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Paraconsistent Reasoning in Science
and Mathematics: Introduction

Holger Andreas and Peter Verdée

In this book we present a collection of papers on the topic of applying paraconsistent
logic to solve inconsistency related problems in science, mathematics and computer
science. The goal is to develop, compare, and evaluate different ways of applying
paraconsistent logic. After more than 60 years of mainly theoretical developments
in many independent systems of paraconsistent logic, we believe the time has come
to compare and apply the developed systems in order to increase our philosophical
understanding of reasoning when faced with inconsistencies. This book wants to be
a first step toward an application based, constructive debate to tackle the question
which systems are best applied for which kind of problems and which philosophical
conclusions can be drawn from such applications.

In this introduction we begin with a short but original overview and categorization
of the research area of paraconsistency. We present some often heard reasons to
go paraconsistent, a number of strategies to formally obtain paraconsistency and a
couple of possible objections against paraconsistency. We hope that this way also
readers new to the field can find their way inside a sometimes ill-structured but very
interesting debate. The goal of this overview is therefore not at all encyclopaedic
or historical, but we aim to enable the reader to enter and structure the field with
a problem solving attitude: what are the problems paraconsistent logicians want
to solve, what are the strategies they use for solving them and what are the main
difficulties in the process toward the solution?

Paraconsistency is not a well defined notion. Paraconsistent reasoning could be
seen as any kind of reasoning which is able to deal with inconsistencies. Paraconsis-
tent logics propose systematic ways to reason paraconsistently. In this introduction
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2 H. Andreas and P. Verdée

we will not make a distinction between inconsistencies and contradictions. Both
terms are used to indicate information from which, for some sentence A, both A and
not-A can be obtained.

The only characteristic all paraconsistent logics have in common is that theExplo-
sion rule, i.e. “derive B from A and ¬A” where ¬ is a negation connective, is not
valid. To people who have not studied formal logic, this rule usually comes across
as very awkward. It seems always unreasonable that the derivation of arbitrary con-
clusions is possible, no matter what the premises are. Most people will admit that
contradictions and contradictory theories are false, but deny that from false informa-
tion arbitrary conclusions can be obtained. There is no consensus on what should be
the rational alternative to Explosion. Some people will for example rather suggest
the opposite of Explosion: forbid to derive anything further once one has obtained
a contradiction. But this is not the general strategy of paraconsistent logics: most of
them will still allow some more innocent consequences of contradictory theories.

Although Explosion is generally not considered as pre-theoretically valid, and is
(to our knowledge) never applied in actual reasoning or informal proofs, the rule is
valid in the vast majority of theoretically elaborated symbolic logics (classical logic,
intuitionistic logic, fuzzy logic, their extensions - most modal, deontic, temporal
logics, and many more). The reason for this contrast between the counter-intuitive
character and general formal validity of Explosion is its connectedness with other
much more plausible principles of reasoning. Much more intuitive are the principles
of Disjunctive Syllogism (From ¬A and A ∨ B, derive B) and Addition or Disjunc-
tion Introduction (From A, derive A ∨ B). It is impossible to unrestrictedly validate
both rules in a Transitive system (in which formulas derived by means of rules can
be used as premises for the application of other rules), without also implicitly val-
idating the Explosion principle. To see this, consider that Addition enables us to
derive A ∨ B, for each arbitrary formula B, from premises A and ¬A. If we sub-
sequently apply Disjunctive Syllogism to this conclusion and the second premise,
we immediately obtain B, which was an arbitrary formula (possibly unrelated to the
premises).

However, there is no principled reason why a symbolic logic needs to validate
Explosion. For various reasons one may want a logic with exactly the property
not to validate Explosion. Of course one will also lose some other properties of
traditional explosive symbolic logics. We believe that one should not be dogmatic
about symbolic logic. The formal theory of logic is, just like any other theory, but an
attempt to capture external phenomena. Such an attempt is a fallible enterprise. Even
if one believes that there is one true ultimate logic, there is no absolute warrant that
our present most popular logical theories have correctly captured this ultimate logic.
Even if one argues that Explosion is ultimately a valid inference, one should explain
how rational agents deal with inconsistencies. If this can happen in a systematic way,
there is no reason why we should not explain it by means of a logic, where logic is
here understood in a maximally broad sense: as any symbolic way to theorize about
reasoning. Both the reasons why one wants a paraconsistent logic and the ways in
which paraconsistency is obtained may be very diverse. Let us first list some of the
reasons philosophers may have to develop paraconsistency.
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The first and most obvious reason is the need to deal with inconsistent informa-
tion or inconsistent theories. It is rather uncontroversial that every human attempt
to obtain empirical or theoretic information is susceptible to inconsistencies. The
reasons for this may be very diverse. There may be errors in the processing of
information, errors in storing and retrieving information, calculation errors, errors in
observation, discrepancies between theory and observations, unforeseen contradic-
tory outcomes of theories, incompatibilities between different of our best theories
about the world (possibly all empirically adequate w.r.t. past observations), inconsis-
tent sources, inconsistent databases, defeated conclusions of non-deductive reason-
ing…All human epistemic methods are fallible and in case of failure there is nothing
which canwarrant the freedom from inconsistencies. Each part of our knowledge can
in principle bewrong and then be in conflict with other parts or future observations. If
this happens, it is rarely easy to solve the issue by diagnosing the problem and simply
contracting the problematic sentences. These conflicts are parts of a structured web
full of useful information. But even if we are able to remove mistaken information,
there usually is no immediate correct alternative at hand which is harmless. As long
as there is no alternative, one seems to be forced to provisionally take this incon-
sistent body of information as it is and continue reasoning from there, until one has
found a way to solve the problem.

An Explosive logic cannot be used for this purpose, because in such a logic every
inconsistent theory is interderivable (from any inconsistent theory one can derive all
statements of any other theory) and thus equivalent. This means that, given an Explo-
sive logic, all inconsistent information becomes inferentially identical and therefore
entirely useless. It should not come as a surprise that this is highly undesired for
the above described type of problems. Instead one may want a logic that maximally
isolates (possible) inconsistencies so that the underlying problems do not infect or
affect other parts of our knowledge. Or, on the other side of the spectrum, one may
rather want a logic which maximally approximates an Explosive logic, but without
Explosion. Similarly, one may want a logic which spreads inconsistencies to all for-
mally related sentences to avoid potentially false assumptions of safety for indirectly
affected sentences. Alternatively, one may want a mechanism to “repair” the incon-
sistency. Yet another project may be to devise a logic which reduces inconsistencies
to more basic/primitive inconsistencies.

A second reason is dealing with inescapable, acceptable or true contradictions.
This concerns several versions of dialetheism (cf. [22]). Semantic paradoxes (among
which the famous Liar Paradox) show that we cannot combine traditional Explosive
logic, certain parts of ordinary language (e.g. unrestricted self reference) and straight-
forward principles of semantics (e.g. transparent truth). Other paradoxes (set theo-
retic, property theoretic, related to informal mathematical proofs or definitions) show
that inconsistencies are obtained by using certain intuitively very attractive principles
of reasoning. In all these cases ways have been found to avoid the inconsistencies
by restricting the modelled domains and the validity of the intuitive principles. But
one may choose to take the intuitions behind the problematic theories seriously and
so to bite the bullet and accept the inescapable inconsistency. Of course one needs a
logic to reason with such an acceptable or even true inconsistency. Even if one does
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not want to make the inconsistency true in a strong truth as correspondence-sense,
one may see a mathematical or semantic theory in a less realistic way and, because
of external reasons, argue that an inconsistent theory is preferable over its possible
consistent corrections as the most appropriate theory of a certain domain.

A third reason is dealing with the possibility of inconsistent (counterfactual)
worlds. Even if inconsistent objects do not exists, one may find it useful or even
metaphysically required to be able to reason with them. AMeinongian, for example,
who believes that inconsistent objects do not exist, may still see them as objects that
we can describe in a reasonable language. If they have inconsistent properties, an
Explosive logic cannot be the underlying logic of such a language. One may also
reason that logic should be maximally neutral. If the logic excludes inconsistent
theories already in advance, logic seriously restricts the metaphysical possibilities.
So even if one is strongly convinced that there are no true inconsistencies, one may
see this as a matter of fact and not as an a priori truth determined by logic.

A fourth reason may be dealing with the entailment/implication connective as
used in informal mathematics or science. Independent of one’s considerations about
the nature of negation and inconsistencies, logicians, such as the fathers of relevance
logics (cf. e.g. [1, 12]), have attempted to give a reasonable formalization of implica-
tion connectives (closer to actual usage than material implication). They took it to be
essential for implication to express a link between antecedent and consequent. There
is of course no link whatsoever between p-and-not-p and q, so p-and-not-p cannot
imply q, and so the object language variant of Explosion (A ∧ ¬A) → B cannot be
valid in a logic based on such a view on implication. In a sense then, such logics
are also paraconsistent, even if one often does not define a consequence relation but
merely a set of tautologies.

A fifth reason may be the discovery of ignored domains of mathematics. In the
same way as the generalization of real numbers to complex numbers turned out to be
a rich broadening of mathematics, also taking inconsistent theories and inconsistent
models of existing theories seriously may enlarge the mathematical domain in an
interesting way. Once one has a precise paraconsistent logic to deal with inconsis-
tencies, there is no reason why a mathematical theory could not be inconsistent, as
long as it is as rigorous as the theories of classical mathematics.

For all of these reasons, paraconsistent logicians have developed a plethora of
different systems in the relative short history of paraconsistency. We here list some
of the most prominent approaches, divided into several categories. The categories
may overlap. We certainly do not aim to give a full overview, but merely a more or
less original categorisation of possible approaches.

A first category contains logics in which the consistency of sentences can be
expressed formally by means of a (possibly defined) unary connective. In an Explo-
sive logic, such a symbol would be trivial, because every sentence is supposed to be
consistent in such a logic. The first examples of such logics were so called Da Costa
Cn-logics (cf. [13]) in which¬(A ∧ ¬A) is interpreted as expressing the consistency
of A. Later this is generalized to the class of LFI’s: Logics of Formal Inconsistency
(cf. [11]). This is a general framework which contains very different paraconsistent
logics with a unary consistency connective. In such logics one has Explosion for
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consistent formulas (and not for all other formulas). The advantage of this approach
is that one can understand and model classical reasoning as well as paraconsistent
reasoning, depending on which formulas are involved.

A second category are the many valued logics. The idea is to allow other truth
values than consistent truth and consistent falsity. An evident choice is of course the
introduction of a third value indicating both true and false. Other options are: going
four valued (adding a value for neither-true-nor-false) or even infinitely valued. In
general Disjunctive Syllogism will not be valid, because there are non-classical truth
values that make both A and ¬A ∨ B true without affecting the value of B. There
are a lot of examples, but prominent ones are these: the three valued logic of paradox
(cf. [20]), the four valued Belnap Dunn logic (cf. [14]) and, recently, paraconsistent
logics based on infinitely valued fuzzy logics [15]).

A third category are systems in which negation is a modal connective. This is a
diverse group, but in general one obtains paraconsistency by interpreting negation in
such a way that the truth of a negated formulas is interpreted as the possible falsity
of that formula. Just like it is consistent in classical modal logic that a formula is
true and possibly false, there are models in which a formula and its negation are both
true, given such a modal paraconsistent negation. The first and best known example
is what is now known as dual intuitionistic logic (cf. [16]). In the Kripke semantics of
intuitionistic logic negation is interpreted as not possibly true, were ‘possibly’ means
provable at some future point in time. In the dual version we could read negation
as possibly false or refutable at some point in time. This treatment of negation as a
modal connective can be based on many other modal logics in several diverse ways
of expressing the paraconsistent negation. A philosophical study of negation as a
modality can be found in [8].

A fourth category are the non-adjunctive or discussive paraconsistent logics (cf.
[17]). Consistencies are here possible because a sentence may be coherently held
by one agent in a discussion and its negation coherently by another agent in the
same discussion. From the point of view of a neutral observer of the discussion we
are dealing with an inconsistency. A ∧ ¬A would still explode, but there is no way
to conjoin A and ¬A. In these logics Addition is unproblematic, but Disjunctive
Syllogism is only valid in its one premise form: from A ∧ (¬A ∨ B) conclude B.
The Adjunction (Conjunction Introduction) rule (derive A ∧ B from A and B) is
blocked.

A fifth category are the non-monotonic logics. They restrict the law of Disjunctive
Syllogism to formulas which could be consistent in view of the premises. For the
other formulas one of the other paraconsistency strategies is used. That way only
those models are selected that verify a minimal amount of inconsistencies. The
advantage of this strategy is that one has the inferential richness of Explosive logics
for consistent premises, but also the inconsistency tolerance when the premises are
not consistent. The most well known examples are inconsistency adaptive logics [5]
and minimally inconsistent LP (cf. [21]).

A sixth category contains logics that are not cautiously transitive. Merely block-
ing (cautious) transitivity makes it possible to validate both Disjunctive Syllogism
and Addition (and in fact all the strength of classical logic for consistent premises)
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without necessarily validating the Explosion rule (cf. [6, 9]). Non-monotonic logics
will usually also be non-transitive but will make sure that they are cautiously transi-
tive (if something follows from the combination of the premises plus a conclusion,
then it is also a valid conclusion of the premises alone). If one does not have cautious
transitivity, one can have both unproblematic rules, as long as both are not applied
in chain (one after the other). In this case one can have a monotonic structural para-
consistent logic which validates all classical consequences of consistent premises.
The price to pay here is the capacity to build on earlier results. Every proof needs to
start again from the basic axioms.

A seventh category are the implication revising logics. It is quite generally recog-
nized that the material implication of classical logic (and many other logics) is far
from the implication connective used in informal reasoning. A first example are the
relevant logics (cf. [2] and the discussion above). Connexive logic (cf. [18]), on the
other hand, are not subclassical; they really contradict classical logic. They make
it false that something could imply its negation. If, by contrast, one also accepts
that it is true that (some) contradictions imply their negations, one easily obtains a
contradiction the logic should be able to deal with.

Still other options are logics with a non-deterministic semantics. In these systems
the semantics of complex sentences are not necessarily reduced/analysed into incon-
sistencies concerning primitive sentences. That way the negation of a sentence A
may for example be allowed to be true independent of the truth value of A. This way
A and its negation may be true together. Of course one loses compositionality, but
this does not need to make the logic inferentially impotent. Examples are the weaker
LFIs such as mbC and Batens’ system CLuN (cf. [4]).

A final category concerns the possibility to block Addition (possibly only for
inconsistent formulas) in order to avoid Explosion. In a logic that merely analyses
sentences into (combinations of) subsentences, of course one can never obtain an
arbitrary formula. This strategy is followed in [19].

It is clear that there are a lot of paraconsistent logics with a diverse set of purposes.
Although, in general, they are well-developed, both technically and philosophically,
there is not much research comparing them in relation to their applicability in sci-
ence and mathematics. It is surprising how little these logics are actively applied
to actual scientific or mathematical theories (other than some historical reconstruc-
tions). Given how common it is that scientists have to deal with inconsistencies
(between theories, between theories and observations, and inside theories) and incon-
sistency resolution, it is surprising that relatively little work has been done to make
the involved type of reasoning logically precise.

There may be several reasons for this. Let us summarize some of the possible
objections one may have against adopting a paraconsistent logic for concrete appli-
cations in science and mathematics. Many people are reluctant to use paraconsistent
logics because when adopting them, one loses the strongest possible argument to
reject problematic hypotheses and theories, i.e. the fact that they are inconsistent. In
a paraconsistent context, logic alone does not suffice to reject inconsistent theories.
Consequently, in such a context new information will never, by pure force of logic,
necessitate the revision of old information. Logic no longer excludes the possibil-
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ity to keep piling up all kinds of inconsistent information without ever contracting
old information. Belief revision is therefore no longer a logical requirement. There
may of course be many other reasonable criteria for rejecting problematic theories
(incoherence, vagueness, lack of elegance, lack of explanatory power, empirical inad-
equacy etc.) and consistency may in a paraconsistent context still be a locally valid
extra-logical requirement, or a property one may want to satisfy as much as possible.
Nevertheless it is dialectically very attractive to possess a logical criterion to dismiss
every theory from which one can derive an inconsistency.

Moreover, the discussion above shows that (most) paraconsistent logics need
to lose some a priori attractive principles of reason. We have become so used to
classical logic that all of the above considered principles (Disjunctive Syllogism,
Addition, Adjunction,Monotonicity and Transitivity) seem very natural principles of
logical consequence often successfully applied in informalmathematical or scientific
reasoning. If such principles are no longer logically valid, one needs to explain the
discrepancy between logic and practice. Are the apparently successful applications
of the invalid principles mistakes, locally correct applications of a generally speaking
invalid principle, or the result of a mistaken formalization? Moreover, if not merely
metalogical principles (Monotonicity, Transitivity) but actual logic rules (Disjunctive
Syllogism, Addition, Adjunction) are blocked, one loses inferential power to the
effect that many theories become much weaker. This may be desirable for those
parts of the considered theory where one is confronted with actual inconsistencies,
but problematic where everything seems to behave consistently.

Logics that have more inferential power but require specific treatment for consis-
tent parts of theories are often computationally highly complex. In order to find out
whether a specific application of a rule is valid, one needs to know already whether
an inconsistency is derivable from certain involved formulas in relation to the rest
of the theory. Calculating this may be very difficult (cf. [25]). Suppose that, inside a
given theory � ∪ {A,¬A ∨ B}, one wants to apply Disjunctive Syllogism to obtain
B. If the paraconsistent logic only allows this rule if A is consistent, one needs to
find out whether ¬A is derivable from �, before one is able to correctly apply this
single rule. If � and A have some non-logical vocabulary in common and � is a large
set or forms a complex theory, finding this out may be immensely time consuming
or even undecidable. Computational complexity is not a conclusive reason to reject a
logic, because the logic may be seen as merely the ideal but difficult or unreachable
standard of reasoning. But in that case one should explain how human agents can at
least approximately deal with the unreachable ideal reasoning standards in practice.

Yet another possible objection is the questionwhether formal logic is applicable in
an inconsistent context. Thosewhodo accept the importance of inconsistency tolerant
reasoning may object that this type of reasoning (largely) happens extralogically (cf.
[24]). Important extra-logical factors involved in dealing with inconsistencies are:
the sources of information, the priority ordering of information and its sources, the
goals of reasoning, social and dialectical dynamics of reasoning and arguing, and
fallible diagnostic reasoning.Nobodywill deny that such factors play a role in dealing
with (at least some) inconsistencies, but that does not mean that one cannot also say
something with logical generality based solely on the form of involved expressions.
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Even those who accept that paraconsistent logics correctly formalize some phe-
nomena, may still claim that, to the extent that they are useful, paraconsistent logics
can be translated into more traditional explosive logics. Either one claims that what
paraconsistent logicians would formalize as an inconsistency should actually be for-
malized differently (possibly with the same syntactic consequences). If an agent
receives information A and information ¬A from two equally reliable sources, it
makes sense to formalize this as ‘agent 1 believes A’ and ‘agent 2 believes ¬A’,
using doxastic or epistemic modalities. Even in explosive logics this pair does not
explode. Similar modal solutions work for every kind of inconsistency coming from
different origins (incompatible axioms, theories, observations). In case the incon-
sistency originates from one indissoluble (inconsistent) body of information this
strategy does not work, but one could then argue that the body of information is
simply unreliable and should not be used for doing further reasoning.

Another alternative is to consider the paraconsistent negation as a coherent unary
connective that can be added to classical logic, but not as the negation. One can often
use the usually classical semantics of the paraconsistent negation connective to add it
to classical logic as a conservative extension. Or one can define inconsistency tolerant
databases or inconsistent properties/collections inside a purely classical context as
well-defined mathematical objects. Compare it to fuzzy set theory. People speak of
fuzzy sets (cf. [26]), but they are merely useful classical mathematics tools, which
are defined by means of ordinary sets and real number theory. They behave in such
a way that they are more subtle generalizations of ordinary sets (ones to which the
elements belong to a certain degree, instead of just in or out). They are no alternatives
to classical set theory, but mere extensions of it. People who accept the usefulness of
some paraconsistent logics can claim the same thing about a paraconsistent negation;
a useful tool that can be defined in a rich enough classical logic (plus perhaps some
parts of classical set theory). For many applications of paraconsistent logic it seems
indeed unnecessary to really revise classical logic; it is often sufficient to realize
that classical logic is not the appropriate tool to approach inconsistent collections of
information. But classical logic was never meant for this purpose anyway. The idea
would be that one could keep using classical logic with its inconsistency intolerant
negation for all the more foundational/justifying purposes it was meant for. This may
be a reasonable position if it concerns rather practical applications of paraconsistent
logic, but it does not work for more fundamental applications about the very basics
of mathematics, philosophy and logic.

