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In this book we present a collection of papers on the topic of applying paraconsistent
logic to solve inconsistency related problems in science, mathematics and computer
science. The goal is to develop, compare, and evaluate different ways of applying
paraconsistent logic. After more than 60 years of mainly theoretical developments
in many independent systems of paraconsistent logic, we believe the time has come
to compare and apply the developed systems in order to increase our philosophical
understanding of reasoning when faced with inconsistencies. This book wants to be
a first step toward an application based, constructive debate to tackle the question
which systems are best applied for which kind of problems and which philosophical
conclusions can be drawn from such applications.

In this introduction we begin with a short but original overview and categorization
of the research area of paraconsistency. We present some often heard reasons to
go paraconsistent, a number of strategies to formally obtain paraconsistency and a
couple of possible objections against paraconsistency. We hope that this way also
readers new to the field can find their way inside a sometimes ill-structured but very
interesting debate. The goal of this overview is therefore not at all encyclopaedic
or historical, but we aim to enable the reader to enter and structure the field with
a problem solving attitude: what are the problems paraconsistent logicians want
to solve, what are the strategies they use for solving them and what are the main
difficulties in the process toward the solution?

Paraconsistency is not a well defined notion. Paraconsistent reasoning could be
seen as any kind of reasoning which is able to deal with inconsistencies. Paraconsis-
tent logics propose systematic ways to reason paraconsistently. In this introduction

H. Andreas (B)
University of British Columbia, Kelowna, Canada
e-mail: holger.andreas@ubc.ca

P. Verdée
Université catholique de Louvain, Louvain-la-Neuve, Belgium
e-mail: peter.verdee@uclouvain.be

© Springer International Publishing AG 2016
H. Andreas and P. Verdée (eds.), Logical Studies of Paraconsistent
Reasoning in Science and Mathematics, Trends in Logic 45,
DOI 10.1007/978-3-319-40220-8_1

1



2 H. Andreas and P. Verdée

we will not make a distinction between inconsistencies and contradictions. Both
terms are used to indicate information from which, for some sentence A, both A and
not-A can be obtained.

The only characteristic all paraconsistent logics have in common is that theExplo-
sion rule, i.e. “derive B from A and ¬A” where ¬ is a negation connective, is not
valid. To people who have not studied formal logic, this rule usually comes across
as very awkward. It seems always unreasonable that the derivation of arbitrary con-
clusions is possible, no matter what the premises are. Most people will admit that
contradictions and contradictory theories are false, but deny that from false informa-
tion arbitrary conclusions can be obtained. There is no consensus on what should be
the rational alternative to Explosion. Some people will for example rather suggest
the opposite of Explosion: forbid to derive anything further once one has obtained
a contradiction. But this is not the general strategy of paraconsistent logics: most of
them will still allow some more innocent consequences of contradictory theories.

Although Explosion is generally not considered as pre-theoretically valid, and is
(to our knowledge) never applied in actual reasoning or informal proofs, the rule is
valid in the vast majority of theoretically elaborated symbolic logics (classical logic,
intuitionistic logic, fuzzy logic, their extensions - most modal, deontic, temporal
logics, and many more). The reason for this contrast between the counter-intuitive
character and general formal validity of Explosion is its connectedness with other
much more plausible principles of reasoning. Much more intuitive are the principles
of Disjunctive Syllogism (From ¬A and A ∨ B, derive B) and Addition or Disjunc-
tion Introduction (From A, derive A ∨ B). It is impossible to unrestrictedly validate
both rules in a Transitive system (in which formulas derived by means of rules can
be used as premises for the application of other rules), without also implicitly val-
idating the Explosion principle. To see this, consider that Addition enables us to
derive A ∨ B, for each arbitrary formula B, from premises A and ¬A. If we sub-
sequently apply Disjunctive Syllogism to this conclusion and the second premise,
we immediately obtain B, which was an arbitrary formula (possibly unrelated to the
premises).

