, achieve the smallest value for this metric. This further confirms our
hypothesis that preferring to generate as few children as possible leads to successful

7 The selection strategy selecting the largest negative literal has number 22.
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strategies. The second is the average number of times an incomplete strategy selects
in such a way as to violate the completeness condition. We can see that there is lot of
variance between the selections in this regard and that the “most complete” incomplete
selection is the second best selection 1010.

Time spent on performing selection. As we might expect, lookahead selections are
far more expensive to compute. On average, performing quality selection consumes
roughly 0.1% of the time spent on proof search, with other non-lookahead selec-
tions taking similar times, whereas complete and incomplete lookahead selection con-
sumes roughly 1.74% and 4.27% respectively. These numbers are taken from all proof
attempts, not just successful ones. Incomplete lookahed selection is more expensive
than its complete counterpart as the latter is not performed when there are no negative
literals. The previously observed success of lookahead selection confirms that the extra
time spent on selecting is more than well spent.

Table 2. Performance of the individual selection strategies (left) and statistics collected from the
runs (right) for runs with AVATAR turned off. Columns analogous to those described in Table 1.

selection #solved %total #unique u-score #child (s.o./all) %incomp. (s.o./all)

1010 4289 80.0 64 379.8 9.3 / 17.0 9.0 / 9.4

1011 4255 79.4 104 412.7 8.5 / 15.0 6.5 / 8.3

1002 4207 78.5 45 356.2 7.5 / 18.5 17.6 / 8.6

11 4121 76.9 25 292.9 12.1 / 25.7

10 4116 76.8 9 251.7 13.1 / 21.2

2 4063 75.8 0 235.7 16.5 / 23.5

21 4055 75.7 4 244.1 16.3 / 23.6

22 3896 72.7 0 218.0 8.8 / 30.3

33 3895 72.7 1 218.0 9.0 / 30.1

4 3892 72.6 3 216.5 9.6 / 19.8

35 3858 72.0 1 211.7 9.0 / 30.2

1004 3810 71.1 8 228.2 8.6 / 20.4 23.8 / 10.5

3 3755 70.1 3 205.4 12.0 / 20.8

1 3744 69.9 2 207.3 13.1 / 31.5

30 3731 69.6 11 220.0 8.9 / 33.8

1003 3654 68.2 2 211.2 8.2 / 22.8 25.7 / 11.1

31 3517 65.6 0 184.9 22.4 / 33.2

34 3491 65.1 1 183.0 21.5 / 31.9

32 3482 65.0 2 188.5 7.8 / 31.9

20 3479 64.9 0 182.2 21.7 / 33.3

12 3313 61.8 6 173.8 25.0 / 33.9

0 3279 61.2 24 206.4 59.2 / 83.1

1012 2403 44.8 7 126.7 17.9 / 36.4 7.2 / 10.6
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The Effect of Turning Splitting off. The previous results were obtained running VAM-
PIRE with splitting turned on. In order to establish howmuch the standing of the individ-
ual selections depends on running within the context of the AVAVAR architecture, we
ran a separate experiment with the same strategies but turning AVATAR off. Arguably,
these results are more relevant to implementations that do not incorporate the effective
AVATAR approach.

In total, the strategies without AVATAR solved 5 563 problems (5 356 unsatisfiable,
207 satisfiable). The number of problems solved by all strategies was 1 748. Table 2
presents a view analogous to Table 1 for these strategies. Strategies 34 and 35 are now
relevant (see experimental setup above).

Notably, selection 1011 has dropped to the second place in the overall ranking (after
1010). However, the incomplete lookahead still accumulated the highest u-score as
a standalone strategy and we see the same general trend that incomplete versions of
strategies outperform their complete counterpart (again with the exception of 3 and 12).

Focusing on Satisfiable Problems. Recall that in our experiments 287 satisfiable prob-
lems were solved by at least one strategy. Table 3 (left) shows the performance of the
best 5 complete selections on these problems.8 The first two places are taken by a selec-
tion from E and SPASS while the lookahead selection is third. The differences between
the three places are, however, only by one problem. Moreover, in Table 3 (right) we can
see that when AVATAR was turned off in a separate experiment lookahead selection
came first.

Table 3. Performance of the five best complete selection strategies on satisfiable problems.

AVATAR on (total 287) AVATAR off (total 207)

selection #solved %total #unique u-score selection #solved %total #unique u-score

33 248 86.4 0 24.5 11 195 94.2 0 16.7

22 247 86.0 0 24.1 4 191 92.2 0 17.1

11 246 85.7 0 23.4 3 190 91.7 0 16.9

32 241 83.9 1 23.8 32 184 88.8 0 14.7

1 238 82.9 0 21.6 35 183 88.4 0 14.6

8 Impact of Selection on Portfolio Solving

As mentioned at the beginning of Sect. 7, VAMPIRE, like most leading first-order the-
orem provers, will (when asked) try to use a portfolio of strategies to solve a problem.
To make an effective portfolio we want a mix of strategies that either solve many prob-
lems and or unique problems. One measure of the usefulness of a selection strategy is its
impact on the creation of a portfolio mode with respect to the second of these properties
i.e. which problems can only be solved using a particular approach.
8 The table has been shortened due to space restrictions. However, the #unique and u-score
indicators still take into account all the other complete selections.
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Table 4. Numbers of problems solved only by a strategy using a particular selection strategy.

Selection Problems solved only using this selection

All Problems solved only by VAMPIRE

11 151 118

1011 78 62

1 62 58

10 55 41

lookahead 278 216

non-lookahead 502 377

complete 824 691

incomplete 229 169

To find useful strategies for VAMPIRE we have a dedicated cluster using a semi-
guided method to randomly search the space of strategies. At the time of writing over
786k proofs have been found of 11,354 problems out of 13,770 (unsatisfiable, non unit-
equality) problems taken from TPTP 6.1.0. It took over 160 CPU-years of computation
to collect these data. Table 4 gives results for the best four selection strategies and four
groups of selection strategies. Numbers are given for all problems and for the subset
of problems that were not solved by any other theorem prover at the time TPTP 6.1.0
was released9. From this we can see that both lookahead and incomplete selections
are required to solve many problems unsolvable by other methods. Additionally, this
shows that having a spread of different selection strategies is useful as they contribute
to uniquely solving different problems.

9 Conclusion

Selection strategies can have a very large impact on proof search, often making the
difference between solving and not solving a problem. Little had been written about
how effective selection strategies could be designed and implemented, although most
successful implementations of the superposition calculus have relied on them.

We have introduced two new ways of performing literal selection based on the
observation that it is good to select those literals that lead to as few children as possible.
The first approach, quality selection, is an easy to implement compositional mechanism
for defining literal selection based on qualities of literals that lead to few children. We
described different selection strategies based on concrete qualities and demonstrated
their effectiveness. What may be surprising to some is how effective incomplete ver-
sions of such strategies can be. Experimentally establishing this phenomenon is a large
contribution of this work. However, our main result is the second approach, the power-
ful idea of lookahead selection based on the observation that if we want to select literals
leading to as few children as possible then the best thing to do is just that. Experimental

9 See the ProblemAndSolutionStatistics file distributed with TPTP.
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results showed that by using this approach we could solve many problems that could not
otherwise be solved by any other selection strategy taken from VAMPIRE, E or SPASS.
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Abstract. We analyze the performance of various clause selection
heuristics for saturating first-order theorem provers. These heuristics
include elementary first-in/first-out and symbol counting, but also inter-
leaved heuristics and a complex heuristic with goal-directed components.

We can both confirm and dispel some parts of developer folklore. Key
results include: (1) Simple symbol counting heuristics beat first-in/first-
out, but by a surprisingly narrow margin. (2) Proofs are typically small,
not only compared to all generated clauses, but also compared to the
number of selected and processed clauses. In particular, only a small
number of given clauses (clauses selected for processing) contribute to
any given proof. However, the results are extremely diverse and there are
extreme outliers. (3) Interleaving selection of the given clause according
to different clause evaluation heuristics not only beats the individual
elementary heuristics, but also their union - i.e. it shows a synergy not
achieved by simple strategy scheduling. (4) Heuristics showing better
performance typically achieve a higher ratio of given-clause utilization,
but even a fairly small improvement leads to better outcomes. There
seems to be a huge potential for further progress.

1 Introduction

Saturating theorem provers for first-order logic try to show the unsatisfiability of
a clause set by systematically enumerating direct consequences and adding them
to the clause set, until either no new (non-redundant) clauses can be generated,
or the empty clause as an explicit witness of inconsistency is found.

At this time, the most powerful provers for first-order logic with equality
are based on saturation. These provers implement saturation by variants of the
given-clause algorithm. In this algorithm, clauses are selected for inferences one
at a time. The order of selection of the given clause for each iteration of the
main loop is a major choice point in the algorithm. While there is significant
folklore about this choice point, we are not aware of a systematic evaluation of
different heuristics for this choice point.

There is also little understanding of the properties of proofs and the proof
induced by different strategies. Previous work was restricted to unit-equational
logic and much smaller search spaces [4].

In this paper, we compare different classical and modern clause selection
heuristics. In particular, we consider the following questions:
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 330–345, 2016.
DOI: 10.1007/978-3-319-40229-1 23
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– How powerful are different heuristics on different classes of problems?
– How well do different heuristics perform compared to a perfect oracle that

finds the same proofs? Which proportion of selected clauses is contributing to
a given proof?

– How do different heuristics interact when interleaved?
– Can commonly held beliefs about clause selection be supported by data?
– What are typical properties of proofs found by a modern theorem prover?

To obtain data on these questions, we have instrumented the prover E to
efficiently collect data about the ongoing proof search and to print out an analysis
of both the proof object and the complete proof search graph at termination.

This paper is organized as follows. First, we introduce the concept of satura-
tion and briefly describe the given-clause algorithm. We also discuss the basics of
clause evaluation and E’s flexible implementation of clause selection heuristics.
In Sect. 3 we describe the design of the experiments and the particular clause
selection heuristics analyzed. Section 4 contains results on the performance of
different heuristics and their analysis, as well as information on properties and
structures of proofs and proof search. We then conclude the paper.

2 Saturating Theorem Proving

Modern saturating theorem proving started with resolution [17]. It was also a
natural framework for completion-based equational reasoning [1,6,7]. The con-
fluence of resolution and completion, implemented e.g. in Otter [12,13], the
first modern-style high-performance theorem prover, lead to the still current
equality-based superposition calculus, definitively described by Bachmair and
Ganzinger [2]. Today, systems based on superposition and saturation like Vam-
pire [8,15], Prover9 [11], SPASS [23] and E [19,20] define the state of the art in
theorem proving for first-order logic with equality.

Saturating calculi for first-order logic are based on a refutational paradigm,
i.e. the axioms and conjecture are converted into a clause set that is unsatisfiable
if and only if the conjecture is logically implied by the axioms. The calculus
defines a series of inference rules which take one or more (most often two) existing
clauses as premises and produce a new clause as the conclusion. This new clause is
added to the original clause set and is available as a premise for future inferences.
The process stops when either no new non-redundant clause can be derived (in
this case, the clause set is saturated up to redundancy), or when the empty clause
as an explicit witness of unsatisfiability is derived.

Current calculi also include simplification rules which allow the replacement
of some clauses by simpler (and often syntactically smaller) clauses, or even the
complete removal of redundant clauses. Examples include in particular rewriting
(replacement of terms by smaller terms), subsumption (discarding of a clause
implied by a more general clause) and tautology deletion.

In most cases, saturation can, in principle, derive an infinite number of con-
sequences. In these cases, completeness of the proof search requires a certain
notion of fairness, namely that no non-redundant inference is delayed infinitely.
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The superposition calculus is the current state of the art in saturating the-
orem proving. It subsumes earlier calculi like resolution, paramodulation, and
unfailing completion. In the superposition calculus, inferences can be restricted
to maximal terms of maximal literals using a term ordering, and optionally to
selected negative literals using a literal selection scheme. All systems we are
currently aware of determine a fixed term ordering and literal selection scheme
before saturation starts, either by user input or automatically after analyzing
the problem.

2.1 Saturation Algorithms

Saturation algorithms handle the problem of organizing the search through the
space of all possible derivations. The simplest and obviously fair algorithm is
level saturation. Given a clause set C0, level saturation computes the set of all
direct consequences D0 of clauses in C0. The union C1 = C0∪D0 then forms the
basis for the next iteration of the algorithm. Level saturation does not support
heuristic guidance, and we are not aware of any current or competitive system
built on the basis of level saturation. To our knowledge level saturation has never
been implemented with modern redundancy elimination techniques.

At the other extreme, a single step algorithm performs just one inference at
a time, adding the consequence to the set and making it available for further

Search state: (U,P )
U contains unprocessed clauses, P contains processed clauses.
Initially, P is empty and all clauses are in U .
The given clause is denoted by g.

while U �= {}
g = extract best(U)
g = simplify(g, P )
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P )

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T ) ∪ {g}
T = T ∪ generate(g, P )
foreach c ∈ T

c = cheap simplify(c, P )
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable

Remarks: extract best(U) finds and extracts the clause with the best heuristic eval-
uation from U . This is the choice point we are particularly interested in this paper.

Fig. 1. The given-clause algorithm as implemented in E
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inferences (and potential simplification). The major disadvantage of the single-
step algorithm is the necessary book-keeping. Moreover, while search heuristics
can work at the finest possible granularity, the objects of heuristic evaluations
are potential inferences, not concrete clauses. We are not aware of any system
that uses a per-inference evaluation for search guidance, although e.g. Vampire’s
limited resource strategy [16] discards some potential inferences up-front, based
on a very cursory evaluation.

The most widely used saturation algorithms are variants of the given-clause
algorithm. They split the set of all clauses into two subsets U of unprocessed
clauses and P of processed clause (initially empty). In each iteration, the algo-
rithm selects one clause g from U and adds it to P , computing all inferences in
which g is at least one premise and all other premises are from P . The algorithm
adds the resulting new clauses to U , maintaining the invariant that all inferences
between clauses in P have been performed.

Variants of the given-clause algorithm are at the heart of most of today’s
saturating theorem provers. The two main variants are the so-called Otter loop
and the DISCOUNT loop, popularized by the eponymous theorem provers [3,13].
In the Otter loop, all clauses are used for simplification. In particular, newly
generated clauses are used to back-simplify both processed and unprocessed
clauses. In the DISCOUNT loop, unprocessed clauses are truly passive, i.e. only
clauses that are selected for processing are used for back-simplification. As a
result, the Otter loop can typically find proofs in less iterations of the main loop,
but each iteration takes longer. In the DISCOUNT loop, contradictory clauses in
U may not be discovered until selected for processing. However, each individual
iteration of the main loop results in less work. In both variants, selection of the
given clause is the main heuristic choice point. In the DISCOUNT loop this
control is at a finer level of granularity, since each iteration of the main loop
represents a smaller part of the proof search.

In addition to Otter, the Otter loop is implemented in Prover9, SPASS and
Vampire. The DISCOUNT loop historically was implemented in systems spe-
cializing in equational reasoning, including Waldmeister [10] and E. It was also
added as an alternative loop to both SPASS and Vampire. There is little evidence
that one or the other variant has a systematic advantage. A comparison in Vam-
pire [16] showed some advantage for the DISCOUNT loop over the plain Otter
loop, but also some advantage of the Otter loop in combination with the limited
resource strategy (which sacrifices completeness for efficiency by discarding some
new clauses) over Vampire’s DISCOUNT loop.

Figure 1 depicts the DISCOUNT loop as implemented in E. The given-clause
selection is represented by the extract best() function.

2.2 Clause Selection Heuristics

Once term ordering and literal selection scheme are fixed, clause selection, i.e.
the order of processing of the unprocessed clauses, is the main choice point. The
standard implementation assigns a heuristic weight to each clause, and processes
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clauses in ascending order of weight, i.e. at each iteration of the main loop the
clause with the lowest weight is selected.

Most modern provers allow at least the interleaving of a best-first (lowest
weight) and breadth-first (oldest clause) search, where the weight is usually
based on (weighted) symbol counting. The ratio of clauses picked by size to
clauses picked by age is also known as the pick-given ratio [12]. E generalizes this
concept. It supports a large number of different parameterized clause evaluation
functions and allows the user to specify an arbitrary number of priority queues
and a weighted round-robin scheme that determines how many clauses are picked
from each queue. This enables us to configure the prover to use nearly arbitrarily
complex clause selection heuristics and makes it possible to simulate nearly every
conventional clause selection heuristic.

In this study, we are, in particular, concerned with the properties of con-
ventional clause selection schemes. Thus, we look at the following basic clause
evaluation heuristics:

– First-in/First-out or FIFO clause selection always prefers the oldest
unprocessed clause. In E, this is realized by giving each new clause a pseudo-
evaluation based on a counter that is increased each time a new clause is
generated. If one ignores simplification, a pure FIFO strategy will emulate
level saturation, i.e. it will generate all clauses of a given level before clauses
of the next level. In this case, it should find the shortest possible proof (by
number of generating inferences). Integration of simplification complicates the
issue, although we would still expect FIFO to find short proves. FIFO is an
obviously fair heuristic.

– Symbol counting or SC clause evaluation counts the number of symbols in a
clause, and prefers small clauses. Function symbols and variables can have uni-
form or different weights. There are several intuitive reasons why this should
be a good strategy. On the most obvious level, the goal of the saturation is
the derivation of the empty clause, which has zero symbols. Moreover, clauses
with fewer symbols are more general, hence allowing the system to remove
more redundancy via subsumption and rewriting. And finally, clauses with
fewer symbols also have fewer positions, and hence likely fewer successors,
keeping explosion of the search spaces lower than large clauses. As long as all
symbols (or at least all function symbols with non-zero arity) have positive
weight, SC -based strategies are fair (there is only a finite number of different
clauses below any given weight).

– Ordering-aware evaluation functions are symbol-counting variants that are
designed to prefer clauses with few maximal terms and maximal literals. In
the general case, this reduces the number of inference positions (and hence
potential successors), decreasing the branching factor in the search space.
In the unit-equational case it will also prefer orientable equations (rules) to
unorientable equations. Rules are much cheaper to apply for simplification. In
E, the refined weight (RW ) heuristic achieves the desired effect by multiplying
the weight of maximal terms and maximal literals by user-selectable constant
factors.
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– A major feature of E is the use of goal-directed evaluation functions (GD).
These give a lower weight to symbols that occur in the conjecture, and a
higher weight to other symbols, thus preferring clauses which are more likely
to be applicable for inferences with the conjecture.

Most of our experiments look at simple heuristics employing only one or
two clause evaluation functions - see the experimental design section. However,
for comparison we also include the globally best clause selection heuristic for E
known to us. This scheme was created via genetic algorithm from a population of
random heuristics spanning the parameter space of manually created heuristics
developed over the last 15 years [18].

In addition to clause selection based on the syntactic form of the clause,
the system can also select clauses based on their origin. In particular, a common
recommendation is to first process all the initial clauses, before any of the derived
clauses is picked.

3 Experimental Design

We added the ability to efficiently record compact internal proof objects in E 1.8.
The overhead for proof recording is minimal and barely measurable [20]. We
have now slightly extended the internal representation of the proof search to be
able to record all processed given clauses, thus enabling the prover to provide
more detailed statistics on the quality of clause selection. Other statistics were
obtained by analyzing the existing proof object, and by counting operations and
inferences performed during the proof search. The code is part of E version 1.9.1
(pre-release) and will be included in the next release of the prover.

3.1 Computing Environment and Test Set

We used problems from the TPTP [22] library, version v6.3.0. Since we are
interested in the performance of the heuristics for proof search, and since several
of our statistical measures only make sense for proofs, we restricted the problem
set to full first-order (FOF) and clause normal form (CNF) problems that should
be provable, i.e. CNF problems with status Unsatisfiable or Unknown1 and FOF
problems with status Unsatisfiable, ContradictoryAxioms, or Theorem.2

This selection left 13774 problems, 7082 FOF and 6692 CNF problems. FOF
problems were translated to CNF by E dynamically, with (usually short) trans-
lation time included in the reported times.

We report performance results separately for unit problems (all clauses are
unit), Horn problems (all clauses are Horn and at least one clause is a non-
unit Horn clause) and general (there is at least one non-Horn clause), with and

1 Status Unknown is assigned to problems which should be provable, but for which no
machine proof is known.

2 Two trivial syntactic test examples were excluded. They tested floating point syntax
features that at the time of the experiments were incorrectly handled by E.
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without equality. The classification of problems into these types refers to the
clausified form and was performed by E after clausification.

The StarExec Cluster [21] was used for all benchmark runs. Each problem was
executed alone and single threaded on an Intel Xeon E5-2609 processor running
at 2.4 GHz base clock speed. Each node had at least 128 GB RAM. We ran the
experiments with a per-problem time limit of 300 s and, given the amount of
RAM available, without enforced memory limit.

3.2 Claus Selection Heuristics

We tested 40 different clause selection heuristics. From these we selected the 14
heuristics described in Table 1 as sufficiently distinct and reasonably covering
the parameter space we are interested in.

The 14 selected heuristics include basic FIFO and symbol counting, ordering-
aware and goal-directed heuristics, as well as combinations of symbol counting

Table 1. Clause selection heuristics used

Heuristic Description

FIFO First-in/First-out, i.e. oldest clause first

SC12 Symbol counting, function symbols have weight 2, variables
have weight 1

SC11 Symbol counting, both function symbols and variables have
weight 1

SC21 Symbol counting, function symbols have weight 2, variables
have weight 1

RW212 Symbol counting, function symbols have weight 2, variables
have weight 1, maximal terms receive double weight.

2SC11/FIFO Interleaved selection: Select 2 out of every 3 clauses accord-
ing to SC11, the remaining one with FIFO

5SC11/FIFO Ditto, with a selection ration of 5:1. This is inspired by Larry
Wos comment on Otter (“The optimal pick-given ratio is
five”)

10SC11/FIFO Ditto, selection ratio 10:1

15SC11/FIFO Ditto, selection ratio 15:1

GD Individual goal-directed heuristic, extracted from Evolved
below

5GD/FIFO GD interleaved 5:1 with FIFO

SC11-PI As SC11, but always process initial clauses first

10SC11/FIFO-PI As 10SC11/FIFO, but always process initial clauses first

Evolved Evolved heuristic, combining 2 goal-directed evaluation
functions, two symbol-counting heuristics, and FIFO.
See [18]
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variants with FIFO. We also tested the performance of a preference for initial
clauses, and include the Evolved heuristic as a benchmark that represents the
current state of the art.

The full data for all 40 strategies and the exact parameters for the provers
are archived and available at http://www.eprover.eu/E-eu/Heuristics.html.

4 Results

4.1 Global Search Performance

Table 2 summarizes the performance of the 14 different strategies on the full
test set. The Rank column shows the ranking of strategies by total number of
successes within the time limit. The third column shows the number of successes,
as an absolute number and as a fraction of all 13774 problems. The next column
shows how many problems were solved by the corresponding strategy only, not
by any of the other strategies. Finally, the last column shows how many problems
are solved within a one second search time, and the fraction of total successes
by that strategy this number represents. Figure 2 visualizes the performance of
a selected subset of strategies over time.

From this data, we can already draw a number of conclusions:

– All performance curves are similar in basic shape, and all strategies find the bulk
of their proofs within the first few seconds. Indeed, most strategies reach around

Table 2. Global search performance

Heuristic Rank Successes Successes within 1s

Total Unique Absolute Of column 3

FIFO 14 4930 (35.8 %) 17 3941 79.9 %

SC12 13 4972 (36.1 %) 5 4155 83.6 %

SC11 9 5340 (38.8 %) 0 4285 80.2 %

SC21 10 5326 (38.7 %) 17 4194 78.7 %

RW212 11 5254 (38.1 %) 13 5764 79.8 %

2SC11/FIFO 7 7220 (52.4 %) 24 5846 79.7 %

5SC11/FIFO 5 7331 (53.2 %) 3 5781 78.3 %

10SC11/FIFO 3 7385 (53.6 %) 1 5656 77.6 %

15SC11/FIFO 6 7287 (52.9 %) 6 5006 82.5 %

GD 12 4998 (36.3 %) 12 5856 78.4 %

5GD/FIFO 4 7379 (53.6 %) 62 4213 80.2 %

SC11-PI 8 6071 (44.1 %) 13 4313 86.3 %

10SC11/FIFO-PI 2 7467 (54.2 %) 31 5934 80.4 %

Evolved 1 8423 (61.2 %) 593 6406 76.1 %

http://www.eprover.eu/E-eu/Heuristics.html
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The large plot shows overall performance (vertical axis is number of proofs found up to
a given time, horizontal axis is run time in seconds). The smaller plots scale interesting
sections of the y-axis to differentiate strategies with similar overall performance.

Fig. 2. Solutions over time for different clause selection heuristics (Color figure online)

80 % of their successes within the first second, and even for theEvolved strategy,
more than three quarter of the successes are achieved within one second.

– FIFO is the weakest of the search strategies. However, even SC11, the best
simple symbol counting heuristic, proves less than 10 % more than FIFO.

– There is no evidence that using different weights for function symbols and vari-
ables increases overall performance. Indeed, using a higher weight for variables
markedly decreases performance. However, it changes the part of the search
space explored early, potentially adding more solutions to the performance of
the ensemble of all strategies.

– The ordering-aware RW212 has slightly lower global performance than the
corresponding simple symbol-counting heuristics. This is surprising, since this
and similar strategies have for a long time been major contributors to E’s
collection of standard heuristics.

– All four strategies interleaving simple symbol counting and FIFO perform
much better than the corresponding pure symbol-counting strategy, with the
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best one solving more than 2000 extra problems, an increase of nearly 40 %.
On the other hand, the spread of performance over the pick-given ratios from
2 to 15 is very small, varying by only about 2 %. The best ratio in our tests
for E is not 5 as sometimes anecdotally reported for the Otter loop, but 10.

– For the union of solutions found by SC11 and FIFO (with 300 second time
limit for each), the prover finds only 6329 proofs. Thus, there is real synergy
in the interleaved strategies, which beat not only the individual components
but also their union. We believe this is due to two effects: Symbol counting
selection builds a compact representation of the theory induced by the axioms,
thus enabling the prover to traverse larger parts of search space, while FIFO
ensures that no part of the search space is unduly delayed.

– The goal-directed heuristic on its own is not particularly powerful. Its perfor-
mance is in line with the symbol-counting heuristics. However, it profits even
more from the addition of a FIFO component than the other strategies.

– Processing initial clauses first does indeed boost performance of a strategy.
However, the effect is much stronger for the pure symbol-counting heuristic
than for a strategy that interleaves FIFO selection. The intuitive explanation
is that FIFO selection will bring in all initial clauses relatively early anyway.

– The Evolved strategy significantly outperforms even the best other strategy.

4.2 Search Performance by Problem Class

Table 3 breaks down the performance of the different heuristics by problem class.
Interesting observations are in particular in the unit categories. First, all strate-
gies solved all non-equational unit problems. This is not surprising, since this
category is decidable and comprises only the task of finding one pair of comple-
mentary unifiable literals. In the unit-equality category, FIFO is comparatively
much weaker than in the other categories. Likewise, GD is weak, but makes a

Table 3. Number of problems solved in 300 s for different problem classes

Type General Horn Unit

Equational

heuristic/size

Eq. (8626) Non-eq. (1607) Eq. (1011) Non-eq. (1432) Eq. (1037) Non-eq. (61)

FIFO 2421 (28%) 907 (56%) 371 (37%) 835 (58%) 335 (32%) 61 (100%)

SC12 2160 (25%) 842 (52%) 432 (43%) 828 (58%) 649 (63%) 61 (100%)

SC11 2369 (27%) 918 (57%) 465 (46%) 853 (60%) 674 (65%) 61 (100%)

SC21 2410 (28%) 978 (61%) 428 (42%) 800 (56%) 649 (63%) 61 (100%)

RW212 2336 (27%) 972 (60%) 429 (42%) 800 (56%) 656 (63%) 61 (100%)

2SC11/FIFO 3809 (44%) 1199 (75%) 576 (57%) 953 (67%) 622 (60%) 61 (100%)

5SC11/FIFO 3798 (44%) 1200 (75%) 606 (60%) 983 (69%) 683 (66%) 61 (100%)

10SC11/FIFO 3803 (44%) 1192 (74%) 617 (61%) 989 (69%) 723 (70%) 61 (100%)

15SC11/FIFO 3732 (43%) 1187 (74%) 612 (61%) 967 (68%) 728 (70%) 61 (100%)

GD 2271 (26%) 819 (51%) 431 (43%) 821 (57%) 595 (57%) 61 (100%)

5GD/FIFO 3860 (45%) 1153 (72%) 606 (60%) 967 (68%) 732 (71%) 61 (100%)

SC11-PI 2894 (34%) 968 (60%) 523 (52%) 913 (64%) 712 (69%) 61 (100%)

10SC11/FIFO-PI 3929 (46%) 1142 (71%) 631 (62%) 986 (69%) 718 (69%) 61 (100%)

Evolved 4477 (52%) 1201 (75%) 712 (70%) 1204 (84%) 768 (74%) 61 (100%)
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strong showing in the combination with FIFO. Most of the results in the non-
unit problems are in line with the general performance discussed in the previous
section. We do notice that general (i.e. non-Horn) problems with equality are
the hardest class for the tested strategies.

4.3 Proof Size and Structure

We are interested in the properties of proofs actually found by the prover. Par-
ticular properties we are interested in are:

– Is there a substantial difference between proofs found by different heuristics?
– How many of the initial clauses are used in the proof? I.e. what is the size of

the unsatisfiable core of the axioms (and negated conjecture) that the prover
found? In addition to the general interest, this value also provides important
information for tuning pre-search axiom pruning techniques [9] like SInE [5]
and MePo [14].

– How many inferences are in a typical proof, and how many search decisions
contribute to it?

In principle, we would expect FIFO to find shorter proofs, since the under-
lying search is breadth-first. However, simplification may complicate this, and

Proof size scatter plots. Each dot corresponds to one solved problem, with the size of
the proof found by Evolved on the y-axis and the size of the FIFO proof on the X-axis.
Proof size measure in the left is number of given clauses in the proof object, on the
right it is total number of inferences in the proof. Both diagrams where cut off at 100
on each axis for better visibility. The left plot covers 93.8% and the right plot covers
90% of all data points. Only proofs where both strategies need at least 0.02 seconds
are represented. The linear regression lines are 1.0x + 1.44 for the left and 1.0x − 1.72
for the right plot.

Fig. 3. Comparison of proof sizes
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Fig. 4. Distribution of the number of initial clauses and inferences in proofs (Color
figure online)
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Table 4. Number of clauses in proofs and proof searches

Heuristic Proofs found Given clauses in proof search

Mean Minimum First quartile Median Third quartile Maximum

FIFO 4930 2302.5 1 28 157 875 209154

Evolved 8423 3598.7 1 38 188 1506 190309

Heuristic Proofs found Total clauses generated

Mean Minimum First quartile Median Third quartile Maximum

FIFO 4930 342422.4 0 28 582 16951 21822536

Evolved 8423 356893.0 0 37 1023 38327 26187659

symbol-counting heuristics are likely to find more compact representations of
the equational theory earlier, thus using fewer rewrite steps in normalization.

Figure 3 shows a comparison of the size of individual proof objects for proofs
found with FIFO and Evolved, the two strategies with the widest difference in
performance. While relative proof sizes are distributed over the whole diagram,
there is a distinct increase in density towards the diagonal, and the computed
regression is very close to the diagonal indeed. On average, FIFO proofs have
slightly smaller number of given clauses, in line with our expectations. Evolved
proofs have slightly fewer inferences. The difference is indeed due to the number
of simplification steps. However, neither effect is very strong, and on average the
proofs found by both heuristics seem to be of very similar sizes.

Figure 4 (top) shows the distribution of the number of initial clauses in proof
objects. On average, there are 12.7 clauses in a non-trivial FIFO proof, and
nearly 50 % more initial clauses in an Evolved proof. Note that this statistic
is based on all proofs found by either strategy, not on the subset of problems
solved by both strategies. The bulk of the weight of the distribution is towards
small numbers of initial axioms, with the mean very much influenced by a small
number of combinatorial problems that need over 1000 clauses.

A similar observation holds for the actual proof size as shown in Fig. 4 (bot-
tom). By median, Evolved proofs are nearly twice as large as FIFO proofs, and
at the third quartile, Evolved proofs are nearly 3 times as long as FIFO proofs.
Thus, quite a lot of non-trivial proofs can be found. The mean proof size is again
strongly influenced by a small number of combinatorial problems that require
nearly a million inferences.

4.4 Proof Search Statistics and Performance

Table 4 shows the size of the search space constructed and traversed during
the proof search. Comparing this with Fig. 4, we see that the number of given
clauses actually processed to find a proof is orders of magnitude greater than
the number of such clauses in the proof object. However, we also see that the
number of clauses generated is again much larger, i.e. for non-trivial proofs many
clauses derived by the inference engine are never processed.
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Given-clause utilization rate scatter plot. The vertical axis shows the given-clause uti-
lization for Evolved, the horizontal axis for FIFO (left) and 10SC11/FIFO (right).
Only proofs where both strategies need at least 0.02 seconds are represented. The lin-
ear regression lines are 0.992x + 0.111 for the left and 0.957x + 0.043 for the right
plot.

Fig. 5. Comparison of given-clause utilization ratios

Given clause utilization rate for problems solved by four different strategies (only proofs
for problems that are solved by all four strategies and where each needs at least 0.02
seconds are considered). The graph shows how many problems are solved with a given-
clause utilization no better than the value on the vertical axis.

Fig. 6. Given clause utilization ratios over problem set (Color figure online)
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An interesting measure is the fraction of processed given clauses that end
up in the proof object, i.e. that represent good search decisions that contributed
to the proof. We have plotted this given-clause utilization in Fig. 5 (compar-
ing different heuristics pairwise) and in Fig. 6 (showing the distribution of the
ratio over the set of problems solved by four representative strategies). In both
diagrams it is clear that the given-clause utilization is, on average, quite low.
Also, Fig. 6 strongly suggests that given-clause utilization is a good predictor for
overall performance, with stronger strategies showing significantly better ratios.

5 Conclusion

Our analysis shows the comparative performance of several classical and mod-
ern clause selection heuristics. We can confirm that interleaving symbol-counting
and FIFO selection shows significantly better performance than either does indi-
vidually. We also found that preferring initial clauses is, on average, a significant
advantage, and that goal-directed heuristics seem to work best in combination
with other heuristics.

Proofs found by different heuristics for the same problem seem to be similar
in size and complexity, however, stronger heuristics are able to find longer and
more complex proofs. The average given-clause utilization as a measure of the
quality of search decisions seems to correlate well with performance. It also shows
us that even the best heuristics are far from optimal, or, to state it positively,
that there still is a lot of room for improvement.

An open question is how far these results can be transferred to provers which
employ the Otter loop, which places more priority to immediate simplification.

Acknowledgements. We thank the StarExec [21] team for providing the community
infrastructure making these experiments possible.
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10. Löchner, B., Hillenbrand, T.: A phytography of Waldmeister. J. AI Commun.
15(2/3), 127–133 (2002)

11. McCune, W.W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/
mccune/prover9/. Acccessed 29 Mar 2016

12. McCune, W.: Otter 3.0 Reference Manual and Guide. Technical report ANL-94/6,
Argonne National Laboratory (1994)

13. McCune, W., Wos, L.: Otter: the CADE-13 competition incarnations. J. Autom.
Reason. 18(2), 211–220 (1997). (Special Issue on the CADE 13 ATP System Com-
petition)

14. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Appl. Log. 7(1), 41–57 (2009)

15. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. J. AI
Commun. 15(2/3), 91–110 (2002)

16. Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem prov-
ing. J. Symb. Comput. 36(1–2), 101–115 (2003)

17. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)
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Abstract. We propose a new internal guidance method for automated
theorem provers based on the given-clause algorithm. Our method influ-
ences the choice of unprocessed clauses using positive and negative exam-
ples from previous proofs. To this end, we present an efficient scheme for
Naive Bayesian classification by generalising label occurrences to types
with monoid structure. This makes it possible to extend existing fast
classifiers, which consider only positive examples, with negative ones. We
implement the method in the higher-order logic prover Satallax, where
we modify the delay with which propositions are processed. We evaluated
our method on a simply-typed higher-order logic version of the Flyspeck
project, where it solves 26 % more problems than Satallax without inter-
nal guidance.

1 Introduction

Experience can be described as knowing which methods to apply in which con-
text. It is a result of experiments, which can show a method to either fail or
succeed in a certain situation. Mathematicians solve problems by experience.
When solving a problem, mathematicians gain experience, which in the future
can help them to solve harder problems that they would not have been able to
solve without the experience gained before.

Fully automated theorem provers (ATPs) attempt to prove mathematical
problems without user interaction. A thriving field of research is how to make
ATPs behave more like mathematicians, by learning which decisions to take from
previous proof attempts, in order to find more proofs in shorter time, and to
prove problems that were previously out of reach for the ATP. Machine learning
can help advance that field, for it provides techniques to model experience and
to compare the quality of possible decisions. Machine learning approaches to
improve ATP performance include:

– Premise selection: Preselecting a set of axioms for a problem can be done
as a preprocessing step or inside the ATP at the beginning of proof search.
Examples of this technique are the Sumo INference Engine (SInE) [HV11] and
E.T. [KSUV15].

– Internal guidance: Unlike premise selection, internal guidance influences
choices made during the proof search. The hints technique [Ver96] was among

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40229-1 24
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the earliest attempts to directly influence proof search by learning from previ-
ous proofs. Other systems are E/TSM [Sch00], an extension of E [Sch13] with
term space maps, and MaLeCoP [UVŠ11] respectively FEMaLeCoP [KU15],
which are versions of leanCoP [Ott08] extended by Naive Bayesian learning.

– Learning of strategies: Finding good settings for ATPs automatically has
been researched for example in the Blind Strategymaker (BliStr) project
[Urb15].

– Learning of strategy choice: Once one has found good ATP strategies for
different sets of problems, it is not directly clear which strategies to apply for
which time when encountering a new problem. This problem was treated in
the Machine Learning of Strategies (MaLeS) [Kü14].

In this paper, we show an internal guidance algorithm for ATPs that use
(variations of) the given-clause algorithm. Specifically, we study a Naive Bayesian
classification method, introduced for the connection calculus in FEMaLeCoP, and
generalise it by measuring label occurrences with an arbitrary type having monoid
structure, in place of a single number. This generalisation has the benefit that it
can handle positive and negative occurrences. As a proof of concept, we implement
the algorithm in the ATP Satallax [Bro12], using no features at all, which already
solves 26 % more problems given the same amount of time, and which can solve
about as many problems in 1 s than without internal guidance in 2 s.

2 Naive Bayesian Classifier with Monoids

2.1 Motivation

Many automated theorem provers have a proof state in which they make deci-
sions, by ranking available choices (e.g. which proposition to process) and choos-
ing the best one. This is related to the classification problem in machine learning,
which takes data about previous decisions, i.e. which situation has led to which
choice, and then orders choices by usefulness for the current situation.

For example, let us assume that the state of the theorem prover is modelled
by the set of constants appearing in the previously processed propositions or in
the conjecture. Let our conjecture be x + y = y + x and let our premises include

∀P.[P (0) =⇒ (∀x.P (x) =⇒ P (s(x))) =⇒ ∀x.P (x)], (1)
x + 0 = x. (2)

If we first process Eq. 1, the prover state is characterised by F = {+, s, 0}. If
we then continue to process Eq. 2 and it turns out that this contributes to the
final proof, we register that in the situation F , Eq. 2 was useful.

In other proof searches, processing Eq. 2 in a certain prover state will not
contribute towards the final proof. We call such situations negative examples.

Intuitively, we would like to apply propositions in situations that are similar
to those in which the propositions were useful, and avoid processing propositions
in situations similar to those where the propositions were useless. In general,
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examples (positive and negative) can be characterised by a prover state F and
a proposition l that was processed in state F . This makes it possible to treat
the choice of propositions as classification problem. In the next section, we show
how to rank choices based on previous experience.

2.2 Classifiers with Positive Examples

A classifier takes pairs (F, l), relating a set of features F with a label l, and
produces a function that, given a set of features, predicts a label. Classifiers can
be characterised by a function r(l, F ), which represents the relevance of a label
wrt a set of features. For internal guidance, we use r to estimate the relevance
of a clause l to process in the current prover state F .

A Bayesian classifier estimates the relevance of a label by its probability to
occur with a set of features, i.e. P (l | F ). By using the Naive Bayesian assumption
that features are conditionally independent, the conditional probability is:

P (l | F ) =
P (l)P (F | l)

P (F )
=

P (l)
∏

f∈F P (f | l)
P (F )

∝ P (l)
∏

f∈F

P (f | l).

To increase numerical stability, we use sums of logarithms. Furthermore, we
weight the probabilities with the inverse document frequency (IDF) of the fea-
tures, and we omit the constant factor P (F ). The resulting classifier then is:

r(l, F ) = log P (l) +
∑

f∈F

log(idf(fi)) log P (f | l).

In FEMaLeCoP, the simplified probability functions1 are approximated by

P (l) ≈ Dl, P (f | l) ≈
{

c if Dl,f = 0
Dl,f

Dl
otherwise

where Dl,f denotes the number of times l appeared among the training examples
in conjunction with f , Dl denotes how often l appeared among all training
examples, and c is a constant.

2.3 Generalised Classifiers

In our experiments, we found negative training examples to be crucial for inter-
nal guidance. Therefore, we generalised the classifier to represent the type of
occurrences as a commutative monoid.

Definition 1. A pair (M, +) is a monoid if there exists a neutral element 0 ∈ M
such that for all x, y, z ∈ M , (x + y) + z = x + (y + z) and x + 0 = 0 + x = x. If
furthermore x + y = y + x, then the monoid is commutative.
1 We omitted several constant factors. Furthermore, FEMaLeCoP considers also fea-

tures of training examples that are not part of the features F , albeit this is a further
derivation of the theoretical model.
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The generalised classifier is instantiated with a commutative monoid (M,+)
and reads triples (F, l, o), which in addition to features and label now store the
label occurrence o ∈ M . For example, if the classifier is to support positive and
negative examples, then one can use the monoid (N×N,+2), where the first and
second elements of the pair represent the number of positive respectively negative
occurrences, the +2 operation is pairwise addition, and the neutral element is
(0, 0). A triple learnt by this classifier could be (F, l, (1, 2)), meaning that l occurs
with F once in a positive and twice in a negative way. Commutativity imposes
that the order in which the classifier is trained does not matter.

We now formally define Dl (occurrences of label), Dl,f (co-occurrences of
label with feature) and idf (inverse document frequency):

Dl =
∑

{o | (F, l′, o) ∈ D, l = l′},

Dl,f =
∑

{o | (F, l′, o) ∈ D, l = l′, f ∈ F},

idf(f) =
|D|

|{(F, l′, o) | (F, l′, o) ∈ D, f ∈ F}|

With this, our classifier for positive and negative examples can be defined as
follows:

P (l) =
|p − n|
p + n

(cpp + cnn), P (fi | l) =

{
c if Dl,f = 0
cp

pf

p + cn
nf

n otherwise

where (p, n) = Dl, (pf , nf ) = Dl,f , and c, cp, and cn are constants. The term
|p−n|
p+n represents confidence and models our intuition that labels which appear

always in the same role (say, as positive example) should have a greater influence
than more ambivalent labels. For example, if a label occurs about the same
number of times as positive and as negative example, confidence is approximately
0, and when a label is almost exclusively positive or negative, confidence is 1.

We call Dl, Dl,f , and idf classification data. They are precalculated to allow
fast classification. Furthermore, new training examples can be added to existing
classification data efficiently, similarly to [KU15].

3 Learning Scenarios

In this section, we still consider ATPs as black boxes, taking as input a problem
and classification data for internal guidance, returning as output training data
(empty if the ATP did not find a proof).

We propose two different scenarios to generate training data and to use it in
subsequent proof searches, see Fig. 1:

– On-line learning: We run the ATP on every problem with classification data.
For every problem the ATP solves, we update the classifier with the training
data from the ATP proof.
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– Off-line learning: We first run the ATP on all problems without classification
data, saving training data for every problem solved. We then create classifica-
tion data from the training data and rerun the ATP with the classifier on all
problems.

While the second scenario can be parallelised, thus taking less wall-clock
time, it has to treat every problem twice in the worst case (namely when every
problem fails), thus taking up to double the CPU time of the first scenario.

Fig. 1. Comparison of online and offline learning. The large boxes symbolise an ATP
proof search, which takes classifier data and returns training data (empty if no proof
found). The small “+” boxes combine classifiers and training data, returning new
classifier data.

4 Internal Guidance for Given-Clause Provers

Variants of the given-clause algorithm are commonly used in refutation-based
ATPs, such as Vampire [KV13] or E [Sch13].2 We introduce a simple version
of the algorithm: Given an initial set of clauses to refute, the set of unprocessed
clauses is initialised with the initial set of clauses, and the set of processed clauses
is the empty set. At every iteration of the algorithm, a given clause is selected
from the unprocessed clauses and moved to the processed clauses, possibly gen-
erating new clauses which are moved to the unprocessed clauses. The algorithm
2 Technically, our reference prover Satallax does not implement a given-clause algo-

rithm, as Satallax treats terms instead of clauses, and it interleaves the choice of
unprocessed terms with other commands. However, for the sake of internal guid-
ance, we can consider Satallax to implement a version of the given-clause algorithm.
We describe the differences in more detail in Sect. 6.
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terminates as soon as either the set of unprocessed clauses is empty or the empty
clause was generated.

The integration of our internal guidance method into an ATP with given-
clause algorithm involves two tasks: The recording of training data, and the
ranking of unprocessed clauses, which influences the choice of the given clause.
To reduce the amount of data an ATP has to load for internal guidance, we
process training data and transform it into classification data outside of the
ATP. We describe these tasks below in the order they are executed when no
internal guidance data is present yet.

4.1 Recording Training Data

Recording training data can be done in different fashions:

– In situ: Information about clause usage is recorded every time an unprocessed
clause gets processed. This method allows for more expressive prover state
characterisation, on the other hand, we found it to decrease the proof success
rate, as the recording of proof data makes the inference slower.

– Post mortem: Only when a proof was found, information about clause usage
is reconstructed. As this method does not place any overhead on the proof
search, we resorted to post-mortem recording, which is still sufficiently expres-
sive for our purposes.

For every proof, we save: conjecture (if one was given), axioms A (premises
given in the problem), processed clauses C, and clauses C+ that were used in
the final proof (C+ ⊆ C). We call such information for a single proof a training
datum. We ignore unprocessed clauses, as we cannot easily estimate whether
they might have contributed to a proof.

4.2 Postprocessing Training Data

In our experiments, we frequently encounter clauses that are the same, differing
only by containing different Skolem constants. To this end, we process the train-
ing data before creating classification data from it. We tried different techniques
to handle Skolem constants, as well as other postprocessing methods:

– Skolem filtering: We discard clauses containing any Skolem constants.
– Consistent Skolemisation: We normalise Skolem constants inside all

clauses, similarly to [UVŠ11]. That is, a clause P (x, y, x), where x and y are
Skolem constants, becomes P (c1, c2, c1).

– Consistent normalisation: Similarly to consistent Skolemisation, we nor-
malise all symbols of a clause. That is, P (x, y, x) as above becomes
c1(c2, c3, c2). This allows the ATP to discover similar groups of clauses, for
example a + b = b + a and a ∗ b = b ∗ a both map to c1(c2, c3) = c1(c3, c2),
but on the other hand, this also maps possibly different clauses such as P (x)
and Q(z) to the same clause. Still, in problem collections which do not share
a common set of function constants (such as TPTP), this method is suitable.
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– Inference filtering: An interesting experiment is to discard all clauses gen-
erated during proof search that are not part of the initial clauses.

We denote the consistent Skolemisation/normalisation of a clause c described
above as N (c).

4.3 Transforming Training Data to Classification Data

For a given training datum with processed clauses C and proof clauses C+, we
define the corresponding classifier data to be:

{(F(c), c, (1, 0)) | c ∈ C+} ∪ {(F(c), c, (0, 1)) | c ∈ C \ C+},

where F(c) denotes the features of a clause. We use the monoid (N×N,+2, (0, 0))
introduced in Sect. 2, storing positive and negative examples. The classifier data
of the whole training data is then the (multiset) union of the classifier data of
the individual training data.

4.4 Clause Ranking

This section describes how our internal guidance method influences the choice
of unprocessed clauses using a previously constructed classifier.

At the beginning of proof search, the ATP loads the classifier. Some learning
ATPs, such as E/TSM [Sch00], select and prepare knowledge relevant to the
current problem before the proof search. However, as we store classifier data in
a hash table, filtering irrelevant knowledge to the problem at hand would require
a relatively slow traversal of the whole table, whereas lookup of knowledge is fast
even in the presence of a large number of irrelevant facts. For this reason we do
not filter the classification data per problem.

Then, at every choice point, i.e. every time the ATP chooses a clause from
the unprocessed clauses C, it picks a clause c ∈ C that maximises the clause
rank R(c, F ), where

R(c, F ) = rATP(c) + r(N (c), F )

and:

– rATP(c) is an ATP function that calculates the relevance of a clause with
traditional means (such as weight, age, . . . ),

– F is the current prover state,
– r(c, F ) is the Naive Bayesian ranking function as shown in Sect. 2, and
– N (c) is the normalisation function as introduced in Subsect. 4.2.

5 Tuning of Guidance Parameters

We employed two different methods to automatically find good parameters for
internal guidance, such as c, cp, and cn from Sect. 2.
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5.1 Off-Line Tuning

Off-line tuning analyses existing training data and attempts to find parameters
that give proof-relevant clauses from the training data a high rank, while giving
proof-irrelevant clauses a low rank. To do this, we evaluate for every training
datum the following formula, which adds for every proof-relevant clause the
number of proof-irrelevant clauses that were ranked higher:

∑

c+∈C+

|{c | R(c, F ) > R(c+, F+), c ∈ C \ C+}|,

where C and C+ come from the training datum (see Subsect. 4.1), F and F+

are the features of the prover states when c respectively c+ were processed (we
reconstruct these from the training datum), and R is the ranking formula from
Subsect. 4.4.

In the end, we sum up the results of the formula above for all training data,
and take the guidance parameters which minimise that sum.

5.2 Particle Swarm Optimisation

Particle Swarm Optimisation [KE95] (PSO) is a standard optimisation algorithm
that can be applied to minimise the output of a function f(x ), where x is a vector
of continuous values. A particle is defined by a location x (a candidate solution
for the optimisation problem) and a velocity v . Initially, p particles are created
with random locations and velocities. Then, at every iteration of the algorithm,
a new velocity is calculated for every particle and the particle is moved by that
amount. The new velocity of a particle is:

v(t + 1) = ω · v(t) + φp · rp · (bp(t) − x (t)) + φg · rg · (bg(t) − x (t)),

where:

– v(t) is the old velocity of the particle,
– bp(t) is the location of the best previously found solution among all particles,
– bg(t) is the location of the best previously found solution of the particle,
– rp and rg are random vectors generated at every evaluation of the formula,

and
– ω = 0.4, φp = 0.4, and φg = 3.6 are constants.

We apply PSO to optimise the performance of an ATP on a problem set S.
For this, we define f(x ) to be the number of problems in S the ATP can solve
with a set of flags being set to x and with timeout t. We then run PSO and take
the best global solution obtained after n iterations. We fixed t = 1s, p = 300,
and |S| = 1000. The algorithm has worst-case execution time t · p · n · |S|.



Internal Guidance for Satallax 357

6 Implementation

We implement our internal guidance in Satallax version 2.8. Satallax is an auto-
mated theorem prover for higher-order logic, based on a tableaux calculus with
extensionality and choice. It is written in OCaml by Brown [Bro12]. Satallax
implements a priority queue, on which it places several kinds of proof search
commands: Among the 11 different commands in Satallax 2.8, there are for
example proposition processing, mating, and confrontation. Proof search works
by processing the commands on the priority queue by descending priority, until a
proof is found or a timeout is reached. The priorities assigned to these commands
are determined by flags, which are the settings Satallax uses for proof search. A
set of flag settings is called a mode (in other ATPs frequently called strategies)
and can be chosen by the user upon the start of Satallax. Similar to other modern
ATPs such as Vampire [KV13] or E [Sch13], Satallax also supports timeslicing
via strategies (in other ATPs frequently called schedules), which define a set of
modes together with time amounts Satallax calls each mode with. Formally, a
strategy is a sequence [(m1, t1), . . . , (mn, tn)], where mi is a mode and ti the
time to run the mode with. The total time of the strategy is the sum of times,
i.e. tΣ(S) =

∑
(m,t)∈S t.

As a side-effect of this work, we have extended Satallax with the capability of
loading user-defined strategies, which was previously not possible as strategies
were hard-coded into the program. Furthermore, we implemented modifying flags
via the command line, which is useful e.g. to change a flag among all modes of
a strategy without changing the flag among all files of a strategy. We used this
extensively in the automatic evaluation of flag settings via PSO, as shown in
Subsect. 5.2.

When running Satallax with a strategy S and a timeout tmax, then all the
times of the strategy are multiplied by tmax

tΣ(S) if tmax > tΣ(S), to divide the time
between modes appropriately when running Satallax for longer than what the
strategy S specifies. Then, every mode mi in the strategy is run sequentially for
time ti until a proof is found or the timeout tmax is hit.

An analysis of several proof searches yielded that on average, more than 90 %
of commands put onto the priority queue of Satallax are proposition processing
commands, which correspond to processing a clause from the set of unprocessed
clauses in given-clause provers. For that reason, we decided to influence the
priority of proposition processing commands, giving those propositions with a
high probability of being useful a higher priority. The procedure follows the one
described in Subsect. 4.4, but the ranking of a proposition is performed when the
proposition processing command is put onto the priority queue, and the Naive
Bayes rank is added to the priority that Satallax without internal guidance would
have assigned to the command. As other types of commands are in the priority
queue as well, we pay attention not to influence the priority of term processing
commands too much (by choosing too large guidance parameters), as this can
lead to disproportionate displacement of other commands.
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To record training data, we use the terms from the proof search that con-
tributed to the final proof. For this, Satallax uses picomus [Bie08] to construct
a minimal unsatisfiable core.

To characterise the prover state of Satallax, we tried different kinds of features:

– Symbols of processed terms: We collect the symbols of all processed propo-
sitions at the time a proposition is inserted into the priority queue and call
these symbols the features of the proposition. However, this experimentally
turned out to be a bad choice, because the set of features for each proposition
grows quite rapidly, as the set of processed propositions grows monotonically.

– Axioms of the problem: We associate every proposition processed in a proof
search with all the axioms of the problem. In contrast to the method above,
this associates the same features to all propositions processed during the proof
search for a problem, and is thus more a characterisation of the problem
(similar to TPTP characteristics [SB10]) than of the prover state.

In our experiments, just calculating the influence of these features without
them actually influencing the priority makes Satallax prove less problems (due
to the additional calculation time), and the positive impact of the features on
the proof search does not compensate for the initial loss of problems. Therefore,
we currently do not use features at all and associate the empty set of features
to all labels, i.e. F(c) = {}. However, it turns out that even without features,
learning from previous proofs can be quite effective, as shown in the next section.

7 Evaluation

To evaluate the performance of our internal guidance method in Satallax, we
used a THF0 [SB10] version (simply-typed higher-order logic) of the top-level
theorems of the Flyspeck [HAB+15] project, as generated by Kaliszyk and Urban
[KU14]. The test set consists of 14185 problems from topology, geometry, inte-
gration, and other fields. The premises of each problem are the actual premises
that were used in the Flyspeck proofs, amounting to an average of 84.3 premises
per problem.3 We used an Intel Core i3-5010U CPU (2.1 GHz Dual Core, 3 MB
Cache) and ran maximally one instance of Satallax at a time.

To evaluate the performance of the off-line learning scenario described in
Sect. 3, we run Satallax on all Flyspeck problems, generating training data when-
ever Satallax finds a proof. We use the Satallax 2.5 strategy (abbreviated as
“S2.5”), because the newest strategy in Satallax 2.8 can not always retrieve the
terms that were used in the final proof, which is important to obtain training data.

As the off-line learning scenario involves evaluating every problem twice (once
to generate training data and once to prove the problem with internal guidance),
it doubles runtime in the worst case, i.e. if no problem is solved. Therefore, a user

3 The test set, as well as our modified version of Satallax and instructions to recre-
ate our evaluation, can be found under: http://cl-informatik.uibk.ac.at/∼mfaerber/
satallax.html.

http://cl-informatik.uibk.ac.at/~mfaerber/satallax.html
http://cl-informatik.uibk.ac.at/~mfaerber/satallax.html
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might like to compare its performance to simply running the ATP with double
timeout directly: When increasing the timeout from 1 s to 2 s, the number of
solved problems increases from 2717 to 3394. However, this is mostly due to the
fact that Satallax tries more modes, so to measure the gain in solved problems
more fairly, we create a strategy “S2.5 1s” which contains only those modes that
were already used during the 1 s run, and let each of them run about double the
time. This strategy proves 2845 problems in 2 s.

We now compare the different postprocessing options introduced in
Subsect. 4.2. For this, we create a classifier from the training data gathered dur-
ing the 1 s run. We then run Satallax with internal guidance in off-line learning
mode with 1 s timeout and the Satallax 2.5 strategy. We perform this proce-
dure for each postprocessing option. We call a problem “lost” that Satallax with
guidance could not solve and Satallax without guidance could. Vice versa for
“gained”. The results are given in Table 1. We perform best when influencing
only the priority of axioms (inference filtering), solving 786 problems that could
not be solved by Satallax in 1 s without internal guidance.

Table 1. Comparison of postprocessing options.

Postprocessing Solved Lost Gained

Consistent normalisation 1911 920 114

Consistent Skolemisation 1939 885 107

None 2166 688 137

Skolem filtering 3395 98 776

Inference filtering 3428 75 786

To evaluate online learning, we run Satallax on all Flyspeck problems by
ascending order, accumulating training data and using it for all subsequent proof
searches. We filter away terms in the training data that contain Skolem variables.
As result, Satallax with online learning, running 1 s per problem, solves 3374
problems (59 lost, 716 gained), which is a plus of 24 %.

In the next experiment, we evaluate the prover performance with the
“S2.5 1s” strategy and a timeout of 30 s. For this, we use an 48-core server
with 2.2 GHz AMD Opteron CPUs and 320 GB RAM, running 10 instances of
Satallax in parallel. First, we run Satallax without internal guidance for 30 s,
which solves 3097 problems. Next, we create from the training data a classifier
with Skolem filtering, which takes 3 s and results in a 1.8M file. Finally, we run
Satallax with internal guidance in off-line learning mode using the classifier. This
proves 4028 problems in 30 s, which is a plus of 30 %. Results are shown in Fig. 2.
The “jumps” in the data stem from changes of modes.
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Fig. 2. Problems solved in a certain time (Color figure online).

8 Conclusion

We have shown how to integrate internal guidance into ATPs based on the
given-clause algorithm, using positive as well as negative examples. We have
demonstrated the usefulness of this method experimentally, showing that on
a given test set, we can solve up to 26 % more problems. ATPs with internal
guidance could be integrated into hammer systems such as Sledgehammer (which
can already reconstruct Satallax proofs [SBP13]) or HOL(y)Hammer [KU14],
continually improving their success rate with minimal overhead. It could also
be interesting to learn internal guidance for ATPs from subgoals given by the
user in previous proofs. Currently, we learn only from problems we could find
a proof for, but in the future, we could benefit from considering also proof
searches that did not yield proofs. Furthermore, it would be interesting to see
the effect of negative examples on existing ATPs with internal guidance, such
as FEMaLeCoP. We believe that finding good features that characterise prover
state are important to further improve the learning results.
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Abstract. Normalization procedures are an important component of
most automated theorem provers. In this work we present an adaption
of advanced first-order normalization techniques for higher-order theo-
rem proving which have been bundled in a stand-alone tool. It can be
used in conjunction with any higher-order theorem prover, even though
the implemented techniques are primarily targeted on resolution-based
provers. We evaluated the normalization procedure on selected problems
of the TPTP using multiple HO ATPs. The results show a significant
performance increase, in both speed and proving capabilities, for some
of the tested problem instances.

1 Introduction

Problem normalization has always been an integral part of most automated
theorem proving (ATP). Whereas early ATP systems relied heavily on exter-
nal normalization and clausification, the normalization task has gradually been
transferred to the prover themselves. The influence and success of FLOT-
TER [16] underlined the importance of careful employment of pre-processing
techniques. Current state-of-the-art first-order ATP systems can spend a large
portion of their execution time on pre-processing. Higher-order (HO) ATPs have
not yet developed as sophisticated methods as their first-order counterparts and
use hardly any sophisticated pre-processing techniques regarding clausification.

In this paper we present adaptations of prominent first-order techniques that
improve clause normal form (CNF) calculations [12] first analyzed by Kern [8] in
the context of higher-order logic (HOL; cf. [1] and the references therein). These
adaptions are further augmented with HOL specific techniques and bundled
in different normalization procedures. These procedures are intended as pre-
processing routines for the new Leo-III theorem prover [17].

The effectiveness of these procedures is evaluated using a benchmark suite
of over 500 higher-order problems. The measurements are conducted using the
HO ATP systems LEO-II [5], Satallax [7] and Isabelle/HOL [10].

Furthermore, the normalization techniques are implemented in a stand-alone
tool, called Leonora, ready to use with any TPTP-compliant HO ATP system.
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2 Normalization Techniques

The first two techniques, simplification and extensionality treatment, are already
implemented in most systems. Nonetheless, we briefly survey them in the fol-
lowing. They are essential to the overall normalization process since they allow,
when combined with further techniques, a more thorough in-depth normalization
in some cases (see e.g. Sect. 2.4).

2.1 Simplification and Extensionality Treatment

Simplification is a procedure invoked quite often during proof search. It resolves
simple syntactical tautologies and antinomies, removes trivial quantifiers, and
eliminates the constant symbols for truth and falsehood from a formula. In gen-
eral, simplification can be used to minimize formulas and reduce the number of
applicable inference rules.

Extensionality Treatment. In comparison to FOL, equalities in HOL can occur
between terms of any type, especially between terms of Boolean type or func-
tional type. To guarantee completeness, these equalities must also comply to the
extensionality principle. This is often dealt with using special extensionality rules
in the underlying calculus. In our context, we employ an adaption of the exten-
sional RUE calculus rules as implemented in LEO-II [3,5]. Intuitively, the rule
for equality on Booleans Φ = Ψ replaces the equality by the equivalence Φ ⇔ Ψ
using the fact, that the domain of Booleans only contains truth and falsehood.
For equality on functions, as in f = g, the rule states that two functions are
equal if and only if they agree on each argument, hence we have ∀X . f X = g X
as result. We included both rules in the normalization framework for enabling
deeply normalizing formulas: In some of the normalization procedures below, a
rule can only be applied to a non-nested formula, i.e. not occurring at argument
position. Using extensionality treatment, formulas can be lifted to top-level and
then subsequently processed by other normalization steps.

2.2 Formula Renaming

Formula Renaming is a technique to reduce the size of the CNF [12]. Essentially,
the idea is to split a clause into two separate clauses and to logically link them
via a freshly introduced symbol that is added to both new clauses.

Definition 1 (Formula Renaming). Let Φ be a formula and Ψ1 ◦ Ψ2 a subterm
of Φ, where ◦ is a binary Boolean connective. We replace Ψ2 by r(X1, . . . , Xn),
where {X1, . . . , Xn} = free(Ψ2), r is a fresh predicate symbol (of appropriate type),
and add a new clause D with

D =

{
r(X1, . . . , Xn) ⊃ Ψ2 , if polarity(Ψ2) = 1
Ψ2 ⊃ r(X1, . . . , Xn) , if polarity(Ψ2) = −1
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if the size of the CNF (denoted #CNF) is decreasing, i.e.

#CNF(Φ) > #CNF(Φ[Ψ2 \ r(X1, . . . , Xn)]) + #CNF(D).

The definition of free(.) and polarity(.) are hereby straight-forward adaptions
of the their usual first-order counterparts (cf. e.g. [12]). We intentionally omitted
the case of polarity(Ψ2) = 0, since it is subsumed by a technique in Sect. 2.3.

Renaming reduces the size1 of the CNF tremendously. In the example of a
formula in disjunctive normal form, e.g. (a ∧ b ∧ c) ∨ (d ∧ e ∧ f), we obtain the
nine multiplied cases (a∨d), (a∨e), . . . , (c∨f). First renaming, however, yields
the two clauses (a ∧ b ∧ c) ∨ r and r ⊃ (d ∧ e ∧ f), which are normalized to six
clauses (a ∨ r), (b ∨ r), . . . , (¬ r ∨ e), (¬ r ∨ f). This effect of formula renaming
is mostly present in the multiplicative case of a β-rule, where the size of the
CNF is reduced from a product (of the subterm sizes) to a sum. Thus, we can
eliminate cases of exponential blowup in the transformation to CNF.

Reducing the search space in this manner can greatly boost the search
process, as shown for first-order problems by Nonnengart et al. [11].

2.3 Argument Extraction

One major difference between higher-order and first-order logic is the shallow
term-formula structure: Whereas in FOL we have the well-known distinct con-
structs of formulas and terms, in HOL there exist only terms (terms of Boolean
type are still referred to as formulas). This allows in HOL the notion of nested
formulas, that is, formulas p occurring at argument position of, e.g., an unin-
terpreted function symbol (in which case the polarity of p is 0). A treatment of
these nested formulas is not immediately possible, since calculus rules dealing
with Boolean formulas, such as clausification rules, cannot be applied to sub-
terms. In order to apply these rules, the nested formulas have to be lifted to the
top level, e.g. by decomposition rules as part of common unification procedures.

To allow immediate processing of nested formulas this lifting can be done in
a pre-processing step [8]. Possible duplicated normalizations of nested formulas
at a later proof search phase can thus be avoided. This argument extraction can
be seen as a special higher-order case of formula renaming [12].

Definition 2 (Argument Extraction). Let Φ be a formula with f(p) occur-
ring as subterm. We replace p if its head symbol is a logical connective. More
precisely, let {X1, . . . , Xn} = free(p). We introduce a new function symbol s
(of appropriate type) and return Φ[p\s(X1, . . . , Xn)] together with the definition
∀X1 . . . Xn . p = s(X1, . . . , Xn).

Consider the following theorem of HOL, which LEO-II is not able to solve:

� ∀R . (R(⊥ ⇔ (b ⇔ c)) ⇒ R((c ⇔ b) ⇔ ∀X . (X ∧ ¬X)))

1 With #CNF we denote the number of clauses generated by transforming the given
formula into clause normal form.
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In this formula the arguments of both occurrences of the Boolean connective R
can be extracted, resulting in two axioms and the remaining conjecture:

s1 ⇔ (⊥ ⇔ (b ⇔ c)),
s2 ⇔ ((c ⇔ b) ⇔ ∀X . (X ∧ ¬X))

� ∀R .R(s1) ⇒ R(s2)

It is easy to see that further normalization steps are enabled by argument extrac-
tion. In other words, some challenging HOL aspects have been eliminated from
the given proof problem in a pre-processing step. In fact, the processed problem
is now easily provable for LEO-II.

2.4 Extended Prenex Normal Form

A term Φ is in prenex normal form, if it is of the form Q1X1 . . . QnXn . Ψ where
Qi are quantifier symbols and Ψ does not contain any quantifier. Many proof
calculi, especially unification-based calculi, work on clauses with implicitly bound
variables. The quantifier for such an implicitly bound variable is (implicitly)
always enclosing the whole formula. Hence, it is necessary to move the quantifiers
outwards.

We first adapted the normalization of Nonnengart and Weidenbach [12] that
first skolemizes existential quantifiers. A higher-order formula

� (∀X . a(X) ∧ ∃Y . Y ) ∧ ∀Y . p(∀X . b(Y ) ⊃ a(X))

treated with the adopted algorithm for prenex normal form yields

� ∀X .∀Y . ((a(X) ∧ sk1(X)) ∧ p(∀X . b(Y ) ⊃ a(X)).

With this simple adaption, a prenex form cannot be reached in HOL. As in
Sect. 2.3 we have to cope with nested formulas. Moving the quantifiers out of
the nested application is not possible. In fact, even skolemizing is impossible,
since we loose track of the polarity inside the application. However, applying
argument extraction will introduce a new axiom containing the nested Boolean
argument. Subsequently processed with extensionality – forcing a hard polarity
distinction – all quantifiers will now appear at top-level and can be treated
with the standard adaption to transform the problem into a pure higher-order
prenex form. We call this approach extended prenex normal form which is, up to
the author’s knowledge, novel in the context of HOL. Normalizing the example
finally yields

∀Y .∀X .¬ek1(Y ) ∨ (¬b(Y ) ∨ a(X)),
∀Y . ek1(Y ) ∨ (b(Y ) ∧ ¬a(sk2(Y )))

� ∀X .∀Y . ((a(X) ∧ sk1(X)) ∧ p(ek1(Y )).

3 Evaluation and Discussion

We have conducted several experiments to evaluate the potential benefits of the
afore described normalization procedures. These experiments are designed to
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benchmark the number of problems that can be solved with the respective ATP
as well as the time spent by the ATP on solving each individual problem.

The benchmark suite consists of overall 537 higher-order problems divided
in eight domains from a broad field of application domains. The problems were
taken from the TPTP library [14,15] (version 6.3.0) and coincide with the com-
plete higher-order subsets of the corresponding TPTP problem domains2 AGT,
CSR, GEG, LCL, PHI, PUZ, QUA and SET.

For assessing the effectiveness of the proposed normalization pre-processing,
we run the ATP systems on the original problems first and then on a series of
differently normalized versions of the respective problems. These versions differ
hereby in the number and combination of enabled normalization transforma-
tions from Sect. 2. More specifically, we investigated four different normalization
procedures, denoted N1, . . . , N4:

N1 Enabled routines: Prenex form, argument extraction, formula renaming, sim-
plification and extensionality processing (i.e. full normalization)

N2 Enabled routines: Argument extraction, formula renaming, simplification and
extensionality processing

N3 Enabled routines: Prenex form, argument extraction, simplification and
extensionality processing

N4 Enabled routines: Argument extraction, simplification and extensionality
processing

We chose to investigate different combinations of normalization techniques
as pre-processing step to take into account that different ATP systems can use
fundamentally different calculi and thus may benefit from different input condi-
tions.

The measurements were primarily taken using the higher-order ATP systems
LEO-II [5] and Satallax [7]. While the former system is based on higher-order
resolution, the latter uses a sophisticated tableau-like approach. Selected bench-
mark results are additionally investigated using the automated and interactive
theorem prover Isabelle/HOL [10]. In its automatic proof mode, Isabelle employs
different solving tools such as the counter model finder Nitpick [6], the first-order
tableau prover Blast [13], the SMT solver CVC4 [2] and several more.

As indicated before, for each original problem and each of the four normal-
ized versions (by N1, . . . , N4 respectively) we measure whether the system were
able to solve the input problems as well as the time taken to do so. The CPU
limit (timeout) for each problem and each ATP system is limited to 60 s. The
measurements were taken on a 8 core (2x AMD Opteron Processor 2376 Quad
Core) machine with 32 GB RAM.

Pre-processing time is not considered in the results below, since it still carries
essentially little weight and does not considerably contribute to the overall CPU
time.

2 A comprehensive presentation of the different TPTP problem domains and their
application domain can be found at http://www.cs.miami.edu/∼tptp/cgi-bin/
SeeTPTP?Category=Documents&File=OverallSynopsis.

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=OverallSynopsis
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=OverallSynopsis
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Table 1. Measurement results for normalizations N1 and N2 over all benchmark
domains

AGT
(23 Prob.)

CSR
(123 Prob.)

GEG
(18 Prob.)

LCL
(139 Prob.)

PHI
(10 Prob.)

PUZ
(59 Prob.)

QUA
(20 Prob.)

SET
(145 Prob.)

Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2

LEO-II

Solved 23 23 23 61 69 45 12 13 11 104 93 104 6 5 5 31 32 31 0 0 0 134 134 135

–THM 23 23 23 57 65 41 12 13 11 99 88 99 6 5 5 31 32 31 0 0 0 134 134 135

Σ [s] 4.9 4.8 4.6 417 98 200 5.2 5.3 16.4 22.2 13.1 22.2 18.3 0.6 0.6 8.8 21 9.2 — — — 14.9 16.4 15.3

Avg. [s] 0.2 0.2 0.2 6.8 1.4 4.4 0.4 0.4 1.5 0.2 0.1 0.2 3 0.1 0.1 0.3 0.7 0.3 — — — 0.1 0.1 0.1

Satallax

Solved 18 19 19 58 78 51 17 17 15 113 114 112 7 7 7 35 37 33 2 2 2 138 136 138

–THM 18 19 19 54 74 47 17 17 15 104 105 103 7 7 7 31 34 30 2 2 2 138 136 138

Σ [s] 97 157 157 290 52 252 204 202 192 267 361 276 52 76 77 42 71 68 3.5 3.5 14.6 153 119 201

Avg. [s] 5.4 8.3 8.3 5 0.7 4.9 12 11.9 12.8 2.4 3.2 2.5 7.5 10.9 10.9 1.2 1.9 2.0 1.7 1.7 7.3 1.1 0.9 1.5

Results and Discussion. Table 1 displays the benchmark result summary. For the
two ATP systems LEO-II and Satallax, the number of solved problems and the
CPU time is shown for the original problems (denoted Org) in the respective
domain and the pre-processed problem domains (denoted N1 and N2 respec-
tively). The results for the remaining two normalization procedures are omitted
since they are very similar to the ones shown.3 The number of solved problems
(thereof theorems) is denoted Solved (–THM ). The sum (average) of CPU time
spent on solving all input problems (that could be solved using the respective
normalization procedure) is denoted Σ (Avg.).