We have listed a number of often heard objections to the usefulness of paracon-
sistent logic as an alternative to classical logic. None of these objections are suffi-
cient arguments to reject the usefulness of paraconsistent logics, but those defending
paraconsistent logics need to specify how to overcome these issues. This itself is an
interesting debate and the possible answers depend a lot on which logic and which
application one has in mind.

The reader understands by now that paraconsistency is a diverse phenomenonwith
different raisons d’être, different technical solution and different ways to respond
to criticism, all of which have to do with the specific application one has in mind.
Nevertheless there is also quite a lot of commonground. Similar techniques have been
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used, similar arguments have been given against Explosion and against the critics
of paraconsistency, and similar inconsistent theories have been studied, all of this
often independently fromone another and inside different schools of paraconsistency.
Nevertheless there is relatively little study about the similarities and differences of the
different currents of paraconsistency in relation to the intended real life applications
of paraconsistency.

In order to open the debate on how the different formalisms relate to their real life
applications in the philosophy of science and mathematics, we decided to organize
a conference on this topic in Munich, Germany: the conference Paraconsistent Rea-
soning in Science and Mathematics (June 11–13, 2014) in the beautiful setting of the
Carl-Friedrich-von-Siemens-Stiftung. Our aim was to bring the different schools of
paraconsistency together to open the debate on how the different formalisms relate
to their real life applications in the philosophy of science and mathematics.

The level of the talks and the quality of the debate was so high that the participants
of the conference were all in favour of publishing a volume on the topic of the confer-
ence, aiming toward a written andmore detailed follow up of this debate. The present
book is the result. We hope the reader will find that it lives up to the expectations. In
what follows, we give a brief summary of every paper of our collection.

1 Holger Andreas and Peter Verdée: Adaptive Proofs
for Networks of Partial Structures

According to Carnap [10], we interpret and understand the theoretical terms of a
theory T in such a manner that the axioms of T come out true. If, however, T is
classically inconsistent, this semantic doctrine fails to work properly. The theoretical
terms remain uninterpreted in this case. This is not satisfactory insofar as numerous
scientific theories turned out to be inconsistent in some way or other – science is full
of inconsistencies. Hence, it is desirable to have a semantics of theoretical terms that
also applies to inconsistent theories.

Holger Andreas and Peter Verdée, consequently, develop a paraconsistent gen-
eralization of the semantic doctrine in question: we interpret and understand the
theoretical terms of a theory T in such a manner that the axioms of T are satisfied to
amaximal extent. Formally, we describe such interpretations in terms of a network of
partial structures, and thereby define a preferred models semantics of paraconsistent
scientific reasoning. This semantics respectively defines an inference relation for flat
and prioritized axiomatic theories.

A preferred models semantics by itself does not give us a proof-theoretic account
of scientific reasoning with theoretical terms. For this to be achieved, the framework
of adaptive logic with its dynamic proof-theory suggests itself. Hence, we present a
flat and a lexicographic adaptive logic which are proven to capture the inference rela-
tion for flat and prioritized axiomatic theories. Because the adaptive logics belong
to the category of standard (lexicographic) adaptive logics, the adaptive characteri-
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zation immediately gives rise to an adequate dynamic proof theory for the inference
relations. The paper concludes with a demonstration of how we can derive sensible
conclusions from Bohr’s model of the atom using adaptive proofs.

2 Franzesco Berto: Ceteris Paribus Imagination

Franzesco Berto explores impossible worlds for an analysis of ceteris paribus imagi-
nation. An impossible world is one where the laws of classical logic may be violated
by the truth-value assignment to atomic and complex formulas. Hence, an impossi-
ble world may verify a set of sentences that is classically inconsistent. Impossible
worlds, therefore, may serve as a model of inconsistent beliefs.

Why should we want to model inconsistent beliefs? The underlying motivation
derives from the limitations of our logical capacities. We are unable to grasp all
logical consequences of a set of explicit beliefs, and we may even fail to recognize
inconsistencies in our explicit beliefs. As is well known, this happened to Frege when
he developed his Basic Laws of Arithmetic. In brief, we are not logically omniscient.

Ceteris paribus imagination is modelled by a conditional: if an agent explicitly
conceives A to be the case, then B is part of the imagined scenario. In formal terms:
[A]B, where [∗] is a modal operator, defined by an accessibility relation on the set
of possible and impossible worlds. [A] B holds true if B is verified by all worlds
(possible and impossible ones) that are reachable from the actual world and in which
A holds true.

Having defined a worlds semantics of [A]B, Berto investigates which axioms
envisioned for variably strict conditionals remain valid for ceteris paribus imagina-
tion. Notably, [A ∧ ¬A]B fails to hold for arbitrary B. Imagining an inconsistent
scenario does not mean that we trivialize what we conceive. In this respect, the ceteris
paribus conditional behaves like a paraconsistent consequence relation.

3 Bryson Brown: On the Preservation of Reliability

Science is full of inconsistencies: first, we have scientific theories that are internally
inconsistent and thus imply a contradiction. Second, we have scientific theories that
make assumptions inconsistentwith other accepted scientific theories. Third,we have
numerous approximations and idealizations that are known to be inconsistent with
what we strictly believe about the respective theoretical entities. Fourth, scientific
theories are often times inconsistent with certain predecessor theories, while pre-
serving many of their empirical predictions. These inconsistencies strongly suggest
the need for a paraconsistent treatment of scientific reasoning.

Bryson Brown attempts to provide methodological foundations for a paraconsis-
tent approach to scientific reasoning. His proposal is to view reliability-in place of
truth-as the property to be preserved by proper scientific reasoning, as well as in the
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replacement of earlier scientific theories by new ones. The main focus of Brown’s
paper is on reliable inference patterns in the history of science, including Planck’s
treatment of black body radiation and Bohr’s theory of the hydrogen atom; work
by Nancy Cartwright and Bas C. van Fraassen is also discussed, leading up to an
account of a modestly paraconsistent approach to scientific reasoning.

4 Luis Estrada-González: Prospects for Triviality

This paper studies triviality in mathematical theories, an important enemy of most
paraconsistent logicians. Paraconsistent logics (want to) serve as the underlying logic
of inconsistent theories, exactly because they can avoid triviality. Trivial theories are
usually seen as meaningless and even disastrous. This position was among others
defended by Chris Mortensen.

The author of this paper discusses the central question whether triviality is always
so bad andwants to answer it in the negative, againstMortensen’s position. He argues
that there is a case of an extremely simple mathematical category theoretic universe,
a degenerate topos, in which everything is true. This universe is therefore trivial, but
it is not inherently problematic.

Mortensen’s case is built on a trivialisation result for real number theory. González
shows that either one of the premises of the trivialization result cannot obtain (from
a point of view external to the universe) and thus the argument is unsound, or that
it obtains in calculations internal to such a trivial universe. In the latter case the
calculations in the trivial universe are possible and meaningful albeit extremely
simple. Our actual universe is probably not as simple as and so does not correspond
to this degenerate topos, but that does not mean that what is done inside the universe
is meaningless.

5 Andreas Kapsner: On Gluts in Mathematics and Science

This paper discusses the question whether truth value gluts (both true and false)
should be designated in an analysis of mathematical and scientific reasoning. Prac-
tically speaking the question is whether one should assert sentences that are true
and false and whether they should be used as basis for decisions and actions and
as premises of arguments. The traditional paraconsistent view is that there are truth
value gluts and that they should be designated. In some sense the converse goes
against the very basic starting point of paraconsistency: a non-designated glut will
not block the Explosion rules.

Kapsner defends the view that it is often, but not always, unreasonable to assert
glutted statements. He presents a clear case: if two costumer reviews contradict each
other on the quality of a product, one should not assert the contradicting information
obtained by reading the reviews. Subsequently he presents some cases from the
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history of science (the infinitesimal calculus and the Darwin–Kelvin debate on the
age of the earth) to indicate that also in these case it may be more reasonable not to
designate gluts.

6 Carlos A. Oller: Contradictoriness, Paraconsistent
Negation and Non-intended Models of Classical Logic

This paper concerns the often heard argument that paraconsistent negation is not
a real negation because a sentence and its negation should never be true together.
The author attacks the argument by showing that it could also be used to show that
classical logic’s negation is by the same standards not a real negation either.

Classical logic has certain unavoidable non-intended models. Carnap was the first
to point out that adding a trivialmodel (inwhich all formulas are true) to the semantics
of classical logic does not affect the set of valid consequences. In such a model of
course formulas and their negations are both true. It seems thus that it is impossible
even in classical logic to exclude the possibility that a formula and its negation are
both true.

7 Hitoshi Omori: From Paraconsistent Logic
to Dialetheic Logic

This paper proposes a new approach to paraconsistent logic to be applied as the
underlying logic of a dialetheic version of naive set theory and naive truth. The
author proposes an attractive logic which is not only paraconsistent in that it can
tolerate inconsistent formulas, but also dialetheic, in the sense that it also makes
certain inconsistent formulas into tautologies.

Omori returns to the modern origins of paraconsistent logic and proposes a para-
consistent account of negation in line with some ideas by Jaśkowski: that a good
negation should be a connective such that each formula and its negation form con-
tradictory pairs. This is realized by requiring that a formula is true iff its negation
is false, and false iff its negation is true. A necessary condition for paraconsistent
logics respecting this account of negation is that Double Negation rules are valid.

In order for the logic to work with prototypical inconsistent mathematical theories
such as naive set theory, one needs a weak enough biconditional to non-trivially
express axiom schemas like the axiom of Abstraction. To this purpose a strategy
suggested by Laura Goodship is used: opt for the material biconditional of LP.
Omori adds to this concept some ingredients of LFIs (a consistency operator) and
connexive logics (the conditional is false when the antecedent is not true or the
consequent is false). The result is a dialetheic logic with a functionally complete
three valued semantics.
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8 Martin Pleitz: Paradoxes of Expression

The history of the paradoxes and attempted solutions thereof shows many cases
where a certain solution falls prey to another, more refined variant of the original
paradox. The revenge liar is the most famous instance of such cases. Martin Pleitz
adds another chapter to this history of attempted solutions and recurrent paradoxes.

The focus is on a recent proposal by Graham Priest to solve the semantic and
set-theoretic paradoxes using a biconditional that does not detach, i.e., that fails to
satisfy modus ponens. A detachable truth schema, however, is needed for what has
been described as blind endorsement. For example, if one holds that everything that
the Bible says is true, one blindly endorses all the claims made in the Bible. To
solve this problem, Priest entertains the idea of introducing a detachable conditional,
together with an expression predicate that allows us to say that certain propositions
are expressed by certain sentences.

Martin Pleitz formulates a very reasonable principle that an expression operator,
licensing blind endorsements, should satisfy: any meaningful sentence should be
synonymous with itself. Based on an axiomatic formulation of this principle, he
shows that variants of the Liar and the Curry paradox can be formulated. Hence,
we have a contradiction and a way to trivialize the system envisioned by Priest. As
triviality is unbearable even in a paraconsistent setting, this casts serious doubt on
Priest’s proposed solution.

9 Corry Shores: Dialetheism in the Structure
of Phenomenal Time

The very idea of motion seems to be contradictory: if we say that an object is moving,
we imply that it is at different places at different times. So far, things are consistent.
If, however, we want to say that an object is moving right now, we seem to ascribe
the property of changing positions to a specific time point. At a specific time point,
however, an object can only be at one place. Drawing on Zeno’s paradox of the arrow
and assuming that only the present time point has reality, we can thus argue that no
object is really moving. Motion is not part of reality. Likewise, the flow of time is an
unreal phenomenon.

Alternatively, we can accept that motion and time are contradictory but real,
thereby embracing some form dialetheism. This alternative is investigated and sym-
pathetically entertained by Corry Shores in his contribution. Besides the work of
Zeno, he draws on Husserl’s phenomenology and subsequent phenomenological
research to motivate a dialetheist account of change and time. Dialetheist ideas about
the phenomenology of time are thus brought together with recent work in theoretical
psychology.
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10 Fenner S. Tanswell: Saving Proof from Paradox: Gödel’s
Paradox and the Inconsistency of Informal Mathematics

In this paper two of the most popular arguments (by Beall resp. Priest) in favour of
the inconsistency of (informal) mathematics (and so the need to formalize it with a
paraconsistent logic) are discussed. A first argument is based on what is sometimes
called Gödel’s paradox, i.e. a sentence expressing that it is not provable. Accepting
the existence of such a sentence leads to a contradiction in mathematics. The second
argument is based on the incompatibility of completeness and consistency estab-
lished by Gödel’s incompleteness theorems. Arguing in favour of the completeness
of informal mathematics, thus also forms an argument against the consistency of
mathematics.

Tanswell argues against these arguments that the necessary distinctions between
formality and informality are often ignored. The author also points at problems with
the assumption of the unity of informal mathematics.

11 Heinrich Wansing and Sergei Odintsov:
On the Methodology of Paraconsistent Logic

Whenwe decided to organize our conference onParaconsistent Reasoning in Science
and Mathematics, we wanted to stimulate discussion, exchange of ideas, and further
research on the desiderata that a paraconsistent logic should satisfy. We argued there
to be three core desiderata: (1) A paraconsistent logic ought to capture the inferential
use of inconsistent but non-trivial theories. (2) A paraconsistent approach should
explain how one can weaken the underlying logic of classical logic to get rid of the
explosion principle and still have enough inferential power to be successful. (3) It is
desirable to have a philosophical motivation for the deviation from classical logic in
terms of epistemological and, possibly, also metaphysical considerations.

We have then been very pleased to see that HeinrichWansing and Sergei Odintsov
directly address the question of which desiderata a paraconsistent logic should sat-
isfy. While investigating the historical roots of the above desiderata, they cast some
doubt on desiderata (2) and (3). More precisely, they question that the reference logic
of a paraconsistent logic should be classical logic, arguing that the choice of classical
logic as reference logic is at least difficult to justify. As for the philosophical motiva-
tion for developing a specific paraconsistent logic, the notion of information should
play a central role rather than epistemological and metaphysical considerations. As
information about whatever domain is rarely complete and often times inconsistent,
an informational methodology of paraconsistent logic may lead us to choosing a
non-bivalent logic as reference logic.

The paper further discusses in great detail the maximality condition that a para-
consistent logic should satisfy with reference to classical logic, thus drawing on
work by Arieli et al. [3]. Moreover, it examines methodological considerations on
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the desiderata of a paraconsistent logic that have been suggested by Priest and Rout-
ley [23]. Finally, Wansing and Odintsov sketch a universal approach to constructing
a paraconsistent logic for a given reference logic that may well not be classical logic.

12 Zach Weber: Paraconsistent Computation
and Dialetheic Machines

This paper concerns the application of paraconsistent logic and dialetheism to theo-
retic computer science. The question is asked whether there are algorithms which are
essentially paraconsistent, in the sense that only paraconsistent logic can recognize
them. While the question may seem counterintuitive, it is clear that certain objects
can exists in paraconsistent mathematics which cannot exist otherwise (for example
the Russell set or the set of all ordinals). So it is not unlikely that also the concept of an
algorithm should be reconsidered in a paraconsistent setting in order for classically
unknowable but useful objects to be recognized and studied.

The author argues in favour of the existence of such properly paraconsistent com-
putations. Arguments by Sylvan and Copeland, Routley, and Priest support this view.
One of the arguments goes as follows: in view of a straightforward diagonalization,
the algorithm that enumerates all algorithms (intuitively) is but at the same time
cannot be an algorithm. If it is an algorithm (and it sure seems to be one) it has to be
an inconsistent algorithm.

Subsequently Weber investigates the ways in which one could formulate para-
consistent algorithms in a dialetheic mathematical metalanguage. He discusses the
properties of so called dialetheic machines and their relation with finiteness and the
halting problem.
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Adaptive Proofs for Networks
of Partial Structures

Holger Andreas and Peter Verdée

Abstract The present paper expounds a preferred models semantics of paracon-
sistent reasoning. The basic idea of this semantics is that we interpret the language
L(V ) of a theory T in such a way that the axioms of T are satisfied to a maximal
extent. These preferred interpretations are described in terms of a network of partial
structures. Upon this semantic analysis of paraconsistent reasoning we develop a
corresponding proof theory using adaptive logics.

Keywords Adaptive logics · Preferred models semantics · Paraconsistent
reasoning · Structuralist approach

1 How to Reason with Inconsistent Theories?

As is well known, some axiomatic theories remain in use despite the observation
of classical inconsistencies. Axiomatic theories of truth and naive set theory are
prominent examples. Furthermore, there are well established axiomatic theories in
the natural sciences that are not fully consistent with the empirical data or not con-
sistent with certain other well established theories. The postulates of Bohr’s atomic
theory, for example, are not consistent with the set of Maxwell equations. Moreover,
we have internally inconsistent theories in the natural sciences, such as classical
electrodynamics.1 When scientists observe such inconsistencies, they do not always
abandon the scientific theory in question.

How do we reason with such inconsistent theories? Various logics and inference
systems have been devised to answer this question. The present approach builds upon

1For a detailed investigation of the inconsistency of classical electrodynamics, see [8].
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a proposal by Rescher and Manor [13]. In essence, their analysis of paraconsistent
reasoning consists of two steps:

(1) Consolidation, by means of which we obtain classically consistent subsets of a
given, possibly inconsistent set of premises.2

(2) Classical reasoning is then used to draw inferences from these consolidated
premise sets.

This approach can be motivated by the methodological doctrine ex contradictione
nihil sequitur.3 Contradictions do not have any consequences. Hence, we need to
first consolidate our premises – in the sense of removing inconsistencies – before we
can draw any inferences.

How does consolidation work? [13] describe this operation in terms of maximal
consistent subsets of a given set of premises. A set S′ is a maximal consistent subset
of a set S iff (i) S′ ⊆ S, (ii) S is classically consistent, and (iii) there is no classically
consistent set S′′ such that S′ ⊂ S′′ ⊆ S.4

If we strictly apply this consolidation strategy to axiomatic systems in science and
mathematics, it would not yield interesting results. For if a given axiom or axiom
scheme α implies an inconsistency, α is not a member of any maximal consistent
set of premises. Hence, it could not be used for scientific reasoning. The case where
some axiom turns out inconsistent with a set of other axioms is more involved and
will be dealt with in detail in Sect. 2.8. In essence, the problem is that if we restrict
our premises to maximal consistent subsets of an inconsistent axiomatic system, then
someaxiomcannot beused to draw inferences in a determinateway, i.e.,without at the
same time drawing contradictory inferences. This does not accordwith how scientists
actually use inconsistent axiomatic systems. For if an inconsistent axiomatic theory
remains in use, then so do all of its axioms. For example, Maxwell’s equations
and Lorentz’ force law have remained in use despite the fact that they imply an
inconsistencywhen used to determine the self-force and the self-field of the electron.5

To analyse scientific reasoning from inconsistent theories, we suggest taking a
closer look at the universal quantifier—at occurrences where it is used to express
universal validity. Ourmain thesis is that we do use classically inconsistent axiomatic
theories by selectively accepting the instances of universal axioms. That is, for a given
universal axiom α and a scientific theory T , only a subset of thewhole set of instances
of α may be accepted. We thus refrain from determining the self-force of the electron
byMaxwell’s equations and Lorentz’ force law, while continuing to use these axioms
in other applications of electrodynamics. Likewise, we refrain from applying certain
Maxwell equations to an electron orbiting around a proton, while we continue to
apply these equations to other accelerated electrons.

2The term consolidation is borrowed from belief revision theory (see, e.g., [9].).
3Cf. [17]. For a critical discussion of this doctrine, see H. Wansing et al.: On the methodology of
paraconsistent logic (this volume).
4See [6] for a related strategy of dealing with inconsistencies.
5See [8, Chap.2] for a detailed exposition of this inconsistency.
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The challenge arising here is to differentiate between sound instances of an axiom
(which we continue to use) and inconsistent ones (which we reject). This is a chal-
lenge because the inconsistencies we encounter in science do not always have the
form of a single instance of an axiom (or axiom scheme) that is by itself inconsistent.
In the case of the self-force of the electron, it is rather a set of several axioms that, if
jointly applied to an electron, imply an inconsistency. Also, it is desirable to account
for scientific reasoning with axiomatic theories that fail to be empirically adequate,
and hence are not fully consistent with the empirical facts, while still being used.