However, there is no principled reason why a symbolic logic needs to validate
Explosion. For various reasons one may want a logic with exactly the property
not to validate Explosion. Of course one will also lose some other properties of
traditional explosive symbolic logics. We believe that one should not be dogmatic
about symbolic logic. The formal theory of logic is, just like any other theory, but an
attempt to capture external phenomena. Such an attempt is a fallible enterprise. Even
if one believes that there is one true ultimate logic, there is no absolute warrant that
our present most popular logical theories have correctly captured this ultimate logic.
Even if one argues that Explosion is ultimately a valid inference, one should explain
how rational agents deal with inconsistencies. If this can happen in a systematic way,
there is no reason why we should not explain it by means of a logic, where logic is
here understood in a maximally broad sense: as any symbolic way to theorize about
reasoning. Both the reasons why one wants a paraconsistent logic and the ways in
which paraconsistency is obtained may be very diverse. Let us first list some of the
reasons philosophers may have to develop paraconsistency.
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The first and most obvious reason is the need to deal with inconsistent informa-
tion or inconsistent theories. It is rather uncontroversial that every human attempt
to obtain empirical or theoretic information is susceptible to inconsistencies. The
reasons for this may be very diverse. There may be errors in the processing of
information, errors in storing and retrieving information, calculation errors, errors in
observation, discrepancies between theory and observations, unforeseen contradic-
tory outcomes of theories, incompatibilities between different of our best theories
about the world (possibly all empirically adequate w.r.t. past observations), inconsis-
tent sources, inconsistent databases, defeated conclusions of non-deductive reason-
ing…All human epistemic methods are fallible and in case of failure there is nothing
which canwarrant the freedom from inconsistencies. Each part of our knowledge can
in principle bewrong and then be in conflict with other parts or future observations. If
this happens, it is rarely easy to solve the issue by diagnosing the problem and simply
contracting the problematic sentences. These conflicts are parts of a structured web
full of useful information. But even if we are able to remove mistaken information,
there usually is no immediate correct alternative at hand which is harmless. As long
as there is no alternative, one seems to be forced to provisionally take this incon-
sistent body of information as it is and continue reasoning from there, until one has
found a way to solve the problem.

An Explosive logic cannot be used for this purpose, because in such a logic every
inconsistent theory is interderivable (from any inconsistent theory one can derive all
statements of any other theory) and thus equivalent. This means that, given an Explo-
sive logic, all inconsistent information becomes inferentially identical and therefore
entirely useless. It should not come as a surprise that this is highly undesired for
the above described type of problems. Instead one may want a logic that maximally
isolates (possible) inconsistencies so that the underlying problems do not infect or
affect other parts of our knowledge. Or, on the other side of the spectrum, one may
rather want a logic which maximally approximates an Explosive logic, but without
Explosion. Similarly, one may want a logic which spreads inconsistencies to all for-
mally related sentences to avoid potentially false assumptions of safety for indirectly
affected sentences. Alternatively, one may want a mechanism to “repair” the incon-
sistency. Yet another project may be to devise a logic which reduces inconsistencies
to more basic/primitive inconsistencies.

A second reason is dealing with inescapable, acceptable or true contradictions.
This concerns several versions of dialetheism (cf. [22]). Semantic paradoxes (among
which the famous Liar Paradox) show that we cannot combine traditional Explosive
logic, certain parts of ordinary language (e.g. unrestricted self reference) and straight-
forward principles of semantics (e.g. transparent truth). Other paradoxes (set theo-
retic, property theoretic, related to informal mathematical proofs or definitions) show
that inconsistencies are obtained by using certain intuitively very attractive principles
of reasoning. In all these cases ways have been found to avoid the inconsistencies
by restricting the modelled domains and the validity of the intuitive principles. But
one may choose to take the intuitions behind the problematic theories seriously and
so to bite the bullet and accept the inescapable inconsistency. Of course one needs a
logic to reason with such an acceptable or even true inconsistency. Even if one does
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not want to make the inconsistency true in a strong truth as correspondence-sense,
one may see a mathematical or semantic theory in a less realistic way and, because
of external reasons, argue that an inconsistent theory is preferable over its possible
consistent corrections as the most appropriate theory of a certain domain.

A third reason is dealing with the possibility of inconsistent (counterfactual)
worlds. Even if inconsistent objects do not exists, one may find it useful or even
metaphysically required to be able to reason with them. AMeinongian, for example,
who believes that inconsistent objects do not exist, may still see them as objects that
we can describe in a reasonable language. If they have inconsistent properties, an
Explosive logic cannot be the underlying logic of such a language. One may also
reason that logic should be maximally neutral. If the logic excludes inconsistent
theories already in advance, logic seriously restricts the metaphysical possibilities.
So even if one is strongly convinced that there are no true inconsistencies, one may
see this as a matter of fact and not as an a priori truth determined by logic.

A fourth reason may be dealing with the entailment/implication connective as
used in informal mathematics or science. Independent of one’s considerations about
the nature of negation and inconsistencies, logicians, such as the fathers of relevance
logics (cf. e.g. [1, 12]), have attempted to give a reasonable formalization of implica-
tion connectives (closer to actual usage than material implication). They took it to be
essential for implication to express a link between antecedent and consequent. There
is of course no link whatsoever between p-and-not-p and q, so p-and-not-p cannot
imply q, and so the object language variant of Explosion (A ∧ ¬A) → B cannot be
valid in a logic based on such a view on implication. In a sense then, such logics
are also paraconsistent, even if one often does not define a consequence relation but
merely a set of tautologies.