As can be seen, in the case of the LEO-II prover, the normalization procedure
N1 results in more solved problems in benchmark domains CSR, GEG and PUZ.
A decrease in solved problems can be observed in domains LCL (only 90 %
solved) and PHI (83 % solved). The results of the remaining three benchmark
domains only differ in the overall (and average) solving time. For the Satallax
prover, the results are even better: More problems were solved in domains AGT,
CSR, LCL and SET using N1. Only in domain SET there are some problems
that could not be proven anymore (see remark on domain SET below). In all
cases, the normalization procedure N2 did not improve the reasoning effectivity.

The most striking increase in solved problems can be observed in domain CSR
where 8 problem were additionally solved due to N1 (roughly 13 %) by LEO-II.
Also, the overall (and average) proving time in N1 only takes approximately a
quarter of the original time (while proving more problems in that time). These
observations also apply for Satallax, where 20 more problems (34 %) were solved
by using N1 while reducing the reasoning time to roughly one quarter of the
original time. Detailed measurement results for problem domain CSR are shown
in Table 2, where the fifteen best speed-ups are displayed for each employed
ATP system. In order to provide additional evidence for the practicability of the
presented normalization procedures, we included Isabelle/HOL in these mea-
surements. The average speed-up for the Isabelle system is approx. 66 %. Here,
some problems that were originally provable by Isabelle’s CVC4 routine become
provable by Blast after normalization with N1, hence the speed-up.
3 The average time results for normalization procedure N3 are in nearly all cases within

a range of 0.1 % of the results for N1. Likewise results apply for N4 and N2.
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Table 2. The 15 best relative time improvements with normalization N1 in CSR
domain for the respective prover (ordered by speed-up). Normalization N2 is shown for
comparison. A timeout result of a system is denoted †.

Time [s]
Problem Orig. N1 N2

CSR153ˆ2 38.254 0.054 †
CSR138ˆ1 9.858 0.029 9.875

CSR153ˆ1 5.492 0.038 5.493

CSR126ˆ2 31.425 0.676 31.451

CSR139ˆ1 10.022 0.266 10.027

CSR137ˆ2 1.351 0.039 4.270

CSR134ˆ1 9.713 0.338 0.359

CSR122ˆ2 19.307 0.683 19.266

CSR143ˆ2 2.714 0.238 †
CSR153ˆ3 7.743 0.988 †
CSR119ˆ3 26.588 3.672 †
CSR120ˆ3 26.609 3.678 †
CSR137ˆ1 0.242 0.042 0.246

CSR152ˆ3 14.960 3.671 †
CSR151ˆ3 14.939 3.668 27.075

(a) Satallax

Time [s]
Problem Orig. N1 N2

CSR139ˆ2 5.331 0.146 5.633

CSR132ˆ2 5.331 0.283 †
CSR139ˆ1 1.196 0.055 1.142

CSR150ˆ1 1.633 0.091 1.604

CSR141ˆ2 1.229 0.202 †
CSR148ˆ1 0.295 0.057 †
CSR149ˆ2 1.002 0.194 1.479

CSR123ˆ2 0.930 0.192 †
CSR124ˆ2 0.731 0.190 †
CSR122ˆ2 0.725 0.193 †
CSR125ˆ2 0.757 0.327 †
CSR119ˆ2 0.355 0.173 †
CSR138ˆ1 0.104 0.054 0.122

CSR120ˆ2 0.388 0.202 †
CSR127ˆ2 0.342 0.190 0.529

(b) LEO-II

Time [s]
Problem Orig. N1 N2

CSR128ˆ2 52.286 14.305 49.489

CSR153ˆ2 50.682 14.056 51.087

CSR131ˆ2 49.519 13.983 52.484

CSR133ˆ2 48.984 13.902 50.028

CSR148ˆ2 43.199 14.172 42.063

CSR149ˆ2 40.294 14.310 38.664

CSR138ˆ2 39.387 15.305 40.481

CSR150ˆ1 29.746 11.767 29.844

CSR130ˆ2 49.632 21.136 46.207

CSR132ˆ2 55.217 24.252 56.829

CSR129ˆ2 47.401 20.979 45.682

CSR119ˆ1 26.858 12.259 12.343

CSR141ˆ2 52.501 26.366 44.813

CSR123ˆ2 52.272 26.337 54.192

CSR127ˆ2 27.227 14.248 26.311

(c) Isabelle

The above result show a significant increase in reasoning effectivity for prob-
lems of the CSR (commonsense reasoning) domain. In the investigated THF
subset of that domain, a majority of problems represent HOL embeddings of
SUMO [9] reasoning tasks.

Another major observation is that a TPTP rating 1.0 problem (i.e. a problem
that could not be solved by any ATP system) became provable after normaliza-
tion with procedure N1. Here, the problem PUZ145̂ 1 from the puzzles domain
can be shown to be a theorem in 5.8s by Satallax.

Another interesting aspect of the normalization procedures is the impact on
occurrences of defined equalities in problems. As discussed before, some prob-
lems in our benchmark suite became unprovable after normalization. This could
be due to the fact that the HOL ATPs under consideration provide some special
techniques for the manipulation of defined equalities, for example, Leibniz equal-
ities. Leibniz equalities have the form ∀P.Pa ⇔ Pb, ∀P.Pa ⊃ Pb, ∀P.¬Pa ∨ Pb,
etc., for arbitrary terms a and b.4 The special techniques are aiming at a more
goal directed equality handling as is possible with the above formulas, cf. [4].

However, our implemented normalization procedures do not yet support a
similar detection and treatment of defined equalities. Thus, executing a normal-
ization strategy can alter the structure of a (sub-)formula in a way that the HOL
ATPs do subsequently not recognize it as an instance of a defined equality any-
more. Augmenting our procedures with special techniques for defined equalities
might therefore further improve the above results. Similar techniques might be
useful for description and choice.

4 The prover LEO-II, for example, is able to detect such (sub-)formulas and to replace
them by primitive equalities a = b.
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Implementation. For the above experiments, the described normalization tech-
niques were implemented into a stand-alone pre-processing tool, called Leonora
(for Leo’s normalization) that can be used to normalize any higher-order prob-
lem file in THF format [15], ready to employ in conjunction with any TPTP-
compliant HO ATP system [14]. The selection of normalization steps to apply
on the input problem can be controlled individually for each technique via flags,
e.g. -a for enabling argument extraction or -r for formula renaming. A prelimi-
nary version of Leonora is freely available under MIT license and can be found
at GitHub5. For the experiments we used version 1 of Leonora.

4 Further Work

Even though we have not yet included special techniques for defined equalities,
the results show a significant improvement in some problem domains. Introduc-
ing such techniques has large potential to further improve these results.

Future work is to additionally support normalization techniques that are
more suited for non-CNF based calculi. While it was indeed possible to improve
Satallax’s performance in both speed and proving capabilities in some problem
domains, the system is using a quite different approach, i.e. a tableau method
with an iterative queuing, SAT solver and special treatment for existentially
quantified formulas. Applying the standard prenex algorithm could complicate
the problems for Satallax. In order to deal with provers that are not suited for
working with Skolem variables, we will additionally implement a procedure that
moves all quantifiers outside and omits the skolemization.

Additionally there is a lot of potential for further improvements, such as
finding meaningful size functions for the formula renaming procedure (cf. #CNF
from Sect. 2.2). One example would be size functions that aim at minimizing the
number of tableau branches created by the input problem.

5 Conclusion

In this work, we have adopted prominent first-order normalization techniques
for higher-order logic. First benchmark results of these techniques on a set of
HO problems indicate promising results. For each of the employed ATP systems
the normalization procedures enables an improvement in both speed as well as
number of solved problems for most benchmark domains. In some domains, up to
20 (34 %) more problems could be solved. Additionally, a problem that was not
solved by any ATP system before could be solved by Satallax in less than six
seconds after normalization.

We have observed that a straight-forward adaption of FOL techniques is
not enough for the HOL case. Especially the treatment of nested formulas has
great potential. Additionally, we have identified that a simple application of
these techniques can interfere with occurrence of defined equalities, which is a

5 The Leonora repository can be found at https://github.com/Ryugoron/Leonora.

https://github.com/Ryugoron/Leonora
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problem specifically arising in HOL. By lifting nested formulas to top-level, we
have on the one hand established a prenex normal form for HOL. On the other
hand, the lifting contributes to the improvement of a prover’s performance.
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Abstract. PPDLdet extends propositional dynamic logic (PDL) with
parallel composition of programs. This new construct has separation
semantics: to execute the parallel program (α || β) the initial state is
separated into two substates and the programs α and β are executed
on these substates. By adapting the elimination of Hintikka sets pro-
cedure, we provide a decision procedure for the satisfiability problem
of PPDLdet. We prove that this decision procedure can be executed in
deterministic exponential time, hence that the satisfiability problem of
PPDLdet is EXPTIME-complete.

1 Introduction

Propositional dynamic logic (PDL) is a multi-modal logic designed to reason
about behaviors of programs [11,23]. A modal operator 〈α〉 is associated to each
program α, formulas 〈α〉ϕ being read “the program α can be executed from the
current state to reach a state where the formula ϕ holds”. The set of programs is
structured by the following operators: sequential composition (α ;β) of programs
α and β executes β after α; nondeterministic choice (α∪β) of programs α and β
executes α or β; test ϕ? on formula ϕ checks whether the current state satisfies ϕ;
iteration α∗ of program α executes α a nondeterministic number of times. The
satisfiability problem of PDL is EXPTIME-complete [11,23]. Since PDL programs
are abstract, this logic has been successfully adapted to many different domains
like knowledge representation or linguistics [9,10,26].

A limitation of PDL is the lack of a construct to reason about concurrency.
Different extensions of PDL have been devised to overcome this limitation; let
us mention interleaving PDL [1], PDL with intersection [13] and the concurrent
dynamic logic [22]. A noteworthy property of these logics is that whenever a
parallel program is executable, some of its subprograms are executable too. But
in some situations, for example when some agents are forced to cooperate, it
may be the case that the parallel composition of some programs is executable
while no other programs (but tests) are. The propositional dynamic logic with
storing, recovering and parallel composition (PRSPDL) [4] can cope with such
situations. This logic extends PDL with parallel compositions of programs and
four special programs (for storing and recovering). These five new constructs are
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 373–388, 2016.
DOI: 10.1007/978-3-319-40229-1 26
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inspired by fork algebras [12] and their semantics rely on a single ternary relation
which intuitively models the decomposition of states into two substates. For the
parallel program (α ||β) to be executed at some state x, x must be decomposed
into two states w1 and w2 by the ternary relation, then α is executed at w1

reaching w3, β is executed at w2 reaching w4 and the final state y is obtained
by composing w3 and w4 by the ternary relation. These semantics for parallel
programs are inspired by the concurrent separation logic [6,21] and the ternary
relation, called the separation relation, is closely related to the Kripke semantics
of binary normal modal logics like the Boolean logic of bunched implication [18,
24]. In contrast with unary modalities which usually express relations between
states, a binary modality can express the internal structure of states, a formula
of the form ϕ ◦ ψ being read “the current state can be decomposed in two
substates, the first one satisfying ϕ, the other one satisfying ψ”. In PRSPDL, the
binary modality interpreted by the separation relation can be defined as ϕ◦ψ

.=
〈ϕ? ‖ ψ?〉�. Hence, PRSPDL embeds both PDL and the minimal binary normal
modal logic. Since binary modalities have been used in various fields of logics (see
for instance [14,19,27]), combining one with PDL’s actions is promising. Despite
these interesting features, little is known about PRSPDL. To our knowledge, the
only complexity results to date are that the satisfiability problem of PRSPDL is
in 2EXPTIME [2] and that variants of PRSPDL interpreted in classes of models
where the decomposition of states is deterministic are undecidable [3].

In the present work, we study the logic PPDLdet which is a variant of PRSPDL.
Its language is the fragment of PRSPDL without the four store/recover programs.
These special programsweredesigned to reasonaboutdata structures andare of lit-
tle use to reason about concurrency. The formulas ofPPDLdet are interpreted in the
class ofmodelswhere the composition of states is deterministic: there is atmost one
way to merge two states. This semantic condition, called �-determinism, is quite
natural andhas been studied inmany logicswith a binarymodality such asBoolean
logics of bunched implication [18,24], separation logics [8,25] and arrow logics [19].
Formally, �-determinism forces the ternary relation to be a partial binary opera-
tor. The satisfiability problem for PPDLdet has been shown in [5] to be in NEXP-
TIME, but the exact complexity of this problem was still unknown. In the present
paper,we adaptPratt’s elimination ofHintikka sets decisionprocedure forPDL [23]
to prove that the satisfiability problem of PPDLdet is EXPTIME-complete. Thus,
adding a �-deterministic parallel composition to PDL does not increase the com-
plexity of the logic. The adaptation of the elimination of Hintikka sets procedure
to PPDLdet is not straightforward. First, as it has been already outlined in [2,5],
a comprehensive decomposition of formulas such as the Fischer-Ladner closure is
not expressible in PPDLdet. Second, whereas in Pratt [23] states can be considered
independently, for PPDLdet the decomposition path leading to each state must be
remembered. Third, like for the filtration [5], �-determinism is not preserved by
the elimination of Hintikka set procedure.

The paper is organized as follows. In the next section, the language and
semantics of PPDLdet are introduced, along with the PPDLdet specific notions
of threads and twines. In Sect. 3, an adaptation of the Fischer-Ladner closure to
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PPDLdet is proposed. Section 4 presents the optimal decision procedure, which is
proved to be complete and sound in Sects. 5 and 6 respectively. Section 7 draws
a conclusion and proposes perspectives for future works.

2 Language and Semantics of PPDLdet

Let Π0 be a countable set of atomic programs (denoted by a, b . . .) and Φ0 a
countable set of propositional variables (denoted by p, q . . .). The sets Π and Φ
of programs and formulas are defined by:

α, β := a | (α ; β) | (α ∪ β) | ϕ? | α∗ | (α ‖ β)
ϕ := p | ⊥ | ¬ϕ | 〈α〉ϕ

Parentheses may be omitted for clarity. We define the dual modalities as usual:
[α] ϕ .= ¬〈α〉¬ϕ. The missing Boolean operators can be defined too, starting
with ϕ → ψ

.= [ϕ?] ψ. The syntactic operator ∼ is defined such that ∼ ϕ = ψ if
ϕ = ¬ψ for some ψ and ∼ ϕ = ¬ϕ otherwise. We write |α| and |ϕ| for the number
of occurrences of symbols in the program α and the formula ϕ, respectively.

A frame is a tuple (W,R,�) where W is a non-empty set of states (denoted
by w, x, y . . .), R is a function assigning a binary relation over W to each atomic
program and � is a ternary relation over W called the separation relation. Intu-
itively, x R (a) y means that the program a can be executed in state x, reaching
state y. Similarly, x � (y, z) means that x can be split into the states y and
z. We say that y and z are substates of x by the decomposition (x, y, z) ∈�.
Equivalently, x � (y, z) means that the substates y and z can be merged to
obtain x. When the merging of substates is functional, the frame is said to be
�-deterministic. This is a common restriction, for instance in Boolean logics
of bunched implication [18]. Formally, a frame is �-deterministic iff for all
x, y, w1, w2 ∈ W ,

if x � (w1, w2) and y � (w1, w2) then x = y (� -determinism)

A model is a tuple (W,R,�, V ) where (W,R,�) is a frame and V is a valua-
tion function associating a subset of W to each propositional variable. A model is
�-deterministic iff its frame is �-deterministic. The forcing relation � is defined
by parallel induction along with the extension of R to all programs:

M, x � p iff x ∈ V (p)
M, x � ⊥ never
M, x � ¬ϕ iff M, x � ϕ
M, x � 〈α〉ϕ iff ∃y ∈ W, x R (α) y and M, y � ϕ
x R (α ; β) y iff ∃z ∈ W, x R (α) z and z R (β) y
x R (α ∪ β) y iff x R (α) y or x R (β) y
x R (ϕ?) y iff x = y and M, x � ϕ
x R (α∗) y iff x R (α)∗

y
where R (α)∗ is the reflexive and transitive closure of R (α)

x R (α ‖ β) y iff ∃w1, w2, w3, w4 ∈ W,
x � (w1, w2) , w1 R (α) w3, w2 R (β) w4 and y � (w3, w4)



376 J. Boudou

PPDLdet is the logic with language Φ interpreted in the class of �-deter-
ministic frames. A formula ϕ ∈ Φ is PPDLdet satisfiable iff there exists a
�-deterministic model M = (W,R,�, V ) and a state w ∈ W such that
M, w � ϕ. The satisfiability problem of PPDLdet is the decision problem answer-
ing whether a formula in Φ is PPDLdet satisfiable.

Because of the semantics of parallel programs, PPDLdet does not have the
tree-like model property. To overcome this difficulty, PPDLdet models can be
partitioned into parts which have good properties. In [5], threads and twines were
introduced for that purpose. A thread is a set of states which can be reached
from each other by some program. Formally, given a model M = (W,R,�, V ),
a thread is an equivalence class over W by the symmetric and transitive closure
of the relation � defined by: x � y iff there exists some program α such that
x R (α) y. A twine is either a thread which contains no substates of another
state or a pair of threads such that whenever a state in one thread is a substate
by a decomposition then the other substate by this decomposition belongs to
the other thread in the twine. Formally, a twine is an ordered pair θ = (t�, tr)
of threads such that for all x, y, z ∈ W if x � (y, z) then y /∈ tr, z /∈ t� and
y ∈ t� ⇔ z ∈ tr. We abusively identify twines with the union of their threads.
It has been proved in [5] that whenever a formula is PPDLdet satisfiable, it is
satisfiable in a model M = (W,R,�, V ) such that the set of twines of M is a
partition of W and for any twine θ in M, there is at most two decompositions
(w, x, y) ∈� such that {x, y} ⊆ θ.

3 Fischer-Ladner Closure

The Fischer-Ladner closure [11] is a decomposition of PDL formulas into a com-
prehensive set of subformulas. This decomposition is used in the elimination
of Hintikka sets decision procedure of Pratt [23]. For PPDLdet we need such
a decomposition but parallel compositions of programs cause some difficulties.
Firstly, the language of PPDLdet is not expressive enough for a set of formulas
to capture the semantics of formulas of the form 〈α ‖ β〉ϕ. What is missing is
some formulas to put after the modalities 〈α〉 and 〈β〉. For this purpose, we add
the special propositional variables L1, L2, R1 and R2. These new propositional
variables identify corresponding left and right components of decompositions by
the separation relation: if x � (y, z) then Lt and Rt identify y and z respec-
tively, for some t ∈ {1, 2}. These propositional variables are special because
we will not include their valuation in the model. Instead, we will allow us to
modify their valuation depending on the states we consider (see Sect. 6). Two
pairs of new propositional variables are needed because we will consider pairs
of decompositions in Sect. 4 and we will need to distinguish them. We write
Δ+ = {L1, L2, R1, R2}, Φ+

0 = Φ0 ∪ Δ+ and Φ+ for the formulas over Π0 and
Φ+
0 . Implicitly, Φ denotes the set of formulas over Π0 and Φ0, i.e. formulas which

do not contain any propositional variables from Δ+. Secondly, we need to keep
track of the level of separation of each subformula. Hence we consider localized
formulas. A location is a word on the alphabet {
, r}, the empty word being



Complexity Optimal Decision Procedure for PDL with Parallel Composition 377

denoted by ε. A localized formula is a pair (μ, ϕ) composed of a location μ and
a formula ϕ.

Then, given a localized formula (μ, ϕ) we construct the closure Cl(μ, ϕ) of
(μ, ϕ) as the least set of localized formulas containing (μ, ϕ) and closed by the
rules in Fig. 1. It has to be noted that the closure presented here is an ad hoc
decomposition devised for the needs of the decision procedure in Sect. 4. More
general (and involved) closures for PPDLdet have been presented in [2,5].

(μ, a ϕ)

(μ, ϕ)

(μ, ϕ)

(μ, ∼ϕ)

(μ, ϕ? ψ)

(μ, ϕ) (μ, ψ)

(μ, α ; β ϕ)

(μ, α β ϕ)

(μ, α∗ ϕ)

(μ, α α∗ ϕ) (μ, ϕ)

(μ, α ∪ β ϕ)

(μ, α ϕ) (μ, β ϕ)

(μ, α β ϕ)

( α L1) ( α L2) (μ.r, β R1) (μ.r, β R2) (μ, ϕ)

Fig. 1. Rules of the closure calculus

In the remainder of this paper we will be mainly interested in the closure of
localized formulas of the form (ε, ϕ0) for some formula ϕ0 ∈ Φ. We define the
abbreviations Cl (ϕ0) = Cl(ε, ϕ0), SP(ϕ0) = {α | ∃μ,∃ϕ, (μ, 〈α〉ϕ) ∈ Cl (ϕ0)}
and Loc(ϕ0) = {μ | ∃ϕ, (μ, ϕ) ∈ Cl (ϕ0)} . The cardinality of Cl (ϕ0) is denoted
by Nϕ0 . It can be easily checked that the closure has the two properties expressed
by Lemmas 1 and 2.

Lemma 1. For any location μ, any program α and any formulas ψ ∈ Φ+ and
ϕ0 ∈ Φ, if (μ, 〈α〉ψ) ∈ Cl (ϕ0) then (μ, ψ) ∈ Cl (ϕ0).

Lemma 2. For any location μ and and any formulas ψ ∈ Φ+ and ϕ0 ∈ Φ, if
(μ, ψ) ∈ Cl (ϕ0) and ψ? ∈ SP(ϕ0) then there are no occurrences of propositional
variables from Δ+ in ψ.

Moreover, the proof from [11] can be adapted to prove the following lemma:

Lemma 3. The cardinality of Cl (ϕ0) is linear in |ϕ0|.

Proof. For any localized formula (μ, ϕ), we define the restricted closure rCl(μ, ϕ)
of ϕ like the closure Cl(μ, ϕ) except that the rules for negations, iterations,
nondeterministic choices and parallel compositions are replaced with the rules
in Fig. 2. The new propositional variables of the form Qψ serve the same role as
in [11]. Obviously, Cl(ε, ϕ0) can be obtained from rCl(ε, ϕ0) and the cardinality
of Cl(ε, ϕ0) is not greater than four times the cardinality of rCl(ε, ϕ0). Then, the
function γ on programs and formulas is inductively defined by:
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γ(p) = 1
γ(L1) = 1
γ(R1) = 1
γ(Qϕ) = 1
γ(¬ϕ) = γ(ϕ) + 1

γ(〈α〉ϕ) = γ(α) + γ(ϕ)

γ(a) = 1
γ(ϕ?) = γ(ϕ) + 1

γ(α ; β) = γ(α) + γ(β) + 1
γ(α∗) = γ(α) + 2

γ(α ∪ β) = γ(α) + γ(β) + 3
γ(α ‖ β) = γ(α) + γ(β) + 3

The following properties can be easily proved by induction on n > 0:

1. For any program α, if n = |α| then γ(α) ≤ 3n.
2. For any formula ϕ, if n = |ϕ| then γ(ϕ) ≤ 3n.
3. For any localized formula (μ, ϕ), if γ(ϕ) = n then the cardinality of rCl(μ, ϕ)

is less or equal to n. ��

(μ, α∗ ϕ)

(μ, α Q α∗ ϕ) (μ, ϕ)

(μ, α ∪ β ϕ)

(μ, α Qϕ) (μ, β Qϕ) (μ, ϕ)

(μ, ¬ϕ)

(μ, ϕ)

(μ, α β ϕ)

( α L1) (μ.r, β R1) (μ, ϕ)

Fig. 2. Replacement rules for the restricted closure calculus

4 Elimination of Hintikka Sets Procedure

In this section we describe a decision procedure for the satisfiability problem
of PPDLdet. This decision procedure is based on the elimination of Hintikka set
decision procedure devised for PDL by Pratt [23]. The principle of such decision
procedures is to first construct a potential finite model for the formula ϕ0 being
tested for satisfiability. This initial model must somehow embed any possible
model which could satisfy ϕ0. Then the states of that model not fulfilling some
eventualities are recursively removed. The procedure succeeds if the final model
still contains some states satisfying ϕ0. For PDL, states of the initial model are
some subsets of the Fischer-Ladner closure called Hintikka sets, an eventual-
ity is a formula of the form 〈α〉ψ belonging to a state and a state satisfies a
formula if it contains this formula. There are two main difficulties in adapting
this decision procedure to PPDLdet. Firstly, Hintikka sets are not sufficient to
characterize states of PPDLdet models. The decomposition path leading to each
state is an essential information. Therefore, we introduce plugs, which corre-
spond to decompositions by the separation relation, and sockets, which are sets
of plugs and correspond to twines. A state of the initial model is a pair (H,S)
where H is a Hintikka set and S a socket. Secondly, the resulting model is not
�-deterministic. Hence to prove that whenever the procedure succeeds the for-
mula is satisfiable, a �-deterministic model must be constructed from the final
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model. This construction is detailed in Sect. 5. In the remainder of the present
section, we formally describe the elimination of Hintikka sets procedure for
PPDLdet.

Definition 1. Let ϕ0 ∈ Φ be a formula and μ a location in Loc(ϕ0). A Hintikka
set H over ϕ0 at μ is any maximal subset of Cl (ϕ0) verifying all the following
conditions:

1. If (μ′, ϕ) ∈ H, then μ′ = μ.
2. If (μ,¬ϕ) ∈ Cl (ϕ0), then (μ,¬ϕ) ∈ H iff (μ, ϕ) /∈ H.
3. If (μ, 〈α ; β〉ϕ) ∈ Cl (ϕ0), then (μ, 〈α ; β〉ϕ) ∈ H iff (μ, 〈α〉〈β〉ϕ) ∈ H.
4. If (μ, 〈α ∪ β〉ϕ) ∈ Cl (ϕ0), then (μ, 〈α ∪ β〉ϕ) ∈ H iff (μ, 〈α〉ϕ) ∈ H or

(μ, 〈β〉ϕ) ∈ H.
5. If (μ, 〈ϕ?〉ψ) ∈ Cl (ϕ0), then (μ, 〈ϕ?〉ψ) ∈ H iff (μ, ϕ) ∈ H and (μ, ψ) ∈ H.
6. If (μ, 〈α∗〉ϕ) ∈ Cl (ϕ0), then (μ, 〈α∗〉ϕ) ∈ H iff (μ, 〈α〉〈α∗〉ϕ) ∈ H or

(μ, ϕ) ∈ H.

μ is called the location of H, denoted by λ(H). The set of all Hintikka sets over
ϕ0 at all μ ∈ Loc(ϕ0) is denoted by Hin (ϕ0).

Definition 2. A plug for ϕ0 is a triple P = (H,H1,H2) of Hintikka sets from
Hin (ϕ0) such that:

1. λ(H1) = λ(H).
 and λ(H2) = λ(H).r;
2. P has a type, which is an index t ∈ {1, 2} such that (λ(H1), Lt) ∈ H1 and

(λ(H2), Rt) ∈ H2.

Notice that a plug may have more than one type. Two plugs have different types
if there is no t ∈ {1, 2} such that t is a type of both plugs. The location of the
plug P = (H,H1,H2), denoted by λ(P ), is the location of H.

Definition 3. A socket for ϕ0 is a set S of plugs for ϕ0 such that:

1. S is either the empty set, a singleton or a set {P, P ′} such that P and P ′

have the same location but different types;
2. for any (H,H1,H2), (H ′,H3,H4) ∈ S, any type t′ of (H ′,H3,H4) and any

α, β, ϕ such that (λ(H), 〈α ‖ β〉ϕ) ∈ Cl (ϕ0),

if (λ(H ′), ϕ) ∈ H ′ and
(λ(H1), 〈α〉Lt′) ∈ H1 and
(λ(H2), 〈β〉Rt′) ∈ H2

then (λ(H), 〈α ‖ β〉ϕ) ∈ H.

The set of all sockets for ϕ0 is denoted by S (ϕ0). The location set of a socket S,
denoted by Λ(S), is defined such that Λ(∅) = {ε} and for all S �= ∅, Λ(S) =
{λ(P ).
, λ(P ).r | P ∈ S} .
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Given a formula ϕ0 ∈ Φ we construct inductively for each k ∈ N the tuple
Mϕ0

k = (Wϕ0
k , Rϕ0

k ,�ϕ0
k , V ϕ0

k ) where Wϕ0
k ⊆ Hin (ϕ0) × S (ϕ0). Each of these

tuples is a model iff Wϕ0
k �= ∅. The restricted accessibility relation R̂ϕ0

k (α) over
Wϕ0

k is inductively defined for all k ∈ N and all α ∈ Π by:

– (H,S) R̂ϕ0
k (a) (H ′, S′) iff (H,S) Rϕ0

k (a) (H ′, S′),
– (H,S) R̂ϕ0

k (ϕ?) (H ′, S′) iff (H,S) = (H ′, S′) and (λ(H), ϕ) ∈ H,
– (H,S) R̂ϕ0

k (α ; β) (H ′, S′) iff ∃ (H ′′, S′′) ∈ Wϕ0
k , (H,S) R̂ϕ0

k (α) (H ′′, S′′) and
(H ′′, S′′) R̂ϕ0

k (β) (H ′, S′),
– (H,S) R̂ϕ0

k (α ∪ β) (H ′, S′) iff (H,S) R̂ϕ0
k (α) (H ′, S′) or (H,S) R̂ϕ0

k (β)
(H ′, S′),

– (H,S) R̂ϕ0
k (α∗) (H ′, S′) iff (H,S) R̂ϕ0

k (α)
∗
(H ′, S′) where R̂ϕ0

k (α)
∗

is the
reflexive and transitive closure of R̂ϕ0

k (α),
– (H,S) R̂ϕ0

k (α ‖ β) (H ′, S′) iff S = S′ and ∃H1,H2,H3,H4 ∈ Hin (ϕ0),
S′′ = {(H,H1,H2), (H ′,H3,H4)} ∈ S (ϕ0), (H1, S

′′) R̂ϕ0
k (α) (H3, S

′′) and
(H2, S

′′) R̂ϕ0
k (β) (H4, S

′′).

Initial Step. The initial tuple Mϕ0
0 = (Wϕ0

0 , Rϕ0
0 ,�ϕ0

0 , V ϕ0
0 ) is constructed as

follows:

– Wϕ0
0 is the set of pairs (H,S) ∈ Hin (ϕ0) × S (ϕ0) such that λ(H) ∈ Λ(S),

– for all a ∈ Π0, (H,S) Rϕ0
0 (a) (H ′, S′) iff S = S′ and ∀(μ, ϕ) ∈ H ′, if

(μ, 〈a〉ϕ) ∈ Cl (ϕ0) then (μ, 〈a〉ϕ) ∈ H,
– (H,S) �ϕ0

0 ((H1, S1) , (H2, S2)) iff S1 = S2 and (H,H1,H2) ∈ S1,
– for all p ∈ Φ+

0 , V ϕ0
0 (p) = {(H,S) ∈ Wϕ0

0 | (λ(H), p) ∈ H} .

Inductive (k + 1)th Step. Suppose Mϕ0
k = (Wϕ0

k , Rϕ0
k ,�ϕ0

k , V ϕ0
k ) has already

been defined. A state (H,S) ∈ Wϕ0
k is demand-satisfied in Mϕ0

k iff for any
program α and any formula ϕ, if (λ(H), 〈α〉ϕ) ∈ H then there exists (H ′, S′) ∈
Wϕ0

k such that (H,S) R̂ϕ0
k (α) (H ′, S′) and (λ(H ′), ϕ) ∈ H ′. Define Mϕ0

k+1 =
(
Wϕ0

k+1, R
ϕ0
k+1,�

ϕ0
k+1, V

ϕ0
k+1

)
such that :

– Wϕ0
k+1 = {(H,S) ∈ Wϕ0

k | (H,S) is demand-satisfied in Mϕ0
k } ,

– Rϕ0
k+1(a) = Rϕ0

k (a) ∩ (Wϕ0
k+1)

2 for all a ∈ Π0,
– �ϕ0

k+1=�ϕ0
k ∩(Wϕ0

k+1)
3,

– V ϕ0
k+1(p) = V ϕ0

k (p) ∩ Wϕ0
k+1 for all p ∈ Φ+

0 .

It can be easily proved that there is less than 27Nϕ0+1 states in Wϕ0
0 . There-

fore, there exists n ≤ 27Nϕ0+1 such that Mϕ0
n = Mϕ0

n+k for all k ∈ N. Let
Mϕ0 = (Wϕ0 , Rϕ0 ,�ϕ0 , V ϕ0) = Mϕ0

n . Our procedure succeeds iff there is a
state (H0, S0) ∈ Wϕ0 such that (ε, ϕ0) ∈ H0.

Lemma 4. Given a formula ϕ0, to construct the corresponding model Mϕ0 and
to check whether there is a state (H0, S0) ∈ Wϕ0 such that (ε, ϕ0) ∈ H0 can be
done in deterministic exponential time.
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Proof. We have already stated that the procedure constructs at most an expo-
nential number of models. The method from [16] can be easily adapted to prove
that R̂ϕ0

k (α) can be computed in time polynomial in the cardinality of Wϕ0
k .

Therefore, the whole procedure can be executed in deterministic exponential
time. ��

The remainder of this work is devoted to prove that this procedure is a deci-
sion procedure for the satisfiability problem of PPDLdet. We use the traditional
vocabulary used for the dual problem of validity.

5 Completeness

In this section, we suppose that Mϕ0 = (Wϕ0 , Rϕ0 ,�ϕ0 , V ϕ0) has been con-
structed, for a given formula ϕ0 ∈ Φ, as defined in the previous section and that
there exists (H0, S0) ∈ Wϕ0 such that (ε, ϕ0) ∈ H0. We will prove that ϕ0 is
satisfiable in the class of �-deterministic models. Obviously, Mϕ0 is a model.
But in the general case, Mϕ0 is not �-deterministic. Therefore we will construct
from Mϕ0 a �-deterministic model Mdet =

(
W det, Rdet,�det, V det

)
satisfying

ϕ0. The main idea is to consider the equivalence classes by the relation � over
Wϕ0 defined such that (H,S) � (H ′, S′) iff S = S′. It can be proved that, by
removing from Mϕ0 some “unreachable” states, these equivalence classes are
twines and that the removed states are not needed in the proofs of the present
section. Hence we will abusively call these equivalence classes twines. Remark
that each such twine corresponds exactly to a socket. The initial twine θ0 is
the twine which corresponds to the empty socket ∅. The model Mdet is con-
structed inductively as follows. Initially, the model contains only a copy of the
initial twine θ0. Then, whenever two states in Mdet are copies of states reachable
in Mϕ0 by a parallel program, a copy of the twine linking these two states in
Mϕ0 is added to Mdet. Since there are no decompositions within twines, we can
ensure that Mdet is �-deterministic, while preserving the satisfiability of ϕ0.

Formally, to be able to copy twines, hence states, the states of Mdet are
pairs (i, (H,S)) where i is a positive natural number and (H,S) is a state
from Mϕ0 . We define the set PL ⊆ N × Wϕ0 × SP(ϕ0) × Wϕ0 of paral-
lel links such that (n, (H,S) , α, (H ′, S′)) ∈ PL iff (H,S) R̂ϕ0 (α) (H ′, S′)
and there exists β, γ ∈ Π such that α = β ‖ γ. As both Wϕ0 and SP(ϕ0)
are finite, PL can be totally ordered such that (n1, (H1, S1) , α1, (H ′

1, S
′
1)) <

(n2, (H2, S2) , α2, (H ′
2, S

′
2)) implies n1 ≤ n2. If PL is not empty, such an order

has a least element, hence the kth element of PL is well defined for all k ∈ N.
Moreover, if (n, (H,S) , α, (H ′, S′)) is the kth element of PL, then n ≤ k. Now,
we construct inductively the models

(
Mdet

k

)
k∈N

as follows.
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Initial Step. Mdet
0 =

(
W det

0 , Rdet
0 ,�det

0 , V det
0

)
is defined such that:

W det
0 = {(0, (H,S)) | (H,S) ∈ θ0}

Rdet
0 (a) =

{
((iF , (HF , SF )), (iT , (HT , ST ))) ∈ W det

0 × W det
0

∣
∣

iF = iT and (HF , SF ) Rϕ0 (a) (HT , ST )}
�det

0 = ∅
V det
0 (p) =

{
(i, (H,S)) ∈ W det

0 | (λ(H), p) ∈ H}

If PL is empty, let us define Mdet
k = Mdet

0 for all k > 0. Otherwise, the
following step is applied recursively.

Inductive (k + 1)th Step. Suppose that Mdet
k has already been constructed and

(n, (H,S) , α ‖ β, (H ′, S′)) is the kth tuple in PL. If (n, (H,S)) /∈ W det
k or

(n, (H ′, S′)) /∈ W det
k then Mdet

k+1 = Mdet
k . Otherwise, since (H,S) R̂ϕ0 (α ‖ β)

(H ′, S′), there exists H1,H2,H3,H4 ∈ Hin (ϕ0) such that S′′ = {(H,H1,H2),
(H ′,H3,H4)} ∈ S (ϕ0), (H1, S

′′) R̂ϕ0 (α) (H3, S
′′) and (H2, S

′′) R̂ϕ0 (β)
(H4, S

′′). Let θ be the twine corresponding to S′′. The model Mdet
k+1 is defined

by:

W det
k+1 = W det

k ∪ {(i, (H ′′′, S′′′)) | i = k + 1 and (H ′′′, S′′′) ∈ θ}
Rdet

k+1(a) =
{
((iF , (HF , SF )), (iT , (HT , ST ))) ∈ W det

k+1 × W det
k+1

∣
∣

iF = iT and (HF , SF ) Rϕ0 (a) (HT , ST )}
�det

k+1 =�det
k ∪{((n, (H,S)), (k + 1, (H1, S

′′)), (k + 1, (H2, S
′′))),

((n, (H ′, S′)), (k + 1, (H3, S
′′)), (k + 1, (H4, S

′′)))}
vdet

k+1(p) =
{
(i, (H ′′′, S′′′)) ∈ W det

k+1 | (λ(H ′′′), p) ∈ H ′′′}

Finally, the model Mdet is defined as the union of all the models Mdet
k for

k ∈ N. We prove now that Mdet is a �-deterministic model satisfying ϕ0.

Lemma 5. Mdet is �-deterministic.

Proof. Let us suppose that (k, (H,S)) �det ((k1, (H1, S1)), (k2, (H2, S2))) and
(k′, (H ′, S′)) �det ((k1, (H1, S1)), (k2, (H2, S2))). By construction, k1 = k2 and
S1 = S2. Moreover, those two tuples have been added to �det at the k1

th induc-
tive step. Therefore, k = k′, S = S′ and {(H,H1,H2), (H ′,H1,H2)} ∈ S (ϕ0).
Since the types of (H,H1,H2) and (H ′,H1,H2) only depend on H1 and H2,
these two plugs have the same types. Hence, by Definition 3, H = H ′. ��

To prove that Mdet satisfies ϕ0 (Lemma 8), we need the following two lemmas.

Lemma 6. For all k ∈ N, all (H,S) , (H ′, S′) ∈ Wϕ0
k and all programs α,

if (H,S) R̂ϕ0
k (α) (H ′, S′), then S = S′, λ(H) = λ(H ′) and for all i ≤ k,

(H,S) R̂ϕ0
i (α) (H ′, S′).
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Proof. By a simple induction on |α|. We detail only the case for parallel composi-
tions. Suppose that (H,S) R̂ϕ0

k (α ‖ β) (H ′, S′). By definition, S = S′ and there
exists H1,H2,H3,H4 such that S′′ = {(H,H1,H2), (H ′,H3,H4)} is a socket,
(H1, S

′′) R̂ϕ0
k (α) (H3, S

′′) and (H2, S
′′) R̂ϕ0

k (β) (H4, S
′′). Since S′′ is a socket,

λ(H) = λ(H ′). By induction, for all i ≤ k, (H1, S
′′) R̂ϕ0

i (α) (H3, S
′′) and

(H2, S
′′) R̂ϕ0

i (β) (H4, S
′′), hence (H,S) R̂ϕ0

i (α ‖ β) (H ′, S′). ��

Lemma 7. For all (H,S) , (H ′, S′) ∈ Wϕ0 , all α ∈ Π and all ϕ ∈ Φ, if
(λ(H), [α] ϕ) ∈ H and (H,S) R̂ϕ0 (α) (H ′, S′) then (λ(H ′), ϕ) ∈ H ′.

Proof. The proof is by induction on |α|. We only prove the case when α is a
parallel composition. The other cases are straightforward and left to the reader.
Suppose that (λ(H), [α ‖ β] ϕ) ∈ H and (H,S) R̂ϕ0 (α ‖ β) (H ′, S′). By defi-
nition, there exists H1,H2,H3,H4 ∈ Hin (ϕ0) such that, S′′ = {(H,H1,H2),
(H ′,H3,H4)} ∈ S (ϕ0), (H1, S

′′) R̂ϕ0 (α) (H3, S
′′) and (H2, S

′′) R̂ϕ0 (β)
(H4, S

′′). As H is a Hintikka set, (λ(H), 〈α ‖ β〉¬ϕ) /∈ H. Since (H ′,H3,H4) is a
plug, there exists t′ ∈ {1, 2} such that (λ(H3), Lt′) ∈ H3 and (λ(H4), Rt′) ∈ H4.
And since S′′ is a socket, by Condition 2 of Definition 3, one of the following
statements holds:

(λ(H1), 〈α〉Lt′) /∈ H1 (1)
(λ(H2), 〈β〉Rt′) /∈ H2 (2)

(λ(H ′),¬ϕ) /∈ H ′ (3)

If (1) holds, then (λ(H1), [α] ¬Lt′) ∈ H1 and by the induction hypothesis
(λ(H3),¬Lt′) ∈ H3 which is a contradiction. The case when (2) holds is similar.
Finally, if (3) holds, then (λ(H ′), ϕ) ∈ H ′. ��

We can now state the following truth lemma.

Lemma 8 (Truth lemma). For all (k, (H,S)) ∈ W det and all (μ, ϕ) ∈ Cl (ϕ0),

(μ, ϕ) ∈ H iff Mdet, (k, (H,S)) � ϕ and λ(H) = μ

Proof. The following two properties are proved by induction on n for all n ∈ N

and all (k, (H,S)) ∈ W det:

IH.1 for all α ∈ Π and all (k′, (H ′, S′)) ∈ W det, if n = |α| and ∃ϕ ∈ Φ+ such
that (λ(H), 〈α〉ϕ) ∈ Cl (ϕ0), then:

(k, (H,S)) Rdet (α) (k′, (H ′, S′)) iff (H,S) R̂ϕ0 (α) (H ′, S′) and k = k′

IH.2 for all (μ, ϕ) ∈ Cl (ϕ0), if n = |ϕ| and λ(H) = μ then:

(μ, ϕ) ∈ H iff Mdet, (k, (H,S)) � ϕ
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First note that by Lemma 6 and by the construction of Mdet, if (k, (H,S)) ∈
W det and (H,S) R̂ϕ0 (α) (H ′, S′) then (k, (H ′, S′)) ∈ W det. Then for IH.1, we
detail only the case for parallel compositions, the other cases being straightfor-
ward. Suppose α = β ‖ γ. For the right-to-left direction, (k, (H,S) , α, (H ′, S′)) ∈
PL, hence by construction and by IH.1, (k, (H,S)) Rdet (α) (k′, (H ′, S′)). For
the left-to-right direction, there exists wi = (ki, (Hi, Si)) ∈ W det for each
i ∈ 1 . . 4 such that (k, (H,S)) �det (w1, w2), w1 Rdet (β) w3, w2 Rdet (γ) w4 and
(k′, (H ′, S′)) �det (w3, w4). By IH.1, k1 = k3, k2 = k4, (H1, S1) R̂ϕ0 (β) (H3, S3)
and (H2, S2) R̂ϕ0 (γ) (H4, S4). By the construction of Mdet, k = k′, S1 = S2 =
S3 = S4 and {(H,H1,H2), (H ′,H3,H4)} ⊆ S1. And since any subset of a socket
is a socket, (H,S) R̂ϕ0 (α) (H ′, S′). For IH.2, the cases for propositional variables
and their negation are trivial. For diamond modalities, suppose ϕ = 〈α〉ψ. By
construction of Mϕ0 , there is (H ′, S′) ∈ Wϕ0 such that (H,S) R̂ϕ0 (α) (H ′, S′)
and (λ(H ′), ψ) ∈ H ′. And by IH.1 and IH.2, Mdet, (k, (H,S)) � 〈α〉ψ. The case
for box modalities is managed by Lemma 7. ��

By hypothesis, there exists (H,S) ∈ Wϕ0 such that (ε, ϕ0) ∈ H. And by con-
struction, for any state (H,S) ∈ Wϕ0 , if λ(H) = ε then (0, (H,S)) ∈ W det.
Therefore, Lemma 8 proves Mdet satisfy ϕ0.

6 Soundness

In this section we prove that for any PPDLdet formula ϕ0, if ϕ0 is satisfi-
able then there exists (H0, S0) ∈ Wϕ0 such that (ε, ϕ0) ∈ H0, where Mϕ0 =
(Wϕ0 , Rϕ0 ,�ϕ0 , V ϕ0) has been obtained by the elimination of Hintikka sets pro-
cedure described in Sect. 4. The proof proceeds as follows. First, considering a
PPDLdet model M satisfying ϕ0, a correspondence between the states of M and
some states of Wϕ0

0 is constructed. Then, it is proved that the states of Wϕ0
0

corresponding to states in M can not be deleted by the procedure and that
one of these states (H0, S0) ∈ Wϕ0

0 is such that (ε, ϕ0) ∈ H0. The difficulties
come from the involved structure of Mϕ0

0 with locations, Hintikka sets, plugs
and sockets and from the new propositional variables Lt and Rt. To overcome
these difficulties, we use the following result from [5] which allows us to assume
some properties about M.

Proposition 1. For any formula ϕ0, if ϕ0 is PPDLdet satisfiable then there
exists a model M = (W,R,�, V ), a state x0 ∈ W and a function λ from W to
locations such that for all x, y, z ∈ W and α ∈ Π:

M, x0 � ϕ0 (4)
λ(x0) = ε (5)

if x � (y, z) then λ(y) = λ(x).
 and λ(z) = λ(x).r (6)
if x R (α) y then λ(x) = λ(y) (7)
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From now on, we assume that M is as described in Proposition 1. In order to
interpret the new propositional variables introduced by the closure defined in
Sect. 3, extensions of the valuation V are defined as follows.

Definition 4. For any model M = (W,R,�, V ) and any formulas ϕ0, a valua-
tion extension of M to ϕ0 is a function V from the new propositional variables
L1, L2, R1 and R2 to subsets of W . We write M+V for the model (W,R,�, V ′)
where V ′ is the function satisfying:

V ′(p) = V (p) iff p ∈ Φ0

V ′(p) = V(p) iff p ∈ Δ+

The set of all valuation extensions of M to ϕ0 is denoted by V(M, ϕ0).

It has to be noticed that by Lemma 2, there are no occurrences of propositional
variables from Δ+ in any program of SP(ϕ0). Therefore, as long as only programs
from SP(ϕ0) are considered, the extension of R for M + V does not depend on
V and the notation R for this extension is not ambiguous.

Then, to define the correspondence between W and Wϕ0
0 , we define the func-

tions hhin, hplug, hsocket and hstate such that for all x, y, z ∈ W , T ⊆� and
V,V ′ ∈ V(M, ϕ0):

hhin(x,V) = {(μ, ϕ) ∈ Cl (ϕ0) | μ = λ(x) and M + V, x � ϕ}
hplug((x, y, z),V,V ′) = (hhin(x,V ′), hhin(y,V), hhin(z,V))

hsocket(T ,V,V ′) = {hplug(D,V,V ′) | D ∈ T }
hstate(x, T ,V,V ′) = (hhin(x,V), hsocket(T ,V,V ′))

A state (H,S) ∈ Wϕ0
0 has a correspondence if there exists x ∈ W , T ⊆� and

V,V ′ ∈ V(M, ϕ0) such that hstate(x, T ,V,V ′) = (H,S). Obviously, for all x ∈ W
and all V ∈ V(M, ϕ0), hhin(x,V) is a Hintikka set. The following lemmas prove
this correspondence has the desired properties.

Lemma 9. For some x ∈ W , T ⊆� and V,V ′ ∈ V(M, ϕ0), (ε, ϕ0) ∈ hhin(x,V)
and hstate(x, T ,V,V ′) ∈ Wϕ0

0 .

Proof. Define V∅ such that V∅(p) = ∅ for all p ∈ Δ+. By (4) and (5), (ε, ϕ0) ∈
hhin(x0,V∅). Moreover, hsocket(∅,V∅,V∅) = ∅ is trivially a socket and since Λ(∅) =
{ε}, hstate(x0, ∅,V∅,V∅) ∈ Wϕ0

0 . ��
Lemma 10. For all x ∈ W , all T ⊆� and all V,V ′ ∈ V(M, ϕ0),

if hstate(x, T ,V,V ′) ∈ Wϕ0
0 then for all k ∈ N, hstate(x, T ,V,V ′) ∈ Wϕ0

k .

Proof. We prove by induction on k that for all k ∈ N, x ∈ W , T ⊆� and
V,V ′ ∈ V(M, ϕ0):

IH.1 if hstate(x, T ,V,V ′) ∈ Wϕ0
0 then hstate(x, T ,V,V ′) ∈ Wϕ0

k ;
IH.2 for all y ∈ W and all α ∈ Π such that ∃ϕ, (λ(x), 〈α〉ϕ) ∈ Cl (ϕ0), if

x R (α) y and hstate(x, T ,V,V ′) ∈ Wϕ0
k then hstate(y, T ,V,V ′) ∈ Wϕ0

k and
hstate(x, T ,V,V ′) R̂ϕ0

k (α) hstate(y, T ,V,V ′).
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Base case. IH.1 is trivial. For IH.2, we first prove that hstate(y, T ,V,V ′) ∈
Wϕ0

0 . By hypothesis, hsocket(T ,V,V ′) is a socket. Hence it only remains to be
proved that λ(y) ∈ Λ (hsocket(T ,V,V ′)) which is the case by (7) since λ(x) ∈
Λ (hsocket(T ,V,V ′)). The proof that hstate(x, T ,V,V ′) R̂ϕ0

0 (α) hstate(y, T ,V,V ′)
is by a subinduction on |α|. We detail only the case for parallel compositions, the
other cases being straightforward. Suppose x R (β ‖ γ) y. There exists w1, w2,
w3, w4 ∈ W such that x � (w1, w2), w1 R (β) w3, w2 R (γ) w4 and y � (w3, w4).
Let V ′′ be defined such that V ′′(L1) = {w1}, V ′′(R1) = {w2}, V ′′(L2) = {w3} and
V ′′(R2) = {w4}. Since, by hypothesis, there exists ϕ such that (λ(x), 〈β ‖ γ〉ϕ) ∈
Cl (ϕ0), by Lemma 1, (λ(x).
, L1) ∈ Cl (ϕ0) and (λ(x).r, R1) ∈ Cl (ϕ0). There-
fore, by (6), hplug((x,w1, w2),V ′′,V) is a plug of type 1. By a similar reasoning,
hplug((y, w3, w4),V ′′,V) is a plug of type 2. Let T ′ = {(x,w1, w2), (y, w3, w4)},
S′ = hsocket(T ′,V ′′,V) and Hi = hhin(wi,V ′′) for all i ∈ 1 . . 4. By definition,
(Hi, S

′) = hstate(wi, T ′,V ′′,V) for all i ∈ 1 . . 4. We prove that S′ is a socket.
For Condition 1 of Definition 3, suppose first that hplug((x,w1, w2),V ′′,V) has
both types. Then (λ(w1), L2) ∈ H1 and (λ(w2), R2) ∈ H2, hence w1 = w3,
w2 = w4 and T ′ is a singleton. The case is similar if hplug((y, w3, w4),V ′′,V) has
both types. And if the plugs have different types, by (7) they have the same
location. For Condition 2 of Definition 3, suppose that (λ(x), 〈α′ ‖ β′〉ϕ′) ∈
Cl (ϕ0), (λ(y), ϕ′) ∈ hhin(y,V), (λ(w1), 〈α′〉L2) ∈ H1 and (λ(w2), 〈β′〉R2) ∈
H2, the other case being symmetric. By definition of V ′′, w1 R (α′) w3 and
w2 R (β′) w4, hence M + V, x � 〈α′ ‖ β′〉ϕ′ and (λ(x), 〈α′ ‖ β′〉ϕ′) ∈ hhin(x,V).
Therefore, S′ is a socket.Moreover, since Λ(S′) = {λ(x).
, λ(x).r}, by (6) and (7),
{(H1, S

′), (H2, S
′), (H3, S

′), (H4, S
′)} ⊆ Wϕ0

0 .Bythesubinductionhypothesis,we
have H1 R̂ϕ0

0 (β) H3 and H2 R̂ϕ0
0 (γ) H4. Therefore, by definition of the restricted

accessibility relation, hstate(x, T ′,V,V ′′) R̂ϕ0
0 (β ‖ γ) hstate(y, T ′,V,V ′′).

Inductive step. Suppose now that IH.1 and IH.2 hold for a given k. Here the
order of the proofs matters since we use IH.1 for k + 1 to prove IH.2 for k + 1.
To prove IH.1 for k + 1, suppose that hstate(x, T ,V,V ′) ∈ Wϕ0

k . Then for any
formula 〈α〉ϕ such that (λ(x), 〈α〉ϕ) ∈ hhin(x,V), there exists y ∈ W such that
x R (α) y and M+V, y � ϕ. And by IH.2, Lemma 1 and (7), hstate(y, T ,V,V ′) ∈
Wϕ0

k , hstate(x, T ,V,V ′) R̂ϕ0
k (α) hstate(y, T ,V,V ′) and (λ(y), ϕ) ∈ hhin(y,V).

Therefore hstate(x, T ,V,V ′) is demand-satisfied and belongs to Wϕ0
k+1. The proof

of IH.2 for k + 1 is similar to the corresponding proof in the base case except
that the hypothesis IH.1 for k + 1 is used. For instance, in the case for parallel
compositions, once it has been proved that hstate(wi, T ′,V ′′,V) ∈ Wϕ0

0 for all
i ∈ 1 . . 4, we use IH.1 to state that hstate(wi, T ′,V ′′,V) ∈ Wϕ0

k+1 for all i ∈ 1 . . 4.
Thus the subinduction hypothesis can be used to conclude. ��

7 Conclusion and Perspectives

In this work, we have presented a procedure for the decision of the satisfiabil-
ity problem of PPDLdet. This procedure is a nontrivial adaptation of Pratt’s
elimination of Hintikka set procedure [23]. We have proved that this decision
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procedure can be executed in deterministic exponential time. Since PDL can
be trivially embedded into PPDLdet, this decision procedure is optimal and the
satisfiability problem of PPDLdet is EXPTIME-complete. This result extends a
previous similar result for the iteration-free fragment of PPDLdet [2]: adding a
�-deterministic separating parallel composition to PDL does not increase the
theoretical complexity of the logic. This result contrasts with the 2EXPTIME
complexity of the satisfiability problem of both PDL with intersection [17] and
interleaving PDL [20].

Although �-determinism is a very natural semantic condition, which turns
the ternary separation relation into a partial binary operator, it would be inter-
esting for future research to consider other classes of models. For instance, for the
class of all models, only a 2EXPTIME upper bound is currently known [2]. For
the class of models where the separation of states is deterministic, even though
PRSPDL has been proved to be undecidable [3], it may be possible that in the
absence of the four store/recover programs of PRSPDL the logic is decidable.
Finally, for many concrete semantics like Petri nets or finite sets of agents, the
separation relation would have to be both �-deterministic and associative. The
minimal associative binary normal modal logic is undecidable [15], therefore the
variant of PDL with separating parallel composition interpreted in the class of
all associative �-deterministic models is undecidable too. But since there exists
some decidable associative binary modal logics (for instance the separation log-
ics kSL0 [7]), it would be interesting to search for decidable variants of PDL
with separating parallel composition interpreted in special classes of associative
�-deterministic models.
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R., Kooi, B.P., Kurucz, A. (eds.) Advances in Modal Logic - AiML, pp. 16–33.
College Publications, San Diego (2014)

4. Benevides, M.R.F., de Freitas, R.P., Viana, J.P.: Propositional dynamic logic with
storing, recovering and parallel composition. In: Hermann Haeusler, E., Farinas
del Cerro, L. (eds.) Logical and Semantic Frameworks, with Applications - LSFA.
ENTCS, vol. 269, pp. 95–107 (2011)

5. Boudou, J.: Exponential-size model property for PDL with separating parallel
composition. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 129–140. Springer, Heidelberg (2015)

6. Brookes, S.: A semantics for concurrent separation logic. Theoret. Comput. Sci.
375(1–3), 227–270 (2007)

7. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: Hariharan, R., Mukund, M.,
Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg
(2001)



388 J. Boudou

8. Demri, S., Deters, M.: Separation logics and modalities: a survey. J. Appl. Non-
Class. Logics 25(1), 50–99 (2015)

9. van Ditmarsch, H., van der Hoek, W., Kooi, B.P.: Dynamic Epistemic Logic, vol.
337. Springer Science & Business Media, Netherlands (2007)

10. van Eijck, J., Stokhof, M.: The gamut of dynamic logics. In: Gabbay, D.M., Woods,
J. (eds.) Logic and the Modalities in the Twentieth Century. Handbook of the
History of Logic, vol. 7, pp. 499–600. Elsevier, Amsterdam (2006)

11. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

12. Frias, M.F.: Fork Algebras in Algebra, Logic and Computer Science. Advances in
Logic, vol. 2. World Scientific, Singapore (2002)

13. Harel, D.: Recurring dominoes: making the highly undecidable highly understand-
able (preliminary report). In: Karpinski, M. (ed.) FCT. LNCS, vol. 158, pp. 177–
194. Springer, Heidelberg (1983)

14. Herzig, A.: A simple separation logic. In: Libkin, L., Kohlenbach, U., de Queiroz,
R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 168–178. Springer, Heidelberg (2013)
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Abstract. The model checking problem has thoroughly been explored
in the context of standard point-based temporal logics, such as LTL,
CTL, and CTL∗, whereas model checking for interval temporal logics
has been brought to the attention only very recently.

In this paper, we prove that the model checking problem for the logic
of Allen’s relations started-by and finished-by is highly intractable, as it
can be proved to be EXPSPACE-hard. Such a lower bound immedi-
ately propagates to the full Halpern and Shoham’s modal logic of time
intervals (HS). In contrast, we show that other noteworthy HS fragments,
namely, Propositional Neighbourhood Logic extended with modalities for
the Allen relation starts (resp., finishes) and its inverse started-by (resp.,
finished-by), turn out to have—maybe unexpectedly—the same complex-
ity as LTL (i.e., they are PSPACE-complete), thus joining the group of
other already studied, well-behaved albeit less expressive, HS fragments.

1 Introduction

Model checking (MC) is one of the most successful techniques in the area of for-
mal methods. It allows one to automatically check whether some desired prop-
erties of a system, specified by a temporal logic formula, hold over a model of
it. MC has proved itself to be extremely useful in formal verification [6], but it
has also been successfully exploited in various areas of AI, ranging from plan-
ning to configuration and multi-agent systems (see, for instance, [8,16]). Point-
based temporal logics, such as LTL [23], CTL, and CTL∗ [7], that allow one to
predicate over computation states, are usually adopted in MC as the specifica-
tion language, as they are suitable for practical purposes in many application
domains. However, some relevant temporal properties, that involve, for instance,
actions with duration, accomplishments, and temporal aggregations, are inher-
ently “interval-based” and thus cannot be expressed by point-based logics. Here,
we focus on MC algorithms for interval temporal logic (ITL).
c© Springer International Publishing Switzerland 2016
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ITLs take intervals, instead of points, as their primitive entities, providing an
alternative setting for reasoning about time [10,22,28]. They have been applied
in various areas of computer science, including formal verification, computational
linguistics, planning, and multi-agent systems [13,22,24]. In order to check inter-
val properties of computations, one needs to collect information about states into
computation stretches: each finite path of a Kripke structure is interpreted as
an interval, whose labelling is defined on the basis of the labelling of the compo-
nent states. Halpern and Shoham’s modal logic of time intervals HS [10] is the
most famous among ITLs. It features one modality for each of the 13 possible
ordering relations between pairs of intervals (the so-called Allen’s relations [1]),
apart from equality. Its satisfiability problem turns out to be highly undecidable
for all relevant (classes of) linear orders [10]. The same holds for most fragments
of it [3,12,17]. However, some meaningful exceptions exist, including the logic
of temporal neighbourhood AA and the logic of sub-intervals D [4,5].

In this paper, we address some open issues in the MC problem for HS, which
only recently entered the research agenda [13–15,18–21]. In [18], Molinari et al.
deal with MC for full HS (under the homogeneity assumption [25]). They intro-
duce the problem and prove its non-elementary decidability and PSPACE-
hardness. Since then, the attention was also brought to the fragments of HS,
which, similarly to what happens with satisfiability, are often computationally
better. Here, we focus on the border between good and bad HS fragments, show-
ing the criticality of the combined use of modalities for interval prefixes and suf-
fixes (modalities for Allen’s relations started-by and finished-by). First, we prove
that MC for the fragment BE, whose modalities can express properties of both
interval prefixes and suffixes, is EXPSPACE-hard, and this lower bound imme-
diately propagates to full HS. Then, we show that the complexity of MC for frag-
ments where properties of interval prefixes and suffixes are considered separately
is markedly lower. In [21], the authors proved that if we consider only properties
of future and past intervals, MC is in PNP; if modalities for interval extensions
to the left and to the right are added, MC becomes PSPACE-complete [19].
Here we prove that MC for the fragment AABB (resp., AAEE), that allows one
to express properties of interval prefixes (resp., suffixes), future and past inter-
vals, and right (resp., left) interval extensions, is in PSPACE. Since MC for the
fragment featuring only one modality for right (resp., left) interval extensions
is PSPACE-hard [21], PSPACE-completeness immediately follows. Moreover,
we show that if we restrict HS to modalities for either interval prefixes or suf-
fixes (HS fragments B and E), MC turns out to be co-NP-complete. The MC
problem for epistemic extensions of some HS fragments has been investigated
by Lomuscio and Michaliszyn [13–15] (a detailed account of their results can be
found in [18]). However, their semantic assumptions differ from those of [18],
thus making it difficult to compare the two research lines.

In the next section, we introduce the fundamental elements of the MC prob-
lem for HS and its fragments. Then, in Sect. 3 we focus on the fragment BE,
while in Sect. 4 we deal with AAEE and E (and with AABB and B). Conclusions
provide an assessment of the work done and outline future research directions.
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2 Preliminaries

The interval temporal logic HS. An interval algebra to reason about intervals
and their relative order was proposed by Allen in [1], while a systematic logical
study of interval representation and reasoning was done a few years later by
Halpern and Shoham, who introduced the interval temporal logic HS featuring
one modality for each Allen relation, but equality [10]. Table 1 depicts 6 of the
13 Allen’s relations, together with the corresponding HS (existential) modalities.
The other 7 relations are the 6 inverse relations (given a binary relation R , the
inverse relation R is such that bR a if and only if aR b) and equality.

Table 1. Allen’s relations and corresponding HS modalities.

The HS language consists of a set of proposition letters AP , the Boolean con-
nectives ¬ and ∧, and a temporal modality for each of the (non trivial) Allen’s
relations, i.e., 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉. HS
formulas are defined by the grammar ψ ::= p | ¬ψ | ψ ∧ ψ | 〈X〉ψ | 〈X〉ψ, where
p ∈ AP and X ∈ {A,L,B,E,D,O}. In the following, we will also exploit the
standard logical connectives (disjunction ∨, implication →, and double implica-
tion ↔) as abbreviations. Furthermore, for any modality X, the dual universal
modalities [X]ψ and [X]ψ are defined as ¬〈X〉¬ψ and ¬〈X〉¬ψ, respectively.

Given any subset of Allen’s relations {X1, · · · ,Xn}, we denote by X1 · · ·Xn

the HS fragment featuring existential (and universal) modalities for X1, . . . , Xn

only.
W.l.o.g., we assume the non-strict semantics of HS, which admits intervals

consisting of a single point1. Under such an assumption, all HS modalities can
be expressed in terms of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [28]. HS can thus be
viewed as a multi-modal logic with these 4 primitive modalities and its seman-
tics can be defined over a multi-modal Kripke structure, called abstract interval
model, where intervals are treated as atomic objects and Allen’s relations as
binary relations between pairs of intervals. Since later we will focus on the HS
fragments AAEE and AABB—which respectively do not feature 〈B〉, 〈B〉 and 〈E〉,
〈E〉—we add both 〈A〉 and 〈A〉 to the considered set of HS modalities.

Definition 1 [18]. An abstract intervalmodel is a tupleA = (AP , I, AI, BI, EI,σ),
where AP is a set of proposition letters, I is a possibly infinite set of atomic objects
1 All the results we prove in the paper hold for the strict semantics as well.
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(worlds), AI, BI, and EI are three binary relations over I, and σ : I 	→ 2AP is a
(total) labeling function, which assigns a set of proposition letters to each world.

In the interval setting, I is interpreted as a set of intervals and AI, BI, and EI

as Allen’s relations A (meets), B (started-by), and E (finished-by), respectively;
σ assigns to each interval in I the set of proposition letters that hold over it.

Given an abstract interval model A = (AP , I, AI, BI, EI, σ) and an interval
I ∈ I, the truth of an HS formula over I is inductively defined as follows:

– A, I |= p iff p ∈ σ(I), for any p ∈ AP ;
– A, I |= ¬ψ iff it is not true that A, I |= ψ (also denoted as A, I 
|= ψ);
– A, I |= ψ ∧ φ iff A, I |= ψ and A, I |= φ;
– A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there is J ∈ I s.t. I XI J and A, J |= ψ;
– A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there is J ∈ I s.t. J XI I and A, J |= ψ.

Kripke structures and abstract interval models. Finite state systems are usually
modelled as finite Kripke structures. In [18], the authors define a mapping from
Kripke structures to abstract interval models, that allows one to specify interval
properties of computations by means of HS formulas.

Definition 2. A finite Kripke structure is a tuple K = (AP ,W, δ, μ, w0), where
AP is a set of proposition letters, W is a finite set of states, δ ⊆ W ×W is a left-
total relation between pairs of states, μ : W 	→ 2AP is a total labelling function,
and w0 ∈ W is the initial state.

For all w ∈ W , μ(w) is the set of proposition letters that hold at w, while δ
is the transition relation that describes the evolution of the system over time.

v0
p

v1
q

Fig. 1. The Kripke structure K2.

Figure 1 depicts the finite Kripke struc-
ture K2 = ({p, q}, {v0, v1}, δ, μ, v0), where δ =
{(v0, v0), (v0, v1), (v1, v0), (v1, v1)}, μ(v0) =
{p}, and μ(v1) = {q}. The initial state v0 is
identified by a double circle.

Definition 3. A track ρ over a finite Kripke structure K = (AP ,W, δ, μ, w0)
is a finite sequence of states v1 · · · vn, with n ≥ 1, such that (vi, vi+1) ∈ δ for
i = 1, . . . , n − 1.

Let TrkK be the (infinite) set of all tracks over a finite Kripke structure K . For
any track ρ = v1 · · · vn ∈ TrkK , we define:

– |ρ| = n, fst(ρ) = v1, and lst(ρ) = vn;
– any index i ∈ [1, |ρ|] is called a ρ-position and ρ(i) = vi;
– states(ρ) = {v1, · · · , vn} ⊆ W ;
– ρ(i, j) = vi · · · vj , for 1 ≤ i ≤ j ≤ |ρ|, is the subtrack of ρ bounded by the

ρ-positions i and j (we write ρi for ρ(i, |ρ|), for 1 ≤ i ≤ |ρ|);
– Pref(ρ) = {ρ(1, i) | 1 ≤ i ≤ |ρ| − 1} and Suff(ρ) = {ρ(i, |ρ|) | 2 ≤ i ≤ |ρ|} are

the sets of all proper prefixes and suffixes of ρ, respectively.
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Given ρ, ρ′ ∈ TrkK , we denote by ρ · ρ′ the concatenation of the tracks ρ and ρ′.
Moreover, if lst(ρ) = fst(ρ′), we denote by ρ � ρ′ the track ρ(1, |ρ| − 1) · ρ′. In
particular, when |ρ| = 1, ρ � ρ′ = ρ′. In the following, when we write ρ � ρ′, we
implicitly assume that lst(ρ) = fst(ρ′). Finally, if fst(ρ) = w0 (the initial state
of K ), ρ is called an initial track.

An abstract interval model (over TrkK ) can be naturally associated with a
finite Kripke structure K by considering the set of intervals as the set of tracks
of K . Since K has loops (δ is left-total), the number of tracks in TrkK , and thus
the number of intervals, is infinite.

Definition 4. The abstract interval model induced by a finite Kripke struc-
ture K = (AP ,W, δ, μ, w0) is AK = (AP , I, AI, BI, EI, σ), where I = TrkK ,
AI = {(ρ, ρ′) ∈ I × I | lst(ρ) = fst(ρ′)}, BI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Pref(ρ)},
EI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Suff(ρ)}, and σ : I 	→ 2AP is such that
σ(ρ) =

⋂
w∈states(ρ) μ(w), for all ρ ∈ I.

Relations AI, BI, and EI are interpreted as the Allen’s relations A,B, and E,
respectively. Moreover, according to the definition of σ, p ∈ AP holds over ρ =
v1 · · · vn iff it holds over all the states v1, · · · , vn of ρ. This conforms to the
homogeneity principle, according to which a proposition letter holds over an
interval if and only if it holds over all its subintervals.

Definition 5. Let K be a finite Kripke structure and ψ be an HS formula; we
say that a track ρ ∈ TrkK satisfies ψ, denoted as K , ρ |= ψ, iff it holds that
AK , ρ |= ψ. Moreover, we say that K models ψ, denoted as K |= ψ, iff for all
initial tracks ρ′ ∈ TrkK it holds that K , ρ′ |= ψ. The model checking problem for
HS over finite Kripke structures is the problem of deciding whether K |= ψ.

We conclude with a simple example (a simplified version of the one given in
[18]), showing that the fragments considered in this paper can express meaningful
properties of state-transition systems.

v0

∅

v2
p2

v1
p1

v3
p3

v1
p1

v2
p2

v3
p3

r1
r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Fig. 2. The Kripke structure KSched.

In Fig. 2, we provide an example
of a finite Kripke structure KSched

that models the behaviour of a sched-
uler serving three processes which are
continuously requesting the use of a
common resource. The initial state is
v0: no process is served in that state.
In any other state vi and vi, with
i ∈ {1, 2, 3}, the i-th process is served
(this is denoted by the fact that pi

holds in those states). For the sake of
readability, edges are marked either
by ri, for request(i), or by ui, for
unlock(i). Edge labels do not have a
semantic value, that is, they are nei-
ther part of the structure definition,
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nor proposition letters; they are simply used to ease reference to edges. Process
i is served in state vi, then, after “some time”, a transition ui from vi to vi is
taken; subsequently, process i cannot be served again immediately, as vi is not
directly reachable from vi (the scheduler cannot serve the same process twice in
two successive rounds). A transition rj , with j 
= i, from vi to vj is then taken
and process j is served. This structure can easily be generalised to a higher
number of processes.

We show how some meaningful properties to be checked over KSched can be
expressed in HS, and, in particular, with formulas of AAEE. In all formulas,
we force the validity of the considered property over all legal computation sub-
intervals by using modality [E] (all computation sub-intervals are suffixes of at
least one initial track). The truth of the next statements can be easily checked:

– KSched |= [E]
(
〈E〉3 � → (χ(p1, p2) ∨ χ(p1, p3) ∨ χ(p2, p3))

)
,

where χ(p, q) := 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q;
– KSched 
|= [E](〈E〉10 � → 〈E〉 〈A〉 p3);
– KSched 
|= [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3)).