We describe the demarcation between sound and inconsistent instances of uni-
versal axioms in terms of a preferred models semantics. Using such a semantics, we
define an operation of consolidation in the following way. First, we define the set of
preferred interpretations of the language L(V ) of a theory T (where V stands for the
descriptive vocabulary of T ): an interpretation of the language L(V ) is preferred iff it
satisfies the instances of the axioms of T to a maximal extent. Then, we can say that
the consolidation of T – understood as a syntactic entity – refers to the set of those
instances ofT ’s axioms that are verified by all preferred interpretations.Our preferred
models semantics, furthermore, admits classical reasoning for the consolidated parts
of T .

We expound the preferred models semantics in the first part of the paper.6 In the
second part, we then develop a proof theory for this semantics using the framework
of adaptive logics. The set of adaptive logics contains a wide range of logics that
select interpretations of premises in such a way that a formal property of the inter-
pretations is maximally satisfied. Because the inference relation that corresponds to
the preferred models semantics selects those interpretations that verify a maximal
number of instances of axioms, this inference relation can indeed be characterized
by an adaptive logic (within an existing generic format of adaptive logics—the lex-
icographic format). The purpose of characterizing an existing inference relation by
means of an adaptive logic in lexicographic format is that one immediately obtains a
sound and complete dynamic proof system for the inference relation. These dynamic
adaptive proofs have been developed to model the reasoning processes human agents
use to reason towards ultimately correct inferences in a defeasible ‘hit and miss’-like
way.

2 Networks of Partial Structures

2.1 Partial Structures and Their Extensions

We shall use partial structures to represent the semantics of the instances of universal
axioms. This notion is adopted from the framework of partial structures and partial

6This part is based on [1], which develops the network formalism as a paraconsistent semantics of
theoretical terms.
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truth as expounded in [7]. A partial structure is a set-theoretic structure of the form7:

A = 〈A,Rk〉k∈K ,

where A is the domain of interpretation, Rk are partial relations, and K an index set.
A thus encodes a partial interpretation of some language L. Partiality of an n-ary
relation Rk is to be understood as follows. Suppose we have an n-tuple 〈a1, . . . , an〉
(where a1, . . . , an ∈ A) such that 〈a1, . . . , an〉 /∈ Rk . On the semantics of partial truth,
this does not imply that Rk(a1, . . . , an) is false.

Partiality of a relation is more precisely accounted for by distinguishing between
the positive extension R+

k , the negative extension R−
k , and the “neutral” extension

R0
k . For simplicity, we assume that R+

k = Rk and R
−
k = ∅. On these two assumptions,

there is no need to notationally distinguish between the positive, the negative, and
the neutral extension of a relation symbol Rk in a partial structure. This has the
consequence that Rk(a1, . . . , an) being false is not expressible by a partial structure.

Extensions of partial structures are understood in the standard way:

Definition 1 (Extension) LetA = 〈A,Rk〉k∈K be a partial structure. Let (Rk)A denote
the relation Rk of the partial structure A. A structure B = 〈A,Rk〉k∈K of L is an
extension of A iff for all k ∈ K , (Rk)A ⊆ (Rk)B.

Da Costa and French [7] also consider structures with two domains of interpreta-
tion, where one domain contains observable and the other unobservable entities.
Such distinctions between different domains of interpretation can easily be intro-
duced without requiring substantial modifications of the subsequent definitions and
explanations.

2.2 Instances and Applications of Axioms

By an instance of an axiom α we mean a closed formula where all universally
quantified variables—that express the universal validity of α—have been replaced
by a constant. We assume that all axioms come in a standard logical format and
are preceded by at least one universal quantifier. Suppose axiom α has the logical
form ∀x1, . . . ,∀xnαo(x1, . . . , xn), where αo does not start with ∀. Then, any formula
αo(c1/x1, . . . , cn/xn) is an instance of the axiom α, where c1, . . . , cn are constants.
We understand the notion of an instance of an axiom scheme in the standard way:
instances of axiom schemes are obtained by replacing a schematic letter of the scheme
by an appropriate expression of the formal language L(V ).

The notion of an instance thus understood is a syntactic notion. Instances of axioms
have semantic counterparts insofar as the interpreted symbols of such instances refer
to certain objects with certain properties. For example, an instance of Newton’s law

7Unlike a simple pragmatic structure in [7], a partial structure does not contain a set P of sentences
that are taken to be true in the correspondence sense.
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of gravitation is given by a pair of bodies, both of which have a distinct place in space.
Such semantic counterparts of the instances of universal axioms can be represented
by set-theoretic structures, as has been shown in the work of the structuralist school
[2, 15]. We adopt this idea and shall assume that any instance of a universal axiom
has a corresponding partial structure

A = 〈A1,A2,Rk〉k∈K ,

A1 is the domain of entities to which α is applied. A2 may contain mathematical
entities that are needed to express the properties of the objects of A1. Rk are relations
that partially interpret the descriptive symbols of α. We assume only a partial inter-
pretation of these symbols because the theoretical terms of α may not be completely
interpreted. If the axioms of the non-formalized theory contain functions, these may
be represented by relations. In the case of Newton’s law of gravitation, Rk(k ∈ K)

represent position, mass, and force for the objects of a two-body system.
Partial structures that are the semantic counterparts of the instances of a universal

axiom α are called applications of α. Being the semantic counterpart of the instance
α of a universal axiom means two things. First, the domain A of A comprises all the
entities being referred to by the constants of α. Second, the relations ofA are partial
interpretations of the relation symbols of α.

The notion of an application of an axiom is adopted from [2, 15]. It should be
noted, however, that intended applications in the structuralist framework often have
a more complex structure as they may comprise sets of applications of a universal
axiom. For example, they may involve applications of Newton’s law of gravitation
for a whole period of time. For simplicity and conformity to first order logic, we
assume that applications of an axiom α always correspond to an instance of α. An
application in the present framework need not be intended in the sense that some
scientists think or should think that an axiom applies to it.

2.3 Modular Semantics

The core idea of the networks formalism may be described in terms of a modu-
lar semantics. Such a semantics is obtained by two operations upon the standard
semantics: (i) the descriptive vocabulary V of the axiomatic theory T is divided into
subvocabularies according to the axioms of T , and (ii) these subvocabularies in turn
are interpreted by partial structures that represent applications of the correspond-
ing axiom. Let α1, . . . , αn be the axioms of T with corresponding subvocabularies
V (α1), . . . , V (αn). The partial structureAi,j represents the application j of the axiom
αi. We assume that there can only be countably many partial structures, a constraint
that should be acceptable since in a finitary language there can only be countably
many instances of a universal axiom. This being said, we can graphically illustrate
the basic idea of a modular semantics for axiomatic theories as follows:
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V

V(α1)

1,1 1,2 . . .

V(α2) . . . V(αn)

n,1 . . .

Fig. 1 Modular semantics

This modularization of the interpretation of an axiomatic theory will serve as a
semantic foundation for using the instances of universal axioms selectively. More-
over, it enables us to recognize an ordering of interpretations of L(V ) upon which
we can identify those interpretations that maximally satisfy T (Fig. 1).

2.4 Local Worlds

Let us now go further into the details of a modular semantics for axiomatic theories.
Each axiom has a set of applications to empirical or abstract systems of entities. Each
application of an axiom is represented by a partial structure Ai,j, where i indicates
the axiom αi and j the particular application of that axiom:

Ai,j = 〈Aj,Am,R1, . . . ,Rk〉.

The second domain Am is introduced for properties that are expressed by mathemat-
ical objects. This domain is optional.

The structuralists describe the result of applying an axiom α to a system of entities
in terms of constraints upon the (model-theoretic) extensions of a given intended
application, i.e., a partial structure.8 We adopt this idea by defining a set of “local
worlds” of an application:

W (Ai,j) =df Mod(αi, (Ai,j)1) ∩ Ext(Ai,j), (1)

8Partial structures are used here as a generalization of intended applications.An intended application
of a theory-element T leaves the T-theoretical terms undetermined. This can be represented as
follows: if Rk is T-theoretical, Rk = ∅. Partial structures, however, are a bit more flexible as they
allow us to have a partial determination of the T-theoretical terms for a given intended application.
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where Mod(αi, (Ai,j)1) stands for the models of αi that interpret the descriptive
vocabulary of αi in the domain of the partial structure Ai,j. Ext(Ai,j) denotes the
(model-theoretic) extensions of Ai,j. The set W (Ai,j) thus is the set of extensions of
the application Ai,j that satisfy the axiom αi.

2.5 Preferred Global Worlds

The next step is to define the set of preferred interpretations of the language L(V ).
We call such interpretations preferred global worlds. A global world – i.e., an inter-
pretation of L(V ) – is preferred iff it satisfies the axioms of T to a maximal extent.
A global world w, in turn, satisfies T to a maximal extent iff there is no other global
world w′ that agrees with more applications than w does. This is the basic idea of
what follows.

We say that a global world w agrees with an application Ai,j iff w is such that αi

actually applies to Ai,j. In more technical terms, w agrees with an application Ai,j

iff w contains some local world w ∈ W (Ai,j) as a substructure. Thereupon we define
a satisfaction ordering among the L(V ) interpretations, which determines the set of
preferred global worlds. Let us begin with the relation of a substructure9:

Definition 2 (Sub(w,w′)) Let w = 〈A1,A2,Rk〉k∈K and w′ = 〈A′
1,A

′
2,Rk〉k∈K ′ be

two structures, or worlds. w is a substructure of w′ – in symbols: Sub(w,w′) – iff

(1) K ⊆ K ′
(2) A1 ⊆ A′

1
(3) A2 ⊆ A′

2
(4) for all k ∈ K , (Rk)w ⊆ (Rk)w′ .

As an auxiliary notion, we define the set of subworlds of a global world:

Subw(w) =df {w | Sub(w, w)}. (2)

This auxiliary notion enables us to define the set of applications with which a given
global world agrees:

App(w) =df {Ai,j | ∅ �= W (Ai,j) ∩ Subw(w)}. (3)

The definition of the satisfaction ordering is now straightforward:

Definition 3 (Satisfaction ordering<s) Letw andw′ be interpretations of the global
language L(V ). w <s w′ designates the relation that w satisfies T to a higher extent
than w′.

w <s w′ =df App(w′) ⊂ App(w) (4)

9This understanding generalizes the standard definition of being a substructure. Unlike the standard
definition, it is not required that a substructure and its superstructure share the same slots of relations.
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In brief,w <s w′ iffw agrees withmore applications of the axioms of T thanw′ does.
Global worlds w being minimal under <s are preferred in the sense of satisfying the
axioms of T to a maximal extent.

2.6 The Inference Relation

A semantics of preferred models was first introduced by Shoham [14], which was
then further refined and investigated by Kraus et al. [10]. Drawing on their work, we
can define an inference relation for our modular semantics. To this end, we need to
introduce the notions of an <-minimal element and smoothness:

Definition 4 (<-minimal elements) Let A ⊆ D and < a binary relation on D. x is
<-minimal in A iff there is no x′ ∈ D such that x′ < x.

Definition 5 (Smoothness) Let A ⊆ D and < a binary relation on D. < is smooth in
A iff for all x ∈ A, x is <-minimal in A, or there is x′ such that x′ is <-minimal and
x′ < x.

Suppose our axiomatic theory T satisfies the following condition: if T is not classi-
cally consistent, then any inconsistency of T arises from a finite number of instances
of its axioms (or axiom schemes). That is, if we retract a finite number of instances
of the axioms (or axiom schemes) of an axiomatic system, the remaining instances
form a consistent set. It is easy to verify that the prominent inconsistent theories
in science and mathematics satisfy this condition. If it is not satisfied, a modular
approach to paraconsistent reasoning loses its rationale. Suppose, furthermore, the
set of all applications of axioms of T is countable. On these two assumptions, <s

can be shown to be smooth in a straightforward manner10:

Proposition 1 Suppose T satisfies the condition that, if T is not classically consis-
tent, then any inconsistency of T arises from a finite number of applications of its
axioms. Furthermore, the set of all applications of axioms of T is countable. Then,
the satisfaction ordering <s of T is smooth in the set of L(V ) interpretations.

See [1] for a proof of this proposition.
We can now set forth the inference relation of our semantics:

Definition 6 (T |∼ ϕ) Let T be a set of axioms upon which <s is defined by Defin-
ition3. φ is an L(V ) formula. T |∼ ϕ iff for all <s-minimal worlds w, w |= ϕ.

Thus, ϕ is inferable from T iff ϕ is satisfied by all preferred global worlds of L(V ).
This inference relation is intended to explicate reasoning from possibly inconsistent
axiomatic theories.11

10The question of whether<s is smooth (in the set of all L(V ) interpretations) for axiomatic theories
T with an uncountable set of applications must be left for future research.
11We should note that the presently defined inference relation deviates from the one defined in [10,
14]. They define the relation A |∼ ϕ in such a way that ϕ must be verified by all classical models
of A that are preferred on a given ordering <. This inference relation, however, is obviously not
paraconsistent.
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2.7 Prioritized Axiomatic Theories

The present semantics implies that if an application of an axiom α is not consistent
with an application of an axiom β, neither application is accepted. This does not
always accord with scientific practice. There are cases where some axiom is given
priority to another axiom in the case of a conflict. For example, Planck’s hypothesis of
energy quantization is prioritized over certain applications of classical electrodynam-
ics within Bohr’s theory of the atom [1]. Such prioritizations are aptly characterized
by a modular ordering among the axioms of T .12 Such an ordering, in turn, can be
represented by a sequence of sets of axioms (cf. [5]):

� = 〈T1, . . . ,Tm〉,

with the understanding that α ∈ Tp has priority over β ∈ Tq iff p < q, where we
assume that 〈T1, . . . ,Tm〉 is a partition. All sets Tp (1 ≤ p ≤ m) are sets of axioms.
The union of these sets is the set of all axioms of the network under consideration.

We can take priorities among the axioms into account now by refining the satis-
faction ordering among global worlds: a global world w is preferred over another
global world w′ iff, for some level p, w satisfies the axioms of Tp to a higher extent
than w′, without satisfying the axioms of the priority levels below p to a lesser extent.
We first define the set of applications of axioms at level p that agree with the global
world w:

Appp(w) =df App(w) ∩ {Ai,j | αi ∈ Tp}. (5)

Now we can move on to defining the satisfaction ordering:

Definition 7 (Satisfaction ordering <s of �) Let w and w′ be interpretations of the
global language L(V ), and � a prioritized axiomatic theory. w <s w′ iff

(1) there is some p (1 ≤ p ≤ m) such that (i) Appp(w′) ⊂ Appp(w), and
(2) for all h < p (h ≥ 1), Apph(w′) = Apph(w).

The satisfaction ordering <s is thus well defined for prioritized axiomatic theories
�. Hence, Definition6 can be adopted for such theories in a straightforward manner:

Definition 8 (� |∼< ϕ) Let � be a set of prioritized axioms upon which <s is
defined by Definition7. ϕ is an L(V ) formula.� |∼< ϕ iff for all<s-minimal worlds
w, w |= ϕ.

12A strict partial order < is modular iff the relation R(x, y) defined by x �< y ∧ y �< x is an equiva-
lence relation. There might be cases where the axioms are not ordered in a modular fashion, which
would require some modifications of Definition7. For simplicity, a modular ordering among the
axioms is assumed.
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2.8 A Simple Example

It is time to exemplify our paraconsistent inference system. We shall give a highly
simplified version of the inconsistency between Bohr’s postulates and Maxwell’s
equations. It is amere toy example but sufficiently rich to represent the core idea of the
present formalism. When observing an inconsistency between Maxwell’s equations
and Bohr’s postulates, we are concerned with the following general propositions
(which are derivable from either Bohr’s postulates or Maxwell’s equation, together
with some further pieces of background theory):

(1) If an electron is accelerated, it radiates.
(2) If an electron radiates, it loses energy.
(3) If an electron orbits around a proton, it does so at stable energy levels.13

(4) If an electron orbits around a proton, it is accelerated.
(5) If an electron circuits in an electromagnetic coil, it is accelerated.

Let us put these general propositions into formal axioms and introduce a formal
language with the following symbols:

• E(x) : x is an electron.
• O(x) : x orbits around a proton.
• W (x) : x circuits in a wire of an electromagnetic coil.
• C(x) : x is accelerated.
• R(x) : x radiates.
• L(x) : x loses energy.
Our general claims can now be cast into a formal system T :

∀x(E(x) ∧ C(x) → R(x)), (α1)

∀x(E(x) ∧ R(x) → L(x)), (α2)

∀x(E(x) ∧ O(x) → ¬L(x)), (α3)

∀x(E(x) ∧ O(x) → C(x)), and (α4)

∀x(E(x) ∧ W (x) → C(x)). (α5)

These axioms themselves are not inconsistent. However, if we add the claim that
there is an electron that orbits around a proton, we obtain an inconsistency. Now,
suppose we have two electrons e1 and e2. e1 orbits around a proton, while e2 circuits
in a wire of an electromagnetic coil. These two electrons form applications of the
axioms of our theory T . We can represent such applications by partial structures of
the following types:

13This is a simplification because the energy levels are only relatively stable. An electron may jump
from one level to another.
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〈A,E,C,R〉,

〈A,E,R,L〉,

〈A,E,O,L〉,

〈A,E,O,C〉, and

〈A,E,W,C〉.

The domain A is always a singleton, containing either e1 or e2 in the present case.
Our knowledge prior to applying the axioms merely consists in knowing that e1 is an
electron orbiting around a proton and e2 an electron circuiting in an electromagnetic
coil. The representation of this knowledge by partial structures of the above types is
straightforward. For example, the partial structure representing the application of α3

to e1 is as follows:
A3,1 = 〈{e1}, {e1}, {e1},∅〉.

This partial structure has exactly one local world:

W (A3,1) =df Mod(α3, (A3,1)1) ∩ Ext(A3,1) = {〈{e1}, {e1}, {e1},∅〉}.

Which are the preferred global worlds that satisfy the axioms to a maximal extent?
If we have no prioritization among the axioms, then there are four such worlds of
the type 〈A,E,O,W,C,R,L〉:

〈{e1, e2}, {e1, e2}, {e1}, {e2}, {e1, e2}, {e1, e2}, {e1, e2}〉,

〈{e1, e2}, {e1, e2}, {e1}, {e2}, {e1, e2}, {e2}, {e2}〉,

〈{e1, e2}, {e1, e2}, {e1}, {e2}, {e2}, {e2}, {e2}〉, and

〈{e1, e2}, {e1, e2}, {e1}, {e2}, {e1, e2}, {e1, e2}, {e2}〉.

Hence, without prioritization, we cannot derive any claim as to whether e1 radi-
ates or not. However, if we prioritize α2, α3, α4, and α5 over α1, only the second
interpretation of L(V ) is a preferred global world. Hence, on the assumption of this
prioritization, we obtain:

T |∼ ¬R(e1) and T |∼ R(e2).

That is, the electron orbiting around the proton does not radiate, whereas the electron
circuiting in the electromagnetic coil does radiate, as it should be.

Finally, let us explain why the original consolidation method by Rescher and
Manor [13] does not suffice to account for our use of Bohr’s postulates in the context
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of Maxwell’s equations. Various inference relations can be defined on the basis of
this consolidation method. LetMCS(S) denote the set of maximal consistent subsets
of S and Free(S) denote the intersection of all maximal consistent subsets of S. Then,
we can define (cf. [4]):

(1) S �free ϕ iff Free(S) �CL ϕ,
(2) S �strong ϕ iff for all A ∈ MCS(S), A �CL ϕ,
(3) S �weak ϕ iff there is A ∈ MCS(S) s.t. A �CL ϕ, and
(4) S �argued ϕ iff there is A ∈ MCS(S) s.t. A �CL ϕ but no A ∈ MCS(S) s.t.

A �CL ¬ϕ.

It is easy to verify then that none of the above inference relations yields the
intended result. Suppose we have a non-prioritized premise set, containing Bohr’s
postulates, Maxwell’s equations, and some further pieces of background theory. On
the basis of �free and �strong , no assertion can be derived as to whether e1 radiates.
Using �weak , we have to infer that e1 does and does not radiate. With �argued no
assertion can be made as to whether e1 radiates.