A fifth reason may be the discovery of ignored domains of mathematics. In the
same way as the generalization of real numbers to complex numbers turned out to be
a rich broadening of mathematics, also taking inconsistent theories and inconsistent
models of existing theories seriously may enlarge the mathematical domain in an
interesting way. Once one has a precise paraconsistent logic to deal with inconsis-
tencies, there is no reason why a mathematical theory could not be inconsistent, as
long as it is as rigorous as the theories of classical mathematics.

For all of these reasons, paraconsistent logicians have developed a plethora of
different systems in the relative short history of paraconsistency. We here list some
of the most prominent approaches, divided into several categories. The categories
may overlap. We certainly do not aim to give a full overview, but merely a more or
less original categorisation of possible approaches.

A first category contains logics in which the consistency of sentences can be
expressed formally by means of a (possibly defined) unary connective. In an Explo-
sive logic, such a symbol would be trivial, because every sentence is supposed to be
consistent in such a logic. The first examples of such logics were so called Da Costa
Cn-logics (cf. [13]) in which¬(A ∧ ¬A) is interpreted as expressing the consistency
of A. Later this is generalized to the class of LFI’s: Logics of Formal Inconsistency
(cf. [11]). This is a general framework which contains very different paraconsistent
logics with a unary consistency connective. In such logics one has Explosion for
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consistent formulas (and not for all other formulas). The advantage of this approach
is that one can understand and model classical reasoning as well as paraconsistent
reasoning, depending on which formulas are involved.

A second category are the many valued logics. The idea is to allow other truth
values than consistent truth and consistent falsity. An evident choice is of course the
introduction of a third value indicating both true and false. Other options are: going
four valued (adding a value for neither-true-nor-false) or even infinitely valued. In
general Disjunctive Syllogism will not be valid, because there are non-classical truth
values that make both A and ¬A ∨ B true without affecting the value of B. There
are a lot of examples, but prominent ones are these: the three valued logic of paradox
(cf. [20]), the four valued Belnap Dunn logic (cf. [14]) and, recently, paraconsistent
logics based on infinitely valued fuzzy logics [15]).

A third category are systems in which negation is a modal connective. This is a
diverse group, but in general one obtains paraconsistency by interpreting negation in
such a way that the truth of a negated formulas is interpreted as the possible falsity
of that formula. Just like it is consistent in classical modal logic that a formula is
true and possibly false, there are models in which a formula and its negation are both
true, given such a modal paraconsistent negation. The first and best known example
is what is now known as dual intuitionistic logic (cf. [16]). In the Kripke semantics of
intuitionistic logic negation is interpreted as not possibly true, were ‘possibly’ means
provable at some future point in time. In the dual version we could read negation
as possibly false or refutable at some point in time. This treatment of negation as a
modal connective can be based on many other modal logics in several diverse ways
of expressing the paraconsistent negation. A philosophical study of negation as a
modality can be found in [8].

A fourth category are the non-adjunctive or discussive paraconsistent logics (cf.
[17]). Consistencies are here possible because a sentence may be coherently held
by one agent in a discussion and its negation coherently by another agent in the
same discussion. From the point of view of a neutral observer of the discussion we
are dealing with an inconsistency. A ∧ ¬A would still explode, but there is no way
to conjoin A and ¬A. In these logics Addition is unproblematic, but Disjunctive
Syllogism is only valid in its one premise form: from A ∧ (¬A ∨ B) conclude B.
The Adjunction (Conjunction Introduction) rule (derive A ∧ B from A and B) is
blocked.

A fifth category are the non-monotonic logics. They restrict the law of Disjunctive
Syllogism to formulas which could be consistent in view of the premises. For the
other formulas one of the other paraconsistency strategies is used. That way only
those models are selected that verify a minimal amount of inconsistencies. The
advantage of this strategy is that one has the inferential richness of Explosive logics
for consistent premises, but also the inconsistency tolerance when the premises are
not consistent. The most well known examples are inconsistency adaptive logics [5]
and minimally inconsistent LP (cf. [21]).

A sixth category contains logics that are not cautiously transitive. Merely block-
ing (cautious) transitivity makes it possible to validate both Disjunctive Syllogism
and Addition (and in fact all the strength of classical logic for consistent premises)
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without necessarily validating the Explosion rule (cf. [6, 9]). Non-monotonic logics
will usually also be non-transitive but will make sure that they are cautiously transi-
tive (if something follows from the combination of the premises plus a conclusion,
then it is also a valid conclusion of the premises alone). If one does not have cautious
transitivity, one can have both unproblematic rules, as long as both are not applied
in chain (one after the other). In this case one can have a monotonic structural para-
consistent logic which validates all classical consequences of consistent premises.
The price to pay here is the capacity to build on earlier results. Every proof needs to
start again from the basic axioms.