The first formula states that in any suffix of length at least 4 of an initial track,
at least 2 proposition letters are witnessed. KSched satisfies the formula since a
process cannot be executed twice in a row. The second formula states that in
any suffix of length at least 11 of an initial track, process 3 is executed at least
once in some internal states (non starvation). KSched does not satisfy the formula
since the scheduler can avoid executing a process ad libitum. The third formula
states that in any suffix of length at least 6 of an initial track, p1, p2, p3 are all
witnessed. The only way to satisfy this property is to constrain the scheduler
to execute the three processes in a strictly periodic manner (strict alternation),
i.e., pipjpkpipjpkpipjpk · · · , i, j, k∈{1, 2, 3}, i 
=j 
=k 
= i, but this is not the case.

The general picture. We now describe known and new complexity results about
the model checking problem for HS fragments (see Fig. 3 for a graphical account).

In [18], the authors show that, given a finite Kripke structure K and a bound
k on the structural complexity of HS formulas, i.e., on the nesting depth of 〈E〉
and 〈B〉 modalities, it is possible to obtain a finite representation for AK , which
is equivalent to AK w. r. to satisfiability of HS formulas with structural com-
plexity less than or equal to k. Then, by exploiting such a representation, they
prove that the MC problem for (full) HS is decidable, providing an algorithm
with non-elementary complexity. Moreover, they show that the problem for the
fragment AABE, and thus for full HS, is PSPACE-hard (EXPSPACE-hard if
a suitable succinct encoding of formulas is exploited). In [20], the authors study
the fragments AABBE and AAEBE, devising for each of them an EXPSPACE
MC algorithm which exploits the possibility of finding, for each track of the
Kripke structure, a satisfiability-preserving track of bounded length (track rep-
resentative). In this way, the algorithm needs to check only tracks with a bounded
maximum length. Later [19], they prove that the problem for AABBE and AAEBE
is PSPACE-hard (if a succinct encoding of formulas is exploited, the algorithm
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AABE PSPACE-complete 2,3 B PSPACE-complete 4

E PSPACE-complete 4

AAEE PSPACE-completeAABB PSPACE-complete

AA
PNP[O(log2 n)] 4

PNP[O(logn)]-hard 4
A

PNP[O(log2 n)] 4

PNP[O(logn)]-hard 4
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Fig. 3. Complexity of the model checking problem for HS fragments: known results are
depicted in white boxes, new ones in gray boxes.

remains in EXPSPACE, but a NEXPTIME lower bound can be given [20]).
Finally, they show that formulas satisfying a constant bound on the nesting
depth of 〈B〉 (resp., 〈E〉) can be checked in polynomial working space [20].

In [19,21] the authors identify some well-behaved HS fragments, namely,
AABE, B, E, AA, A, and A, which are still expressive enough to capture mean-
ingful interval properties of state-transition systems and whose model checking
problem has a computational complexity markedly lower than that of full HS.
In particular, they prove that the problem is PSPACE-complete for the first
three fragments, and in between PNP[O(log n)] and PNP[O(log2 n)] [9,26] for the
last three. In all cases, the complexity of the problem turns out be comparable
to or lower than that of LTL, which is known to be PSPACE-complete [27]. In
this paper, we first strengthen the lower bound to the complexity of the model
checking problem for full HS by proving EXPSPACE-hardness of the frag-
ment BE. Then, we study two more well-behaved fragments, namely, AABB and
AAEE, and we prove that their model checking problem is PSPACE-complete
(the previously known upper bound was EXPSPACE [20]). This is somehow
surprising, as their expressive power seems to be really higher than that of the
fragments analyzed in [19,21], but their complexity turns out to be the same.
Finally, we prove that B and E are in co-NP, and thus co-NP-complete, as the
purely propositional fragment of HS, Prop, is co-NP-complete [19].

It is worth noticing that, to determine the complexity of AABB and AAEE,
we exploit the structure of the specific input formula, rather than considering
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generically the nesting depth of 〈B〉 or 〈E〉 modalities (as done in [20]). In [20],
a track representative is a track of exponential length, which is satisfiability
equivalent—with respect to all AABBE (resp., AAEBE) formulas with nesting
depth of 〈B〉 (resp., 〈E〉) modality less than or equal to some k—to all the (pos-
sibly infinitely many) represented tracks. Here, we weaken such a constraint by
requiring satisfiability equivalence only w. r. to the specific formula under con-
sideration, which allows us to restrict our attention to tracks of polynomially-
bounded length, that is, we prove that if a track ρ fulfils a formula ψ of AABB
(resp., AAEE), then there is also a polynomial-length track ρ′ satisfying ψ (with
ρ′ depending on ψ).

3 EXPSPACE-Hardness of BE

In this section, we prove that the model checking problem for formulas of the HS
fragment BE is EXPSPACE-hard. This lower-bound immediately propagates
to the problem for full HS formulas.

Theorem 6. The MC problem for BE formulas over finite Kripke structures is
EXPSPACE-hard (under polynomial-time reductions).

Proof. The claim is proved by a polynomial-time reduction from a domino-tiling
problem for grids with rows of single exponential length [11]. An instance I
of such problem is a tuple I = (C,Δ, n, dinit, dfinal), where C is a finite set of
colors, Δ ⊆ C4 is a set of tuples (cdown, cleft, cup, cright) of four colors, called
domino-types, n > 0 is a natural number encoded in unary, and dinit, dfinal ∈ Δ
are domino-types. A tiling of I is a mapping f : [0, k] × [0, 2n − 1] → Δ, for
some k ≥ 0, satisfying the following constraints:

– two adjacent cells in a row have the same color on the shared edge: for all
(i, j) ∈ [0, k] × [0, 2n − 2], [f(i, j)]right = [f(i, j + 1)]left;

– two adjacent cells in a column have the same color on the shared edge: for all
(i, j) ∈ [0, k − 1] × [0, 2n − 1], [f(i, j)]up = [f(i + 1, j)]down;

– f(0, 0) = dinit (initialization) and f(k, 2n − 1) = dfinal (acceptance).

It is well-known that checking the existence (resp., the non-existence) of
a tiling for I is EXPSPACE-complete [11]. We now show how to build in
polynomial time a Kripke structure KI and a BE formula ϕI such that there
exists an initial track of KI satisfying ϕI if and only if there exists a tiling of I.
Hence KI |= ¬ϕI iff there does not exist a tiling of I, and Theorem 6 follows.

We use the following set AP of proposition letters to encode tilings of I:
AP = Δ ∪ {$} ∪ {0, 1}. Proposition letters in {0, 1} are used to encode the value
of an n-bits counter numbering the cells of one row of a tiling. In particular, a
cell with content d ∈ Δ and column number j ∈ [0, 2n−1] is encoded by the word
of length n+1 over AP given by d b1 . . . bn, where b1 . . . bn is the binary encoding
of the column number j (bn is the most significant bit). A row is encoded by the
word listing the encodings of cells from left to right, and a tiling f with k + 1
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rows is encoded by the finite word r0$r1 . . . $rk, where ri is the encoding of the
i-th row of f for all i ∈ [0, k].

The Kripke structure KI is defined as KI = (AP ,AP ,AP ×AP , μ, dinit), where
μ(p) = {p}, for any p ∈ AP . Thus, the initial tracks of KI correspond to the
finite words over AP which start with the initial domino type dinit.

In order to build the BE formula ϕI , we use some auxiliary formulas, namely,
lengthi, beg(p), end(p), φcell, and θj(b, b′) where i ∈ [1, 2n + 2], j ∈ [2, n + 1], p ∈
AP , and b, b′ ∈ {0, 1}. The formula lengthi has size linear in i and characterizes
the tracks of length i. It can be expressed as follows:

lengthi := (〈B〉 . . . 〈B〉
︸ ︷︷ ︸

i−1

�) ∧ ([B] . . . [B]
︸ ︷︷ ︸

i

⊥).

The formula beg(p) (resp., end(p)) captures the tracks of K which start (resp.,
end) in state p:

beg(p) := (p∧length1)∨〈B〉(p∧length1), end(p) := (p∧length1)∨〈E〉(p∧length1).

The formula φcell captures the tracks of KI which encode cells:

φcell := lengthn+1 ∧
( ∨

d∈Δ

beg(d)
)

∧ [E](beg(0) ∨ beg(1)).

Finally, for all j ∈ [2, n + 1] and b, b′ ∈ {0, 1}, the formula θj(b, b′) is defined
as θj(b, b′) := 〈B〉(lengthj ∧ end(b)) ∧ 〈E〉(lengthn−j+2 ∧ beg(b′)). The formula
θj(b, b′) is satisfied by a track ρ if |ρ| ≥ j + 1, |ρ| ≥ n − j + 3, ρ(j) = b, and
ρ(|ρ| − n + j − 1) = b′. In particular, for a track ρ starting with a cell c and
ending with a cell c′, θj(b, b′) is satisfied by ρ if the jth bit of c is b and the jth
bit of c′ is b′.

Additionally, we use the derived operator 〈G〉 and its dual [G], which allow
us to select arbitrary subtracks of the given track, including the track itself:

〈G〉 ψ := ψ ∨ 〈B〉 ψ ∨ 〈E〉 ψ ∨ 〈B〉 〈E〉 ψ.

Then, the formula ϕI is defined as ϕI := ϕb ∧ ϕreq ∧ ϕinc ∧ ϕrr ∧ ϕrc.
ϕb checks that the given track starts with a cell with content dinit and column

number 0, and ends with a cell with content dfinal and column number 2n − 1:

ϕb := 〈B〉 φcell ∧ beg(dinit) ∧ 〈E〉(φcell ∧ beg(dfinal)) ∧
n+1∧

j=2

θj(0, 1).

The conjunct ϕreq ensures the following two requirements: (i) each occurrence
of $ in the given track is followed by a cell with column number 0 and (ii) each
cell c in the given track is followed either by another cell, or by the separator
$, and in the latter case c has column number 2n − 1. The first requirement is
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encoded by the formula: [G]
(
(lengthn+2 ∧ beg($)) → 〈E〉(φcell ∧ [E]beg(0))

)
; the

second one by the formula:

[G]
{

(lengthn+2 ∧
∨

d∈Δ

beg(d)) →
(
〈B〉 φcell ∧ (end($) ∨

∨

d∈Δ

end(d)) ∧ (end($) → [E](beg($) ∨ beg(1)))
)}

.

The conjunct ϕinc checks that adjacent cells along the given track have con-
secutive columns numbers:

ϕinc = [G]
(
φtwo cells →

n+1∨

j=2

[
θj(0, 1) ∧

j−1∧

h=2

θh(1, 0) ∧
n+1∧

h=j+1

∨

b∈{0,1}
θh(b, b)

])
,

where φtwo cells is given by length2n+2 ∧ 〈B〉 φcell ∧ 〈E〉 φcell. Note that ϕreq and
ϕinc ensure that the column numbers are correctly encoded.

The conjunct ϕrr checks that adjacent cells in a row have the same color on
the shared edge:

ϕrr = [G]
(
φtwo cells →

∨

(d,d′)∈Δ×Δ|dright=d′
left

(beg(d)∧〈E〉(lengthn+1 ∧ beg(d′)))
)
.

Finally, the conjunct ϕrc checks that adjacent cells in a column have the same
color on the shared edge. For this, it suffices to require that for each subtrack of
the given one containing exactly one occurrence of $, starting with a cell c, and
ending with a cell c′, if c and c′ have the same column number, then dup = d′

down,
where d (resp., d′) is the content of c (resp., c′). Thus, formula ϕrc is defined as
follows, where we use the formulas θj(b, b), with j ∈ [2, n + 1] and b ∈ {0, 1}, for
expressing that c and c′ have the same column number:

ϕrc = [G]
{ (

φone($) ∧ 〈B〉 φcell ∧ 〈E〉 φcell ∧
n+1∧

j=2

∨

b∈{0,1}
θj(b, b)

)

→
∨

(d,d′)∈Δ×Δ|dup=d′
down

(beg(d) ∧ 〈E〉(lengthn+1 ∧ beg(d′)))
}

,

where φone($) is defined as (〈B〉 end($)) ∧ ¬(〈B〉(end($) ∧ 〈B〉 end($))).
Note that ϕI has size polynomial in the size of I. By construction, a track

ρ of KI satisfies ϕI if and only if ρ encodes a tiling. Since the initial tracks of
KI are the finite words over AP starting with dinit, it follows that there exists
a tiling of I if and only if there exists an initial track of KI which satisfies ϕI .
Hence, the result follows, which concludes the proof. ��

4 The Fragments AAEE and AABB: Polynomial-Size
Model-Track Property

In this section, we show that the MC problem for the fragments AAEE and AABB
is inPSPACE by proving a polynomial size model-track property, that is, we show
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that if a track ρ of a Kripke structureK satisfies a formula ϕ ofAAEE orAABB, then
there is a track π, whose length is polynomial in the sizes of ϕ and K , starting from
and leading to the same states as ρ, that satisfies ϕ. Moreover, we show that the
problem is in co-NP for the smaller fragments B and E. We conclude the section
by providing two model checking procedures, one for AAEE formulas and one for
E formulas. In the following, we focus on AAEE and the smaller fragment E, being
the cases of AABB and B completely symmetric.

Let K = (AP ,W, δ, μ, w0) be a Kripke structure. We start by introducing the
notions of induced track and well-formed track, which will be exploited to prove
the polynomial size model-track property.

Definition 7. Let ρ ∈ TrkK be a track of length n. A track induced by ρ is
a track π ∈ TrkK such that there is an increasing sequence of ρ-positions i1 <
. . . < ik, with i1 = 1, ik = n, and π = ρ(i1) · · · ρ(ik). Moreover, we say that the
π-position j and the ρ-position ij are corresponding. The induced track π is well-
formed with respect to ρ if, for all π-positions j, with corresponding ρ-positions
ij, and all proposition letters p ∈ AP , it holds that K , πj |= p ⇐⇒ K , ρij |= p.

Note that if π is induced by ρ, then fst(π) = fst(ρ), lst(π) = lst(ρ), and |π| ≤ |ρ|
(in particular, |π| = |ρ| iff π = ρ). Intuitively, a track induced by ρ is obtained by
contracting ρ, namely, by concatenating some subtracks of ρ, provided that the
resulting sequence is a track of K as well. Well-formedness implies that the suffix
of π starting from position j and the suffix of ρ starting from the corresponding
position ij agree over all the proposition letters in AP , i.e., they have the same
satisfiability pattern of proposition letters. In particular, K , π |= p iff K , ρ |= p,
for all p ∈ AP . It can be easily seen that the well-formedness relation is transitive.

The following proposition shows how it is possible to contract a track, pre-
serving the same satisfiability of proposition letters with respect to suffixes. Such
a criterion represents a “basic step” in a contraction process which will allow us
to prove the polynomial size model-track property.

Proposition 8. For any track ρ of K = (AP ,W, δ, μ, w0), there exists a track π
of K , which is well-formed with respect to ρ, such that |π| ≤ |W | · (|AP | + 1).

Proof. Let ρ ∈ TrkK be a track of length n. If n ≤ |W | · (|AP | + 1), the thesis
trivially holds. Let us assume n > |W | · (|AP | + 1). We show that there exists a
track of K which is well-formed with respect to ρ and whose length is smaller
than n. Since n > |W | · (|AP | + 1), there is some state w ∈ W occurring in
ρ at least |AP | + 2 times. Assume that for all ρ-positions i and j, with j > i,
if ρ(i) = ρ(j) = w, then there exists some p ∈ AP such that K , ρj |= p and
K , ρi 
|= p. This assumption leads to a contradiction, as the suffixes of ρ may
feature at most |AP |+1 distinct satisfiability patterns of proposition letters (due
to the homogeneity principle in Definition 4), while there are at least |AP | + 2
occurrences of w. As a consequence, there are two ρ-positions i and j, with j > i,
such that ρ(i) = ρ(j) = w and, for all p ∈ AP , K , ρj |= p iff K , ρi |= p. It is
easy to see that π = ρ(1, i) � ρ(j, n) ∈ TrkK is well-formed with respect to ρ and
|π| < n. Now, if |π| ≤ |W | · (|AP | + 1), the thesis is proved; otherwise, the same
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basic step can be iterated a finite number of times, and the thesis follows by
transitivity of the well-formedness relation. ��

The next definition introduces some distinguished positions in a track. The
intuition is that—as we will see in the proof of Theorem 10—if we perform a
contraction (as we did in the proof of Proposition 8) between a pair of such posi-
tions, we get an equivalent track with respect to satisfiability of the considered
AAEE formula. In the following, we restrict ourselves to formulas in negation
normal form (NNF), namely, formulas where negation is applied only to propo-
sition letters. By using De Morgan’s laws and the dual modalities [E], [E], [A],
and [A] of 〈E〉, 〈E〉, 〈A〉, and 〈A〉, we can trivially convert in linear time a formula
into an equivalent one in NNF, of at most double length.

Definition 9 (Witness Positions). Let ρ be a track of K and ϕ be a formula
of AAEE. Let us denote by E(ϕ, ρ) the set of subformulas 〈E〉 ψ of ϕ such that
K , ρ |= 〈E〉 ψ. The set Wt(ϕ, ρ) of witness positions of ρ for ϕ is the minimal
set of ρ-positions satisfying the following constraint: for each 〈E〉 ψ ∈ E(ϕ, ρ),
the greatest ρ-position i > 1 such that K , ρi |= ψ belongs to Wt(ϕ, ρ)2.

It is immediate to see that the cardinalities of E(ϕ, ρ) and of Wt(ϕ, ρ) are at most
|ϕ| − 1. We are now ready to prove the polynomial-size model-track property.

Theorem 10 (Polynomial-Size Model-Track Property). Let = (AP ,W, δ,
μ, w0), ρ, σ ∈ TrkK , and ϕ be an AAEE formula in NNF such that K , ρ � σ |= ϕ.
Then, there is π ∈ TrkK , induced by ρ, such that K , π � σ |= ϕ and |π| ≤
|W | · (|ϕ| + 1)2.

Notice that Theorem 10 holds in particular if |σ| = 1, and thus ρ�σ = ρ and
π � σ = π. In this case, if K , ρ |= ϕ, then K , π |= ϕ, where π is induced by ρ and
|π| ≤ |W | · (|ϕ| + 1)2. The more general statement of Theorem 10 is needed for
technical reasons in the soundness/completeness proof of the next algorithms.

Proof. W.l.o.g., we can restrict ourselves to set of proposition letters occurring
in ϕ, thus assuming |AP | ≤ |ϕ|. Let Wt(ϕ, ρ�σ) be the set of witness positions of
ρ�σ for ϕ. Let {i1, . . . , ik} be the ordering of Wt(ϕ, ρ�σ) such that i1 < . . . < ik.
Let i0 = 1 and ik+1 = |ρ � σ|. Hence, 1 = i0 < i1 < . . . < ik ≤ ik+1 = |ρ � σ|.

If the length of ρ is at most |W | · (|ϕ| + 1)2, the thesis trivially holds. Let us
assume that |ρ| > |W | · (|ϕ| + 1)2. We show that there exists a track π induced
by ρ, with |π| < |ρ|, such that K , π � σ |= ϕ.

W.l.o.g., we can assume that i0 < i1 < . . . < ij , for some j ≥ 0, are ρ-
positions (while ij+1 < . . . < ik+1 are (ρ � σ)-positions not in ρ). We claim that
either (i) there exists t ∈ [0, j − 1] such that it+1 − it > |W | · (|ϕ| + 1) or (ii)
|ρ(ij , |ρ|)| > |W | · (|ϕ|+1). By way of contradiction, suppose that neither (i) nor
(ii) holds. We need to distinguish two cases. If ρ�σ = ρ, then |ρ| = (ik+1 − i0)+
1 ≤ (k+1)·|W |·(|ϕ|+1)+1; otherwise (|ρ| < |ρ�σ|), |ρ| = (ij −i0)+|ρ(ij , |ρ|)| ≤
j · |W | · (|ϕ| + 1) + |W | · (|ϕ| + 1) ≤ (k + 1) · |W | · (|ϕ| + 1). The contradiction
follows since (k +1) · |W | · (|ϕ|+1)+1 ≤ |ϕ| · |W | · (|ϕ|+1)+1 ≤ |W | · (|ϕ|+1)2.
2 Note that such a ρ-position exists by definition of E(ϕ, ρ).
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Let us define (α, β) = (it, it+1) in case (i), and (α, β) = (ij , |ρ|) in case (ii).
Moreover let ρ′ = ρ(α, β). In both cases, we have |ρ′| > |W | · (|ϕ| + 1) ≥ |W | ·
(|AP | + 1), being |AP | ≤ |ϕ|. By Proposition 8, there exists a track π′ of K , well-
formed with respect to ρ′, such that |π′| ≤ |W | ·(|AP |+1) < |ρ′|. Let π be the track
induced by ρ obtained by replacing the subtrack ρ′ of ρ with π′. Since |π| < |ρ|, it
remains to prove that K , π � σ |= ϕ.

Let us denote π � σ by π and ρ � σ by ρ. Moreover, let H : [1, |π|] → [1, |ρ|]
be the function mapping positions of π into positions of ρ in this way: positions
“outside” π′ (i.e., outside the interval [α, α + |π′| − 1]) are mapped into their
original position in ρ; positions “inside” π′ (i.e., in [α, α + |π′| − 1]) are mapped
to the corresponding position in ρ′ (exploiting well-formedness of π′ w.r. to ρ′).

H(m) =

⎧
⎪⎨

⎪⎩

m if m < α

α + �m−α+1 − 1 if α ≤ m < α + |π′|
m + (|ρ′| − |π′|) if m ≥ α + |π′|

(1)

where �m is the ρ′-position corresponding to the π′-position m. It is easy to check
that H satisfies the following properties: (1) H is strictly monotonic, i.e., for all
j, j′ ∈ [1, |π|], j < j′ iff H(j) < H(j′); (2) for all j ∈ [1, |π|], π(j) = ρ(H(j));
(3) H(1) = 1 and H(|π|) = |ρ|; (4) Wt(ϕ, ρ) ⊆ {H(j) | j ∈ [1, |π|]}; (5) for each
j ∈ [1, |π|] and p ∈ AP , K , πj |= p iff K , ρH(j) |= p.

The statement K , π |= ϕ is an immediate consequence of the following claim,
considering that H(1) = 1, K , ρ |= ϕ, ρ1 = ρ, and π1 = π.

Claim. For all j ∈ [1, |π|], all subformulas ψ of ϕ, and all u ∈ TrkK , it holds that
if K , u � ρH(j) |= ψ, then K , u � πj |= ψ.

Proof. Assume that K , u � ρH(j) |= ψ. Note that u � ρH(j) is defined iff u � πj is
defined. We prove by induction on the structure of ϕ that K , u � πj |= ψ. Since
ϕ is in NNF, only the following cases occur:

– ψ = p or ψ = ¬p for some p ∈ AP . By Property 5 of H, K , πj |= p iff
K , ρH(j) |= p. Hence, K , u � πj |= p iff K , u � ρH(j) |= p, and the result holds.

– ψ = θ1 ∧ θ2 or ψ = θ1 ∨ θ2, for some AAEE formulas θ1 and θ2: the result
directly follows from the inductive hypothesis.

– ψ = [E]θ. We need to show that for each proper suffix η of u � πj , K , η |= θ.
We distinguish two cases:

• η is not a proper suffix of πj . Hence, η is of the form uh � πj for some
h ∈ [2, |u|]. Since K , u�ρH(j) |= [E]θ, then K , uh�ρH(j) |= θ. By induction,
K , uh � πj |= θ.

• η is a proper suffix of πj . Hence, η = πh for some h ∈ [j + 1, |π|]. By
Property 1 of H, H(h) > H(j), and since K , u � ρH(j) |= ψ, we have that
K , ρH(h) |= θ. By induction, K , πh |= θ.

Therefore, K , u � πj |= [E]θ.
– ψ = 〈E〉 θ. We need to show that there exists a proper suffix of u�πj satisfying

θ. Since K , u � ρH(j) |= ψ, there exists a proper suffix η′ of u � ρH(j) such that
K , η′ |= θ. We distinguish two cases:
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• η′ is not a proper suffix of ρH(j). Hence, η′ is of the form uh � ρH(j) for
some h ∈ [2, |u|]. By induction, K , uh � πj |= θ, and K , u � πj |= 〈E〉 θ.

• η′ is a proper suffix of ρH(j). Hence, η′ = ρi for some i ∈ [H(j) + 1, |ρ|],
and K , ρi |= θ. Let i′ be the greatest position of ρ such that K , ρi′ |= θ.
Hence i′ ≥ i and, by Definition 9, i′ ∈ Wt(ϕ, ρ). By Property 4 of H,
i′ = H(h) for some π-position h. Since H(h) > H(j), it holds that h > j
(Property 1). By induction, K , πh |= θ, and K , u � πj |= 〈E〉 θ.

– ψ = [E]θ or ψ = 〈E〉 θ: a direct consequence of the inductive hypothesis.
– ψ = [A]θ, ψ = 〈A〉 θ, ψ = [A]θ or ψ = 〈A〉 θ. Since u�πj and u�ρH(j) start at

the same state and lead to the same state (by Properties 2 and 3 of H), the
result trivially follows. This concludes the proof of the claim.

We have proved that K , π |= ϕ, with |π| < |ρ|. If |π| ≤ |W | · (|ϕ|+1)2, the thesis
is proved; otherwise, we can iterate the above contraction (a finite number of
times) until the bound is achieved. ��

Now, by exploiting the polynomial-size model-track property stated by
Theorem 10, it is easy to define a PSPACE MC algorithm for AAEE for-
mulas, and a co-NP MC algorithm for E formulas. The main MC procedure
for AAEE formulas is ModCheck(K , ψ) (Algorithm 1). All the initial tracks ρ̃,
obtained by visiting the unravelling of K from w0 up to depth |W | · (2|ψ| + 3)2,
are checked w.r. to ψ by the function Check(K , ψ, ρ̃) (Algorithm 2)—which
decides whether K , ρ̃ |= ψ by basically calling itself recursively on the sub-
formulas of ψ and unravelling again K—until either some initial track is found
that does not model ψ or all of them model ψ (and thus K |= ψ). Notice
that the for-loop at the first line considers all initial tracks of length at most
|W | · (2|ψ| + 3)2 ≥ |W | · (|NNF (¬ψ)| + 1)2.

Algorithm 1. ModCheck(K , ψ)
1: for all initial ρ̃ ∈ TrkK s.t. |ρ̃| ≤ |W | · (2|ψ| + 3)2 do
2: if Check(K , ψ, ρ̃) = 0 then
3: return 0: “K , ρ̃ �|= ψ” � Counterexample found

4: return 1: “K |= ψ”

The reason is that in the soundness and completeness proof of the algorithm,
we need to consider the NNF of ¬ψ and to apply the polynomial bound of
Theorem 10 to such a form. The next theorem states soundness and completeness
of the procedures.

Theorem 11 (See [2] for the proof). Let ψ be an AAEE formula and K be a
Kripke structure. Then, (i) ModCheck(K , ψ) = 1 if and only if K |= ψ; (ii) for
any track ρ̃ ∈ TrkK , Check(K , ψ, ρ̃) = 1 if and only if K , ρ̃ |= ψ.

The given procedures require polynomial working space, since (i) ModCheck
needs to store only a track no longer than |W | · (2|ψ| + 3)2 (many tracks are
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Algorithm 2. Check(K , ψ, ρ̃)

1: if ψ = p, for p ∈ AP then
2: if p ∈ ⋂s∈states(ρ̃) μ(s) then
3: return 1 else return 0
4: else if ψ = ϕ1 ∧ ϕ2 then
5: if Check(K , ϕ1, ρ̃) = 0 then
6: return 0
7: else
8: return Check(K , ϕ2, ρ̃)

9: else if ψ = 〈A〉 ϕ then
10: for all ρ ∈ TrkK such that fst(ρ) = lst(ρ̃),

and |ρ| ≤ |W | · (2|ϕ| + 1)2 do
11: if Check(K , ϕ, ρ) = 1 then
12: return 1
13: return 0

14: else if ψ = 〈E〉 ϕ then
15: for each ρ suffix of ρ̃ do
16: if Check(K , ϕ, ρ) = 1 then
17: return 1
18: return 0
19: else if ψ = 〈E〉 ϕ then
20: for all ρ ∈ TrkK such that lst(ρ) = fst(ρ̃),

and 2 ≤ |ρ| ≤ |W | · (2|ϕ| + 1)2 do
21: if Check(K , ϕ, ρ � ρ̃) = 1 then
22: return 1
23: return 0
24: else if ψ = ¬ϕ then
25: return 1 − Check(K , ϕ, ρ̃)

26: . . . � ψ = 〈A〉 ϕ is analogous to ψ = 〈A〉 ϕ

generated while visiting the unravelling of K , but only one at a time needs to
be stored), (ii) each recursive call to Check (possibly) needs space for a track no
longer than |W | · (2|ϕ| + 1)2, where ϕ is a subformula of ψ with |ϕ| = |ψ| − 1,
and (iii) at most 1 call to ModCheck and |ψ| calls to Check are jointly active.
Thus, the maximum space needed by the algorithms is (|ψ| + 1) · O(log |W |) ·
(|W | · (2|ψ| + 3)2) bits, where O(log |W |) bits are needed to represent a state
of K .

Corollary 12. The MC problem for AAEE formulas over finite Kripke struc-
tures is PSPACE-complete.

Proof. PSPACE-hardness immediately follows from that of E [21]. ��
By means of simple modifications to the proposed procedures, it is possible

to prove the following corollary. For a more detailed explanation, we refer to [2].

Corollary 13. The MC problem for E formulas over finite Kripke structures is
co-NP-complete.

Proof (Sketch). First, checking an E formula ϕ over a track ρ can be done
in deterministic polynomial time in |ρ| and |ϕ|. Then, by Theorem 10, one
can restrict to non-deterministically guessing a possible counterexample (i.e.,
an initial track not satisfying the input formula ψ) of length at most |W | ·
(|NNF (¬ψ)| + 1)2. If a counterexample can be found, K 
|= ψ. It follows that
the MC problem for E is in co-NP. co-NP-hardness immediately follows from
that of Prop [19]. ��

5 Conclusions

In this paper, we have sharpened the border between good and bad HS fragments
with respect to model checking. On the one hand, we have shown that the pres-
ence of both modalities 〈B〉 and 〈E〉 suffices for a fragment to be EXPSPACE-
hard. This lower bound immediately propagates to full HS. On the other hand,
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we have studied two well-behaved, PSPACE-complete fragments, AAEE and
AABB, which are quite promising from the point of view of applications.

The fragment AABBE (as well as the symmetric fragment AAEBE), investi-
gated in [20], still lies somehow across the border between good and bad frag-
ments, as it is situated in between EXPSPACE and PSPACE. One possibility
for AABBE is to be PSPACE-complete—which would mean that 〈E〉 does not
add complexity to AABB, and analogously 〈B〉 to AABE. Another possibility
is that the presence of both 〈B〉 and 〈E〉 causes a significant blow-up in com-
plexity. A larger complexity gap is the one for full HS: we have shown it to be
EXPSPACE-hard, but the only known upper bound is non-elementary. In our
future work, we will definitely come back to both AABBE and full HS.
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Abstract. In this paper, we describe an implementation of a hyper-
resolution-based calculus for the propositional basic multimodal logic,
Kn. The prover was designed to support experimentation with different
combinations of refinements for its basic calculus: it is primarily based
on the set of support strategy, which can then be combined with other
refinements, simplification techniques and different choices for the under-
lying normal form and clause selection. The prover allows for both local
and global reasoning. We show experimental results for different combi-
nations of strategies and comparison with existing tools.

1 Introduction

In this paper, we present KSP, a theorem prover for the basic multimodal logic
Kn which implements a variation of the set of support strategy [21] for the
modal resolution-based procedure described in [14]. The prover also implements
several other refinements and simplification techniques in order to reduce the
search space for a proof. Besides the set of support strategy, all other refinements
of the calculus are implemented as independent modules, allowing for a better
evaluation of how effective they are.

The paper is organised as follows. We introduce the syntax and semantics
of Kn in Sect. 2. In Sect. 3 we briefly describe the normal form and the calculus
presented in [14]. Section 4 describes the available strategies and their implemen-
tations. Evaluation of strategies and of the performance of the prover compared
to existing tools are given in Sect. 5. We summarise our results in Sect. 6.

2 Language

Let A = {1, . . . , n}, n ∈ N, be a finite fixed set of indexes and P = {p, q, s,
t, p′, q′, . . .} be a denumerable set of propositional symbols. The set of modal
formulae, WFFK , is the least set such that every p ∈ P is in WFFK ; if ϕ and ψ
are in WFFK , then so are ¬ϕ, (ϕ ∧ ψ), and �a ϕ for each a ∈ A. The formulae
c© Springer International Publishing Switzerland 2016
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false, true, (ϕ∨ψ), (ϕ ⇒ ψ), and ♦a ϕ are introduced as the usual abbreviations
for (ϕ ∧ ¬ϕ), ¬false, ¬(¬ϕ ∧ ¬ψ), (¬ϕ ∨ ψ), and ¬�a ¬ϕ, respectively (where
ϕ,ψ ∈ WFFK). A literal is either a propositional symbol or its negation; the set
of literals is denoted by L. A modal literal is either �a l or ♦a l, where l ∈ L and
a ∈ A. The modal depth of a formula is given by the maximal number of nested
occurrences of modal operators in that formula. The modal level of a formula is
the maximal number of nested occurrences of modal operators in which scope
the formula occurs. For instance, in �a ♦a p, the modal depth of p is 0 and its
modal level is 2. Formal definitions can be found at [14].

As our calculus operates on a labelled clausal normal form that is closely
linked to the tree model property of Kripke models for Kn, we briefly overview
of the semantics of Kn. A tree-like Kripke model M for n agents over P is given
by a tuple (W,w0, R1, . . . , Rn, π), where W is a set of possible worlds with a
distinguished world w0, each accessibility relation Ra is a binary relation on W
such that their union is a tree with root w0, and π : W → (P → {true, false})
is a function which associates with each world w ∈ W a truth-assignment to
propositional symbols. Satisfaction of a formula at a world w of a model M is
defined by:

– 〈M,w〉 |= p if, and only if, π(w)(p) = true, where p ∈ P;
– 〈M,w〉 |= ¬ϕ if, and only if, 〈M,w〉 
|= ϕ;
– 〈M,w〉 |= (ϕ ∧ ψ) if, and only if, 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;
– 〈M,w〉 |= �a ϕ if, and only if, for all w′, wRaw

′ implies 〈M,w′〉 |= ϕ.

Let M = (W,w0, R1, . . . , Rn, π) be a model. A formula ϕ is locally satisfied in
M , denoted by M |=L ϕ, if 〈M,w0〉 |= ϕ. The formula ϕ is locally satisfiable
if there is a model M such that 〈M,w0〉 |= ϕ. A formula ϕ is globally satisfied
in M , if for all w ∈ W , 〈M,w〉 |= ϕ. We denote by depth(w) the length of the
unique path from w0 to w through the union of the accessibility relations in M .
We call a modal layer the equivalence class of worlds at the same depth in a
model.

We note that checking the local satisfiability of a formula ϕ can be reduced
to the problem of checking the local satisfiability of its subformulae at the modal
layer of a model which corresponds to the modal level where those subformulae
occur (see [1]). Due to this close correspondence of modal layer and modal level
we use the terms interchangeably. Also, checking the global satisfiability of ϕ
can be reduced to checking the local satisfiability of ϕ at all modal layers (up
to an exponential distance from the root) of a model [3,19]. Thus, an uniform
approach based on modal levels can be used to deal with both problems, as we
show in the next section.

3 A Calculus for Kn

The calculus for Kn presented in [14] is clausal, where clauses are labelled by
the modal level at which they occur. In order to refer explicitly to modal levels,
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Table 1. Inference rules, where ml = σ({ml1, . . . , mlm+1, mlm+2−1}) in GEN1, GEN3;
ml = σ({ml, ml′}) in LRES, MRES; and ml = σ({ml1, ml2, ml3}) in GEN2.

the modal language is extended with labels. We write ml : ϕ to denote that ϕ is
true at the modal layer ml in a Kripke model, where ml ∈ N ∪ {∗}. By ∗ : ϕ we
mean that ϕ is true at all modal layers in a Kripke model. The notion of local
satisfiability is extended as expected: for a model M , M |=L ml : ϕ if, and only
if, for all worlds w ∈ W such that depth(w) = ml, we have 〈M,w〉 |=L ϕ. Then,
the layered normal form, called SNFml, is given by a conjunction of literal clauses
of the form ml : D, where D is a disjunction of literals, and modal clauses of
the form ml : l ⇒ l′, where l ∈ L and l′ is a modal literal. Transformation into
SNFml uses renaming and preserves satisfiability.

The motivation for the use of this labelled clausal normal form is that infer-
ence rules can then be guided by the semantic information given by the labels and
applied to smaller sets of clauses, reducing the number of unnecessary inferences,
and therefore improving the efficiency of the proof procedure. The calculus com-
prises the set of inference rules given in Table 1. Unification on sets of labels is
defined by σ({ml, ∗}) = ml; and σ({ml}) = ml; otherwise, σ is undefined. The
inference rules can only be applied if the unification of their labels is defined
(where ∗ − 1 = ∗). This calculus has been shown to be sound, complete, and
terminating [14].

4 Implementation

KSP is an implementation, written in C, of the calculus given in [14]. The prover
was designed to support experimentation with different combinations of refine-
ments of its basic calculus. Refinements and options for (pre)processing the input
are coded as independently as possible in order to allow for the easy addition and
testing of new features. This might not lead to optimal performance (e.g. one
technique needs to be applied after the other, whereas most tools would apply
them together), but it helps to evaluate how the different options independently
contribute to achieve efficiency. In the following we give a brief overview of the
main aspects of the implementation.
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Transformation to Clausal Form: If the input is a set of formulae, then these
formulae are first transformed into their prenex or antiprenex normal form (or
one after the other) [12] and then into Negation Normal Form (NNF) or into Box
Normal Form (BNF) [16]. With options nnfsimp (resp. bnfsimp), simplification
is applied to formulae in NNF (resp. BNF); with option early mlple, pure literal
elimination is applied at every modal level. There are then four different options
that determine the normal form. In SNF+

ml, negative literals in the scope of
modal operators are renamed by propositional symbols; in SNF++

ml all literals in
the scope of modal operators are renamed by propositional symbols. SNF−

ml and
SNF−−

ml are defined analogously, with positive literals being renamed by negative
ones. The reuse of propositional symbols in renaming can also be controlled. In
our evaluation, given in Sect. 5, the same propositional symbol is used for all
occurrences of a formula being renamed.

Preprocessing of Clauses: Self-subsumption is applied at this step if the options
for forward and/or backward subsumption are set [9]. The inference rules MRES

and GEN2 are also exhaustively applied at this step, that is, before the prover
enters the main loop.

Main Loop: The main loop is based on the given-clause algorithm implemented
in Otter [11], a variation of the set of support strategy [21], a refinement which
restricts the set of choices of clauses participating in a derivation step. For the
classical case, a set of clauses Δ is partitioned in two sets Γ and Λ = Δ \ Γ ,
where Λ must be satisfiable. McCune refers to Γ as the set of support (the sos,
aka passive or unprocessed set); and Λ is called the usable (aka as active or
processed set). The given clause is chosen from Γ , resolved with clauses in Λ,
and moved from Γ to Λ. Resolvents are added to Γ . For the modal calculus,
the set of clauses is further partitioned according to the modal layer at which
clauses are true. That is, for each modal layer ml there are three sets: Γ lit

ml,
Λlit
ml and Λmod

ml , where the first two sets contain literal clauses while the latter
contains modal clauses. As the calculus does not generate new modal clauses and
because the set of modal clauses by itself is satisfiable, there is no need for a set
for unprocessed modal clauses. Attempts to apply an inference rule are guided
by the choice, for each modal layer ml, of a literal clause in Γ lit

ml, which can
be resolved with either a literal clause in Λlit

ml or with a set of modal clauses in
Λmod
ml−1. There are six options for automatically populating the usable: all negative

clauses, all positive clauses, all non-negative clauses, all non-positive clauses, all
clauses whose maximal literal is positive, and all clauses whose maximal literal
is negative. The prover can either perform local or global reasoning.

Refinements: Besides the basic calculus with a set-of-support strategy, the user
can further restrict LRES by choosing ordered (clauses can only be resolved on
their maximal literals with respect to an ordering chosen by the prover in such
a way to preserve completeness), negative (one of the premises is a negative
clause, i.e. a clause where all literals are of the form ¬p for some p ∈ P), positive
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(one of the premises is a positive clause), or negative + ordered resolution (both
negative and ordered resolution inferences are performed).

The completeness of some of these refinements depends on the particu-
lar normal form chosen. For instance, negative resolution is incomplete with-
out SNF+

ml or SNF++
ml . For example, the set {p, p ⇒ �¬q, p ⇒ ♦s,¬s ∨ q}

is unsatisfiable, but as there is no negative literal clause in the set, no refu-
tation can be found. By renaming ¬q in the scope of �, we obtain the set
{p, p ⇒ �t, p ⇒ ♦s,¬s ∨ q,¬t ∨ ¬q} in SNF+

ml, from which a refutation using
negative resolution can be found. Similarly, ordered resolution requires SNF++

ml

for completeness, while positive resolution requires SNF−
ml or SNF−−

ml .

Inference Rules: Besides the inference rules given in Table 1, three more infer-
ence rules are also implemented: unit resolution, which propagates unit clauses
through all literal clauses and the right-hand side of modal clauses; lhs unit
resolution, which propagates unit clauses through the left-hand side of modal
clauses; and ires, which together with the global option, implements initial res-
olution and, thus, the calculus given in [13].

Redundancy Elimination: Pure literal elimination can be applied globally or by
modal layer. Both forward and backward subsumption are implemented. Sub-
sumption is applied in lazy mode: a clause is tested for subsumption only when
it is selected from the sos and only against clauses in the usable. As pointed
out in [18], this avoids expensive checks for clauses that might never be selected
during the search of a proof.

Clause Selection: There are five different heuristics for choosing a literal clause
in the sos: shortest, newest, oldest, greatest maximal literal, and the smallest
maximal literal.

For a comprehensive list of options, see [15], where the sources and instruc-
tions on how to install and use KSP can be found.

5 Evaluation

We have compared KSP with BDDTab [4], FaCT++ 1.6.3 [20], InKreSAT 1.0
[7], Spartacus 1.0 [5], and a combination of the optimised functional translation
[6] with Vampire 3.0 [8]1. In this context, FaCT++ represents the previous
generation of reasoners while the remaining systems have all been developed in
recent years. Unless stated otherwise, the reasoners were used with their default
options.

Our benchmarks [15] consist of three collections of modal formulae:

1. The complete set of TANCS-2000 modalised random QBF (MQBF) formulae
[10] complemented by the additional MQBF formulae provided by Tebbi and

1 We have excluded *SAT from the comparison as it produced incorrect results on a
number of benchmark formulae.
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Kaminski [7]. This collection consists of five classes, called qbf, qbfL, qbfS,
qbfML, and qbfMS in the following, with a total of 1016 formulae, of which
617 are known to be satisfiable and 399 are known to be unsatisfiable (due
to at least one of the provers being able to solve the formula). The minimum
modal depth of formulae in this collection is 19, the maximum 225, average
69.2 with a standard deviation of 47.5.

2. LWB basic modal logic benchmark formulae [2], with 56 formulae chosen
from each of the 18 parameterised classes. In most previous uses of these
benchmarks, only parameter values 1 to 21 were used for each class, with
the result that provers were able to solve all benchmark formulae for most of
the classes. Instead we have chosen the 56 parameter values so that the best
current prover will not be able to solve all the formulae within a time limit
of 1000 CPU second. The median value of the maximal parameter value used
for the 18 classes is 1880, far beyond what has ever been tested before. Of
the resulting 1008 formulae, half are satisfiable and half are unsatisfiable by
construction of the benchmark classes.

3. Randomly generated 3CNFK formulae [17] over 3 to 10 propositional symbols
with modal depth 1 or 2. We have chosen formulae from each of the 11
parameter settings given in the table on page 372 of [17]. For the number of
conjuncts we have focused on a range around the critical region where about
half of the generated formulae are satisfiable and half are unsatisfiable. The
resulting collection contains 1000 formulae, of which 457 are known to be
satisfiable and 464 are known to be unsatisfiable. Note that this collection is
quite distinct to the one used in [7] which consisted of 135 3CNFK formulae
over 3 propositional symbols with modal depth 2, 4 or 6, all of which were
satisfiable.

Benchmarking was performed on PCs with an Intel i7-2600 CPU @ 3.40 GHz
and 16 GB main memory. For each formula and each prover we have determined
the median run time over five runs with a time limit of 1000 CPU seconds for
each run.

Fig. 1. Benchmarking results for MQBF (Color figure online)
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Fig. 2. Modal structure of MQBF formulae (Color figure online)

Figure 1a compares the impact of different refinements on the performance of
KSP on the MQBF collection. With plain KSP uses the rules shown in Table 1,
without additional refinement, on a set of SNF++

ml clauses. With cord and nega-
tive ordered, KSP applies ordered resolution and negative + ordered resolution,
respectively, again on a set of SNF++

ml clauses. The configuration negative uses
negative resolution on a set of SNF+

ml clauses, while with positive, KSP applies
positive resolution on SNF−

ml clauses. Irrespective of the refinement, the shortest
clause is selected to perform inferences; both forward and backward subsumption
are used; the lhs-unit resolution rule is applied; prenex is set; and no simplifi-
cation steps are applied. The usable is populated with clauses whose maximal
literal is positive, except for positive resolution where it is populated with clauses
whose maximal literal is negative. The cord configuration offers the best perfor-
mance. Ordered resolution restricts the applicability of the rules further than the
other refinements. Not only is this an advantage on satisfiable formulae in that
a saturation can be found more quickly, but also unsatisfiable formulae where
with this refinement KSP finds refutations much more quickly than with any of
the other refinements.

Figure 1b compares the performance of all the provers on the MQBF collec-
tion. It shows that KSP performs better than any of the other provers. The graphs
in Fig. 2 offer some insight into why KSP performs well on these formulae. Each
of the four graphs shows for one formula from each class how many atomic sub-
formulae occur at each modal level, the formulae originate from MQBF formulae
with the same number of propositional symbols, conjuncts and QBF quantifier
depth. Formulae in the class qbfS are the easiest, the total number of atomic
subformulae is low and spread over a wide range of modal levels, thereby reduc-
ing the possibility of inference steps between the clauses in the layered normal
form of these formulae. In contrast, in qbfMS formulae almost all atomic subfor-
mulae occur at just one modal level. Here the layered normal form can offer little
advantage over a simpler normal form. But the number of atomic subformulae
is still low and KSP seems to derive an advantage from the fact that the normal
form ‘flattens’ the formula: KSP is at least two orders of magnitude faster than
any other prover on this class. The classes qbf and qbfL are more challenging.
While the atomic subformulae are more spread out over the modal levels than for
qbfMS, at a lot of these modal levels there are more atomic subformulae than in
a qbfMS formula in total. The layered modal translation is effective at reducing
the number of inferences for these classes, but more inference possibilities remain
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Table 2. Detailed benchmarking results on LWB

BDDTab FaCT++ InKreSAT KSP (cord) Spartacus OFT + Vampire

k branch n 22 22 12 12 15 15 18 18 12 12 50 70

k branch p 22 22 12 12 22 22 23 23 14 14 50 70

k d4 n 20 440 6 40 34 48 1560 28 760 14 200

k d4 p 26 640 24 600 18 360 54 1800 32 920 21 960

k dum n 39 2400 42 2640 23 1120 49 3200 44 2800 17 640

k dum p 42 2640 38 2320 28 1520 50 3280 46 2960 18 720

k grz n 35 2600 27 1800 50 4500 5 50 52 5500 24 1500

k grz p 35 2600 27 1800 51 5000 29 2000 52 5500 27 1800

k lin n 46 4000 43 3400 33 2500 1 10 50 4800 40 3100

k lin p 14 500 28 10000 56 500000 23 5000 55 400000 28 10000

k path n 37 290 48 400 7 14 54 1000 48 400 41 330

k path p 35 270 48 400 5 12 54 1000 48 400 41 330

k ph n 10 10 8 16 24 90 3 6 21 75 15 45

k ph p 11 11 9 8 10 10 5 5 9 9 10 10

k poly n 39 600 34 500 30 36 540 44 720 20 220

k poly p 38 580 34 500 28 400 36 540 44 700 20 220

k t4p n 40 3500 24 1500 17 800 39 3000 45 6000 11 200

k t4p p 48 7500 49 8000 28 49 8000 53 12000 14 500

than for qbfMS. Finally, qbfML combines the worst aspects of qbfL and qbfMS,
the number of atomic subformulae is higher than for any other class and there is
a ‘peak’ at one particular modal level. This is the only MQBF class containing
formulae that KSP cannot solve.

Figure 3 shows the benchmarking results on the LWB and 3CNFK collections.
On the LWB collection KSP performs about as well as BDDTab, FaCT++ and
InKreSAT, while Spartacus performs best and the combination of the optimised
functional translation with Vampire (OFT + Vampire) performs worst. Table 2
provides more detailed results. For each prover it shows in the left column how
many of the 56 formulae in a class have been solved and in the right column the
parameter value of the most difficult formula solved. For InKreSAT we are not
reporting this parameter value for three classes on which the prover’s runtime
does not increase monotonically with the parameter value but fluctuates instead.
As is indicated, BDDTab and InKreSAT are the best performing provers on one
class each, OFT + Vampire on two, KSP on six, and Spartacus on eight classes.
A characteristic of the classes on which KSP performs best is again that atomic
subformulae are evenly spread over a wide range of modal levels.

It is worth pointing out that simplification alone is sufficient to detect that
formulae in k lin p are unsatisfiable. For k grz p, pure literal elimination can be
used to reduce all formulae in this class to the same simple formula; the same
is true for k grz n and k lin n. Thus, these classes are tests of how effectively
and efficiently, if at all, a prover uses these techniques and Spartacus does best
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Fig. 3. Benchmarking results for LWB and 3CNFK (Color figure online)

on these classes. Note that pure literal elimination has been disabled in the
cord configuration we have used for KSP. With it KSP would perform better on
k grz p and k grz n, but worse on other classes where this simplification has no
beneficial effects.

Finally, on the 3CNFK collection, InKreSAT is the best performing prover
and KSP the worst performing one. This should now not come as a surprise. For
3CNFK we specifically restricted ourselves to formulae with low modal depth
which in turn means that the layered normal form has little positive effect.

6 Conclusions and Future Work

The evaluation indicates that KSP works well on problems with high modal
depth where the separation of modal layers can be exploited to improve the
efficiency of reasoning.

As with all provers that provide a variety of strategies and optimisations,
to get the best performance for a particular formula or class of formulae it is
important to choose the right strategy and optimisations. KSP currently leaves
that choice to the user and the development of an “auto mode” in which the
prover makes a choice of its own, based on an analysis of the given formula, is
future work.

The same applies to the transformation to the layered normal form. Again,
KSP offers a number of ways in which this can be done as well as a number of
simplifications that can be applied during the process. It is clear that this affects
the performance of the prover, but we have yet to investigate the effects on the
benchmark collections introduced in this paper.
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Abstract. The key to the proof-theoretical study of a logic is a cut-
free proof calculus. Unfortunately there are many logics of interest lack-
ing suitable proof calculi. The proof formalism of nested sequents was
recently generalised to indexed nested sequents in order to yield cutfree
proof calculi for extensions of the modal logic K by Geach (Lemmon-
Scott) axioms. The proofs of completeness and cut-elimination therein
were semantical and intricate. Here we identify a subclass of the labelled
sequent formalism and show that it corresponds to the indexed nested
sequent formalism. This correspondence is then exploited to induce syn-
tactic proofs for indexed nested sequents using the elegant existing proofs
in the labelled sequent formalism. A larger goal of this work is to
demonstrate how specialising existing proof-theoretical transformations
(adapting these as required to remain within the subclass) is an alterna-
tive proof method which can alleviate the need for independent proofs
from ‘scratch’ in each formalism. Moreover, such coercion can be used
to induce new cutfree calculi. We demonstrate by presenting the first
indexed nested sequent calculi for intermediate logics.

Keywords: Proof theory · Cut-elimination · Nested labelled sequents ·
Modal logic

1 Introduction

Gentzen [9] introduced the sequent calculus as an elegant formal proof system
for classical and intuitionistic logics. The building blocks of the sequent calculus
are traditional sequents of the form X � Y where X and Y are formula mul-
tisets (formula lists in the original formulation). To simulate the rule of modus
ponens—a rule that is present in many logics—while preserving the nice prop-
erties of his calculus, Gentzen was led to introduce the cut-rule below right.

A A → B

B
modus ponens

X � Y,A A,U � V

X,U � Y, V
cut
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Unfortunately the presence of the cut-rule has a great cost: reading the rule from
the conclusion to the premises—as in backward proof search—the cut-rule can
introduce in the premises an arbitrary formula A that might not even occur in
the conclusion. Gentzen’s response was the cut-elimination theorem (Hauptsatz )
which shows how to eliminate the cut-rule from any proof (derivation) in the
sequent calculus, in effect showing that the cut-rule is redundant. This is the
central result for the sequent calculus since the resulting cutfree calculi possess
the subformula property : only subformulae of the formula to be proved may
appear in its derivation. This property places a strong restriction on the set of
possible derivations of a given formula, in turn enabling elegant and constructive
proof-theoretic arguments of logical properties such as consistency, decidability,
complexity and interpolation. Gentzen himself utilised the cut-elimination result
to give a proof of consistency of arithmetic with a suitable induction principle.
Subsequently, the elimination of the cut-rule from a derivation has even been
given a computational interpretation.

Following the seminal work of Gentzen, efforts were made to obtain cutfree
sequent calculi (i.e. to give a proof-theory) for the many logics of interest but
the sequent calculus is often not expressive enough. This has led to various gen-
eralisations of the Gentzen sequent calculus in order to obtain a proof formalism
capable of presenting these logics.

Nested sequent calculus [2,12] is a popular proof formalism that has been used
to present intuitionistic logic [7], conditional logics [16], logics in the classical and
intuitionistic modal cube [12,13,19] and path axiom extensions of classical modal
logic [10]. The idea is to use a tree of traditional sequents as the basic building
block rather than just a single traditional sequent. The tree structure is encoded
using the nesting of [· · · ] and comma. Here are some examples:

X � Y, [P � Q, [U � V ], [L � M ]], [S � T ] (1)
X � Y, [U � V, [L � M ], [S � T ]] (2)

The preceeding two nested sequents can thus be depicted graphically as a (finite
directed rooted) tree whose nodes are decorated by traditional sequents.

Geach logics are a large class of modal logics extending the modal cube,
obtained via axiomatic extension of the normal modal logic K by Geach axioms:

G(h, i, j, k) := ♦h�ip → �j♦kp (h, i, j, k ≥ 0) (3)

There are no known nested sequent calculi for the general class of Geach logics.
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Indexed nested sequents are a recent extension of nested sequents introduced
by Fitting [5] to obtain calculi for the Geach logics. An indexed nested sequent is
obtained by assigning an index to each traditional sequent in the nested sequent
and permitting multiple traditional sequents to possess the same index. The
following are examples of indexed nested sequents:

X �0 Y, [P �1 Q, [U �2 V ], [L �3 M ]], [S �3 T ] (4)

X �0 Y, [P �1 Q, [U �0 V ], [L �1 M ]], [S �2 T ] (5)

As before we can present an indexed nested sequent as a tree whose nodes are
decorated with a traditional sequent and an index (first two graphs below).

Viewing an indexed nested sequent as above does not bring us anything new.
The key to obtaining more expressivity is to interpret those nodes of the tree with
the same index (Γ1 �n Δ1, . . . , ΓN+1 �n ΔN+1, say) as a single node decorated
with Γ1, . . . , ΓN+1 � Δ1, . . . ,ΔN+1.1 Thus indexed nested sequents correspond
to directed graphs obtained by conflating certain nodes of a tree. The indexed
nested sequents (4) and (5) are depicted by the two rightmost graphs above.

Fitting does not prove syntactic cut-elimination for his indexed nested
sequent calculi for Geach logics, but instead establishes that the calculus minus
the cut-rule is complete with respect to the corresponding logic’s semantics.
Such a proof is called a semantic proof of cut-elimination and contrasts with the
syntactic proofs à la Gentzen where the elimination of cuts is constructive.

Apart from the technical interest in syntactic proofs of cut-elimination (after
all, proof-theory is concerned primarily with the syntax), such proofs yield a
constructive procedure and the cutfree derivation is related in a formal sense
to the original derivation. However, the downside of syntactic proofs is that
they tend to be highly technical and difficult to verify. We believe that the best
response is to reuse and adapt whenever possible those syntactic proofs that
are already in existence rather than presenting new proofs from scratch. In this
paper, we show syntactic cut-elimination for the indexed nested sequent calculi
for Geach logics by inducing the existing results for labelled sequent calculi.

Labelled sequents [6,14] generalise the traditional sequent by the prefixing of
state variables to formulae occurring in the sequent. A labelled sequent has the
form R,X � Y where the relation mset (multiset) R consists of terms of the
form Rxy. Meanwhile X and Y are multisets of labelled formulae (e.g. x : A →

1 Of course, this interpretation needs to be justified. This is shown in Sects. 3–5. Here
we want to provide an intuition for these objects.
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B, y : p). A labelled sequent can be viewed as a directed graph (defined using
the set R) with sequents at each node [18].

Negri [15] has presented a method for generating cutfree and contraction-free
labelled sequent calculi for the large family of modal logics whose Kripke seman-
tics are defined by geometric frame conditions. The proof of cut-elimination is
general in the sense that it applies uniformly to every modal logic defined by
geometric frame conditions. This result has been extended to labelled sequent
calculi for intermediate and other non-classical logics [3] and indeed to arbitrary
first-order formulae [4].

It is well-known that every modal logic obtained by the addition of Geach
axioms to K can be defined semantically using the geometric frame conditions.
For example, the logic K +♦�p → �♦p is the logic whose Kripke frames satisfy
the geometric condition ∀xyz(Rxy ∧ Rxz −→ ∃u(Ryu ∧ Rzu)).

Labelled tree sequents (LTS) are a special instance of the labelled sequent
that are isomorphic up to state variable names [11] to the nested sequent (an
isomorphism with prefixed tableaux has also been shown [7]). The idea is to
impose restrictions on the relation mset of a labelled sequent R,X � Y to
ensure that the directed graph defined by R is a tree. For example, the nested
sequents (1) and (2) correspond to the LTS

Rxy, Rxz, Ryu, Ryv
︸ ︷︷ ︸

relation mset

, x : X, y : P, z : S, u : U, v : L � x : Y, y : Q, z : T, u : V, v : M

︷ ︸︸ ︷

Rxy, Ryu, Ryv, x : X, y : U, u : L, v : S � x : Y, y : V, u : M, v : T

The isomorphism will be more transparent to the reader if he/she consults
the trees that we presented following (1) and (2). In particular, the relation
msets above define those trees and the labelled formulae multisets specify where
to place the multisets on the tree. The extension of the isomorphism to nested
sequent and labelled tree sequent calculi was used [11] to answer a question [17]
concerning the relationship between two distinct proof calculi.

In this work we use a technical extension2 introduced in Negri [15] to write a
labelled sequent as R, E ,X � Y where E consists of terms of the form x = y. In
this formulation of a labelled sequent, a labelled tree sequent has R defining a
tree and E = ∅. We then characterise indexed nested sequents as labelled sequents
where R is a tree but E is not forced to be empty. We call such sequents labelled
tree sequents with equality (LTSE). We then lift the map between indexed nested
sequents and LTSE to calculi built from these sequents. In this way we develop
the technical machinery mentioned by Fitting in [5] as ‘a significant different
direction’ in the study of indexed nested sequents.

2 The equality relation facilitates the mapping with indexed nested sequents. In any
case, the equality terms can be ‘compiled away’ to obtain a standard labelled sequent.
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The results of [11] relating nested sequent and labelled tree sequent calculi
was restricted by the fact that the crucial substitution lemma does not hold for
the latter. We show here that a nuanced substitution lemma does hold for LTSE
calculi. Using this result we induce general results from labelled sequent calculi
to LTSE calculi. The situation is delicate as it is necessary to remain within the
LTSE-fragment at all times. In this way we efficiently obtain the first syntactic
proof of cut-elimination (and hence completeness) for the indexed nested sequent
calculi, reusing existing results and alleviating the need for new, independent
proofs. We then extend these results to introduce indexed nested sequent calculi
for propositional intermediate logics i.e. logics extending intuitionistic logic. We
are not aware of any existing nested sequent calculi for intermediate logics.

2 Preliminaries

The set of natural numbers is denoted by N. We assume a set {p, q, r, . . .} of
propositional variables. A formula in the language of classical or intermediate
logic is either a propositional variable or the logical constants ⊥,
 or has the
form A � B where A and B are formulae and � ∈ {∨,∧,→}. The language of
modal logic has formula �A whenever A is a formula. The size of a formula is
the sum of the number of connectives and propositional variables and logical
constants it contains.

Assume that we have at our disposal an infinite set SV = {x1, x2, . . .} of state
variables disjoint from the set of propositional variables. A labelled formula has
the form x : A where x ∈ SV and A is a formula. If X = {A1, . . . An} is
a formula multiset, then x : X denotes the multiset {x : A1, . . . , x : An} of
labelled formulae. Notice that if the formula multiset X is empty, then the
labelled formula multiset x : X is also empty.

In this paper we discuss several different types of sequents. The following
definitions are standard. A rule is a sequence of sequents of some type, typically
written as (s1, . . . , sN/sN+1). The sequent sN+1 is called the conclusion of the
rule, the remaining sequents are called the premises of the rule. If N = 0 then
the rule is called an initial sequent. A calculus consists of a finite set of rules.
A derivation in the calculus is defined recursively as either an initial sequent or
the object obtained by applying a rule ρ in the calculus to smaller derivations
whose bottommost sequents (endsequents) are legal premises of ρ. The height of
a derivation is the number of rules on its longest branch (viewing the derivation
as a tree whose nodes are sequents and the root is the endsequent).

A relation mset R is a multiset of relation terms Rxy (x, y ∈ SV). An equality
mset E is a multiset of equality terms x = y (x, y ∈ SV). Let E be an equality
mset. Then for a relation mset R, let R[E ] denote the relation mset obtained by
replacing every xj in R with xi where i is the least number such that E |= xi =
xj . Here |= is the usual consequence relation for the theory of equality. Define
X[E ] analogously for a labelled formula multiset X.
Definition 1 (Labelled Sequent LS). A labelled sequent has the form
R, E ,X � Y where R is a relation mset, E is an equality mset and X and Y are
multisets of labelled formulae.
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The equality-free LS corresponding to R, E ,X � Y is R[E ],X[E ] � Y [E ].
The labelled sequent calculus LSEq-K is given in Fig. 1. Some rules in [15]—

e.g. reflexivity and transitivity rule for equality—do not appear here. These rules
are admissible for sequents containing no equality terms in the succedent. We
will be unable to derive � x = x and x = y ∧ y = z � x = z but this is fine
because LSEq-K is intended for deriving modal formulae. We introduce a new
rule (ls-sc) to simulate the (sc) rule of INS-K that we will introduce later. (�r)
has a side condition stating that variable y (the eigenvariable) does not appear
in the conclusion. An atomic term has the form Rxy or x = y for x, y ∈ SV.

(init-⊥)
R, E, x : ⊥, Γ � Δ

(init)
R, E, x : p, Γ � Δ, x : p

R, E, x : A, Γ � Δ R, E, x : B, Γ � Δ
(∨l)

R, E, x : A ∨ B, Γ � Δ

R, E, Γ � Δ, x : A, x : B
(∨r)

R, E, Γ � Δ, x : A ∨ B

R, E, x : A, x : B, Γ � Δ
(∧l)

R, E, x : A ∧ B, Γ � Δ

R, E, Γ � Δ, x : A R, E, Γ � Δ, x : B
(∧r)

R, E, Γ � Δ, x : A ∧ B

R, E, Γ � Δ, x : A R, E, x : B, Γ � Δ
(→l)

R, E, x : A → B, Γ � Δ

R, E, x : A, Γ � Δ, x : B
(→r)

R, E, Γ � Δ, x : A → B

R, Rxy, E, x : �A, y : A, Γ � Δ
(�l)

R, Rxy, E, x : �A, Γ � Δ

R, Rxy, E, Γ � Δ, y : A
(�r)

R, E, Γ � Δ, x : �A

R, E, x = y, x : A, y : A, Γ � Δ
(rep-l)

R, E, x = y, x : A, Γ � Δ

R, E, x = y, Γ � Δ, x : A, y : A
(rep-r)

R, E, x = y, Γ � Δ, x : A

RRxz, Ryz, E, x = y, Γ � Δ
(rep-R1)

R, Rxz, E, x = y, Γ � Δ

R, Rzx, Rzy, E, x = y, Γ � Δ
(rep-R2)

R, Rzx, E, x = y, Γ � Δ

R, Rxy, Ruv, E, x = u, y = v, Γ � Δ
(ls-sc) x is not u; v not in conclusion

R, Rxy, E, x = u, y = v, Γ � Δ

Fig. 1. The labelled sequent calculus LSEq-K. (�r) has the side condition: y does not
appear in the conclusion.

Definition 2 (Geometric Axiom). A geometric axiom is a formula in the
first-order language (binary relations R, =) of the following form where the Pi

are atomic formulae and Q̂j is a conjunction Qj1∧. . .∧Qjkj
of atomic formulae.

∀z̄(P1 ∧ . . . ∧ Pm → ∃x̄(Q̂1 ∨ . . . ∨ Q̂n)) (6)

A modal logic extending the basic normal modal logic K can be defined by
addition of axioms to the Hilbert calculus for K. Alternatively, we can consider
the logic K as the set of formulae valid on all Kripke frames. Modal logics
extending K can be obtained as the set of formulae valid on various subclasses
of Kripke frames. For example, the axiomatic extension K +�p → p (K +�p →
��p) corresponds to the set of formulae valid on reflexive (resp. transitive)
Kripke frames. A modal logic is defined by a set of geometric axioms to mean
that the logic consists exactly of the formulae valid on Kripke frames satisfying
such geometric axiom (first-order frame conditions). See [1] for further details.
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Theorem 3 (Negri). Let L be a modal logic defined by the geometric
axioms {αi}i∈I . Then LSEq-K+{ρi}i∈I is a LS calculus for L where ρi is a struc-
tural rule of the form GRS below corresponding to the geometric axiom (6).

Q1{y1/x1}, P,R, E , E , Γ � Δ . . . QN{yN/xN}, P,R, E , E , Γ � Δ

P,Γ � Δ
GRS

Here Qj = Qj1, . . . , Qjkj
and P = P1, . . . , Pm. The rule ρi has the side condi-

tion that the eigenvariables y1 . . . , yn do not appear in the conclusion.

We write LSEq-K* to denote some extension of LSEq-K by GRS rules.

Example 4.

♦�p → �♦p ∀xyz (Rxy ∧ Rxz → ∃uv (Ryu ∧ Rzv ∧ u = v))
R, Rxy,Rxz,Ryu,Rzv, E , u = v, Γ � Δ

R,Rxy,Rxz, EΓ � Δ
u, v not in conclusion (7)

The graph G(R) defined by relation mset R is the directed graph whose nodes
are the state variables in R and x → y is a directed edge in G(R) iff Rxy ∈ R.

Definition 5 (Treelike). A non-empty relation mset R is treelike if the
directed graph defined by R is a tree (i.e. it is rooted, irreflexive and its under-
lying undirected graph has no cycle).

Example 6. Consider the following relation msets: {Rxx}, {Rxy,Ruv},
{Rxy,Rzy}, and {Rxy,Rxz,Ryu,Rzu}. The graphs defined by these sets are,
respectively,

None of the above relation msets are treelike because the graphs defined by
their relation msets are not trees. From left-to-right, graph 1 contains a reflexive
state; graph 2 and graph 3 are not rooted. Frame 4 is not a tree because the
underlying undirected graph contains a cycle.

Definition 7 (Labelled Tree Sequent LTS). A labelled tree-sequent is a
labelled sequent of the form R, E ,X � Y where E = ∅ and:

(i) if R 
= ∅ then R is treelike and every state variable x that occurs in X ∪ Y
occurs in R.

(ii) if R = ∅ then every label in X and Y is the same.
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Some examples of LTS: x : A � x : B � y : A Rxy,Rxz, x : A � y : B
A state variable may occur in the relation mset and not in the X,Y multisets

(e.g. z above far right). Below are not LTS (assume no two in x, y, z identical).

x : A � x : B, z : C Rxy, x : A � z : B Rxy,Ryz,Rxz �

From left-to-right above, the first labelled sequent is not an LTS because the
relation mset is empty and yet two distinct state variables x and z occur
in the sequent, violating condition Definition 7(ii). The next sequent violates
Definition 7(i) because z does not appear in the relation mset. The final sequent
is not an LTS because the relation mset is not treelike.

Definition 8 (Labelled Tree Sequent with Equality). A labelled tree-
sequent with equality (LTSE) is a labelled sequent of the form R, E ,X � Y
where:

(i) if R 
= ∅ then R is treelike and every state variable in X,Y and E occurs
in R.

(ii) if R = ∅ then every label in X,Y and E is the same.

Clearly every LTS is an LTSE. Each of the following is an LTSE:

Rxy, x = y, x : A � y : B y = y � y : A Rxy,Rxz, y = z, x : A � z : B

The following are not LTSE (assume that no two in x, y and z are identical).

x = z, x : A � x : B Rxy, y = z, x : A � y : B Rxy, Ryz, Rxz, x = y, x = z �

From left-to-right above, the first labelled sequent is not an LTSE because the
relation mset is empty and yet the sequent contains more than one label. The
next sequent violates Definition 8(ii) because z does not appear in the relation
mset. The final sequent is not an LTSE because the relation mset is not treelike.

Definition 9 (Nested Sequent NS). A nested sequent is a finite object
defined recursively as follows:

NS := X � Y where X and Y are formula multisets
NS := NS, [NS], . . . , [NS]

The underlying structure of a nested sequent is a tree decorated with sequents.
In Sect. 1 we presented the decorated trees defined by (1) and (2).

Definition 10 (Indexed Nested Sequent INS). An indexed nested sequent
is a finite object defined recursively as follows:

INS := X �n Y whereX andY are formulamultisets andn ∈ N

INS := INS, [INS], . . . , [INS]
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There is nothing to prevent two traditional sequents in an INS from being given
the same index n ∈ N.

Notation.We write Γ{X �n Y,Δ} to mean the INS Γ containing the occurrence
X �n Y,Δ. Also Γ{X �n Y,Δ}{U �m Y,Σ} denotes an INS Γ containing two
distinct occurrences: X �n Y,Δ and U �m Y,Σ. Here Δ and Σ have the form
[INS], . . . , [INS] (possibly empty).

The indexed nested sequent calculus INS-K [5] for K is given in Fig. 2. The
usual nested sequent calculus [7,13] for K can be obtained by ignoring the indices
and deleting the rules (fc-l), (fc-r) and (sc). Fitting’s Geach scheme [5, Sect. 8]
yields an INS rule corresponding to G(h, i, j, k) when i, j > 0. E.g. here is the
rule corresponding to ♦�p → �♦p (index c does not appear in conclusion).

Γ{[X]}�aY,Δ, [�c]], [U�bV,Σ, [�c]]}
Γ{[X�aY,Δ], [U�bV,Σ]}

(8)

In contrast to [5], in this work we give INS calculi for all Geach axioms.

(init-⊥)
Γ{⊥, X �n Y, Δ}

(init)
Γ{p, X �n Y, p, Δ}

Γ{�A, X �n Y, Δ, [A, U �m V, Σ]}
(�l)

Γ{�A, X �n Y, Δ, [U �m V, Σ]}

Γ{X �n Y, A, B, Δ}
(∨r)

Γ{X �n Y, A ∨ B, Δ}
Γ{X, A, B �n Y, Δ}

(∧l)
Γ{X, A ∧ B �n Y, Δ}

Γ{X �n Y, A, Δ} Γ{X �n Y, B, Δ}
(∧r)

Γ{X �n Y, A ∧ B, Δ}

Γ{A, X �n Y, Δ][A, U �n V, Σ}
(fc-l)

Γ{A, X �n Y, Δ][U �n V, Σ}
Γ{A, X �n Y, B, Δ}

(→r)
Γ{X �n Y, A → B, Δ}

Γ{X �n Y, Δ, [ �m A]}
(�r)

Γ{X �n Y, Δ, �A}

Γ{A, X �n Y, Δ} Γ{B, X �n Y, Δ}
(∨l)

Γ{A ∨ B, X �n Y, Δ}
Γ{X �n Y, A, Δ} Γ{B, X �n Y, Δ}

(→l)
Γ{A → B, X �n Y, Δ}

Γ{X �n Y, A, Δ}{U �n V, A, Σ}
(fc-r)

Γ{X �n Y, A, Δ}{U �n V, Σ}
Γ {X �n Y, Δ, [P �m Q, Π]} {U �n V, Σ, [ �m ]}

(sc)
Γ {X �n Y, Δ, [P �m Q, Π]} {U �n V, Σ}

Fig. 2. The indexed nested sequent calculus INS-K for modal logic K. The rule (�r)
has the side condition that index m does not appear in the conclusion.