2.9 Modular Semantics Inference in Pure First Order Terms

LetW denote the set of formulas of first order classical logic and let S ⊂ W denote
literals (i.e. primitive formulas and their negations) of the same language. For each
set A, we denote its cardinality by |A|.

In order to facilitate the translation of the Modular Semantics inference relations
|∼ and |∼< into adaptive logics, we represent the above defined formal structures in
a simple first order language. From now on (without loss of generality) we represent
global worlds by Classical Logic models and partial structuresAi,j by combinations
of a closed instance of a universally quantified formula (an axiom) and a correspond-
ing finite set of literals (the known properties of the objects in the domain of the
corresponding partial structure). For the latter we define a function F(α) that maps
every instance of an axiom of a theory to a set of literals.

Let a universal theory be a set of formulas starting with the symbol ∀.
We now define the set of instantiations of a universal theory. insts(ϕ) =df {π |

π is an instance of ϕ} and, where T is a universal theory, insts(T) = ⋃{insts(ϕ) |
ϕ ∈ T}

The combination of a flat theory and its partial structures (henceforth called a flat
partially interpreted theory) will thus be represented by a pair 〈T ,F〉, where T ⊆ W

and F : insts(T) → P(S). Let FIT be the set of all flat partially interpreted theories,
i.e. all such pairs. The inference relation |∼will be represented by a syntactic relation
�FN in FIT × W.

With the following three definitions we give the definition of �FN .

Definition 9 App(M, 〈T ,F〉) =df {ϕ | ϕ ∈ insts(T) and M |= {ϕ} ∪ F(ϕ)}.
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Definition 10 M <〈T ,F〉 M ′ =df App(M ′, 〈T ,F〉) ⊂ App(M, 〈T ,F〉).
Definition 11 〈T ,F〉 �FN ϕ =df M |= ϕ, for all <〈T ,F〉-minimal elements M in all
models.

A little thought shows that in fact this inference relation can also be expressed in
terms of maximal consistent subsets.

Theorem 1 〈T ,F〉 �FN ϕ iff {ψ ∧ ∧
F(ψ) | ψ ∈ insts(T)} �strong ϕ.

Let us now proceed to the prioritized version of our inference relations. The
combination of a prioritized theory and its partial structures (henceforth called a pri-
oritized partially interpreted theory) will be represented by a pair 〈〈T1, . . . ,Tn〉,F〉,
where each Ti ⊆ W and F : insts(T1 ∪ . . . ∪ Tn) → P(S). Let PIT be the set of all
prioritized partially interpreted theories, i.e. all such pairs. The inference relation
|∼< will be represented by a syntactic relation �PN in PIT × W.

With the following three definitions we give the definition of �PN .

Definition 12 Where i ≤ m, Appi(M, 〈〈T1, . . . ,Tm〉,F〉) =df {ϕ | ϕ ∈ insts(Ti)
and M |= {ϕ} ∪ F(ϕ)}.
Definition 13 Where � = 〈T1, . . . ,Tm〉, M <〈�,F〉 M ′ =df there is a p ≤ m such
that Appp(M

′, 〈�,F〉) ⊂ Appp(M, 〈�,F〉) and, for all h < p, Apph(M, 〈�,F〉) =
Apph(M

′, 〈�,F〉).
Definition 14 Where� = 〈T1, . . . ,Tm〉, 〈�,F〉 �PN ϕ =df M |= ϕ, for all<〈�,F〉-
minimal elements M in all models.

2.10 The Example Revisited: Now in First Order Terms

In the example from Sect. 2.8, insts(T) is the set of instances of α1–α5 once with
the constant e1 and once with e2. We write the instance of αi with ej as ψi,j, e.g.
ψ3,1 = (E(e1) ∧ O(e1)) → ¬L(e1) andψ4,2 = (E(e2) ∧ O(e2)) → C(e2).With this
notation we can write the instances of T as follows:

insts(T) = {ψi,j | 1 ≤ i ≤ 5, j ∈ {1, 2}}.

Given the information provided about e1 and e2, we moreover have

F(ψi,j) =
{

{E(e1),O(e1),¬W (e1)} if j = 1

{E(e2),¬O(e2),W (e2)} if j = 2.

We use the following shorthand:

ϕi,j =df ψi,j ∧
∧

F(ψi,j).
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This notation convention gives us e.g.

ϕ4,2 = ((E(e2) ∧ O(e2)) → C(e2)) ∧ E(e2) ∧ ¬O(e2) ∧ W (e2).

We obtain the �FN -consequences of 〈T ,F〉 by selecting the maximal consistent
subsets of {ϕi,j | 1 ≤ i ≤ 5, j ∈ {1, 2}}. There is no inconsistency for e2 or for the
instance of α5 with e1, so each of the maximal consistent subsets contain all members
of {ϕi,2 | 1 ≤ i ≤ 5} ∪ {ϕ5,1}. The other members of the four maximal consistent
subsets are respectively

{ϕ1,1, ϕ2,1, ϕ4,1},
{ϕ2,1, ϕ3,1, ϕ4,1},
{ϕ1,1, ϕ2,1, ϕ3,1}, and
{ϕ1,1, ϕ3,1, ϕ4,1}.

Each of these maximal consistent subsets have the corresponding (given the same
order of mentioning) preferred world on page 13 as a model. From all maximal
consistent subsets the following literals are derivable (in classical logic)

B = {E(e1),O(e1),¬W (e1),E(e2),¬O(e2),W (e2),C(e2),R(e2),L(e2)}. (6)

but they do not agree on the other literals. The following literals are respectively
derivable from the maximal consistent subsets:

{L(e1),R(e1),C(e1)},
{¬L(e1),¬R(e1),C(e1)},
{¬L(e1),¬R(e1),¬C(e1)}, and
{¬L(e1),R(e1),C(e1)}.

The �FN -consequences are now the classical logic consequences of the intersec-
tion of all maximal consistent subsets, among which are the classical logic con-
sequences of B as defined in expression (6). We can again observe that the non-
prioritized version of the inference relation does not give us information on R(e1).
Neither R(e1) nor its negation are derivable from 〈T ,F〉.

However, the prioritization suggested in Sect. 2.8, allows us to derive more. We
now calculate the �PN -consequences of 〈〈{α2, α3, α4, α5}, {α1}〉,F〉. This prioritiza-
tion allows for a more narrow selection of maximal consistent subsets. In fact only
the second subset, i.e. the one that is a superset of

{ϕ2,1, ϕ3,1, ϕ4,1}

does not verify the less important α1 at the price of falsifying the more important α2,
α3 or α4.
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We can therefore conclude that

〈〈{α2, α3, α4, α5}, {α1}〉,F〉 �PN ϕ

iff
{ϕ2,1, ϕ3,1, ϕ4,1, ϕ5,1, ϕ1,2, ϕ2,2, ϕ3,2, ϕ4,2, ϕ5,2} � ϕ.

This makes R(e2) and ¬R(e1) paraconsistent consequences of our prioritized incon-
sistent theory.

3 Adaptive Proofs

Up to this point we have obtained a nice characterization of two paraconsistent infer-
ence relations, one flat and one prioritized. We will now define a dynamic proof
theory that characterizes these relations. This proof theory is the proof theory of
adaptive logics. We first give a short introduction to adaptive logics, then we charac-
terize the inference relations by two semantically characterized adaptive logics, and
finally we give the proof theory of these adaptive logics.

3.1 Adaptive Logics: An Introduction

Adaptive logics are logics which provide one unified proof theory for a wide range
of non-monotonic consequence relations (cf. [3, 16]). Adaptive logics were devised
by Diderik Batens to formalize defeasible reasoning forms. Each adaptive logic is
conceived as a consequence relation in between two Tarski consequence relations, a
lower limit logic and a stronger upper limit logic. Depending on the set of premises,
an adaptive logic adds to all the instances of the lower limit logic rules as many of
the instances of the rules of the upper limit logic as possible. This is done in such
a way that each premise set has as many consequences as possible without being
trivialized.

The upper limit logic is in fact defined as the lower limit logic plus an axiom
schema stating that a specific set of lower limit logic contingent14 formulas of a
specific form are false. This specific set is called the set of abnormalities. So adaptive
logics can be characterized as the lower limit logic plus the assumption that as many
abnormalities as possible are false, given the restrictions imposed by the premises.

The proofs of adaptive logics are dynamic in nature: the lines of the proofs are
conditional and their derivation status may change from not derived to derived and
back to not derived as the proof goes on. This dynamics formalizes the increasing

14Where L is a logic, a formula ϕ is L-contingent iff there is an L-model that falsifies ϕ and one
that verifies ϕ.



32 H. Andreas and P. Verdée

insight in the premises and how this may force one to conclude that former condi-
tional derivations are no longer acceptable. The actual adaptive logic consequences,
i.e. intuitively a set of derivable consequences which can be defended against every
criticism, are exactly specified for every premise set and therefore the adaptive con-
sequence relation is always a well defined relation. One might therefore say that
adaptive proofs converge to the derivation of the correct adaptive consequences.

This syntactically defined adaptive consequence relation is equivalent to the
semantic adaptive consequence relation. The latter is defined by selecting those
lower limit logic models of the premises that verify the least number of abnormal-
ities. The consequences are the formulas that are verified by all selected models of
the premises.

There are several generic formats (with different degrees of generality) for adap-
tive logics. This means that in order to create a specific adaptive logic, one only
needs to define the logic by a few parameters. The definition of its semantics and
proof theory and the proofs of the most important metatheorems come for free with
the generic formats. The first and least general format is called the standard format
of adaptive logics (cf. [3]). Later on the more general format of lexicographic adap-
tive logics was developed (cf. [12]). This was further generalized to the threshold
functions format of adaptive logics (cf. [16]).

The first logic we will define will be in standard format and both are in lexico-
graphic format (and therefore also in threshold functions format). We start with a
semantic characterization of a relevant subset of the adaptive logics in standard and
in lexicographic format (those with (lexicographic) Minimal Abnormality strategy).

3.2 The Semantics of the Relevant Classes of Adaptive Logics

We first give a semantic definition of the minimal abnormality adaptive logics in
standard format. We define them here as a pair. Note that one normally defines
adaptive logics in standard format as a triple, because in the full format one can also
vary the selection strategy of the logic. This further variation is of no use for the
purpose of this paper. In what follows, let IN denote the set of natural numbers.

Definition 15 A minimal abnormality AL is a pair consisting of

(1) a lower limit logic LLL: a reflexive, transitive, monotonic and compact conse-
quence relation.

(2) a set of abnormalities A: a set of LLL-contingent formulas, characterized by a
logical form.

Where M is an LLL-model, Ab(M) =df {ϕ ∈ A | M |= ϕ}.
Definition 16 ‘Less abnormal’ ordering. M <m M ′ =df Ab(M) ⊂ Ab(M ′).

Definition 17 Least abnormal models. Mm(T) =df the elements that are <m-
minimal in {M is an LLL-model | M |= T}.
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Definition 18 T �ALm ϕ iff, for all M ∈ Mm(T), M |= ϕ.

We now semantically define the minimal abnormality lexicographic logics in
lexicographic format. Also here we need to remark that we reduce the usual triple to
a pair because we do not need to consider other strategies than lexicographic minimal
abnormality.

Definition 19 A lexicographic minimal abnormality AL is a pair consisting of

(1) a lower limit logic LLL: a reflexive, transitive, monotonic and compact conse-
quence relation.

(2) a sequence of abnormalities 〈Ai〉i∈I , where I is IN or an initial fragment of IN;
each Ai is a set of LLL-formulas, characterized by a logical form.

Where i ∈ I and M a LLL-model, Abi(M) =df {ϕ ∈ Ai | M |= ϕ}.
Definition 20 Lexicographic ‘less abnormal’ ordering. WhereM andM ′ are LLL-
models,M �l M ′ =df there is a j ∈ I such that Abj(M) ⊂ Abj(M ′) and, for all i < j,
Abi(M) = Abi(M ′).

Definition 21 Lexicographically least abnormal models. Ml(T) =df the elements
that are �l-minimal in {M is an LLL-model | M |= T}.
Definition 22 T �ALl ϕ iff, for allM ∈ Ml(T), M |= ϕ.

3.3 Adaptive Logics for the Modular Semantics
Inference Relations

We will now define two adaptive logics that capture the inference relations �PN and
�FN in a similar way as Rescher Manor consequence is characterized by means of
an adaptive logic in [11, 16]. We could in principle have used Theorem1 and the
existing translation of the Strong consequences to adaptive logic to obtain adaptive
proofs for the inference relations, but it seems useful to do the translation from the
Modular Semantics inference relations to adaptive logic in a direct way. Moreover
it is useful to observe the parallels between the flat and the prioritized case in the
metaproofs we provide below.15

Before we are ready to define the adaptive logics, we need to define the logic
CL◦, which will function as the LLL of the adaptive logics we will present. CL◦
is basically classical first order logic with a set of dummy operators ◦ and ◦i where
i ∈ IN.One could interpret these dummyoperators as symbols that reduce the formula
which they precede to a black box, i.e. a solid proposition that cannot be analyzed

15We hope it is clear for the reader that we do not claim to define a new adaptive logic here, but
rather apply existing logics to provide a new solution for an interesting problem, viz. providing a
proof theory for the Modular Semantics inference relations.
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any further and is true or false independent of its structure. The languageL of CL◦ is
therefore simply the language of classical logic with additional unary connectives ◦
and ◦i. The set of closed formulas of L will be denoted byW. C and Pr respectively
denote the constants and the r-ary predicates of L.

For each cardinality cwe define a pseudo-languageLc. LetOc be a set of pseudo-
constants of cardinality c. Lc is the result of extending L by replacing C by C ∪ Oc

in the construction of the formulas Wc of Lc.
A CL◦-modelM is a pair 〈D, v〉, where v is the union of the following functions:

v′ : W|D| → {0, 1},
v′′ : C ∪ O|D| → D, and
v′′′ : Pr → Dr .

Every model M = 〈D, v〉 uniquely defines a valuation function vM : W|D| →
{0, 1}, recursively defined by the following clauses:

vM(Prα1 . . . αr) = 1 iff 〈v(α1) . . . v(αr)〉 ∈ v(Pr),
vM(∀αϕ(α)) = 1 iff vM(ϕ(β)) = 1 for all β ∈ C ∪ O|D|,
vM(¬ϕ) = 1 iff vM(ϕ) = 0,
vM(ϕ ∨ π) = 1 iff vM(ϕ) = 1 or vM(π) = 1,
vM(◦A) = 1 iff v(◦A) = 1, and
vM(◦iA) = 1 iff v(◦iA) = 1.

The symbols ∃, ∧, and → are defined from the other symbols in the usual way.
A model M satisfies a formula ϕ, written M |= ϕ, iff vM(ϕ) = 1. From this the

semantic consequence relation � of CL◦ is defined as usual. A proof theory can
be obtained by extending the axioms and rules of an axiomatization of Classical
Logic to W. No rules or axioms for ◦ and ◦i have to be added. This can be seen by
considering that ◦ϕ is supposed to be a black box, the contents of which cannot be
used in derivations. One can do exactly the same with ◦ϕ as with a primitive formula.
Given that there are no rules for primitive formulas, one does not need rules for ◦
either.

Now we have all ingredients needed to define the adaptive logics for |∼ and |∼<.

Definition 23 The adaptive logic ALF is the Minimal Abnormality adaptive logic
defined by LLL = CL◦ and set of abnormalities A = {◦ϕ ∧ ¬ϕ | ϕ ∈ W}.
Definition 24 The adaptive logic ALP is the Lexicographic Minimal Abnormality
adaptive logic defined by LLL = CL◦ and sequence of abnormalities 〈Ai〉i∈IN where
Ai = {◦iϕ ∧ ¬ϕ | ϕ ∈ W} for all i ∈ IN.

In order to apply the adaptive logics correctly one needs a translation of the
theories into a form with ◦ and ◦i symbols. For this purpose we need the following
definitions.

Beforewe get to the first crucial adequacy theorem,we need to prove the following
lemma.
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Lemma 1 If (a) M |= ◦ϕ iff ϕ = ψ ∧ ∧
F(ψ) for someψ ∈ insts(T) and (b) M ′ |=

◦ϕ iff ϕ = ψ ∧ ∧
F(ψ) for some ψ ∈ insts(T), then

M <〈T ,F〉 M ′ iff M <m M ′,

where <m is the less abnormal order relation of the adaptive logic ALF.

Proof Suppose the antecedent of the lemma holds.

M <〈T ,F〉 M ′

⇔

{ϕ | ϕ ∈ insts(T) andM ′ |= {ϕ} ∪ F(ϕ)} ⊂ {ϕ | ϕ ∈ insts(T) and M |= {ϕ} ∪ F(ϕ)}

⇔

{ϕ | ϕ ∈ insts(T) and M �|= {ϕ} ∪ F(ϕ)} ⊂ {ϕ | ϕ ∈ insts(T) and M ′ �|= {ϕ} ∪ F(ϕ)}

⇔ (in view of ϕ ∈ insts(T) iff M |= ◦(ϕ ∧ ∧
F(ϕ)), whenever M |= {◦(ψ ∧ ∧

F(ψ)) | ψ ∈ insts(T)})

{ϕ | M |= ◦(ϕ ∧
∧

F(ϕ)) and M |= ¬(ϕ ∧
∧

F(ϕ))} ⊂
{ϕ | M ′ |= ◦(ϕ ∧

∧
F(ϕ)) and M ′ |= ¬(ϕ ∧

∧
F(ϕ))}

⇔ (because, ψ is of the form ϕ ∧ ∧
F(ϕ) whenever M |= ◦ψ or M ′ |= ◦ψ)

{ϕ | M |= ◦ϕ ∧ ¬ϕ} ⊂ {ϕ | M ′ |= ◦ϕ ∧ ¬ϕ}

⇔
Ab(M) ⊂ Ab(M ′)

⇔
M <m M ′.

�

Now we have all the means to prove the adequacy theorem for the flat case.

Theorem 2 Where T, ϕ, and, for all ψ , F(ψ) do not contain ◦ or ◦i, {◦(ψ ∧∧
F(ψ)) | ψ ∈ insts(T)} �ALF ϕ iff 〈T ,F〉 �FN ϕ.

Proof Suppose the antecedent is true.
In this proof, the variablesM,M ′,M ′′ andM ′′′ will always refer toCL◦-models. Let

G be the set {◦(ψ ∧ ∧
F(ψ)) | ψ ∈ insts(T)}. Let M be G-canonical (abbreviated

to Ca(M)) iffM |= ◦ψ iff ◦ψ ∈ G.
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First observe that, for every M, there is a G-canonical M ′ such that M ′ verifies
exactly the same ◦-free formulas as M (Observation 1). This is because we can
construct a G-canonical model from M by only changing the truth values of the
formulas of the form ◦ψ (make those in G true and the other ones false). This is
possible because these formulas always receive independent truth values.

Hence, where ψ is ◦-free we have (where M1 is any set of CL◦-models):

M |= ψ , for allM ∈ M1,
iff
M |= ψ , for all {M ∈ M1 | Ca(M)} (call this Observation 2).