A seventh category are the implication revising logics. It is quite generally recog-
nized that the material implication of classical logic (and many other logics) is far
from the implication connective used in informal reasoning. A first example are the
relevant logics (cf. [2] and the discussion above). Connexive logic (cf. [18]), on the
other hand, are not subclassical; they really contradict classical logic. They make
it false that something could imply its negation. If, by contrast, one also accepts
that it is true that (some) contradictions imply their negations, one easily obtains a
contradiction the logic should be able to deal with.

Still other options are logics with a non-deterministic semantics. In these systems
the semantics of complex sentences are not necessarily reduced/analysed into incon-
sistencies concerning primitive sentences. That way the negation of a sentence A
may for example be allowed to be true independent of the truth value of A. This way
A and its negation may be true together. Of course one loses compositionality, but
this does not need to make the logic inferentially impotent. Examples are the weaker
LFIs such as mbC and Batens’ system CLuN (cf. [4]).

A final category concerns the possibility to block Addition (possibly only for
inconsistent formulas) in order to avoid Explosion. In a logic that merely analyses
sentences into (combinations of) subsentences, of course one can never obtain an
arbitrary formula. This strategy is followed in [19].

It is clear that there are a lot of paraconsistent logics with a diverse set of purposes.
Although, in general, they are well-developed, both technically and philosophically,
there is not much research comparing them in relation to their applicability in sci-
ence and mathematics. It is surprising how little these logics are actively applied
to actual scientific or mathematical theories (other than some historical reconstruc-
tions). Given how common it is that scientists have to deal with inconsistencies
(between theories, between theories and observations, and inside theories) and incon-
sistency resolution, it is surprising that relatively little work has been done to make
the involved type of reasoning logically precise.

There may be several reasons for this. Let us summarize some of the possible
objections one may have against adopting a paraconsistent logic for concrete appli-
cations in science and mathematics. Many people are reluctant to use paraconsistent
logics because when adopting them, one loses the strongest possible argument to
reject problematic hypotheses and theories, i.e. the fact that they are inconsistent. In
a paraconsistent context, logic alone does not suffice to reject inconsistent theories.
Consequently, in such a context new information will never, by pure force of logic,
necessitate the revision of old information. Logic no longer excludes the possibil-
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ity to keep piling up all kinds of inconsistent information without ever contracting
old information. Belief revision is therefore no longer a logical requirement. There
may of course be many other reasonable criteria for rejecting problematic theories
(incoherence, vagueness, lack of elegance, lack of explanatory power, empirical inad-
equacy etc.) and consistency may in a paraconsistent context still be a locally valid
extra-logical requirement, or a property one may want to satisfy as much as possible.
Nevertheless it is dialectically very attractive to possess a logical criterion to dismiss
every theory from which one can derive an inconsistency.

Moreover, the discussion above shows that (most) paraconsistent logics need
to lose some a priori attractive principles of reason. We have become so used to
classical logic that all of the above considered principles (Disjunctive Syllogism,
Addition, Adjunction,Monotonicity and Transitivity) seem very natural principles of
logical consequence often successfully applied in informalmathematical or scientific
reasoning. If such principles are no longer logically valid, one needs to explain the
discrepancy between logic and practice. Are the apparently successful applications
of the invalid principles mistakes, locally correct applications of a generally speaking
invalid principle, or the result of a mistaken formalization? Moreover, if not merely
metalogical principles (Monotonicity, Transitivity) but actual logic rules (Disjunctive
Syllogism, Addition, Adjunction) are blocked, one loses inferential power to the
effect that many theories become much weaker. This may be desirable for those
parts of the considered theory where one is confronted with actual inconsistencies,
but problematic where everything seems to behave consistently.

Logics that have more inferential power but require specific treatment for consis-
tent parts of theories are often computationally highly complex. In order to find out
whether a specific application of a rule is valid, one needs to know already whether
an inconsistency is derivable from certain involved formulas in relation to the rest
of the theory. Calculating this may be very difficult (cf. [25]). Suppose that, inside a
given theory � ∪ {A,¬A ∨ B}, one wants to apply Disjunctive Syllogism to obtain
B. If the paraconsistent logic only allows this rule if A is consistent, one needs to
find out whether ¬A is derivable from �, before one is able to correctly apply this
single rule. If � and A have some non-logical vocabulary in common and � is a large
set or forms a complex theory, finding this out may be immensely time consuming
or even undecidable. Computational complexity is not a conclusive reason to reject a
logic, because the logic may be seen as merely the ideal but difficult or unreachable
standard of reasoning. But in that case one should explain how human agents can at
least approximately deal with the unreachable ideal reasoning standards in practice.