3 Syntactic Cut-Elimination for LTSE-Derivations

Definition 11 (LTSE-Derivation). A derivation δ in LSEq-K is called an
LTSE-derivation if every sequent in δ is an LTSE.

We now present a syntactic proof of cut-elimination simultaneously for the
labelled sequent calculus LSEq-K* and for LTSE-derivations in LSEq-K*.
Of course, the proof for LSEq-K* appears in [15] so our focus is on LTSE-
derivations. We aim to reuse as much as we can from that proof. The main
adaptation for LTSE-derivations is a nuanced version of the substitution lemma.
Note that certain rule instances—e.g. (rep-R1) and non-trivial instances of (rep-
R2)—cannot occur in an LTSE-derivation as they do not preserve LTSE. The
following is by induction on the size of A.
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Lemma 12. The sequent R, E , x : A,Γ � x : A,Δ for arbitrary formula A is
derivable in LSEq-K*. Moreover, if the sequent is LTSE then it has an LTSE-
derivation in LSEq-K*.

Let x̄ = (x1, . . . , xN+1) and ȳ = (y1, . . . , yN+1). Then R{ȳ/x̄} is obtained by
replacing every occurrence of xi in relation mset R with yi (1 ≤ i ≤ N + 1). For
an equality mset E and a labelled formula multiset X define E{y/x} and X{y/x}
analogously. When x̄ = (x) and ȳ = (y) we simply write {y/x}. In words, {y/x}
is the substitution of every occurrence of x with y. The following is trivial.

Lemma 13. Let δ be a derivation of s = R, E , Γ � Δ in LSEq-K*. For x, y ∈
SV s.t. y is not in s, there is a derivation δ′ of R{y/x}, E{y/x}, Γ{y/x} �
Δ{y/x} of the same height. Moreover, if δ is an LTSE-derivation then so is δ′.

The labelled sequent calculus LSEq-K*has a stronger substitution property:
for all x, y ∈ SV, if R, E , Γ � Δ is derivable, then there is a derivation of
R{y/x}, E{y/x}, Γ{y/x} � Δ{y/x} of the same height. However this property
does not preserve LTSE-derivations. We need the following nuanced property.

Lemma 14 (Substitution). Let δ be a derivation of R, Rxy,Rxz, E , y =
z, Γ � Δ in LSEq-K* where y = z 
∈ E and Rxy 
∈ R.3 Then there is a
derivation δ′ of R{z/y}, Rxz, E{z/y},X{z/y} � Y {z/y} of the same height.
Moreover, if δ is an LTSE-derivation then so is δ′.

Proof. Induction on the height of δ. Consider the last rule ρ in δ. For most ρ it
suffices to apply the induction hypothesis to its premises and then reapply ρ.

Suppose ρ is (�R) below left (α not in conclusion; x 
= α). For fresh w:

The case of a GRS rule is similar. Now suppose that the last rule in δ is (ls-sc).
By inspection the Ruv term in the premise of (ls-sc) in Fig. 1 cannot be active
in the rule for then the premise would have the form R′, Rus,Ruv, s = v, . . .
(s ∈ SV). Since u is not x by the side condition, u = v is not s = v, and hence
the latter must occur in the conclusion contradicting the side condition of (ls-sc).

By inspection, δ′ is an LTSE-derivation whenever δ is an LTSE-derivation.

Lemma 15 (Weakening). Let δ be a derivation of R, E , Γ � Δ in LSEq-K*.
Then there is a derivation δ′ of s = R,R′, E , E ′, Γ, Γ ′ � Δ,Δ′ of the same height.
Moreovoer, if s is an LTSE and δ is an LTSE-derivation, then so is δ′.

Proof. Induction on the height of δ. Consider the last rule ρ in δ. Use the sub-
stitution of eigenvariables with new variables to avoid a clash with the variables
in the weakening terms. The claim that δ′ is an LTSE-derivation whenever s is
an LTSE and δ is an LTSE-derivation can be verified by inspection.
3 Note: Rxy �∈ R and y = z �∈ E ensure that R{z/y}, Rxz, E{z/y}, X{z/y} � Y {z/y}

is an LTSE whenever s is an LTSE and prevents a residual term z = z, respectively.
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The proof of the following lemma follows the proof in [15].

Lemma 16 (Invertible). Let δ be a derivation of the conclusion of a rule
instance in LSEq-K*. Then there is a derivation δ′ of the premise of that rule
instance of the same height. Moreover, if δ is an LTSE-derivation then so is δ′.

There are four rules of contraction.

R, Rxy, Rxy, E, Γ � Δ

R, Rxy, E, Γ � Δ

R, E, x = y, x = y, Γ � Δ

R, E, x = y, Γ � Δ

R, E, x : A, x : A, Γ � Δ

R, E, x : A, Γ � Δ

R, E, Γ � Δ, x : A, x : A

R, E, x : A, Γ � Δ, x : A

Lemma 17 (Contraction). Let δ be a derivation in LSEq-K* of the premise
of any of the above contraction rules. Then there is a derivation δ′ of its conclu-
sion with the same height. Moreover, if δ is an LTSE-derivation then so is δ′.

Proof. Induction on the height of δ. In the general case (δ not necessarily
an LTSE-derivation): applying height-preserving invertibility to R, Rxy, E , Γ �
Δ, y : A, x : �A yields R, Rxy,Rxz, E , Γ � Δ, y : A, z : A and then the stronger
substitution property yields height-preserving R, Rxz,Rxz, E , Γ � Δ, z : A, z : A
and the required sequent follows from the IH.

Consider the case when δ is an LTSE-derivation whose last rule is (�r). Then
the required LTSE-derivation is below right (y and z are eigenvariables).

The usual cut-rule is below left. We use the cut-rule below right which has
the property that the conclusion is an LTSE whenever the premises are LTSE.

R1, E1, Γ � Δ, x : A R2, E2, x : A, Σ � Π

R1, R2, E1, ε2, Σ � Δ, Π

R, E1, Γ � Δ, x : A R2, E2, x : A, Σ � Π

R1, E1, ε2, Γ, Σ � Δ, Π

Theorem 18. The cut-rule is eliminable in LSEq-K*. Moreover, if the original
derivation is an LTSE-derivation, then so is the transformed derivation.

Proof. We will show how to eliminate a derivation ending with the cut-rule
whose premises are cutfree. Primary induction on the size of the cutformula and
secondary induction on the sum of the heights of the derivations of the premises.
We focus on the case of an LTSE-derivation.

First suppose that the cut-formula is not principal in the left premise (the
argument is analogous if the cut-formula is not principal in the right premise).
When the last rule in the left premise is a unary rule we have the following
situation (the case of a n-ary rule is similar).
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Even if ρ has a side condition, since the eigenvariable(s) ȳ do not appear in
its conclusion, it follows that no variable in ȳ appears in R and hence not in the
right premise of cut either, by Definition 8(i). So we may proceed:

The remaining case to consider is when the cut-formula is principal in both
left and right premise. Once again the interesting case is when the original deriva-
tion is an LTSE-derivation and last rule in the left premise is (�r).

Then proceed:

4 LTSE Derivations: Sound and Complete for Geach
Logics

We already know that there are labelled sequent calculi for Geach logics since
the corresponding frame conditions are geometric. However it remains to show
that these labelled sequent calculi are complete for the Geach logic when we
restrict to LTSE derivations. That is the content of this section. First define:

R0xy := ∅ Rn+1xy := {Rxy1, Ry1y2, . . . , Ryn−1yn, Ryny}
R̂0xy := 
 R̂n+1xy := Rxy1 ∧ Ry1y2 ∧ . . . ∧ Ryn−1yn ∧ Ryny

E.g. R2xy = {Rxy1, Ry1y} and R̂2 = Rxy1 ∧ Ry1y.
Let ȳ = y1, . . . , yh−1, y; z̄ = z1, . . . , zj−1, z; ū = u1, . . . , ui−1, u and v̄ =

v1, . . . , vk−1, v and let λ be the function that returns the last element of a non-
empty sequence. It is well-known that the first-order frame condition f(h, i, j, k)
below corresponds to the Geach formula G(h, i, j, k) given in (3).

∀xȳz̄
(
R̂hxy ∧ R̂jxz −→ ∃ūv̄

(
R̂iλ(xȳ)u ∧ R̂kλ(xz̄)v ∧ λ(xȳū) = λ(xz̄v̄)

))

Some examples of Geach formulae and their corresponding frame conditions:

(ref)�p → p ∀x(
 → ∃u(Rxu ∧ u = x)) so i = 1and others are 0
(trans)�p → ��p ∀xz1z(Rxz1 ∧ Rz1z → ∃u(Rxu ∧ u = x)) so i = 1, j = 2
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From the Sahlqvist correspondence and completeness theorems (see [1]) we have
that the modal logic defined by the set {f(hs, is, js, ks)}s∈S is precisely the
modal logic K + {G(hs, is, js, ks)}s∈S . Here is the corresponding structural rule
where u and u′ do not appear in the conclusion.

R,Rhxy,Rjxz,Riλ(xȳ)u,Rkλ(xz̄)v, λ(xȳū) = λ(xz̄v̄), E , Γ�Δ

R,Rhxy,Rjxz, E , Γ�Δ
ρ(h, i, j, k) (9)

Here is the LTSE derivation of G(h, i, j, k) using ρ(h, i, j, k):

Theorem 19. A ∈ K + {G(hs, is, js, ks)}s∈S iff there is an LTSE-derivation of
� x : A in LSEq-K+{f(hs, is, js, ks)}s∈S.

Proof. The direction (⇒) is completeness. We need to show that every axiom
and rule of the logic is LTSE-derivable. We saw that G(hs, is, js, ks) is LTSE-
derivable. Here is the normal axiom:

Simulating modus ponens and necessitation is as usual. Recall that the former
requires the cut-rule. From the cut-elimination theorem it follows that we can
restrict our attention to LTSE-derivations.

To show soundness (⇐) it suffices to show that every rule instance (restricted
to LTSE-derivations) of the calculus is sound for K + {G(hs, is, js, ks)}s∈S . In
fact, there is a shortcut for proving soundness: since we already know [15] that
Negri’s labelled sequent calculus with equality is sound for this logic (interpret-
ing the sequents under the Kripke semantics), derive each of the LSEq-K rules
in that calculus. Indeed the only new rule is (ls-sc). Given the premises of (ls-sc),
apply the full substitution lemma with {x/u} and {y/v} together with appro-
priate contraction and weakening to get the conclusion.

5 Maps Between LSEq-K* and INS-K*Calculi

It has already been shown [11] that a nested sequent is isomorphic to a labelled
tree sequent up to labelling of state variables. This means that the rules in one
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formalism immediately induce rules in the other formalism under this mapping.
Now let us extend this map to an isomorphism between INS and LTSE.

INS to LTSE: (i) Rewrite an INS s as the tree τs (each node will thus be
decorated with a sequent X �n Y from s). Describe the structure of the tree τs

as a relation mset R (each node in τs corresponds to a distinct variable in SV).
(ii) For y1, . . . , yN+1 ∈ SV occurring in τs with corresponding sequents U1 �i

V1, . . . , UN+1 �i VN+1 i.e. each of these has the same index i, define Ei = {u =
v|u 
= v and u, v ∈ {y1, . . . yN+1}}. Set E as the union over all indices in s.

(iii) The LTSE corresponding to INS is R, E ,X � Y where X = ∪ixi : Ui

and Y = ∪ixi : Vi. Here the union is over all SV variables in τs and Ui � Vi is
the traditional sequent decorating τs at xi.

LTSE to INS: Given the LTSE R, E ,X � Y , construct the tree τs defined
by R (so each node in τs corresponds to a distinct variable in SV). Decorate
node u in τs with the traditional sequent Xu � Yu. Here Xu (Yu) denotes the
subset of X (resp. Y ) of formulae with label u. It remains to assign an index to
each traditional sequent decorating τs. Assign the index so that two traditional
sequents have the same index iff their corresponding nodes u, v ∈ S in τs have
the property that E |= u = v.

Extending to maps between LSEq-K* and INS-K*calculi. We now
demonstrate how to simulate the rules of one calculus in the other. For a rule (ρ)
(ρ ∈ {init, init−⊥,∨l,∨r,∧l,∧r,→l,→r,�l,�r}) in INS-K* (LSEq-K*) the
corresponding rule in LSEq-K*(resp. INS-K*) under the isomorphism is pre-
cisely the rule with the same name. By inspection, (fc-l) corresponds to (rep-l)
and (fc-r) corresponds to (rep-r).

Rule (rep-R1) and non-trivial instances of (rep-R2)—the trivial case con-
tracts a relation term and hence does not change the INS—cannot occur in
LTSE-derivations. The (sc) rule is simulated by (ls-sc).

Each Geach rule in INS-K* maps to the GRS of the corresponding rule
in LSEq-K* e.g. (7) ↔ (8). The variable restrictions are translated as follows:
suppose the GRS premise has the term u = v and the corresponding INS index
is s. If both u and v are eigenvariables in the GRS then s cannot appear in the
conclusion—e.g. (8). If only u is an eigenvariable then the restriction is weaker:
the INS premise must contain an occurrence [�s] in the appropriate position
which does not appear in the conclusion—e.g. (ref) and (trans).

Note that [5] does not give rules for {♦hp → �jp|h, j ≥ 0}. We are able to
handle these logics. E.g. here are the INS and LTSE rules for ♦p → �p.

Γ [[X �a Y,Δ], [U �a V,Σ]]
Γ [[X �a Y,Δ], [U �b V,Σ]]

R, E , Rxy,Rxz, E , y = z, Γ � Δ

R, E , Rxy,Rxz, E , Γ � Δ

From Theorem 19 and the above translation we get:

Corollary 20. K+{G(hs, is, js, ks)}s∈S has an indexed nested sequent calculus.
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6 Intermediate Logics

Nested sequent calculi have been presented for intuitionistic logic [8] and logics in
the intuitionistic modal cube [13,19]. Logics between classical and intuitionistic
logic are called intermediate logics. We are not aware of any nested sequent calculi
for intermediate logics. A labelled sequent calculus LSEq-Ip (Fig. 3) has been
presented [3] for propositional intuitionistic logic and extended via structural
rules to capture those intermediate logics whose Kripke semantics are defined
by geometric axioms. In this section we show how to use LSEq-Ip to obtain an
INS calculus for suitable intermediate logics.

(init-⊥)
R, Rxu, u = x, E, Γ � Δ

(ref)
R, E, Γ � Δ

R, Rxy, Ryz, Rxu, u = z, E, Γ � Δ
(trans)

R, Rxy, Ryz, E, Γ � Δ

R, Rxy, E, x : p, Γ � Δ, y : p (∨l) (∨r) (∧l) (∧r)

R, Rxy, E, x : A → B, Γ � y : A, Δ R, Rxy, E, x : A → B, y : B, Γ � Δ
(→l)

R, Rxy, E, x : A → B, y : B, Γ � Δ

R, Rxy, E, y : A, Γ � Δ, y : B
(→r)

R, E, Γ � Δ, x : A → B
(rep-l) (rep-r) (rep-R1) (rep-R2) (ls-sc)

Fig. 3. The labelled sequent calculus LSEq-Ip. In (→r), y does not appear in the
conclusion. In (ref) and (trans), u does not appear in the conclusion.

Γ{p, X �n Y, [U �m V, p, Δ]}
Γ{X �n Y, [�n], Δ}

(ref)
Γ{X �n Y, Δ}

Γ{X �n Y, Δ, [U �m V, Σ, [P �s Q, Π]], [�s ]}
(trans)

Γ{X �n Y, Δ, [U �m V, Σ, [P �s Q, Π]], }
Γ{X �n Y, [A �m B], Δ}

(→r)
Γ{X �n Y, A → B, Δ}

(init-⊥) (∨l) (∨r) (∧l) (∧r)

Γ{A → B, X �n Y, Δ, [U �m V, A, Σ]} Γ{A → B, X �n Y, Δ, [B, U �m V, Σ]}
(→l)

Γ{A → B, X �n Y, Δ, [U �m V, Σ]}

)cs()r-cf()l-cf(

Fig. 4. The INS calculus INS-Ip.

The INS calculus INS-Ip (Fig. 4) is obtained from the rules of LSEq-Ipby
translating each LTSE into an INS. By similar argument to Sect. 3 we can show
that the cut-rule is eliminable from LSEq-Ipwhile preserving LTSE-derivations.
Analogous to Sect. 4: intermediate logic obtained by axiomatic extension via
axioms which (i) correspond to a geometric axiom and (ii) have an LTSE-
derivation in the corresponding structural rule extension of LSEq-Ip have an
indexed nested sequent calculus. For example, for the logic Ip+(p → ⊥) ∨ ((p →
⊥) → ⊥), the frame condition and corresponding GRS is given in (7). Here is
the LTSE-derivation of the axiom. We leave it to the reader to construct the
corresponding INS derivation in the calculus extending INS-Ipwith rule (8).
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Finally, if we ignore the indices in INS-Ip and delete the rules (fc-l),(fc-r)
and (sc) then we obtain a nested sequent calculus for intuitionistic logic. It is
instructive to compare this nested sequent calculus with [8].

7 Conclusion

This work can be seen as part of a larger program to classify various proof-
systems as subsystems of the labelled sequent calculus. Understanding the rela-
tionships between the various formalisms is not only of theoretical importance,
it will also help to simplify the proofs, and avoid the need for independent proofs
in each formalism. It is not our intention to suggest that only one of {NS, LTS}
and only one of {INS, LTSE} is worthy of consideration. Aside from notational
preference, there are distinct advantages to each approach:

Recall that (I)NS were obtained by generalising the traditional sequent.
Meanwhile LTS(E) can be seen as specific cases of the labelled sequents. Extend-
ing a formalism by generalisation has the advantage of intuition: extend just
enough to capture the logic of interest without losing nice syntactic properties.
Obtaining a formalism by specialisation opens the possibility of coercing existing
results to the new situation as we have done here.

Any modal logic whose corresponding frame condition is geometric has a
labelled sequent calculus (not just those frame conditions corresponding to Geach
logics). Which of these logics has a INS calculus? It needs to be checked if the
axiom corresponding to the frame condition has an LTSE-derivation. Using the
tools of correspondence theory we can envisage the construction of a ‘general’
LTSE derivation, perhaps starting from the first-order Kracht formulae [1].
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Abstract. Hybrid logic is a valuable tool for specifying relational
structures, at the same time that allows defining accessibility relations
between states, it provides a way to nominate and make mention to what
happens at each specific state. However, due to the many sources nowa-
days available, we may need to deal with contradictory information. This
is the reason why we came with the idea of Quasi-hybrid logic, which is
a paraconsistent version of hybrid logic capable of dealing with inconsis-
tencies in the information, written as hybrid formulas.

In [5] we have already developed a semantics for this paraconsistent
logic. In this paper we go a step forward, namely we study its proof-
theoretical aspects. We present a complete tableau system for Quasi-
hybrid logic, by combining both tableaux for Quasi-classical and Hybrid
logics.

1 Introduction

Hybrid logic [1] is the simplest tool for the description of relational structures: it
allows establishing accessibility relations between states and furthermore, nom-
inating and making mention to what happens at specific states.

Unfortunately, we may collect contradictory information due to the many
sources nowadays available. This is the reason why we came with the idea of
Quasi-hybrid logic [5], which is a paraconsistent version of hybrid logic, thus
capable of dealing with the inconsistencies in the information, written as for-
mulas in hybrid logic. This kind of logic is useful for comparing the amount of
inconsistency among databases, and has proved to be applicable in a wide range
of real-life applications, namely we have studied how can inconsistencies relate
to the health care flow of a patient [4], and we are currently working in robotics
in order to create a robot which uses a paraconsistent reasoning to determine
its movements and actions.

This work proposes to introduce proof-theoretical aspects of QH logic. We
aimed to combine both tableaux for quasi-classical and hybrid logics, [3,8] respec-
tively, which resulted in a new tableau system as desired.

Classically, tableau systems rely on a backwards reasoning where we start
with a formula whose validity we want to prove. A tableau, i.e., a tree, is created
using some predefined rules, and whose starting point is the negation of the
formula we are investigating. If we come to a point where each branch of the
tree contains both a formula of the form ϕ and a formula of the form ¬ϕ, we
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 435–451, 2016.
DOI: 10.1007/978-3-319-40229-1 30
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say that the tableau is closed and verify that there are no counter-models for
the original formula, thus it is proved that the formula is valid.

In our paraconsistent setting, we will consider a database Δ, and a query
ψ whose satisfiability will be verified in the bistructures (introduced in Sect. 3)
that satisfy the formulas in the database. Analogously to the classical case, we
start with Δ and ψ∗, where ψ∗ will be defined later (in particular it will be
a satisfaction statement). Our tableau is constructed using strong rules (which
yield disjunctive syllogism) for formulas in Δ and a weaker version (which rejects
DS) for ψ∗. If we end up with a tableau which is closed, i.e., in which every branch
has a formula of the form ϕ and ϕ∗, we can conclude that ϕ is true in every
bistructure that satisfies Δ.

2 The Basic Hybrid Language

We start by presenting the simplest form of hybrid logic: the basic hybrid lan-
guage, H(@). The basic hybrid language introduces nominals and the satisfaction
operator into the propositional modal logic. Although being a simple extension,
it carries great power in terms of expressivity.

Definition 1. Let L = 〈Prop,Nom〉 be a hybrid similarity type where Prop
is a set of propositional symbols and Nom is a set disjoint from Prop. We use
p, q, r, etc. to refer to the elements in Prop. The elements in Nom are called nom-
inals and we typically write them as i, j, k, etc.. The set of well-formed formulas
over L, Form@(L), is defined by the following grammar:

WFF := i | p | ¬ϕ | ϕ ∨ ψ |ϕ ∧ ψ | ♦ϕ | �ϕ | @iϕ

For any nominal i, @i is called a satisfaction operator, and for a formula ϕ,
@iϕ is called a satisfaction statement.

Given a hybrid similarity type L = 〈Prop,Nom〉, a hybrid structure H over
L is a tuple (W,R,N, V ) such that:

– W is a non-empty set called domain, whose elements are called states or
worlds.

– R is a binary relation on W and is called the accessibility relation.
– N : Nom → W is a function called hybrid nomination that assigns nominals

to elements in W . For any nominal i, N(i) is the element of W named by i.
– V is a hybrid valuation, which means that V is a function with domain Prop

and range Pow(W ) such that V (p) tells us at which states (if any) each
propositional symbol is true.

The pair (W,R) is called the frame underlying H and H is said to be a
structure based on this frame.

The satisfaction relation, which is defined as follows, is a generalization of
Kripke-style satisfaction.
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Definition 2 (Satisfaction). The relation of local satisfaction |= between a
hybrid structure H = (W,R,N, V ), a state w ∈ W and a hybrid formula is
recursively defined by:

1. H, w |= i iff w = N(i);
2. H, w |= p iff w ∈ V (p);
3. H, w |= ¬ϕ iff it is false that H, w |= ϕ;
4. H, w |= ϕ ∧ ψ iff H, w |= ϕ and H, w |= ψ;
5. H, w |= ϕ ∨ ψ iff H, w |= ϕ or H, w |= ψ;
6. H, w |= ♦ϕ iff ∃w′ ∈ W (wRw′ and H, w′ |= ϕ);
7. H, w |= �ϕ iff ∀w′ ∈ W (wRw′ ⇒ H, w′ |= ϕ);
8. H, w |= @iϕ iff H, w′ |= ϕ, where w′ = N(i);

If H, w |= ϕ we say that ϕ is satisfied in H at w. If ϕ is satisfied at all states
in a structure H, we write H |= ϕ. If ϕ is satisfied at all states in all structures
based on a frame F , then we say that ϕ is valid on F and we write F |= ϕ. If ϕ
is valid on all frames, then we simply say that ϕ is valid and we write |= ϕ. For
Δ ⊆ Form@(L), we say that H is a model of Δ iff for all θ ∈ Δ,H |= θ.

Definition 3. A formula ϕ̄ ∈ Form@(L) is said to be (logically) equivalent to
ϕ ∈ Form@(L) iff for every hybrid structure H = (W,R,N, V ), for all w ∈ W ,

H, w |= ϕ ⇔ H, w |= ϕ̄.

It is easy to see that boolean connectives have the usual properties, and that
�ϕ is equivalent to ¬♦¬ϕ.

We define the notion of negation normal form of a formula (i.e., formulas
in which the negation symbol occurs immediately before propositional symbols
and/or nominals) for hybrid logic and we establish an analogous result to the
one in [2] for classical propositional logic that states that any modal formula is
logically equivalent to one in the negation normal form.

Definition 4. Let L = 〈Prop,Nom〉 be a hybrid similarity type. A formula is
said to be in negation normal form, for short NNF, if negation only appears
directly before propositional variables and/or nominals. The set of NNF formulas
over L, FormNNF(@)(L), is recursively defined as follows:

For p ∈ Prop, i ∈ Nom,

1. p, i, ¬p, ¬i are in NNF;
2. If ϕ, ψ are formulas in NNF, then ϕ ∨ ψ, ϕ ∧ ψ are in NNF;
3. If ϕ is in NNF, then �ϕ, ♦ϕ are in NNF;
4. If ϕ is in NNF, then @iϕ is in NNF.

The next proposition shows that we do not lose generality by considering
just formulas in negation normal form.
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Proposition 1 [5]. Every formula ϕ ∈ Form@(L) is logically equivalent to a
formula ϕ̄ ∈ FormNNF(@)(L).

The negation normal form of a formula is defined just as in classical propo-
sitional logic. A recursive procedure that puts formulas in negation normal form
nnf : Form@(L) → FormNNF(@)(L), is set as usual. For example:

nnf(l)
def
= l, if l is a literal,

nnf(¬(ψ1 ∧ ψ2))
def
= nnf(¬ψ1) ∨ nnf(¬ψ2) and nnf(¬�ψ)

def
= ♦nnf(¬ψ)

3 Paraconsistency in Hybrid Logic

In this section we study paraconsistency in Hybrid logic following an approach
inspired by the work of Grant and Hunter ([6,7]).

First of all, we define a Quasi-hybrid (QH) Basic Logic. The assumption in
[6] is that all formulas are in Prenex Conjunctive Normal Form; in QH logic
we will assume henceforth that all formulas are in Negation Normal Form. This
assumption does not lead to loss of generality since any hybrid formula is equiv-
alent to a formula in negation normal form (cf. Proposition 1).

Next, concepts of bistructure, decoupled and strong satisfaction and QH
model will be presented. We define the paraconsistent diagram of a bistructure.

3.1 Quasi-Hybrid Basic Logic

As already mentioned, we will assume that all formulas are in negation normal
form, i.e., given a hybrid similarity type L = 〈Prop,Nom〉, the set of formulas
is FormNNF(@)(L).

Definition 5. Let θ be a formula in NNF. We define the complementation oper-
ation ∼ from ∼ θ := nnf(¬θ).

The ∼ operator is not part of the object hybrid similarity type but it makes
some definitions clearer.

Recall that a hybrid structure for a hybrid similarity type L is a tuple
(W,R,N, V ). However, in order to accommodate contradictions in a model, we
will use two valuations for propositions: V + and V −.

Definition 6. A hybrid bistructure is a tuple (W,R,N, V +, V −), where
(W,R,N, V +) and (W,R,N, V −) are hybrid structures.

The map V + is interpreted as the acceptance of a propositional symbol, and
V − as the rejection. This is formalized in the definition for decoupled satisfaction.

Definition 7. For a hybrid bistructure E = (W,R,N, V +, V −) we define a sat-
isfiability relation |=d called decoupled satisfaction at w ∈ W for propositional
symbols and nominals as follows:
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1. E,w |=d p iff w ∈ V +(p);
2. E,w |=d i iff w = N(i);
3. E,w |=d ¬p iff w ∈ V −(p);
4. E,w |=d ¬i iff w �= N(i);

Since we allow both a propositional symbol and its negation to be simulta-
neously satisfied and also allow both to be non-satisfied, we have decoupled, at
the level of the structure, the link between a formula and its complement. In
contrast, if a classical hybrid structure satisfies a propositional symbol at some
world, it is forced to not satisfy its complement at that world.

This decoupling gives us the basis for a semantics for paraconsistent reason-
ing. Paraconsistency involves a tradeoff; in order to allow contradictions, one
of the following three principles must be abandoned: disjunction introduction,
disjunctive syllogism, and transitivity. In this approach, we chose to keep the
disjunctive syllogism and transitivity and discard disjunction introduction.

In Quasi-hybrid logic, “or” statements involve an intensional disjunction.
Such a disjunction is one whose satisfaction entails not merely that at least one
of the disjuncts is the case, but also that if one of the disjuncts were not the
case, then the other one would be the case.

Definition 8. A satisfiability relation |=s called strong satisfaction, is defined
as follows:

1. E,w |=s p iff E,w |=d p;
2. E,w |=s ¬p iff E,w |=d ¬p;
3. E,w |=s i iff E,w |=d i;
4. E,w |=s ¬i iff E,w |=d ¬i;
5. E,w |=s θ1 ∨ θ2 iff [E,w |=s θ1 or E,w |=s θ2] and [E,w |=s∼ θ1 ⇒

E,w |=s θ2] and [E,w |=s∼ θ2 ⇒ E,w |=s θ1];
6. E,w |=s θ1 ∧ θ2 iff E,w |=s θ1 and E,w |=s θ2;
7. E,w |=s ♦θ iff ∃w′(wRw′ & E,w′ |=s θ);
8. E,w |=s �θ iff ∀w′(wRw′ ⇒ E,w′ |=s θ);
9. E,w |=s @iθ iff E,w′ |=s θ where w′ = N(i);

We define strong validity as follows: E |=s θ iff for all w ∈ W, E,w |=s θ.
We say that E is a quasi-hybrid model of Δ iff for all θ ∈ Δ,E |=s θ and we

write E |=s Δ.

4 A Tableau for Quasi-Hybrid Logic

In this section we discuss a decision procedure for Quasi-hybrid logic, based on a
tableau system. This new tableau system is a fusion between the tableau system
for Quasi-classical logic introduced in [8], and the tableau system for Hybrid
logic proposed in [3].

We will consider a database Δ of hybrid formulas that express real situations
where inconsistencies may appear at some states, and we will check if a query ϕ
is a consequence of the database, i.e., we will want to check if every bistructure
that strongly validates all formulas in Δ also validates ϕ weakly.

We will restrict our attention to formulas which are satisfaction statements.
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4.1 Tableau Rules for QH Logic

We will start by introducing some definitions that will be useful later when we
explain the construction of the tableau. We present the rules and a theorem for
checking soundness.

Definition 9. We define weak satisfaction |=w as strong satisfaction (|=s),
except for the case of disjunction, which we will consider as a classical dis-
junction:

E,w |=w θ1 ∨ θ2 iffE,w |=w θ1 or E,w |=w θ2

The reader may observe that for any θ ∈ FormNNF(@)(L), E,w |=s θ implies
E,w |=w θ. And that, by contraposition, �|=w ⊆ �|=s.

Similarly to the definition of strong validity, we define weak validity as follows:
E |=w θ iff for all w ∈ W, E,w |=w θ.

From now on, we will restrict our attention to satisfaction statements.

Definition 10 (Quasi-Hybrid Consequence Relation). Let Δ be a set of
satisfaction statements called database, and ϕ be a satisfaction statement, called
query. We say that ϕ is a consequence of Δ in quasi-hybrid logic if and only if,
for all bistructures E which are quasi-hybrid models of Δ, ϕ is weakly valid.

Formally,
Δ |=QH ϕ iff ∀E (E |=s Δ ⇒ E |=w ϕ)

Before introducing the tableau-based proof procedure, some definitions are
required, namely:

Definition 11. Given a hybrid similarity type L = 〈Prop,Nom〉, we denote the
set of satisfaction statements over L as L@.

We duplicate the set of satisfaction statements by considering starred copies.
The extended set is denoted by L∗

@ and is defined as: L∗
@ = L@ ∪ {ϕ∗ | ϕ ∈ L@}.

The satisfaction of the new formulas ϕ∗ is in some sense the complementary
of the satisfaction of ϕ.

Definition 12. We extend both weak and strong satisfaction relations to starred
formulas as follows:

E,w |=s ϕ∗ iff E,w �|=s ϕ
E,w |=w ϕ∗ iff E,w �|=w ϕ

Weak and strong validity of starred formulas are defined in the natural way.
We can now introduce two types of decomposition rules to be used in our QH

semantic tableau: strong rules and weak rules, strong rules are applied to non-
starred formulas, and weak rules are applied to starred formulas. The tableau
system will be denoted TQH.
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Tableau Rules:
Strong rules (S-rules)
• For connectives and operators:

@i(α ∨ β)
(@i(∼ α))∗ | @iβ

(∨1)
@i(α ∨ β)

(@i(∼ β))∗ | @iα
(∨2)

@i(α ∨ β)
@iα | @iβ

(∨3)

@i(α ∧ β)
@iα,@iβ

(∧)
@i@jα

@jα
(@)

@i�α,@i♦t

@tα
(�)

@i♦α

@i♦t,@tα
(♦)(i)

• For nominals:

@ii
(Ref)(ii)

@ac,@aϕ

@cϕ
(Nom1)(iii)

@ac,@a♦b

@c♦b
(Nom2)

Weak rules (W-rules)
• For connectives and operators:

(@i(α ∨ β))∗

(@iα)∗, (@iβ)∗ (∨∗)
(@i(α ∧ β))∗

(@iα)∗|(@iβ)∗ (∧∗)

(@i@jα)∗

(@jα)∗ (@∗)
(@i�α)∗

@i♦t, (@tα)∗ (�∗)(iv)
(@i♦α)∗,@i♦t

(@tα)∗ (♦∗)

(@i�¬t)∗

@i♦t
(�∗

¬i)

• For nominals:

@ac, (@aϕ)∗

(@cϕ)∗ (Nom∗
1)(iii)

@ac, (@a�b)∗

(@c�b)∗ (Nom∗
2)

(i) t is a new nominal, α is not a nominal.
(ii) for i in the branch.
(iii) for ϕ a propositional variable/nominal.
(iv) t is a new nominal, α is not of the form ¬j, for j a nominal.

The strong and weak rules for nominals, together with (∨1), (∨2), (�) and
(♦∗) are called non-destructive rules. The remaining are called destructive.

The star in the formulas can be seen as a kind of meta-negation; the weak
rules, which involve starred formulas, can thus be viewed as duals of the strong
ones, except for the case where we obtain the classical disjunction.
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Next theorem states that TQH is sound:

Theorem 1 (Soundness). The tableau rules are sound in the following sense:

– for any r-rule
Λ

Σ
, any bistructure E and any state w ∈ W , E,w |=r Λ implies

E,w |=r Σ.

– for any r-rule
Λ

Σ | Γ
, any bistructure E and any state w ∈ W , E,w |=r Λ

implies E,w |=r Σ or E,w |=r Γ ,

for Λ; Σ and Γ lists of formulas in L∗
@ and r ∈ {s,w}.

Proof. The proof can be obtained by checking each rule.

4.2 Properties of the Tableau System and its Construction

The idea of a tableau is that we apply the rules previously introduced to root for-
mulas and to formulas which occur in the tableau after the application of a rule.
This indiscriminate way of applying rules leads to infinite tableaux, where there
may be repeated formulas and loops, thus we must find a systematic construction
that terminates a tableau and allows us to take some conclusions from it.

Definition 13. We say that a formula χ ∈ L∗
@ is a strong occurrence/s-occurs

if it is the result of applying a strong rule. Analogously we say that χ is a weak
occurrence/w-occurs if it is the result of applying a weak rule. A formula occurs if
it s-occurs or w-occurs.

Definition 14. The notion of a subformula is defined by the following condi-
tions:

– ϕ is a subformula of ϕ;
– if ψ ∧ θ or ψ ∨ θ is a subformula of ϕ, then so are ψ and θ;
– if @aψ, �ψ, or ♦ψ is a subformula of ϕ, then so is ψ.

The tableau system TQH satisfies the following quasi-subformula property:

Theorem 2 (Quasi-Subformula Property). If a formula @aϕ s-occurs in
a tableau where ϕ is not a nominal and ϕ is not of the form ♦b, then ϕ is a
subformula of a root formula. If a formula (@aϕ)∗ w-occurs in a tableau, then ϕ
is a subformula of the premise in the applied rule.

Proof. The proof can be obtained by checking each rule.

Definition 15. Let Θ be a branch of a tableau and let NomΘ be the set of
nominals occurring in the formulas of Θ. Define a binary relation ∼Θ on NomΘ

by a ∼Θ b if and only if the formula @ab occurs on Θ.

Definition 16. Let b and a be nominals occurring on a branch Θ of a tableau
in TQH. The nominal a is said to be included in the nominal b with respect to Θ
if the following holds:
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– for any subformula ϕ of a root formula, if the @aϕ s-occurs on Θ, then @bϕ
also s-occurs on Θ; and

– if (@aϕ)∗ w-occurs on Θ, then (@bϕ)∗ also w-occurs on Θ.

If a is included in b with respect to Θ, and the first occurrence of b on Θ is before
the first occurrence of a, then we write a ⊆Θ b.

Definition 17 (Tableau Construction). Given a database Δ of satisfaction
statements and a query @aϕ of QH, one wants to verify if @aϕ is a consequence
of Δ. In order to do so, we define by induction a sequence τ0, τ1, τ2, · · · of finite
tableaux in TQH, each of which is embedded in its successor.

Let τ0 be the finite tableau constituted by the formulas in Δ and (@aϕ)∗.
τn+1 is obtained from τn if it is possible to apply an arbitrary rule to τn with the
following three restrictions:

1. If a formula to be added to a branch by applying a rule already occurs on the
branch, then the addition of the formula is simply omitted.

2. After the application of a destructive rule to a formula occurrence ϕ on a
branch, it is recorded that the rule was applied to ϕ with respect to the branch
and the rule will not again be applied to ϕ with respect to the branch or any
extension of it.

3. The existential rules (♦,�∗) are not applied to a formula occurrence @a♦ϕ
or (@a�ϕ)∗ on a branch Θ if there exists a nominal b such that a ⊆Θ b.

Note that due to the first restriction, a formula cannot occur more than
once on a branch. Also note that no information is recorded about applica-
tions of nondestructive rules. The conditions on applications of the existential
rules (♦,�∗) in the third restriction are the loop-check conditions. The intuition
behind loopchecks is that an existential rule is not applied in a world if the
information in that world can be found already in an ancestor world. Hence, the
introduction of a new world by the existential rule is blocked.

A branch is closed iff there is a formula ψ for which ψ and ψ∗ are in that
branch; we use the symbol × to mark a closed branch. A TQH tableau is closed
iff every branch is closed. A branch is open if it is not closed and there are no
more rules to apply; we use the symbol � to mark an open branch. A tableau is
open if it has an open branch.

A terminal tableau is a tableau where the rules have been exhaustively used
i.e., there are no more rules applicable to the tableau obeying the restrictions in
Definition 17.

Henceforth, θ is a branch of a terminal tableau.

Definition 18. Let U be the subset of NomΘ containing any nominal a having
the property that there is no nominal b such that a ⊆Θ b. Let ≈ be the restriction
of ∼Θ to U .

Note that U contains all nominals present in the root formulas since they
are the first formulas of the branch Θ. Observe that Θ is closed under the rules
(Ref) and (Nom1), so both ∼Θ and ≈ are equivalence relations.
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Given a nominal a in U , we let [a]≈ denote the equivalence class of a with
respect to ≈ and we let U/ ≈ denote the set of equivalence classes.

Definition 19. Let R be the binary relation on U defined by aRc if and only
if there exists a nominal c′ ≈ c such that one of the following two conditions is
satisfied:

1. The formula @a♦c′ occurs on Θ.
2. There exists a nominal d in NomΘ such that the formula @a♦d occurs on Θ

and d ⊆Θ c′.

Note that the nominal d referred to in the second item in the definition is not
an element of U . It follows from Θ being closed under the rule (Nom2) that R
is compatible with ≈ in the first argument and it is trivial that R is compatible
with ≈ in the second argument. We let R̄ be the binary relation on U/ ≈ defined
by [a]≈ R̄ [c]≈ if and only if aRc.

Definition 20. Let N̄ : U → U/ ≈ be defined as N̄(a) = [a]≈.

Definition 21. Let V + be the function that to each ordinary propositional sym-
bol assigns the set of elements of U where that propositional variable occurs, i.e.,
a ∈ V +(p) iff @ap occurs on Θ. Analogously, let V − be the function that to
each ordinary propositional symbol assigns the set of elements of U where the
negation of that propositional variable occurs, i.e., a ∈ V −(p) iff @a¬p occurs
on Θ.

We let V +
≈ be defined by V +

≈ (p) = {[a]≈ | a ∈ V +(p)}. We define V −
≈ analo-

gously: V −
≈ (p) = {[a]≈ | a ∈ V −(p)}.

Given a branch Θ, let MΘ =
(
U/ ≈, R̄, N̄ , V +

≈ , V −
≈

)
. We will omit the refer-

ence to the branch in MΘ if it is clear from the context.

Theorem 3 (Model Existence). Assume that the branch Θ is open. For any
satisfaction statement @aϕ which contains only nominals from U , the following
conditions hold:

(i) If @aϕ s-occurs on Θ, then M, [a]≈ |=s ϕ
(ii) If @aϕ w-occurs on Θ, then M, [a]≈ |=w ϕ
(iii) If (@aϕ)∗ s-occurs on Θ, then M, [a]≈ �|=s ϕ.
(iv) If (@aϕ)∗ w-occurs on Θ, then M, [a]≈ �|=w ϕ.

Proof. The proof is by induction on the structure of ϕ.

– ϕ = i, i a nominal
(i) @ai s-occurs on Θ, then [a]≈ = [i]≈, hence M, [a]≈ |=s i.
(ii) @ai never w-occurs.
(iii) (@ai)∗ s-occurs on Θ, then, since the branch is open, @ai does not occur
on Θ, in particular, it does not s-occur. So, [a]≈ �= [i]≈, then M, [a]≈ �|=s i.
(iv) (@ai)∗ w-occurs on Θ, then analogously to the previous case, @ai does
not occur on Θ, in particular, it does not w-occur. So, [a]≈ �= [i]≈, then
M, [a]≈ �|=w i.
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– ϕ = ¬i, i a nominal
The proof is analogous to the case ϕ = i.

– ϕ = p, p a propositional variable
(i) @ap s-occurs on Θ, then a ∈ V +

≈ (p), thus M, [a]≈ |=s p.
(ii) @ap never w-occurs.
(iii) (@ap)∗ s-occurs on Θ, then, since the branch is open, @ap does not occur
on Θ, in particular, it does not s-occur. It also means that a /∈ V +

≈ (p) so,
M, [a]≈ �|=s p.
(iv) (@ap)∗ w-occurs on Θ; analogously to the previous case, considering that
@ap does not w-occur we get that M, [a]≈ �|=w p.

– ϕ = ¬p, p a propositional variable
Each case will be analogous to the one in ϕ = p, only with the difference that
we now consider V −

≈ (p) instead of V +
≈ (p).

– ϕ = φ ∧ ψ, φ, ψ formulas
(i) @a(φ ∧ ψ) s-occurs on Θ, then, by applying the S-rule (∧), @aφ and @aψ
s-occur on Θ. By the induction hypothesis, M, [a]≈ |=s φ and M, [a]≈ |=s ψ.
Thus, M, [a]≈ |=s φ ∧ ψ.
(ii) @a(φ ∧ ψ) never w-occurs.
(iii) (@a(φ ∧ ψ))∗ s-occurs on Θ, then, by applying the W-rule (∧∗), (@aφ)∗

or (@aψ)∗ w-occur on Θ.Hence, by induction hypothesis, M, [a]≈ �|=w φ or
M, [a]≈ �|=w ψ. Thus, M, [a]≈ �|=w φ ∧ ψ. Therefore, M, [a]≈ �|=s φ ∧ ψ.
(iv) (@a(φ ∧ ψ))∗ w-occurs on Θ; follow an analogous approach to (iii).

– ϕ = @iφ, φ a formula
(i) @a@iφ s-occurs on Θ, then, by applying the S-rule (@), @iφ s-occurs on
Θ. By the induction hypothesis, M, [i]≈ |=s φ; thus, by the definition of satis-
fiability, M, [a]≈ |=s @iφ.
(ii) @a@iφ never w-occurs.
(iii) (@a@iφ)∗ s-occurs on Θ, then, by applying the W-rule (@∗), (@iφ)∗ w-
occurs on Θ. By the induction hypothesis, M, [i]≈ �|=w φ. Thus, M, [i]≈ �|=s φ
and it follows that M, [a]≈ �|=s @iφ.
(iv) (@a@iφ)∗ w-occurs on Θ; follow an analogous approach to (iii).

– ϕ = φ ∨ ψ, φ, ψ formulas
(i) @a(φ ∨ ψ) s-occurs on Θ, then, since we can apply three S-rules, namely
(∨1,∨2,∨3), one may obtain 8 new branches, represented as follows:

@a(φ ∨ ψ)

(@a(∼ φ))∗

(@a(∼ ψ))∗

@aφ

1

@aψ

2

@aφ

@aφ

3

@aψ

4

@aψ

(@a(∼ ψ))∗

@aφ

5

@aψ

6

@aφ

@aφ

7

@aψ

8
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Let us check what happens at each branch:
1. (@a(∼ φ))∗, (@a(∼ ψ))∗ and @aφ s-occur.

By induction hypothesis:
M, [a]≈ �|=s∼ φ,
M, [a]≈ �|=s∼ ψ, and
M, [a]≈ |=s φ.

Recall that M, [a]≈ |=s φ ∨ ψ
⇔ (M, [a]≈ |=s φ or M, [a]≈ |=s ψ)
and (M, [a]≈ |=s∼ φ ⇒ M, [a]≈ |=s ψ)
and (M, [a]≈ |=s∼ ψ ⇒ M, [a]≈ |=s φ)

Thus, under the conditions in branch number 1, it is verified that

M, [a]≈ |=s φ ∨ ψ.

2. (@a(∼ φ))∗, (@a(∼ ψ))∗ and @aψ s-occur.
Thus,
M, [a]≈ �|=s∼ φ,
M, [a]≈ �|=s∼ ψ, and
M, [a]≈ |=s ψ.
Using the same approach as before, one has that M, [a]≈ |=s φ ∨ ψ.

3. (@a(∼ φ))∗, and @aφ s-occur.
Thus,
M, [a]≈ �|=s∼ φ, and
M, [a]≈ |=s φ.

Then, M, [a]≈ |=s φ ∨ ψ.

4. (@a(∼ φ))∗, @aφ and @aψ s-occur.
Thus,
M, [a]≈ �|=s∼ φ,
M, [a]≈ |=s φ, and
M, [a]≈ |=s ψ.

So, M, [a]≈ |=s φ ∨ ψ.

5. @aψ, (@a(∼ ψ))∗ and @aφ s-occur.
Analogously to branch number 4, M, [a]≈ |=s φ ∨ ψ.

6. @aψ and (@a(∼ ψ))∗ s-occur.
Analogously to branch number 3, M, [a]≈ |=s φ ∨ ψ.

7. and 8. @aφ and @aψ s-occur.
Thus, M, [a]≈ |=s φ ∨ ψ.

We can thus conclude that, if @a(φ ∨ ψ) s-occurs, then M, [a]≈ |=s φ ∨ ψ.
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(ii) @a(φ ∨ ψ) never w-occurs.
(iii) (@a(φ ∨ ψ))∗ s-occurs on Θ, then by applying rule (∨∗), we obtain that
(@aφ)∗ and (@aψ)∗ w-occur. By induction hypothesis, M, [a]≈ �|=w φ and
M, [a]≈ �|=w ψ; thus, M, [a]≈ �|=w φ ∨ ψ. Therefore M, [a]≈ �|=s φ ∨ ψ.
(iv) (@a(φ ∨ ψ))∗ w-occurs on Θ, analogous to the previous case.

– ϕ = ♦ψ, where:
• ψ is a nominal t

For the first two cases we have that:
(i) @a♦t s-occurs on Θ, then [a]≈R̄[t]≈. By definition of satisfiability,
M, [a]≈ |=s ♦t.
(ii) @a♦t w-occurs on Θ; it follows from the previous explanation that
M, [a]≈ |=w ♦t.

• ψ is not a nominal
For the first two cases we have that:
(i) @a♦ψ s-occurs on Θ, then by the application of the S-rule (♦), @a♦t
and @tψ s-occur, for t a new nominal.

∗ if t ∈ U , [a]≈R̄[t]≈ and M, [a]≈ |=s ♦ψ.
∗ if t /∈ U , ∃d such that t ⊆Θ d. Assume that there is no e such that
d ⊆Θ e, i.e., d ∈ U . By Theorem 2, the formula ψ is a subformula
of a root formula, so @dψ s-occurs on Θ. By induction hypothesis,
M, [d]≈ |=s ψ and [a]≈R̄[d]≈. Thus yielding that M, [a]≈ |=s ♦ψ.

(ii) @a♦ψ never w-occurs.

• The last two cases are applicable for either ψ a nominal or not:
(iii) (@a♦ψ)∗ s-occurs on Θ.
We want to prove that M, [a]≈ �|=s ♦ψ, i.e., that for all [c]≈ such that
[a]≈R̄[c]≈, M, [c]≈ �|=s ψ.
By definition, [a]≈R̄[c]≈ implies that ∃c′ : c′ ≈ c that satisfies one of the
following two conditions:

∗ @a♦c′ occurs.
Then, by the W-rule (♦∗), (@c′ψ)∗ w-occurs on Θ. By induction,
M, [c′]≈ �|=w ψ.
Since [c′]≈ = [c]≈, then [a]≈R̄[c′]≈. Thus, M, [a]≈ �|=w ♦ψ, which
implies that M, [a]≈ �|=s ♦ψ.
∗ ∃d ∈ NomΘ such that @a♦d occurs and d ⊆Θ c′.
By the application of the W-rule (♦∗), (@dψ)∗ occurs on Θ. By
Theorem 2, ψ is a subformula of the premise in the applied rule.
Since d ⊆Θ c′, (@c′ψ)∗ occurs on Θ.
By induction we conclude that M, [c′]≈ �|=w ψ, thus M, [a]≈ �|=w ♦ψ
and finally, M, [a]≈ �|=s ♦ψ.

(iv) (@a♦ψ)∗ w-occurs on Θ. The proof is the same as the previous one,
stopping at the point where M, [a]≈ �|=w ♦ψ.
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– ϕ = �ψ
In order to prove the first two cases, consider ψ an arbitrary formula.
(i) @a�ψ s-occurs on Θ.
We want to prove that M, [a]≈ |=s �ψ, i.e., that for all [c]≈ such that
[a]≈R̄[c]≈, M, [c]≈ |=s ψ.
As you may verify, this is a similar proof to the one made for (@a♦ψ)∗:
By definition, [a]≈R̄[c]≈ implies that ∃c′ : c′ ≈ c that satisfies one of the
following two conditions:

• @a♦c′ occurs.
Then, by the S-rule (�), @c′ψ s-occurs on Θ. By induction, M, [c′]≈ |=s ψ.
Since [c′]≈ = [c]≈, then [a]≈R̄[c′]≈. Thus, M, [a]≈ |=s �ψ.

• ∃d ∈ NomΘ such that a♦d occurs and d ⊆Θ c′.
By the application of the S-rule (�), @dψ s-occurs on Θ. By Theorem 2,
ψ is a subformula.
Since d ⊆Θ c′, @c′ψ occurs on Θ.
By induction we conclude that M, [c′]≈ |=s ψ, thus M, [a]≈ |=s �ψ.

(ii) @a�ψ never w-occurs.

The last two cases require a separation between ψ of the form ¬i, with i a
nominal, and not of the form described.
Let us consider:

• ψ of the form ¬i, with i a nominal.
(iii) (@a�¬i)∗ s-occurs on Θ, thus, by the rule (�∗

¬i) which implies that
(@a♦i) w-occurs.
An occurrence of (@a♦i) means that [a]≈R̄[i]≈. So, by definition,
M, [a]≈ |=w ♦i, which entails that M, [a]≈ �|=w �¬i. Therefore, M, [a]≈ �|=s

�¬i.
(iv) (@a�¬i)∗ w-occurs on Θ follows the same approach.

• ψ otherwise.
(iii) (@a�ψ)∗ s-occurs on Θ, thus by application of the W-rule (�∗), @a♦t
and (@tψ)∗ w-occur, for t a new nominal.

∗ if t ∈ U , [a]≈R̄[t]≈. By induction hypothesis, M, [t]≈ �|=w ψ. Thus
M, [a]≈ �|=w �ψ. To conclude, M, [a]≈ �|=s �ψ.
∗ if t /∈ U , ∃d such that t ⊆Θ d. Assume that there is no e such that
d ⊆Θ e, i.e., d ∈ U . By Theorem 2, the formula ψ is a subformula of
a root formula, so (@dψ)∗ w-occurs on Θ. By induction hypothesis,
M, [d]≈ �|=w ψ and [a]≈R̄[d]≈. Thus yielding that M, [a]≈ �|=w �ψ,
which, in its turn, yields M, [a]≈ �|=s �ψ.

(iv) (@a�ψ)∗ s-occurs on Θ; the proof is the same as before, stopping at
M, [a]≈ �|=w �ψ, which already gives the desired result.

From this theorem together with the soundness theorem we have the following
decision procedure:
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Decision Procedure: Given a database Δ and a query @aϕ whose consequence
from Δ we want to decide, let τn be a terminal tableau generated by the tableau
construction algorithm. If the tableau is closed, then @aϕ is a consequence of Δ.
Analogously, if the tableau is open, then @aϕ is not a consequence of Δ.

Example 1. Let Δ = {@i(p ∨ q),@j♦i,@jq,@j¬q} be a database and consider
a query ϕ = @j♦p. Let us decide if ϕ is a consequence of Δ using the tableau
procedure described:

@i(p ∨ q),@j♦i,@jq,@j¬q, (@j♦p)∗

(@ip)∗

@ip

×

@iq

(@i¬p)∗

(@i¬q)∗

�

@ip

×

@iq

(@i¬q)∗

�

@ip

×
Since the tableau has some open branches, it means that the tableau is open,

thus ϕ is not a consequence of Δ. A counter-model is the bistructure with two
worlds i and j where only @iq, @jq, @j¬q and @j♦i,@i�¬i, @j�¬j are satisfied,
which clearly is a bistructure that satisfies Δ, but where ϕ is not true.

We can easily verify that the database has an inconsistency, as it contains
both @jq and @j¬q. If we were to evaluate ϕ in hybrid logic (usual version,
non-paraconsistent), then ϕ would trivially follow.

Example 2. Let Δ = {@t(p ∧ q ∧ r),@i�¬p,@i♦t} be a database and consider
a query ϕ = (@t(p ∧ ¬p)). Let us decide if ϕ is a consequence of Δ using the
tableau procedure described:

@t(p ∧ q ∧ r), @i�¬p, @i♦t, (@t(p ∧ ¬p))∗

@tp,@tq,@tr

@t¬p

(@tp)∗

×

(@t¬p)∗

×
Note that the database has an inconsistency and the query itself is inconsis-

tent. However, from the tableau procedure we verify that, since it is closed, ϕ is
a consequence of Δ.

These examples show the mechanism of the tableau construction in action.
Both examples yield an inconsistency in the database, but it is possible to still
reach sensible conclusions about the validity of the query, thanks to the para-
consistent aspect of the tableau system presented.
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5 Conclusion

Paraconsistent logics have been around for some decades, and their importance is
justified by the unavoidable occurrence of inconsistencies in data and knowledge
management. Inconsistent information can appear everywhere, and for many
reasons. Contradictory information may arise in systems which are safety critical,
such as health systems, aviation systems and many others.

After introducing Quasi-hybrid logic [5], a paraconsistent version of hybrid
logic capable of dealing with contradictory information under the form of hybrid
formulas, the next step was the construction of a proof-theoretical system for
this new logic and the study of properties such as completeness, decidability, etc.

The challenge here was the combination of two different tableau systems
already existent in literature, one for Quasi-classical logic and another for Hybrid
logic. We ended up with a tableau system for Quasi-hybrid logic, described in
this work, which ends with some examples.

This is clearly a step forward in the study of QH logic, which we aim to
continue exploring, namely by:

– investigating inconsistency at the level of nominals, by allowing two nomi-
nations: a positive one for nominals, and a negative one for the negation of
nominals. This way, we are able to handle the possibility of receiving informa-
tion of the form @ij and @i¬j;

– accounting for inconsistency in modalities, for example by allowing both @i♦j
and @i�¬j to be true;

– studying paraconsistency in the context of strong Priorean logic;
– use a combination of all of the above to study reactive deontic logics and

switch graphs, where the base accessibility relation changes when its edges
are traversed, in the context of QH logic.

Paraconsistency has already been considered in the context of modal logic
(e.g. [9,10]). It will be interesting to compare our system with the hybrid systems
obtained by adding nominals and the satisfaction operator to those systems.
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Abstract. We present a mechanised formalisation, in Isabelle/HOL,
of Brotherston and Goré’s proof of Craig interpolation for a large of
class display calculi for various propositional substructural logics. Along
the way, we discuss the particular difficulties associated with the local
interpolation property for various rules, and some important differences
between our proofs and those of Brotherston and Goré, which are moti-
vated by the ease of mechanising the development. Finally, we discuss the
value for this work of using a prover with a programmable user interface
(here, Isabelle with its Standard ML interface).

Keywords: Craig interpolation · Display logic · Interactive theorem
proving

1 Introduction

In calculi for logical entailment, Craig interpolation is the property that for any
entailment A � B between formulae, there exists an interpolant formula F such
that A � F and F � B are both entailments of the calculus, while F contains only
those variables or nonlogical constants that are common to both A and B. It has
long been known that there are close connections between interpolation and other
central logical concerns (see e.g. [9]); indeed, one of Craig’s original applications of
interpolation was to give a new proof of Beth’s Definability Theorem [6]. Signifi-
cant applications of interpolation have been found recently in program verification
in the inference of loop invariants [11], and in model checking [5].

Recently, Brotherston and Goré [3] gave a modular proof of interpolation for
a class of propositional substructural logics, based on Belnap’s display logic [2]
(here we prefer the term display calculi). Roughly speaking, display calculi are
two-sided sequent calculi equipped with a richer-than-usual notion of sequent
structure and a principle by which sequents can be rearranged so as to “dis-
play” any chosen substructure as the entire left or right hand side (much like
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rearranging a mathematical equation for a chosen variable). The main attrac-
tion of display calculi is Belnap’s general cut-elimination result, which says that
cut-elimination holds for any display calculus whose rules satisfy eight easily
verifiable syntactic conditions. Cut-elimination is generally essential to the stan-
dard proof-theoretic approach to interpolation, which is to proceed by induction
on cut-free derivations (see e.g. [4]). Despite the availability of a general cut-
elimination result, however, there seem to have been no proofs on interpolation
based on display calculi prior to [3], probably due to the inherent complexity
of their sequent structure and display principles. Indeed, in line with this gen-
eral expectation, Brotherston and Goré’s proof is very technical, involving many
case distinctions, and many intricate properties of substitutions. Moreover, due
to space restrictions, most of the proofs are only sketched, leaving the potential
for errors. Thus we believe it is vital to verify these intricate details using an
interactive theorem prover, to give us greater confidence in their very general
interpolation theorems.

In this paper, we describe the Isabelle/HOL formalisation of their results,
discuss the difficulties in formalising their proofs and describe the differences
between their proofs and ours. We also highlight the usefulness of a program-
mable user interface. Our Isabelle mechanisation, comprising over 8000 lines of
Isabelle theory and proof code, can be found at [1].

2 Display Calculi for (Some) Substructural Logics

Here, we briefly describe display calculi, and recall those display calculi for which
Brotherston and Goré proved interpolation [3].

We assume a fixed infinite set of propositional variables. Formulae F and
structures X are then given by the following grammars, where P ranges over
propositional variables:

F ::= P | � | ⊥ | ¬F | F & F | F ∨ F | F → F | �a | ⊥a | F &a F | F ∨a F
X ::= F | ∅ | �X | X ; X

Formula connectives with an “a” subscript stand for an additive version of that
connective, while connectives without a subscript are construed as multiplicative.
However, in the Isabelle formulation we do not duplicate the connectives in this
way — rather, we identify the logical rules for which our various results apply.
We write F,G etc. to range over formulae and W,X, Y, Z etc. to range over
structures. If X and Y are structures then X � Y is a consecution (sequent).

The complete set of proof rules for our display calculi is given in Fig. 1. As
usual, we begin by giving a set of display postulates, and taking the least equiva-
lence closed under the postulates to be our notion of display-equivalence. We then
have the usual display theorem, which says that for any structure occurrence Z
in a consecution X � Y , one has either X � Y ≡D Z � W or X � Y ≡D W � Z
for some W , depending on whether Z occurs positively or negatively in X � Y .
Rearranging X � Y into Z � W or W � Z in this way is called displaying Z.
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We remark that the display postulates “build in” commutativity of the struc-
tural semi-colon, so that we consider only calculi for commutative logics.

Brotherston and Goré [3] consider the additive rules, collectively, and each
structural rule, individually, to be optional inclusions in their calculi. At present,
our mechanisation assumes the presence of the unit rules (∅WL), (∅WR), (∅CL),
(∅CR) and the associativity rule (α). Thus the smallest display calculus we con-
sider gives (classical) multiplicative linear logic MLL. By adding the additive
logical rules we obtain multiplicative-additive linear logic MALL, and by adding
the full weakening rule (W) or the full contraction rule (C) we obtain affine or
strict variants of these logics, respectively. Note that rules for weakening and
contraction on the right can be derived using the display postulates from the
corresponding left rules. Of course, if we add both weakening and contraction
then we obtain standard classical propositional logic.

No matter which variant of these display calculi we consider, we have the
standard cut-elimination result due to Belnap. Since we omit the cut rule from
our presentation of the display calculi in Fig. 1, we state it here in the weaker
form of cut admissibility :

Theorem 1 (cf. [3]). If X � F and F � Y are both provable then so is X � Y .
Moreover, this property is not affected by the presence or otherwise of the additive
logical rules (collectively), or of any of the structural rules.

3 Interpolation for Display Calculi

In many traditional sequent calculi, it is fairly straightforward to decorate each
rule with interpolants by building up the interpolant for the conclusion sequent
from the interpolants for the premise sequents. In multi-conclusion intuitionistic
logic it is not trivial to make it work since we may have to consider all possible
splittings of the sequent. Our approach can be seen as a generalisation of this one,
where “splittings” are replaced by “display-and-associativity rearrangements”
since the sequent X � Y goes through many transformations while displaying
some substructure Z. Brotherston and Goré therefore consider the following
“LADI” property [3, Definition 3.4], where ≡AD is the equivalence obtained by
combining display equivalence with applications of associativity (α) if present in
the calculus:

LADI: a rule with premises Ci and conclusion C satisfies the local AD display
interpolation property (LADI) if for all premises Ci, all sequents C′

i such that
C′

i ≡AD Ci satisfy the interpolation property, then all sequents C′ such that
C′ ≡AD C satisfy the interpolation property.

Although Brotherston and Goré [3] give the separate variants of the logical
connectives �,⊥,∧ and ∨ for the additive and multiplicative forms of the log-
ical introduction rules, we just use one connective for each of �,⊥,∧ and ∨.
Although the additive and multiplicative forms are equivalent in the presence of
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Display postulates:

X; Y � Z �D X � �Y ; Z �D Y ; X � Z

X � Y ; Z �D X; �Y � Z �D X � Z; Y

X � Y �D �Y � �X �D ��X � Y

Identity rules:

(Id)
P � P

X ′ � Y ′
X � Y ≡D X ′ � Y ′ (≡D)

X � Y

Multiplicative logical rules:

∅ � X
(�L)

� � X
(�R)

∅ � �
F ; G � X

(&L)
F & G � X

X � F Y � G
(&R)

X ; Y � F & G

(⊥L)
⊥ � ∅

X � ∅
(⊥R)

X � ⊥
F � X G � Y

(∨L)
F ∨ G � X ; Y

X � F ; G
(∨R)

X � F ∨ G

�F � X
(¬L)

¬F � X

X � �F
(¬R)

X � ¬F

X � F G � Y
(→L)

F → G � �X ; Y

X ; F � G
(→R)

X � F → G

Additive logical rules:

(⊥aL)
⊥a � X

Fi � X
i ∈ {1, 2} (&aL)

F1 &a F2 � X

F � X G � X
(∨aL)

F ∨a G � X

(�aR)
X � �a

X � F X � G
(&aR)

X � F &a G

X � Fi

i ∈ {1, 2} (∨aR)
X � F1 ∨a F2

Structural rules:

∅; X � Y
(∅CL)

X � Y

X � Y ; ∅
(∅CR)

X � Y

X � Y
(∅WL)

∅; X � Y

X � Y
(∅WR)

X � Y ; ∅
(W ; X); Y � Z

(α)
W ; (X; Y ) � Z

X � Z
(W)

X; Y � Z

X; X � Y
(C)

X � Y

Fig. 1. Display calculus proof rules. In the display rule (≡D), the relation ≡D is the
least equivalence containing the relation �D given by the display postulates. Note that
all our formalisation, and all our results, omit the →-connective and its rules.
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contraction and weakening, [3] contains results which are relevant to the situa-
tion where not all structural rules are included. Thus they prove results for both
the rules shown below, even though the second rule is much easier to deal with.

X � A Y � B

X,Y � A ∧ B

X � A X � B

X � A ∧ B

We first considered the second (additive) rule shown; we subsequently developed
a proof dealing with the first (multiplicative) rule directly.

4 The Isabelle Mechanisation

Our mechanisation builds on the work of Dawson and Goré [7] in formalising
Display Logic. Some of our notation and choices of properties, lemmas, etc., are
attributable to this. In particular, we use Comma, Star and I for ‘;’, ‘#’ and ‘∅’.

The work in [7] is a deep embedding of rules and of the variables in them,
and we have followed that approach here (see [8] for our understanding of what
this means, and for more details). That is, we define a language of formulae and
structures, which contains explicit structure and formula variables, for which we
define explicit substitution functions. We also define the rules as specific data
structures (of which there is a small finite number, such as those in Fig. 1), and
infinitely many substitution instances of these rules.

4.1 Formalising Display Logic in Isabelle

An actual derivation in a Display Calculus involves structures containing formu-
lae which are composed of primitive propositions (which we typically represent
by p, q, r). It uses rules which are expressed using structure and formula variables,
typically X,Y,Z and A,B,C respectively, to represent structures and formulae
made up from primitive propositions. We are using a “deep embedding” of vari-
ables, so our Isabelle formulation explicitly represents variables such as X,Y,Z
and A,B,C, and defines substitution for them of given structures and formulae,
which may themselves contain variables.

Thus, in our Isabelle formulation we use PP name, FV name and SV name to
represent propositional, formula and structure variables respectively. The oper-
ator Structform “casts” a formula into a structure. We can then give recursive
datatypes formula and structr for formulas and structures respectively (pos-
sibly parameterised by formula or structure variables), in the obvious way.

Thus the datatype formula for formulae has constructors FV, PP and the
logical operators & ∨ ¬ � ⊥ whereas the datatype structr for structures has
constructors SV, Structform and the structure operators ; � ∅.

A rule (type) is represented as a list of premises and a conclusion, and a
sequent by a Isabelle/HOL datatype:

types ’a psc ="’a list * ’a"
datatype sequent = Sequent structr structr
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A sequent (Sequent X Y) can also be represented as $X |- $Y.
Since a “deep” embedding requires handling substitution explicitly, we

defined functions to substitute for structure and formula variables, in struc-
tures, sequents and rules. In particular, we have an operator rulefs, where
rulefs rules is the set of substitution instances of rules in the set rules. Also,
when we refer to derivability using a set of rules, this allows inferences using
substitution instances of these rules, and derivableR rules sequents means the
set of sequents which can be derived from sequents using rules, instantiated.

derivableR :: "rule set => sequent set => sequent set
rulefs :: "rule set => rule set"

We also use some general functions to describe derivability. An inference
rule of type ’a psc is a list ps of premises and a conclusion c. Then derl rls
is the set of rules derivable from the rule set rls while derrec rls prems is
the set of sequents derivable using rules rls from the set prems of premises.
We defined these using Isabelle’s package for inductively defined sets. A more
detailed expository account of these, with many useful lemmas, is given in [10].

derl :: "’a psc set => ’a psc set"
derrec :: "’a psc set => ’a set => ’a set"

Note that these functions do not envisage instantiation of rules. Thus we
have the following relationship between derivableR and derrec.

"derivableR ?rules == derrec (rulefs ?rules)"

The “deep embedding” approach to rules enables us to express properties of
rules, such as that “no structure variable appears in both antecedent and succe-
dent positions”. Such lemmas apply to all display postulates satisfying conditions
of this sort. We used this in [7] in showing that cut-admissibility applies whenever
the structural rules were all of a particular form (as in Belnap’s cut elimination
theorem). In regards to interpolation, possible future work may include showing
that interpolation results hold whenever rules are of a particular form, but our
present work (except for some lemmas) does not do this.

The work in [7] is also a deep embedding of proofs (where we took proof
objects and explicitly manipulated them) but we have not done that here.

4.2 Definitions Relating to Interpolation

We define the following sets of rules:

dps: is the set of six display postulates shown in Fig. 1 [3, Definition 2.4];
aidps: is dps, their inverses, and the associativity rule (i.e., 13 rules);
ilrules: is the unit-contraction and unit-weakening rules;
rlscf: is the set of all rules of the logic as shown in [3, Figures 1 and 3], plus

aidps; that is, the rules of Fig. 1, except the additive logical rules (and we
omit throughout this work the derivable rules for implication →);
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rlscf nw: is as rlscf, but excluding the weakening rule.

Definition 1. We define several predicates to do with interpolation:

interp :: "rule set => sequent => formula => bool"
edi :: "rule set => rule set => sequent => bool"
ldi :: "rule set => rule set => sequent list * sequent => bool"
cldi :: "rule set => rule set => sequent list * sequent => bool"

interp rules (X � Y ) intp: iff intp is an interpolant for X � Y . Thus X �
intp and intp � Y are derivable using rules and the (formula) variables in
intp are among the formula variables of the structures X and Y ;

edi lrules drules (X � Y ): (Extended Display Interpolation) iff for all
sequents X ′ � Y ′ from which X � Y is derivable using lrules, the sequent
X ′ � Y ′ has an interpolant defined in terms of derivability using drules

where lrules would typically be a set of display postulates;
ldi lrules drules (ps, c): (Local Display Interpolation) iff the rule (ps, c)

preserves the property edi: that is, if, for all p ∈ ps, edi lrules drules

p holds, then edi lrules drules c holds. Thus, if lrules is the set AD
of rules (our aidps), and drules is the set of rules of the logic, then the
LADI-property [3, Definition 3.4] as shown before on page 3 for rule (ps, c)
is ldi aidps drules (ps, c).

Note that none of these definitions involves a condition that X � Y be deriv-
able. Of course, cut-admissibility would imply that if X � Y has an interpolant
then X � Y is derivable, but we avoid proving or using cut-admissibility. Even
so, in most cases we do not need such a condition. However we do need the
derivability of X � Y in the case of a sequent I � Y,#X produced by weakening
and displaying the I structural connective. Thus we need a predicate with that
condition:

Definition 2 (Conditional Local Display Interpolation)
cldi lrules drules (ps, c) holds iff:
if c is is derivable using drules, then ldi lrules drules (ps, c) holds.

We also need variants interpn, edin, ldin and cldin, of these predicates,
where the derivation of interpolated sequents is from a given set of rules, rather
than from given rules and their substitution instances. We use these in lemmas
which involve rule sets which are not closed under substitution.

We mention here that many of our lemmas about these properties assume,
although we do not specifically say so, that AD (rule set aidps) is used as to
instantiate lrules in the above definitions, and that the derivation rules, drules
in the above definitions, contain the AD rules.

Lemma 3.5 of [3] says that if all rules satisfy the local AD-interpolation
property, then the calculus has the interpolation property. In fact the stronger
result, Lemma 1(a) (below) is true, that LADI is preserved under derivation. But
for the conditional local display interpolation property, a result analogous to the
first-mentioned, only, of these results holds: see Lemma 1(b)
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Lemma 1 (ldi derl, cldi ex interp).

(a) if each rule from a set of rules satisfies the local display interpolation prop-
erty, then so does a rule derived from them;

(b) if all the derivation rules satisfy the conditional local AD-interpolation prop-
erty, then the calculus has the interpolation property.