Next, observe that it is impossible that there is a non-G-categorical M such that
M |= G and a G-categorical M ′ such that M <m M ′, but no G-categorical M ′′ such
that M ′′ <m M ′ (call this Observation 3). If it were possible, we would be able to
transform M into a G-categorical model M ′′ such that the formulas of the form
◦ψ ∧ ¬ψ it verifies would be a subset of those verified byM. ThisM ′′ is constructed
as the model identical to M except that the truth values of formulas ◦ψ /∈ G are
false. M and M ′′ verify the same ◦-free formulas of the form ¬ψ and M ′′ verifies a
proper subset of formulas of the form◦ψ compared toM.M ′′ therefore does not verify
more formulas ◦ψ ∧ ¬ψ thanM. HenceM ′′ <m M ′, andM ′′ isG-categorical, which
contradicts our hypothesis. Observation 3 thus holds, which implies that adding non-
G-categorical models to a set of G-categorical models from which the minimal ones
are picked, can never make a <m-minimal model non-<m-minimal.
Let min<(A) =df the set of <-minimal elements in A.
By Lemma1 we know that

if Ca(M1) and Ca(M2), then (M1 <m M2 iffM1 <〈T ,F〉 M2)
⇒
min<m({M | Ca(M)}) = min<〈T ,F〉({M | Ca(M)})
⇒
(M |= ϕ, for all M ∈ min<m({M | Ca(M)}))

iff
(M |= ϕ, for all M ∈ min<〈T ,F〉({M | Ca(M)})).
⇒ (in view of Observation 2 and 3)
(M |= ϕ, for all M ∈ min<m({M | M |= G}))

iff
(M |= ϕ, for all M ∈ min<〈T ,F〉({M | Ca(M)})).
⇒ (in viewof the fact that the<〈T ,F〉 ordering has nothing to dowith ◦-formulas—one
could say that they are innocent bystanders; the restriction to G-categorical models
has no effect whatsoever on the ordering and the verified formulas)
(M |= ϕ, for all M ∈ min<m({M | M |= G}))

iff
(M |= ϕ, for all M ∈ min<〈T ,F〉({M | M is a CL-model})).
⇒
G �ALF ϕ iff 〈T ,F〉 �FN ϕ. �

For the adequacy of the prioritized case we also need to first prove a lemma.
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Lemma 2 If (a)M |= ◦iϕ iffϕ = ψ ∧ ∧
F(ψ) for someψ ∈ insts(Ti) and (b)M ′ |=

◦iϕ iff ϕ = ψ ∧ ∧
F(ψ) for some ψ ∈ insts(Ti), then

M <〈�,F〉 M ′ iff M �l M
′,

where �l is the lexicographic less abnormal order relation of the adaptive logic
ALP.

Proof Suppose the antecedent of the lemma holds.

M <〈�,F〉 M ′

⇔
there is a p ≤ m such that

{ϕ | ϕ ∈ insts(Tp) and M ′ |= {ϕ} ∪ F(ϕ)} ⊂ {ϕ | ϕ ∈ insts(Tp) andM |= {ϕ} ∪ F(ϕ)}

and, for all h < p,

{ϕ | ϕ ∈ insts(Th) and M ′ |= {ϕ} ∪ F(ϕ)} = {ϕ | ϕ ∈ insts(Th) and M |= {ϕ} ∪ F(ϕ)}

⇔
there is a p ≤ m such that

{ϕ | ϕ ∈ insts(Tp) andM �|= {ϕ} ∪ F(ϕ)} ⊂ {ϕ | ϕ ∈ insts(Tp) andM
′ �|= {ϕ} ∪ F(ϕ)}

and, for all h < p,

{ϕ | ϕ ∈ insts(Th) andM �|= {ϕ} ∪ F(ϕ)} = {ϕ | ϕ ∈ insts(Th) andM
′ �|= {ϕ} ∪ F(ϕ)}

⇔ (in view of ϕ ∈ insts(Tn) iff M |= ◦n(ϕ ∧ ∧
F(ϕ)), whenever M |= {◦i(ψ ∧∧

F(ψ)) | ψ ∈ insts(Ti); i ≤ n})
there is a p ≤ m such that

{ϕ | M |= ◦p(ϕ ∧
∧

F(ϕ)) and M |= ¬(ϕ ∧
∧

F(ϕ))} ⊂
{ϕ | M ′ |= ◦p(ϕ ∧

∧
F(ϕ)) and M ′ |= ¬(ϕ ∧

∧
F(ϕ))}

and, for all h < p,

{ϕ | M |= ◦h(ϕ ∧
∧

F(ϕ)) and M |= ¬(ϕ ∧
∧

F(ϕ))} =
{ϕ | M ′ |= ◦h(ϕ ∧

∧
F(ϕ)) and M ′ |= ¬(ϕ ∧

∧
F(ϕ))}

⇔ (because ψ is of the form ϕ ∧ ∧
F(ϕ) whenever M |= ◦iψ or M ′ |= ◦iψ), there

is a p ≤ m such that
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{ϕ | M |= ◦pϕ ∧ ¬ϕ} ⊂ {ϕ | M ′ |= ◦pϕ ∧ ¬ϕ}

and, for all h < p,

{ϕ | M |= ◦hϕ ∧ ¬ϕ} = {ϕ | M ′ |= ◦hϕ ∧ ¬ϕ}

⇔
there is a p ≤ m such that

Abp(M) ⊂ Abp(M
′)

and, for all h < p,
Abh(M) ⊂ Abh(M

′)

⇔
M �l M

′.

�

We can now prove that the prioritized adaptive logic is adequate w.r.t. the prioritized
inference relation.

Theorem 3 Where � = 〈T1, . . . ,Tm〉, ϕ, and, for all ψ , F(ψ) do not contain ◦ or
◦i, {◦i(ψ ∧ ∧

F(ψ)) | ψ ∈ insts(Ti); i ≤ m} �ALP ϕ iff 〈�,F〉 �PN ϕ.

Proof The result can be obtained from Lemma2 in a very similar way as Theorem2
was obtained from Lemma1. �

At this point some readers may be disappointed that we do not define an adaptive
logic that starts directly from premises that are solely based on the axioms of the
inconsistent theories (e.g. with a subclassical lower limit logic (weakening the uni-
versal quantifier) and abnormalities ∀xπ(x) ∧ ¬π(a)—we are indebted to a referee
for this suggestion). This may be an interesting project for the future, but for now
better results seem to be obtainable if we prepare our theory with some extralogical
information (the information contained in the function F).

3.4 Adaptive Proofs: Definitions

Weare now ready to present the dynamic proofs of the adaptive logicsALF andALP.
The former logic is an adaptive logic in standard format, so we can simply follow the
standard proofs of this format. The latter is a standard lexicographic adaptive logic so
we can also borrow the proofs of this format. The proofs of ALF and ALP have most
of their structure in common, the only difference being that they have a different way
of determining which choice sets are minimal and which are not. In what follows
the metavariable A refers either to the set of abnormalities of ALF or to the set
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⋃{Ai | i ∈ IN}, where 〈Ai〉i∈IN is the sequence of abnormalities of ALP, depending
on the logic we are using. Where C is a finite set of abnormalities, Dab(C) = ∨

C.
The lines of AL-proofs have four elements: a line number i, a formula ϕ, a

justification (a derivation rule and the lines to which this rule is applied), and a
condition D ⊆ A. Where T is the set of premises, the inference rules are defined in
the following table (we omit the line numbers and justifications).

PREM If ϕ ∈ T :
...

...

ϕ ∅

RU If ϕ1, . . . , ϕn �CL◦ ψ : ϕ1 D1
...

...

ϕn Dn

ψ D1 ∪ . . . ∪ Dn

RC If ϕ1, . . . , ϕn �CL◦ ψ ∨ Dab(C) ϕ1 D1
...

...

ϕn Dn

ψ D1 ∪ . . . ∪ Dn ∪ C

The premise rule (PREM) enables the introduction of premises; the unconditional
rule (RU) enables the derivation of CL◦-consequences from formulas on preceding
lines; the conditional rule (RC) allows one to push abnormalities to the condition. So
the rule RC allows us to derive ϕ from ◦ϕ in a proof from T . One has thus obtained
the derived rule RD.

RD ◦ϕ D
ϕ D ∪ {◦ϕ ∧ ¬ϕ}

The adaptive proofs are dynamic. This means that the derivation status (whether
the formulas of the lines are considered as derived) may change as the proof goes
on. We call a linemarked if its formula is not considered derived and unmarked if its
formula is considered derived. Lines can be marked and later unmarked, and yet later
marked again. So with every added line the derivation status of the original lines may
also change. For this reason we do not define an adaptive proof as a list of lines but
as a chain of so-called stages, i.e. lists of lines. Adding a line to a proof by applying
one of the above rules brings the proof to its next stage, which is the sequence of all
lines written so far.

At every stage of a proof, a marking definition determines for each line in the
proof whether it is marked or not. If a line with formula ϕ is marked at stage s, this
indicates that given our best insights at this stage, ϕ cannot be considered derived on
that line. If the line is unmarked at stage s, we say that ϕ is derived at stage s of the
proof.

Where D ⊂ A, Dab(D) is a Dab-formula at stage s of a proof iff it is the second
element of a line at stage s with an empty condition. A more direct way to derive
Dab-formulas is by the application of the following derived rule.
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MR If ϕ1, . . . , ϕn �CL◦ ⊥: ϕ1 D1
...

...

ϕn Dn

Dab(D1 ∪ . . . ∪ Dn) ∅
MR can be understood as follows. We have conditionally derived ϕ1, . . . , ϕn, but

we find out later that these formulas are together inconsistent. Hence, there must
be something wrong with at least one of the conditions on which we derived them.
Hence we derive the Dab-formula Dab(D1 ∪ . . . ∪ Dn).

Dab(D) is a minimal Dab-formula at stage s iff there is no other Dab-formula
Dab(D′) at stage s for whichD′ ⊂ D. WhereDab(D1),Dab(D2), . . . are the minimal
Dab-formulas derived at stage s, let 	s =df {D1,D2, . . .}. We say that C ⊆ A is a
choice set of 	s iff C contains an element of every Di ∈ 	s. Let � be the order
relation on sets of abnormalities that is defined as follows: C1 � C2 =df there is a
j ∈ I such that (C1 ∩ Aj) ⊂ (C2 ∩ Aj) and, for all i < j, (C1 ∩ Ai) = (C2 ∩ Ai).

Finally we arrive at the only difference between ALF and ALP: the way in which
the set 
s of minimal choice sets of the minimal Dab-formulas at a stage of a proof
is determined. Define 
s of stage s of an ALF-proof respectively a ALP-proof as
the ⊂-minimal resp. the �-minimal elements in the set of all choice sets of 	s.

Now we can determine when a line is marked at a stage of a proof.

Definition 25 A line with formula ϕ and condition D is marked at stage s of an
AL-proof from � iff (i) there is no C ∈ 
s such that C ∩ D = ∅, or (ii) for some
C ∈ 
s, ϕ is not derived on a condition D at stage s such that C ∩ D = ∅.

Intuitively a line ismarkedwhen, given the present insights in the premises, at least
one of the presuppositions of that line (represented by the negation of the formulas
in the condition element of the line) is unreasonable.

For example, suppose one line in a proof at a stage has as its condition ele-
ment {◦p ∧ ¬p, ◦q ∧ ¬q} and another line’s condition is {◦r ∧ ¬r}. The lines have
different formulas. Suppose moreover that (◦p ∧ ¬p) ∨ (◦r ∧ ¬r) ∨ (◦s ∧ ¬s) is a
minimal Dab-formula at the stage.We now know that, given the truth of the premises,
it is inconsistent to presuppose ◦p → p, ◦r → r, and ◦s → s together. Because we
have no way to choose one of the three, they should all be considered problematic.
One will therefore mark both conditional lines, as they each have a problematic
presupposition.

The situation is different when the two lines have the same formula ϕ. Consider
the minimally abnormal interpretations of (◦p ∧ ¬p) ∨ (◦r ∧ ¬r) ∨ (◦s ∧ ¬s). In
each such interpretation ◦q → q is true and either (1) ◦p → p and ◦s → s are true,
or (2) ◦p → p and ◦r → r are true, or (3) ◦s → s and ◦r → r are true. In case (1) the
presuppositions of the first line are satisfied. In case (2) and (3) the presuppositions
of the second line are satisfied. Hence, in each minimally abnormal situation, ϕ

is derived on at least one line. This is the reason why both conditional lines are
unmarked at this stage.

Because markings may come and go, we need a static definition to determine
which derived formulas are the actual adaptive logic consequences.
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Definition 26 ϕ is finally derived from T on line l of a finite stage s iff (i) ϕ is the
second element of line l, (ii) line l is not marked at stage s, and (iii) every extension
of the stage in which line l is marked may be further extended in such a way that line
l is unmarked again.

This gives us the syntactic consequence relations ALF and ALP.

Definition 27 T �ALF ϕ (ϕ is finally ALF-derivable from T ) iff ϕ is finally derived
on a line of an ALF-proof from �.

Definition 28 T �ALP ϕ (ϕ is finally ALP-derivable from T ) iff ϕ is finally derived
on a line of an ALP-proof from �.

3.5 Adaptive Proofs: Example

We revisit the example of Sects. 2.8 and 2.10.We need to convert our theory 〈T ,F〉 to
the appropriate premise set for the adaptive proofs (in accordance with Theorem2):

{◦(ψ ∧
∧

F(ψ)) | ψ ∈ insts(T)}.

For our example thus becomes

{◦ϕi,j | 1 ≤ i ≤ 5, j ∈ {1, 2}}.

We abbreviate ◦ϕ ∧ ¬ϕ to !ϕ.
Let us look in detail at Adaptive proof 1 (see Table1). Lines 1–10 introduce the

premises. All instances of the axioms of our theory are here introduced in such a
way that they are not directly usable for further derivations. Lines 11–20 make them
directly available. Of course this happens in a conditional way, i.e. the third element
of the lines is no longer empty; we need to presuppose that its members are false in
order for the second element to be derivable. On line 22 we have used both ϕ3,1 and
ϕ2,1 for the derivation of ¬R(e1) and so we need to presuppose that both !ϕ3,1 and
!ϕ2,1 are false. On line 24 we have used both ϕ4,1 and ϕ1,1 for the derivation of R(e1)
and so we need to presuppose that both !ϕ4,1 and !ϕ1,1 are false.

The results of lines 22 and 24 contradict each other. This means that their pre-
suppositions cannot be true together, i.e. !ϕ3,1, !ϕ2,1, !ϕ4,1, and !ϕ1,1 cannot be false
together. This is made explicit on line 25. Line 25 teaches us that there is something
wrong with the presuppositions that resp. !ϕ3,1, !ϕ2,1, !ϕ4,1, and !ϕ1,1 are false, so we
need to mark all lines that use any of these presuppositions. The formulas on these
marked lines are no longer considered ‘derived’.



42 H. Andreas and P. Verdée

Table 1 Adaptive proof 1: The flat case

1 ◦ϕ1,1 ∅ PREM

2 ◦ϕ2,1 ∅ PREM

3 ◦ϕ3,1 ∅ PREM

4 ◦ϕ4,1 ∅ PREM

5 ◦ϕ5,1 ∅ PREM

6 ◦ϕ1,2 ∅ PREM

7 ◦ϕ2,2 ∅ PREM

8 ◦ϕ3,2 ∅ PREM

9 ◦ϕ4,2 ∅ PREM

10 ◦ϕ5,2 ∅ PREM

11 ϕ1,1 {!ϕ1,1} RD; 1
√

25

12 ϕ2,1 {!ϕ2,1} RD; 2
√

25

13 ϕ3,1 {!ϕ3,1} RD; 3
√

25

14 ϕ4,1 {!ϕ4,1} RD; 4
√

25

15 ϕ5,1 {!ϕ5,1} RD; 5

16 ϕ1,2 {!ϕ1,2} RD; 6

17 ϕ2,2 {!ϕ2,2} RD; 7

18 ϕ3,2 {!ϕ3,2} RD; 8

19 ϕ4,2 {!ϕ4,2} RD; 9

20 ϕ5,2 {!ϕ5,2} RD; 10

21 ¬L(e1) {!ϕ3,1} RU; 13
√

25

22 ¬R(e1) {!ϕ3,1, !ϕ2,1} RU; 21, 12
√

25

23 C(e1) {!ϕ4,1} RU; 14
√

25

24 R(e1) {!ϕ4,1, !ϕ1,1} RU; 23, 11
√

25

25 !ϕ1,1∨!ϕ2,1∨!ϕ3,1∨!ϕ4,1 ∅ MR; 22, 24

26 C(e2) {!ϕ5,2} RU; 20

27 R(e2) {!ϕ5,2, !ϕ1,2} RU; 26, 16

28 ¬L(e1) ∨ R(e1) {!ϕ3,1} RU; 21

29 ¬L(e1) ∨ R(e1) {!ϕ4,1, !ϕ1,1} RU; 24

This does notmean that all conditional derivations get refuted. There is no problem
with lines 15–20. So we can use these presuppositions to derive other unproblematic
results on line 26 and 27. The subtle way in which the marking rule works has a,
maybe surprising, effect. While line 21 and line 24 get marked remorselessly, the
disjunction of the results of these lines, as derived on lines 28 and 29, does not get
marked. The reason for this is a bit technical, but not difficult. We need to calculate
the minimal choice sets of all minimal disjunctions of abnormalities. In this case the
minimal choice sets are {!ϕ1,1}, {!ϕ2,1}, {!ϕ3,1}, and {!ϕ4,1}. Put in a slightly simplified
way: we do not need to mark a line if its formula is derived on such conditions (third
elements) that, for every choice set, there is a condition which does not overlap with
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the choice set. This is the case here:

{!ϕ1,1} ∩ {!ϕ3,1} = ∅,

{!ϕ2,1} ∩ {!ϕ3,1} = ∅,

{!ϕ3,1} ∩ {!ϕ4,1, !ϕ2,1} = ∅, and
{!ϕ4,1} ∩ {!ϕ3,1} = ∅.

All markings in this proof are in some sense stable. We cannot derive any other or
more minimal disjunctions of abnormalities. Neither can we derive the formulas of
the lines on other conditions in such a way that they become unmarked. This means
that all formulas on unmarked lines obtained here are finally derivable. So those
formulas are all flat adaptive logic consequences of the premises.

Let us turn now to the prioritized adaptive proof (see Table2). Now we have two
kinds of abnormalities: those of the form ◦1ϕ ∧ ¬ϕ and those of the form ◦2ϕ ∧ ¬ϕ.
We use the following abbreviation:

!iϕ = ◦iϕ ∧ ¬ϕ.

The prioritized theory is translated to the premise set as follows:

{◦1ϕi,j | 2 ≤ i ≤ 5, j ∈ {1, 2}} ∪ {◦2ϕ1,j | j ∈ {1, 2}}.

Let us discuss the Adaptive proof 2 a bit. The only difference between the flat and
the prioritized case is the way in which minimal choice sets are calculated. Given the
prioritization the only minimal choice set (from line 25 on) is {!2ϕ1,1}. This means
that we need to mark at most lines with !2ϕ1,1 as condition. The effect of this is that
lines 2–4 and 21–23 stay ‘derived’ in the presence of line 25. ¬R(e1) is thus derived
in this proof, unlike in the proof for the flat case. Moreover it is finally derived in this
proof, i.e. every extension of this proof which marks line 22 can be extended to a
proof which unmarks this line. So¬R(e1) is a prioritized adaptive logic consequence
of the premises.

4 Conclusion

A classically inconsistent theory T does not have any classical models. Hence, classi-
cal logic does not allow us to use such a theory in a meaningful way. This result does
not accord with scientific practice, where the observation of a classical inconsistency
does not always lead us to abandoning an axiomatic theory. How then do we use and
understand classically inconsistent theories? The present analysis of paraconsistent
reasoning is founded upon two ideas. First, we understand a classically inconsistent
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Table 2 Adaptive proof 2: The prioritized case

1 ◦2ϕ1,1 ∅ PREM

2 ◦1ϕ2,1 ∅ PREM

3 ◦1ϕ3,1 ∅ PREM

4 ◦1ϕ4,1 ∅ PREM

5 ◦1ϕ5,1 ∅ PREM

6 ◦2ϕ1,2 ∅ PREM

7 ◦1ϕ2,2 ∅ PREM

8 ◦1ϕ3,2 ∅ PREM

9 ◦1ϕ4,2 ∅ PREM

10 ◦1ϕ5,2 ∅ PREM

11 ϕ1,1 {!2ϕ1,1} RD; 1
√

25

12 ϕ2,1 {!1ϕ2,1} RD; 2

13 ϕ3,1 {!1ϕ3,1} RD; 3

14 ϕ4,1 {!1ϕ4,1} RD; 4

15 ϕ5,1 {!1ϕ5,1} RD; 5

16 ϕ1,2 {!2ϕ1,2} RD; 6

17 ϕ2,2 {!1ϕ2,2} RD; 7

18 ϕ3,2 {!1ϕ3,2} RD; 8

19 ϕ4,2 {!1ϕ4,2} RD; 9

20 ϕ5,2 {!1ϕ5,2} RD; 10

21 ¬L(e1) {!1ϕ3,1} RU; 13

22 ¬R(e1) {!1ϕ3,1, !1ϕ2,1} RU; 21, 12

23 C(e1) {!1ϕ4,1} RU; 14

24 R(e1) {!1ϕ4,1, !2ϕ1,1} RU; 23, 11
√

25

25 !2ϕ1,1∨!1ϕ2,1∨!1ϕ3,1∨!1ϕ4,1 ∅ MR; 22, 24

26 C(e2) {!1ϕ5,2} RU; 20

27 R(e2) {!ϕ5,2, !1ϕ1,2} RU; 26, 16

28 ¬L(e1) ∨ R(e1) {!1ϕ3,1} RU; 21

29 ¬L(e1) ∨ R(e1) {!1ϕ4,1, !2ϕ1,1} RU; 24
√

25

theory T in such a way that the axioms of T are satisfied to a maximal extent. Second,
this maximality condition can be spelled out using a modular semantics, in which the
applications of T ’s axioms are considered as relatively independent and separable
units. On the basis of these two ideas, we have developed a preferred models seman-
tics of paraconsistent reasoning in science. This semantics respectively defines an
inference relation for flat and prioritized axiomatic theories.