Yet another possible objection is the questionwhether formal logic is applicable in
an inconsistent context. Thosewhodo accept the importance of inconsistency tolerant
reasoning may object that this type of reasoning (largely) happens extralogically (cf.
[24]). Important extra-logical factors involved in dealing with inconsistencies are:
the sources of information, the priority ordering of information and its sources, the
goals of reasoning, social and dialectical dynamics of reasoning and arguing, and
fallible diagnostic reasoning.Nobodywill deny that such factors play a role in dealing
with (at least some) inconsistencies, but that does not mean that one cannot also say
something with logical generality based solely on the form of involved expressions.
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Even those who accept that paraconsistent logics correctly formalize some phe-
nomena, may still claim that, to the extent that they are useful, paraconsistent logics
can be translated into more traditional explosive logics. Either one claims that what
paraconsistent logicians would formalize as an inconsistency should actually be for-
malized differently (possibly with the same syntactic consequences). If an agent
receives information A and information ¬A from two equally reliable sources, it
makes sense to formalize this as ‘agent 1 believes A’ and ‘agent 2 believes ¬A’,
using doxastic or epistemic modalities. Even in explosive logics this pair does not
explode. Similar modal solutions work for every kind of inconsistency coming from
different origins (incompatible axioms, theories, observations). In case the incon-
sistency originates from one indissoluble (inconsistent) body of information this
strategy does not work, but one could then argue that the body of information is
simply unreliable and should not be used for doing further reasoning.

Another alternative is to consider the paraconsistent negation as a coherent unary
connective that can be added to classical logic, but not as the negation. One can often
use the usually classical semantics of the paraconsistent negation connective to add it
to classical logic as a conservative extension. Or one can define inconsistency tolerant
databases or inconsistent properties/collections inside a purely classical context as
well-defined mathematical objects. Compare it to fuzzy set theory. People speak of
fuzzy sets (cf. [26]), but they are merely useful classical mathematics tools, which
are defined by means of ordinary sets and real number theory. They behave in such
a way that they are more subtle generalizations of ordinary sets (ones to which the
elements belong to a certain degree, instead of just in or out). They are no alternatives
to classical set theory, but mere extensions of it. People who accept the usefulness of
some paraconsistent logics can claim the same thing about a paraconsistent negation;
a useful tool that can be defined in a rich enough classical logic (plus perhaps some
parts of classical set theory). For many applications of paraconsistent logic it seems
indeed unnecessary to really revise classical logic; it is often sufficient to realize
that classical logic is not the appropriate tool to approach inconsistent collections of
information. But classical logic was never meant for this purpose anyway. The idea
would be that one could keep using classical logic with its inconsistency intolerant
negation for all the more foundational/justifying purposes it was meant for. This may
be a reasonable position if it concerns rather practical applications of paraconsistent
logic, but it does not work for more fundamental applications about the very basics
of mathematics, philosophy and logic.

We have listed a number of often heard objections to the usefulness of paracon-
sistent logic as an alternative to classical logic. None of these objections are suffi-
cient arguments to reject the usefulness of paraconsistent logics, but those defending
paraconsistent logics need to specify how to overcome these issues. This itself is an
interesting debate and the possible answers depend a lot on which logic and which
application one has in mind.

The reader understands by now that paraconsistency is a diverse phenomenonwith
different raisons d’être, different technical solution and different ways to respond
to criticism, all of which have to do with the specific application one has in mind.
Nevertheless there is also quite a lot of commonground. Similar techniques have been
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used, similar arguments have been given against Explosion and against the critics
of paraconsistency, and similar inconsistent theories have been studied, all of this
often independently fromone another and inside different schools of paraconsistency.
Nevertheless there is relatively little study about the similarities and differences of the
different currents of paraconsistency in relation to the intended real life applications
of paraconsistency.

In order to open the debate on how the different formalisms relate to their real life
applications in the philosophy of science and mathematics, we decided to organize
a conference on this topic in Munich, Germany: the conference Paraconsistent Rea-
soning in Science and Mathematics (June 11–13, 2014) in the beautiful setting of the
Carl-Friedrich-von-Siemens-Stiftung. Our aim was to bring the different schools of
paraconsistency together to open the debate on how the different formalisms relate
to their real life applications in the philosophy of science and mathematics.

The level of the talks and the quality of the debate was so high that the participants
of the conference were all in favour of publishing a volume on the topic of the confer-
ence, aiming toward a written andmore detailed follow up of this debate. The present
book is the result. We hope the reader will find that it lives up to the expectations. In
what follows, we give a brief summary of every paper of our collection.