4.3 Substitution of Congruent Occurrences

In [3, Definitions 3.6 and 3.7] the concept of congruent occurrences of some struc-
ture Z is used, with substitution for such congruent occurrences. Where two
sequents C and C′ are related by a display postulate, or sequence of them, a
particular occurrence of Z in C will correspond to a particular occurrence of Z
in C′, according to the sequence of display postulates used to obtain C′ from C.

This concept looked rather difficult to define and express precisely and for-
mally: note that in the notation in [3], C[Z/A] ≡AD C′[Z/A], the meanings of
C[Z/A] and C′[Z/A] depend on each other, because they refer to particular, cor-
responding, instances of A in C and C′.

So we adopted the alternative approach, used successfully in [7]: rather than
trying to define C′[Z/A] we would prove that there exists a sequent (call it C′

Z/A)
satisfying C[Z/A] ≡AD C′

Z/A and satisfying the property that some occurrences
of A in C′ are replaced by Z in C′

Z/A. This approach turned out to be sufficient
for all the proofs discussed here.

In previous work [7], we defined and used a relation seqrep, defined as follows.

Definition 3 (seqrep).

seqrep : "bool => structr => structr => (sequent * sequent) set"

(U, V ) ∈ seqrep b X Y means that some (or all or none) of the occurrences
of X in U are replaced by Y , to give V ; otherwise U and V are the same; the
occurrences of X which are replaced by Y must all be in succedent or antecedent
position according to whether b is true or false.

For this we write U X�Y V , where the appropriate value of b is understood.
Analogous to [3, Lemma 3.9] we proved the following result

Lemma 2 (SF some sub). For formula F , structure Z, and rule set rules,1 if

(a) the conclusions of rules do not contain formulae; and
(b) the conclusion of a rule in rules does not contain more than one occurrence

of any structure variable; and
(c) the rules obeys Belnap’s C4 condition: when the conclusion and a premise

of a rule both contain a structure variable, then both occurrences are in
antecedent or both are in succedent positions; and

(d) concl is derivable from prems using rules; and
1 In Lemma 3.9 [3] this set of rules is the set of AD rules.
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(e) concl F�Z sconcl

then there exists a list sprems (of the same length as prems) such that

(1) sconcl is derivable from sprems using rules; and
(2) premn

F �Z spremn holds for corresponding members premn of prems and
spremn of sprems.

4.4 LADI Property for Unary Logical Rules

Proposition 3.10 of [3] covers the display postulates, the associativity rule, and
the nullary or unary logical introduction rules.

The first case ((≡D), that is, any sequence of display postulates) of
[3, Proposition 3.10] is covered by the following result (which holds indepen-
dently of the choice of set of derivation rules).

Lemma 3 (bi lrule ldi lem). Let rule ρ be a substitution instance of a rule
in AD. Then ρ has the LADI property.

With the next lemma we can handle the rules (Id), (�R) and (⊥L).

Lemma 4 (non bin lem gen). Assume the derivation rules include (¬L) and
(¬R). Let ρ be a substitution instance of a rule in AD whose premise does not
contain any ‘;’. If the premise of ρ has an interpolant then so does its conclusion.

Since the conclusions of the three nullary rules (Id), (�R) and (⊥L) clearly
themselves have interpolants, Lemma 4 shows they satisfy the extended display
interpolation property, and so the rules have the LADI property.

Proposition 1. The rules (Id), (�R) and (⊥L) satisfy the LADI property.

The remaining cases of Proposition 3.10 are the logical introduction rules
with a single premise. For these we use the four lemmas (of which one is shown)

Lemma 5 (sdA1). If the rule shown below left is a logical introduction rule, and
the condition in the middle holds, then the rule shown below right is derivable
(i.e., using AD and the logical introduction rules)

Y ′ � U

Y � U
W Y �Y ′

W ′ W ′ � Z

W � Z

Then from these lemmas we get

Lemma 6 (seqrep interpA). For the logical introduction rule shown below
left, if formula variables in Y ′ also appear in Y , the condition on the right holds,
and I is an interpolant for W ′ � Z ′, then I is also an interpolant for W � Z:

Y ′ � U

Y � U
W � Z Y�Y ′

W ′ � Z ′ (in antecedent positions)
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Finally we get the following result which gives Proposition 3.10 for single
premise logical introduction rules (additive or multiplicative).

Proposition 2 (logA ldi). If F is a formula, and the rule (F �) below is a
logical introduction rule, and the formula variables in Y are also in F , then
(F �) satisfies the LADI property:

Y � U

F � U
(F �)

This last result requires Lemma 2. We have analogous results for a logical
introduction rule for a formula on the right.

Remark 1. At this stage, we have a general method for proving local display
interpolation for a given rule ρ, with premises psρ and conclusion cρ: identify a
relation rel such that

(a) (psρ, cρ) ∈ rel
(b) whenever c ≡AD cρ, we can find a list ps (often got from sequents in psρ

using the same sequence of display postulates which get c from cρ) such that
(ps, c) ∈ rel, and p ≡AD pρ for each p ∈ ps and corresponding pρ ∈ psρ

(c) whenever (ps, c) ∈ rel, c is derivable from ps (not used except to prove (d))
(d) whenever (ps, c) ∈ rel, and each p ∈ ps has an interpolant, then c has an

interpolant (proof of this will normally use (c)).

4.5 LADI Property for (Unit) Contraction

This is relatively easy for the unit-contraction rule: the relation rel is given by:
(p, c) ∈ rel if p is obtained from c by deleting, somewhere in c, some #n∅, and
we get (b) using roughly the same sequence of display postulates.

Lemma 7 (ex box uc). If sequent Cd is obtained from C by deleting one occur-
rence of some #n∅, and if Cd′ →∗

AD Cd, then there exists C ′, such that
C ′ →∗

AD C, and Cd′ is obtained from C ′ by deleting one occurrence of #n∅.

The proof of this required a good deal of programming repetitive use of
complex tactics similar to (but less complex than) those described in Sect. 4.6.

The following lemma gives (c) of the general proof method above.

Lemma 8 (delI der). If (p, c) ∈ rel (defined above), and if the derivation rules
include AD and the unit contraction rules, then c is derivable from p

Proposition 3 (ldi ila, ldi ils). The unit contraction rules satisfy LADI.

For the case of contraction, we defined a relation mseqctr: (C,C ′) ∈ mseqctr
means that C ′ is obtained from C, by contraction of substructures (X,X) to X.
Contractions may occur (of different substructures) in several places or none.

Lemma 9 (ex box ctr). If sequent Cd is obtained from C by contraction(s) of
substructure(s), and if Cd′ →∗

AD Cd, then there exists C ′, such that C ′ →∗
AD C,

and Cd′ is obtained from C ′ by substructure contraction(s).
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Proof. The proof of ex box ctr is a little more complex than that for unit-
contraction, because (for example) when X;Y � Z ≡AD X � Z;#Y , and
X;Y � Z is obtained by contracting (X;Y ); (X;Y ) � Z, we need to show
(X;Y ); (X;Y ) � Z ≡AD X;X � Z;#(Y ;Y )

Lemma 10 (ctr der). If (p, c) ∈ mseqctr (defined above), and if the derivation
rules include AD and the left contraction rule, then c is derivable from p.

Proposition 4 (ldi cA). The left contraction rule satisfies the LADI property.

4.6 Deletion Lemma ([3], Lemma 4.2)

For weakening or unit-weakening, it is more difficult: a sequence of display pos-
tulates applied to the conclusion X; ∅ � Y may give ∅ � Y ;#X, so the same or
similar sequence cannot be applied to the premise X � Y .

For this situation we need Lemma 4.2 (Deletion Lemma) of [3]: this result says
that for F a formula sub-structure occurrence in C, or F = ∅, and C →∗

AD C ′,
then (in the usual case) C \ F →∗

AD C ′ \ F , where C \ F and C ′ \ F mean
deleting only particular occurrence(s) of F in C, and deleting the congruent
(corresponding) occurrence(s) of F in C ′, where congruence is determined by
the course of the derivation of C ′ from C.

We did not define congruent occurrences in this sense: see the general discus-
sion of this issue in Sect. 4.3. It seemed easier to define and use the relation seqdel:

Definition 4 (seqdel). Define (C,C ′) ∈ seqdel Fs to mean that C ′ is obtained
from C by deleting one occurrence in C of a structure in the set Fs.

Then we proved the following result about deletion of a formula:

Lemma 11 (deletion). Let F be a formula or F = ∅. If sequent Cd is obtained
from C by deleting an occurrence of some #iF , and if C →∗

AD C ′, then either

(a) there exists Cd′, such that Cd →∗
AD Cd′, and Cd′ is obtained from C ′ by

deleting an occurrence of some #jF , or
(b) C ′ is of the form #nF � #m(Z1;Z2) or #m(Z1;Z2) � #nF , where Cd →∗

AD

(Z1 � #Z2), or Cd →∗
AD (#Z1 � Z2)

Proof. Thus the premise is that Cd is got from C by deleting instance(s) of the
substructure formula F , possibly with some # symbols. The main clause of the
result says that there exists Cd′ (this corresponds to C ′ \ F in [3]) which is
got from Cd by deleting instance(s) of #nF (for some n), but there is also an
exceptional case where #nF is alone on one side of the sequent.

The proof of this result required considerable ML programming of proof
tactics.

When we get cases as to the last rule used in the derivation C →∗
AD C ′, this

gives 13 possibilities. For each rule there are two main cases for the shape of
the sequent after the preceding rule applications: in the first, #nF appears in
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#nF,Z or Z,#nF and so could be deleted (F is “delible”), and in the second,
the relevant occurrence of #nF is the whole of one side of the sequent.

Then where, in the case of the associativity rule for example, the sequent
which is (X;Y );Z � W (instantiated) has F delible, #nF may be equal to
X,Y or Z, or may be delible from X,Y,Z or W . Without the possibility of
programming a tactic in Standard ML to deal with all these possibilities, each
of these seven cases, and a similar (less numerous) set of cases for each of the
other 12 rules, would require its own separate proof.

For the second case, where #nF is equal to one side of the sequent (W in
the above example), a variety of tactics is required: for those display rules which
move the comma from one side to the other one function works for all, but the
other cases have to be proved individually. �

We then proved this result for F = ∅ instead of a formula, to give a theorem
deletion I; the changes required in the proof were trivial.

4.7 LADI Property for (Unit) Weakening Rules

To handle weakening in a similar way, we considered two separate rules, one
to weaken with instances of #n∅ and one to change any instance of ∅ to any
formula. Thus, where Y∅ means a structure like Y but with every formula or
structure variable in it changed to ∅, a weakening is produced as shown:

X � Z =⇒ X,Y∅ � Z =⇒ X,Y � Z

We first consider the second of these, replacing any instance of ∅ with a
structural atom, that is, a formula or a structure variable which are atomic so
far as the structure language is concerned.

We use the relation seqrepI str atoms: (c, p) ∈ seqrepI str atoms means
that some occurrences of ∅ in p are changed to structural atoms in c.

Lemma 12 (ex box repI atoms). If sequent C is obtained from Cd by replac-
ing ∅ by structural atoms, and if C ′ →∗

AD C, then there exists Cd′, such that
Cd′ →∗

AD Cd, and C ′ is obtained from Cd′ by replacing ∅ by structural atoms.

For this relation, property (b) was quite easy to prove, since exactly the same
sequence of AD-rules can be used.

We proved that there are derived rules permitting replacing instances of ∅ by
anything, and this gave us that such rules, where the replacement structure is a
formula or structure variable, have the the local display interpolation property.

Lemma 13 (seqrepI der). If the derivation rules include weakening and unit-
contraction, and (c, p) ∈ seqrepI Fs, i.e. some occurrences of ∅ in p are replaced
by anything to give c, then c is derivable from p.

The next lemma gives the LADI property, not for a rule of the system, but
for inferences ([p], c) where (c, p) ∈ seqrepI str atoms.
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Proposition 5 (ldi repI atoms). Where (c, p) ∈ seqrepI str atoms, i.e.
some occurrences of ∅ in p are replaced by structural atoms to give c, ([p], c)
has the LADI property.

Next we consider the structural rules allowing insertion of #n∅.
We use the variant of the theorem deletion (see Sect. 4.6) which applies to

deletion of ∅ rather than of a formula.
Then we show that inserting occurrences of anything preserves derivability.

Lemma 14 (seqwk der). If the derivation rules include weakening, and (c, p) ∈
seqdel Fs, i.e., c is obtained from p by weakening, then c is derivable from p.

Then we need the result that such rules satisfy the local display interpolation
property. In this case, though, where a sequent containing ∅ is rearranged by the
display postulates such that the ∅ is alone on one side (such as where X � Y ; ∅
is rearranged to X;#Y � ∅), then to prove the LADI property requires using
the derivability of X � Y rather than the fact that X � Y satisfies LADI. Thus
we can prove only the conditional local display interpolation property.

Proposition 6 (ldi wkI alt). If the derivation rules include unit weakening,
unit contraction, and the left and right introduction rules for � and ⊥, then a rule
for #n∅-weakening (i.e., inserting #n∅) satisfies the conditional LADI property.

At this point we also proved that the additive forms of the binary logical
introduction rules satisfy the LADI property. The proofs are conceptually similar
to those for the unary logical introduction rules — but more complex where
single structures/sequents become lists of these entities. For reasons of space,
and because we proceed to deal with the more difficult multiplicative forms of
the binary introduction rules, we omit details.

Now we can give the result for a system which contains weakening, contrac-
tion, and the binary rules in either additive or multiplicative form. To get this
we define a set of rules called ldi rules a, which contains the additive binary
logical rules, and does not contain the weakening rules but does contain the rela-
tions of Propositions 6 and 5. We have that all of its rules satisfy the conditional
LADI property, so the system has interpolants. We show this gives a deductive
system equivalent to the given set of rules rlscf, which system therefore also
has interpolants. Details are similar to the derivation of Theorem3.

Theorem 2 (rlscf interp). The system of substitutable rules rlscf satisfies
display interpolation

4.8 LADI Property for Binary Multiplicative Logical Rules

Here, we just consider the multiplicative version of these rules; the case of their
additive analogues is similar, but easier.

We deal with these rules in two stages — firstly, weakening in occurrences of
#n∅, then changing any occurrence of ∅ to any structural atom, as shown below.
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X � A
X,Y∅ � A

Y � B wk∗
∅X∅, Y � B

wk∗
∅X,Y � A ∧ B

Here X∅ and Y∅ mean the structures X and Y , with each structural atom
(formula or uninterpreted structure variable) replaced by ∅. The first stage,
the inferences labelled wk∗

∅ above, are obtained by repeatedly weakening by
occurrences of #n∅ in some substructure. The second stage (for which we define
the relation ands rep), consists of changing the X∅ of one premise, and the Y∅
of the other premise, to X and Y respectively. For the second of these stages,
then, when any sequence of display postulates is applied to X,Y � A ∧ B, the
same sequence can be applied to the two premises, X,Y∅ � A and X∅, Y � B.
This simplifies the proof of local display interpolation for these rules.

For the first stage we proceed as described for Sect. 4.7, using Proposition 6
to show that the inferences labelled wk∗

∅ satisfy the conditional LADI property.
The second stage consists of the rule shown as ands rep in the diagram. Con-

sidering the four points in Remark 1, since any display postulate applied to the
conclusion can be applied to the premises, we need to define a suitable relation
between conclusion and premises which is preserved by applying any display
postulate to them. For this we define a relation lseqrepm between sequents,
analogous to seqrep (Sect. 4.3, Definition 3) and lseqrep:

lseqrepm :: "(structr * structr list) set =>

bool => [structr, structr list] => (sequent * sequent list) set"

Definition 5 (lseqrepm, repnI atoms)

(a) (U,Us) ∈ lseqrepm orel b Y Ys means that there is one occurrence of Y in
U which is replaced by the nth member of Ys in the nth member of Us; this
occurrence is at an antecedent or succedent position, according to whether
b is True or False. However elsewhere in U , each structural atom A in
U is replaced by the nth member of As in the nth member of Us, where
(A,As) ∈ orel;

(b) (A,As) ∈ repnI atoms iff one of the As is A and the rest of the As are ∅.

We use lseqrepm only with orel = repnI atoms. For example, for the (∧R)
rule, we use lseqrepm repnI atoms True (A ∧ B) [A,B]. as the relation rel of
the four points in Remark 1. We get the following lemmas.

Lemma 15 (repm some1sub). Whenever Y is a formula, and (U,Us) ∈
lseqrepm orel b Y Ys, and U is manipulated by a display postulate (or sequence
of them) to give V , then the Us can be manipulated by the same display postu-
late(s) to give Vs (respectively), where (V,Vs) ∈ rel.

The following lemmas refer to derivation in the system containing the
ands rep rule (not the regular (∧R) rule), and also unit-weakening and unit-
contraction.

Lemma 16 (ands mix gen). Whenever (V,Vs) ∈ rel, then V can be derived
from the Vs.
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This lemma relies on taking the conjunction or disjunction of interpolants
of premises. So the next two results require a deductive system containing the
ands rep and ora rep rules, and also the (∨R) and (∧L) rules.

Lemma 17 (lseqrepm interp andT). Whenever (V,Vs) ∈ rel, then we can
construct an interpolant for V from interpolants for the Vs.

Proposition 7 (ldin ands rep). The rule ands rep satisfies LADI.

We recall from Sect. 4.2 the set rlscf nw of substitutable rules, the rules of
Fig. 1, except the additive logical rules and weakening. From this set we define
a set of rules called ldi add by omitting from rlscf nw the binary logical rules
(∨L) and (∧R), but including the rule ands rep (see diagram above) and a cor-
responding rule ora rep. Note that these latter rules, and therefore ldi add, are
not closed under substitution. (Note that, as mentioned earlier, our formalisation
had not included the connective →, or any rules for it).

Lemma 18 (ldi add equiv). The calculi ldi add and rlscf nw (defined
above) are deductively equivalent.

Theorem 3 (ldi add interp, rlscf nw interp)

(a) the system ldi add satisfies display interpolation
(b) the system of substitutable rules rlscf nw satisfies display interpolation

Proof. We have all rules in ldi add satisfying at least the conditional local
display interpolation property (ldi add cldin). By cldin ex interp, this gives
us that the system ldi add satisfies display interpolation ldi add interp, and
so therefore does the equivalent system of substitutable rules rlscf nw.

5 Discussion and Further Work

Our formalisation does not include implication connectives and rules since we
assume that implication is a defined connective via the involutive negation. Thus
we have only captured substructural “classical” logics.

The presence of the involutive negation is not necessary. If one has
intuitionistic-style logics then the display postulates typically capture residua-
tion and everything goes through in the same way. But then we have to re-work
the formalisation to include explicit rules for implication as it is no longer a
defined connective.

Commutativity of conjunction is also assumed because it makes life eas-
ier (e.g. in reducing the number of connectives and rules). One could imagine
including commutativity as an optional structural rule, but this would then
cause implication to split into a left and right implication (slash). However, we
are not sure whether one could prove the LADI property for this rule directly,
or whether one would have to build it into display-equivalence as we currently
do for associativity.
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Another avenue to explore to be more explicit about when derivability is
needed for the proof of interpolation. This is an interesting point concerning
structural rules.

As the proof-sketch of Lemma 9 indicates, it might be possible to replace
“→∗

AD” by an ≡AD, where it occurs in the paper.

6 Conclusions

As we have seen, interpolation proofs for display calculi are very technical, due
to the inherent complexity of mixing the display principle with the definition of
interpolation. As a consequence of this, the proof of Brotherston and Goré [3] is
very technical, and most of the proofs were only sketched, leaving the potential
for errors. Consequently it is valuable to have confirmed the correctness of their
result using a mechanised theorem prover. And while the detailed proofs have
only been sketched in this paper too, the files containing the Isabelle proofs
enable the proofs to be examined to any desired level of detail.

This work has illustrated some interesting issues in the use of a mechanised
prover. We have indicated where we found it necessary to follow a (slightly)
different line of proof. This arose where their proof involved looking at corre-
sponding parts of two display-equivalent sequents — an intuitively clear notion,
but one which seemed so difficult to formalise that a different approach seemed
easier. The two-stage approach used in Sect. 4.8 is also somewhat different from
the proof in [3].

This work illustrated the enormous value of having a prover with a pro-
grammable user interface. Isabelle is written in Standard ML, and (for its older
versions) the user interacts with it using that language. This proved invaluable in
the work described in Sects. 4.5 and 4.6, where we were able to code up sequences
of attempted proof steps which handled enormous numbers of cases efficiently.

Acknowledgements. We are grateful for the many comments from the IJCAR
reviewers, which have improved the paper considerably.
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Abstract. Models of complex systems are widely used in the physi-
cal and social sciences, and the concept of layering, typically building
upon graph-theoretic structure, is a common feature. We describe an
intuitionistic substructural logic that gives an account of layering. As in
bunched systems, the logic includes the usual intuitionistic connectives,
together with a non-commutative, non-associative conjunction (used to
capture layering) and its associated implications. We give soundness and
completeness theorems for labelled tableaux and Hilbert-type systems
with respect to a Kripke semantics on graphs. To demonstrate the util-
ity of the logic, we show how to represent a range of systems and security
examples, illuminating the relationship between services/policies and the
infrastructures/architectures to which they are applied.

1 Introduction

Complex systems can be defined as the field of science that studies, on the one
hand, how it is that the behaviour of a system, be it natural or synthetic, derives
from the behaviours of its constituent parts and, on the other, how the system
interacts with its environment. A commonly employed and highly effective con-
cept that helps to manage the difficulty in conceptualizing and reasoning about
complex systems is that of layering : the system is considered to consist of a
collection of interconnected layers each of which has a distinct, identifiable role
in the system’s operations. Layers can be informational or physical and both
kinds may be present in a specific system. In [3,13], multiple layers are given by
multiple relations over a single set of nodes.

We employ three illustrative examples. First, a transport network that uses
buses to move people. It has an infrastructure layer (i.e., roads, together with
their markings, traffic signals, etc., and buses running to a timetable), and a
social layer (i.e., the groupings and movements of people enabled by the bus
services). Second, a simple example of the relationship between a security pol-
icy and its underlying system architecture. Finally, we consider the security
architecture of an organization that operates high- and low-security internal
systems as well as providing access to its systems from external mobile devices.
These examples illustrate the interplay between services/policies and the archi-
tectures/infrastructures to which they are intended to apply.

We give a graph-theoretic definition of layering and provide an associated
logic for reasoning about layers. There is very little work in the literature on
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 469–486, 2016.
DOI: 10.1007/978-3-319-40229-1 32



470 S. Docherty and D. Pym

Fig. 1. A graph for which G @E H is
defined, and the resulting composition

Fig. 2. Preordered scaffold

layering in graphs. Notable exceptions are [10,18,19]. Layered graphs are an
instance of a general algebraic semantics for the logic. Our approach stands in
contrast to our previous work in this area [6,7] in that the additive component of
the bunched logic [12,17] we employ is intuitionistic, with the consequence that
we are able to obtain a tableaux system for the logic together with a completeness
theorem for the layered graph semantics. In Sect. 2, we introduce layered graph
semantics and ILGL, the associated intuitionistic layered graph logic. In Sect. 3,
we establish its basic metatheory — the soundness and completeness of ILGL’s
tableaux system with respect to layered graph semantics — and, in Sect. 4, we
give an algebraic semantics and a (sound and complete) Hilbert-type proof sys-
tem for ILGL. In Sect. 5, we sketch a modal extension of ILGL that is convenient
for practical modelling, explaining its theoretical status and developing the three
examples mentioned above.

2 Intuitionistic Layered Graph Logic

Layered Graph Semantics. We begin with a formal, graph-theoretic account
of the notion of layering that, we claim, captures the concept as used in complex
systems. In this notion, two layers in a directed graph are connected by a specified
set of edges, each element of which starts in the upper layer and ends in the lower
layer.

Given a directed graph, G, we refer to its vertex set and its edge set by
V (G) and E(G) respectively, while its set of subgraphs is denoted Sg(G) with
H ⊆ G iff H ∈ Sg(G). For a distinguished edge set E ⊆ E(G), the reachability
relation �E on subgraphs of G is H �E K iff a vertex of K can be reached from
a vertex of H by an E-edge.

We then have a composition @E on subgraphs where G@E H ↓ iff V (G) ∩
V (H) = ∅, G �E H and H ��E G (where ↓ denotes definedness) with output
given by the graph union of the two subgraphs and the E-edges between them.
For a graph G, we say it is layered (with respect to E) if there exist H, K
such that H @E K ↓ and G = H @E K (see Fig. 1). Layering is evidently neither
commutative nor associative.

Within a given ambient graph, G, we can identify a specific form of layered
structure, called a preordered scaffold, that will facilitate our definition of a model
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of intuitionistic layered graph logic. Properties of graphs that are inherited by
their subgraphs are naturally captured in an intuitionistic logic. This idea is
generalized by the structure carried by a preordered scaffold. To set this up, we
begin by defining an admissible subgraph set is a subset X ⊆ Sg(G) such that,
for all G,H ∈ Sg(G), if G@E H ↓, then G,H ∈ X iff G@E H ∈ X. Then, a
preordered scaffold (see Fig. 2) is a structure X = (G, E ,X,�) such that G is a
graph, E ⊆ E(G), X an admissible subgraph set, � a preorder on X. Layers are
present if G@E H↓ for at least one pair G,H ∈ X.

Note that the scaffold is preordered and we choose a subset of the subgraph
set. There are several reasons for these choices. From a modelling perspective, we
can look closely at the precise layering structure of the graph that is of interest.
In particular, we can avoid degenerate cases of layering. (Note that this is a more
general definition of scaffold than that taken in [6,7], where the structure was less
tightly defined.) Technical considerations also come into play. When we restrict
to interpreting ILGL on the full subgraph set, it is impossible to perform any
composition of models without the worlds (states) proliferating wildly. A similar
issue arises during the construction of countermodels from the tableaux system
of Sect. 3, a procedure that is impossible when we are forced to take the full
subgraph set as the set of worlds.

Having established the basic semantic structures that are required, we can
now set up ILGL. Let Prop be a set of atomic propositions, ranged over by p. The
set Form of all propositional formulae is generated by the following grammar:

φ ::= p | � | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ | φ � φ | φ−−�φ | φ�−−φ

The familiar connectives will be interpreted intuitionistically. The non-
commutative, non-associative conjunction, �, which will be used to capture
layering, is interpreted intuitionistically, as in BI [12,17], and has associated
right (�−−) and left (−−�) implications. We define intuitionistic negation in terms
of the connectives: ¬φ ::= φ → ⊥.

Definition 1 (Layered Graph Model). A layered graph model, M, of ILGL
is a pair (X,V), where X is a preordered scaffold and V : Prop → ℘(X) is a
persistent valuation; that is, G � H and G ∈ V(p) implies H ∈ V(p). 
�

Satisfaction in layered graph models is then defined in a familiar way.

Definition 2 (Satisfaction in Layered Graph Models). Given a layered
graph model M = (X,V), we generate the satisfaction relation |=M⊆ X × Form
as follows:

G |=M � always G |=M ⊥ never G |=M p iff G ∈ V(p)
G |=M ϕ ∧ ψ iff G |=M ϕ and G |=M ψ G |=M ϕ ∨ ψ iff G |=M ϕ or G |=M ψ

G |=M ϕ → ψ iff, for all G′ such that G � G′, G′ |=M ϕ implies G′ |=M ψ

G |=M ϕ � ψ iff there exist H, K such that H @E K↓, H @E K � G, and H |=M ϕ and K |=M ψ

G |=M ϕ −−� ψ iff for all G � H and all K such that H @E K↓, K |=M ϕ implies H @E K |=M ψ

G |=M ϕ �−− ψ iff for all G � H and all K such that K @E H↓, K |=M ϕ implies K @E H |=M ψ ��
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Fig. 3. The E-reachability preorder Fig. 4. The subgraph order

Definition 3 (Validity). A formula φ is valid in a layered graph model M
(|=M φ) iff, for all G ∈ X, G |=M φ. A formula φ is valid (|= φ) iff, for all
layered graph models M, |=M φ. 
�

Lemma 1 (Persistence). Persistence extends to all formulae with respect to
the layered graph semantics. That is, for all ϕ ∈ Form, G � H and G |=M ϕ
implies H |=M ϕ.

Proof. By induction on the complexity of formulae. The additive fragment, cor-
responding to intuitionistic propositional logic (IPL), is standard and we restrict
attention to two examples of the multiplicative connectives.

Suppose G |=M ϕ � ψ and G � H. There are K,K ′ s.t. K @E K ′ ↓ and
K @E K ′ � G, with K |=M ϕ and K ′ |=M ψ. By transitivity of �, K @E K ′ � H,
so H |=M ϕ � ψ.

Suppose G |=M ϕ−−� ψ. Then, for all K such that G � K and all K ′ s.t.
K @E K ′↓, if K ′ |=M ϕ, then K @E K ′ |=M ψ. Let G � H and suppose H � K
and K ′ are s.t. K @E K ′↓ and K ′ |=M ϕ. So, since G � H � K, it follows that
K @E K ′ |=M ϕ. So H |=M ϕ−−�ψ. The case for ϕ�−−ψ is similar. 
�

Note that, unlike in BI, we require the restriction ‘for all H, G � H . . .’ in
the semantic clauses for the multiplicative implications. Without this we cannot
prove persistence because we cannot proceed with the inductive step in those
cases. The reason for this is that we put no restriction on the interaction between
� and @ in the definition of preordered scaffold. This is unlike the analogous
case for BI, where the monoidal composition is required to be bifunctorial with
respect to the ordering. One might resolve this issue with the following addendum
to the definition of preordered scaffold: if G � H and H @E K ↓, then G@E K ↓
and G@E K � H @E K.

Two natural examples of subgraph preorderings show that this would be
undesirable. First, consider the layering preorder. Let � be the reflexive, tran-
sitive closure of the relation R(G,H) iff H @E G ↓, restricted to the admissible
subgraph set X. Figure 3 shows a subgraph H with G � H and H @E K ↓
but G@E K ↑ (we write ↑ for undefinedness). Second, consider the subgraph
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relation. In Fig. 4, we have G ⊆ H and H @E K ↓ but G@E K ↑. It is, how-
ever, the case that, with this ordering, if G ⊆ H,H @E K and G@E K ↓, then
G@E K ⊆ H @E K.

Labelled Tableaux. We define a labelled tableaux system for ILGL, utilising
a method first showcased on tableaux systems for BBI and DMBI [8,16] and in
the spirit of previous work for BI [12].

Definition 4 (Graph Labels). Let Σ = {ci | i ∈ N} be a countable set of
atomic labels. We define the set L = {x ∈ Σ� | 0 < |x| ≤ 2} \ {cici | ci ∈ Σ} to
be the set of graph labels. A sub-label y of a label x is a non-empty sub-word of x,
and we denote the set of sub-labels of x by S(x). 
�

The graph labels are a syntactic representation of the subgraphs of a model,
with labels of length 2 representing a graph that can be decomposed into two
layers. We exclude the possibility cici as layering is anti-reflexive. In much the
same way we give a syntactic representation of preorder.

Definition 5 (Constraints). A constraint is an expression of the form x � y,
where x and y are graph labels. 
�

Let C be a set of constraints. The domain of C is the set of all non-empty sub-
labels appearing in C. In particular, D(C) =

⋃
x�y∈C(S(x)∪S(y)) The alphabet of C

is the set of atomic labels appearing in C. In particular, we have A(C) = Σ∩D(C).

Fig. 5. Rules for closure of constraints

Definition 6 (Closure of Constraints). Let C be a set of constraints. The
closure of C, denoted C, is the least relation closed under the rules of Fig. 5 such
that C ⊆ C. 
�

This closure yields a preorder on D(C), with 〈R1〉−〈R6〉 generating reflexivity
and 〈Tr〉 yielding transitivity. Crucially, taking the closure of the constraint
set does not cause labels to proliferate and the generation of any particular
constraint from an arbitrary constraint set C is fundamentally a finite process.
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Proposition 1. Let C be a set of constraints. (1) x ∈ D(C) iff x � x ∈ C. (2)
D(C) = D(C) and A(C) = A(C). 
�

Lemma 2 (Compactness). Let C be a (possibly countably infinite) set of con-
straints. If x � y ∈ C, then there is a finite set of constraints Cf ⊆ C such that
x � y ∈ Cf . 
�

Definition 7. A labelled formula is a triple (S, ϕ, x) ∈ {T,F} × Form × L,
written Sϕ : x. A constrained set of statements (CSS) is a pair 〈F, C〉, where F
is a set of labelled formulæ and C is a set of constraints, satisfying the following
properties: for all x ∈ L and distinct ci, cj , ck ∈ Σ, (1) (Ref) if Sϕ : x ∈ F, then
x � x ∈ C, (2) (Contra) if cicj ∈ D(C), then cjci �∈ D(C), and (3) (Freshness) if
cicj ∈ D(C), then cick, ckci, cjck, ckcj �∈ D(C). A CSS 〈F, C〉 is finite if F and C are
finite. The relation ⊆ is defined on CSSs by 〈F, C〉 ⊆ 〈F′, C′〉 iff F ⊆ F′ and C ⊆
C′. We denote by 〈Ff , Cf 〉 ⊆f 〈F, C〉 when 〈Ff , Cf 〉 ⊆ 〈F, C〉 holds and 〈Ff , Cf 〉 is
finite. 
�

The CSS properties ensure models can be built from the labels: (Ref) ensures
we have enough data for the closure rules to generate a preorder, (Contra)
ensures the contra-commutativity of graph layering is respected, and (Fresh-
ness) ensures the layering structure of the models we construct is exactly that
specified by the labels and constraints in the CSS. As with constraint closure,
CSSs have a finite character.

Proposition 2. For any CSS 〈Ff , C〉 in which Ff is finite, there exists Cf ⊆ C
such that Cf is finite and 〈Ff , Cf 〉 is a CSS. 
�

Figure 6 presents the rules of the tableaux system for ILGL. That ‘ci and
cj are fresh atomic labels’ means ci �= cj ∈ Σ \ A(C). We denote by ⊕ the
concatenation of lists.

Definition 8 (Tableaux). Let 〈F0, C0〉 be a finite CSS. A tableau for this CSS
is a list of CSS, called branches, built inductively according the following rules:

1. The one branch list [〈F0, C0〉] is a tableau for 〈F0, C0〉;
2. If the list Tm ⊕ [〈F, C〉] ⊕ Tn is a tableau for 〈F0, C0〉 and

cond〈F, C〉
〈F1, C1〉 | . . . | 〈Fk, Ck〉

is an instance of a rule of Fig. 6 for which cond〈F, C〉 is fulfilled, then the list
Tm ⊕ [〈F ∪ F1, C ∪ C1〉; . . . ; 〈F ∪ Fk, C ∪ Ck〉] ⊕ Tn is a tableau for 〈F0, C0〉.

A tableau for the formula ϕ is a tableau for 〈{Fϕ : c0}, {c0 � c0}〉. 
�

It is a simple but tedious exercise to show that the rules of Fig. 6 preserve the
CSS properties of Definition 7. We now give the notion of proof for our labelled
tableaux.
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Fig. 6. Tableaux rules for ILGL

Definition 9 (Closed Tableau/Proof). A CSS 〈F, C〉 is closed if one of the
following conditions holds: (1) Tϕ : x ∈ F, Fϕ : y ∈ F and x � y ∈ C; (2)
F� : x ∈ F; and (3) T⊥ : x ∈ F. A CSS is open iff it is not closed. A tableau is
closed iff all its branches are closed. A proof for a formula ϕ is a closed tableau
for ϕ. 
�

CSSs are related back to the graph semantics via the notion of realization.

Definition 10 (Realization). Let 〈F, C〉 be a CSS. A realization of 〈F, C〉 is a
triple R = (X,V, �.�) where M = (X,V) is a layered graph model and �.� : D(C) →
X is such that (1) �.� is total: for all x ∈ D(C), �x� ↓, (2) for all x ∈ D(C), if
x = cicj, then �ci� @E�cj� ↓ and �x� = �ci� @E�cj�), (3) if x � y ∈ C, then
�x� �M �y�, (4) if Tϕ : x ∈ F, then �x� |=M ϕ, and (5) if Fϕ : x ∈ F, then
�x� �|=M ϕ. 
�

We say that a CSS is realizable is there exists a realization of it. We say that a
tableau is realizable if at least one of its branches is realizable. We can also show
that the relevant clauses of the definition extend to the closure of the constraint
set automatically.

Proposition 3. Let 〈F, C〉 be a CSS and R = (X,V, �.�) a realization of it. Then:
(1) for all x ∈ D(C), �x� is defined; (2) if x � y ∈ C, then �x� �M �y�. 
�
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3 Metatheory

We now establish the soundness and, via countermodel extraction, the com-
pleteness of ILGL’s tableaux system with respect to layered graph semantics.
The proof of soundness is straightforward (cf. [8,11,12,16]). We begin with two
key lemmas about realizability and closure. Their proofs proceed by simple case
analysis.

Lemma 3. The tableaux rules for ILGL preserve realizability. 
�

Lemma 4. Closed branches are not realizable. 
�

Theorem 1 (Soundness). If there exists a closed tableau for the formula ϕ,
then ϕ is valid in layered graph models.

Proof. Suppose that there exists a proof for ϕ. Then there is a closed tableau
Tϕ for the CSS C = 〈{Fϕ : c0}, {c0 � c0}〉. Now suppose that ϕ is not valid.
Then there is a countermodel M = (X,V) and a subgraph G ∈ X such that
G �|=M ϕ. Define R = (M,V, �.�) with �c0� = G. Note that R is a realization
of C, hence by Lemma 3, Tϕ is realizable. By Lemma 4, Tϕ cannot be closed.
But, this contradicts the fact that Tϕ is a proof and therefore a closed tableau.
It follows that ϕ is valid. 
�

We now proceed to establish the completeness of the labelled tableaux with
respect to layered graph semantics. We begin with the notion of a Hintikka CSS,
which will facilitate the construction of countermodels. All remaining proofs
omitted from this section are provided in the research note [9].

Definition 11 (Hintikka CSS). A CSS 〈F, C〉 is a Hintikka CSS iff, for any
formulas ϕ,ψ ∈ Form and any graph labels x, y ∈ L, we have the following:

1. Tϕ : x �∈ F or Fϕ : y �∈ F or x � y �∈ C 2.F� : x �∈ F 3.T⊥ : x �∈ F
4. ifTϕ ∧ ψ : x ∈ F, then Tϕ : x ∈ F and Tψ : x ∈ F
5. if Fϕ ∧ ψ : x ∈ F, then Fϕ : x ∈ F or Fψ : x ∈ F
6. if Tϕ ∨ ψ : x ∈ F, then Tϕ : x ∈ F or Tψ : x ∈ F
7. if Fϕ ∨ ψ : x ∈ F, then Fϕ : x ∈ F and Fψ : x ∈ F
8. if Tϕ → ψ : x ∈ F, then, for all y ∈ L, if x � y ∈ C, then Fϕ : y ∈ F or Tψ : y ∈ F
9. if Fϕ → ψ : x ∈ F, then there exists y ∈ L such that x � y ∈ C

and Tϕ : y ∈ F and Fψ : y ∈ F
10. if Tϕ � ψ : x ∈ F, then there are ci, cj ∈ Σ such that cicj � x ∈ C and

Tϕ : ci ∈ F and Tψ : cj ∈ F
11. if Fϕ � ψ : x ∈ F, then, for all ci, cj ∈ Σ, if cicj � x ∈ C, then

Fϕ : ci ∈ F or Fψ : cj ∈ F
12. if Tϕ −−�ψ : x ∈ F, then, for all ci, cj ∈ Σ, if x � ci ∈ C and cicj ∈ D(C), then

Fϕ : cj ∈F or Tψ : cicj ∈F
13. if Fϕ −−�ψ : x ∈ F, then there are ci, cj ∈ Σ such that x � ci ∈ C and cicj ∈ D(C) and

Tϕ : cj ∈ F and Fψ : cicj ∈ F
14. if Tϕ �−− ψ : x ∈ F, then, for all ci, cj ∈ Σ, if x � ci ∈ C and cjci ∈ D(C), then

Fϕ : cj ∈F or Tψ : cjci ∈F
15. if Fϕ −−�ψ : x ∈ F, then there areci, cj ∈ Σ such that x � ci ∈ C and cjci ∈ D(C) and

Tϕ : cj ∈ F and Fψ : cjci ∈ F. 	




Intuitionistic Layered Graph Logic 477

We now give the definition of a function Ω that extracts a countermodel
from a Hintikka CSS. A Hintikka CSS can thus be seen as the labelled tableaux
counterpart of Hintikka sets, which are maximally consistent sets satisfying a
subformula property.

Definition 12 (Function Ω). Let 〈F, C〉 be a Hintikka CSS. The function Ω
associates to 〈F, C〉 a tuple Ω(〈F, C〉) = (G, E ,X,�,V), such that (1) V (G) =
A(C), (2) E(G) = {(ci, cj) | cicj ∈ D(C)} = E, X = {xΩ | x ∈ D(C)}, where
V (cΩ

i ) = {ci}, E(cΩ
i ) = ∅, V ((cicj)Ω) = {cicj}, and E((cicj)Ω) = {(ci, cj)}, (3)

xΩ � yΩ iff x � y ∈ C, and (4) xΩ ∈ V(p) iff there exists y ∈ D(C) such that
y � x ∈ C and Tp : y ∈ F. 
�

The next lemma shows that there is a precise correspondence between the
structure that the Hintikka CSS properties impose on the labels and the layered
structure specified by the construction of the model.

Lemma 5. Let 〈F, C〉 be a Hintikka CSS and Ω(〈F, C〉) = (G, E ,X,�,V). (1) If
ci, cj ∈ A(C), then cicj ∈ D(C) iff cΩ

i @E cΩ
j ↓. (2) If cicj ∈ D(C), then (cicj)Ω =

cΩ
i @E cΩ

j . 3. xΩ @E yΩ ↓ iff there exist ci, cj ∈ A(C) s.t. x = ci, y = cj and
cicj ∈ D(C). 
�

Lemma 6. Let 〈F, C〉 be a Hintikka CSS. Ω(〈F, C〉) is a layered graph
model. 
�

Lemma 7. Let 〈F, C〉 be a Hintikka CSS and M = Ω(〈F, C〉) = (G, E ,X,�,V).
For all formulas ϕ ∈ Form, and all x ∈ D(C). we have (1) if Fϕ : x ∈ F, then
xΩ �|=M ϕ, and (2) if Tϕ : x ∈ F, then xΩ |=M ϕ. Hence, if Fϕ : x ∈ F, then ϕ
is not valid and Ω(〈F, C〉) is a countermodel of ϕ. 
�

This construction of a countermodel would fail in a labelled tableaux system
for LGL (i.e., the layered graph logic with classical additives [6]). This is because
it is impossible to construct the internal structure of each subgraph in the model
systematically, as the classical semantics for � demands strict equality between
the graph under interpretation and the decomposition into layers. This issue is
sidestepped for ILGL since each time the tableaux rules require a decomposition
of a subgraph into layers we can move to a ‘fresh’ layered subgraph further down
the ordering. Thus we can safely turn each graph label into the simplest instan-
tiation of the kind of graph it represents: either a single vertex (indecomposable)
or two vertices and an edge (layered).

We now show how to construct such a CSS. We first require a listing of
all labelled formulae that may need to be added to the CSS in order to satisfy
properties 4–15. We require a particularly strong condition on the listing to make
this procedure work: that every labelled formula appears infinitely often to be
tested.

Definition 13 (Fair Strategy). A fair strategy for a language L is a labelled
sequence of formulæ (Siχi : (xi))i∈N in {T,F} × Form × L such that {i ∈ N |
Siχi : (xi) ≡ Sχ : x} is infinite for any Sχ : x ∈ {T,F} × Form × L. 
�
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Proposition 4. There exists a fair strategy for the language of ILGL. 
�

Next we need the concept of an oracle. Here an oracle allows Hintikka sets to
be constructed inductively, testing the required consistency properties at each
stage.

Definition 14. Let P be a set of CSSs. (1) P is ⊆-closed if 〈F, C〉 ∈ P holds
whenever 〈F, C〉 ⊆ 〈F′, C′〉 and 〈F′, C′〉 ∈ P holds. (2) P is of finite character if
〈F, C〉 ∈ P holds whenever 〈Ff , Cf 〉 ∈ P holds for every 〈Ff , Cf 〉 ⊆f 〈F, C〉. (3) P
is saturated if, for any 〈F, C〉 ∈ P and any instance

cond(F, C)
〈F1, C1〉 | . . . | 〈Fk, Ck〉

of a rule of Fig. 6 if cond(F, C) is fulfilled, then 〈F ∪ Fi, C ∪ Ci〉 ∈ P, for at least
one i ∈ {1, . . . , k}. 
�

Definition 15 (Oracle). An oracle is a set of open CSSs which is ⊆-closed,
of finite character, and saturated. 
�

Definition 16 (Consistency/Finite Consistency). Let 〈F, C〉 be a CSS. We
say 〈F, C〉 is consistent if it is finite and has no closed tableau. We say 〈F, C〉 is
finitely consistent if every finite sub-CSS 〈Ff , Cf 〉 is consistent. 
�

Proposition 5. (1) Consistency is ⊆-closed. (2) A finite CSS is consistent iff
it is finitely consistent. 
�

Lemma 8. The set of finitely consistent CSS, P, is an oracle. 
�

We can now show completeness of our tableaux system. Consider a formula
ϕ for which there exists no closed tableau. We show there is a countermodel to
ϕ. We start with the initial tableau T0 for ϕ. Then, we have (1) T0 = [〈{Fϕ :
c0}, {c0 � c0)}〉] and (2) T0 cannot be closed. Let P be as in Lemma 8. By
Proposition 4, there exists a fair strategy, which we denote by S, with Siχi : (xi)
the ith formula of S. As T0 cannot be closed, 〈{Fϕ : c0}, {c0 � c0}〉 ∈ P. We build
a sequence 〈Fi, Ci〉i�0 as follows:

– 〈F0, C0〉 = 〈{Fϕ : c0}, {c0 � c0}〉;
– if 〈Fi ∪ {Siχi : (xi)}, Ci〉 �∈ P, then we have 〈Fi+1, Ci+1〉 = 〈Fi, Ci〉; and
– if 〈Fi ∪ {Siχi : (xi)}, Ci〉 ∈ P, then we have 〈Fi+1, Ci+1〉 = 〈Fi ∪ {Siχi : (xi)} ∪

Fe, Ci ∪ Ce〉 such that Fe and Ce are determined by

Si χi Fe Ce

F ϕ → ψ {Tϕ : cI+1,Fψ : cI+1} {xi � cI+1}
T ϕ � ψ {Tϕ : cI+1,Tψ : cI+2} {cI+1cI+2 � xi}
F ϕ −−� ψ {Tϕ : cI+2,Fψ : cI+1cI+2} {xi � cI+1, cI+1cI+2 � cI+1cI+2}
F ϕ �−− ψ {Tϕ : cI+2,Fψ : cI+2cI+1} {xi � cI+1, cI+2cI+1 � cI+2cI+1}
Otherwise ∅ ∅
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with I = max{j | cj ∈ A(Ci) ∪ S(xi)}.

Proposition 6. For any i ∈ N, the following properties hold: (1) Fi ⊆ Fi+1 and
Ci ⊆ Ci+1; (2) 〈Fi, Ci〉 ∈ P. 
�

We now define the limit 〈F∞, C∞〉 = 〈
⋃

i�0 Fi,
⋃

i�0 Ci〉 of the sequence
〈Fi, Ci〉i�0.

Proposition 7. The following properties hold: (1) 〈F∞, C∞〉 ∈ P; (2) For all
labelled formulæ Sϕ : x, if 〈F∞ ∪ {Sϕ : x}, C∞〉 ∈ P, then Sϕ : x ∈ F∞. 
�

Lemma 9. The limit CSS is a Hintikka CSS. 
�

Theorem 2 (Completeness). If ϕ is valid, then there exists a closed tableau
for ϕ. 
�

4 A Hilbert System and an Algebraic Semantics

We give a Hilbert-type proof system, ILGLH, for ILGL in Fig. 7. The additive
fragment, corresponding to intuitionistic propositional logic, is standard (e.g.,
[2]). The presentation of the multiplicative fragment is similar to that for BI’s
multiplicatives [20], but for the non-commutative and non-associative (following
from the absence of a multiplicative counterpart to ∧2) conjunction, �, together
with its associated left and right implications (cf. [14,15]).

Fig. 7. Rules of the Hilbert system, ILGLH, for ILGL

This section concludes with equivalence of ILGLH and ILGL’s tableaux sys-
tem.

Definition 17 (Layered Heyting Algebra). A layered Heyting algebra is
a structure A = (A,∧,∨,→,⊥,�,�,−−�,�−−) such that (A,∧,∨,→,⊥,�) is a
Heyting algebra, �, −−�, and �−− are binary operations on A satisfying a ≤ a′

and b ≤ b′ implies a � b ≤ a′ � b′ and a � b ≤ c iff a ≤ b−−� c iff b ≤ a�−− c. 
�
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We interpret ILGL on layered Heyting algebras. Let V : Prop → A be a valua-
tion on the layered Heyting algebra (A,∧A,∨A,→A,⊥A,�A,�A,−−�A,�−−A). We
maintain the subscripts to distinguish the operations of the algebra from the con-
nectives of ILGL. We uniquely define an interpretation function �−� : Form → A
by extending with respect to the connectives in the usual fashion: ��� = �A,
�⊥� = ⊥A, �p� = V (p), and �ϕ ◦ ψ� = �ϕ� ◦A �ψ� for ◦ ∈ {∧,∨,→,�,−−�,�−− }.

Proposition 8 (Soundness). For any layered Heyting algebra A and any
interpretation �−� : Form → A: if ϕ � ψ then �ϕ� ≤ �ψ�.

Proof. By induction on the derivation rules of ILGLH. The cases for the additive
fragment are standard. For rule (�), we use the property a ≤A a′ and b ≤A b′

implies a �A b ≤A a′ �A b′ and for the remaining rules pertaining to the
multiplicative implications we use the adjointness property a �A b ≤A c iff
a ≤A b−−�A c iff b ≤A a�−−A c. 
�

Lemma 10. There is a layered Heyting algebra T and an interpretation �−�T :
Prop → T such that if ϕ �� ψ then �ϕ�T �≤ �ψ�T.

Proof. We give a Lindenbaum term-algebra construction on the syntax of ILGL
with the equivalence relation ϕ ≡ ψ iff ϕ � ψ and ψ � ϕ. The set of all such
equivalence classes [ϕ] gives the underlying set of the layered Heyting algebra,
T: �T := [�], ⊥T := [⊥], and [ϕ] ◦T [ψ] := [ϕ ◦ ψ] for ◦ ∈ {∧,∨,→,�,−−�,�−− }.

The fragment (T,∧T,∨T,�T,⊥T) forms a bounded distributive lattice with
order [ϕ] ≤T [ψ] iff [ϕ] ∧T [ψ] = [ϕ]. It is straightforward to use rules (Ax), (∧1)
and (∧2) to show that the right hand condition holds iff ϕ � ψ. We then obtain
adjointness of ∧T and →T from rules (→1) and (→2), monotonicity of �T from
rule (�) and the adjointness of �T,−−�T and �−−T from rules (−−�1), (−−�2), (�−−1),
and (�−−2). Thus T is a layered Heyting algebra with an interpretation given
by �ϕ� = [ϕ]. By the definition of the ordering, ϕ �� ψ implies �ϕ� �≤T �ψ�, as
required. 
�

We now standardly obtain completeness.

Theorem 3 (Completeness). For any propositions ϕ, ψ of ILGL, if �ϕ� ≤ �ψ�
for all interpretations �−� on layered Heyting algebras then ϕ � ψ in ILGLH. 
�

We now show that the layered graph semantics is a special case of the alge-
braic semantics.

Definition 18 (Preordered Layered Magma). A preordered layered magma
is a tuple (X,�, ◦), with X a set, � a preorder on X, and ◦ a binary partial
operation on X. 
�

It is clear that, given a preordered scaffold (G, E ,X,�), the structure (X,
�,@E) is a preordered layered magma. Analogously to the classical case [6], we
can generate a layered Heyting algebra.

Proposition 9. Every preordered layered magma generates a layered Heyting
algebra.
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Proof. Let (X,�, ◦) be a preordered layered magma. An up-set of the preorder
(X,�) is a set U ⊆ X such that x ∈ U and x � y implies y ∈ U . Denote the set
of all up-sets of X by Up(X). The structure (Up(X),∪,∩,→, ∅,X) is a Heyting
algebra, where → is defined as follows: U → V := {x ∈ X | for all y (x �
y and y ∈ U implies y ∈ V )} We define the operators �,−−�,�−− as follows:

U � V := {x ∈ X | there exists y ∈ U, z ∈ V (y ◦ z↓ and y ◦ z � x)}
U −−� V := {x ∈ X | for all y, z (x � y and y ◦ z↓ and z ∈ U implies y ◦ z ∈ V )}
U �−− V := {x ∈ X | for all y, z (x � y and z ◦ y↓ and z ∈ U implies z ◦ y ∈ V )}

It is straightforward that these all define up-sets, and are thus well-defined.
It remains to prove monotonicity of � and adjointness of the operators. For
monotonicity, let U ⊆ U ′, V ⊆ V ′ and x ∈ U � V . Then there exist y ∈ U ⊆ U ′

and z ∈ V ⊆ V ′ such that y ◦ z↓ and y ◦ z ≤ x. It follows immediately that
x ∈ U ′ � V ′.

Next, adjointness. We give just one case, for �−−. The others are similar.
Suppose V ⊆ U �−−W . We must show U � V ⊆ W , so assume x ∈ U � V . It
follows that there exist x0 ∈ U and x1 ∈ V such that x0 ◦ x1↓ and x0 ◦ x1 � x.
By assumption, x1 ∈ U �−−W and we have x1 � x1, x0 ◦ x1↓ and x0 ∈ U , so it
follows that x0 ◦ x1 ∈ W . Finally, W is an up-set, so x0 ◦ x1 � x entails x ∈ W ,
and the verification is complete. 
�

We can now get the soundness and completeness of the layered graph seman-
tics with respect to ILGLH as a special case of the algebraic semantics. Note that
a persistent valuation V : Prop → ℘(X) corresponds uniquely to a valuation
V′ : Prop → Up(X). By definition, for each propositional variable p, V(p) is an
up-set of the preorder (X,�) and trivially an up-set of (X,�) is an element of
℘(X). We can thus use a persistent valuation to generate an interpretation �−�V
on the layered Heyting algebra generated by (X,�,@E).

Proposition 10. For any layered graph model M with valuation V : Prop →
℘(X) and every formula ϕ of ILGL, we have �ϕ�V = {G ∈ X | G |=M ϕ} ∈
Up(X). 
�

Hence the layered graph semantics of ILGL is a special case of the algebraic
semantics and ILGLH is sound and complete with respect to the layered graph
semantics.

Proposition 11 (Equivalence of theHilbert andTableaux Systems). � ϕ
is provable in ILGLH iff there is closed tableau for ϕ. 
�

5 Extension to Resources and Actions: Examples

To express the examples mentioned in Sect. 1 conveniently and efficiently, we
consider an extension of layered graph semantics and ILGL in which we label
the ambient graph with resources and consider action modalities (cf. Stirling’s
intuitionistic Hennessy–Milner logic [22]) that express resource manipulations.
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This extension introduces a degree of statefulness to ILGL without changing the
underlying semantics.

This extension is based on an assignment of a set of resources R to the vertices
of the graph G. That is, each r ∈ R is situated at vertices of G. Such assignments
are denoted G[R], where we think of G as the (directed) graph of locations in
a system model. Resources should also carry sufficient structure to allow some
basic operations on resource elements. In [4,5,17], resources are required to form
pre-ordered partial monoids, such as the natural numbers (N,≤,+, 0), and we use
this approach here. Let (R,�, ◦, e) be a resource monoid, where R is a collection
of sets of resources and ◦ : R × R → R is a commutative and associative binary
operation. It is easy to see that assignments of resources can be composed and
that the algebraic semantics can be easily extended (cf. [6]).

Lemma 11. Consider @ and ◦. Both are binary operations with @ non-
commutative and non-associative while ◦ is commutative and associative. A non-
commutative, non-associative operation on graphs labelled with resources can be
defined.

Proof. We have @E : G×G → G and ◦ : R×R → R. Define •E : (G×R)×(G×R) →
(G×R) as (G1, R1) •E (G2, R2) = (G1 @E G2, R1 ◦R2). It is clear that •E is both
non-commutative and non-associative. 
�

We write G[R] � G′[R′] to denote the evident containment ordering on labelled
graphs and resources (i.e., G′ is a subgraph of G and R � R′). We assume also
a countable set Act of actions, with elements a, etc. Action modalities, 〈a〉 and
[a] manipulate (e.g., add to, remove from) the resources assigned to the vertices
of the graph.

Definition 19 (Satisfaction in Resource-Labelled Models). We extend
layered graph models to graphs labelled with resources and extend the interpreta-
tion of formulae to the action modalities. For a resource monoid R, a countable
set of actions, Act, and a layered graph model M = (X,V) over labelled graphs,
with the containment ordering on labelled graphs, we generate the satisfaction
relation |=M⊆ X[R] × Form as

G[R] |=M � always G[R] |=M ⊥ never G[R] |=M p iff G[R] ∈ V(p)

G[R] |=M ϕ ∧ ψ iff G[R] |=M ϕ and G[R] |=M ψ G[R] |=M ϕ ∨ ψ iff G[R] |=M ϕ or G[R] |=M ψ

G[R] |=M ϕ → ψ iff, for all G′[R′] such that G[R] � G′[R′], G′[R′] |=M ϕ implies G′[R′] |=M ψ

G[R] |=M ϕ1 � ϕ2 iff for some G1[R1], G2[R2] such that G1[R1] •E G2[R2] � G[R],
G1[R1] |=M ϕ1 and G2[R2] |=M ϕ2

G[R] |=M ϕ −−� ψ iff for all G[R] � H[S] and all K[T ] such that H[S] •E K[T ]↓,
K[T ] |=M ϕ implies (H[S] •E K[T ]) |=M ψ

G[R] |=M ϕ �−− ψ iff for all G[R] � H[S] and all K[T ] with K[T ] •E H[S]↓,
K[T ] |=M ϕ implies (K[T ] •E H[S]) |=M ψ

G[R] |=M 〈a〉ϕ iff for some well-formed G[R′] such thatG[R]
a→ G[R′], G[R′] |=M ϕ

G[R] |=M [a]ϕ iff for all well-formed G[R′] such that G[R]
a→ G[R′], G[R′] |=M ϕ 
�

We defer the presentation of the metatheory to account for this extension,
including proof systems and completeness results, to another occasion. To do so
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Fig. 8. Buses ready to roll Fig. 9. Buses arrive at meeting

we follow the approach of dynamic epistemic logics [23], wherein the transitions
underlying the action modalities correspond to maps between models rather
than states. It is clear persistence will not (and should not) hold for action
modalities, but at any given model persistence will hold. To extend the tableaux
system we should instead take sequences of CSSs, together with a history of
actions following similar approaches in the proof theory of Public Announcement
Logic [1].

Example 1 (A Transportation Network). Here we abstract a public transporta-
tion network into social and infrastructure layers. For a meeting in the social
layer to be quorate, sufficient people (say 50) must attend. To achieve this,
there must be buses of sufficient capacity to transport 50 people, represented
as resources, to the meeting hall, in the infrastructure layer (see Figs. 8 and 9).
The formula φquorum denotes a quorate meeting, φx denotes that x number of
people are picked up at bus stops, and the arrival of buses of capacity x in the
infrastructure layer is denoted by the action modality 〈busx〉. These actions move
x amount of people from the bus stops to the meeting hall in the social layer.
Let φmeeting assert the existence of a meeting in the social layer, G1. Then, if
G2 denotes the graph of the infrastructure layer, we have the formulae

G2[R] |=M 〈bus25〉〈bus35〉((φmeeting � φ50)−−� φquorum)
G2[R] |=M 〈bus40〉((φmeeting � φ40)−−� ¬φquorum)

which assert that having two buses available with a total capacity of more than
50 will allow the meeting to proceed, but that a single bus with capacity 40 will
not.

Example 2 (A Security Barrier). This example (see Fig. 10) is a situation high-
lighted by Schneier [21], wherein a security system is ineffective because of the
existence of a side-channel that allows a control to be circumvented. The secu-
rity policy, as expressed in the security layer, with graph G1, requires that a
token be possessed in order to pass from the outside to the inside; that is,
〈pass〉(φinside → φtoken). However, in the routes layer, with graph G2, it is pos-
sible to perform an action 〈swerve〉 to drive around the gate, as shown in the
Fig. 11; that is,

G1 @E G2 |=M (〈pass〉(φinside → φtoken) � 〈swerve〉(φinside ∧ ¬φtoken))
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Fig. 10. The security barrier and side
channel

Fig. 11. The layered graph model

Thus we can express the mismatch between the security policy and architecture
to which it is intended to apply.

Example 3 (An Organizational Security Architecture). Our final example con-
cerns an organization which internally has high- and low-security parts of its
network. It also operates mobile devices that are outside of its internal net-
work but able to connect to it. Figure 12 illustrates our layered graph model
of this set-up. We can give a characterization in ILGL of a side channel that
allows a resource from the high-security part of the internal network to trans-
fer to the low-security part via the external mobile connection. Associated with
the mobile layer are actions that allow the transference of data We have two
local compliance properties, in the high- and low-security parts of the network,
respectively: χhigh(r) describes compliance with a policy allowing resource in the
high-security network and χsec(r) is a correctness condition that if a resource r
is not permitted in the low-security network, then it is not in it. We take actions
copy,download,upload associated with the mobile layer G2, allowing data to be
copied to another location as well as moved down and up E-edges respectively,
with θ(r) a compliance property such that G2[R] |=M 〈copy〉θ(r) in order to
copy data r. Now we have that

G2[R] |=M 〈download〉((χhigh(r) � θ(r)) ∧ 〈copy〉〈upload〉(θ(r) � ¬χsec(r)))

showing that the mobile layer is a side channel that can undermine the policy
χsec.

Fig. 12. Organizational security architecture
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12. Galmiche, D., Méry, D., Pym, D.: The semantics of BI and resource tableaux.
Math. Struct. Comput. Sci. 15(06), 1033–1088 (2005)

13. Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96, 138701
(2006)

14. Lambek, J.: On the calculus of syntactic types. In: Proceedings of the 12th Sym-
posia on Applied Mathematics, Studies of Language and Its Mathematical Aspects,
Providence, pp. 166–178 (1961)

15. Lambek, J.: From categorical grammar to bilinear logic. In: Schroeder-Heister,
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Abstract. Gen2sat [1] is an efficient and generic tool that can decide
derivability for a wide variety of propositional non-classical logics given
in terms of a sequent calculus. It contributes to the line of research on
computer-supported tools for investigation of logics in the spirit of the
“logic engineering” paradigm. Its generality and efficiency are made pos-
sible by a reduction of derivability in analytic pure sequent calculi to
SAT. This also makes Gen2sat a “plug-and-play” tool so it is compatible
with any standard off-the-shelf SAT solver and does not require any addi-
tional logic-specific resources. We describe the implementation details of
Gen2sat and an evaluation of its performance, as well as a pilot study for
using it in a “hands on” assignment for teaching the concept of sequent
calculi in a logic class for engineering practitioners.

1 Introduction

Logic Engineering [2] is a quickly developing field which studies ways to investi-
gate and construct new logical formalisms with “nice” properties (such as decid-
ability, appropriate expressive power, effective reasoning methods, etc.), for a
particular need or application. Handling whole families (or “product lines”) of
non-classical logics calls for automatic methods for their construction and inves-
tigation, as well as for new approaches in teaching these topics to future logicians
and practitioners. Such ideas of automatic support for the investigation of logics,
first presented in [21], were realized in a variety of tools, such as MultLog [5],
TINC [8], NESCOND [22], LoTREC [13], MetTeL [24], and many others.

The tool Gen2sat is a contribution to the above paradigm, which particu-
larly aims to support investigators who use sequent calculi for the specification
of logics. Sequent calculi are a prominent proof-theoretic framework, suitable for
performing proof search in a wide variety of different logics. However, a great
deal of ingenuity is required for developing efficient proof-search algorithms for
sequent calculi (see, e.g., [12]). Aiming to support users with minimal back-
ground in programming and automated reasoning techniques, Gen2sat uses a
uniform method for deciding derivability of a sequent in a given calculus using

This research was supported by The Israel Science Foundation (grant no. 817-15).

c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 487–495, 2016.
DOI: 10.1007/978-3-319-40229-1 33



488 Y. Zohar and A. Zamansky

the polynomial reduction of [16] to SAT. Shifting the intricacies of implementa-
tion and heuristic considerations to the realm of off-the-shelf SAT solvers, the
tool is lightweight and focuses solely on the transformation of derivability to
a SAT instance. As such, it also has the potential to serve as a tool that can
enhance learning and research of concepts related to proof theory and semantics
of non-classical logics, in particular those of sequent calculi. To demonstrate the
educational potential of the tool, in this paper we report on a pilot on using it
to enhance learning sequent calculi by graduate Information Systems students
at the University of Haifa.

2 Analytic Pure Sequent Calculi

While this paper’s focus is on the implementation and usage of Gen2sat, the
theoretical background can be found in [16]. Below we briefly review the relevant
results.

The variety of sequent calculi which can be handled by Gen2sat includes
the family of pure analytic calculi. A derivation rule is called pure if it does
not enforce any limitations on the context formulas. For example, the right
introduction rule of implication in classical logic is pure, but not in intuitionistic
logic, where only left context formulas are allowed. A sequent calculus is called
pure if it includes all the standard structural rules:1 weakening, identity and cut;
and all its derivation rules are pure.

For a finite set � of unary connectives, we say that a formula ϕ is a �-
subformula of a formula ψ if either ϕ is a subformula of ψ, or ϕ = ◦ψ′ for some
◦ ∈ � and proper subformula ψ′ of ψ. A pure calculus is �-analytic if whenever a
sequent s is provable in it, s can be proven using only formulas from sub�(s), the
set of �-subformulas of s. We call a calculus analytic if it is �-analytic for some
set �. Note that ∅-analyticity amounts to the usual subformula property. Many
well-known logics can be represented by analytic pure sequent calculi, including
three and four-valued logics, various paraconsistent logics, and extensions of
primal infon logic ([16] presents some examples).

In order to decide derivability in sequent calculi, Gen2sat adopts the following
semantic view:

Definition 1. Let G be an analytic pure sequent calculus. A G-legal bivaluation
is a function v from some set of formulas to {0, 1} that respects each rule of G,
that is, for every instance of a rule, if v assigns 1 to all premises, it also assigns 1
to the conclusion. This definition relies on the following extension of bivaluations
to sequents: v(Γ ⇒ Δ) = 1 iff v(ψ) = 0 for some ψ ∈ Γ or v(ψ) = 1 for some
ψ ∈ Δ.

Theorem 1 ([16]). Let � be a set of unary connectives, G a �-analytic pure
sequent calculus, and s a sequent. s is provable in G if and only if there is no
G-legal bivaluation v with domain sub�(s) such that v(s) = 0.
1 We take sequents to be pairs of sets of formulas, and therefore exchange and con-

traction are built in.
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Thus, given a �-analytic calculus G and a sequent s as its input, Gen2sat
does not search for a proof. Instead, it searches for a countermodel of the sequent,
by encoding in a SAT instance the following properties of the countermodel: (1 )
Assigning 0 to s; and (2 ) Being G-legal with domain sub�(s).

Gen2sat is capable of handling also impure rules of the form (∗i)
Γ ⇒ Δ

∗Γ ⇒ ∗Δ
for Next-operators. This requires some adaptations of the above reduction, that
are described in [16]. (∗i) is the usual rule for Next in LTL (see, e.g., [15]). It is
also used as � (and ♦) in the modal logic KD! of functional Kripke frames (also
known as KF and KDalt1). In primal infon logic [10] Next operators play the
role of quotations.

3 Features and Usage

There is a variety of tools developed in the spirit of logic engineering, such as
MultLog [5], TINC [8], NESCOND [22], LoTREC [13], and finally MetTeL [24],
which generates a theorem prover for a given logic, as well as a source code for
the prover, that can be further optimized. The aim of Gen2sat is similar, allowing
the user to specify the logic and automatically obtain a decision procedure. In
contrast to MetTeL which uses tableaux, in Gen2sat the logic is given by a
sequent calculus. Moreover, the core of Gen2sat is a reduction to SAT, thus it
leaves the“hard work” and heuristic considerations of optimizations to state of
the art SAT solvers, allowing the user to focus solely on the logical considerations.

Gen2sat can be run both via a web interface and from the command line. In
the web-based version the user fills in a form; in the command line a property
file is passed as an argument. From the command line, Gen2sat is called by:
java -jar gen2sat.jar <path>. The form has the following fields:

Connectives. A comma separated list of connectives, each specified by its sym-
bol and arity, separated by a colon.

Next operators. A comma separated list of the symbols for the next operators.
Rules. Each rule is specified in a separate line that starts with “rule:”. The

rule itself has two parts separated by “/”: the premises, which is a semicolon
separated list of sequents, and the conclusion, which is a sequent.

Analyticity. For the usual subformula property this field is left empty. For other
forms of analyticity, it contains a comma separated list of unary connectives.

Input sequent. The sequent whose derivability should be decided.

The web-based version includes predefined forms for some propositional logics
(e.g. classical logic, primal infon logic and more). In addition, it allows the user
to import sequent calculi from Paralyzer.2

2 Paralyzer is a tool that transforms Hilbert calculi of a certain general form into
equivalent analytic sequent calculi. It was described in [7] and can be found at
http://www.logic.at/people/lara/paralyzer.html.

http://www.logic.at/people/lara/paralyzer.html
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Fig. 1. An provable instance Fig. 2. An unprovable instance

If the sequent is unprovable, Gen2sat outputs a countermodel. If it is prov-
able, Gen2sat recovers a sub-calculus in which the sequent is already prov-
able (naturally, the full proof is unobtainable due to the semantic approach
of Gen2sat). Thus, for a provable sequent Gen2sat outputs a subset of rules that
suffice to prove the sequent.

Figures 1 and 2 present examples for the usage of Gen2sat. In Fig. 1, the input
contains a sequent calculus for the Dolev-Yao intruder model [9]. The connectives
E and P correspond to encryption and pairing. The sequent is provable, meaning
that given two messages m1 and m2 that are paired and encrypted twice with
k, the intruder can discover m1 if it knows k. The output also contains the only
two rules that are needed in order to prove the sequent. In Fig. 2, the input
file contains a sequent calculus for primal infon logic, where the implication
connective is not reflexive, and hence the input sequent is unprovable. Note that
the rules for the next operators are fixed, and therefore they are not included
in the input file. Both calculi are ∅-analytic, and hence the analyticity field is
left empty. Gen2sat supports analyticity w.r.t. any number of unary connectives,
and hence this field may include a list of unary connectives.

4 Implementation Details

Gen2sat is implemented in Java and uses sat4j [17] as its underlying SAT solver.
Since the algorithm from [16] is a “one-shot” reduction to SAT, no changes are
needed in the SAT solver itself. In particular, sat4j can be easily replaced by
other available solvers. Figure 3 includes a partial class diagram of Gen2sat. The
two main modules of sat4j that we use are specs, which provides the solver
itself, and xplain, which searches for an unsat core. The main class of Gen2sat
is DecisionProcedure, that is instantiated with a specific SequentCalculus.
Its main method decide checks whether the input sequent is provable. Given a
Sequent s, decide generates a SatInstance stating that s has a countermodel,
by applying the rules of the calculus on the relevant formulas, as described above.
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Fig. 3. A partial class diagram of Gen2sat

SatInstance is the only class that uses sat4j directly, and thus it is the only
class that will change if another SAT solver is used.

For satisfiable instances, the specs module returns a satisfying assign-
ment, which is directly translated to a countermodel in the form of a
PartialBivaluation. For unsatisfiable instances, the xplain module generates
a subset of clauses that is itself unsatisfiable. Tracking back to the rules that
induced these clauses, we are able recover a smaller sequent calculus in which
s is already provable. Note however, that the smaller calculus need not be ana-
lytic, and then the correctness, that relies on Theorem 1 might fail. Nevertheless,
correctness is preserved in this case, as the “if” part of Theorem 1 holds even
for non-analytic calculi. Thus, although Gen2sat does not provide a proof of the
sequent, we do obtain useful information about the rules that were used in it.