In the secondpart,wehaveprovided these inference relationswith a dynamicproof
theory. In order to do this, we first expressed the inference relations in pure syntactic
terms. Next, we have presented a flat and a lexicographic adaptive logic which we
have proven to yield exactly the same results as the syntactic counterparts of the



Adaptive Proofs for Networks of Partial Structures 45

respective inference relations. Because the adaptive logics belong to the category of
standard (lexicographic) adaptive logics, the adaptive characterization immediately
gives rise to an adequate dynamic proof theory for the inference relations. We have
concluded this paper by presenting and explaining this proof theory for both inference
relations (flat and prioritized).
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Inconsistency in Ceteris Paribus Imagination

Francesco Berto

Abstract I propose to model imagination as a ceteris paribus modal operator: a
variably strict world quantifier in a modal framework including both possible and
so-called non-normal or impossible worlds. The latter secure lack of closure under
classical logical consequence for the relevant mental states, while the variability of
strictness captures how the agent imports information from actuality in the imagined
non-actual scenarios. The proposed formal semanticsmodels how a conceiving agent
can imagine inconsistencies. I also discuss how similaritymayworkwhen impossible
worlds are around.

1 Intro: Imagination as a Modal

“Imagining” as well as “conceiving” refer in this paper to a range of intentional
phenomena. Intentionality is the feature of those mental states that are directed to,
and involve the representation of, objects and configurations thereof, situations, or
circumstances. Chalmers [6] characterizes a notion he calls positive conceivability:
when we positively conceive that p, we do not just assume or suppose that p, as
when we make an assumption in a mathematical proof. Rather, we represent a sce-
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nario – a configuration of objects and properties – correctly described by p, in our
imagination.1

That we have such intentional states is first-hand experience for us: the human
mind has the ability to conceive or imagine rich and detailed alternatives to actuality
in order to extract information from them. And this has a very pragmatic motivation.
We cannot experience beforehand which scenarios are or will be actual for us to face
in real life. So we explore them in our mind, leaving our perceptions “offline”: How
will the financialmarkets react if Russia defaults?What contingency planswould you
adopt if you failed your logic class? Would Mr. Jones show the symptoms he shows,
had he taken aspirin? A vast literature on “counterfactual imagination” in cognitive
science [5, 15] shows how such mental activity improves our performances.

The logical study of intentionality flourished when authors such as Hintikka [13]
realized that the modal framework of possible worlds semantics could be applied to
the analysis of intentional states like knowledge, belief, psychological information.
This was one of the successes of philosophical logic, whose results were taken up
by linguistics and became influential in computer science and Artificial Intelligence
(see Fagin et al. [11], Meyer and van der Hoek [20]). The key insight was: cognitive
agent x ®s that p, with ® the relevant representational mental state (knows, believes,
is informed that), when p holds throughout a set of worlds: those compatible with
x’s evidence, overall beliefs, etc. Accessibility relations single out these worlds: the
accessible worlds are the scenarios x entertains. Let R be one such accessibility:
“wRw1” means “World w1 is an epistemic alternative for world w”. Read “®p” as
“It is represented [believed, known, etc.] that p”. Then the (non-agent-indexed) truth
conditions for ® are (“iff” = “if and only if”):

‘®p’ is true at w iff p is true at all w1, such that wRw1.

Various logical works have applied this framework specifically to the treatment
of imagination as a modal operator [8, 21]. However, in ordinary epistemic logics
the modelling of such mental states via possible worlds semantics originates the
so-called “problem of logical omniscience”, whereby the relevant cognitive agents
are inevitably modelled as logically idealised. Mental states come out closed under
logical consequence or entailment:

(Closure) If ®p, and p entails q, then ®q.

That is, agents represent (know, believe, imagine, etc.) all the logical consequences
of what they represent (they are “logically omniscient” in this sense). As a special
case, all logically valid formulae are represented:

(Validity) If p is valid, then ®p.

1While rationalists like Descartes made a lot of a distinction between conceiving and imagining,
empiricists like Hume blurred it. Given the aforesaid rough characterisation of the mental act
of representing a scenario, we can use “conceiving” and “imagining” broadly as synonyms. In
particular, the imagined scenarios need not be visually imaginable; for instance, they may involve
abstract objects.
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And mental states are perforce consistent:

(Consistency) ∼(®p ∧ ®∼p).

Such principles hold in the weakest normal modal logic K (for Consistency, we
just add the D-principle: accessibility is serial). They follow from interpreting epis-
temic operators as quantifiers on possible (logically closed, consistent) worlds. And it
is universally admitted (e.g. Meyer and van der Hoek [20], Sect. 2.5) that they deliver
implausibly idealizedmental states.We experience having (perhaps covert) inconsis-
tent beliefs. ExcludedMiddle is (let us suppose) valid, but intuitionists do not believe
it. We know basic arithmetic truths like Peano’s postulates; and these entail (let us
suppose) Goldbach’s conjecture; but we don’t know whether Goldbach’s conjecture
is true. The cognitive agency so modelled has little to do with human intelligence.

Logical omniscience is obviously connected to the topic of hyperintensional-
ity. A concept is hyperintensional when it draws a distinction between two inten-
sionally or necessarily equivalent contents. Now intentional states do draw distinc-
tions between intensionally (necessarily) equivalent contents: ®p may differ from
®q even when p and q are logically equivalent. But the possible worlds apparatus
can only draw intensional, not hyperintensional, distinctions. So it is unsuitable for
the modelling of conceivability and connected doxastic and informational notions.
Different approaches to hyperintensionality have been proposed in the logical lit-
erature – for instance, Tichy’s Transparent Intensional Logic (Duží, Jespersen and
Materna [10]), or structuralist approaches to content (King [16]). Each is promis-
ing and each faces troubles (see e.g. Ripley [26], Jago [14], for a set of thorough
objections to structuralism).

This paper relies on a different approach to hyperintensional mental states, and
specifically to imagination – an approach which has the feature of preserving the
modelling of such states as restricted quantifiers on worlds, thereby taking advantage
of the core idea of worlds semantics.

2 Impossible Worlds

The approach, pursued in epistemic logic by Rantala [25] and developed by other
authors such as Priest [23], expands the world machinery by adding non-normal or
impossible worlds (see Berto [3] for an overview; Berto [2]) and, again, Priest [23],
for applications to imagined fictional and nonexistent objects). If possible worlds
are ways things could be, then impossible worlds are ways things could not be:
they represent absolute (logical, mathematical, metaphysical) impossibilities, such
as contradictions, as obtaining. In epistemic logic, non-normal worlds are understood
as viable epistemic alternatives from the viewpoint of imperfect or inconsistent cog-
nitive agents. Wansing [28] convincingly showed how non-normal worlds semantics
can provide a very general framework for epistemic logics. The relevant intentional
operators are still interpreted, as in the standard approach, as modals – as restricted
quantifiers on worlds. But they are now quantifiers on non-normal worlds as well.
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By accessing such worlds in the truth conditions of the relevant ®, one easily refutes
Validity, Closure andConsistency. E.g. for Closure: take a non-normalworldwwhere
p holds, but p v q fails. If w is accessible (to the relevant agent), we have ®p without
®(p v q), although p logically entails p v q. For Consistency: just access a non-normal
world where both p and ∼p hold to get ®p and ®∼p.

In this paper I want to show how impossible worlds also help with a problem,
which is in a sense symmetric to the issue of logical omniscience.On the one hand, our
representational mental states should sometimes be inconsistent, and/or not closed
under entailment: we do not imagine everything that follows fromwhat we explicitly
conceive, andwecanoccasionally have inconsistent conceptions. This is precisely the
logical omniscience issue. But on the other hand, we do conceive or imagine things
not logically entailed by what is explicitly included in the mental act of imagining a
scenario.

What does “explicit” mean here? It seems plausible to say that, when we engage
in a conscious act of imagination whereby we conceive a non-actual scenario, such
an act has some deliberate basis, whereby we purposefully focus on a given content.
Let us call such content explicit. A simple example: conceiving subject x reads one of
Arthur ConanDoyle’s novels, portraying Sherlock Holmes as amanwho is variously
active in London, so-and-so dressed, doing this and that. On the basis of the input
overtly given in the text, x starts forming a mental representation of the situation
described there.

However, when we engage in such exercises of imagination, we typically do not
limit ourselves to the information which we explicitly represent in our minds, or
to what follows from it logically, and there is an obvious sense in which we do it
legitimately. Sticking to our example: in reality, London is in the UK and normally
endowed men have kidneys, although Doyle’s stories (assume) do not claim this
explicitly. Now x can take such information as holding throughout the represented
situation, absent information to the contrary: x does imagine Holmes as a normally
endowed man with kidneys and as living in the UK. This integration is typical: we do
not conceive such additional details by inferring them logically from the explicitly
given content, rather by importing background information we already have, and
which we retain in the non-actual scenario we build a mental representation of.

If this is right, then such exercises of imagination we do both less and more than
applying a fixed set of logical rules of inference: we do less, because we don’t draw
all the logical consequences of what we explicitly conceive. But we also do more,
because we develop our imagined scenarios by importing what does not follow
logically from their explicit content. As Timothy Williamson has claimed in The
Philosophy of Philosophy, we should then avoid looking for smooth logical rules
governing such exercises:

Calling [the relevant conceiving] “inferential” is no longer very informative. […] To call the
new judgment “inferential” simply because it is not made independently of all the thinker’s
prior beliefs or suppositions is to stretch the term “inferential” beyond its useful span. At
any rate, the judgment cannot be derived from the prior beliefs or suppositions purely by the
application of general rules of inference. (Williamson [31], pp. 147 and 151)
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Our imagining or positively conceiving non-actual scenarios is based, rather, on
imaginative simulation. I think that impossible worlds can help with what is going
on here as well.

3 Imagination as Ceteris Paribus Activity

I propose to model imagination, so understood, via modal operators interpreted as
variably strict quantifiers onworlds, possible and impossible. The addition of impos-
sible worlds has the role of accounting for our capacity of imagining or conceiving
absolute impossibilities and inconsistencies, and for the lack of logical closure for
our imagined scenarios. The variability of strictness is to account for the (highly
contextual) selection of the information we import in a representational mental act
when we integrate its explicit content.

The explicit content itselfmay play a role similar to that of the antecedent of a vari-
ably strict conditional. These conditionals, which can be indicative or subjunctive-
counterfactual, are sometimes called also “non-monotonic conditionals”, or “depen-
dent conditionals” (Bennett [1], pp. 16–17). They are such that, as Bennett says, “the
consequent is reachable from the antecedent only with help from unstated partic-
ular matters of fact” (Ibid.). They have been called “ceteris paribus conditionals”
in the Chapter on conditional logics of Priest’s nowadays popular Introduction to
Non-Classical Logic, because they embed an implicit “other things being equal”
clause:

We can say: “if it does not rain tomorrow, then, other things being equal, we will go to the
cricket”, or “if it does not rain tomorrow and everything else relevant remains unchanged,
we will go to the cricket”. The Latin for “other things being equal” is ceteris paribus, so we
can call this a ceteris paribus clause. (Priest [24], p. 84)

I will extend the terminology to our imagined operators, and will thereby talk of
“ceteris paribus imagination”. What is actually imagined in exercises of imagina-
tion of this kind, is what holds in worlds where the antecedent holds and further
information imported from actuality holds, too. An accessible world is one that com-
plies with such explicit content, but additionally, does not bring gratuitous changes
with respect to how we take the actual world to be. We will expand on this initial
characterization in the following.

A similar framework is proposed in Lewis’ [18] famous paper on truth in fiction,
whose key idea is that “we can help ourselves to the notion of what is explicitly so
according to the fiction and use the notion of possible worlds to extend outwards and
define what is implicitly so” (Sainsbury [27], p. 76). The explicit fictional content
corresponds to the explicit content of our imagined scenarios, and works, in Lewis’
approach, too, like the antecedent of a ceteris paribus conditional. As Williamson
also claims:

We seem to have a prereflective tendency to minimum alteration in imagining counterfactual
alternatives to actuality, reminiscent of the role that similarity between possible worlds plays
in the Lewis–Stalnaker semantics. (Williamson [31], p. 151)
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We will come back to the topic of world similarity, and to the question whether
such imaginative exercises come closer to counterfactual or subjunctive, or rather
to indicative, ceteris paribus conditionals, later on in this paper.2 For now, let us
just remark that for Williamson ceteris paribus exercises of imagination are what
we engage in when we evaluate the relevant conditionals in our daily life: we first
explicitly imagine the antecedent, then we develop our imagined scenario to see
whether such an expansion eventually leads us to verify the consequent.

Let us now begin to make the idea of ceteris paribus imagination more precise.

4 A Semantics for Imagination

Let L be a sentential language with atoms p, q, r (p1, p2, . . . , pn), negation ∼, con-
junction ∧, disjunction ∨, the conditional →, the standard modals � and ♦, square
and round brackets [and], (and). While the round brackets are the usual auxiliary
symbols preventing scope ambiguities, the square brackets allow forming variably
strict modal operators, which can then be prefixed to formulas. The well-formed
formulas of L are the atoms and, if A and B are formulas, ∼A, (A ∧ B), (A ∨ B), (A
→ B), �A, ♦A, and [A]B (outermost brackets are usually omitted).

The only piece of notational novelty is [A], to be thought of as a sententially
indexed modal operator. Consider a bunch of acts of imagining performed by a given
cognitive agent on specific occasions, and suppose each is characterized by its explicit
content, to be directly expressed by a formula of L. Let the set of such formulas be
K. Each A ∈ K determines its own operator, [A], and its own accessibility relation,
RA (the idea, in the context of conditional logics, goes back to Chellas [7]). One can
read “[A]B” as: “It is imagined in act A that B”; or, less tersely and more accurately:
“It is imagined in the act whose explicit content is A, that B”.3

An interpretation for L is a sextuple < P, I,@, {RA|A ∈ K},�>. P is the set of
possible worlds; I is the set of impossible worlds. P and I are disjoint, W = P ∪ I
is the totality of worlds. @ ∈ P is the actual world. {RA|A ∈ K} is a set of binary
accessibilities on W, i.e., RA ⊆ WxW. � is a pair< �+,�− > of relations between
worlds and formulas: “w �+A” says that A is true at world w, “w �− A” says that A
is false there.

Truth and falsity conditions will be given separately: as we want to model imag-
inable inconsistencies, we allow some formulas to be both true and false, or “glutty”,
at some worlds (and also, neither true nor false, or “gappy”). However, one may not
want this to happen at possible worlds: their being consistent and maximal is what

2As remarked by many, including Lewis [17] and Williamson [31], counterfactuals are ill-named if
there are, as can be argued, meaningful and true (though, admittedly, pragmatically odd to assert)
“counterfactuals” with true antecedent. So some people prefer to talk of “subjunctives”, e.g. Bennett
[1]. Both kinds of terminology are common in the literature anyway.
3Intentional operators are often indexed to agents: in the usual notation of epistemic logics, “KxA”
is to mean that cognitive agent x knows/believes that A. Since the subscript would not have done
much work in our essentially single-agent setting, I have omitted it.
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makes them possible, one may say. To accommodate this view, we can restrict our
attention to those interpretations of L which begin by relating atomic formulas at
worlds to truth, falsity, both, or neither, by complying with a Classicality Condition
on possible worlds:

(CC) If w ∈ P, then for each p, either w �+ p orw �− p, but not both.

Next, the truth and falsity conditions are defined for allw ∈ P, that is, for possible
worlds, as follows. The extensional operators works thus:

w �+ ∼A iff w�−A

w �−∼ A iff w �+ A

w �+ A ∧ B iff w �+ A andw �+ B

w �− A ∧ B iff w �− A andw �− B

w �+ A ∨ B iff w �+ A orw �+ B

w �− A ∨ B iff w �− A orw �− B

As for the modal operators:

w �+ � A iff for all w1 ∈ P, w1 �+ A

w �− � A iff for some w1 ∈ P, w1 �− A

w �+ ♦ A iff for some w1 ∈ P, w1 �+ A

w �− ♦ A iff for all w1 ∈ P, w1 �− A

Unrestricted necessity/possibility is defined at possible worlds as truth at all/some
possible world(s). Our conditional is strict:

w �+ A → B iff for all w1 ∈ P, if w1 �+ A, then w1 �+ B.

w �− A → B iff for some w1 ∈ P, w1 �+ A and w1 �− B.

An easy induction on the complexity of formulas will show that the CC gener-
alizes: no gaps or gluts at possible worlds for any formula composed of the logical
vocabulary defined so far. And, so far, we have just propositional S5, except for the
peculiarity of spelling out truth and falsity conditions separately. However, at points
in I all complex formulas are treated as atomic, that is, truth values are assigned to
them directly, not recursively (this is the original trick of Rantala [25]): a conjunction
may be true there even though one of the conjuncts is false, etc. Impossible worlds,
thus, can fail to be closed under any non-trivial relation of logical consequence. Now
the key move is to allow access to such anarchic worlds via our indexed accessibili-
ties. The truth and falsity conditions for [A], again for w ∈ P, are:

w �+ [A]B iff for all w1 ∈ W such that wRAw1, w1�+B

w �− [A]B iff for some w1 ∈ W such that wRAw1, w1�−B
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(At impossible worlds, formulas of the form [A]B may be assigned arbitrary values).
We understand “wRAw1” as saying that w1 realizes an intentional state: things are
there as they are represented (at w) in the act of imagination whose explicit content
is expressed by A. In this respect, [A]B is precisely similar to a ceteris paribus condi-
tional where A works as the antecedent. But while in the Lewis–Stalnaker approach
only possible worlds show up in the semantics, and thus any such conditional with
an antecedent true at no possible world is automatically true, here we have at our
disposal, and we can access, impossible worlds as well. This will allow, as we shall
see, some of the hyperintensional distinctions we wanted acts of imagination to be
able to make.

The two clauses above may be equivalently formulated using set-selection func-
tions, as also Lewis does in Counterfactuals (see Lewis [17], pp. 57–9). Each for-
mula A in K comes with a function, fA, which takes as input the world w where the
act of imagination takes place, and selects the set of worlds accessed via that act:
fA(w) = {w1 ∈ W |wRAw1}. Taking |A| as the set of worlds making A true, we get,
for w ∈ P:

w �+ [A]B iff fA(w) ⊆ |B|
w �− [A]B iff fA(w) ∩ |∼B| 
= ∅

So [A]B is true (false) at w iff B is true at all worlds (false at some world) in a
set selected by fA.4 Since wRAw1 if and only if w1 ∈ fA(w), the two formulations are
interchangeable.

Finally, logical consequence gets the straightforward definition for modal frames
with a designated base world. Where S is a set of formulas:

S |= A iff, in every interpretation < P, I, @, {RA|A ∈ K},
�>, if @ �+ B for all B ∈ S, then @ �+ A.