1 Holger Andreas and Peter Verdée: Adaptive Proofs
for Networks of Partial Structures

According to Carnap [10], we interpret and understand the theoretical terms of a
theory T in such a manner that the axioms of T come out true. If, however, T is
classically inconsistent, this semantic doctrine fails to work properly. The theoretical
terms remain uninterpreted in this case. This is not satisfactory insofar as numerous
scientific theories turned out to be inconsistent in some way or other – science is full
of inconsistencies. Hence, it is desirable to have a semantics of theoretical terms that
also applies to inconsistent theories.

Holger Andreas and Peter Verdée, consequently, develop a paraconsistent gen-
eralization of the semantic doctrine in question: we interpret and understand the
theoretical terms of a theory T in such a manner that the axioms of T are satisfied to
amaximal extent. Formally, we describe such interpretations in terms of a network of
partial structures, and thereby define a preferred models semantics of paraconsistent
scientific reasoning. This semantics respectively defines an inference relation for flat
and prioritized axiomatic theories.

A preferred models semantics by itself does not give us a proof-theoretic account
of scientific reasoning with theoretical terms. For this to be achieved, the framework
of adaptive logic with its dynamic proof-theory suggests itself. Hence, we present a
flat and a lexicographic adaptive logic which are proven to capture the inference rela-
tion for flat and prioritized axiomatic theories. Because the adaptive logics belong
to the category of standard (lexicographic) adaptive logics, the adaptive characteri-
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zation immediately gives rise to an adequate dynamic proof theory for the inference
relations. The paper concludes with a demonstration of how we can derive sensible
conclusions from Bohr’s model of the atom using adaptive proofs.

2 Franzesco Berto: Ceteris Paribus Imagination

Franzesco Berto explores impossible worlds for an analysis of ceteris paribus imagi-
nation. An impossible world is one where the laws of classical logic may be violated
by the truth-value assignment to atomic and complex formulas. Hence, an impossi-
ble world may verify a set of sentences that is classically inconsistent. Impossible
worlds, therefore, may serve as a model of inconsistent beliefs.

Why should we want to model inconsistent beliefs? The underlying motivation
derives from the limitations of our logical capacities. We are unable to grasp all
logical consequences of a set of explicit beliefs, and we may even fail to recognize
inconsistencies in our explicit beliefs. As is well known, this happened to Frege when
he developed his Basic Laws of Arithmetic. In brief, we are not logically omniscient.

Ceteris paribus imagination is modelled by a conditional: if an agent explicitly
conceives A to be the case, then B is part of the imagined scenario. In formal terms:
[A]B, where [∗] is a modal operator, defined by an accessibility relation on the set
of possible and impossible worlds. [A] B holds true if B is verified by all worlds
(possible and impossible ones) that are reachable from the actual world and in which
A holds true.

Having defined a worlds semantics of [A]B, Berto investigates which axioms
envisioned for variably strict conditionals remain valid for ceteris paribus imagina-
tion. Notably, [A ∧ ¬A]B fails to hold for arbitrary B. Imagining an inconsistent
scenario does not mean that we trivialize what we conceive. In this respect, the ceteris
paribus conditional behaves like a paraconsistent consequence relation.

3 Bryson Brown: On the Preservation of Reliability

Science is full of inconsistencies: first, we have scientific theories that are internally
inconsistent and thus imply a contradiction. Second, we have scientific theories that
make assumptions inconsistentwith other accepted scientific theories. Third,we have
numerous approximations and idealizations that are known to be inconsistent with
what we strictly believe about the respective theoretical entities. Fourth, scientific
theories are often times inconsistent with certain predecessor theories, while pre-
serving many of their empirical predictions. These inconsistencies strongly suggest
the need for a paraconsistent treatment of scientific reasoning.

Bryson Brown attempts to provide methodological foundations for a paraconsis-
tent approach to scientific reasoning. His proposal is to view reliability-in place of
truth-as the property to be preserved by proper scientific reasoning, as well as in the
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replacement of earlier scientific theories by new ones. The main focus of Brown’s
paper is on reliable inference patterns in the history of science, including Planck’s
treatment of black body radiation and Bohr’s theory of the hydrogen atom; work
by Nancy Cartwright and Bas C. van Fraassen is also discussed, leading up to an
account of a modestly paraconsistent approach to scientific reasoning.

4 Luis Estrada-González: Prospects for Triviality

This paper studies triviality in mathematical theories, an important enemy of most
paraconsistent logicians. Paraconsistent logics (want to) serve as the underlying logic
of inconsistent theories, exactly because they can avoid triviality. Trivial theories are
usually seen as meaningless and even disastrous. This position was among others
defended by Chris Mortensen.

The author of this paper discusses the central question whether triviality is always
so bad andwants to answer it in the negative, againstMortensen’s position. He argues
that there is a case of an extremely simple mathematical category theoretic universe,
a degenerate topos, in which everything is true. This universe is therefore trivial, but
it is not inherently problematic.