5 Performance

Gen2sat can be used in applications based on reasoning in non-classical logics,
and especially paraconsistent logics [6], as there exist analytic pure sequent cal-
culi for many of them [4]. For evaluating its performance, we have considered the
well-known paraconsistent logic C1 [11], using the {¬}-analytic calculus from [4],
and compared its running time with KEMS [18–20], a theorem prover that imple-
ments several KE tableau calculi for classical logic and paraconsistent logics.3 For
this comparison, a lighter version of Gen2sat was compiled, called Gen2satm,
that only decides whether the input sequent is provable, without providing a
countermodel or a smaller calculus. The experiments were made on a dedicated
Linux machine with four dual-core 2.53 GHz AMD Opteron 285 processors and
8 GB RAM. We have used the problem families of provable sequents for bench-
marking paraconsistent logics provers from [18,20], and extended them by cre-
ating similar problem families of unprovable sequents. For example, problems of
the first family from [18] have the form:

Φ1
n =

n∧

i=1

(¬Ai),
n∧

i=1

(◦Ai → Ai), (
n∨

i=1

◦Ai) ∨ (¬An → C) ⇒ C

3 The tableau calculus for C1 in KEMS can be translated to a sequent calculus (the
connection between the two frameworks was discussed e.g. in [3]). However, the
translated sequent calculus is non-analytic,and thus cannot be used with Gen2sat.
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where ◦ is defined by ◦A = ¬(A ∧ ¬A). Dismissing the first conjunct of the first
formula leads to an unprovable sequent. Similarly, problems of the fourth family
have the form:

Φ4
n =

n∧

i=1

Ai,

n∧

j=1

((Aj ∨ Bj) → ◦Aj+1), (
n∧

k=2

◦Ak) → An+1 ⇒ ¬¬An+1

Replacing ¬¬An+1 with ¬An+1 leads to an unprovable sequent.
Table 1 includes the running times in miliseconds for the first and fourth

problem families.4 Similar results were obtained on the other families.
In our tests, KEMS performed better on smaller inputs, while Gen2sat per-

formed better on larger ones. Also, provable sequents are easier than unprovable
ones for KEMS (which searches for a proof), while the opposite holds for Gen2sat
(which searches for a countermodel). For provable sequents, Gen2satm performs
much faster than the full version, as it does not call the xplain module of sat4j.
In contrast, for unprovable sequents, the difference between the two versions is
negligible. The table also contains the number of variables and clauses in the SAT
instances that were generated by Gen2sat. In the case of C1, the set of variables
corresponds to the set of subformulas of the sequent and their negations.

Table 1. Benchmark results for provable and unprovable sequents in C1

provable unprovable

KEMS Gen2sat Gen2satm #vars #clauses KEMS Gen2sat Gen2satm #vars #clauses

Φ1
10 133 342 213 137 344 153 224 215 135 339

Φ1
20 675 252 73 277 694 686 70 70 275 689

Φ1
50 13934 747 143 697 1744 14247 146 159 695 1739

Φ1
80 75578 1393 148 1117 2794 78212 175 203 1115 2789

Φ1
100 175716 2178 235 1397 3494 182904 226 284 1395 3489

Φ4
10 124 291 212 173 410 205 220 219 173 410

Φ4
20 502 207 78 353 840 1416 83 78 353 840

Φ4
50 8723 444 158 893 2130 36282 137 159 893 2130

Φ4
80 45130 744 178 1433 3420 226422 194 190 1433 3420

Φ4
100 123619 908 220 1793 4280 661078 227 227 1793 4280

6 Gen2sat for Education: A Pilot

There is an ongoing debate on the appropriate way of teaching logic and formal
methods to future software engineering practitioners, in particular on ways to
bridge between the taught material and the software domain (see, e.g., [23]).
As a contribution to the latter question, we have initiated a pilot of integrating
a “hands-on” assignment based on Gen2sat into a logic course for Information
Systems graduate students5, exploring its potential to enhance learning of the
4 Out of 11 possible formula comparator choices of KEMS, Table 1 presents the results

for the best performing one in each problem.
5 The second author has been teaching the course for several years at the University

of Haifa; see [25] for further details on the course design.
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concept of sequent calculi. The assignment aimed to allow them to experiment
with different sequent calculi, discovering “a whole new world” of non-classical
logics. To increase their engagement, the assignment had the “look and feel” of
a software engineering assignment whose domain is non-classical logics.

After a two hour lecture on sequent calculi and the system LK, we introduced
Gen2sat in class and explained its functionality and features. The students were
then requested to play the role of testers of the tool. More concretely, they were
requested to provide a test plan (as small as possible) which would cover all
possible scenarios the tool could encounter. For a quantifiable measure for success
we used a standard approach of measuring code coverage, instructing them to
install the Eclemma plug-in for Eclipse [14] for determining the percentage of
code activated for a given input. Thus, basically the students’ assignment was
producing a minimal test plan that would achieve maximal code coverage. When
analyzing different inputs to the tool, the students would potentially gain insights
into the wide variety of non-classical logics defined in terms of sequent calculi.

The results of our pilot were encouraging: of eight students who participated
in the assignment, all ended up submitting6 test plans which achieved between
70 % – 85 % coverage, and included non-trivial sequent calculi for different lan-
guages. An anonymous feedback questionnaire showed that the students found
the assignment helpful for understanding sequent calculi, as well as engaging and
fun. This seems to us an indication of the potential of integrating “hands on”
assignments in the spirit of logic engineering in illuminating educational logical
content through experimenting with software tools.

7 Conclusions and Future Work

We have introduced Gen2sat, an efficient tool that decides derivability for a
wide family of non-classical logics via the reduction to SAT given in [16]. In
the spirit of the “logic engineering” paradigm, Gen2sat is generic: it receives as
input the language and rules of a sequent calculus of a very general form. In
addition, Gen2sat works on top of standard off-the-shelf SAT solvers, without
requiring any additional logic-specific resources. Our preliminary experimental
results show that the generality of Gen2sat does not come at the expence of its
performance, making it appropriate for practical automated reasoning in non-
classical logics. We plan to extend these experiments to include more provers for
logics with analytic pure sequent calculi.

As a result of its semantic approach, Gen2sat currently does not provide
actual proofs of provable sequents. This can be overcome by integrating Gen2sat
with other existing theorem provers so that for unprovable sequents, the theorem
prover will not have to search for a proof, while for provable sequents, the search
space can be potentially reduced by exploiting gensat’s capability of supplying
a sufficient subset of rules. Our experience with teaching the concept of sequent
6 Interestingly, seven students employed new connectives with arity greater than 2 and

three employed also 0-ary connectives (which indeed increased coverage), although
they have not seen any such example in class.
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calculi in a “hands-on” assignment on test design for Gen2sat shows its potential
in educational settings. Another direction for further research is developing an
educational version of the tool, in which learning concepts from non-classical
logics could be achieved via interacting with the software.
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Abstract. We study the model checking problem of parameterised sys-
tems with an arbitrary number of processes, on arbitrary network-graphs,
communicating using multiple multi-valued tokens, and specifications
from indexed-branching temporal logic. We prove a composition theo-
rem, in the spirit of Feferman-Vaught [21] and Shelah [31], and a finite-
ness theorem, and use these to decide the model checking problem. Our
results assume two constraints on the process templates, one of which is
the standard fairness assumption introduced in the cornerstone paper of
Emerson and Namjoshi [18]. We prove that lifting any of these constraints
results in undecidability. The importance of our work is three-fold: (i)
it demonstrates that the composition method can be fruitfully applied
to model checking complex parameterised systems; (ii) it identifies the
most powerful model, to date, of parameterised systems for which model
checking indexed branching-time specifications is decidable; (iii) it tightly
marks the borders of decidability of this model.

1 Introduction

Many concurrent systems consist of identical processes running in parallel, such
as peer-to-peer systems, sensor networks, multi-agent systems, etc. [14,27,29].
Model checking is a successful technique for establishing correctness of such
systems: model a system as the product transition system PG, where P is a
transition system representing the process, and G is a network-graph describ-
ing the communication lines [9]. If the number of processes is not known, or
too large for model-checking tools, it is appropriate to express correctness as a
parameterised model checking (PMC) problem: decide if a given temporal logic
specification holds irrespective of the number of processes [8,22]. That is, for a
fixed infinite set G of network-graphs (e.g., G may be the set of all ring network-
graphs), decide, given process P and specification ϕ if PG |= ϕ for all G ∈ G.
Not surprisingly, PMC is a hard problem, i.e., even for a given P, PMC consists
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of model-checking infinitely many systems; in other words, it can be thought of
as model checking infinite-state systems [15,23]. It quickly becomes undecidable
[8], even if the participating processes are finite-state [32], and even if they do not
communicate with each other at all [25]. Thus, much work has focused on prov-
ing decidability for restricted systems, i.e., by limiting both the communication
mechanism and the specification logic [1–3,6,7,10,13,17,20].

We consider specifications in indexed branching temporal logic without the
“next-time” operator X (formulas without X are stuttering-insensitive, and are
thus natural for specifying asynchronous concurrent systems [18]). More specif-
ically, we use formulas of prenex indexed-CTL∗

d\X (CTL∗ without X in which
there at most d ∈ N nested path quantifiers). These are formulas of the form
∀x1∃x2 · · · ∀xkφ where the variables xi vary over processes, and φ is a CTL∗

d\X
formula where atomic propositions are paired with the index variables xi [30].
This specification language allows one to express many natural properties, e.g.
mutual-exclusion. Non-prenex temporal logic is so powerful that its parame-
terised model checking is undecidable already for indexed LTL\X specifications,
even for non-communicating processes [25]. We consider systems with an arbi-
trary number of processes, on arbitrary network-graphs, communicating using
multiple multi-valued tokens. Such systems arise in various contexts: multiple
tokens are a means to resolve conflicts over multiple shared resources such as
in the drinking philosophers problem [12], they can represent mobile finite-state
agents [4,5,29], and tokens are used in self-stabilisation algorithms [24]. We
further allow the edges of the network-graph to carry directions, called local
port-numberings, along which the processes may send and receive tokens. Such
network-graphs are typical in the distributed computing literature, for instance
in mobile finite-state agents, e.g., [14,26,27]. Note that even slightly more pow-
erful communication primitives such as pairwise-rendezvous have undecidable
PMC for expressive logics such as prenex indexed CTL∗\X [3].

The Compositional Method for Parameterised Model-Checking. Com-
position theorems, pioneered in the seminal work of Feferman and Vaught [21]
and Shelah [31], are tools that reduce reasoning about compound structures to
reasoning about their component parts. Unfortunately, composition theorems for
product systems are not easy to come by [28]. Nonetheless, we successfully apply
the composition method to multi-token systems and prenex indexed-CTL∗

d\X
specification languages. Our composition result (Theorem 3) states, roughly, that
if two processes X,Y are bisimilar, and if two network-graphs G,H with k visible
vertices ḡ, h̄ (i.e., vertices that formulas can talk about) are CTL∗

d\X-equivalent,
then the product systems XG,YH with visible processes at ḡ, h̄ are CTL∗

d\X-
equivalent. We complement this with a finiteness result (Theorem 5) that states,
roughly, that for every d, k ∈ N, there are only finitely many CTL∗

d\X-types of
network-graphs G with k visible vertices (even though, over all graphs, there
are infinitely many logically inequivalent CTL∗

d\X formulas, already for d = 1).
Combining the composition and finiteness we reduce reasoning about PG for all
G ∈ G to reasoning about finitely many G ∈ G, and thus decide the PMC.
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Our systems employ two fairness conditions: the standard assumption (intro-
duced in [18]) that processes that make infinitely many transitions must make
infinitely many token passing transitions; and the assumption that from every
state from which a process can send (resp. receive) a token, it can also reach a
state in which it can send (resp. receive) the token in any other given direction
and value. We show that if either of the fairness conditions is removed PMC
becomes undecidable; furthermore, it remains undecidable even if other very
restrictive assumptions are added. It is notable that until now it was not known
if the standard fairness assumption was necessary for decidability. Thus, our
results answer this question in the affirmative. Due to space constraints, some
proofs are only sketched or omitted.

2 Definitions

A labeled transition system (LTS) is a tuple 〈AP, Σ,Q,Q0, δ, λ〉 where AP is a
finite set of atomic propositions (also called atoms), Σ is a finite set of actions,
Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Σ × Q is a
transition relation, and λ : Q → 2AP is a labeling function. We write q

σ→ q′ if
(q, σ, q′) ∈ δ, and write q → q′ if (q, σ, q′) ∈ δ for some σ ∈ Σ. An LTS is total if
for every q ∈ Q there exists q′ ∈ Q such that q → q′. A transition system (TS) is
a tuple 〈AP, Q,Q0, δ, λ〉 like an LTS, except that δ ⊆ Q×Q. A path of an LTS is
a finite string q0q1 . . . qn ∈ Q+ or an infinite string q0q1 . . . ∈ Qω such that qi →
qi+1 for all i. An edge-path of an LTS is a (finite or infinite) sequence of transitions
(q0, σ0, q1)(q1, σ1, q2) . . . of δ. Every edge-path (q0, σ0, q1)(q1, σ1, q2) . . . induces
the path q0q1q2 . . . . A path is simple if no vertex repeats, and it is a simple cycle
if the (only) two equal vertices are the first and last. An edge-path is simple (resp.
simple cycle) if the induced path is. A run of an LTS is a maximal path starting
in an initial state. An LTS can be translated into a TS by simply removing the
actions from transitions. We will implicitly use this translation.

System Model. Informally, a token-passing system is an LTS obtained by tak-
ing some finite edge-labeled graph (called a topology or network-graph), placing
one process at each of its vertices, and having all processes execute the same
code (given in the form of a finite-state process template). Processes synchronize
by sending one of finitely many tokens along the edges of the topology, which
are labeled with a send direction, a receive direction, and a token-value.1 In the
most general model, processes can choose the direction to send the token, from
which direction to receive a token, and the value of the token. In case there is
more than one possible recipient for a token, one is chosen nondeterministically.

In what follows, we use a finite non-empty set of token values Σval, finite
disjoint non-empty sets Σsnd of send directions and Σrcv of receive directions,

1 The direction-labels on the edges (also called a local orientation) represent network
port numbers [14,27]. All of our results also hold for the case that each edge has a
single direction-label that combines send and receive directions, e.g., “clockwise”.
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and an integer T > 0 (the number of tokens in the system). Since these data are
usually fixed, we do not mention them if they are clear from the context.

Process Template. Fix a countable set AP of atomic propositions for use by
all process templates. We assume that AP also contains, for every integer i ≥ 0,
the special proposition toki. A process template (w.r.t. T ∈ N, Σval, Σsnd, Σrcv) is
a total LTS P = 〈APpr, Σpr, Q,Q0, δ, λ〉 such that: (i) APpr ⊂ AP is a finite set
containing toki for 0 ≤ i ≤ T ; (ii) for every q ∈ Q there is exactly one i such that
toki ∈ λ(q) (and we say that q has i tokens); (ii) Σpr = {int}∪[(Σsnd∪Σrcv)×Σval];
(iv) Q0 = {ιT , ι0} where ιT has T tokens, and ι0 has 0 tokens; (v) For every
transition q

σ→ q′: if σ ∈ Σsnd × Σval then ∃i > 0 such that q has i tokens and q′

has (i − 1) tokens; if σ ∈ Σrcv × Σval then ∃i < T such that q has i tokens and q′

has (i + 1) tokens; and if σ = int then q and q′ have the same number of tokens.

Notation. We say that the initial states of two templates X,Y are bisimilar
if, writing ιZ0 , ιZT for the initial states of template Z, we have that ιXε ∼ ιYε for
ε ∈ {0, T}, where ∼ is a bisimulation relation between X and Y. The elements
of Q are called local states and the transitions in δ are called local transitions. A
transition (q, σ, q′) is called a local send transition if σ ∈ Σsnd×Σval; it is called a
local receive transition if σ ∈ Σrcv×Σval; and it is called a local internal transition
if σ = int. The local send/receive transitions are collectively known as local token-
passing transitions. A local state q for which there exists a local send-transition
(resp. receive-transition) (q, (d,m), q′) is called ready to send (resp. receive) in
direction d and value m; it is also called ready to send (resp. receive) in direction
d, ready to send (resp. receive) value m, or simply ready to send (resp. receive).

Fairness Notions. A template P is fair if every infinite path q1q2 · · · in P
satisfies that for infinitely many i the transition from qi to qi+1 is a local token
passing transition [18]. Other restrictions that we consider involve treating dif-
ferent directions and/or different token values in an unbiased way, and thus
“fairly”. Formally, a state q of P having i tokens that is ready to send (resp.
receive) is called an i-sending (resp. i-receiving) state. A path in P is an i-path
if it only mentions states having i tokens. A template P is direction/value-fair if
for every d ∈ Σrcv, e ∈ Σsnd and m ∈ Σval, for every i-receiving (resp. i-sending)
state q there is a finite i-path from q ending in a state that is ready to receive
(resp. send) in direction d (resp. from direction e) and value m. We denote by
PFDV the set of fair and direction/value-fair process-templates; and by PFD the
set of fair, direction-fair, and valueless (i.e., with |Σval| = 1) process templates.
As noted in the introduction, the undecidability results (Sect. 4) show that the
limitations of PFDV are, in a strong sense, minimal limitations one can impose
and still obtain a decidable parameterized model checking problem.

Topology/Network-Graph. LTS G = 〈∅, Σsnd × Σrcv, V, {init}, E, λ〉 is a
topology (w.r.t. Σsnd, Σrcv) if: (i) V = [n] for some n ∈ N is a set of vertices (or
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process indices); (ii) init ∈ V is an initial vertex; (iii) E ⊆ V ×(Σsnd×Σrcv)×V is
called the edge relation, (iv) and λ is the constant function λ(v) = ∅. We abbre-
viate and write G = 〈V,E, init〉 or G = 〈VG, EG, initG〉. The underlying graph of
G has vertex set V and edge (v, w) iff ∃d, e.(v, (d, e), w) ∈ E. We assume that the
underlying graph is irreflexive, contains no vertices without outgoing edges, and
that every vertex v ∈ V is reachable from init. These are natural assumptions
since paths in the topology represent the paths along which the tokens can move.

Parameterized Topology G. Let G denote a countable set of topologies. For
example, the set of all pipelines (see Fig. 1), or the set of all rings.

1start 2 3 4
+

−
+

−
+

−

Fig. 1. Example pipeline topology: + signifies a (sndE , rcvW ) label, and − (sndW ,
rcvE).

Token-Passing System. Given a process template P = 〈APpr, Σpr, Q,Q0, δ, λ〉
and a topology G = 〈V,E, init〉, we define the token-passing system (or TPS for
short) to be the LTS PG = 〈APsys, Σsys, S, S0,Δ,Λ〉. Informally, the system PG

can be thought of as the interleaving parallel composition of P over G. The tokens
start with process init. Time is discrete: at each step either exactly one process
makes a local internal transition; or exactly two processes, say at vertices v, w,
simultaneously make local token-passing transitions as the process at v sends
a token in direction d with value m, and the one at w receives the token from
direction e with value m. Such a transition can occur only if (v, (d, e), w) ∈ E.

Formally: (1) APsys := APpr × V is the set of indexed atomic propositions
(because it is standard notation, we sometimes write pi instead of (p, i)); (2)
Σsys := {int}∪(Σsnd×Σrcv×Σval) is the set of actions; (3) The set of global states
is S := QV , i.e., all functions from V to Q (informally, if s ∈ QV is a global state
then s(i) denotes the local state of the process with index i); (4) The set of global
initial states S0 consists of the unique global state s ∈ QV

0 such that s(init) = ιT ,
and for all i �= init, s(i) = ι0; (5) The labeling Λ(s) ⊂ APsys for s ∈ S is defined as
follows: pi ∈ Λ(s) if and only if p ∈ λ(s(i)), for p ∈ APpr and i ∈ V (informally, pi

is true at s if and only if p is true at the corresponding local state of the process
with index i); (6) The global transition relation Δ ⊆ S × Σsys × S consists
of global internal transitions and global token-passing transitions (collectively
called global transitions), defined as follows: (6a) The global internal transitions
are elements of the form (s, int, s′) for which there exists a process index v ∈ V

such that s(v) int→ s′(v) is a local internal transition of P, and for all w ∈ V \{v},
s(w) = s′(w). Such a global transition is said to involve v. (6b) The global token-
passing transitions are elements of the form (s, (d, e,m), s′) for which there exist
process indices v, w ∈ V such that: (v, (d, e), w) ∈ E; there is a local send

transition s(v)
(d,m)→ s′(v) and a local receive transition s(w)

(e,m)→ s′(w) of P; and
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for every u ∈ V \{v, w}, s′(u) = s(u). Such a transition is said to have v sending
in direction d an m-valued token to w from direction e.

Observe that the definition above specifies that at the beginning all tokens
are at the initial state of the topology. This is not a real restriction since a system
which allows the tokens to start already distributed in a nondeterministic way
among multiple vertices can be simulated by adding to the topology a new initial
state that starts with all the tokens and from which they are later distributed.
One can even accommodate many fixed initial distributions by modifying the
specification formula to remove from consideration unwanted distributions.

For a global state s, let tokens(s) be the set of v such that s(v) has one or
more tokens. If T = 1, we define tokens(s) to be the vertex that has the token.

Specification Language. For the syntax and semantics of CTL∗ see [9]. In
this work, TL denotes a syntactic fragment of CTL∗, such as CTL∗\X (i.e., CTL∗

without the “next” operator), or the fragment CTL∗
d\X of CTL∗\X in which the

nesting-depth of the path quantifiers E,A is at most d ∈ N0 (see [30]).
A partition of an infinite path π = π1π2 . . . is an infinite sequence B1, B2, . . .

of finite intervals of N such that there exist integers m1 < m2 < . . . with m1 = 1
and for all i ∈ N, Bi = [mi,mi+1 − 1]. The intervals Bi are called blocks.

Definition 1. [30] For TSs M = 〈AP, S, S0,Δ,Λ〉, M ′ = 〈AP, S′, S′
0,Δ

′, Λ′〉
(over the same set of atomic propositions AP), and non-negative integer d, define
relations ≡d⊆ S × S′ as follows: (i) s ≡0 s′ if Λ(s) = Λ′(s′); and (ii) s ≡d+1 s′

if for every infinite path π in M from s there exists an infinite path π′ in M ′

from s′ (and vice versa) and a partition B1B2 . . . of π and a partition B′
1B

′
2 . . .

of π′ such that for every i ∈ N and every b ∈ Bi, b
′ ∈ B′

i we have that πb ≡d π′
b′ .

In case we need to stress the LTSs, we write ≡M,M ′
d instead of ≡d. Say that M

is TL-equivalent to M ′, denoted by M ≡TL M ′, if they agree on all TL formulas,
i.e., for every TL formula ϕ over AP it holds that M |= ϕ iff M ′ |= ϕ. The next
proposition characterizes CTL∗

d\X-equivalence, denoted ≡CTL∗
d\X.

Proposition 1. [30] For every integer d, TS M with a single initial state s,
and TS M ′ with a single initial state s′: M ≡CTL∗

d\X M ′ if and only if s ≡d s′.

Indexed Temporal Logics (ITLs) were introduced in [11,18,19] to model
specifications of systems with multiple processes. ITL formulas are built from TL
formulas by adding the ability to quantify over process indices using the universal
and existential process quantifiers ∀xcond and ∃xcond (generally written as Qx).
Accordingly, the atoms are AP × Vars, where Vars = {x, y, z, . . . } is some fixed
infinite set of index variables (we write px instead of (p, x) ∈ AP × Vars). For
example, the formula ∀x∀yx�=y.A¬F cx ∧ cy specifies mutual exclusion, i.e., that
it is never the case that two different processes simultaneously satisfy atom c.
Syntactically, Indexed-CTL∗ formulas are formed by adding the following to the
syntax of CTL∗ formulas over atomic propositions AP×Vars: if ϕ is an indexed-
CTL∗ state (resp. path) formula then so are the formulas ∀xcond.ϕ and ∃xcond.ϕ,
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where x, y ∈ Vars, and cond is Boolean combination over predicates of the form
true, (x, y) ∈ E, (y, x) ∈ E, and x = y.

Semantics. Indexed-CTL∗ formulas over variables Vars and atomic propositions
APpr are interpreted over a token-passing system PG, where P has atomic propo-
sitions APpr, and G = 〈V,E, init〉. A valuation is a function e : Vars → VG. An
x-variant of e is a valuation e′ with e′(y) = e(y) for all y ∈ Vars \ x. First we
inductively define what it means for valuation e to satisfy cond, written e |= cond:
e |= true (for all e); e |= x = y iff e(x) = e(y); e |= (x, y) ∈ E iff (e(x), e(y)) ∈ E;
e |= ¬cond iff e �|= cond; e |= cond ∧ cond′ iff e |= cond and e |= cond′.

For a TPS PG = 〈APsys, Σsys, S, S0,Δ,Λ〉, a global state s, a state formula
ϕ, and a valuation e, define (PG, s) |= ϕ[e] inductively:

– (PG, s) |= px[e] iff pe(x) ∈ Λ(s),
– (PG, s) |= Eψ[e] iff (PG, π) |= ψ[e] for some infinite path π form s in PG,
– (PG, s) |= ∀xcond.ϕ[e] (resp. (PG, s) |= ∃xcond.ϕ[e]) iff for all (resp. for some)

x-variants e′ of e that satisfy cond, it holds that (PG, s) |= ϕ[e′],
– (PG, s) |= ϕ ∧ ϕ′[e] iff (PG, s) |= ϕ[e] and (PG, s) |= ϕ′[e], and
– (PG, s) |= ¬ϕ[e] iff it is not the case that (PG, s) |= ϕ[e].

Path formulas are interpreted similarly, but over (PG, π), where π is an infi-
nite path. An indexed CTL∗ formula is a sentence if every atom is in the scope
of a process quantifier. Let ϕ be an indexed-CTL∗ state formula. For a valua-
tion e, define PG |= ϕ[e] if (PG, s0) |= ϕ[e], where s0 is the initial state of PG.
If ϕ is also a sentence, define PG |= ϕ if for all valuations e (equivalently, for
some valuation) it holds that (PG, s0) |= ϕ[e]. Similarly, define (PG, s) |= ϕ iff
for all valuations (equivalently, for some valuation) e : Vars → VG it holds that
(PG, s) |= ϕ[e]. We use the usual shorthands, e.g., ∀x.ϕ is shorthand for ∀xtrue.ϕ.
Prenex indexed-TL is a syntactic fragment of indexed-TL in which all the
processes’ index quantifiers are at the front of the formula, e.g., prenex indexed
CTL∗\X consists of formulas of the form (Q1x1) . . . (Qkxk) ϕ where ϕ is a CTL∗\X
formula over atoms AP×{x1, . . . , xk}, and the Qixis are index quantifiers. Such
formulas with k quantifiers are called k-indexed, collectively written {∀,∃}k-TL.
The union of {∀,∃}k-TL for k ∈ N is written {∀,∃}∗-TL and called (full) prenex
indexed TL. The remainder of this paper deals with prenex indexed-CTL∗

d\X.

Parameterized Model Checking Problem PMCPG(P,F). The parameter-
ized model checking (PMC) problem is to decide, given P ∈ P and ϕ ∈ F ,
whether or not for all G ∈ G, PG |= ϕ. Here P is a set of process templates, and
F is a set of ITL formulas.

Cutoffs and Decidability. A cutoff for PMCPG(P,F) is a natural number c
such that for every P ∈ P and ϕ ∈ F , if PG |= ϕ for all G ∈ G with |VG| ≤ c
then PG |= ϕ for all G ∈ G. Note: if PMCPG(P,F) has a cutoff, then it is decid-
able. Note that the existence of a cutoff only implies the existence of a decision
procedure. For instance, the statement “for every k ∈ N, PMCPG(P, {∀,∃}k-TL)
has a cutoff” does not imply, a priori, that PMCPG(P, {∀,∃}∗-TL) is decidable.
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3 Decidability Results

In this section we prove that token-passing systems have decidable PMC problem
for specifications from k-indexed CTL∗

d\X for fair and direction/value-fair process
templates. We begin with some definitions.

Notation. A k-tuple over VG, written ḡ, denotes a tuple (g1, . . . , gk) of elements
of VG. We write v ∈ ḡ if v = gi for some i. Given a valuation e : Vars → VG,
the relevant part of e for a CTL∗

d\X formula with k free variables (w.l.o.g. called
x1, . . . xk) can be described by a k-tuple ḡ over VG (with gi = e(xi) for 1 ≤ i ≤ k).

The Restriction PG|ḡ. Fix process template P, topology G, and nodes ḡ ∈ V k
G .

Define the restriction of PG = 〈APsys, S, S0,Δ,Λ〉 onto ḡ, written PG|ḡ, as the
LTS (AP@, S, S0,Δ, L) over atomic propositions AP@ = {p@i : p ∈ APpr, i ∈ [k]},
where for all s ∈ S the labeling L(s) is defined as follows: L(s) := {p@i : pgi

∈
Λ(s), i ∈ [k]}. Informally, PG|ḡ is the LTS PG with a modified labeling that, for
every gi ∈ ḡ, replaces the indexed atom pgi

by the atom p@i (i.e., process indices
are replaced by their positions in ḡ); all other atoms are removed. Intuitively,
p@i means that the atom p ∈ APpr holds in the process with index (i.e., at the
vertex) gi. Note that PG and PG|ḡ only differ in their labelling. It is not hard to
see that given a k-indexed formula θ := Q1x1 . . . Qkxk. ϕ, the truth value of ϕ
in PG, with respect to a valuation for x1, . . . xk described by a k-tuple ḡ, can be
deduced by reasoning instead on PG|ḡ (since for this evaluation ϕ only “sees”
the atomic propositions of processes in vertices in ḡ).

The Valuation TS G�ḡ�. The idea is to annotate the topology G by atoms
that allow logical formulae to talk about the movement of tokens in and out of
vertices in ḡ. In order to capture the directions involved in such movements, we
insert new nodes in the middle of any edge of G that is incident with a vertex in
ḡ. Thus, G�ḡ� is a TS formed as follows: (i) the atoms true at v are the positions
that v appears in ḡ, if any; (ii) split each edge labeled (d, e) involving (one or
two) vertices from ḡ by inserting a state whose atoms label the directions to or
from the vertices from ḡ that are involved; (iii) remove all edge labels.

Formally, let G = 〈V,E, init〉 be a topology, and let ḡ be a k-tuple over V .
Define the valuation TS G�ḡ� as the TS 〈AP, Q,Q0, δ, λ〉 where

– AP = [k] ∪ Σsnd ∪ Σrcv,
– Q = V ∪ {[v, d, e, w] | (v, (d, e), w) ∈ E and either v ∈ ḡ or w ∈ ḡ},
– Q0 = {init},
– δ ⊂ Q × Q is the union of {(v, v′) : ∃d, e.(v, (d, e), v′) ∈ E, v �∈ ḡ ∧ v′ �∈ ḡ} and

{(v, [v, d, e, w]) : [v, d, e, w] ∈ Q} and {([v, d, e, w], w) : [v, d, e, w] ∈ Q}.
– λ(v) := {i ∈ [k] : v = gi} (for v ∈ V ); and λ([v, d, e, w]) is {d} if v ∈ ḡ, w �∈ ḡ,

is {e} if w ∈ ḡ, v �∈ ḡ, and is {d, e} if v ∈ ḡ, w ∈ ḡ.

Since Σsnd and Σrcv are disjoint, the label of (v, d, e, w) determines which of v
and w is in ḡ. A valuation TS G�ḡ� with |ḡ| = k is called a k-valuation TS. Every
edge-path ξ ∈ G naturally induces a path map(ξ) in G�ḡ�. Observe that map(ξ)
starts in a node of VG, and if ξ is finite also ends in a node of VG. Formally:
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map((v, σ, v′)) is defined to be vv′ if v �∈ ḡ and v′ �∈ ḡ, and v · [v, σ, v′] · v′

otherwise; and map(ξ · (v, σ, v′)) is defined to be map(ξ) · v′ if v �∈ ḡ and v′ �∈ ḡ,
and is map(ξ)·[v, σ, v′]·v′, otherwise. Note that for a path ρ in G�ḡ� that begins in
a node of VG (and, if ρ is finite, also ends in VG), the set map−1(ρ) is non-empty.

We can now define the Composition and Finiteness properties.

– Composition Property for 〈TL,P,G〉: For every k ∈ N, processes X,Y ∈ P,
topologies G,H ∈ G, and k-tuples ḡ ∈ V k

G , h̄ ∈ V k
H : if G�ḡ� ≡TL H�h̄� and the

initial states of X and Y are bisimilar, then XG|ḡ ≡TL YH |h̄. In words, the
composition property states that if the initial states of X and Y are bisimilar
then one can deduce the logical equivalence of the restrictions XG|ḡ,YH |h̄
from the logical equivalence of the valuation TSs G�ḡ�,H�h̄�.

– Finiteness Property for 〈TL,G〉: For every k ∈ N, the set M := {G�ḡ� : G ∈
G, ḡ ∈ V k

G} has only finitely many ≡TL equivalence classes.

Later in this section we will prove the Composition and Finiteness prop-
erties with TL = CTL∗

d\X (for fixed d ∈ N), P = PFD. Note that if instead of
using valuation TSs one uses arbitrary TSs then the finiteness property does
not hold even for TL = CTL∗

1\X.2 Thus, the proof of the finiteness property for
CTL∗

d\X must, and does, exploit properties of valuation TSs; in particular, the
fact that the number of atoms is bounded and no atom is true in more than one
state of G�ḡ� in every path between two vertices in ḡ.

We now state the main theorem of this section.

Theorem 1. PMCPG(PFDV, {∀,∃}k-CTL∗
d\X) is decidable for every parame-

terised topology G and every d, k ∈ N.

The proof is in two steps. First, one removes the token values by encoding
them in the directions. Thus, in the statement of Theorem1, we may replace
PFDV by PFD. In step two, we show that (for every G, k, d) the PMC problem
has a cutoff using the composition method, following the recipe from [2]:

Theorem 2. If 〈TL,P,G〉 has the composition property and 〈TL,G〉 has the
finiteness property, then for all k ∈ N, PMCPG(P, {∀,∃}k-TL) has a cutoff.

Proof (sketch). The truth value of a {∀,∃}k-TL formula θ := Q1x1 . . . Qkxk. ϕ in
a system PG is a Boolean combination of the truth values of the (non-indexed)
TL formula ϕ, resulting from different valuations of the variables x1, . . . , xk. By
the composition property, two different topologies G,H, with corresponding
valuations ḡ, h̄, that yield TL-equivalent valuation TSs will admit the same truth
values of ϕ in PG, PH . By the finiteness property, all the valuation TSs fall
into finitely many TL-equivalence classes. Hence, given G, evaluating θ in PG

amounts to evaluating a Boolean function (that depends only on G,Q1, . . . Qk)
over finitely many variables (one variable for each representative valuation TS);

2 Indeed, there are infinitely many CTL∗
1\X formulas that are pairwise logically-

inequivalent. E.g., every finite word over {0, 1} can be represented as an LTS, which
itself can be axiomatised by a CTL∗

1\X formula that uses the U operator.
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and evaluating θ with respect to G amounts to evaluating a set of such func-
tions (all using the same variables). Since there are only finitely many Boolean
functions over a finite set of variables we obtain a cutoff.3 ��

3.1 The Composition Theorem

Theorem 3 (Composition). For all d, k ∈ N, topologies G,H, processes
X,Y ∈ PFD, ḡ ∈ V k

G and h̄ ∈ V k
H : if G�ḡ� ≡CTL∗

d\X H�h̄� and the initial states
of X and Y are bisimilar, then XG|ḡ ≡CTL∗

d\X YH |h̄.

Proof (sketch). The proof has the following outline. Let s0 and s′
0 be the initial

states of XG|ḡ and YH |h̄, respectively. By Proposition 1, it is enough to show
that if the assumption of the theorem holds then s0 ≡d s′

0. This is done by
induction on d. For stating the inductive hypothesis we first need the following
definition: given a system PG, a function β : [T ] → tokens(s) that maps token
numbers to vertices in G is a token assignment at s if, for every v ∈ tokens(s), the
number of tokens mapped to v is equal to the number of tokens at v according
to s, i.e., (tok|β−1(v)|, v) ∈ Λ(s), where Λ is the labelling of PG.
The dth Inductive Hypothesis. For every global state s of XG|ḡ and global
state s′ of YH |h̄, conclude that s ≡d s′ if the following two conditions hold:

1. s(gi) ∼ s′(hi) for all i ∈ [k], and
2. there exists a token assignment β at s, and there exists a token assignment

β′ at s′, such that for all i ∈ [T ] we have that β(i) ≡d β′(i).

The first condition says that s and s′ assign bisimilar states to matching
processes in ḡ and h̄; the second condition says that s and s′ have their tokens
in nodes of G,H (respectively) that are equivalent according to ≡G�ḡ�,H�h̄�

d . The
theorem follows by showing that s0, s

′
0 satisfy these assumptions.

For the induction base, observe that (by the first assumption in the inductive
hypothesis) s and s′ assign bisimilar local states to matching processes in ḡ, h̄
and thus, s, s′ have the same labelling and are indistinguishable by a CTL∗

0\X
formula; now apply Proposition 1.

The main work in proving the inductive step is to satisfy the second condition
in the definition of ≡d (Definition 1). This requires that, for every path π in XG|ḡ
starting in s, one can find a (d−1)-matching path π′ in YH |h̄ starting at s′ (and
vice versa). Note that since our setup is symmetric we can ignore the “vice-versa”
and only find π′ given π. We construct π′ using the general scheme graphically
depicted in Fig. 2.

3 The existence of a cutoff is independent of whether G is computable. However, decid-
ing whether a given number is a cutoff may not be easy. Consider for example the
limited setting of [2]: there exists a computable G and a fixed P such that it is
impossible, given k, d ∈ N (even fixing d = 1), to compute a cutoff [2]. Nonetheless,
by [3], in the same setting (and we believe that also in our broader setting) one can
compute a cutoff for many natural parameterized topologies G.
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Fig. 2. Proving the Composition property via Definition 1.

First, given π, we assign to each token a unique number from 1 through T .
This allows us to track the movements of individual tokens in G (according to the
token-passing transitions of π) which we arbitrarily assume obey the following
rule: all processes start in the initial vertex, and during a global token-passing
transition, the smallest numbered token that the sending process has is the one
being sent. Using this rule, for i ∈ N and t ∈ [T ] we can define the function
tokeni : [T ] → VG such that tokeni(t) is the vertex in which the token numbered
t is located in the global state πi. However, in order to construct π′ so that it
mimics π, we also need to know the directions the tokens take when entering
and leaving nodes (which is information that is not explicitly present in π). The
reason this is needed is that processes in XG|ḡ can change state based on the
direction a token is sent to or received from (this is possible even if the process
is direction-fair). To solve this, we arbitrarily choose some edge-path ξ in XG|ḡ
that induces π — being an edge-path, ξ contains the directions as part of each
edge. As it turns out, we only need to know the directions of token-passing
transitions affecting processes in ḡ. These are the send (resp. receive) directions
of edges in G that start (resp. end) in a state in ḡ, and are captured by the extra
nodes added to G to construct G�ḡ�. Thus, for each t ∈ [T ] we obtain from ξ a
path ρt in G�ḡ� that records the movement of token t along π.

For t ∈ [T ], by the assumption in the inductive hypothesis, β(t) ≡d β′(t).
Apply Definition 1 to the path ρt (that starts in β(t)) of G�ḡ� to get a (d − 1)-
matching path ρ′t that starts in β′(t) of H�h̄�. The paths ρ′1, . . . , ρT will serve
as the paths of tokens’ movements for the path π′.

We construct π′ by mimicking the transitions of π: an internal transition in
YH |h̄ that involves a process gi ∈ ḡ is mimicked by a bisimilar internal transition
using hi; and a token passing transition4 of the token number t (for t ∈ [T ]) is
mimicked as follows: we take the portion w of ρt this transition corresponds to,
match it to a portion w′ of ρ′t (using the partitioning of ρt and ρ′t into matching
blocks), and then push the token t along an edge-path in H that induces w′.

The following lemma says that this last “pushing” step is possible.

Lemma.5 Let P ∈ PFD, let p, q be states of P, and let G be a topology. Let
ρ = (v1, (d1, e1), v2)(v2, (d2, e2), v3) . . . (vm−1, (dm−1, em−1), vm) be an edge-path
that is a simple path (or a simple cycle) in G, and let s be a state of PG with
v1 ∈ tokens(s). There exists a finite edge-path α = (f0, σ0, f1)(f1, σ1, f2) . . .
(fh−1, σh−1, fh) in PG, with f0 = s, such that:
4 Fortunately, we only have to mimic such transitions that cross blocks in ρt.
5 The full version of this lemma contains two more conclusions.
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1. α has m − 1 token-passing transitions and in the ith token-passing transition
vi sends a token in direction di to vi+1 from direction ei (for 0 ≤ i < m);

2. If vertex x ∈ VG is not on the path ρ, then no transition of α involves x.

This lemma makes crucial use of the fact that P is fair and direction-fair.
Fairness ensures that tokens can always be made to flow in and out of a process,
and direction-fairness ensures that tokens can always flow in any given direction.
Indeed, the lemma is not true without both assumptions which is the main reason
that without them the composition theorem does not hold and, as we show in
Sect. 4, the PMC problem becomes undecidable. ��

3.2 FINITENESS Property for CTL∗
d\X

Our aim in this section is to prove the Finiteness property for CTL∗
d\X. We

begin by recursively defining, given positive integers k, d and a k-valuation TS
G�ḡ� = 〈AP, Q, {init}, δ, λ〉, a marking function Ξk

d . This function associates with
each vertex v ∈ Q a k+1-dimensional vector Ξk

d (v) whose ith coordinate Ξk
d (v)[i]

is a set of strings over the alphabet ∪u∈Q{Ξk
d−1(u)}. The marking function Ξk

d

will help us later in defining the CTL∗
d\X-character of a valuation TS, which

succinctly captures the CTL∗
d\X-equivalence class of this valuation TS.

Notation. The positions of a string v is the set {1, . . . , |v|} if v is finite, and
N otherwise. A string w is ultimately constant if |w| = ∞ and wi = wj for
all j ≥ i, for some i. Recall that the destuttering of a string is formed by
removing identical consecutive letters. Define a mapping posv : [|v|] → [|v|]
as follows: posv(1) = 1 and; for i > 1, posv(i) := posv(i − 1) if vi−1 = vi,
and otherwise posv(i) := posv(i − 1) + 1. Intuitively, posv maps a position i of
the string v to its corresponding position in destut(v). Note that the image of
posv is of the form [L] for some L ≤ |v|. Formally, destut(v) is the string w
of length L such that for all i ≤ L, wi = vmin{j:posv(j)=i}. Thus, vi = wposv(i)

for all i ≤ L. The Marking Ξk
d . Fix k, d ∈ N, topology G, and k-tuple ḡ

over VG. Let G�ḡ� be 〈AP, Q,Q0, δ, λ〉. For every vertex v ∈ Q, let v� be the
set of maximal paths in G starting in v that have no intermediate nodes in ḡ.
Formally, a (finite or infinite) path π = π1π2 . . . is in v� iff: π1 = v and, for all
1 < i < |π| we have πi �∈ ḡ and, if π is finite then |π| ≥ 2 and π|π| ∈ ḡ. We write
v�0 := {π ∈ v� | |π| = ∞} for the infinite paths in v�; also, for every i ∈ [k],
we write v�i := {π ∈ v� | π|π| = gi} for the set of paths in v� that end in gi.

In the definition below, for a (finite or infinite) path π, we write Ξk
d−1(π) :=

Ξk
d−1(π1)Ξk

d−1(π2) . . . for the concatenation of the d − 1 markings of the nodes
of π. We define the marking Ξk

d of a node inductively (on d) as follows:
Ξk

0 (v) := λ(v) and, for d > 0, Ξk
d (v) is the vector (Ξk

d (v)[0], . . . , Ξk
d (v)[k]),

where Ξk
d (v)[i] := ∪π∈v�0{destut(Ξk

d−1(π)} if i = 0; and Ξk
d (v)[i] := ∪π∈v�i{

destut(Ξk
d−1(π

′)) | π′ = π1 . . . π|π|−1}, for 1 ≤ i ≤ k. That is, for d = 0, the
marking Ξk

d (v) is the label λ(v); and for d > 1 the marking Ξk
d (v) is a vec-

tor of sets of strings, where the ith coordinate of the vector contains the set of
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strings obtained by de-stuttering the Ξk
d−1 markings of the nodes of paths in

v� (excluding the last node if i > 0) that end in gi (if i > 0), or never visit
any node in ḡ (if i = 0). Observe that, for every 0 ≤ i ≤ k and every d > 0,
the marking Ξk

d (v)[i] is a set of strings over the alphabet6 ∪u∈Q{Ξk
d−1(u)}, and

that all strings in Ξk
d (v)[i] start with the letter Ξk

d−1(v).
Since, for all 0 ≤ i ≤ k and d > 0, all strings in Ξk

d (v)[i] start with the letter
Ξk

d−1(v), and since Ξk
d (v)[i] = ∅ iff v�i = ∅, we get the following lemma:

Lemma 1. For every d > 0, if v, u are nodes (of possibly different k-valuation
TSs) such that Ξk

d (v) = Ξk
d (u), then for all 0 < j ≤ d we have that Ξk

j (v) =
Ξk

j (u). If, in addition, v� �= ∅ then also Ξk
0 (v) = Ξk

0 (u).

The CTL∗
d\X-character of a Valuation TS. Given a k-valuation TS G�ḡ� =

〈AP, Q, {init}, δ, λ〉, the CTL∗
d\X-character of G�ḡ� is defined as the following

vector (
〈
λ(init), Ξk

d (init)
〉
,
〈
λ(g1), Ξk

d (g1)
〉
, . . . ,

〈
λ(gk), Ξk

d (gk)
〉
) of the pairs of

labels and Ξk
d markings of the initial state and the states in ḡ.

The following theorem relates the CTL∗
d\X-character of a valuation TS and

its CTL∗
d\X-equivalence class.

Theorem 4. For every k, d ∈ N, if G�ḡ�,H�h̄� are two k-valuation TSs with
the same CTL∗

d\X-character, then G�ḡ� ≡CTL∗
d\X H�h̄�.

Our next goal is to prove that there are (for given k, d ∈ N) only finitely
many CTL∗

d\X-characters for all k-valuation TSs. We do this by showing that
(for fixed alphabets Σsnd, Σrcv) for all k, d, all k-valuation TSs G�ḡ�, and all
v ∈ G, we have that Ξk

d (v) ranges over finitely many values. This is clearly true
for d = 0. For d > 0, we prove this by defining a finite poset Υ k

d , which depends
only on k and d, and showing that Ξk

d (v) ∈ Υ k
d . We begin by defining a relation

� between sets of strings.

Definition of �. For sets of strings X,Y ⊆ (Σ+ ∪ Σω), define X � Y if for all
x ∈ X there exists y ∈ Y such that x is a (not necessarily proper) suffix of y.

It is easy to verify that the relation � is reflexive and transitive, but that it
may not be antisymmetric (consider for example X = {b, ab} and Y = {ab}).

Lemma 2. Given a k-valuation TS G�ḡ�, and a path π1 . . . πt in it satisfying
πl �∈ ḡ for all 1 < l ≤ t, we have that: Ξk

d (πj)[i] � Ξk
d (πh)[i] for every 0 ≤ i ≤ k,

and d > 0, and 1 ≤ h < j ≤ t.

The relation � is antisymmetric when restricted to the domain consisting of
sets of strings Z such that: (i) all strings in Z start with the same letter first(Z)
(i.e., there exists first(Z) ∈ Σ such that for all w ∈ Z, w1 = first(Z)); (ii) in
every string in Z the letter first(Z) appears only once (i.e., for all w ∈ Z, i > 1
implies wi �= first(Z)). Given an alphabet Σ, let PΣ ⊂ 2Σ+∪Σω

denote the set
of all sets of strings Z (over Σ) satisfying the above two conditions. We have:

6 Here, the empty set ∅ is a letter in 2[k], not to be confused with the empty string ε.
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Lemma 3. (PΣ ,�) is a partially ordered set.

Definition of (Υ k
d ,�d). The definition is by induction on d: for d = 0 we have

Υ k
0 := 2AP (recall that AP = [k] ∪ Σsnd ∪ Σrcv); and �0 is the transitive closure

of the relation obtained by having, for every X ∈ 2[k], every d ∈ Σsnd, and every
e ∈ Σrcv, that: {d} �0 X, {d, e} �0 X, ∅ �0 {d}, and {e} �0 ∅. For d > 0,
let: Υ k

d = {X ∈ (PΥ k
d−1

)k+1 | w ∈ X[i] implies wj+1 ≺d−1 wj for all 0 ≤ i ≤
k and 1 ≤ j < |w|} and take �d to be the point-wise ordering of vectors, i.e.,
X ≺d Y iff X[i] � Y [i] for every 0 ≤ i ≤ k, where � is the ordering defined
earlier for sets of strings. Intuitively, X ∈ Υ k

d iff every coordinate of X contains
strings over the alphabet Υ k

d−1 that all start with the same letter and are all
strictly decreasing chains of the poset (Υ k

d−1,�d−1). Observe that if Υ k
d−1 is a

finite set then there are finitely many strictly decreasing chains (each of finite
length) in (Υ k

d−1,�d−1), implying that Υ k
d is also finite. Since Υ k

0 is finite, we can
conclude, for every d ≥ 0, that Υ k

d is a finite set of finite strings.
The following lemma states that for fixed k, d (recall that we assume fixed

alphabets Σsnd, Σrcv) the domain of Ξk
d is contained in Υ k

d (and is thus finite).
Note that this also implies that even though the strings in Ξk

d (v)[0] are obtained
by de-stuttering markings of infinite paths in v�0 they are all finite strings.

Lemma 4. For all k, d, if v is a vertex of a k-valuation TS then Ξk
d (v) ∈ Υ k

d .

We conclude with the finiteness theorem for CTL∗
d\X.

Theorem 5 (Finiteness). For every k, d ∈ N, the set {G�ḡ� : G is a topology,
ḡ ∈ V k

G} has only finitely many ≡CTL∗
d\X equivalence classes.

Proof. The theorem follows immediately from the fact that the CTL∗
d\X-

character of a valuation TS is a finite vector, Lemma 4, and Theorem 4.

4 Undecidability

The positive decidability results appearing in Sect. 3 are the strongest one can
hope for. Indeed, we prove that if one drops any of the restrictions that were
imposed on the process template, namely of fairness and direction/value-fairness,
then PMC becomes undecidable. Furthermore, these undecidability results hold
even if multiple other strong restrictions are put instead (such as having a single
token, having no values, having one send or one receive direction, etc.)

Our proofs reduce the non-halting problem for counter-machines (CMs) to
the PMC problem. The basic encoding uses one process (the controller) to
orchestrate the simulation and store the line number of the CM, and many
memory processes, each having one bit for each counter. The main difficulty
we face, compared to other reductions that follow this basic encoding (e.g.,
in [2,18,20,32]), is how to make sure that the controller’s commands are exe-
cuted by the memory processes given that the restrictions imposed in the theo-
rems prevent the controller from communicating its commands to the memory
processes.
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Theorem 6. Let PDV denote the set of process templates that are
direction/value-fair but not necessarily fair. There exists G such that PMCPG
(PDV, {∀}5-LTL\X) is undecidable, even if one limits the processes to have a sin-
gle valueless token (i.e. T = 1 and |Σval| = 1), and with a single receive direction
(i.e., |Σrcv| = 1). The same holds replacing “receive” by “send”; furthermore, G
is computable.

A template P is receive-direction fair if for every i-sending state q and for
every d ∈ Σrcv, there is a finite i-path from q ending in a state that is ready to
receive in direction d; it is send-direction fair if the previous condition holds with
“send(ing)” replacing “receive(ing)” and Σsnd replacing Σrcv; it is direction-fair
if it is both receive- and send-direction fair. A template P is value-fair if for
every i-receiving (resp. i-sending) state q, and for every token-value m ∈ Σval,
there is a finite i-path from q ending in a state that is ready to receive (resp.
send) value m. It is important to note that a template that is both direction-fair
and value-fair is not, in general, direction/value-fair. The difference is that while
the former can correlate values with directions, the latter cannot. For example,
it may be that from every state it can only receive/send in direction a if the
value of the token is 0, and receive/send in direction b only if the token value is
1. This kind of behaviour is not allowed if the template is direction/value-fair.

Theorem 7. Let PF be the set of process templates that are fair but not nec-
essarily direction/value-fair. There exists G such that PMCPG(PF, {∀}5-LTL\X)
is undecidable, even for direction fair and value fair templates with |Σrcv| = 1;
furthermore, G is computable.

5 Discussion

The literature contains PMC decidability results of token-passing systems with
a single token [2,3,13,16,18], and with multiple tokens [16,22].7 However, the
results on multiple tokens (and their proofs) only apply to linear-time specifica-
tions, and only to ring or clique network-graphs. In contrast, our results apply
to branching-time specifications and to general network-graphs.

The proof of our decidability result follows the framework outlined in
[2] (inspired by [13,18]) which suggests combining composition and finiteness
results.8 Rabinovich [28] also uses the composition method for solving PMC. He
considers the PMC problem for propositional modal logic assuming the parame-
terized network-graphs G have a decidable monadic-second order validity prob-
lem. While the systems in [28] are very general, the specification language, i.e.,
modal logic, is orthogonal to ours (e.g., it can not express liveness properties).

To the best of our knowledge, [2,28] are the only other works that use com-
position to establish decidability of PMC of distributed systems. While proving
7 Communication in [22] is by rendezvous, powerful enough to express token-passing.
8 Moreover, our work inherits from [2,13] the non-uniformity of the decision problem.

We leave for future work the problem of calculating explicit cutoffs for concrete
classes of network-graphs, as was done in [3].
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composition and finiteness may not be easy, we find the methodology to be
elegant and powerful. Indeed, in all of these cases, no other method is known
(e.g., automata, tableaux) for proving decidability. We leave for future work the
intriguing problem of applying this methodology to other problems.
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Abstract. Infinite-state reachability problems arising from unbounded-
thread program verification are of great practical importance, yet algo-
rithmically hard. Despite the remarkable success of explicit-state explo-
ration methods to solve such problems, there is a sense that SMT tech-
nology can be beneficial to speed up the decision making. This vision
was pioneered in recent work by Esparza et al. on SMT-based coverabil-
ity analysis of Petri nets. We present here an approximate coverability
method that operates on thread-transition systems, a model naturally
derived from predicate abstractions of multi-threaded programs. In addi-
tion to successfully proving uncoverability for all our safe benchmark
programs, our approach extends previous work by the ability to decide
the unsafety of many unsafe programs, and to provide a witness path.
We also demonstrate experimentally that our method beats all leading
explicit-state techniques on safe benchmarks and is competitive on unsafe
ones, promising to be a very accurate and fast coverability analyzer.

1 Introduction

Unbounded-thread program verification continues to attract the attention it
deserves: it targets programs designed to run on multi-user platforms and web
servers, where concurrent software threads respond to service requests of a num-
ber of clients that can usually neither be predicted nor meaningfully bounded
from above a priori. To account for these circumstances, such programs are
designed for an unspecified and unbounded number of parallel threads.

We target in this paper unbounded-thread shared-memory programs where
each thread executes a non-recursive, finite-data procedure. This model is popu-
lar, as it connects to multi-threaded C programs via predicate abstraction, a tech-
nique that has enjoyed progress for concurrent programs in recent years [5]. The
model is also popular since basic program state reachability questions are decid-
able, although of high complexity: the corresponding coverability problem for
Petri nets was shown to be EXPSPACE-complete [4,21].

Owing to the importance of this problem, much effort has since been invested
into finding practically viable algorithms [1,3,10,11,15–17]. The vast majority of
these are flavors of explicit-state exploration tools. Given the impressive advances
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that SMT technology has made, and its widespread “infiltration” of program
verification, an obvious question is to what extent such technology can assist in
solving the coverability problem.

An encouraging answer to this question was given in a recent symbolic imple-
mentation of the Petri net marking equations technique for coverability check-
ing [6]. The equations are expressed as integer linear arithmetic constraints and
passed to an SMT solver. While the constraints overapproximate the coverability
condition, causing the technique to produce false positives, its success rate was
very convincing.

Building on the promise of this technique, in this paper

1. we develop a similar approach that applies to a computational model more
fitting for software verification, called thread-transition systems (TTS). This
model makes shared and local thread storage explicit and is designed for
encodings of shared-variable concurrent programs. It enjoys a one-to-one cor-
respondence with multi-threaded Boolean programs. The latter in turn is a
widely used software abstraction employed in concurrency-capable tools such
as SatAbs [5] and Bfc [15]. Naturally, we dub our constraint sets thread-state
equations;

2. we equip our approach with a straightforward but effective component to
detect spurious assignments, and to refine the constraints if needed. This
component enables the approach to prove systems unsafe and generate coun-
terexamples; a feature that was not addressed in [6].

Our method is sound but theoretically incomplete. We implemented it in a
tool called Tse; Sect. 5 contains an extensive evaluation on a large number of
Boolean program benchmarks. We give a preview of our findings here:

– Notwithstanding said incompleteness, Tse was able to correctly decide 98 %
of all TTS instances; this includes safe and unsafe ones.

– Comparing to the most competitive complete coverability checker for repli-
cated Boolean programs, Bfc [15], Tse proves to be very close in efficiency
on unsafe benchmarks, and much more efficient than Bfc on safe ones. (The
gap is even larger with other explicit-state explorers.)

In summary, we envision our work to introduce the power of constraint-based
coverability analysis to the world of unbounded-thread program verification. Our
results showcase Tse as a very capable and highly successful replicated Boolean
program verifier.

2 Thread-Transition Systems

We assume multi-threaded programs are given in the form of an abstract state
machine called thread-transition system (TTS) [15]. Such a system reflects
the replicated nature of programs we consider: programs consisting of threads
executing a given procedure defined over shared and (thread-)local variables.
A thread-transition system is defined over a set of thread states T = S × L,
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Fig. 1. A thread-transition system with
thread (�→) and spawn (�) transitions.

where S and L are the finite sets of
shared and local states respectively.
R ⊆ T × T is the transition relation
on T , partitioned into R = �→ ∪ �;
the two partitions intuitively represent
thread transitions and spawn transi-
tions, respectively (semantics below).
We refer to elements of R as edges.
A TTS can now be defined as P =
(T,R). Figure 1 shows an example.

A TTS induces an infinite-state
transition system P∞ = (V∞, R∞), as
follows. For a positive integer n, let
Vn = S × Ln and V∞ = ∪∞

i=1Vi. We
write v = (s|l1, . . . , ln) to denote a
(global) system state with a shared component s, and n threads in local states
li (i ∈ {1, ..., n}).

A transition, written as (s|l1, . . . , ln) � (s′|l′1, . . . , l′n′), belongs to relation
R∞ exactly if one of the following conditions holds:

Thread Transition: n′ = n and there exists (s, l) �→ (s′, l′) ∈ R and i such
that li = l, l′i = l′, and for all j �= i, l′j = lj .

Spawn Transition: n′ = n + 1 and there exists (s, l) � (s′, l′) ∈ R and i such
that li = l, l′n′ = l′, and for all j < n′, l′j = lj .

Thus, a transition in R∞ affects the shared state, and the local state of at most
one thread. It may fire only if one thread—the active thread—is currently at the
corresponding TTS edge’s source thread state. We denote by w �( �→) w′ the
fact that the thread active in w � w′ fires a �→ edge; similarly for �(�).

Let LI ⊆ L be a set of initial local states and sI be the unique initial shared
state; initial states of P∞ hence have the form vI = (sI |l1, . . . , ln) where li ∈ LI

for all i. A path in P∞ is a finite sequence of states in V∞ starting from any vI
whose adjacent elements are related by R∞.

In order to state the problem we are tackling, define the covers relation � over
V∞ as (s|l1, . . . , ln) � (s′|l′1, . . . , l′n′) if s = s′ and [l1, . . . , ln] ⊇ [l′1, . . . , l

′
n′ ], where

[·] denotes a multi-set. We are solving in this paper the coverability problem for
a given (final) state vF ∈ V∞: is vF coverable, i.e. does there exists a path in
P∞ leading to a state v that covers vF : v � vF ? We denote the final shared
state by sF , i.e. vF = (sF | . . .). As an example, state (1|0) is coverable in the
2-thread system derived from the TTS in Fig. 1 with the unique initial thread
state (0, 0); the path consists of one thread firing the edge (0, 0) �→ (1, 1).

The coverability problem is decidable: relation � is a well-quasi order with
respect to which the system P∞ is monotone [15]. Algorithms for deciding
coverability over such systems exist [2,11] but are of high complexity, e.g.
EXPSPACE-complete for standard Petri nets [4,21], which are equivalent in
expressiveness to infinite-state transition systems obtained from TTS [15].
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3 Safety Proofs via Thread-State Equations

In this section we describe how, given a coverability problem, we derive a set
of equations whose inconsistency (unsatisfiability of their conjunction) implies
the unreachability of any global state covering the final state vF , and hence the
safety of the infinite-state system. We do so by determining constraints on the
number of threads in each local state when a global state is reached, as well as
constraints that encode the synchronization that shared states enforce among
the threads.

3.1 Thread and Transition Counting

Given an initial global state, a finite path p in P∞ can be succinctly and unam-
biguously represented as a sequence of pairs (r, i), where r ∈ R is a TTS edge
and i is a thread index. An abstraction of such a sequence is given by the num-
ber of times each edge in R fires along p. This “counting abstraction”, which
can be seen as simplifying an edge sequence to a multi-set, is rather crude, as
it ignores the order of edges fired along p. On the other hand, it allows us to
express the coverability condition: from the numbers of times each edge fires, we
can obtain the number of threads per local state in the final global state of p. We
now require that they match or exceed the thread counts in vF . Along with the
obvious non-negativity constraints for counters, we obtain a first approximation
of our thread-state equations, as follows.

Given a TTS P = (T,R) and a final state vF , we fix a total order on all
edges, and a total order on all local states. We further introduce:

– an integer vector r of |R| variables, representing the number of occurrences
of each edge along p (the edges appear in r in the given total order);

– an integer vector lI of |L| variables, representing the number of threads per
local state in the initial state of p (the local states appear in lI in the given
total order);

– an integer vector lF of |L| variables, representing the number of threads per
local state in the final state of p (the local states appear in lF in the given
total order);

– an |L|× |R| integer matrix c (a constant) that captures the effect of each edge
on each local state, as follows:

c(l, r) =

⎧
⎨

⎩

+1 if edge r ends in local state l
−1 if r ∈ �→ and r starts in local state l

0 otherwise.
(1)

(For simplicity, we identify l with the local state with number l in the total
order, similarly for r.) We assume R has no self-loops (which are irrelevant
for coverability), hence the quantity c(l, r) is well-defined. Note that the −1
case only applies to standard thread transition edges (“�→”), not to spawns:
the latter affect only the number of threads in the target local state. Also note
that c does not capture shared-state changes.
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With these variables, we define the following system of local-state constraints CL:

CL =
∧

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r ≥ 0 non-negative edge counters
lI ≥ 0
lF ≥ 0 } non-neg. local state ctrs.
∧

l �∈LI
lI(l) = 0 initial state condition

lF = lI + c · r final state condition∧
l∈L lF (l) ≥ |{i : vF (i) = l}| coverability condition

(2)

The notation r ≥ 0 means “pointwise non-negative”; similarly for lI and lF .
Symbol lI(l) refers to the component of lI corresponding to local state l; similarly
for lF (l). Operator · denotes matrix multiplication, |{. . .}| is set cardinality, and
vF (i) stands for the local state of thread i in state vF . These constraints stipulate
that all edge and local state counters be natural numbers; that no thread start
out in a non-initial local state; that the final local state counters account for the
effect of all edges; and that the final global state covers vF .

3.2 Shared State Synchronization

The thread and transition counting constraints reflected in CL ignore the order
in which edges fire along a path p, since distinguishing ordered edge sequences
symbolically is prohibitively expensive. Some of the ordering information can,
however, be recovered, by taking shared state changes into account (which have
also been ignored so far): consecutive edges along p must synchronize on the
shared state “in the middle”.

This requirement can be formalized as follows. Consider an assignment to
(r, lI , lF ) satisfying the constraints CL. We call an edge r ∈ R active if r(r) > 0,
and a shared state active if at least one of its adjacent edges is active.

Observation 1. Let Gr

∣
∣
S

be the directed multi-graph with node set S and edge
multi-set [r ∈ R : r(r) > 0]

∣
∣
S
. That is, Gr

∣
∣
S

is defined over the active edges in
the multiplicity given by r, projected to S. An edge sequence p

1. uses exactly the edges in the multiplicity given by r, and
2. has consecutive edges that synchronize on the shared state,

exactly if p is an Euler path in Gr

∣
∣
S
.

This observation is easily seen to hold: the Euler criterion guarantees that exactly
all edges in Gr

∣
∣
S

(= the active edges, in the given multiplicity) are used. The
“pathness” in the S-projection guarantees the synchronization condition.

We are thus looking for an Euler path in Gr

∣
∣
S
. To formalize its existence, we

use the following standard adjacency notions from graph theory:

in(s) = {r ∈ R | r ends in shared state s}, adj (s) = in(s) ∪ out(s),
out(s) = {r ∈ R | r starts in shared state s}.



Unbounded-Thread Program Verification using Thread-State Equations 521

Note that edges that leave the shared state invariant (denoting thread-internal
transitions) are contained in both the in and out sets.

The existence of an Euler path from sI to sF in Gr

∣
∣
S

is known to be equiv-
alent to the conjunction of the following two conditions (see, e.g., [8]):

Flow: each shared state except sI and sF is entered and exited the same number
of times (along with some special conditions on sI and sF ),

Connectivity: the undirected subgraph of Gr

∣
∣
S

induced by the active shared
states is connected (has a path between any two nodes).

We now describe how we formalize these conditions as symbolic constraints.

Flow Condition. We write shared state s’s flow constraints as

flow(s) ::
∑

r∈in(s)

r(r) −
∑

r∈out(s)

r(r) = N (3)

where N is defined depending on the relationship between s, sI , and sF :

N =

⎧
⎨

⎩

0 if s /∈ {sI , sF } or s = sI = sF
−1 if s = sI �= sF
+1 if s = sF �= sI

(4)

Our overall flow condition enforces flow constraints (3) for all shared states:
CF =

∧
s∈S flow(s).

Connectivity Condition. For an Euler path to exist in Gr

∣
∣
S
, the undirected

graph induced by its active shared state nodes must be connected. This is equiv-
alent to the existence of a simple undirected path between the initial shared state
sI and s, for each shared state s. To this end we introduce, for each s ∈ S,

– a vector es of |R| integer variables. These variables, later constrained to be in
{0, 1}, encode, in unary, the set of undirected edges of Gr

∣
∣
S

participating in
the simple path between sI and s.

– a predicate for the existence of such a path to s:

p(s) ::
∑

r∈adj (sI)
es(r) = 1 ∧

∑
r∈adj (s) es(r) = 1

∧ ∀s′ ∈ S \ {sI , s}
∑

r∈adj (s′) es(r) ∈ {0, 2}
(5)

The first two sums ensure that the initial (sI) and target (s) shared states of
the simple path have exactly one adjacent transition (and thus degree 1). The
last two ensure that each other shared state is either part of the simple path
(and has degree 2) or it is not (and has degree 0).

– a predicate characterizing active shared states: act(s) ::
∑

r∈adj (s) r(r) > 0.
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We now formulate the following system of connectivity constraints CC :

CC =
∧

⎧
⎪⎪⎨

⎪⎪⎩

∧
s∈S

∧
r∈R es(r) ∈ {0, 1}∧

r∈R (r(r) = 0 =⇒
∧

s∈S es(r) = 0)∧
s∈S\{sI ,sF } act(s) =⇒ p(s)

sI �= sF ∧ act(sF ) =⇒ p(sF )

(6)

These constraints state that the es are bitvectors (used to encode the edge set of
Gr

∣
∣
S

in unary); that inactive edges are excluded from the connected subgraph;
and that each active shared state except sI and sF is connected by a simple path
to the initial shared state; the last line requires the same of sF unless sI = sF .

Just like CL, constraints CF and CC are expressible in the decidable theory
of integer linear arithmetic (ILA). Formulas CL and CF require a number of
variables linear in the size of the input TTS, namely |R|+2|L|, while CC requires
a quadratic number of variables, namely |S|×|R|. This larger number of variables
has consequences for deciding the CC constraints; a fact that is taken into account
by the coverability algorithm proposed in Sect. 4.1.

We finally remark that satisfiability of all conditions together, i.e. CL∧CF∧CC ,
does not guarantee that the edges given by r can be sequenced to a proper path
through P∞. Figure 2 shows a TTS and a satisfying assignment to (r, lI , lF ) that
suggests to form a path consisting of exactly one occurrence of each edge in the
TTS. The S-projection of these edges is connected. However, it is easy to see
that no permutation of the three edges constitutes a valid firing sequence.

Fig. 2. A TTS (left) with sI = 0, LI = {0}, and vF = (0|1), an assignment satisfying
CL ∧ CF ∧ CC (middle), and its S-projection Gr

∣
∣
S

(right)

3.3 Thread-State Equations by Example

Fig. 3. A TTS

We use the TTS of Fig. 3 to showcase how our approach
attempts to symbolically solve the coverability problem, by
reducing it to a conjunction of integer linear constraints.
We consider the case where sI = 0, LI = {0} and therefore
the initial state of P∞ is of the form (0|0,...,0). We would
like to confirm safety with respect to the “bad” final thread
state tF = (1,1). It is not coverable, i.e. there exists no
state reachable from any initial state that covers the final
state vF = (1|1).
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We start by formulating the CL constraints, described in Eq. (2). The first
equation on the left column of Fig. 4 is the final state condition for local state 0.
No edges enter local state 0 but two edges exit it: r0 and r2; hence counters r(0)
and r(2) are subtracted from lI(0) to yield lF (0). (Recall that spawn edges leave
the active thread’s local state intact; hence r1 does not affect lF (0).) We derive
the final state constraints for the remaining local states similarly; for these the
entries of lI are 0 by the initial state condition of (2). The coverability condition
of (2) for final state vF = (1 | 1) translates into lF (1) ≥ 1.

Fig. 4. Thread-state equations for the TTS of Fig. 3. Notation lF (i) stands for the
counter variable for local state li ∈ {0, 1, 2} ; r(i) for the counter variable for edge ri.
The left column shows the local state constraints CL, the right column the synchro-
nization constraints CF and the inactive edge condition for r1; the last row shows the
path predicate p(2).

Next we show in Fig. 4 (right) the flow constraints as defined by in (3). The
first equation deals with shared state 0, which has only one adjacent transi-
tion: r0. Since it exists 0 and 0 is initial, we obtain −r(0) = −1. The next equa-
tion deals with shared state 1, which has two adjacent transitions: r0 (entering)
and r1 (exiting); since 1 is final, we obtain r(0) − r(1) = 1. Regarding shared
state 2, edge r2 leaves it invariant, while r1 enters it; we obtain r(1) = 0.

Finally we write the constraints for the active edge condition for transition r1,
and the predicate p(2). If r1 occurs 0 times then the values e1(1) and e2(1) are
set to 0 so that the undirected edges they encode cannot be part of simple
paths between the initial shared state and shared states 1 and 2 respectively.
p(2) checks for existence of a simple, undirected path between shared states 0
(initial) and 2. The values encoding their adjacent edges, e2(0) and e2(1), are
set to 1 so that shared states 0 and 2 serve as source and target of the path. For
shared state 1, the sum of their adjacent edges is set to either 0 or 2 to allow it
to either be part of the simple path or not.

The above TSE are unsatisfiable, confirming the uncoverability of tF . The CF

constraints enforce that r(1) is 0, implying that e2(1) is 0, which prevents a path
between shared states 0 and 2. It turns out that without the connectivity condi-
tion, the TSE permit the spurious two-thread solution r(2) = 1, r(0) = 1: firing
these edges in some order would cover local state 1 (local-state constraints), and
the flow constraints are satisfied as well; note that edge r2, once projected to S,
is a self-loop and thus irrelevant for Eq. (3). The two edges do not, however, syn-
chronize on the shared state, no matter which order they fire (the S-projection
permits no Euler path). This failure is caught by Eq. (6).
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4 Coverability Analysis via Thread-State Equations

We are now ready to incorporate our thread-state equations into an algorithm
for establishing system safety. We also present a simple refinement scheme that,
very often in practice, enables our algorithm to prove unsafety.

4.1 Coverability via TSE: The Algorithm

Overview. Our algorithm employs the local-state, flow, and connectivity con-
straints given by CL, CF , and CC , respectively. Constraints CC , formulating the
(non-trivial) connectedness condition for graph Gr

∣
∣
S
, use a number of variables

quadratic in the size |S|+ |L|+ |R| of the TTS (see Sect. 3.2). As we have deter-
mined empirically, they tend to be more expensive to check for satisfiability than
CL and CF . Our algorithm is therefore composed of two sub-processes, as fol-
lows. Process A implements the main algorithm and is described in detail below.
Process B runs in parallel with A and attempts to prove safety using the full set
of constraints ψ = CL ∧CF ∧CC , including CC . If it proves ψ unsatisfiable, it kills
A and returns “uncoverable” as the overall answer. If ψ is satisfiable, or B runs
out of memory, it exits without returning an answer, and process A continues
alone.