Logical consequence is truth preservation at the actual world in all interpretations
(as a special case, logical validity is truth at the actual world in all interpretations: |=
A iff ∅ |= A). What matters for our purposes is that @ ∈ P, so we define consequence
by only looking at a world which is possible: “impossible worlds are only a figment
of the agents’ imagination: they serve only at epistemic alternatives. Thus, logical
implication and validity are determined solely with respect to the standard worlds.”
(Fagin et al. [11], p. 358). If we understand impossible worlds as “worlds where

4A technical point. When the truth and falsity conditions are spelt thus, the CC does not generalize
seamlessly to formulas comprising our ceteris paribus operators. Since the motivation for having
the CC in the first place was to avoid gaps and gluts of truth values at possible worlds, this may be
unsatisfactory: we don’t want a merely imagined inconsistency, for instance, to generate a possible
or actual one. In order to fix this so that the CC extends throughout the whole language, one would
need, in fact, to rephrase the falsity conditions for our operators; to rule out gluts, e.g., one would
need: w �− [A]B iff not w �+ [A]B.
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logic may be different”, this looks like a natural move: we want to define logical
consequence with respect to worlds where logic is not different.5

I should mention that a framework similar to this one can be found, albeit in a
different context that does not aim at modelling imagination directly, in Wansing
[29].6 This paper gives an intuitively plausible modal semantics for connexive logics
(see Wansing [30] for a general introduction), with truth and falsity conditions spelt
out separately, and “dynamic” truth and falsity conditions for conditionals. Although
the falsity conditions for Wansing’s logic are different from the ones presented here,
there are many interesting similarities worth exploring.

5 Constraints

The semantics for ceteris paribus conditionals in the Lewis–Stalnaker approach is
based on a notion of closeness between worlds, which is understood as similarity.
Roughly, a conditional of this kind, let us say, a subjunctive “If it were the case that
A, then it would be the case that B”, is true at world w iff the world(s) most similar
to w where A holds also make true B. However, world similarity has been variously
criticized as a desperately vague and context-dependent notion.While some attempts
have been made to make the notion viable in Artificial Intelligence (Delgrande [9]),
things seem to get worse when non-normal worlds, as worlds representing absolute
impossibilities, are around. How does similarity work for them? Supposing mathe-
matical truths are unrestrictedly necessary, is a world where the Axiom of Choice
fails closer than one where Fermat’s Last Theorem is false? In spite of some work
(Nolan [22], Brogaard and Salerno [4]), this is a largely unexplored territory.7

However, we can explore the plausibility of at least some inferential schemas
involving our ceteris paribus operators without taking a precise stance on world
closeness as similarity. We can wonder whether we want some constraints on the
various RA’s or fA’s to hold by looking at what goes on, in a similar setting, with the

5It is sometimes claimed that this kind of impossible worlds semantics alters the meaning of
the logical vocabulary. This is connected to the understanding of non-normal worlds as points where
(Footnote 5 continued)
“logic may be different”: for instance, a world where a contradiction, p ∧∼p, is true, one may
say, is one where that formula does not express the proposition that p and not-p. However, the
semantics above does validate the Law of Non-Contradiction, and furthermore (when fixed as per
the previous footnote) provides no counterexamples to it. A world where a contradiction is true is
a way things could not be according to the semantics, but a way things could be is someone’s
positively conceiving a contradiction, that is, imagining a scenario inwhich it obtains, and impossible
worlds have the role of modelling such acts of imagination. Dialetheists like Graham Priest believe
that the actual world is inconsistent, and it is controversial whether they are thereby automatically
misunderstanding the meaning of negation (or that of conjunction).
6 Thanks to an anonymous Referee for pointing me at Wansing’s work.
7But Jago [14] develops a nice framework which allows a distinction between obvious and subtle
logical impossibilities, via a total ordering of impossible worlds with respect to the degree of
complexity of the logical truths violated at them. I suspect that Jago’s techniques may be used to
provide some kind of similarity (or at least of logical similarity) metric for impossible worlds.
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ceteris paribus conditionals of weak conditional logics such as C+ (see Priest [24],
pp. 87–90); for these logics work without presupposing a metric for the closeness of
worlds.

Here is one plausible basic constraint:

(Obtaining) If w ∈ P, then fA(w) ⊆ |A|

Possible worlds only access worlds where the explicit content obtains. Obtaining
gives this logical validity:

|= [A]A

It is obvious that one imagines what one explicitly imagines. Next, these entailments
also look clearly right:

[A](B∧C) |= [A]B
[A](B∧C) |= [A]C

It seems obvious that, when I imagine that B ∧ C is the case, I also imagine each
conjunct. This is secured by the appropriate constraint:

(Simplification) If w ∈ P, then if wRAw1 then (if w1�+B∧C, then w1�+B and
w1 �+ C).

The companion constraint:

(Adjunction) If w ∈ P, then if wRAw1 then (if w1�+B and w1�+C, then
w1�+B∧C)

Gives us:

[A]B, [A]C |= [A](B∧C).

When both constraints are accepted, accessibility is limited to worlds which are, so
to speak, fully well-mannered with respect to conjunction: they satisfy Conjunction
Introduction as well as Conjunction Elimination. However, Adjunction might look
controversial, for it may be doubted that, when one imagines in one act [A] that B and
that C, one automatically imagines that B ∧ C. A popular example due to Quine will
allow us to discuss this. Quine’s original story concerned counterfactual conditionals,
and is usually taken as evidence for the role that context and the consequent play in
their evaluation.But one can easily rephrase it in terms of ceteris paribus imagination.

The explicitly imagined situation, [A], is one in which Caesar the Roman emperor
is in command of the US troops in the Korean war. Given the same explicit content as
input (say, a short science fiction story on time travel), we may imagine Caesar using
the atomic bomb, B, or we may imagine him using catapults, C. We can imagine
Caesar dropping the bomb, [A]B, as we import in the representation information
concerning the weapons available in the Fifties.We can imagine him dropping stones
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to the Reds via catapults, [A]C, as we import the setting of the ancient Romans’
military apparatus. But we would not infer that [A](B ∧ C), we imagine Caesar
employing both the bomb and catapults. We can imagine that as well, making the
scenario even weirder, but that should not come as an automatic logical entailment.

However, I think that something has gone wrong in this reconstruction of the
situation, though what has gone wrong is not detected by our current formalism.
We are focusing on single acts of imagining, but we individuate them only via their
explicit content. However, it seems plausible that different acts of imagining will
trigger the importation of different background information depending on contexts
(the time and place at which the cognitive agent performs the act, the status of its
background information, etc.). And it seems clear that there is a shift in context
in the Quinean example. So I think that Adjunction can be maintained on context-
dependent grounds. The formalism may represent this by adding a set of contexts
to the interpretations, variables ranging on them in the language, and by directly
indexing representational acts with contexts: [A]x, [A]y, for instance, will stand for
two distinct acts with the same explicit content, A, performed in contexts x and y.
Once the adjunctive inference is parameterized to same-indexed contents, it should
work fine.

To explore a plausible further constraint, start with a special case of |= [A]A,
namely:

|= [A∧B](A∧B)

Via Simplification, we get:

|= [A∧B]A

Now a condition onemaywant to have is what wemay call the Law of Imaginative
Equivalents:

(LIE) If fA(w) ⊆ |B| and fB(w) ⊆ |A|, then fA(w) = fB(w).

If all the worlds selected by fA makeB true and vice versa, thenA andB are equivalent
in our imagination: when we imagine either, we look at the same set of scenarios.
(LIE) validates this:

(Substitutivity) [A]B, [B]A, [B]C |= [A]C
This says that two imaginative equivalents A and B can be replaced salva veritate
with each other within brackets. Suppose, for instance, that house and habitation
are for you imaginative equivalents: you cannot imagine that something is a house
without imagining that it is a habitation and vice versa. Therefore, [A]B: when you
explicitly imagine that your home is a house, you imagine that it is a habitation;
and [B]A: when you explicitly imagine that your home is a habitation, you imagine
that it is a house. Suppose [B]C: as you imagine that your home is a habitation, you
imagine that it looks nice. It follows that the same happens when you imagine that
your home is a house.
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(LIE) also validates an inference we may call Restricted Transitivity8:

(RT) [A]B, [A∧B]C |= [A]C

(This is a bit more difficult to see, so I will add a proof: suppose (1) @ �+ [A]B and
(2) @ �+ [A∧B]C. From (1) and [A]A (secured by Obtaining), via Adjunction, we
get @ �+ [A](A∧B).[A∧B]A is valid (from |=[A∧B](A∧ B), via Simplification), so
@ �+ [A∧B]A. Applying the truth clause for [ ], to the last two we get fA(@) ⊆|A ∧
B| and fA∧B (@) ⊆|A|. By (LIE), fA(@) = fA∧B (@). From (2), by the truth clause for
[ ] again, fA∧B(@) ⊆|C|. From this and the previous identity, fA(@) ⊆|C|. From this
via the truth clause for [ ] again, @ �+ [A]C).

Ceteris paribus conditionals are, notoriously, “non-monotonic” in the sense that
Antecedent Strengthening fails from them: a counterfactual “If it were the case that
A, then it would be the case that B” does not entail “If it were the case that A and
C, then it would be the case that B”. Our imagination operators immediately inherit
such a nice feature, in that the following inference is invalid in the semantics:

[A]B |=? [A ∧ C]B

An act of imagination (in a given context) is individuated by its explicit content. But
then one cannot automatically import further information into the explicit content
itself without turning it into a different act. I imagine that I fail my logic class, and I
will imagine myself in a sad mood. But if I imagine failing my logic class and that
everyone else has failed, so that the exam needs to be re-taken with an easier array
of exercises, my mood will not be that sad in such a scenario. The variability in the
strictness of our operators is the essential tool securing such non-monotonicity of
our exercises of imagination.

Next, there are some invalidities essentially involving the hyperintensional fea-
tures of our operators. Here is one:

A → B |=?[A]B

Recall that the premise is an intensional (strict) conditional: all the possible A-worlds
are B-worlds. However, in an act of imagination whose explicit content is given by
A, we do not automatically imagine that B: as our act is hyperintensional, that is, it
discriminates between various absolute impossibilities, wemay look at impossibleA-
worlds where B fails. In particular, strict conditionals which logicians in the tradition
of relevant logics (see Mares [19] for a nice introduction) call “irrelevant”, such as
conditionals which hold just because the antecedent is impossible, or the consequent
necessary, do not imply the corresponding irrelevant conceivings. In our semantics,
this is fine:

8General Transitivity fails for our operators, just as it does for ceteris paribus conditionals. Its
failure is a consequence of the failure of Antecedent Strengthening, to which we are about to come.
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|= (A∧ ∼ A) → B.

However, this fails:

|=? [A∧ ∼ A]B

(Just peek at an inconsistent w �+p∧∼p where, however, it is not the case that w
�+ q). That we explicitly imagine an inconsistent scenario does not mean that we
trivialize our act of imagination. Similarly, although we have:

|= A → (B∨ ∼ B),

the corresponding inference concerning imagination fails:

|=?[A](B∨ ∼ B).

In general, we can discriminate between logical or absolute necessities and we do
not conceive them automatically, independently of what we (explicitly) conceive.
Thanks to impossible worlds, we have neither:

�B |=? [A]B,

nor:

∼♦A |=? [A]B.

Such failures make a decisive difference with respect to approaches to conditional
logic thatmodel ceteris paribus operators as sententially indexedmodals but use only
possibleworlds, as in the aforementionedChellas [7], and further highlight the neces-
sity of using impossible worlds for our purposes. One can model some inconsistent
conceptions using the Chellas framework, for instance [A]B and [A]∼B,9 by looking
at an empty set of worlds via the relevant accessibility. One cannot, however, avoid
for instance trivialization when an inconsistency is explicitly conceived, i.e., when it
shows up in our formalism as: [A ∧ ∼∼A] . . . Then any formula can take the place of
the dots because there is no world in which what is within brackets is true. However
we don’t want to imagine arbitrary contents just because we explicitly imagine an
inconsistency. Or, just to give another example, we want to have [A]B without having
[A](B ∨ C): when we imagine in the act whose explicit content is A, that B, we do not
thereby imagine a disjunction between B and an arbitrary C (one explicitly imagines
Holmes in London and one imagines him in England, but it does not follow that one
imagines that either Holmes is in England or Moriarty is on the Moon). The only
way to achieve this is to have impossible worlds where disjunction misbehaves in
such a way that B is true there while B ∨ C is not.

9As pointed out to me by an anonymous Referee.
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6 Cotenability and ImaginativeModus Ponens

To discuss the plausibility of one further constraint, we need to introduce the notion of
cotenability. This is the connection that, by holding between some information and a
formula, A, makes the information eligible to be imported into the act of imagination
whose explicit content is given by A (the term was used by Lewis [17] in the context
of counterfactuals, and of course he took it from Goodman). The idea is that [A]B
will hold (at a world) when the explicitly imagined content, A, plus a ceteris paribus
clause, say, CA, dependent on A and cotenable with A (at that world), entails B. CA

is not an ordinary premise, or bunch of premises, but works rather like a catch-all
ceteris paribus clause: it captures the background information we hold fixed relative
to A, and which we can import into our imagined scenario.

What background is in fact imported is constrained by what is relevant with
respect to the explicit content. Such relevance is difficult to pin down formally, but
the intuitive insight is clear. Although I know that Amsterdam has more than 1,200
bridges, this is irrelevant with respect to my imagining that I fail my logic class: as
my mental representation is not about that, I need not import the information about
all those Amsterdam bridges. A kind of “aboutness” feature holds for our ceteris
paribus operators, in the sense that [A]B holds only when A and B share a sentential
variable, so B is, in this sense, at least partly about what A is about: [A]B is similar to
a relevant ceteris paribus conditional, in the sense of relevance captured in relevant
logics (see Priest [24], pp. 208–11). Showing this is not too difficult, given howweak
the logic of our operators is.

And talking about weakness, here is the issue of the constraint hinted at above.
So far I generically referred to what is imported in our exercises of ceteris paribus
imagination as “information”. But it is important to remark now that our cotenable
information is not made only of truths,10 because “what people do not change when
they create a counterfactual alternative depends on their beliefs” (Byrne [5], p. 10),
and believed falsities may get involved. As a consequence of this, (the counterpart
in our framework of) what Lewis called Weak Centering should not hold in our
semantics:

(Weak Centering) If w ∈ |A|, thenw ∈ fA(w).

This says that ifw realizes the explicit contentA of an act of imagination, then it is one
of the worlds picked out by the selection function for A. Even restricted to possible
worlds, Weak Centering validates what we may call imaginative modus ponens:

A, [A]B |=? B

10It is not even appropriate to call it information, if information is factive, as claimed by Floridi [12].
As the issue is controversial, we can, however, stick to a weak conception of semantic information
as meaningful, well-formed data which need not represent reality correctly. Misinformation, in this
sense, is a kind of information.
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This says that if the explicit content of an act of imagination happens to really obtain,
and it is represented in that act that B, then B also obtains. This is wrong because we
can import false cotenable beliefs into our representation, as part of the relevant CA.
And this can make us imagine falsities even when A gets things right. For instance, I
imagine that Obama works in Washington, [A], but I mistakenly believe Washington
to be in the state ofWashington. I import the (relevant, cotenable) belief and I imagine
Obama to work in the state of Washington, [A]B. A is true, but it does not follow that
B is.

7 Indicative or Subjunctive?

The failure of imaginative modus ponens, and the doxastic component involved in
the semantics for our operators, trigger another interesting issue which I will just
briefly discuss, but leave open here: are these operators closer to indicative ceteris
paribus conditionals than to subjunctive-counterfactual ones? While it has often
been remarked that the logic of the two kinds of conditionals is very similar (e.g.,
they both fail Antecedent Strengthening, Transitivity, etc.), a key difference between
indicatives and subjunctives is that what is cotenable with respect to indicatives is
not made of facts, but of beliefs (see Bennett [1], p. 175–6). They are connected
to subjective probabilities, or degrees of belief, so much so that according to some
(including Bennett himself) one cannot even give a truth-conditional semantics for
them.11

I suspect that our variably strict operators may behave in a way more similar
to indicatives or to subjunctives depending on how the ceteris paribus worlds are
selected. It might be, that is, that two different kinds of similarity or closeness are in
play here. None of this has surfaced in this paper, precisely because I have introduced

11Even if indicative ceteris paribus conditionals lack truth values (which is controversial), one
should not suspect that our ceteris paribus operators themselves lack genuine truth conditions, and
thus that the whole prospect of a truth-conditional semantics as sketched here is flawed. Indicative
conditionals, for authors like Bennett, lack truth values for they report or describe nothing, although
they express something about the (conditional) belief arrangements of those who utter them. But a
formula of the form [A]B is exactly a report of the mental state of the relevant conceiving agent: it
reports that the agent imagines that B (in a certain context) in the act of imagination whose explicit
content is given by A; and such a report may be true or false. Anyway – and in answer to a point
pressed by one anonymous Referee – the connections between the approach pursued in this paper,
and the Ramsey test, which according to Bennett (and many others) explains the conditions for
accepting or believing in ceteris paribus indicative conditionals, are presently not clear (to me,
at least). Take beliefs as subjective probabilities. Then the Ramsey test connects the probability
assigned to “if A, then B ” to the conditional probability of B given A. The procedure, roughly put,
is: to assess “If A, then B”, one (1) takes the set of probabilities constituting one’s present belief
system, (2) adds probability = 1 for A, that is, full belief that A, (3) adjusts the rest of the belief
system conservatively, making as few changes as possible to make room for A, and (4) sees whether
the result gives a high probability for B. There is a similarity with the idea, described in this paper, of
understanding “[A] B” as “Explicitly imagining that A, importing cotenable beliefs in the scenario,
and getting B out of this”. But I currently have no idea of how to fine-tune the connection.
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no similarity metric of any kind for worlds. But I suspect that one may impose
two different similarity structures, which would account for two different kinds of
conceivability or imagination in the sense of Chalmers [6]: a primary conceivability
where we imagine a certain scenario as a candidate for actuality, and which works
in a way more similar to indicative ceteris paribus conditionals; and a secondary
conceivability where we imagine a certain scenario as counterfactual, and which
works closely to subjunctive conditionals in the sense of the relevantworlds similarity
structure, although it differs (at least) in that Weak Centering is lacking. If such a
development of the semantics presented above is feasible, it may nicely connect
the framework to mainstream debates about conceivability and two-dimensional
semantics. Whether the development is feasible will be, I hope, the topic of further
work.
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On the Preservation of Reliability

Bryson Brown

…all models are wrong, but some are useful.
(G E.P. Box and N.R. Draper, 1987)

Abstract “Mathematics may be compared to a mill of exquisite workmanship,
which grinds you stuff of any degree of fineness; but, nevertheless, what you get
out depends upon what you put in; and as the grandest mill in the world will not
extract wheat-flour from peascod, so pages of formulae will not get a definite result
out of loose date” (Thomas Huxley (1869) Geological Reform, Presidential Address
to the Geological Society). Reasoning in science is a rich and complex phenomenon.
On one hand, we find detailed, sophisticated and rigorous calculations. But on the
other, we encounter a multiplicity of models and approximations whose status has
been the subject of extensive debate (See [6] How the Laws of Physics Lie (Oxford,
New York, Oxford University Press) and [7] The Dappled World (Cambridge, Cam-
bridge University Press)). Detailed and demanding calculations give the appearance
of mathematical rigour, and from a practical perspective, inferences and calculations
based on successful models have proven to be reliable guides to our world, pre-
dicting the results of many measurements and suggesting interventions in the world
that produce startling and impressive novel phenomena ranging from laser light to
transistors to monoclonal antibodies and new types of sub-atomic particles. But the
logical incompatibility of different models, each making different assumptions and
approximations, together with the application of distinct, conflicting models in the
course of deriving important results, raise serious questions about the nature and
status of the both the premises and the conclusions of scientific reasoning.

Approximations and simplifications are often adopted without any demonstration
that they are faithful to the principles whose implications they are intended to approx-
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imate.1 Still, the successful application of the resulting models is widely adduced as
support for the more precise principles. The logical concerns their practice raises are
rarely addressed by the scientists in question, and the actual reasoning scientists do
can be interpreted in different ways: in general, neither the kind of commitment they
make to the formulae and sentences they write down nor the ‘background’ logic they
draw on when making inferences are made explicit in their work.

A further interpretive challenge arises from the fact that reasoning in science is
usually highly focused, seeking ways in which we might reason from certain assump-
tions to result(s) of particular interest. These may be results that have been observed
and noted to be of particular interest already, such as atomic spectra or the precession
of Mercury’s perihelion, or results that are suggested by an interesting theoretical
result, such as Bell’s theorem. In general, efforts to systematically formulate the
principles and to work out what can be inferred from them more generally come
later, and only after a significant body of interesting results has emerged.2

Finally, the initial arguments are often sketchy and intuitive, even when some
steps involve explicit calculations. For instance, Bohr’s model of the hydrogen atom
used calculations from classical physics to determine the energy differences between
‘allowed’ orbits constituting the possible states of the atom. But those explicit cal-
culations provided no reason for restricting the states of the atom to those meeting
the quantization of angular momentum rule and ignoring the rest of the continuum
of orbits that could be modeled using the same classical principles.