Mortensen’s case is built on a trivialisation result for real number theory. González
shows that either one of the premises of the trivialization result cannot obtain (from
a point of view external to the universe) and thus the argument is unsound, or that
it obtains in calculations internal to such a trivial universe. In the latter case the
calculations in the trivial universe are possible and meaningful albeit extremely
simple. Our actual universe is probably not as simple as and so does not correspond
to this degenerate topos, but that does not mean that what is done inside the universe
is meaningless.

5 Andreas Kapsner: On Gluts in Mathematics and Science

This paper discusses the question whether truth value gluts (both true and false)
should be designated in an analysis of mathematical and scientific reasoning. Prac-
tically speaking the question is whether one should assert sentences that are true
and false and whether they should be used as basis for decisions and actions and
as premises of arguments. The traditional paraconsistent view is that there are truth
value gluts and that they should be designated. In some sense the converse goes
against the very basic starting point of paraconsistency: a non-designated glut will
not block the Explosion rules.

Kapsner defends the view that it is often, but not always, unreasonable to assert
glutted statements. He presents a clear case: if two costumer reviews contradict each
other on the quality of a product, one should not assert the contradicting information
obtained by reading the reviews. Subsequently he presents some cases from the
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history of science (the infinitesimal calculus and the Darwin–Kelvin debate on the
age of the earth) to indicate that also in these case it may be more reasonable not to
designate gluts.

6 Carlos A. Oller: Contradictoriness, Paraconsistent
Negation and Non-intended Models of Classical Logic

This paper concerns the often heard argument that paraconsistent negation is not
a real negation because a sentence and its negation should never be true together.
The author attacks the argument by showing that it could also be used to show that
classical logic’s negation is by the same standards not a real negation either.

Classical logic has certain unavoidable non-intended models. Carnap was the first
to point out that adding a trivialmodel (inwhich all formulas are true) to the semantics
of classical logic does not affect the set of valid consequences. In such a model of
course formulas and their negations are both true. It seems thus that it is impossible
even in classical logic to exclude the possibility that a formula and its negation are
both true.

7 Hitoshi Omori: From Paraconsistent Logic
to Dialetheic Logic

This paper proposes a new approach to paraconsistent logic to be applied as the
underlying logic of a dialetheic version of naive set theory and naive truth. The
author proposes an attractive logic which is not only paraconsistent in that it can
tolerate inconsistent formulas, but also dialetheic, in the sense that it also makes
certain inconsistent formulas into tautologies.

Omori returns to the modern origins of paraconsistent logic and proposes a para-
consistent account of negation in line with some ideas by Jaśkowski: that a good
negation should be a connective such that each formula and its negation form con-
tradictory pairs. This is realized by requiring that a formula is true iff its negation
is false, and false iff its negation is true. A necessary condition for paraconsistent
logics respecting this account of negation is that Double Negation rules are valid.

In order for the logic to work with prototypical inconsistent mathematical theories
such as naive set theory, one needs a weak enough biconditional to non-trivially
express axiom schemas like the axiom of Abstraction. To this purpose a strategy
suggested by Laura Goodship is used: opt for the material biconditional of LP.
Omori adds to this concept some ingredients of LFIs (a consistency operator) and
connexive logics (the conditional is false when the antecedent is not true or the
consequent is false). The result is a dialetheic logic with a functionally complete
three valued semantics.
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8 Martin Pleitz: Paradoxes of Expression

The history of the paradoxes and attempted solutions thereof shows many cases
where a certain solution falls prey to another, more refined variant of the original
paradox. The revenge liar is the most famous instance of such cases. Martin Pleitz
adds another chapter to this history of attempted solutions and recurrent paradoxes.

The focus is on a recent proposal by Graham Priest to solve the semantic and
set-theoretic paradoxes using a biconditional that does not detach, i.e., that fails to
satisfy modus ponens. A detachable truth schema, however, is needed for what has
been described as blind endorsement. For example, if one holds that everything that
the Bible says is true, one blindly endorses all the claims made in the Bible. To
solve this problem, Priest entertains the idea of introducing a detachable conditional,
together with an expression predicate that allows us to say that certain propositions
are expressed by certain sentences.

Martin Pleitz formulates a very reasonable principle that an expression operator,
licensing blind endorsements, should satisfy: any meaningful sentence should be
synonymous with itself. Based on an axiomatic formulation of this principle, he
shows that variants of the Liar and the Curry paradox can be formulated. Hence,
we have a contradiction and a way to trivialize the system envisioned by Priest. As
triviality is unbearable even in a paraconsistent setting, this casts serious doubt on
Priest’s proposed solution.