The composition of processes A and B is shown in Algorithm 1, which
attempts to decide the reachability, in P∞, of a global state covering vF . We
describe in the following the implementation of process A, which uses the (more
lightweight) counting and flow constraints to prove safety, and a witness gener-
ation scheme to prove unsafety. Process A begins by building the thread-state
equations ϕ = CL ∧ CF for the given P, and passing it to a model-building SMT
solver capable of deciding integer linear arithmetic formulas (Line A1). If the
solver decides ϕ is unsatisfiable, the algorithm returns “uncoverable”.

Otherwise let m be a model, i.e. an assignment to (r, lI , lF ) (Line A2). From
these assignments we can extract the number nm of threads that exist at the
beginning of the path to be built as is the sum of all lI variables, and the
number sm of threads spawned along the path as the sum of all r variables that
correspond to spawn edges (Lines A3 and A4).

Process A now needs to check whether the assignment obtained in m is
spurious, or whether it can be turned into a proper witness path in P∞. To do
this efficiently, we generalize this task and ask whether vF is coverable along
any path, but given limited resources, namely nm initial threads and at most
sm spawns. The key is that this is a finite-state search problem. We have built
our own, reasonably efficient and complete, counterexample-producing explorer
for this purpose; it is invoked in Line A5. If this search is successful, we have a
solution to the infinite-state search problem as well: we return the witness path
generated by Fss(P, nm, sm) as the answer produced by Algorithm 1.

If the finite-state search is unsuccessful, it shows that, if a state covering
vF is reachable, then only along a path that starts with more than nm initial
threads (“n > nm”) or spawns more than sm threads along the way (“s > sm”).
This condition is enforced in Line A7, thus strengthening ϕ. In contrast to Lines
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Algorithm 1. Coverability(P, sI , LI , vF ).
The return statements kill off the respective other process before returning
Input: TTS P; initial shared state sI ; initial local states set LI ; final state vF
Output: “uncoverable”, or “coverable” + witness path

Process A

1: ϕ := CL ∧ CF

2: while ∃m : m |= ϕ
3: nm :=

∑
l∈L lI(l)(m)

4: sm :=
∑

r∈� r(r)(m)
5: if Fss(P, nm, sm) = “coverable” + witness p
6: return “coverable” + p
7: ϕ := ϕ ∧ (n > nm ∨ s > sm)
8: return “uncoverable”

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Process B

1: ψ := CL ∧ CF ∧ CC

2: if ψ is unsat
3: return “uncoverable”

A3 and A4, the strengthening is expressed symbolically over the variables in lI
and r. More precisely, n > nm abbreviates the formula

lI(0) + . . . + lI(|L| − 1) > nm ,

where the lI(i) are variables, and nm is the constant computed in Line A3. The
formula abbreviated by s > sm is built similarly; here the sum expression for s
is formed over the variables in r that correspond to spawn edges.

Given the strengthening to ϕ computed in Line A7, process A returns to the
beginning of the loop and checks ϕ for satisfiability.

Finite-State Search. A breadth-first style algorithm for routine Fss is shown on

Algorithm 2. Fss(P, n, s)
1: W := In ; E := In
2: while ∃w ∈ W
3: W := W \ {w}
4: for each w′ �∈ E: w �( �→) w′

∨ (w �(�) w′ ∧ w.s > 0)
5: if w′ 	 vF then
6: return “coverable”
7: if w �(�) w′ then
8: w′.s--
9: W := W ∪ {w′}; E := E ∪ {w}

10: return “uncoverable”

the right. It maintains a worklist W and
an explored set E, both initialized to
the of initial states In, which covers all
combinations of initial threads with size
n. Each state w maintains a counter s to
record the remaining number of spawns
that can be fired from w; for w ∈ I,
w.s = s. In each step, Fss removes a
state w from W and expands it to w′

if w.s allows so. It returns coverable if
w′ � vF ; otherwise steps forward. w′

decreases the value of s inherited from
w if the transition is due to a spawn.

4.2 Coverability via TSE: Analysis

We first prove the soundness (partial correctness) of Algorithm1, and then dis-
cuss its termination. We assume that Lines A2 and B2 use a sound, complete,
and model-building ILA solver; we use Z3 [20] in our experiments.
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Partial Correctness. We begin our analysis with the following property.

Lemma 2. If vF is coverable in P∞, then ϕ built in Lines A1 and A7 and ψ
built in Line B1 are satisfiable.

Theorem 3 (Soundness). If Algorithm1 returns “coverable”, vF is coverable
in P∞. If Algorithm1 returns “uncoverable”, vF is uncoverable in P∞.

Proof. If Algorithm 1 returns “coverable”, vF is coverable, as procedure Fss
running on a finite state space is sound and complete. If Algorithm1 returns
“uncoverable”, triggered by the unsatisfiability of ϕ in Line A2 or ψ in Line B2,
then vF is uncoverable in P∞ by Lemma 2. ��

Termination. In general, Algorithm1 is not guaranteed to terminate: neither of
the two processes A and B may return. Two different scenarios can lead to non-
termination. The first is that despite an uncoverable final state, A keeps finding
spurious assignments, and B does the same or times out. Consider again the
scenario and the assignment (r, lI , lF ) shown in Fig. 2. As discussed in Sect. 3.2,
this assignment is spurious, as will be confirmed by the invocation of Fss(P, 1, 0),
which fails to reach a state covering vF . ϕ is strengthened by lI(0) > 1. The result
is again satisfiable, this time with a model that sets all of r(0), r(1), r(2) and
lF (1) to 2. We see that, for any nm, there exists a model of ϕ satisfying r(i) = nm

for i ∈ {0 . . . 2}, lI(0) = nm, lF (1) = nm, which never translates to a genuine
path in P∞. Therefore Algorithm 1 will not terminate.

The other non-termination scenario is that of a coverable final state that is
overlooked as the search diverges in the wrong direction. The problem is that
increments applied to the initial thread count n and the spawn count s by the
solver may not be fair : Line A7 only requires one of them to go up. As a special
case, if the TTS has no spawn transitions (�= ∅), we can tighten Line A7 to
ϕ := ϕ ∧ n > nm, in which case the algorithm is (in principle) complete for
unsafe instances.

5 Empirical Evaluation

The technique presented in this paper is implemented in a coverability checker
named Tse (for “Thread-State Equation”). Tse is written in C++ and uses Z3
(v4.3.1) as the back-end ILA solver. It takes as input coverability problems for
TTS. We used a benchmark suite of concurrent Boolean programs to evaluate
Tse. We ran Tse on Boolean programs in order to compare with the following
state-of-the-art checkers1:

Petrinizer: An SMT-based coverability checker described in [6] (v1.0)
Bfc: A coverability checker with forward oracle presented in [15] (v2.0)
Bfc-Km: A generalized Karp-Miller procedure presented in [15] (v1.0)
IIC: Incremental, inductive coverability algorithm [17]
Mist-Ar: An abstraction refinement method presented in [10] (v1.1)
Mist-Eec: Forward analysis with enumerative refinement [11] (v1.1)
1 Available at www.cprover.org/bfc/; github.com/pierreganty/mist; and http://www.

mpi-sws.org/∼fniksic/cav2014/repository.tgz.

www.cprover.org/bfc/
http://www.github.com/pierreganty/mist
http://www.mpi-sws.org/~fniksic/cav2014/repository.tgz
http://www.mpi-sws.org/~fniksic/cav2014/repository.tgz
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Benchmarks. Our benchmark set contains 339 concurrent Boolean programs
BP min. max.
|S| 5 32769
|L| 17 55
|R| 18 584384

generated from concurrent C programs (taken from [15,19]),
135 of which are safe. For each example, we consider a reach-
ability property that is specified via an assertion. The table
on the right shows the size ranges of the BPs.

To apply Tse to C programs, we use SatAbs to transform those pro-
grams to TTS (option --build-tts) via intermediate Boolean programs [5].
When SatAbs requires several CEGAR iterations over the C programs until the
abstraction permits a decision, the same C source program gives rise to several
Boolean programs and TTSs.

Experimental Setup. The main objective of our experiments with BPs is
to measure the competitiveness of Tse against state-of-the-art infinite-thread
BP checkers; this is mostly variants of the Bfc tool. We also investigated how
Tse fares against tools targeting Petri nets, of which there are many; most
interesting for us is the Petrinizer tool, as it implements an idea similar to
the one used in (and inspirational for) Tse. Petri net tools can be used for
BP verification by converting those programs to Petri nets. We have exper-
imented with two translators: one used in [6,15]2, and one by Pierre Ganty
et al. github.com/pevalme/bfc fork, which tries to alleviate the blowup incurred
by shared state conversion. As different tools accept different translations, we
used both translators in our experiments. The running times we report in the
results ignore translation time, which ranges from almost nothing up to dozens
of seconds.

All experiments are performed on a 2.3 GHz Intel Xeon machine with 64 GB
memory, running 64-bit Linux. The timeout is set to 30 min and the memory
limit to 4 GB. All benchmarks and our tool are available online [18].

Precision. Table 1 compares the results of precision on BPs for all tools. Tse
successfully decides all BPs except 5 unsafe instances, where the SMT solver runs
out of memory. Both Bfc and Bfc-Km prove 4 out of these 5 instances. As for
the safe instances, it was interesting to observe that the connectivity constraints
CC were never required to conclude unsatisfiability, i.e. the constraints CL and
CF were already inconsistent. This means that process B in Algorithm 1 never
ran to completion.

Table 1. Precision results for all tools. Note that Petrinizer decides only safe bench-
marks

2 www.cprover.org/bfc/.

http://www.github.com/pevalme/bfc_fork
www.cprover.org/bfc/
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Fig. 5. Performance comparison for Boolean Programs: Tse vs. Bfc (left) and vs.
Petrinizer (right). Each dot represents execution time for one program (TO = timeout)
(Color figure online)

Fig. 6. Comparison on Boolean Programs: cactus plot comparing Tse with prior cov-
erability tools. An entry of the form (k, t) for some curve shows the time t it took to
solve the k easiest — for the method associate with that curve — benchmarks (order
varies across methods). ∗ indicates that inputs to this tool are Petri nets from Pierre
Ganty’s translator. (Color figure online)

Efficiency. Figure 5 (left) plots the detailed comparison against Bfc (the most
efficient of the competing tools, according to [15]) over each benchmark. Tse
clearly beats Bfc on safe instances and remains competitive on unsafe ones. In
general, we observe that Bfc outperforms Tse on very small benchmarks which
are solved within one second, an effect that can be attributed to the overhead
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added by the solver. Figure 5 (right) plots the comparison with Petrinizer3 [6].
Since Petrinizer does not handle unsafe instances, we focus on safe ones. Tse is
invariably faster. Figure 6 is a cumulative plot showing the total time (log-scale)
taken to solve the k, for 1 ≤ k ≤ 339, easiest of our benchmark problems, for
all tools. The results demonstrate that in most cases Tse terminates within 5
seconds. Bfc is the most competitive among other tools.

Summary. We summarize the precision and efficiency results as follows. Given
that our tool is sound (it never gives an incorrect answer), and that it does give
an answer in the vast majority of the benchmarks we have used, it is prudent
to base the comparison on the efficiency results, even against exact tools. Here
we observe the strength of Tse especially as a safety prover, i.e. on uncoverable
instances. The aggressive search for counterexamples used in Bfc gives that tool
a nominal advantage for coverable instances, which is, however, hardly decisive
as the running times on those instances tend to be very small.

6 Related Work and Discussion

Groundbreaking results in infinite-state system analysis include the decidability
of coverability in vector addition systems (VAS) [16], and the work by German
and Sistla on modeling communicating finite-state threads as VAS [13]. Numer-
ous results have since improved on the original procedure in [16] in practice
[11,12,22,23]. Others extend it to more general computational models, includ-
ing well-structured [9] or well-quasi-ordered (wqo) transition systems [2,3].

Explicit-state techniques that combine forward and backward exploration
(IIC,Bfc) [15,17] or apply abstraction refinement (Mist-Eec,Mist-Ar) [10,11]
have been shown to efficiently decide the coverability problem for large instances,
like the ones we consider in our work.

Contrary to the above mentioned complete methods for coverability, [6] fol-
lows the direction of trading completeness for performance, by reducing the
coverability problem to linear constraint solving and discharging it to a SMT
solver, and serves as the inspiration of our work. The thread-state equations we
present can be viewed as an instantiation of the marking equation – a classical
Petri net technique – in the domain of TTS. In addition to TSE, we extend
the approach of [6] by equipping our method with a refinement scheme and a
straightforward finite-state search in order to efficiently discover unsafe instances
and provide coverability witnesses.

Another incomplete symbolic approach for coverability analysis utilizing the
marking equation is presented in [24]. CEGAR is applied on top of the marking
equation and is used to guide the solution space of the integer linear constraints.
More complex strategies for guiding the solution space were recently introduced
in [14]. Such schemes differ from ours, as the solutions to TSE are used as the
starting point of the finite state space exploration. If the latter is unsuccessful,
TSE are strengthened to allow a simple but efficient refinement scheme.
3 Petrinizer offers four methods; we use the most powerful: refinement over integers.
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Conclusions. Our experimental results demonstrate the trade-off between com-
plete, explicit state exploration and incomplete, symbolic approaches. Verifying
safe instances often becomes infeasible when trying to retain completeness, but
is shown to be very efficient when posed as a constraint solving problem, as
also pointed out in [6]. Our approach aims at continuing this trend of devising
incomplete yet practical methods for problems of high computational cost [7],
by providing an algorithm that fills in the gap of verification of unsafe instances,
and efficiently solves the coverability problem in software verification for almost
all of our instances.
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Abstract. Separation logic is a widely adopted formalism to verify pro-
grams manipulating dynamic data structures. Entailment checking of
separation logic constitutes a crucial step for the verification of such
programs. In general this problem is undecidable, hence only incomplete
decision procedures are provided in most state-of-the-art tools. In this
paper, we define a linearly compositional fragment of separation logic
with inductive definitions, where traditional shape properties for linear
data structures, as well as data constraints, e.g., the sortedness prop-
erty and size constraints, can be specified in a unified framework. We
provide complete decision procedures for both the satisfiability and the
entailment problem, which are in NP and ΠP

3 respectively.

1 Introduction

Program verification requires reasoning about complex, unbounded size data
structures that may carry data ranging over infinite domains. Examples of such
data structures are multi-linked lists, nested lists, trees, etc. Programs manipu-
lating these data structures may modify their shape (due to dynamic creation
and destructive updates) as well as the data attached to their elements.

Separation Logic (SL) is a well-established approach for deductive verifica-
tion of programs that manipulate dynamic data structures [18,24]. Typically,
SL is used in combination with inductive definitions, which provide a natural
description of the data structures manipulated by a program.

In program verification, SL is normally used to express assertions about pro-
gram configurations, for example in the style of Hoare logic. Checking the validity
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of these assertions is naturally reduced to the entailment problem of the logic,
i.e., given two SL formulae ϕ and ψ, to check whether ϕ |= ψ holds.

Because of its importance, entailment checking has been explored extensively
(see, e.g., [1,9,16]). In general, it is an undecidable problem, hence only incom-
plete decision procedures can be expected. This is especially the case when both
shape properties and data (size) constraints are taken into consideration. Indeed,
various separation logic based tools, e.g., INFER [8], SLEEK/HIP [9], DRYAD
[19,23], and SPEN [13], only provide incomplete decision procedures.

Undoubtedly complete decision procedures are highly desirable: besides being
theoretically appealing, they also have practical importance, for instance in tasks
such as debugging of specification, counterexample generation, etc. The chal-
lenge is thus to find fragments of SL which are sufficiently expressive for writ-
ing program assertions while still feature a complete decision procedure for the
entailment checking. This would enable efficient automated validation of the
verification conditions.

Contributions. In this paper, we define a linearly compositional fragment of SL
with inductive definitions (abbreviated as SLIDLC), where both shape proper-
ties, e.g., singly and doubly linked lists, linked lists with tail pointers, and data
constraints, e.g., sortedness property and size constraints, can be expressed. The
basic idea of SLIDLC is to focus on the compositional predicates introduced in
[14], while restricting to linear shapes (e.g., singly and doubly linked lists, or
linked lists with tail pointers), and data constraints in the form of difference
bound relations (which are sufficient to express sortedness properties and size
constraints). Our main contribution is to provide complete decision procedures
for the satisfiability and entailment problem of SLIDLC.

For the satisfiability problem, from each SLIDLC formula ϕ we define an
abstraction of ϕ, i.e., Abs(ϕ), where Boolean variables are introduced to encode
the spatial part of ϕ, together with quantifier free Presburger formulae to repre-
sent the transitive closure of the data constraint in the inductive definitions. The
satisfiability of ϕ is then reduced to the satisfiability ofAbs(ϕ), which can be solved
by the start-of-the-art SMT solvers (e.g., Z3 [25]), with an NP upper-bound.

For the entailment problem, from each SLIDLC formula ϕ we first construct a
graph representation Gϕ. We then demonstrate some nice properties of Gϕ, which
enable us to extend and adapt the concept of homomorphisms introduced in [11],
to obtain a decision procedure to perform entailment checking with a ΠP

3 upper-
bound. Compared to the logic in [11], the logic SLIDLC is different in the following
sense: (1) we adopt the classical semantics whereas [11] adopted the intuition-
istic semantics, which can be considered as a special case, and is arguably less
meaningful for program verification. (2) the logic in [11] only addresses singly
linked list segments, the logic SLIDLC is much more expressive: SLIDLC allows
specifying data constraints, as well as defining more shapes, e.g., doubly linked
lists, linked lists with tail pointers; in addition, we allow different predicates to
occur in ϕ and ψ for the entailment problem ϕ |= ψ. Because of these differ-
ences, we are not able to repeat the approach in [11] to transform the graphs into
normal forms and then check graph homomorphism between the normal forms.
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Instead our decision procedure introduces some new concepts e.g. allocating
plans for ϕ and is considerably more involved than that in [11].

Related Work. We first discuss work on separation logic with inductive definitions
where both shape properties and data constraints can be expressed. Various frag-
ments have been explored and we focus on decision procedures for the entailment
problem.

The most relevant work is [3], where data constraints, specified by universal
quantifiers over index variables, were added to a fragment of separation logic
with the lseg predicate (where lseg denotes list segments). Compared with the
work in [3]: For the shape constraints, the logic there focused on singly linked
lists, while in SLIDLC, various linear data structures can be specified. For the
data constraints, the logic there can specify set and multiset constraints, while
SLIDLC does not. On the other hand, when restricted to arithmetic constraints
over integer variables, the decision procedure in [3] is incomplete for fragments
that can express list segments where the data values are consecutive, which can
be easily expressed in SLIDLC (cf. plseg predicate in Example 1).

The tool SLEEK/HIP [9] provides a decision procedure which is incomplete in
general and relies on the invariants of the inductive definitions. These invariants
are essentially the transitive closures of the data constraints in the inductive
definitions, and are supposed to be provided by the user. In comparison, we focus
on a less expressive logic SLIDLC, and our decision procedure can automatically
compute the precise invariants of the inductive definitions.

The tool GRASSHOPPER [20–22] encoded separation logic with inductive
definitions into a fragment of first-order logic with reachability predicates, whose
satisfiability problem was shown in NP. The logic considered there includes both
shape and data constraints and the decision procedure is complete. However the
logic is unable to encode the size or multiset constraints. In contrast, our approach
can fully handle the size constraints, and the multiset constraints on condition
that their transitive closure can be computed (or provided as an oracle).

The tool DRYAD [19,23] reduces to the satisfiability problem in the theory of
uninterpreted functions, which is sound, but incomplete. In addition, the decision
procedure is not fully automatic since it relies on the users to provide lemmas,
e.g., lseg(E1;E2) ∗ lseg(E2;E3) � lseg(E1;E3).

Other work includes the cyclic-proof approach [6,10] which is based on induc-
tion on the paths of proof trees. The approach can deal with data constraints
but the decision procedures there are incomplete. The work [14] considered the
automated lemma generation, where the concept of compositional predicates was
introduced. However, the decision procedure provided there is incomplete.

There have also been much work on the decision procedures for the fragments
of SL with inductive definitions that contain no data constraints. To cite a few,
the work [2,15] focused on the symbolic heap fragments where the shape con-
straints for list segments and binary trees can be specified and complete proof
systems were given, the tool SLIDE [16,17] considered separation logic with gen-
eral inductive definitions and reduced the entailment problem to the language
inclusion problem of tree automata, tool SPEN [13] provided an incomplete
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decision procedure for a compositional fragment of separation logic with induc-
tive definitions, and the paper [7] designed a complete decision procedure for the
satisfiability problem of separation logic with general inductive definitions.

There are also other works on separation logic. The work [4] considered first-
order separation logic over linked lists extended with length constraints where
the decidability frontier was identified. However, neither data structures other
than singly linked lists nor other forms of data constraints (e.g. sortedness)
were addressed. The work [5,12] considered the fragments of first-order separa-
tion logic (without inductive definitions). The authors identified the decidability
frontier and resolved some long-standing expressibility issues.

2 Linearly Compositional Separation Logic
with Inductive Definitions

In this section, we introduce the linearly compositional fragment of separation
logic with inductive definitions, denoted by SLIDLC[P], where P is a finite set
of inductive predicates. In SLIDLC[P], both shape properties (e.g. doubly linked
lists) and data constraints (e.g. sortedness and size constraints) can be specified.

We consider two data types, i.e., the location type L and the integer type Z.
As a convention, l, l′, · · · P L denote locations and n, n′, · · · P Z denote integers.
Accordingly, variables in SLIDLC[P] comprise location variables of the location
type and data variables of the integer type. Namely, we assume a set of location
variables LVars ranged over by uppercase letters E,F,X, Y, · · · and a set of data
variables DVars ranged over by lowercase letters x, y, · · · . Note that in literature
sometimes locations are treated simply as a subset of integers, which is not
adopted here for the sake of clarity. We consider two kinds of fields, i.e., location
fields from F and data fields from D. Each field f P F (resp. d P D) is associated
with L (resp. Z).

SLIDLC[P] formulae may contain inductive predicates, each of which is of the
form P (E,α;F,β; ξ) and has an associated inductive definition. The parameters
of an inductive predicate are classified into three groups: source parameters α,
destination parameters β, and static parameters ξ. We require that the source
parameters α and the destination parameters β are matched in type, namely,
the two tuples have the same length � > 0 and for each i : 1 � i � �, αi and
βi have the same data type. Without loss of generality, it is assumed that the
first components of α and β are a location variable. In the sequel, for clarity, we
explicitly identify the first parameters of α and β, and write E,α and F,β.

SLIDLC[P] formulae comprise three types of formulae: pure formulae Π, data
formulae Δ, and spatial formulae Σ, which are defined by the following rules,

Π ::= E = F | E �= F | Π ^ Π (pure formulae)
Δ ::= true | x o c | x o y + c | Δ ^ Δ (data formulae)
Σ ::= emp | E �→ ρ | P (E,α;F,β; ξ) | Σ ∗ Σ (spatial formulae)
ρ ::= (f,X) | (d, x) | ρ, ρ
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where o P {=,�,�}, c is an integer constant, P P P, f P F , and d P D. For spa-
tial formulae Σ, formulae of the form emp, E �→ ρ, or P (E,α;F,β; ξ) are called
spatial atoms. In particular, formulae of the form E �→ ρ and P (E,α;F,β; ξ)
are called points-to atoms and predicate atoms respectively. Moreover, we call E
as the root of these points-to or predicate atoms.

We are now in a position to introduce the linearly compositional predicates,
which are the main focus of the current paper. A predicate P P P is linearly
compositional if the inductive definition of P is given by the following two rules,

– base rule R0 : P (E,α;F,β; ξ) ::=E = F ^ α = β ^ emp,
– inductive rule R1 : P (E,α;F,β; ξ) ::=∃X∃x . Δ ^ E �→ ρ ∗ P (Y,γ;F,β; ξ).

The left-hand (resp. right-hand) side of a rule is called the head (resp. body) of
the rule. We note that the body of R1 does not contain pure formulae.

In the sequel, we specify some constraints on the inductive rule R1 which
enable us to obtain complete decision procedures for the satisfiability and entail-
ment problem later.

The first constraint (C1) is from [14] which guarantees that P (E,α;F,β; ξ)
enjoys the composition lemma (cf. Proposition 1). This lemma is the basis of
our decision procedure for the entailment problem (cf. Sect. 4.2).

C1. None of the variables from F,β occur elsewhere in the body of R1, that is,
in Δ, or E �→ ρ.

The second (C2) and third (C3) constraint address the data constraint Δ
in the body of R1. Intuitively, the two constraints require that different data
parameters of P (E,α;F,β; ξ) do not interfere with each other and the value of
each data source parameter αi is determined either by ρ, or γi.
C2. Each conjunct of Δ is of the form αi o c, αi o ξj , or αi o γi+c for o P {=,�,�},
1 � i � |α| = |γ|, 1 � j � |ξ|, and c P Z.
C3. For each 1 � i � |α| such that αi is a data variable, either αi occurs in ρ,
or Δ contains αi = γi + c for some c P Z.

Furthermore, we have C4–C6, which are self-explained.
C4. Each variable occurs in P (Y,γ;F,β; ξ) (resp. ρ) at most once.
C5. All location variables from α ∪ ξ ∪X occur in ρ.
C6. Y P X and γ ⊆ {E} ∪X ∪ x .

Note that according to the constraint C6, none of the variables from α ∪ ξ
occur in γ. Moreover, from the constraint C5 and C6, we know that Y occurs
in ρ. By the semantics defined later, this would guarantee that in each model of
P (E,α;F,β; ξ), the sub-heap represented by P (E,α;F,β; ξ), seen as a directed
graph, is connected.

We remark that these constraints are technical, and we leave as future work
to make them as general as possible. However, in practice, inductive predicates
satisfying these constraints are sufficient to model linear data structures with
data and size constraints, cf. Example 1.

For a linearly compositional predicate P P P, let Flds(P ) (resp. LFlds(P ))
denote the set of fields (resp. location fields) occurring in the inductive rules
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of P . Moreover, define the principal location field of P , denoted by PLFld(P ),
as the location field f P LFlds(P ) such that (f, Y ) occurs in ρ. Note that the
principal location field is unique. For a spatial atom a, let Flds(a) denote the set
of fields that a refers to: if a = E �→ ρ, then Flds(a) is the set of fields occurring
in ρ; if a = P (−), then Flds(a) := Flds(P ).

We write SLIDLC[P] for the collection of separation logic formulae ϕ = Π ^
Δ ^ Σ satisfying the following constraints,

– linearly compositional predicates: all predicates from P are linearly com-
positional,

– domination of principal location field: for each pair of predicates P1, P2 P
P, if Flds(P1) = Flds(P2), then PLFld(P1) = PLFld(P2),

– uniqueness of predicates: there is P P P such that each predicate atom of
Σ is of the form P (−), and for each points-to atom occurring in Σ, the set of
fields of this atom is Flds(P ).

For an SLIDLC[P] formula ϕ, let Vars(ϕ) (resp. LVars(ϕ), resp. DVars(ϕ))
denote the set of (resp. location, resp. data) variables occurring in ϕ. Moreover,
we use ϕ[μ/α] to denote the simultaneous replacement of the variables αj by μj

in ϕ.
For the semantics of SLIDLC[P], each formula is interpreted on the states.

Formally, a state is a pair (s, h), where

– s is an assignment function which is a partial function from LVars ∪ DVars to
L ∪ Z such that dom(s) is finite and s respects the data type,

– h is a heap which is a partial function from L× (F ∪ D) to L ∪ D such that
• h respects the data type of fields, that is, for each l P L and f P F (resp.

l P L and d P D), if h(l, f) (resp. h(l, d)) is defined, then h(l, f) P L (resp.
h(l, d) P Z); and

• h is field-consistent, i.e. every location in h possess the same set of fields.

For a heap h, we use ldom(h) to denote the set of locations l P L such that
h(l, f) or h(l, d) is defined for some f P F and d P D. Moreover, we use Flds(h)
to denote the set of fields f P F or d P D such that h(l, f) or h(l, d) is defined
for some l P L.

Two heaps h1 and h2 are said to be field-compatible if Flds(h1) = Flds(h2).
We write h1#h2 if ldom(h1)∩ ldom(h2) = H. Moreover, we write h1 
h2 for the
disjoint union of two field-compatible fields h1 and h2 (this implies that h1#h2).

Let (s, h) be a state and ϕ be an SLIDLC[P] formula. The semantics of
SLIDLC[P] formulae is defined as follows,

– (s, h) � E = F (resp. (s, h) � E �= F ) if s(E) = s(F ) (resp. s(E) �= s(F )),
– (s, h) � Π1 ^ Π2 if (s, h) � Π1 and (s, h) � Π2,
– (s, h) � x o c (resp. (s, h) � x o y + c) if s(x) o c (resp. s(x) o s(y) + c),
– (s, h) � Δ1 ^ Δ2 if (s, h) � Δ1 and (s, h) � Δ2,
– (s, h) � emp if ldom(h) = H,
– (s, h) � E �→ ρ if ldom(h) = s(E), and for each (f,X) P ρ (resp. (d, x) P ρ),

h(s(E), f) = s(X) (resp. h(s(E), d) = s(x)),
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– (s, h) � P (E,α;F,β; ξ) if (s, h) P [[P (E,α;F,β; ξ)]],
– (s, h) � Σ1 ∗ Σ2 if there are h1, h2 such that h = h1 
 h2, (s, h1) � Σ1 and

(s, h2) � Σ2.

where the semantics of predicates [[P (E,α;F,β; ξ)]] is given by the least
fixed point of a monotone operator constructed from the body of rules for P in
a standard way as in [7].

Example 1. Below are a few examples of the data structures definable in
SLIDLC[P]: slseg for sorted list segments, dllseg for doubly linked list segments,
tlseg for list segments with tail pointers, plseg for list segments where the data
values are consecutive, and ldllseg for doubly list segments with lengths.

slseg(E, x;F, x′) ::= E = F ^ x = x′ ^ emp,
slseg(E, x;F, x′) ::= ∃X,x′′. x � x′′^

E �→ ((next,X), (data, x)) ∗ slseg(X,x′′;F, x′).
dllseg(E,P ;F,L) ::= E = F ^ P = L ^ emp,
dllseg(E,P ;F,L) ::= ∃X. E �→ ((next,X), (prev, P )) ∗ dllseg(X,E;F,L).
tlseg(E;F ;B) ::= E = F ^ emp,
tlseg(E;F ;B) ::= ∃X. E �→ ((next,X), (tail, B)) ∗ tlseg(X;F ;B).
plseg(E, x; F, x′) ::= E = F ^ x = x′ ^ emp,
plseg(E, x; F, x′) ::= ∃X, x′′. x′′ = x + 1^

E �→ ((next, X), (data, x)) ∗ plseg(X, x′′; F, x′).
ldllseg(E, P, x; F, L, x′) ::= E = F ^ P = L ^ x = x′ ^ emp,
ldllseg(E, P, x; F, L, x′) ::= ∃X, x′′. x = x′′ + 1 ^ E �→ ((next, X), (prev, P ))

∗ ldllseg(X, E, x′′; F, L, x′).

On the other hand, the predicate tlseg2 defined below is not linearly compo-
sitional, since F occurs twice in the body of the inductive rule.

tlseg2(E;F ) ::= E = F ^ emp,
tlseg2(E;F ) ::= ∃X. E �→ ((next,X), (tail, F )) ∗ tlseg2(X;F ).

For a formula ϕ, let [[ϕ]] denote the set of states (s, h) such that (s, h) � ϕ.
Let ϕ,ψ be SLIDLC[P] formulae, then define ϕ � ψ as [[ϕ]] ⊆ [[ψ]].

Proposition 1 [14]. For each linearly compositional predicate P P P, it holds
that P (E,α;F,β; ξ) ∗ P (F,β;G,γ; ξ) � P (E,α;G,γ; ξ).

We focus on the following two decision problems.

– Satisfiability: Given an SLIDLC[P] formula ϕ, decide whether [[ϕ]] is empty.
– Entailment: Given two SLIDLC[P] formulae ϕ,ψ such that Vars(ψ) ⊆ Vars(ϕ),

decide whether ϕ � ψ holds.

The rest of this paper is devoted to sound and complete decision procedures
for the satisfiability and entailment problem of SLIDLC[P].
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3 Satisfiability

To decide the satisfiability of a separation logic formula ϕ, in [13], a Boolean
abstraction BoolAbs(ϕ) of ϕ was constructed such that ϕ is satisfiable iff
BoolAbs(ϕ) is satisfiable. Our decision procedure for SLIDLC[P] follows this gen-
eral approach. However, SLIDLC[P] admits data constrains (viz. difference bound
constraints specified in the data formulae) which are considerably more involved.
The following example shows these data constraints are somehow intertwined
with the “shape” part of the logic and they should be taken into account simul-
taneously when the satisfiability is concerned.

Example 2. Suppose ϕ = E1 = E4^x1 > x2 +1^ ldllseg(E1, E3, x1;E2, E4, x2).
From the inductive definition of ldllseg and x1 > x2 + 1, we know that if ϕ is
satisfiable, then for any state (s, h) such that (s, h) � ϕ, it holds that |ldom(h)| �
2. On the other hand, in any heap (s, h) such that (s, h) � ldllseg(E1, E3, x1;
E2, E4, x2) and |ldom(h)| � 2, we know that both s(E1) and s(E4) are allocated
and s(E1) �= s(E4). This contradicts to the fact that E1 = E4 is a conjunct in
ϕ. Therefore, ϕ is unsatisfiable.

In the rest of this section, we will show how to extend the abstraction of
formulae in [13] to obtain an abstraction in the presence of data constraints.
In this case, the abstraction is not a Boolean formula, but a formula involving
Boolean variables, (in)equality constraints over location variables, and difference
bounded constraints over data variables. The satisfiability of these formulae can
be decided by off-the-shelf SMT solvers. We also remark that, compared to
the logic in [13], predicates in SLIDLC[P] may have more than one source or
destination parameter which gives rises to further technical difficulties.

Let ϕ = Π ^ Δ ^ Σ be an SLIDLC[P] formula. Suppose Σ = a1 ∗ · · · ∗ an,
where each ai is either a points-to atom or a predicate atom.

Assume ai = P (Z1,μ;Z2,ν;χ) where the inductive rule for P is

R1 : P (E,α;F,β; ξ) ::=∃X∃x . Δ′ ^ E �→ ρ ∗ P (Y,γ;F,β; ξ).

We extract the data constraint ΔP (α′,β′) out of R1. Formally, ΔP (α′,β′) :=
Δ′[β′/γ′], where α′ (resp. γ′, β′) is the projection of α (resp. γ, β) to data
variables. For instance, Δldllseg(x, x′) := (x = x′′ + 1)[x′/x′′] = (x = x′ + 1).
Note that ΔP (α′,β′) may contain data variables from ξ.

Furthermore, by Proposition 2, a Presburger formula ψP (k,α′,β′) where
k occurs as a free variable, can be constructed to describe the composition of
the relation corresponding to ΔP (α′,β′) for k times. In the running example,
ψldllseg(k, x, x′) := x = x′ + k.

Proposition 2. Suppose P (E,α;F,β; ξ) P P. Then a quantifier free Presburger
formula ψP (k,α′,β′) where k occurs as a free variable, can be constructed in lin-
ear time to define, for each k � 1, the composition of the relation corresponding
to ΔP (α′,β′) for k times.
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As the next step, we define two formulae Ufld1(ai) and Ufld�2(ai) obtained
by unfolding the rule R1 once and at least twice respectively. For each ai, we
introduce a fresh integer variable ki. Before the definition of the two formulae,
we introduce a notation first.

Definition 1 (idx(P,γ,E)). Let P P P and R1 be the inductive rule in the defin-
ition of P . If in the body of R1, E occurs in γ, then we use idx(P,γ,E) to denote
the unique index j such that γj = E (The uniqueness follows from C4).

We define Ufld1(ai) and Ufld�2(ai) by distinguishing the following two cases.

– If in the body of R1, E occurs in γ, then let

Ufld1(ai) :=
(E = βidx(P,γ,E) ^ ki = 1 ^ ψP (ki,α

′,β′))[Z1/E,μ/α, Z2/F,ν/β,χ/ξ],

and

Ufld�2(ai) :=
(E �= βidx(P,γ,E) ^ ki � 2 ^ ψP (ki,α

′,β′))[Z1/E,μ/α, Z2/F,ν/β,χ/ξ].

– Otherwise, let

Ufld1(ai) := (ki = 1 ^ ψP (ki,α
′,β′))[Z1/E,μ/α, Z2/F,ν/β,χ/ξ],

and

Ufld�2(ai) := (ki � 2 ^ ψP (ki,α
′,β′))[Z1/E,μ/α, Z2/F,ν/β,χ/ξ].

Example 3. Let ϕ be the formula in Example 2 and a1 be the (unique) spatial
atom in ϕ. Since the atom P (X,E, x′′;F,L, x′) occurs in body of the inductive
rule of ldllseg (where we have E = γ1), we deduce that Ufld1(a1) := E1 =
E4 ^ k1 = 1^ x1 = x2 + k1 and Ufld�2(a1) := E1 �= E4 ^ k1 � 2^ x1 = x2 + k1.

For each atom ai = P (Z1,μ;Z2,ν;χ) in Σ, we introduce a Boolean vari-
able [Z1, i]. Moreover, if in the body of the inductive rule of P , E occurs in
γ, then introduce a Boolean variable [νidx(P,γ,E) , i]. Let BVars(ϕ) denote the
set of introduced Boolean variables. We define the abstraction of ϕ to be
Abs(ϕ) ::=Π ^ Δ ^ φΣ ^ φ∗ over BVars(ϕ) ∪ {ki | 1 � i � n} ∪ Vars(ϕ), where
φΣ and φ∗ are defined as follows.

– φΣ =
∧

1�i�n

Abs(ai) is an abstraction of Σ where

• if ai = E �→ ρ, then Abs(ai) = [E, i],
• if ai = P (Z1,μ;Z2,ν;χ) and in the body of the inductive rule of P , E

occurs in γ, then

Abs(ai) = (¬[Z1, i] ^ ¬[νidx(P,γ,E) , i] ^ Z1 = Z2 ^ μ = ν ^ ki = 0)∨
([Z1, i] ^ [νidx(P,γ,E) , i] ^ Ufld1(P (Z1,μ;Z2,ν;χ)))∨
([Z1, i] ^ [νidx(P,γ,E) , i] ^ Ufld�2(P (Z1,μ;Z2,ν;χ))),
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• if ai = P (Z1,μ;Z2,ν;χ) and in the body of the inductive rule of P , E
does not occur in γ, then

Abs(ai) = (¬[Z1, i] ^ Z1 = Z2 ^ μ = ν ^ ki = 0)∨
([Z1, i] ^ Ufld1(P (Z1,μ;Z2,ν;χ)))∨
([Z1, i] ^ Ufld�2(P (Z1,μ;Z2,ν;χ))),

– φ∗ states the separation constraint of spatial atoms,

φ∗ =
∧

[Z1,i],[Z′
1,j]PBVars(ϕ),i �=j

(Z1 = Z ′
1 ^ [Z1, i]) → ¬[Z ′

1, j].

Example 4. Suppose ϕ is the formula in Example 3. Then

Abs(ϕ) = E1 = E4 ^ x1 > x2 + 1 ^
((E1 = E2 ^ E3 = E4 ^ x1 = x2 ^ k1 = 0) ∨
([E1, 1] ^ [E4, 1] ^ E1 = E4 ^ k1 = 1 ^ x1 = x2 + k1) ∨
([E1, 1] ^ [E4, 1] ^ E1 �= E4 ^ k1 � 2 ^ x1 = x2 + k1)).

It is easy to see that Abs(ϕ) is unsatisfiable.

Proposition 3. For each SLIDLC[P] formula ϕ, ϕ is satisfiable iff Abs(ϕ) is
satisfiable.

The satisfiability of Abs(ϕ) can be discharged by the state-of-the-art SMT
solvers, e.g., Z3. It is well known that the satisfiability of the quantifier-free
presburger arithmetic formulae can be decided in NP. Hence we have:

Theorem 1. The satisfiability problem of SLIDLC[P] is in NP.

Note that the problem whether the satisfiability problem of SLIDLC[P] is
NP-hard is open.

4 Entailment

In this section, we present a complete decision procedure for the entailment
problem ϕ � ψ, where ϕ,ψ are two SLIDLC[P] formulae. We assume, without
loss of generality, that Vars(ψ) ⊆ Vars(ϕ), both ϕ and ψ are satisfiable, and
Flds(ϕ) = Flds(ψ).

On a high level, the decision procedure is similar to that in [11]. Loosely
speaking, we construct graph representations Gϕ and Gψ of ϕ and ψ respectively
and reduce the entailment problem to (a variant of) the graph homomorphism
problem from Gψ to Gϕ. However, our decision procedure is considerably more
involved due to the additional expressibility of the logic and the non-intuitionistic
semantics.

Recall that, in the previous section, from an SLIDLC[P] formula ϕ one can
construct an abstraction Abs(ϕ). Let ∼ϕ denote the equivalence relation defined
over LVars(ϕ) as follows: For X,Y P LVars(ϕ), X ∼ϕ Y iff Abs(ϕ) � X = Y . For
X P LVars(ϕ), let [X]ϕ denote the equivalence class of X under ∼ϕ.
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4.1 Graph Representations of SLIDLC[P] Formulae

For a satisfiable SLIDLC[P] formula ϕ, we will construct a graph Gϕ from ϕ.
Without loss of generality, we assume that ϕ contains at least one points-to
atom or predicate atom.

Assume ϕ = Π ^ Δ ^ Σ with Σ = a1 ∗ . . . ∗ an (n � 1), and f0 denotes the
principal location field of ϕ. (Recall the “uniqueness of predicates” assumption
for SLIDLC[P] formulae in Sect. 2.)

We construct a directed multigraph (i.e., a directed graph with parallel arcs)
Gϕ = (Vϕ,Rϕ,Lϕ):

– Vϕ = {[E] | E P LVars(ϕ)}, where we use [E] as an abbreviation of [E]ϕ, that
is, the equivalence class of ∼ϕ containing E.

– Rϕ is the set of arcs and Lϕ is the arc-labeling function, defined as follows:
• for each pair of location variables (E,F ) such that Σ contains a points-to

atom ai = E �→ ρ and (f0, F ) occurs in ρ for f0 P L, there is an arc from
[E] to [F ] labeled by f0[ρ′], where ρ′ is obtained by removing (f0, F ) from
ρ — this arc e is said to be field-labeled and we write Lϕ(e) = f0[ρ′];

• for each pair of location variables (E,F ) such that Σ contains a predicate
atom ai = P (E,α;F,β; ξ) and Abs(ϕ) �� ¬[E, i], there is an arc from [E]
to [F ] labeled by P (α;β; ξ) — this arc e is said to be predicate-labeled
and we write Lϕ(e) = P (α;β; ξ).

From the construction, each field-labeled or predicate-labeled arc e corre-
sponds to an unique atom ai in Σ. Let i(e) denote the index i of the atom.

Example 5. Let

ϕ = ldllseg(E1, E
′
1, x1; E3, E

′
3, x3)

a1

∗ ldllseg(E2, E
′
2, x2; E4, E

′
4, x4)

a2

∗

ldllseg(E3, E
′
3, x3; E4, E

′
4, x4)

a3

∗ ldllseg(E4, E
′
4, x

′
4; E3, E

′
3, x

′
3)

a4

∗

ldllseg(E3, E
′
3, x3; E5, E

′
5, x5)

a5

∗ ldllseg(E5, E
′
5, x

′
5; E3, E

′
3, x

′
3)

a6

∗

ldllseg(E4, E
′
4, x5; E6, E

′
6, x6)

a7

.

The graph Gϕ is as illustrated in Fig. 1, where each equivalence class of ∼ϕ is a
singleton and Vϕ = {[E1], . . . , [E6], [E

′
1], . . . , [E

′
6]}. Note that there are no arcs between

the nodes [E′
1], . . . , [E

′
6].

We use standard graph-theoretic notions, for instance, paths, connected compo-
nents (CCs) and strongly connected components (SCCs). In particular, a path
in Gϕ is a (possibly empty) sequence of consecutive arcs in Gϕ. If there is a path
from [E] to [F ], then [F ] is said to be reachable from [E] and [E] is said to be
an ancestor of [F ]. For a node [E] and an arc e with source node [E′], e is said



A Complete Decision Procedure for Linearly Compositional Separation Logic 543

E1 E2

ldllseg(E1, x1;E3, x3)

ldllseg(E3, x3;E5, x5)

ldllseg(E5, x5;E3, x3)

ldllseg(E2, x2;E4, x4)

ldllseg(E4, x5;E6, x6)
ldllseg(E4, x4;E3, x3)

ldllseg(E3, x3;E4, x4)

E3 E4 E6E5 C2 C1

Fig. 1. The graph Gϕ

to be reachable from [E] if [E′] is reachable from [E]. A CC or SCC C of Gϕ is
said to be nontrivial if C contains at least one arc.

We shall reveal some structural properties of the graph Gϕ.

Proposition 4. The graph Gϕ satisfies the following properties:

1. If there is a field-labeled arc out of [E], then there are no predicate-labeled
arcs out of [E].

2. For each pair of distinct nodes [E] and [F ] in Gϕ, there is at most one simple
path from [E] to [F ] in Gϕ.

Proposition 5. Each nontrivial SCC S satisfies the following constraints.

– Each pair of different simple cycles in S share at most one node — The set
of shared nodes is called the set of cut nodes of S, denoted by Cut(S). Here by
“different”, we mean that the two sets of arcs in the two cycles are different.

– The collection of simple cycles in S is organised into a tree. More pre-
cisely, let {C1, . . . , Cn} be the set of all the simple cycles in S and TS =
({C1, . . . , Cn},Cut(S),R) be the undirected bipartite graph such that for each
i : 1 � i � n, {Ci, [E]} P R iff [E] P Cut(S) ∩ Ci. Then TS is a tree.

Example 6. The graph Gϕ in Fig. 1 has just one nontrivial SCC S comprising the
nodes [E3], [E4], [E5]. The graph TS = ({C1, C2}, {[E3]}, {{C1, [E3]}, {C2, [E3]}})
is a tree.

4.2 Entailment Checking by Graph Homomorphisms

As a starting point, we illustrate how a path in Gϕ is matchable to an arc in Gψ,
which is the basis of our decision procedure.

Definition 2. Given an arc e from [E]ψ to [F ]ψ with label P ′(α′;β′; ξ′) in Gψ,
a (possibly empty) path π = [E0]ϕ[E1]ϕ . . . [En]ϕ from [E]ϕ to [F ]ϕ in Gϕ is said
to be matchable to e wrt. Abs(ϕ) if (1) either π is empty and Abs(ϕ) |= E =
F ^ α′ = β′, (2) or π is nonempty and there are α′

0,α
′
1, . . . ,α

′
n such that

α′
0 = α′, α′

n = β′, and for each i : 1 � i � n, the arc from [Ei−1]ϕ to [Ei]ϕ in
π is
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– either a field-labeled arc with the label f0[ρ′] such that Abs(ϕ) ^ Ei−1 �→ ρ �
P ′(Ei−1,α

′
i−1;Ei,α

′
i; ξ

′), where ρ is obtained from ρ′ by adding (f0, Ei);
– or a predicate-labeled arc with the label P (α;β; ξ) such that

Abs(ϕ) ^ P (Ei−1,α;Ei,β; ξ) � P ′(Ei−1,α
′
i−1;Ei,α

′
i; ξ

′).

Note that in the above definition, we abuse the notation slightly, since Abs(ϕ)
may contain Boolean variables [E′, j], the integer variables kj , and disjunctions,
thus strictly speaking, Abs(ϕ)^Ei−1 �→ ρ and Abs(ϕ)^P (Ei−1,α;Ei,β; ξ) are
not SLIDLC[P] formulae.

Example 7. Let ϕ be the formula in Example 5 and ψ = dllseg(E1, E
′
1;E6, E

′
6) ∗

dllseg(E2, E
′
2;E4, E

′
4). Then the path [E1]ϕ[E3]ϕ[E4]ϕ[E6]ϕ in Gϕ is matchable

to the arc e from [E1]ψ to [E6]ψ with the label dllseg(E′
1;E

′
6) in Gψ. More

specifically, there are α′
0 = E′

1, α′
1 = E′

3, α′
2 = E′

4, and α′
3 = E′

6 such that

Abs(ϕ) ^ ldllseg(E1, E
′
1, x1;E3, E

′
3, x3) |= dllseg(E1, E

′
1;E3, E

′
3),

Abs(ϕ) ^ ldllseg(E3, E
′
3, x3;E4, E

′
4, x4) |= dllseg(E3, E

′
3;E4, E

′
4),

Abs(ϕ) ^ ldllseg(E4, E
′
4, x5;E6, E

′
6, x6) |= dllseg(E4, E

′
4;E6, E

′
6).

Proposition 6. Suppose ϕ is an SLIDLC[P] formula, a = E �→ ρ or a =
P (E,α;F,β; ξ) is a spatial atom in ϕ, and P ′(E,α′;F,β′; ξ′) is a predicate
atom (not necessarily in ϕ) such that Vars(P ′(E,α′;F,β′; ξ′)) ⊆ Vars(ϕ).
Then (1) the entailment problem Abs(ϕ) ^ a � P ′(E,α′;F,β′; ξ′) is in Δp

2;
and (2) if there exist α′,α′′ such that Abs(ϕ) ^ a � P ′(E,α′;F,β′; ξ′) and
Abs(ϕ) ^ a � P ′(E,α′′;F,β′; ξ′), then Abs(ϕ) |= α′ = α′′. Such an unique α′

can be computed effectively from Abs(ϕ), the atom a, P ′(E,−;F,β′; ξ′), and the
inductive definition of P and P ′.

The complexity upper bound Δp
2 in Proposition 6 follows from the fact that,

to solve Abs(ϕ) ^ a � P ′(E,α′;F,β′; ξ′), it is necessary to use an oracle to
decide the satisfiability of quantifier-free Presburger formulae, which is in NP .
The uniqueness of α′ in Proposition 6 is guaranteed by the constraints C2, C3,
and C5 in the inductive definition of predicates.

Proposition 6 shows that Definition 2 is effective, namely,

Proposition 7. Check whether a path π in Gϕ is matchable to a predicate-labeled
arc e in Gψ can be done in Δp

2.

We are ready to present the decision procedure. We will introduce a concept of
allocating plans AP (cf. Definition 5), which are the pairs (AbsAP [ϕ],GAP [ϕ]),
where AbsAP [ϕ] is a formula obtained from Abs(ϕ), and GAP [ϕ] is a simplifi-
cation of Gϕ. The entailment problem is reduced to checking the existence of
a homomorphism from (Abs(ψ),Gψ) to (AbsAP [ϕ],GAP [ϕ]), for each allocating
plan AP. For each CC C of Gϕ, CycC denotes the set of simple cycles in C and
NSccC denotes the set of nontrivial SCCs in C. For i P N, let [i] = {1, . . . , i}.
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Definition 3 (Allocating pseudo-plans). Let C1, . . . , Ck be an enumeration
of the nontrivial CCs of Gϕ, and for each i P [k], CycCi

= {Ci,1, . . . , Ci,li}
(where li � 0). Then an allocating pseudo-plan Ω for Gϕ is a function such
that Ω(i) P {0} ∪ [li] for each i P [k].

Intuitively, Ω(i) P [li] means that some arc in the simple cycle Ci,Ω(i) is
assigned to be an nonempty heap, and accordingly, Ω(i) = 0 means that all arcs
in nontrivial SCCs of Ci are assigned to be empty heaps (cf. Definition 4).

For each arc e with ai(e) = P (E,α;F,β; ξ), we use φe to denote [E, i(e)].

Definition 4 (Ω[Abs(ϕ)] and feasible allocating pseudo-plans). Let Ω
be an allocating pseudo-plan of Gϕ. We define Ω[Abs(ϕ)] := Abs(ϕ) ^ ∧

iP[k] ζi,
where for each i P [k], ζi :=

∨

ePCi,Ω(i)

φe if Ω(i) �= 0; and ζi :=
∧

SPNSccCi

∧

ePS
¬φe if

Ω(i) = 0. An allocating pseudo-plan Ω is feasible if Ω[Abs(ϕ)] is satisfiable.

For an allocating pseudo-plan Ω of Gϕ, we construct a graph Ω[Gϕ] =
(VΩ ,RΩ ,LΩ) from ϕ, similarly to Gϕ, with ∼ϕ replaced by ∼Ω (on LVars(ϕ))
defined as follows: E ∼Ω F iff Ω[Abs(ϕ)] |= E = F .

A directed graph G is said to be DAG-like (DAG: directed acyclic graph) if
for each CC C of G, either C is a DAG, or C contains exactly one simple cycle C
which is reachable from every node in C \ C.

Definition 5 (Allocating plans AP). Given a formula ϕ, an allocating plan
AP = (AbsAP [ϕ],GAP [ϕ]) of ϕ is obtained from Gϕ by a sequence of allocating
pseudo-plans Ω1, . . . , Ωn (n � 0) such that: (1) φ0 = Abs(ϕ), G0 = Gϕ; for each
i : 1 � i � n, (2) Ωi is a feasible allocating pseudo-plan of Gi−1, φi = Ωi[φi−1],
Gi = Ωi[Gi−1]; (3) AbsAP [ϕ] = φn, GAP [ϕ] = Gn, and GAP [ϕ] is DAG-like.

For an allocating plan AP of ϕ, we use ΣAP [ϕ] to denote the spatial formula
corresponding to GAP [ϕ]. In addition, let ϕAP = AbsAP [ϕ] ^ ΣAP [ϕ].

Example 8. Let ϕ be the formula in Example 5. The graph Gϕ contains exactly
one nontrivial connected component C1 (cf. Fig. 1). In addition, suppose Ω1 and
Ω2 are the allocating pseudo-plans such that Ω1(1) = 1 and Ω2(1) = 0. Then
(Ω1[Abs(ϕ)], Ω1[Gϕ]) and (Ω2[Abs(ϕ)], Ω2[Gϕ]) are illustrated in Fig. 2. Since
both Ω1[Gϕ] and Ω2[Gϕ] are DAG-like, we know that (Ω1[Abs(ϕ)], Ω1[Gϕ]) and
(Ω2[Abs(ϕ)], Ω2[Gϕ]) are both allocating plans.

Lemma 1. Let ϕ,ψ be two SLIDLC[P] formulae such that Vars(ψ) ⊆ Vars(ϕ).
Then ϕ |= ψ iff the following two conditions hold.

– Abs(ϕ) � ∃Z.Abs(ψ), where Z = Vars(Abs(ψ)) \ Var(ψ), i.e., the set of addi-
tional variables introduced when constructing Abs(ψ) from ψ.

– For each allocating plan AP of ϕ, ϕAP |= ψ.

By Lemma 1, the entailment problem ϕ |= ψ can be reduced to checking
ϕAP |= ψ for each allocating plan AP, which we now show that can be further
reduced to checking the existence of a (graph) homomorphism from (Abs(ψ),Gψ)
to (AbsAP [ϕ],GAP [ϕ]).
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E1 E2

ldllseg(E1, x1;E3, x3) ldllseg(E2, x2;E4, x4)

ldllseg(E4, x4;E3, x3)

ldllseg(E3, x3;E4, x4)

E3, E5 E4, E6

E1 E2

ldllseg(E1, x1;E3, x3)

ldllseg(E2, x2;E4, x4)

ldllseg(E4, x5;E6, x6)
E3, E4, E5 E6

C1

Ω1[Abs(ϕ)] = Abs(ϕ) ∧ ([E3, 3] ∨ [E4, 4])

Ω1[Gϕ] Ω2[Gϕ]

Ω2[Abs(ϕ)] = Abs(ϕ) ∧ ¬[E3, 3] ∧ ¬[E4, 4] ∧ ¬[E3, 5] ∧ ¬[E5, 6]

Fig. 2. (Ω1[Abs(ϕ)], Ω1[Gϕ]) and (Ω2[Abs(ϕ)], Ω2[Gϕ])

Definition 6 (Homomorphisms). Let AP be an allocating plan of ϕ, GAP [ϕ]
= (VAP ,RAP ,LAP), and Gψ = (Vψ,Rψ,Lψ). Then a homomorphism from
(Abs(ψ),Gψ) to (AbsAP [ϕ],GAP [ϕ]) is a pair of functions (θ, η) where θ is from
Vψ to VAP and η is from Rψ to the set of paths in GAP [ϕ] satisfying the following
constraints.

– Variable subsumption: For each node [E] P Vψ, [E] ⊆ θ([E]).
– Field-labeled arcs: For each field-labeled arc e from [E] to [F ] in Gψ, η(e)

is a field-labeled arc from θ([E]) to θ([F ]) in GAP [ϕ].
– Predicate-labeled arcs: For each predicate-labeled arc e from [E] to [F ] in

Gψ, both θ([E]) and θ([F ]) must be in some CC C, and the following conditions
are satisfied.
• If C is a DAG, then

∗ if θ([E]) �= θ([F ]), then η(e) is the unique simple path from θ([E]) to
θ([F ]) in GAP [ϕ],

∗ otherwise, η(e) is the empty path from θ([E]) to θ([F ]).
• Otherwise, let C be the unique simple cycle in C.

∗ If θ([E]) �= θ([F ]), moreover, the unique simple path from θ([E]) to
θ([F ]) in C is either node-disjoint from C, or contains at least two
nodes in C, then η(e) is the unique simple path from θ([E]) to θ([F ])
in C.

∗ If θ([E]) �= θ([F ]), moreover, the unique simple path from θ([E]) to
θ([F ]) in C contains exactly one node in C (i.e. θ([F ])), then η(e) is
either the unique simple path from θ([E]) to θ([F ]) or the composition
of the unique simple path from θ([E]) to θ([F ]) and the cycle C.

∗ If θ([E]) = θ([F ]) and θ([F ]) belongs to C, then η(e) is either the
empty path or the simple cycle C from θ([E]) to θ([F ]).

∗ If θ([E]) = θ([F ]) and θ([F ]) does not belong to C, then η(e) is the
empty path.

– Matching of paths to arcs: For each arc e in Gψ, η(e) is matchable to e
wrt. AbsAP [ϕ].

– Separation constraint: For each pair of distinct arcs e1, e2 in Gψ, η(e1) and
η(e2) are arc-disjoint.

– Coverage of allarcs in GAP [ϕ]: Each arc of GAP [ϕ] occurs in η(e) for some
arc e in Gψ.
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Lemma 2. Let ϕ,ψ be two formulae satisfying the premise of Lemma 1. Then
for each allocating plan AP of Gϕ, ϕAP |= ψ iff there is a homomorphism from
(Abs(ψ),Gψ) to (AbsAP [ϕ],GAP [ϕ]).

Theorem 2. The entailment problem of SLIDLC[P] formulae is in ΠP
3 .

Complexity Analysis: Deciding whether there exists a homomorphism from
(Abs(ψ),Gψ) to (AbsAP [ϕ],GAP [ϕ]) can be done in ΣP

2 , by Proposition 7 and
guessing a homomorphism (θ, η) in Definition 6. Furthermore, by Lemma 2, ϕ ��
ψ iff either Abs(ϕ) �= ∃Z .Abs(ψ) (cf. Lemma 1), or there is an allocating plan AP
such that there is no homomorphism from (Abs(ψ),Gψ) to (AbsAP [ϕ],GAP [ϕ]).
Hence, deciding ϕ �� ψ is in NPΠP

2 = ΣP
3 . We conclude that the entailment

problem is in ΠP
3 .

5 Conclusion

In this paper, we have defined SLIDLC[P], a linearly compositional fragment of
separation logic with inductive definitions, where both linear shapes, e.g., singly
or doubly linked lists, lists with tail pointers, and data constraints, e.g., sorted-
ness and size constraints, are expressible. We have provided complete decision
procedures for both the satisfiability and the entailment problem, with com-
plexity upper-bounds NP and ΠP

3 respectively. For the satisfiability problem, it
turned out that computing the transitive closure of data constraints is critical
to the completeness of the decision procedure. For the entailment checking, a
novel concept of allocating plans was introduced. Note that we made no efforts
to tighten the NP/ΠP

3 upper-bound or to provide lower-bounds, which might be
interesting subjects of further research. More importantly, we believe that the
approach introduced in this paper is amenable to implementations and can be
extended to handle non-linear shapes (e.g., nested lists, binary search trees) as
well as other kinds of data constraints (e.g., set or multiset constraints). These
are left as future work.
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Abstract. We present a technique to infer lower bounds on the worst-
case runtime complexity of integer programs. To this end, we construct
symbolic representations of program executions using a framework for
iterative, under-approximating program simplification. The core of this
simplification is a method for (under-approximating) program acceler-
ation based on recurrence solving and a variation of ranking functions.
Afterwards, we deduce asymptotic lower bounds from the resulting simpli-
fied programs. We implemented our technique in our tool LoAT and show
that it infers non-trivial lower bounds for a large number of examples.

1 Introduction

Recent advances in program analysis yield efficient methods to find upper bounds
on the complexity of sequential integer programs. Here, one usually considers
“worst-case complexity”, i.e., for any variable valuation, one analyzes the length
of the longest execution starting from that valuation. But in many cases, in addi-
tion to upper bounds, it is also important to find lower bounds for this notion of
complexity. Together with an analysis for upper bounds, this can be used to infer
tight complexity bounds. Lower bounds also have important applications in secu-
rity analysis, e.g., to detect possible denial-of-service or side-channel attacks, as
programs whose runtime depends on a secret parameter “leak” information about
that parameter. In general, concrete lower bounds that hold for arbitrary variable
valuations can hardly be expressed concisely. In contrast, asymptotic bounds are
easily understood by humans and witness possible attacks in a convenient way.

We first introduce our program model in Sect. 2. In Sect. 3, we show how to
use a variation of classical ranking functions which we call metering functions
to under-estimate the number of iterations of a simple loop (i.e., a single tran-
sition t looping on a location �). Then, we present a framework for repeated
program simplifications in Sect. 4. It simplifies full programs (with branching
and sequences of possibly nested loops) to programs with only simple loops.
Moreover, it eliminates simple loops by (under-)approximating their effect using
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a combination of metering functions and recurrence solving. In this way, pro-
grams are transformed to simplified programs without loops. In Sect. 5, we then
show how to extract asymptotic lower bounds and variables that influence the
runtime from simplified programs. Finally, we conclude with an experimental
evaluation of our implementation LoAT in Sect. 6. For all proofs, we refer to [16].

Related Work. While there are many techniques to infer upper bounds on the
worst-case complexity of integer programs (e.g., [1–4,8,9,14,19,26]), there is
little work on lower bounds. In [3], it is briefly mentioned that their technique
could also be adapted to infer lower instead of upper bounds for abstract cost
rules, i.e., integer procedures with (possibly multiple) outputs. However, this
only considers best-case lower bounds instead of worst-case lower bounds as in
our technique. Upper and lower bounds for cost relations are inferred in [1]. Cost
relations extend recurrence equations such that, e.g., non-determinism can be
modeled. However, this technique also considers best-case lower bounds only.

A method for best-case lower bounds for logic programs is presented in [11].
Moreover, we recently introduced a technique to infer worst-case lower bounds
for term rewrite systems (TRSs) [15]. However, TRSs differ fundamentally from
the programs considered here, since they do not allow integers and have no
notion of a “program start”. Thus, the technique of [15], based on synthesizing
families of reductions by automatic induction proofs, is very different to the
present paper.

To simplify programs, we use a variant of loop acceleration to summarize the
effect of applying a loop repeatedly. Acceleration is mostly used in over-approx-
imating settings (e.g., [13,17,21,24]), where handling non-determinism is chal-
lenging, as loop summaries have to cover all possible non-deterministic choices.
However, our technique is under-approximating, i.e., we can instantiate non-
deterministic values arbitrarily. In contrast to the under-approximating acceler-
ation technique in [22], instead of quantifier elimination we use an adaptation
of ranking functions to under-estimate the number of loop iterations symbolically.

2 Preliminaries

We consider sequential non-recursive imperative integer programs, allowing non-
linear arithmetic and non-determinism, whereas heap usage and concurrency
are not supported. While most existing abstractions that transform heap pro-
grams to integer programs are “over-approximations”, we would need an under-
approximating abstraction to ensure that the inference of worst-case lower
bounds is sound. As in most related work, we treat numbers as mathemati-
cal integers Z. However, the transformation from [12] can be used to handle
machine integers correctly by inserting explicit normalization steps at possible
overflows.
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A(V) is the set of arithmetic terms1 over the variables V and F(V) is the
set of conjunctions2 of (in)equations over A(V). So for x, y ∈ V, A(V) contains
terms like x · y + 2y and F(V) contains formulas such as x · y ≤ 2y ∧ y > 0.

We fix a finite set of program variables PV and represent integer programs
as directed graphs. Nodes are program locations L and edges are program tran-
sitions T where L contains a canonical start location �0. W.l.o.g., no transition
leads back to �0 and all transitions T are reachable from �0. To model non-
deterministic program data, we introduce pairwise disjoint finite sets of tem-
porary variables T V� with PV ∩ T V� = ∅ and define V� = PV ∪ T V� for all
locations � ∈ L.

Definition 1 (Programs). Configurations (�,v) consist of a location � ∈ L and
a valuation v : V� → Z. Val � = V� → Z is the set of all valuations for � ∈ L and
valuations are lifted to terms A(V�) and formulas F(V�) as usual. A transition
t = (�, γ, η, c, �′) can evaluate a configuration (�,v) if the guard γ ∈ F(V�) is
satisfied (i.e., v(γ) holds) to a new configuration (�′,v′). The update η : PV →
A(V�) maps any x ∈ PV to a term η(x) where v(η(x)) ∈ Z for all v ∈ Val �. It
determines v′ by setting v′(x) = v(η(x)) for x ∈ PV, while v′(x) for x ∈ T V�′ is
arbitrary. Such an evaluation step has cost k = v(c) for c ∈ A(V�) and is written
(�,v) →t,k (�′,v′). We use src(t) = �, guard(t) = γ, cost(t) = c, and dest(t) =
�′. We sometimes drop the indices t, k and write (�,v) →∗

k (�′,v′) if (�,v) →k1

· · · →km
(�′,v′) and

∑
1≤i≤m ki = k. A program is a set of transitions T .

Figure 1 shows an example, where the pseudo-code on the left corresponds
to the program on the right. Here, random(x, y) returns a random integer m
with x < m < y and we fix −ω < m < ω for all numbers m. The loop at
location �1 sets y to a value that is quadratic in x. Thus, the loop at �2 is
executed quadratically often where in each iteration, the inner loop at �3 may
also be repeated quadratically often. Thus, the length of the program’s worst-
case execution is a polynomial of degree 4 in x. Our technique can infer such
lower bounds automatically.

In the graph of Fig. 1, we write the costs of a transition in [ ] next to its
name and represent the updates by imperative commands. We use x to refer
to the value of the variable x before the update and x′ to refer to x’s value
after the update. Here, PV = {x, y, z, u}, T V�3 = {tv}, and T V� = ∅ for all
locations � �= �3. We have (�3,v) →t4 (�3,v′) for all valuations v where v(u) > 0,
v(tv) > 0, v′(u) = v(u) − v(tv), and v′(v) = v(v) for all v ∈ {x, y, z}.

Our goal is to find a lower bound on the worst-case runtime of a program
T . To this end, we define its derivation height [18] by a function dhT that
1 Our implementation only supports addition, subtraction, multiplication, division,

and exponentiation. Since we consider integer programs, we only allow programs
where all variable values are integers (so in contrast to x = 1

2
x, the assignment

x = 1
2
x + 1

2
x2 is permitted). While our program simplification technique preserves

this property, we do not allow division or exponentiation in the initial program to
ensure its validity.

2 Note that negations can be expressed by negating (in)equations directly, and dis-
junctions in programs can be expressed using multiple transitions.
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Fig. 1. Example integer program

operates on valuations v of the program variables (i.e., v is not defined for
temporary variables). The function dhT maps v to the maximum of the costs
of all evaluation sequences starting in configurations (�0,v�0) where v�0 is an
extension of v to V�0 . So in our example we have dhT (v) = 2 for all valuations
v where v(x) = 0, since then we can only apply the transitions t0 and t2 once.
For all valuations v with v(x) > 1, our method will detect that the worst-case
runtime of our program is at least 1

8v(x)4 + 1
4v(x)3 + 7

8v(x)2 + 7
4v(x). From this

concrete lower bound, our approach will infer that the asymptotic runtime of the
program is in Ω(x4). In particular, the runtime of the program depends on x.
Hence, if x is “secret”, then the program is vulnerable to side-channel attacks.

Definition 2 (Derivation Height). Let Val = PV → Z. The derivation
height dhT : Val → R≥0 ∪ {ω} of a program T is defined as dhT (v) = sup{k ∈
R | ∃v�0 ∈ Val �0 , � ∈ L,v� ∈ Val � . v�0 |PV = v ∧ (�0,v�0) →∗

k (�,v�)}.

Since →∗
k also permits evaluations with 0 steps, we always have dhT (v) ≥ 0.

Obviously, dhT is not computable in general, and thus our goal is to compute
a lower bound that is as precise as possible (i.e., a lower bound which is, e.g.,
unbounded,3 exponential, or a polynomial of a degree as high as possible).

3 Estimating the Number of Iterations of Simple Loops

We now show how to under-estimate the number of possible iterations of a simple
loop t = (�, γ, η, c, �). More precisely, we infer a term b ∈ A(V�) such that for
all v ∈ Val � with v |= γ, there is a v′ ∈ Val � with (�,v) →�v(b)�

t (�,v′). Here,
�k� = min{m ∈ N | m ≥ k} for all k ∈ R. Moreover, (�,v) →m

t (�,v′) means
that (�,v) = (�,v0) →t,k1 (�,v1) →t,k2 · · · →t,km

(�,vm) = (�,v′) for some

3 Programs with dhT (v) = ω result from non-termination or non-determinism. As an
example, consider the program x = random(0, ω); while x > 0 do x = x − 1 done.
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costs k1, . . . , km. We say that (�,v) →m
t (�,v′) preserves T V� iff v(tv) = vi(tv) =

v′(tv) for all tv ∈ T V� and all 0 ≤ i ≤ m. Accordingly, we lift the update η
to arbitrary arithmetic terms by leaving temporary variables unchanged (i.e., if
PV = {x1, . . . , xn} and b ∈ A(V�), then η(b) = b[x1/η(x1), . . . , xn/η(xn)], where
[x/a] denotes the substitution that replaces all occurrences of the variable x by a).

To find such estimations, we use an adaptation of ranking functions [2,
6,25] which we call metering functions. We say that a term b ∈ A(V�) is
a ranking function4 for t = (�, γ, η, c, �) iff the following conditions hold.

γ =⇒ b > 0 (1) γ =⇒ η(b) ≤ b − 1 (2)

So e.g., x is a ranking function for t1 in Fig. 1. If T V� = ∅, then for any valuation
v ∈ Val , v(b) over-estimates the number of repetitions of the loop t: (2) ensures
that v(b) decreases at least by 1 in each loop iteration, and (1) requires that v(b)
is positive whenever the loop can be executed. In contrast, metering functions
are under-estimations for the maximal number of repetitions of a simple loop.

Definition 3 (Metering Function). Let t = (�, γ, η, c, �) be a transition. We
call b ∈ A(V�) a metering function for t iff the following conditions hold:

¬γ =⇒ b ≤ 0 (3) γ =⇒ η(b) ≥ b − 1 (4)

Here, (4) ensures that v(b) decreases at most by 1 in each loop iteration, and
(3) requires that v(b) is non-positive if the loop cannot be executed. Thus, the
loop can be executed at least v(b) times (i.e., v(b) is an under-estimation).

For the transition t1 in the example of Fig. 1, x is also a valid metering
function. Condition (3) requires ¬x > 0 =⇒ x ≤ 0 and (4) requires x > 0 =⇒
x − 1 ≥ x − 1. While x is a metering and a ranking function, x

2 is a metering,
but not a ranking function for t1. Similarly, x2 is a ranking, but not a metering
function for t1. Theorem 4 states that a simple loop t with a metering function
b can be executed at least �v(b)� times when starting with the valuation v.

Theorem 4 (Metering Functions are Under-Estimations). Let b be a
metering function for t = (�, γ, η, c, �). Then b under-estimates t, i.e., for all v ∈
Val � with v |= γ there is an evaluation (�,v) →�v(b)�

t (�,v′) that preserves T V�.