9 Corry Shores: Dialetheism in the Structure
of Phenomenal Time

The very idea of motion seems to be contradictory: if we say that an object is moving,
we imply that it is at different places at different times. So far, things are consistent.
If, however, we want to say that an object is moving right now, we seem to ascribe
the property of changing positions to a specific time point. At a specific time point,
however, an object can only be at one place. Drawing on Zeno’s paradox of the arrow
and assuming that only the present time point has reality, we can thus argue that no
object is really moving. Motion is not part of reality. Likewise, the flow of time is an
unreal phenomenon.

Alternatively, we can accept that motion and time are contradictory but real,
thereby embracing some form dialetheism. This alternative is investigated and sym-
pathetically entertained by Corry Shores in his contribution. Besides the work of
Zeno, he draws on Husserl’s phenomenology and subsequent phenomenological
research to motivate a dialetheist account of change and time. Dialetheist ideas about
the phenomenology of time are thus brought together with recent work in theoretical
psychology.
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10 Fenner S. Tanswell: Saving Proof from Paradox: Gödel’s
Paradox and the Inconsistency of Informal Mathematics

In this paper two of the most popular arguments (by Beall resp. Priest) in favour of
the inconsistency of (informal) mathematics (and so the need to formalize it with a
paraconsistent logic) are discussed. A first argument is based on what is sometimes
called Gödel’s paradox, i.e. a sentence expressing that it is not provable. Accepting
the existence of such a sentence leads to a contradiction in mathematics. The second
argument is based on the incompatibility of completeness and consistency estab-
lished by Gödel’s incompleteness theorems. Arguing in favour of the completeness
of informal mathematics, thus also forms an argument against the consistency of
mathematics.

Tanswell argues against these arguments that the necessary distinctions between
formality and informality are often ignored. The author also points at problems with
the assumption of the unity of informal mathematics.

11 Heinrich Wansing and Sergei Odintsov:
On the Methodology of Paraconsistent Logic

Whenwe decided to organize our conference onParaconsistent Reasoning in Science
and Mathematics, we wanted to stimulate discussion, exchange of ideas, and further
research on the desiderata that a paraconsistent logic should satisfy. We argued there
to be three core desiderata: (1) A paraconsistent logic ought to capture the inferential
use of inconsistent but non-trivial theories. (2) A paraconsistent approach should
explain how one can weaken the underlying logic of classical logic to get rid of the
explosion principle and still have enough inferential power to be successful. (3) It is
desirable to have a philosophical motivation for the deviation from classical logic in
terms of epistemological and, possibly, also metaphysical considerations.

We have then been very pleased to see that HeinrichWansing and Sergei Odintsov
directly address the question of which desiderata a paraconsistent logic should sat-
isfy. While investigating the historical roots of the above desiderata, they cast some
doubt on desiderata (2) and (3). More precisely, they question that the reference logic
of a paraconsistent logic should be classical logic, arguing that the choice of classical
logic as reference logic is at least difficult to justify. As for the philosophical motiva-
tion for developing a specific paraconsistent logic, the notion of information should
play a central role rather than epistemological and metaphysical considerations. As
information about whatever domain is rarely complete and often times inconsistent,
an informational methodology of paraconsistent logic may lead us to choosing a
non-bivalent logic as reference logic.

The paper further discusses in great detail the maximality condition that a para-
consistent logic should satisfy with reference to classical logic, thus drawing on
work by Arieli et al. [3]. Moreover, it examines methodological considerations on
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the desiderata of a paraconsistent logic that have been suggested by Priest and Rout-
ley [23]. Finally, Wansing and Odintsov sketch a universal approach to constructing
a paraconsistent logic for a given reference logic that may well not be classical logic.

12 Zach Weber: Paraconsistent Computation
and Dialetheic Machines

This paper concerns the application of paraconsistent logic and dialetheism to theo-
retic computer science. The question is asked whether there are algorithms which are
essentially paraconsistent, in the sense that only paraconsistent logic can recognize
them. While the question may seem counterintuitive, it is clear that certain objects
can exists in paraconsistent mathematics which cannot exist otherwise (for example
the Russell set or the set of all ordinals). So it is not unlikely that also the concept of an
algorithm should be reconsidered in a paraconsistent setting in order for classically
unknowable but useful objects to be recognized and studied.

The author argues in favour of the existence of such properly paraconsistent com-
putations. Arguments by Sylvan and Copeland, Routley, and Priest support this view.
One of the arguments goes as follows: in view of a straightforward diagonalization,
the algorithm that enumerates all algorithms (intuitively) is but at the same time
cannot be an algorithm. If it is an algorithm (and it sure seems to be one) it has to be
an inconsistent algorithm.

Subsequently Weber investigates the ways in which one could formulate para-
consistent algorithms in a dialetheic mathematical metalanguage. He discusses the
properties of so called dialetheic machines and their relation with finiteness and the
halting problem.
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