Our implementation builds upon a well-known transformation based on
Farkas’ Lemma [6,25] to find linear metering functions. The basic idea is to
search for coefficients of a linear template polynomial b such that (3) and (4)
hold for all possible instantiations of the variables V�. In addition to (3) and (4),
we also require (1) to avoid trivial solutions like b = 0. Here, the coefficients of
b are existentially quantified, while the variables from V� are universally quan-
tified. As in [6,25], eliminating the universal quantifiers using Farkas’ Lemma
allows us to use standard SMT solvers to search for b’s coefficients efficiently.

When searching for a metering function for t = (�, γ, η, c, �), one can omit con-
straints from γ that are irrelevant for t’s termination. So if γ is ϕ∧ψ, ψ ∈ F(PV),
and γ =⇒ η(ψ), then it suffices to find a metering function b for t′ = (�, ϕ, η, c, �).
4 In the following, we often use arithmetic terms A(V�) to denote functions V� → R.
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The reason is that if v |= γ and (�,v) →t′ (�,v′), then v′ |= ψ (since v |= γ entails
v |= η(ψ)). Hence, if v |= γ then (�,v) →�v(b)�

t′ (�,v′) implies (�,v) →�v(b)�
t (�,v′),

i.e., b under-estimates t. So if t = (�, x < y ∧ 0 < y, x′ = x + 1, c, �), we can con-
sider t′ = (�, x < y, x′ = x+1, c, �) instead. While t only has complex metering
functions like min(y − x, y), t′ has the metering function y − x.

Example 5 (Unbounded Loops). Loops t = (�, γ, η, c, �) where the whole guard can
be omitted (since γ =⇒ η(γ)) do not terminate. Here, we also allow ω as under-
estimation. So for T = {(�0, true, id, 1, �), t} with t = (�, 0 < x, x′ = x+1, y, �)},
we can omit 0 < x since 0 < x =⇒ 0 < x + 1. Hence, ω under-estimates the
resulting loop (�, true, x′ = x + 1, y, �) and thus, ω also under-estimates t.

4 Simplifying Programs to Compute Lower Bounds

We now define processors mapping programs to simpler programs. Processors are
applied repeatedly to transform the program until extraction of a (concrete) lower
bound is straightforward. For this, processors should be sound, i.e., any lower-
bound for the derivation height of proc(T ) should also be a lower bound for T .

Definition 6 (Sound Processor). A mapping proc from programs to programs
is sound iff dhT (v) ≥ dhproc(T )(v) holds for all programs T and all v ∈ Val.

In Sect. 4.1, we show how to accelerate a simple loop t to a transition which
is equivalent to applying t multiple times (according to a metering function for
t). The resulting program can be simplified by chaining subsequent transitions
which may result in new simple loops, cf. Sect. 4.2. We describe a simplifica-
tion strategy which alternates these steps repeatedly. In this way, we eventually
obtain a simplified program without loops which directly gives rise to a concrete
lower bound.

4.1 Accelerating Simple Loops

Consider a simple loop t = (�, γ, η, c, �). For m ∈ N, let ηm denote m applications
of η. To accelerate t, we compute its iterated update and costs, i.e., a closed
form ηit of ηtv and an under-approximation cit ∈ A(V�) of

∑
0≤i<tv ηi(c) for a

fresh temporary variable tv . If b under-estimates t, then we add the transition
(�, γ ∧ 0 < tv < b + 1, ηit, cit, �) to the program. It summarizes tv iterations of
t, where tv is bounded by �b�. Here, ηit and cit may also contain exponentiation
(i.e., we can also infer exponential bounds).

For PV = {x1, . . . , xn}, the iterated update is computed by solving the recur-
rence equations x(1) = η(x) and x(tv+1) = η(x)[x1/x

(tv)
1 , . . . , xn/x

(tv)
n ] for all

x ∈ PV and tv ≥ 1. So for the transition t1 from Fig. 1 we get the recurrence equa-
tions x(1) = x−1, x(tv1+1) = x(tv1)−1, y(1) = y+x, and y(tv1+1) = y(tv1)+x(tv1).
Usually, they can easily be solved using state-of-the-art recurrence solvers [4].
In our example, we obtain the closed forms ηit(x) = x(tv1) = x − tv1 and
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ηit(y) = y(tv1) = y + tv1 · x − 1
2 tv

2
1 + 1

2 tv1. While ηit(y) contains rational coef-
ficients, our approach ensures that ηit always maps integers to integers. Thus,
we again obtain an integer program. We proceed similarly for the iterated cost
of a transition, where we may under-approximate the solution of the recur-
rence equations c(1) = c and c(tv+1) = c(tv) + c[x1/x

(tv)
1 , . . . , xn/x

(tv)
n ]. For t1 in

Fig. 1, we get c(1) = 1 and c(tv1+1) = c(tv1) + 1 which leads to the closed form
cit = c(tv1) = tv1.

Theorem 7 (Loop Acceleration). Let t = (�, γ, η, c, �) ∈ T and let tv be
a fresh temporary variable. Moreover, let ηit(x) = ηtv (x) for all x ∈ PV and
let cit ≤

∑
0≤i<tv ηi(c). If b under-estimates t, then the processor mapping T to

T ∪ {(�, γ ∧ 0 < tv < b + 1, ηit, cit, �)} is sound.

We say that the resulting new simple loop is accelerated and we refer to all
simple loops which were not introduced by Theorem7 as non-accelerated.

Example 8 (Non-Integer Metering Functions). Theorem 7 also allows metering
functions that do not map to the integers. Let T = {(�0, true, id, 1, �), t} with
t = (�, 0 < x, x′ = x − 2, 1, �). Accelerating t with the metering function x

2
yields (�, 0 < tv < x

2 + 1, x′ = x − 2 tv , tv , �). Note that 0 < tv < x
2 + 1 implies

0 < x as tv and x range over Z. Hence, 0 < x can be omitted in the resulting
guard.

Example 9 (Unbounded Loops Continued). In Example 5, ω under-estimates t =
(�, 0 < x, x′ = x + 1, y, �). The accelerated transition is t = (�, 0 < x ∧ γ′, x′ =
x + tv , tv · y, �), where γ′ corresponds to 0 < tv < ω + 1 = ω, i.e., tv has no
upper bound.

If we cannot find a metering function or fail to obtain the closed form ηit or
cit for a simple loop t, then we can simplify t by eliminating temporary variables.
To do so, we fix their values by adding suitable constraints to guard(t). As we
are interested in witnesses for maximal computations, we use a heuristic that
adds constraints tv = a for temporary variables tv , where a ∈ A(V�) is a suitable
upper or lower bound on tv ’s values, i.e., guard(t) implies tv ≤ a or tv ≥ a. This is
repeated until we find constraints which allow us to apply loop acceleration. Note
that adding additional constraints to guard(t) is always sound in our setting.

Theorem 10 (Strengthening). Let t = (�, γ, η, c, �′) ∈ T and ϕ ∈ F(V�).
Then the processor mapping T to T \ {t} ∪ {(�, γ ∧ ϕ, η, c, �′)} is sound.

In t4 from Fig. 1, γ contains tv > 0. So γ implies the bound tv ≥ 1 since tv
must be instantiated by integers. Hence, we add the constraint tv = 1. Now the
update u′ = u − tv of the transition t4 becomes u′ = u − 1, and thus, u is a
metering function. So after fixing tv = 1, t4 can be accelerated similarly to t1.

To simplify the program, we delete a simple loop t after trying to accelerate
it. So we just keep the accelerated loop (or none, if acceleration of t still fails
after eliminating all temporary variables by strengthening t’s guard). For our
example, we obtain the program in Fig. 2 with the accelerated transitions t1, t4.

Theorem 11 (Deletion). For t∈T, the processor mappingT to T \{t} is sound.
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Fig. 2. Accelerating t1 and t4 Fig. 3. Eliminating t1 and t4

4.2 Chaining Transitions

After trying to accelerate all simple loops of a program, we can chain subsequent
transitions t1, t2 by adding a new transition t1.2 that simulates their combina-
tion. Afterwards, the transitions t1 and t2 can (but need not) be deleted with
Theorem 11.

Theorem 12 (Chaining). Let t1 = (�1, γ1, η1, c1, �2) and t2 = (�2, γ2, η2, c2, �3)
with t1, t2 ∈ T . Let ren be an injective function renaming the variables in T V�2

to fresh ones and let5 t1.2 = (�1, γ1∧ren(η1(γ2)), ren◦η1◦η2, c1+ren(η1(c2)), �3).
Then the processor mapping T to T ∪ {t1.2} is sound. In the new program T ∪
{t1.2}, the temporary variables of �1 are defined to be T V�1 ∪ ren(T V�2).

One goal of chaining is loop elimination of all accelerated simple loops. To
this end, we chain all subsequent transitions t′, t where t is a simple loop and t′ is
no simple loop. Afterwards, we delete t. Moreover, once t′ has been chained with
all subsequent simple loops, then we also remove t′, since its effect is now covered
by the newly introduced (chained) transitions. So in our example from Fig. 2,
we chain t0 with t1 and t3 with t4. The resulting program is depicted in Fig. 3,
where we always simplify arithmetic terms and formulas to ease readability.

Chaining also allows location elimination by chaining all pairs of incoming
and outgoing transitions for a location � and removing them afterwards. It is
advantageous to eliminate locations with just a single incoming transition first.
This heuristic takes into account which locations were the entry points of loops.
So for the example in Fig. 3, it would avoid chaining t5 and t3.4 in order to elim-
inate �2. In this way, we avoid constructing chained transitions that correspond
to a run from the “middle” of a loop to the “middle” of the next loop iteration.

5 For all x ∈ PV, ren ◦ η1 ◦ η2(x) = ren(η1(η2(x))) = η2(x)[x1/η1(x1), . . . , xn/η1(xn),
tv1/ren(tv1), . . . , tvm/ren(tvm)] if PV = {x1, . . . , xn} and T V�2 = {tv1, . . . , tvm}.
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Fig. 4. Eliminating �1 and �3 Fig. 5. Accelerating t3.4.5 Fig. 6. Eliminating t
3.4.5

So instead of eliminating �2, we chain t0.1 and t2 as well as t3.4 and t5 to
eliminate the locations �1 and �3, leading to the program in Fig. 4. Here, the
temporary variables tv1 and tv4 vanish since, before applying arithmetic simpli-
fications, the guards of t0.1.2 resp. t3.4.5 imply tv1=x resp. tv4=z − 1.

Our overall approach for program simplification is shown in Algorithm1. Of
course, this algorithm is a heuristic and other strategies for the application of
the processors would also be possible. The set S in Steps 3–5 is needed to handle
locations � with multiple simple loops. The reason is that each transition t′ with
dest(t′) = � should be chained with each of �’s simple loops before removing t′.

Algorithm 1 terminates: In the loop 2.1–2.2, each iteration decreases the num-
ber of temporary variables in t. The loop 2 terminates since each iteration reduces
the number of non-accelerated simple loops. In loop 4, the number of simple loops
is decreasing and for loop 6, the number of reachable locations decreases. The
overall loop terminates as it reduces the number of reachable locations. The rea-
son is that the program does not have simple loops anymore when the algorithm
reaches Step 6. Thus, at this point there is either a location � which can be
eliminated or the program does not have a path of length 2.

According to Algorithm 1, in our example we go back to Step 1 and 2 and apply
Loop Acceleration to transition t3.4.5. This transition has the metering function
z−1 and its iterated update sets u to 0 and z to z−tv for a fresh temporary variable
tv . To compute t3.4.5’s iterated costs, we have to find an under-approximation for
the solution of the recurrence equations c(1) = z+1 and c(tv+1) = c(tv)+z(tv)+1.
After computing the closed form z − tv of z(tv), the second equation simplifies
to c(tv+1) = c(tv) + z − tv + 1, which results in the closed form cit = c(tv) =
tv · z − 1

2 tv
2 + 3

2 tv . In this way, we obtain the program in Fig. 5. A final chaining
step and deletion of the only simple loop yields the program in Fig. 6.



Lower Runtime Bounds for Integer Programs 559

Algorithm 1. Program Simplification
While there is a path of length 2:

1. Apply Deletion to transitions whose guard is proved unsatisfiable.
2. While there is a non-accelerated simple loop t:

2.1 Try to apply Loop Acceleration to t.
2.2 If 2.1 failed and t uses temporary variables:

Apply Strengthening to t to eliminate a temporary variable and go to 2.1
2.3 Apply Deletion to t.

3. Let S = ∅.
4. While there is a simple loop t:

4.1 Apply Chaining to each pair t′, t where src(t′) �= dest(t′) = src(t).
4.2 Add all these transitions t′ to S and apply Deletion to t.

5. Apply Deletion to each transition in S.
6. While there is a location � without simple loops but with incoming and outgoing

transitions (starting with locations � with just one incoming transition):
6.1 Apply Chaining to each pair t′, t where dest(t′) = src(t) = �.
6.2 Apply Deletion to each t where src(t) = � or dest(t) = �.

5 Asymptotic Lower Bounds for Simplified Programs

After Algorithm 1, all program paths have length 1. We call such programs sim-
plified and let T be a simplified program throughout this section. Now for any
v∈Val �0 ,

max{v(cost(t)) | t ∈ T ,v |= guard(t)}, (5)

is a lower bound on T ’s derivation height dhT (v|PV), i.e., (5) is the maximal cost
of those transitions whose guard is satisfied by v. So for the program in Fig. 6, we
obtain the bound x2·tv+x·tv−tv2+3tv+2x+4

2 for all valuations with v |= 0 < tv <
1
2x2+ 1

2x. However, such bounds do not provide an intuitive understanding of the
program’s complexity and are also not suitable to detect possible attacks. Hence,
we now show how to derive asymptotic lower bounds for simplified programs.
These asymptotic bounds can easily be understood (i.e., a high lower bound can
help programmers to improve their program to make it more efficient) and they
identify potential attacks. After introducing our notion of asymptotic bounds in
Sect. 5.1, we present a technique to derive them automatically in Sect. 5.2.

5.1 Asymptotic Bounds and Limit Problems

While dhT is defined on valuations, asymptotic bounds are usually defined for
functions on N. To bridge this gap, we use the common definition of complexity
as a function of the size of the input. So the runtime complexity rcT (n) is the
maximal cost of any evaluation that starts with a configuration where the sum
of the absolute values of all program variables is at most n.

Definition 13 (Runtime Complexity). Let |v| =
∑

x∈PV |v(x)| for all valu-
ations v. The runtime complexity rcT : N → R≥0 ∪ {ω} is defined as rcT (n) =
sup{dhT (v) | v ∈ Val , |v| ≤ n}.
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Our goal is to derive an asymptotic lower bound for rcT from a simplified
program T . So for the program T in Fig. 6, we would like to derive rcT (n) ∈
Ω(n4). As usual, f(n) ∈ Ω(g(n)) means that there is an m > 0 and an n0 ∈ N

such that f(n) ≥ m · g(n) holds for all n ≥ n0. However, in general, the costs of
a transition do not directly give rise to the desired asymptotic lower bound. For
instance, in Fig. 6, the costs of the only transition are cubic, but the complexity
of the program is a polynomial of degree 4 (since tv may be quadratic in x).

To infer an asymptotic lower bound from a transition t ∈ T , we try to find
an infinite family of valuations vn ∈ Val �0 (parameterized by n ∈ N) where
there is an n0 ∈ N such that vn |= guard(t) holds for all n ≥ n0. This implies
rcT (|vn|) ∈ Ω(vn(cost(t))), since for all n ≥ n0 we have:

rcT (|vn|) ≥ dhT (vn|PV) as |vn|PV | = |vn|
≥ vn(cost(t)) by (5)

We first normalize all constraints in guard(t) such that they have the form
a > 0. Now our goal is to find infinitely many models vn for a formula of the form∧

1≤i≤k(ai > 0). Obviously, such a formula is satisfied if all terms ai are positive
constants or increase infinitely towards ω. Thus, we introduce a technique which
tries to find out whether fixing the valuations of some variables and increasing or
decreasing the valuations of others results in positive resp. increasing valuations
of a1, . . . , ak. Our technique operates on so-called limit problems {a•1

1 , . . . , a•k

k }
where ai ∈ A(V�0) and •i ∈ {+,−,+!,−!}. Here, a+ (resp. a−) means that a
grows towards ω (resp. −ω) and a+! (resp. a−!) means that a has to be a positive
(resp. negative) constant. So we represent guard(t) by an initial limit problem
{a•1

1 , . . . , a•k

k } where •i ∈ {+,+!} for all 1 ≤ i ≤ k. We say that a family of
valuations vn is a solution to a limit problem S iff vn “satisfies” S for large n.

To define this notion formally, for any function f : N → R we say that
limn
→ω f(n) = ω (resp. limn
→ω f(n) = −ω) iff for every m ∈ Z there is an
n0 ∈ N such that f(n) ≥ m (resp. f(n) ≤ m) holds for all n ≥ n0. Similarly,
limn
→ω f(n) = m iff there is an n0 such that f(n) = m holds for all n ≥ n0.

Definition 14 (Solutions of Limit Problems). For any function f : N → R

and any • ∈ {+,−,+!,−!}, we say that f satisfies • iff

limn
→ω f(n) = ω, if • = + ∃m ∈ Z. limn
→ω f(n) = m > 0, if • = +!

limn
→ω f(n) = −ω, if • = − ∃m ∈ Z. limn
→ω f(n) = m < 0, if • = −!

A family vn of valuations is a solution of a limit problem S iff for every a• ∈ S,
the function λn. vn(a) satisfies •. Here, “λn. vn(a)” is the function from N → R

that maps any n ∈ N to vn(a).

Example 15 (Bound for Fig. 6). In Fig. 6 where guard(t) is 0 < tv < 1
2x2 + 1

2x,
the family vn with vn(tv) = 1

2n2 + 1
2n − 1,vn(x) = n, and vn(y) = vn(z) =

vn(u) = 0 is a solution of the initial limit problem {tv+, ( 12x2 + 1
2x − tv)+!)}.

The reason is that the function λn. vn(tv) that maps any n ∈ N to vn(tv) =
1
2n2 + 1

2n− 1 satisfies +, i.e., limn
→ω( 12n2 + 1
2n− 1) = ω. Similarly, the function
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λn. vn( 12x2 + 1
2x − tv) = λn. 1 satisfies +!. Section 5.2 will show how to infer

such solutions of limit problems automatically. Thus, there is an n0 such that
vn |= guard(t) holds for all n ≥ n0. Hence, we get the asymptotic lower bound
rcT (|vn|) ∈ Ω(vn(cost(t))) = Ω(18n4 + 1

4n3 + 7
8n2 + 7

4n) = Ω(n4).

Theorem 16 (Asymptotic Bounds for Simplified Programs). Given a
transition t of a simplified program T with guard(t) = a1 > 0 ∧ · · · ∧ ak > 0,
let the family vn be a solution of an initial limit problem {a•1

1 , . . . , a•k

k } with
•i ∈ {+,+!} for all 1 ≤ i ≤ k. Then rcT (|vn|) ∈ Ω(vn(cost(t))).

Of course, if T has several transitions, then we try to take the one which
results in the highest lower bound. Moreover, one should extend the initial limit
problem {a•1

1 , . . . , a•k

k } by cost(t)+. In this way, one searches for valuations vn

where vn(cost(t)) depends on n, i.e., where the costs are not constant.
The costs are unbounded (i.e., they only depend on temporary variables) iff

the initial limit problem {a•1
1 , . . . , a•k

k , cost(t)+} has a solution vn where vn(x)
is constant for all x ∈ PV. Then we can even infer rcT (n) ∈ Ω(ω). For instance,
after chaining the transition t of Example 9 with the transition from the start
location (see Example 5), the resulting initial limit problem {x+! , tv+, (tv · y +
1)+} has the solution vn with vn(x) = vn(y) = 1 and vn(tv) = n, which implies
rcT (n) ∈ Ω(ω).

If the costs are not unbounded, we say that they depend on x ∈ PV iff the
initial limit problem {a•1

1 , . . . , a•k

k , cost(t)+} has a solution vn where vn(y) is
constant for all y ∈ PV \ {x}. If x corresponds to a “secret”, then the program
can be subject to side-channel attacks. For example, in Example 15 we have
vn(cost(t)) = 1

8n4+ 1
4n3+ 7

8n2+ 7
4n. Since vn maps all program variables except

x to constants, the costs of our program depend on the program variable x. So
if x is “secret”, then the program is not safe from side-channel attacks.

Theorem 16 results in bounds of the form “rcT (|vn|) ∈ Ω(vn(c))”, which
depend on the sizes |vn|. Let f(n) = rcT (n), g(n) = |vn|, and let Ω(vn(c)) have
the form Ω(nk) or Ω(kn) for a k ∈ N. Moreover for all x ∈ PV, let vn(x) be
a polynomial of at most degree m, i.e., let g(n) ∈ O(nm). Then the following
observation from [15] allows us to infer a bound for rcT (n) instead of rcT (|vn|).

Lemma 17 (Bounds for Function Composition). Let f : N → R≥0 and
g : N → N where g(n) ∈ O(nm) for some m ∈ N \ {0}. Moreover, let f(n) be
weakly and let g(n) be strictly monotonically increasing for large enough n.

• If f(g(n)) ∈ Ω(nk) with k ∈ N, then f(n) ∈ Ω(n
k
m ).

• If f(g(n)) ∈ Ω(kn) with k ∈ N, then f(n) ∈ Ω(k
m
√

n).

Example 18 (Bound for Fig. 6 Continued). In Example 15, we inferred
rcT (|vn|) ∈ Ω(n4) where vn(x) = n and vn(y) = vn(z) = vn(u) = 0. Hence, we
have |vn| = n ∈ O(n1). By Lemma 17, we obtain rcT (n) ∈ Ω(n

4
1 ) = Ω(n4).

Example 19 (Non-Polynomial Bounds). Let T = {(�0, x = y2, id, y, �)}. By Def-
inition 14, the family vn with vn(x) = n2 and vn(y) = n is a solution of the
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initial limit problem {(x − y2 + 1)+! , (y2 − x + 1)+! , y+}. Due to Theorem 16,
this proves rcT (|vn|) ∈ Ω(n). As |vn| = n2 + n ∈ O(n2), Lemma 17 results in
rcT (n) ∈ Ω(n

1
2 ).

5.2 Transformation of Limit Problems

A limit problem S is trivial iff all terms in S are variables and there is no variable
x with x•1 , x•2 ∈ S and •1 �= •2. For trivial limit problems S we can immediately
obtain a particular solution vS

n which instantiates variables “according to S”.

Lemma 20 (Solving Trivial Limit Problems). Let S be a trivial limit prob-
lem. Then vS

n is a solution of S where for all n ∈ N, vS
n is defined as follows:

vS
n(x) = n, if x+ ∈ S vS

n(x) = 1, if x+! ∈ S vS
n(x) = 0, otherwise

vS
n(x) = −n, if x− ∈ S vS

n(x) = −1, if x−! ∈ S

For instance, if V�0 = {x, y, tv} and S = {x+, y−!}, then S is a trivial limit
problem and vS

n with vS
n(x) = n,vS

n(y) = −1, and vS
n(tv) = 0 is a solution for S.

However, in general the initial limit problem S = {a•1
1 , . . . , a•k

k , cost(t)+}
is not trivial. Therefore, we now define a transformation � to simplify limit
problems until one reaches a trivial problem. With our transformation, S � S′

ensures that each solution of S′ also gives rise to a solution of S.
If S contains f(a1, a2)• for some standard arithmetic operation f like addi-

tion, subtraction, multiplication, division, and exponentiation, we use a so-called
limit vector (•1, •2) with •i ∈ {+,−,+!,−!} to characterize for which kinds of
arguments the operation f is increasing (if • = +) resp. decreasing (if • = −)
resp. a positive or negative constant (if • = +! or • = −!).6 Then S can be
transformed into the new limit problem S \ {f(a1, a2)•} ∪ {a•1

1 , a•2
2 }.

For example, (+,+!) is an increasing limit vector for subtraction. The reason
is that a1 − a2 is increasing if a1 is increasing and a2 is a positive constant.
Hence, our transformation � allows us to replace (a1 − a2)+ by a+

1 and a+!
2 .

To define limit vectors formally, we say that (•1, •2) is an increasing (resp.
decreasing) limit vector for f iff the function λn. f(g(n), h(n)) satisfies +
(resp. −) for any functions g and h that satisfy •1 and •2, respectively. Here,
“λn. f(g(n), h(n))” is the function from N → R that maps any n ∈ N to
f(g(n), h(n)). Similarly, (•1, •2) is a positive (resp. negative) limit vector for
f iff λn. f(g(n), h(n)) satisfies +! (resp. −!) for any functions g and h that
satisfy •1 and •2, respectively.

With this definition, (+,+!) is indeed an increasing limit vector for subtraction,
since limn
→ω g(n) = ω and limn
→ω h(n) = m with m > 0 implies limn
→ω(g(n) −
h(n)) = ω. In other words, if g(n) satisfies + and h(n) satisfies +!, then g(n)−h(n)
satisfies + as well. In contrast, (+,+) is not an increasing limit vector for subtrac-
tion. To see this, consider the functions g(n) = h(n) = n. Both g(n) and h(n)
satisfy +, whereas g(n) − h(n) = 0 does not satisfy +. Similarly, (+!,+!) is not a
6 To ease the presentation, we restrict ourselves to binary operations f . For operations

of arity m, one would need limit vectors of the form (•1, . . . , •m).
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positive limit vector for subtraction, since for g(n) = 1 and h(n) = 2, both g(n)
and h(n) satisfy +!, but g(n) − h(n) = −1 does not satisfy +!.

Limit vectors can be used to simplify limit problems, cf. (A) in the following
definition. Moreover, for numbers m ∈ Z, one can easily simplify constraints of
the form m+! and m−! (e.g., 2+! is obviously satisfied since 2 > 0), cf. (B).

Definition 21 (�). Let S be a limit problem. We have:

(A) S ∪ {f(a1, a2)•} � S ∪ {a•1
1 , a•2

2 } if • is + (resp. −,+!,−!) and (•1, •2) is
an increasing (resp. decreasing, positive, negative) limit vector for f

(B) S ∪ {m+!} � S if m ∈ Z with m > 0, S ∪ {m−!} � S if m < 0

Example 22 (Bound for Fig. 6 Continued). For the initial limit problem from
Example 15, we have {tv+, ( 12x2 + 1

2x − tv)+!} � {tv+, ( 12x2 + 1
2x)+! , tv−!} �

{tv+, ( 12x2)+! , ( 12x)+! , tv−!} �∗ {tv+, x+! , tv−!} using the positive limit vector
(+!,−!) for subtraction and the positive limit vector (+!,+!) for addition.

The resulting problem in Example 22 is not trivial as it contains tv+ and tv−! ,
i.e., we failed to compute an asymptotic lower bound. However, if we substitute tv
with its upper bound 1

2x2+ 1
2x−1, then we could reduce the initial limit problem

to a trivial one. Hence, we now extend � by allowing to apply substitutions.

Definition 23 (� Continued). Let S be a limit problem and let σ : V�0 →
A(V�0) be a substitution such that x does not occur in xσ and v(xσ) ∈ Z for all
valuations v ∈ Val �0 and all x ∈ V�0 . Then we have7

(C) S �σ Sσ

Example 24 (Bound for Fig. 6 Continued). For the initial limit problem from
Example 15, we now have8 {tv+, ( 12x2 + 1

2x − tv)+!} �[tv/ 1
2x2+ 1

2x−1] {( 12x2 +
1
2x − 1)+, 1+!} � {( 12x2 + 1

2x − 1)+} � {( 12x2 + 1
2x)+, 1+!} �∗ {x+}, which is

trivial.

AlthoughDefinition 23 requires that variablesmay only be instantiated by inte-
ger terms, it is also useful to handle limit problems that contain non-integer terms.

Example 25 (Non-Integer Metering Functions Continued). After chaining the
accelerated transition of Example 8 with the transition from the start location,
for the resulting initial limit problem we get {tv+, ( 12x− tv + 1)+! , (tv + 1)+} �2

{tv+, ( 12x − tv + 1)+!} �[x/2tv−1] {tv+, 1
2

+!} � {tv+, 1+! , 2+!} �2 {tv+}, using
the positive limit vector (+!,+!) for division. This allows us to infer rcT (n)∈Ω(n).

However, up to now we cannot prove that, e.g., a transition t with guard(t) =
x2 − x > 0 and cost(t) = x has a linear lower bound, since (+,+) is not an
increasing limit vector for subtraction. To handle such cases, the following rules
allow us to neglect polynomial sub-expressions if they are “dominated” by other
polynomials of higher degree or by exponential sub-expressions.
7 The other rules for � are implicitly labeled with the identical substitution id.
8 σ = [tv/ 1

2
x2 + 1

2
x−1] satisfies the condition v(yσ) ∈ Z for all v ∈ Val�0 and y ∈ V�0 .



564 F. Frohn et al.

Definition 26 (� Continued). Let S be a limit problem, let ± ∈ {+,−}, and
let a, b, e ∈ A({x}) be (univariate) polynomials. Then we have:
(D) S ∪ {(a ± b)•} � S ∪ {a•}, if • ∈ {+,−}, and a has a higher degree than b

(E) S ∪ {(ae ± b)+} � S ∪ {(a − 1)•, e+}, if • ∈ {+,+!}.
Thus, {(x2−x)+} � {(x2)+} = {(x·x)+} � {x+} by the increasing limit vector
(+,+) for multiplication. Similarly, {(2x − x3)+} � {(2 − 1)+! , x+} � {x+}.
Rule (E) can also be used to handle problems like (ae)+ (by choosing b = 0).

Theorem 27 states that � is indeed correct. When constructing the valuation
from the resulting trivial limit problem, one has to take the substitutions into
account which were used in the derivation. Here, (vn ◦σ)(x) stands for vn(σ(x)).

Theorem 27 (Correctness of �). If S �σ S′ and the family vn is a solution
of S′, then vn ◦ σ is a solution of S.

Example 28 (Bound for Fig. 6 Continued). Example 24 leads to the solution v′
n◦σ

of the initial limit problem for the program from Fig. 6 where σ = [tv/ 1
2x2+ 1

2x−1],
v′

n(x) = n, and v′
n(tv) = v′

n(y) = v′
n(z) = v′

n(u) = 0. Hence, v′
n ◦ σ = vn where

vn is as in Example 15. As explained in Example 18, this proves rcT (n) ∈ Ω(n4).

So we start with an initial limit problem S = {a•1
1 , . . . , a•k

k , cost(t)+} that
represents guard(t) and requires non-constant costs, and transform S with �
into a trivial S′, i.e., S �σ1 . . . �σm S′. For automation, one should leave the •i

in the initial problem S open, and only instantiate them by a value from {+,+!}
when this is needed to apply a particular rule for the transformation �. Then
the resulting family vS′

n of valuations gives rise to a solution vS′
n ◦ σm ◦ . . . ◦ σ1

of S. Thus, we have rcT (|vS′
n ◦ σ|) ∈ Ω(vS′

n (σ(cost(t)))), where σ = σm ◦ . . . ◦ σ1,
which leads to a lower bound for rcT (n) with Lemma 17.

Our implementation uses the following strategy to apply the rules from Def-
initions 21, 23, 26 for �. Initially, we reduce the number of variables by prop-
agating bounds implied by the guard, i.e., if γ =⇒ x ≥ a or γ =⇒ x ≤ a for
some a ∈ A(V�0 \ {x}), then we apply the substitution [x/a] to the initial limit
problem by rule (C). For example, we simplify the limit problem from Exam-
ple 19 by instantiating x with y2, as the guard of the corresponding transition
implies x = y2. So here, we get {(x − y2 + 1)+! , (y2 − x + 1)+! , y+} �[x/y2]

{1+! , y+} � {y+}. Afterwards, we use (B) and (D) with highest and (E) with
second highest priority. The third priority is trying to apply (A) to univariate
terms (since processing univariate terms helps to guide the search). As fourth
priority, we apply (C) with a substitution [x/m] if x+! or x−! in S, where we use
SMT solving to find a suitable m ∈ Z. Otherwise, we apply (A) to multivari-
ate terms. Since � is well founded and, except for (C), finitely branching, one
may also backtrack and explore alternative applications of �. In particular, we
backtrack if we obtain a contradictory limit problem. Moreover, if we obtain a
trivial S′ where vS′

n (σ(cost(t))) is a polynomial, but cost(t) is a polynomial of
higher degree or an exponential function, then we backtrack to search for other
solutions which might lead to a higher lower bound. However, our implementa-
tion can of course fail, since solvability of limit problems is undecidable (due to
Hilbert’s Tenth Problem).
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6 Experiments and Conclusion

We presented the first technique to infer lower bounds on the worst-case run-
time complexity of integer programs, based on a modular program simplification
framework. The main simplification technique is loop acceleration, which relies
on recurrence solving and metering functions, an adaptation of classical ranking
functions. By eliminating loops and locations via chaining, we eventually obtain
simplified programs. We presented a technique to infer asymptotic lower bounds
from simplified programs, which can also be used to find vulnerabilities.

Our implementation LoAT (“Lower Bounds Analysis Tool”) is freely available
at [23]. It was inspired by KoAT [8], which alternates runtime- and size-analysis to
infer upper bounds in a modular way. Similarly, LoAT alternates runtime-analysis
and recurrence solving to transform loops to loop-free transitions independently.
LoAT uses the recurrence solver PURRS [4] and the SMT solver Z3 [10].

We evaluated LoAT on the benchmarks [5] from the evaluation of [8]. We
omitted 50 recursive programs, since our approach cannot yet handle recursion.
As we know of no other tool to compute worst-case lower bounds for integer
programs, we compared our results with the asymptotically smallest results of
leading tools for upper bounds: KoAT, CoFloCo [14], Loopus [26], RanK [2]. We
did not compare with PUBS [1], since the cost relations analyzed by PUBS
significantly differ from the integer programs handled by LoAT. Moreover, as
PUBS computes best-case lower bounds, such a comparison would be meaningless
since the worst-case lower bounds computed by LoAT are no valid best-case lower
bounds. We used a timeout of 60 s. In the following, we disregard 132 examples
where rcT (n) ∈ O(1) was proved since there is no non-trivial lower bound in
these cases.

rcT (n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω)

O(1) (132) – – – – – –

O(n) 45 125 – – – – –

O(n2) 9 18 33 – – – –

O(n3) 2 – – 3 – – –

O(n4) 1 – – – 2 – –

EXP – – – – – 5 –

O(ω) 57 31 3 – – – 173

LoAT infers non-trivial
lower bounds for 393 (78 %)
of the remaining 507 exam-
ples. Tight bounds (i.e., the
lower and the upper bound
coincide) are proved in 341
cases (67 %). Whenever an
exponential upper bound is
proved, LoAT also proves an exponential lower bound (i.e., rcT (n) ∈ Ω(kn) for
some k > 1). In 173 cases, LoAT infers unbounded runtime complexity. In some
cases, this is due to non-termination, but for this particular goal, specialized tools
are more powerful (e.g., whenever LoAT proves unbounded runtime complexity
due to non-termination, the termination analyzer T2 [7] shows non-termination
as well). The average runtime of LoAT was 2.4 s per example. These results
could be improved further by supplementing LoAT with invariant inference as
implemented in tools like APRON [20]. For a detailed experimental evaluation
of our implementation as well as the sources and a pre-compiled binary of LoAT
we refer to [16].

Acknowledgments. We thank S. Genaim and J. Böker for discussions and comments.
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Abstract. We present a trustworthy connection between the Leon veri-
fication system and the Isabelle proof assistant. Leon is a system for ver-
ifying functional Scala programs. It uses a variety of automated theorem
provers (ATPs) to check verification conditions (VCs) stemming from
the input program. Isabelle, on the other hand, is an interactive theorem
prover used to verify mathematical specifications using its own input lan-
guage Isabelle/Isar. Users specify (inductive) definitions and write proofs
about them manually, albeit with the help of semi-automated tactics.
The integration of these two systems allows us to exploit Isabelle’s rich
standard library and give greater confidence guarantees in the correct-
ness of analysed programs.

Keywords: Isabelle · HOL · Scala · Leon · Compiler

1 Introduction

This system description presents a new tool that aims to connect two important
worlds: the world of interactive proof assistant users who create a body of veri-
fied theorems, and the world of professional programmers who increasingly adopt
functional programming to develop important applications. The Scala language
(www.scala-lang.org) enjoys a prominent role today for its adoption in industry,
a trend most recently driven by the Apache Spark data analysis framework (to
which, e.g., IBM committed 3500 researchers recently [16]). We hope to intro-
duce some of the many Scala users to formal methods by providing tools they
can use directly on Scala code. Leon system (http://leon.epfl.ch) is a verifica-
tion and synthesis system for a subset of Scala [2,10]. Leon reuses the Scala
compiler’s parsing and type-checking frontend and subsequently derives verifi-
cation conditions to be solved by the automated theorem provers, such as Z3
[13] and CVC4 [1]. Some of these conditions arise naturally upon use of particu-
lar Scala language constructs (e.g. completeness for pattern matching), whereas
others stem from Scala assertions (require and ensuring) and can naturally
express universally quantified conjectures about computable functions.

Interactive proof assistants have long contained functional languages as frag-
ments of the language they support. Isabelle/HOL [14,20] offers definitional
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40229-1 38

http://www.scala-lang.org
http://leon.epfl.ch


Translating Scala Programs to Isabelle/HOL 569

facilities for functional programming, e.g. the datatype command for inductive
data types and fun for recursive functions. A notable feature of Isabelle is its
code generator: certain executable specifications can be translated into source
code in target languages such as ML, Haskell, Scala, OCaml [5,7]. Yet many
Scala users do not know Isabelle today.

Aiming to bring the value of trustworthy formalized knowledge to many
programmers familiar with Scala, we introduce a mapping in the opposite direc-
tion: instead of generating code from logic, we show how to map programs in the
purely functional fragment of Scala supported by Leon into Isabelle/HOL. We
use Isabelle’s built-in tactics to discharge the verification conditions. Compared
to use of automated solvers in Leon alone, the connection with Isabelle has two
main advantages:

1. Proofs in Isabelle, even those generated from automated tactics, are justified
by a minimal inference kernel. In contrast to ATPs, which are complex pieces
of software, it is far less likely that a kernel-certified proof is unsound.

2. Isabelle’s premier logic, HOL, has seen decades of development of rich mathe-
matical libraries and formalizations such as Archive of Formal Proofs. Proofs
carried out in Isabelle have access to this knowledge, which means that there
is a greater potential for reuse of existing developments.

Establishing the formal correspondence means embedding Scala in HOL, requir-
ing non-trivial transformations (Sect. 2). We use a shallow embedding, that is, we
do not model Scala’s syntax, but rather perform a syntactic mapping from Scala
constructs to their equivalents in HOL. For our implementation we developed
an idiomatic Scala API for Isabelle based on previous work by Wenzel [18,21]
(Sect. 3). We implemented as much functionality as possible inside Isabelle to
leverage checking by Isabelle’s proof kernel. The power of Isabelle’s tactics allows
us to prove more conditions than what is possible with the Z3 and CVC4 back-
ends (Sect. 4). We are able to import Leon’s standard library and a large amount
of its example code base into Isabelle (Sect. 5), and verify many of the underlying
properties.

Contribution. We contribute a mechanism to import functional Scala code into
Isabelle, featuring facilities for embedding Isabelle/Isar syntax into Scala via
Leon and reusing existing constants in the HOL library without compromising
soundness. This makes Isabelle available to Leon as a drop-in replacement for Z3
or CVC4 to discharge verification conditions. We show that Isabelle automation
is already useful for processing such conditions.

Among related works we highlight a Haskell importer for Isabelle [6], which
also uses a shallow embedding and has a custom parser for Haskell, but does not
perform any verification. Breitner et al. have formalised “large parts of Haskell’s
standard prelude” in Isabelle [4]. They use the HOLCF logic, which is exten-
sion on HOL for domain theory, and have translated library functions manually.
Mehnert [12] implemented a verification system for Java in Coq using separation
logic.

http://afp.sourceforge.net/
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In the following text, we are using the term “Pure Scala” to refer to the frag-
ment of Scala supported by Leon [2, Sect. 3], whereas “Leon” denotes the sys-
tem itself. More information about Leon and Pure Scala is available from the web
deployment of Leon at http://leon.epfl.ch in the Documentation section.

2 Bridging the Gap

Isabelle is a general specification and proof toolkit with the ability of functional
programming in its logic Isabelle/HOL. Properties of programs need to be stated
and proved explicitly in an interactive IDE. While the system offers proof tactics,
the order in which they are called and their parameters need to be specified by
the user. Users can also write custom tactics which deal with specific classes of
problems.

Leon is more specialised to verification of functional programs and runs in
batch mode. The user annotates a program and then calls Leon which attempts
to discharge resulting verification conditions using ATPs. If that fails, the user
has to restructure the program. Leon has been originally designed to be fully
automatic; consequently, there is little support for explicitly guiding the prover.
However, because of its specialisation, it can leverage more automation in proofs
and counterexample finding on first-order recursive functions.

Due to their differences, both systems have unique strengths. Their connec-
tion allows users to benefit from this complementarity.

Fig. 1. Example programs: Linked lists and a size function

http://leon.epfl.ch
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2.1 Language Differences

Both languages use different styles in how functional programs are expressed.
Figure 1 shows a direct comparison of a simple program accompanied by a (triv-
ial) proof illustrating the major differences:

– Pure Scala uses an object-oriented encoding of algebraic data types (sealed
classes [15]), similar to Java or C#. Isabelle/HOL follows the ML tradition
by having direct syntax support [3].

– (Pre-) and postconditions in Leon are annotated using the ensuring func-
tion, whereas Isabelle has a separate lemma command. In a sense, verification
conditions in Leon are “inherent”, but need to be stated manually in Isabelle.

– Pure Scala does not support top-level pattern matching (e.g. rev (x :xs) = . . .).

The translation of data types and terms is not particularly interesting because
it is mostly a cavalcade of technicalities and corner cases. However, translating
functions and handling recursion poses some interesting theoretical challenges.

2.2 Translating Functions

A theory is an Isabelle/Isar source file comprising a sequence of definitions and
proofs, roughly corresponding to the notion of a “module” in other languages.
Theory developments are strictly monotonic. Cyclic dependencies between defini-
tions are not allowed [11], however, a definition may consist of multiple constants.
In Pure Scala, there are no restrictions on definition order and cyclicity.

Consequentially, the Isabelle integration has to first compute the dependency
graph of the functions and along with it the set of strongly connected compo-
nents. A single component contains a set of mutually-recursive functions. Col-
lapsing the components in the graph then results in a directed acyclic graph
which can be processed in any topological ordering.

The resulting function definitions are not in idiomatic Isabelle/HOL style;
in particular, they are not useful for automated tactics. Consider Fig. 1: the
naive translation would produce a definition size xs = case xs of y# ys →
. . . size ys . . . Isabelle offers a generic term rewriting tactic (the simplifier), which
is able to substitute equational rules. Such a rule, however, constitutes a non-
terminating simplification chain, because the right-hand side contains a subterm
which matches the left-hand side.

This can be avoided by splitting the resulting definition into cases that use
Haskell-style top-level pattern matching. A verified routine to perform this trans-
lation is integrated into Isabelle, producing terminating equations which can be
used by automated tactics. From this, we also obtain a better induction principle
which can be used in subsequent proofs.

When looking at the results of this procedure, the example in Fig. 1 is close
to reality. The given Pure Scala input program produces almost exactly the
Isabelle theory below, modulo renaming. Because of our implementation, the
user normally does not see the resulting theory file (see Sect. 3). However, for
this example, the internal constructions we perform are roughly equivalent to
what Isabelle/Isar would perform (see Sect. 5).
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2.3 Recursion

Leon has a separate termination checking pass, which can run along with veri-
fication and can be turned off. Leon’s verification results are only meant to be
valid under the assumption that its termination checker succeeded (i.e. ensuring
partial correctness).

Isabelle’s proof kernel does not accept recursive definitions at all. We use the
function package by Krauss [9] to translate a set of recursive equations into a
low-level, non-recursive definition. To automate this construction, the package
provides a fun command which can be used in regular theories (see Fig. 1), but
also programmatically. To justify its internal construction against the kernel, it
needs to prove termination. By default, it searches for a lexicographic ordering
involving some subset of the function arguments.

This also means that when Leon is run using Isabelle, termination checking
is no longer independent of verification, but rather “built in”. Krauss’ package
also supports user-specified termination proofs. In the future, we would like to
give users the ability to write those in Scala.

A further issue is recursion in data types. Negative recursion can lead
to unsoundness, e.g. introducing non-termination in non-recursive expressions.
While Leon has not implemented a wellformedness check yet, Isabelle correctly
rejects such data type definitions. Because we map Scala data types syntactically,
we obtain this check for free when using Isabelle in Leon.

2.4 Cross-Language References

One of the main reasons why we chose a shallow embedding of Pure Scala into
Isabelle is the prospect of reusability of Isabelle theories in proofs of imported
Pure Scala programs. For example, the dominant collection data structure in
functional programming – and by extension both in Pure Scala and Isabelle/HOL
– are lists. Both languages offer dozens of library functions such as map, take
or drop. Isabelle’s List theory also contains a wealth of theorems over these
functions. All of the existing theorems can be used by Isabelle’s automated
tactics to aid in subsequent proofs, and are typically unfolded automatically by
the simplifier.

However, when importing Pure Scala programs, all its data types and
functions are defined again in a runtime Isabelle theory. While the imported
List.map function may end up having the same shape as HOL’s List.map func-
tion, they are nonetheless distinct constants, rendering pre-existing theorems
unusable.

The naive approach of annotating Pure Scala’s map function to not be
imported and instead be replaced by HOL’s map function is unsatisfactory: The
user would need to be trusted to correctly annotate Pure Scala’s library, nega-
tively impacting correctness. Hence, we implemented a hybrid approach: We first
import the whole program unchanged, creating fresh constants. Later, for each
annotated function, we try to prove an equivalence of the form f ′ = f where
f ′ is the imported definition and f is the existing Isabelle library function,
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and register the resulting theorem with Isabelle’s automated tools. This estab-
lishes a trustworthy relationship between the imported Pure Scala program and
the existing Isabelle libraries.

Depending on the size of the analysed program (including dependencies),
this approach turns out to be rather inefficient.1 According to Leon conventions,
we introduced a flag which skips the equivalence proofs for Pure Scala library
functions and just asserts the theorems as axioms. This also alleviates another
practical problem: not all desired equivalences can be proven automatically by
Isabelle. Support for specifying manual equivalence proofs would be useful, but
is not yet implemented.

3 Technical Considerations

Isabelle has been smoothly integrated into Leon by providing an appropriate
instance of a solver. In that sense, Isabelle acts as “yet another backend” which
is able to check validity of a set of assertions.

3.1 Leon Integration

A solver in Leon terminology is a function checking the consistency of a set of
assumptions. A pseudo-code type signature could be given as P(F) → {sat,
unsat, unknown}, where F is the set of supported formulas. According to pro-
gram verification convention, a result of unsat means that no contradiction could
be derived from the assumptions, i.e. that the underlying program is correct. If
a solver however returns sat, it is expected to produce a counterexample which
violates verification conditions, e.g. a value which is not matched by any clause
in a pattern match.

The Isabelle integration is exactly such a function, but with the restriction
that it never returns sat, because a failed proof attempt does not produce a
suitable counterexample. Since Leon offers a sound and complete counterexample
procedure for higher-order functions [17], implementing this feature for Isabelle
would not be useful.

3.2 Process Communication

Communication between the JVM process running Leon and the Isabelle process
works via our libisabelle library which extends Wenzel’s PIDE framework [19,21]
to cater to non-IDE applications. It introduces a remote procedure call layer on
top of PIDE, reusing much of its functionality. Leon is then able to update
and query state stored in the prover process. Procedure calls are typed and
asynchronous, using an implementation of type classes in ML and Scala’s future
values by Haller et al. [8], respectively.

1 Because our implementation uses Isabelle in interactive instead of in batch mode,
we cannot produce pre-computed heap images to be loaded for later runs.
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While being a technologically more complicated approach, it offers benefits
over textual Isabelle/Isar source generation. Most importantly, because commu-
nication is typed, the implementation is much more robust. Common sources of
errors, e.g. pretty printing of Isabelle terms or escaping, are completely elimi-
nated.

4 Example

Figure 2 shows a fully-fledged example of an annotated Pure Scala program.
As background, assume the List definition from the previous example enriched
with some standard library functions, a Nat type, and a listSum function.2

The functions in the example are turned into lemma statements in Isabelle. The
string parameter of the proof annotation is an actual Isar method invocation,
that is, it is interpreted by the Isabelle system. For hygienic purposes, names
of Pure Scala identifiers are not preserved during translation, but suffixed with
unique numbers. To allow users to refer back to syntactic entities using their
original names, the <var > syntax has been introduced.

Running Leon with the Isabelle solver on this example will show that all
conditions hold. The first proof merely reuses a lemma which is already in the
library. The other two need specific guidance, i.e. an annotation, for them to be
accepted by the system. The proofs involve Isabelle library theorems, for exam-
ple distributivity of (+, ∗) on natural numbers. For comparison, Leon+Z3 cannot
prove any proposition. When also instructed to perform induction, it can prove
sumConstant. (Same holds for Leon+CVC4.) There is currently no way in Leon
to concisely specify the use of a custom induction rule for Z3 (or CVC4) as required
by the last proposition (simultaneous induction over two lists of equal length).

This example also demonstrates another instance of the general Isabelle phi-
losophy of nested languages: Pure Scala identifiers may appear inside Isar text
which appears inside Pure Scala code. Further nesting is possible because Isabelle
text can itself contain nested elements (e.g. ML code, ...).

Fig. 2. Various induction proofs about lists

2 The full example is available at https://git.io/vznVH.

https://git.io/vznVH
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5 Evaluation

In this section, we discuss implementation coverage of Pure Scala’s syntactic
constructs, trustworthiness of the translation and overall performance.

Coverage. The coverage of the translation is almost complete. A small number
of Leon primitives, among them array operations have not been implemented
yet.3 All other primitives are mapped as closely as possible and adaptations to
Isabelle are proven correct when needed. Leon’s standard library contains – as of
writing – 177 functions with a total of 289 verification conditions, out of which
Isabelle can prove 206 (≈ 71 %).

Trustworthiness. Our mapping uses only definitional constructs of Isabelle and
thus the theorems it proves have high degree of trustworthiness. Using a shal-
low embedding always carries the risk of semantics mismatches. A concern is
that since the translation of Pure Scala to Isabelle works through an internal
API, the user has no possibility to convince themselves of the correctness of
the implemented routines short of inspecting the source code. For that reason,
all operations are logged in Isabelle. A user can request a textual output of an
Isar theory file corresponding to the imported Pure Scala program, containing
all definitions and lemma statements, but no proofs. This file can be inspected
manually and re-used for other purposes, and represents faithfully the facts that
Isabelle actually proved in a readable form.

Performance. On a contemporary dual-core laptop, just defining all data types
from the Pure Scala library (as of writing: 13), but no functions or proofs,
Leon+Isabelle takes approximately 30 s. Defining all functions adds another 70 s
to the process. Using Leon+Z3, this is much faster: it takes less than 10 s. The
considerable difference (factor ≈ 10) can be explained by looking at the internals
of the different backends. Z3 has data types and function definitions built into its
logic. Isabelle itself does not: both concepts are implemented in HOL, meaning
that every definition needs to be constructed and justified against the proof
kernel. The processing time of an imported Pure Scala programs is comparable
to that of a hand-written, idiomatic Isabelle theory file. In fact, during processing
the Pure Scala libraries, thousands of messages are passed between the JVM
and the Isabelle process, but the incurred overhead is negligible compared to the
internal definitional constructions.

6 Conclusion

We have implemented an extension to Leon which allows using Isabelle to dis-
charge verification conditions of Pure Scala programs. Because it supports the
3 In fact, while attempting to implement array support we discovered that Leon’s

purely functional view of immutably used arrays does not respect Scala’s reference
equality implementation of arrays, leading to a decision to disallow array equality in
Leon’s Pure Scala.
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vast majority of syntax supported by Leon, we consider it to be generally usable.
It is incorporated in the Leon source repository,4 supporting the latest Isabelle
version (Isabelle2016).

With this work, it becomes possible to co-develop a specification in both Pure
Scala and Isabelle, use Leon to establish a formal correspondence, and prove
interesting results in Leon and/or Isabelle/Isar. Because of the embedded Isar
syntax, complicated correctness proofs can also be expressed concisely in Leon.
To the best of our knowledge, this constitutes the first bi-directional integration
between a widespread general purpose programming language and an interactive
proof assistant.

An unintended consequence is that since Isabelle can export code in Haskell
and now import code from Pure Scala, there is a fully-working Scala-to-Haskell
cross-compilation pipeline. The transformations applied to the Pure Scala code
to make it palatable to Isabelle’s automation also results in moderately readable
Haskell code.
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11. Kunčar, O.: Correctness of Isabelle’s cyclicity checker: implementability of over-
loading in proof assistants. In: Proceedings of the 2015 Conference on Certified
Programs and Proofs, CPP 2015, pp. 85–94. ACM, New York (2015)

12. Mehnert, H.: Kopitiam: modular incremental interactive full functional static ver-
ification of java code. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R.
(eds.) NFM 2011. LNCS, vol. 6617, pp. 518–524. Springer, Heidelberg (2011)

13. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. Nipkow, T., Klein, G.: Concrete Semantics. Springer, New York (2014)
15. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima Inc,

Walnut Creek (2010)
16. Terdoslavich, W.: IBM bets on apache spark as ’the future of enterprise data’.

http://www.informationweek.com/big-data/ibm-bets-on-apache-spark-as-the-fut-
ure-of-enterprise-data/d/d-id/1320855

17. Voirol, N., Kneuss, E., Kuncak, V.: Counter-example complete verification for
higher-order functions. In: Scala Symposium (2015)

18. Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS,
vol. 6824, pp. 244–259. Springer, Heidelberg (2011)

19. Wenzel, M.: Isabelle/jEdit – a prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS, vol. 7362, pp. 468–471. Springer, Heidelberg (2012)

20. Wenzel, M.: The Isabelle/Isar Reference Manual (2013)
21. Wenzel, M.: Asynchronous user interaction and tool integration in Isabelle/PIDE.

In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 515–530. Springer,
Heidelberg (2014)

http://www.informationweek.com/big-data/ibm-bets-on-apache-spark-as-the-future-of-enterprise-data/d/d-id/1320855
http://www.informationweek.com/big-data/ibm-bets-on-apache-spark-as-the-future-of-enterprise-data/d/d-id/1320855


Author Index

Alberti, Francesco 65
Aminof, Benjamin 499
Anai, Hirokazu 213
Aoto, Takahito 173
Arai, Noriko H. 213
Athanasiou, Konstantinos 516
Avron, Arnon 3

Bansal, Kshitij 82
Barrett, Clark 82
Benzmüller, Christoph 362
Biere, Armin 45
Blanchette, Jasmin Christian 25, 133
Boudou, Joseph 373
Bozzelli, Laura 389
Brockschmidt, M. 550
Bromberger, Martin 116
Brotherston, James 452
Brown, Chad 349

Cerna, David M. 241
Chen, Mingshuai 195
Chen, Taolue 532
Costa, Diana 435
Cruanes, Simon 133

Dai, Liyun 195
Dawson, Jeremy E. 452
de Moura, Leonardo 99
de Nivelle, Hans 257
Dixon, Clare 406
Docherty, Simon 469
Durán, Francisco 183

Ebner, Gabriel 293
Eker, Steven 183
Escobar, Santiago 183

Färber, Michael 349
Fleury, Mathias 25
Frohn, F. 550
Fukasaku, Ryoya 213

Gan, Ting 195
Ghilardi, Silvio 65
Giesl, J. 550
Goré, Rajeev 452
Gu, Xincai 532
Gulwani, Sumit 9

Hensel, J. 550
Hetzl, Stefan 293
Hoder, Kryštof 313
Hupel, Lars 568
Hustadt, Ullrich 406

Iwane, Hidenao 213

Kapur, Deepak 195
Kern, Kim 362
Kiesl, Benjamin 45
Kikuchi, Kentaro 173
Kobayashi, Munehiro 213
Kudo, Jumma 213
Kuncak, Viktor 568

Leitsch, Alexander 241
Liu, Peizun 516

Martins, Manuel A. 435
Martí-Oliet, Narciso 183
Matsuzaki, Takuya 213
Meseguer, José 183
Möhrmann, Martin 330
Molinari, Alberto 389
Montanari, Angelo 389

Naaf, M. 550
Nalon, Cláudia 406

Ogawa, Mizuhito 228
Otten, Jens 302

Pagani, Elena 65
Peron, Adriano 389



Platzer, André 15
Pym, David 469

Ramanayake, Revantha 416
Reger, Giles 313
Reis, Giselle 293
Reynolds, Andrew 82, 133
Riener, Martin 293
Rubin, Sasha 499

Sala, Pietro 389
Schulz, Stephan 330
Sebastiani, Roberto 152
Seidl, Martina 45
Selsam, Daniel 99
Sofronie-Stokkermans, Viorica 273
Steen, Alexander 362
Suda, Martin 313

Talcott, Carolyn 183
Tinelli, Cesare 82, 133

Tompits, Hans 45
Tung, Vu Xuan 228

Van Khanh, To 228
Voronkov, Andrei 313

Wahl, Thomas 516
Weidenbach, Christoph 25, 116
Wisniewski, Max 362
Wolfsteiner, Simon 293
Wu, Zhilin 532

Xia, Bican 195

Zamansky, Anna 487
Zhan, Naijun 195
Zhan, Yiyang 213
Zivota, Sebastian 293
Zohar, Yoni 487

580 Author Index


	Preface
	Organization
	Abstracts of Invited Talks
	A Logical Framework for Developing and Mechanizing Set Theories
	Verification of Differential Private Computations
	Programming by Examples: Applications, Algorithms, and Ambiguity Resolution
	Logic and Proofs for Cyber-Physical Systems
	Contents
	Invited Talks
	A Logical Framework for Developing and Mechanizing Set Theories
	1 Outline of the Formal Framework
	1.1 Logics
	1.2 Languages
	1.3 The Basic Axioms and Systems
	1.4 Extensions by Definitions

	2 Handling the Axioms of ZF and ZFC
	3 Predicative Theories and Computational Universes
	References

	Programming by Examples: Applications, Algorithms, and Ambiguity Resolution
	1 Introduction
	2 Applications
	3 Algorithms
	4 Ambiguity Resolution
	5 Conclusion and Future Work
	References

	Logic & Proofs for Cyber-Physical Systems
	1 Logical Foundations of Cyber-Physical Systems
	1.1 Cyber-Physical Systems
	1.2 Multi-dynamical Systems
	1.3 CPS Proofs
	1.4 Theory
	1.5 Applications
	1.6 Summary

	References


	Satisfiability of Boolean Formulas
	A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality
	1 Introduction
	2 Isabelle
	3 Abstract CDCL
	3.1 Propositional Logic
	3.2 DPLL with Backjumping
	3.3 Classical DPLL
	3.4 The CDCL Calculus
	3.5 Restarts

	4 A Refined CDCL Towards an Implementation
	4.1 The New CDCL Calculus
	4.2 A Reasonable Strategy
	4.3 Connection with Abstract CDCL
	4.4 A Strategy with Restart and Forget
	4.5 Incremental Solving

	5 An Implementation of CDCL
	6 Discussion and Related Work
	7 Conclusion
	References

	Super-Blocked Clauses
	1 Introduction
	2 Preliminaries
	3 Observations on Blocked Clauses
	4 A Semantic Notion of Blocking
	5 Super-Blocked Clauses
	6 Complexity Analysis
	7 Comparison with Other Redundancy Properties
	8 Conclusion
	References


	Satisfiability Modulo Theory
	Counting Constraints in Flat Array Fragments
	1 Introduction
	2 Preliminaries
	2.1 Flat Formulæ

	3 Satisfiability for Flat formulæ
	4 A More Tractable Subcase
	4.1 Some Heuristics

	5 Examples and Experiments
	6 Conclusions, Related and Further Work
	References

	A New Decision Procedure for Finite Sets and Cardinality Constraints in SMT
	1 Introduction
	1.1 Related Work
	1.2 Formal Preliminaries

	2 A Theory of Finite Sets with Cardinality
	3 A Calculus for the Theory
	3.1 Set Reasoning Rules
	3.2 Cardinality of Sets
	3.3 Cardinality and Membership Interaction

	4 Calculus Correctness
	4.1 Termination
	4.2 Completeness
	4.3 Soundness

	5 Evaluation
	5.1 Derivation Strategy
	5.2 Experimental Evaluation

	6 Conclusion
	References

	Congruence Closure in Intensional Type Theory
	1 Introduction
	2 Preliminaries
	2.1 Equality

	3 Congruence
	4 Congruence Closure
	5 Applications
	6 Related Work
	7 Conclusion
	References

	Fast Cube Tests for LIA Constraint Solving
	1 Introduction
	2 Preliminaries
	3 Fitting Cubes into Polyhedra
	4 Fast Cube Tests
	4.1 Largest Cube Test
	4.2 Unit Cube Test

	5 Experiments
	6 Further Cube Test Applications
	7 Conclusion
	References

	Model Finding for Recursive Functions in SMT
	1 Introduction
	2 Preliminaries
	3 The Translation
	4 Implementations
	4.1 CVC4
	4.2 Nunchaku

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Colors Make Theories Hard
	1 Introduction
	2 Background and Terminology
	3 k-Colorers and k-Colorable Theories with Equality
	4 Proving k-Colorabilty
	4.1 Exploiting Interpreted Constants, Closed Terms and Provably-Distinct Terms
	4.2 Exploiting Finite Domains of Fixed Size
	4.3 Dealing with Collection Datatypes

	5 k-Colorability vs. Non-Convexity
	6 Colorable Theories without Equality
	7 Open Issues, Ongoing and Future Work
	References


	Rewriting
	Nominal Confluence Tool
	1 Introduction
	2 Preliminaries
	3 Computing Rewrite Steps and Basic Critical Pairs
	3.1 Equivariant Unification
	3.2 Computing Basic Critical Pairs

	4 Proving Confluence Automatically
	4.1 Confluence Criteria
	4.2 Proving Termination

	5 Implementation and Experiments
	References

	Built-in Variant Generation and Unification, and Their Applications in Maude 2.7
	1 Introduction
	2 Built-in Order-Sorted Unification Modulo Axioms
	3 Built-in Variant Generation
	4 Built-in Variant-Based Unification
	5 Narrowing-Based Symbolic Reachability Analysis
	6 Applications
	References


	Arithmetic Reasoning and Mechanizing Mathematics
	Interpolant Synthesis for Quadratic Polynomial Inequalities and Combination with EUF
	1 Introduction
	2 Preliminaries
	2.1 Motzkin's Transposition Theorem

	3 Concave Quadratic Polynomials and their Linearization
	3.1 Linearization
	3.2 Motzkin's Theorem in Matrix Form

	4 Interpolants for Concave Quadratic Polynomial Inequalities
	4.1 NSC Condition and Generalization of Motzkin's Theorem
	4.2 Base Case: Generating Interpolant when NSC is Satisfied
	4.3 Computing Interpolant Using Semi-definite Programming
	4.4 General Case
	4.5 Algorithms

	5 Combination: CQI with EUF
	5.1 Problem Formulation
	5.2 Combination Algorithm

	6 Implementation and Experimental Results
	7 Conclusion
	References

	Race Against the Teens -- Benchmarking Mechanized Math on Pre-university Problems
	1 Introduction
	2 Pre-university Math Problems as a Benchmark for Mechanized Math Systems
	2.1 The Problem Library
	2.2 A Formalization of Curriculum Math Problems
	2.3 Representation Language
	2.4 Related Work

	3 Problem Samplers
	4 What Constitutes an Answer to a Find Problem?
	5 Prototype Solver
	6 Experiments
	7 Conclusion and Prospects
	References

	raSAT: An SMT Solver for Polynomial Constraints
	1 Introduction
	2 SMT Solver for Polynomial Constraints
	3 ICP and raSAT Loop for Inequality
	4 Generalized Intermediate Value Theorem for Equations
	4.1 Generalized Intermediate Value Theorem
	4.2  raSAT Loop with Generalized IVT

	5 Implementation and Experiments
	5.1 Implementation of raSAT
	5.2 Experiments

	6 Conclusion
	References


	First-Order Logic and Proof Theory
	Schematic Cut Elimination and the Ordered Pigeonhole Principle 
	1 Introduction
	2 The LKS-Calculus and Clause Set Schema
	2.1 Schematic Language, Proofs, and the LKS-Calculus
	2.2 Characteristic Clause Set Schema
	2.3 Resolution Proof Schemata
	2.4 Herbrand Systems

	3 ``Mathematical'' Proof of the ECA Statement and Discussion of Formal Proof
	4 Extraction of the Characteristic Term Schema
	5 Refutation of the Characteristic Clause Set of the ECA-Schema
	6 The Herbrand System for the ECA-Schema
	7 Conclusion
	References

	Subsumption Algorithms for Three-Valued Geometric Resolution
	1 Introduction
	2 Translation into Generalized Constraint Satisfaction Problem
	3 Matching Using Choice Stacks
	4 Matching with Conflict Learning
	5 Finding Optimal Matchings
	6 Conclusions
	References

	On Interpolation and Symbol Elimination in Theory Extensions
	1 Introduction
	2 Preliminaries
	3 Ground Interpolation and Quantifier Elimination
	4 Local Theory Extensions
	5 Symbol Elimination in Theory Extensions
	6 Ground Interpolation in Theory Extensions
	7 Conclusions
	References


	First-Order Theorem Proving
	System Description: GAPT 2.0
	1 Introduction
	2 Features
	3 Example
	4 Applications
	5 Future Work and Conclusion
	References

	nanoCoP: A Non-clausal Connection Prover
	1 Introduction
	2 The Non-clausal Connection Calculus
	3 The Implementation
	4 Experimental Evaluation
	5 Conclusion
	References

	Selecting the Selection
	1 Introduction
	2 Preliminaries
	3 The Superposition Calculus and Literal Selection
	4 Quality Selections
	4.1 Quality Orderings
	4.2 Quality-Based Selections
	4.3 Completing the Selection

	5 Lookahead Selection
	5.1 Given-Clause Algorithms and Term Indexing
	5.2 General Idea Behind Lookahead Selection
	5.3 Completing the Selection... Differently
	5.4 Efficiently Estimating Children

	6 Concrete Literal Selection Strategies
	6.1 Vampire
	6.2 SPASS Inspired
	6.3 E Prover Inspired

	7 Experimental Evaluation
	8 Impact of Selection on Portfolio Solving
	9 Conclusion
	References

	Performance of Clause Selection Heuristics for Saturation-Based Theorem Proving
	1 Introduction
	2 Saturating Theorem Proving
	2.1 Saturation Algorithms
	2.2 Clause Selection Heuristics

	3 Experimental Design
	3.1 Computing Environment and Test Set
	3.2 Claus Selection Heuristics

	4 Results
	4.1 Global Search Performance
	4.2 Search Performance by Problem Class
	4.3 Proof Size and Structure
	4.4 Proof Search Statistics and Performance

	5 Conclusion
	References


	Higher-Order Theorem Proving
	Internal Guidance for Satallax
	1 Introduction
	2 Naive Bayesian Classifier with Monoids
	2.1 Motivation
	2.2 Classifiers with Positive Examples
	2.3 Generalised Classifiers

	3 Learning Scenarios
	4 Internal Guidance for Given-Clause Provers
	4.1 Recording Training Data
	4.2 Postprocessing Training Data
	4.3 Transforming Training Data to Classification Data
	4.4 Clause Ranking

	5 Tuning of Guidance Parameters
	5.1 Off-Line Tuning
	5.2 Particle Swarm Optimisation

	6 Implementation
	7 Evaluation
	8 Conclusion
	References

	Effective Normalization Techniques for HOL
	1 Introduction
	2 Normalization Techniques
	2.1 Simplification and Extensionality Treatment
	2.2 Formula Renaming
	2.3 Argument Extraction
	2.4 Extended Prenex Normal Form

	3 Evaluation and Discussion
	4 Further Work
	5 Conclusion
	References


	Modal and Temporal Logics
	Complexity Optimal Decision Procedure for a Propositional Dynamic Logic with Parallel Composition
	1 Introduction
	2 Language and Semantics of PPDLdet
	3 Fischer-Ladner Closure
	4 Elimination of Hintikka Sets Procedure
	5 Completeness
	6 Soundness
	7 Conclusion and Perspectives
	References

	Interval Temporal Logic Model Checking: The Border Between Good and Bad HS Fragments
	1 Introduction
	2 Preliminaries
	3 EXPSPACE-Hardness of BE
	4 The Fragments AAEE and AABB: Polynomial-Size Model-Track Property
	5 Conclusions
	References

	KSP: A Resolution-Based Prover for Multimodal K
	1 Introduction
	2 Language
	3 A Calculus for [1.2ex]Kn
	4 Implementation
	5 Evaluation
	6 Conclusions and Future Work
	References

	Inducing Syntactic Cut-Elimination for Indexed Nested Sequents
	1 Introduction
	2 Preliminaries
	3 Syntactic Cut-Elimination for LTSE-Derivations
	4 LTSE Derivations: Sound and Complete for Geach Logics
	5 Maps Between LSEq-K*and INS-K*Calculi
	6 Intermediate Logics
	7 Conclusion
	References


	Non-classical Logics
	A Tableau System for Quasi-Hybrid Logic
	1 Introduction
	2 The Basic Hybrid Language
	3 Paraconsistency in Hybrid Logic
	3.1 Quasi-Hybrid Basic Logic

	4 A Tableau for Quasi-Hybrid Logic
	4.1 Tableau Rules for QH Logic
	4.2 Properties of the Tableau System and its Construction

	5 Conclusion
	References

	Machine-Checked Interpolation Theorems for Substructural Logics Using Display Calculi
	1 Introduction
	2 Display Calculi for (Some) Substructural Logics
	3 Interpolation for Display Calculi
	4 The Isabelle Mechanisation
	4.1 Formalising Display Logic in Isabelle
	4.2 Definitions Relating to Interpolation
	4.3 Substitution of Congruent Occurrences
	4.4 LADI Property for Unary Logical Rules
	4.5 LADI Property for (Unit) Contraction
	4.6 Deletion Lemma (, Lemma 4.2)
	4.7 LADI Property for (Unit) Weakening Rules
	4.8 LADI Property for Binary Multiplicative Logical Rules

	5 Discussion and Further Work
	6 Conclusions
	References

	Intuitionistic Layered Graph Logic
	1 Introduction
	2 Intuitionistic Layered Graph Logic
	3 Metatheory
	4 A Hilbert System and an Algebraic Semantics
	5 Extension to Resources and Actions: Examples
	References

	Gen2sat: An Automated Tool for Deciding Derivability in Analytic Pure Sequent Calculi
	1 Introduction
	2 Analytic Pure Sequent Calculi
	3 Features and Usage
	4 Implementation Details
	5 Performance
	6 Gen2sat for Education: A Pilot
	7 Conclusions and Future Work
	References


	Verification
	Model Checking Parameterised Multi-token Systems via the Composition Method
	1 Introduction
	2 Definitions
	3 Decidability Results
	3.1 The Composition Theorem
	3.2 FINITENESS Property for CTLd"026E30F X

	4 Undecidability
	5 Discussion
	References

	Unbounded-Thread Program Verification using Thread-State Equations
	1 Introduction
	2 Thread-Transition Systems
	3 Safety Proofs via Thread-State Equations
	3.1 Thread and Transition Counting
	3.2 Shared State Synchronization
	3.3 Thread-State Equations by Example

	4 Coverability Analysis via Thread-State Equations
	4.1 Coverability via TSE: The Algorithm
	4.2 Coverability via TSE: Analysis

	5 Empirical Evaluation
	6 Related Work and Discussion
	References

	A Complete Decision Procedure for Linearly Compositional Separation Logic with Data Constraints
	1 Introduction
	2 Linearly Compositional Separation Logic with Inductive Definitions
	3 Satisfiability
	4 Entailment
	4.1 Graph Representations of SLIDLC [P] Formulae
	4.2 Entailment Checking by Graph Homomorphisms

	5 Conclusion
	References

	Lower Runtime Bounds for Integer Programs
	1 Introduction
	2 Preliminaries
	3 Estimating the Number of Iterations of Simple Loops
	4 Simplifying Programs to Compute Lower Bounds
	4.1 Accelerating Simple Loops
	4.2 Chaining Transitions

	5 Asymptotic Lower Bounds for Simplified Programs
	5.1 Asymptotic Bounds and Limit Problems
	5.2 Transformation of Limit Problems

	6 Experiments and Conclusion
	References

	Translating Scala Programs to Isabelle/HOL
	1 Introduction
	2 Bridging the Gap
	2.1 Language Differences
	2.2 Translating Functions
	2.3 Recursion
	2.4 Cross-Language References

	3 Technical Considerations
	3.1 Leon Integration
	3.2 Process Communication

	4 Example
	5 Evaluation
	6 Conclusion
	References


	Author Index