When successful or even promising, such exploratory reasonings, with their
approximations and shaky pro-tem assumptions, are often followed-up with more
fully developed arguments, specifying, refining and sometimes generalizing the ini-
tial argument. Assumptions made at various points in the reasoning are gradually
systematized, and more explicit calculations leading from the assumptions to con-
clusions of interest emerge.3 Bohr managed to give an account of the hydrogen

1See [6], p. 119f., where Cartwright argues that the order in which a series of approximations each
of which appears to be justified is to be made is chosen not on a principled basis (such as a theoretical
argument for which ordering will produce more exact results), but instead on the basis of which
order captures the observed Lamb shift in the excited state. Though in this case we can show one
order produces a more precise approximation, in general this is not the case, and extra precision is
not always required either. The subsequent discussion of the Lamb shift in the ground state provides
an even more difficult case of a choice between approximations grounded in the result obtained
rather than the mathematical precision of the approximations. Finally, a more general problem in the
neighborhood is the lack of mathematical justification for the (brilliantly) successful calculational
practice of re-normalization.
2Old quantum theory is a case in point: it developed via a series of strange proposals, beginning with
the quantization of energy exchange between matter and the radiation field (Planck), and continuing
with Bohr’s hydrogen atom and its refinements and extensions (including ionized helium atoms),
Ehrenfest’s adiabatic principle (applying thermodynamics to connect stationary states of different
physical systems), and more. See, for instance, Rechenberg, H. “Quanta and Quantum Mechanics,”
[19], pp. 143–248 in Laurie M. Brown, Abraham Pais, and Sir Brian Pippard, Eds., Twentieth
Century Physics, Vol. 1, Bristol and New York: Institute of Physics Publishing and American
Institute of Physics Press, for a helpful discussion of OQT.
3A famous cartoon by S. Harris in American Scientist provides an ironic illustration of this
expectation—a scientist’s long calculation on a blackboard is interrupted, at one point, by the
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spectrum by combining restrictions on the allowed ‘stationary states’ with Planck’s
rule, �E = hν. This success, with subsequent refinements and extensions (such as
allowing for the finite ratio of the mass of the nucleus to that of the electron, applying
the same sort of model but with a heavier nucleus with twice the elementary charge
to capture the spectrum of ionized He atoms and invoking adiabatic transformations
to link the quantization rules for various systems) gave rise to old quantum theory,
leading to the subsequent emergence of quantum mechanics.

The logical ideal of a consequence relation determining the full set of commit-
ments that follow from the adoption of certain premises is far removed from the give
and take of scientific reasoning even once the assumptions of particular arguments
are made clear and the reasoning from them to some important conclusions has been
cast in precise and rigorous form. For example, classical mechanics gives rise to diffi-
cult puzzles including the inconsistency of a cosmological model combining infinite
Euclidean space and a non-zero average density of the universe and Laraudogoitia’s
Zenonian supertask (and its temporal inverse) involving point particles.4

Philosophical studies exploring this difficult terrain have appeared in many places:
Nancy Cartwright has argued that the approximations adopted in the course of rea-
soning from a background theory to models of some real systems are very often not
shown to be reliable approximations of the theory they are based on; as a result,
even when the models we actually apply to real systems are successful, we often
cannot show that they capture the (approximate) consequences of the theory guiding
the construction of our models of the systems. Instead, they bear a subtler, more
independent relation to the theory or theories that they draw on.5

Further, models applied at different stages of a single calculation sometimes make
incompatible assumptions, as in Bohr’s 1913 model of the hydrogen atom.6 Simi-
larly, Mathias Frisch has argued that classical electrodynamics (at least as standardly
applied) is outright inconsistent, by virtue of leaving out of account interactions that
the theory requires.7 Finally, Margaret Morrison has argued for a distinctive, indepen-
dent role of models, separate from both theory and observation, in our understanding
of science.8

(Footnote 3 continued)
words, “and then a miracle occurs,” after which further calculations continue to a conclusion.
Another comments drily, “I think you should be more explicit at this point”.
4See Norton, “The Force of Newtonian Cosmology: Acceleration is Relative” Philosophy of Science,
62, [16], pp. 511–22, [17] “Classical Particle Dynamics, Indeterminism and a Supertask,” Synthese
115: 259–265, and [9], ‘Comments on Laraudogoitia’s “Classical Particle Dynamics, Indeterminism
and a Supertask”, British Journal for the Philosophy of Science, 49: 123–133.
5See [6], p. 100ff, and [7], p. 179f.
6See Brown, B. and Priest, G., “Chunk and Permeate II: Bohr’s hydrogen atom,” European Journal
for the Philosophy of Science, [3], doi:10.1007/s13194-014-0104-7.
7[10] “Inconsistency in Classical Electrodynamics,” Philosophy of Science 11/2004; 71:525–549.
doi:10.1086/423627.
8Morgan, M. and Morrison, M. (eds.) [15], Models as Mediators:Perspectives on Natural and Social
Science, Cambridge, Cambridge University Press.

http://dx.doi.org/10.1007/s13194-014-0104-7
http://dx.doi.org/10.1086/423627
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All these issues raise questions about how we use theories and the concepts asso-
ciated with them to reason about real systems and to report observations of them. This
in turn raises doubts about the implications of both successful and failed empirical
tests for the epistemic standing of a theory: when we are unsure about the inferences
that link theories to empirically testable conclusions, it is hard to understand how
and in what sense such theories come to be empirically confirmed or disconfirmed.

In general, the reasoning we do when we apply a theory to a system doesn’t take
the right form for a simple and straightforward approach: whatever logic we take
to be truth-preserving, truth is not guaranteed to be preserved by the inferences we
typically make when we make inferences from sentences in the language of some
scientific theory to constraints on what we expect to observe. Thus from a strictly
logical perspective, the observational disconfirmation of sentences we take to be
testable ‘implications’ of a theory implies little if anything about the potential truth
or falsity of the theory: in general (as Duhem and Quine9 both pointed out) there
are many other assumptions involved in such inferences. Similarly, when successful
predictions don’t, strictly speaking, follow from the theory, we are left in doubt about
whether and how they count as successes for the theory.

1 Preservation of Reliability

“Preservationism” is the name of a logical school that began with work by Schotch
and Jennings on their weakly aggregative logic called forcing. The forcing conse-
quence relation preserves the level of premise sets (rather than the consistency of
their consistent extensions), where the level of a set of sentences is an intuitive mea-
sure of the set’s inconsistency in some underlying logic: a set of level 0 includes
only theorems of the underlying logic; it can be consistently extended by any con-
sistent collection of sentences of the language. A set of level 1 is a consistent set
of sentences that cannot be consistently extended by any and every other consistent
set of sentences, and a set of level n is a set that can be partitioned into, or covered
by a minimum of n consistent sets. In general, preserving the level of a set of sen-
tences requires us to weaken aggregation principles such as ∧-I when inconsistency
arises: for example, the level of {p,¬p} in classical logic is 2, but the classical level
of {p,¬p, p ∧ ¬p} is ∞, the trivial level, since no consistent division of this set of
sentences is possible. For n the level of a set of premises �, the strongest principle
of aggregation that can be applied without trivializing � is 2/n+1, which forms the
disjunction of pairwise conjunctions amongst any n sentences in �.10 But any non-
n colourable hypergraph will do as a template for complete aggregation, with the

9See [18], “Two Dogmas of Empiricism,” The Philosophical Review 60: 20–43.
10See Brown and Apostoli, “A Solution to the Completeness Problem for Weakly Aggregative Modal
Logic,” Journal of Symbolic Logic, 60, 3, September 1995, 832–842 for the original completeness
proof, and Brown and Schotch, “Logic and Aggregation” Journal of Philosophical Logic 28: 265–
287 (June, 1999) [5] for a generalization in the context of hypergraph colourings.
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points on each edge joined by conjunctions and the edges joined by disjunctions.
The weakly aggregative approach to paraconsistency is not the only preservationist
logic—for instance, preserving ambiguity measures instead of level leads to preser-
vationist semantics for LP and FDE.11

In all these logics, the properties preserved by the consequence relation are formal
properties of the premises we reason with. In this paper, I propose a preservationist
perspective on reasoning in science, but the property I suggest scientific reasoning
aims to preserve is reliability. Since reliability is not a formal property like level,
consistency, or ambiguity measures, there can be no formal account of the inferences
that preserve it. But I think that considering some concrete examples provides inter-
esting insight into what this pragmatic, preservationist perspective can contribute to
our understanding of science. In particular, the reliabilist perspective points towards
a modest form of scientific realism focused on the present state of science, rather
than on what we conceive as the ultimate aim of science.

To better understand reasoning in science we need a broader view of how various
concepts and the inferences that we make based on them contribute to the models
scientists apply when reasoning about various phenomena. Our focus here will be
less on theories, whether conceived syntactically as sets of sentences closed under a
consequence relation or as sets of models, and more on specific examples of scien-
tific reasoning and the way in which various concepts are deployed in the course of
reasoning. In general, concepts can be used both to report the outcomes of various
observations and in the course of scientific reasoning, where scientists rely on infer-
ential connections between them, sometimes in the form of general laws (f = ma, for
example) and sometimes in less rigorous patterns of inference (as when noticeable
differences in appearance between two groups of organisms are taken as evidence
that they represent distinct species).

The inferential connections involved are often too complex for a rigorous applica-
tion to most, or even all real systems.12 However, in many cases simplified accounts
of real systems in terms of these concepts can be applied to build reliable models
of such systems, that is, models from which we can reliably infer sentences that
satisfactorily describe observed properties and relations of the systems.13 Further-
more, the standards for what counts as a satisfactory description shift as improved
observations reveal details and relations that had not been noted or seen as significant

11See “Ambiguity Games and Preserving Ambiguity Measures,” in On Preserving: Essays on
Preservationism and Paraconsistent Logic, Schotch, Brown and Jennings, eds., University of
Toronto Press (2009).
12In fact, even where rigorous general accounts are available, they typically emerge from careful
reflection on scientific practices applicable to particular cases which were quite successful long
before those rigorous accounts emerged. Consider as an example the development of quantum
mechanics leading up to von Neumann’s formal account.
13We will say a description is satisfactory if what it says about the system is approximately true
in the innocent sense of agreeing, within contextually determined limits, with reports of various
observations of the system, expressed in terms of the same concepts.
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before.14 In other cases, while natural systems remain too complex for precise and
reliable application of models built with the help of such concepts, scientists are able
to produce carefully designed and built systems that do display behaviour that fits
with the principles derived from some such model.15

When these kinds of successes occur, scientists take the concepts that underlie
the models in question seriously as part of our efforts to describe and reason about
the systems being modeled. While the commitments scientists take towards these
concepts and the models built with their help range from very pragmatic and local
to strongly realistic commitments with very broad scope, scientists across this range
of attitudes often adopt these concepts and inference rules as tools worth refining,
applying them to reasoning about other systems and testing them in more detailed
and precise ways. Models applying such concepts are also relied on in the production
of new kinds of real systems, aimed at producing effects of interest that the model
suggests such systems will give rise to.16 Reliability is clearly a central value here:
concepts that can be relied on to

Even when calculations within a model approximate in ways that limit the applica-
tion of a theory’s conceptual apparatus within the model, and we cannot in principle
show that a conclusion that emerges will in fact approximate the results of a full
application of the theory’s principles,17 successful efforts to reliably produce pat-
terns of observable phenomena previously identified as ‘theoretical’ possibilities by
inference from the model is widely seen as providing significant support (of some
kind) for the theory.18

As I see it, a theory which provides conceptual resources for the construction of
such empirically successful models deserves some kind of credit, but this credit does
not justify the claim that the theory constitutes a set of sentences likely to be true of
the world. Instead, it justifies regarding the theory as a valuable and reliable cognitive

14Consider the impact of Brahe’s observations on astronomy and Kepler’s efforts to improve on
Copernicus’ model for planetary motion; the shift to ellipses governed by Kepler’s laws allowed
for a much better fit with the observations. Another example is Einstein’s focus, as he was working
towards his theory of General Relativity, on capturing the precession of Mercury’s perihelion.
15See Cartwright on ‘phenomena’ in [6], p. 100ff.
16Think here of efforts to produce ‘effects’ predicted by simple theoretical models—masers and
lasers, transistors and many other basic components of modern electronic and optical technology
are concrete demonstrations of phenomena that theoretical results had identified as potentially
realizable.
17For example, we may sum the first few terms of a series whose terms quickly become quite small,
and accept the result as an ‘approximation’ to the sum of the series as a whole without a formal
proof that the series actually converges to a limit. Successful application of such results are often
counted as a positive result for the theory in question, even though it’s possible that they are not
in fact good approximations to what the theory would predict if a more rigorous calculation were
performed.
18What I have in mind here is related to Cartwright’s account of phenomenal laws (How the laws of
physics lie), which describe reliable regularities that hold of phenomena we either find or learn to
create. Such laws are not strictly derived from the theory’s principles—instead, they invoke concepts
drawn from the theory, reasoning with them in ways that are not logically rigorous, but which might
(at least approximately) capture results that could, in principle, be rigorously derived; one might
say they are inspired by the theory rather than derived from it.
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resource. The concepts involved in such cases have an established track record of
leading scientists to infer striking patterns of phenomena that are either observed to
occur in nature or can be successfully produced in some way or other. They are often
reliable ‘maps’ of what we can expect to observe in various circumstances.

In her work Cartwright has emphasized the importance of the practical challenges
scientists face, as they learn to reliably produce and observe certain phenomena. My
point here is that it is similarly difficult to extract useful models from a theory’s
principles and to discern how to apply new concepts to real systems, reasoning with
them in a way that leads to empirically significant conclusions, including predictions
of various phenomena.19 Both require ingenuity, insight into the theory and into the
apparatus or natural system involved, together with clever choices allowing scientists
to simplify and extract a useful tool (a model or a system of objects and instruments)
from something too complex to be completely understood (a theory or some part
of the natural world). Thus at both ends of a successful encounter between our
representations and a system in the natural world we find creative insight, trial and
error and rich interaction between scientists, representations and features of the world
those representations can be usefully applied to.

I also want to emphasize here that there are, logically speaking, messy cases that
deserve careful examination. Bohr’s model of the hydrogen atom boldly ignored the
implications of classical electrodynamics for his postulated orbiting electrons, while
assuming that classical electrodynamics can be relied on when making observations
of the radiation emitted by a sample of excited hydrogen gas: Bohr’s inference to
empirical claims about the hydrogen spectrum begins with a model of the atom and
its states that rejects electrodynamics, allowing the calculation of a ‘frequency’ asso-
ciated with a transition between two ‘stationary states’ based on Planck’s equation, E
= hν. But what is this frequency a frequency of? Bohr depended on classical electro-
dynamics to guide him here, enabling him to connect the frequencies derived from
his quantum model with empirically testable claims about the radiation field around a
sample of excited hydrogen atoms.20 Successful applications came quickly- not just
an account of the known hydrogen spectrum, but a prediction of previously unknown
lines, a successful refinement taking account of the finite mass of the nucleus and
achieving a better fit with spectral data, an account of new lines in the solar spectrum
as due to singly-ionized helium atoms, and an account of line splitting in terms of
highly elliptical, relativistic orbits.21 But these further models of the old quantum
theory also made predictions about spectra by setting aside electrodynamics when
dealing with atoms, their states and transitions between states, while those predictions
continued to be interpreted as predictions about classical electromagnetic radiation,

19Consider Bell’s work on non-locality in QM (see [1], “On the Einstein Podolsky Rosen Paradox,”
Physics 1 (3), 195–200): his discovery that the statistics of such QM observations would differ in an
experimentally testable way from those of a hidden-variable theory demonstrated the possibility of
settling experimentally what had, up to that point, been widely thought of as a metaphysical issue.
20Brown and Priest, “Chunk and Permeate II: Bohr’s Hydrogen Atom,” European Journal for
Philosophy of Science, Jan 2015 [3]. http://link.springer.com/article/10.1007/s13194-014-0104-7.
21Ibid.

http://link.springer.com/article/10.1007/s13194-014-0104-7
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which provided the only available models of how light interacts with instruments to
give rise to observable spectra.

The reasoning employed by Bohr was selective, targeted and speculative in spirit.
It identified interesting conclusions that could be drawn from assumptions that were
applied in such a way as to avoid known difficulties. The elixir of Planck’s equation
provided a bridge between Bohr’s quantized, semi-classical model of the atom and
claims about the radiation emitted by excited hydrogen atoms that we already under-
stand how to test; Einstein famously described it as the “highest form of musicality
in the sphere of thought.”22

The reasoning involved here isn’t captured by the standard logical model of a
consequence relation, in which the commitments that premises carry with them are
expressed in terms of the closure of the premises under the consequence relation,
and any course of reasoning that combines the premises employed and conclusions
drawn logically from them in any way is endorsed. Instead, Bohr applied his premises
strategically, at specific points in the course of the inferences leading from descrip-
tions of the atoms to descriptions of the radiation they emit. The premises, taken
altogether, were contradictory: the orbiting electron in a stationary state fails to radi-
ate, but the radiation emitted in a transition from a higher energy state to a lower,
which was essential to actual empirical testing of the model, was still described
in terms of classical electrodynamics. But these conflicting principles were applied
at different points in the course of Bohr’s reasoning: the calculations invoke both,
but never together. The success of Bohr’s model demonstrated that his model was
a reliable inferential tool when applied to the hydrogen atom in accord with the
restrictions Bohr had imposed. In the end, the model produced important, reliable
results where none had been before23—a success that led to more and increasingly
systematic exploration of what could be achieved with the combination of classical
and quantum principles that characterized old quantum theory.

2 Other Examples:

Although they don’t invoke incompatible basic laws, complex models such as
regional climate models (RCMs) display similar patterns of reasoning. In RCMs24

high resolution regional models are ‘nested’ within relatively low-resolution global
climate models (GCMs) in order to explore the potential impacts of global climate
change on local climate patterns, including precipitation, temperature, maximum

22Schilpp, Paul Arthur, editor. Albert Einstein: Philosopher-Scientist, pp. 19, 21, Open Court, La
Salle, Illinois, [1949; 1951] 1969, 1970. ISBN 0-87548-286-4.
23In fact some had thought no such results could be expected, since, if these lines characterized
‘resonant’ frequencies of a tiny, complex system, the mathematics of determining the structure of
the system responsible for them (as in calculating the shape of a bell from its sound) seemed beyond
solution.
24See http://www.ouranos.ca/en/scientific-program/climate-science/climate-simulations/ and http
://www2.mmm.ucar.edu/wrf/users/tutorial/200807/WRFNesting.pdf.

http://www.ouranos.ca/en/scientific-program/climate-science/climate-simulations/
http://www2.mmm.ucar.edu/wrf/users/tutorial/200807/WRFNesting.pdf
http://www2.mmm.ucar.edu/wrf/users/tutorial/200807/WRFNesting.pdf
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flood levels etc. In model runs, the ‘coupling’ of the two takes place across a geo-
graphical boundary where the conditions projected by the RCM are reconciled with
the conditions projected by the GCM, which ‘drives’ the regional model at its lat-
eral boundaries. Just as Planck’s law provided a bridge between Bohr’s model of
the hydrogen atom and a (strictly incompatible) CED model of the radiation field
surrounding a sample of excited hydrogen atoms, imposing the results of the GCM
as boundary conditions in the RCM allows the GCM to affect the development of
the RCM over time.

Once again reasoning here does not proceed on the standard logical model of a
consequence relation- that is, it does not draw on a single collection of premises and
endorse every inference those premises would license as correct. In one-way nesting,
results for the RCM are arrived at by applying the GCM to calculate conditions
(temperature, pressure, etc.) at the lateral boundary of the nested RCM. The figures
from each cell of the GCM are imposed as boundary conditions on the corresponding
cells of the RCM (with an integer number, usually odd, of RCM cells aligned with
each GCM cell) through a ‘translation’ that interpolates steps in values across the
corresponding GCM grid squares and imposes the finer-scale topography of the
RCM. The RCM is then run to produce results for its area of coverage over a time
step, after which the RCM’s boundary conditions are again adjusted to reflect the
results derived from the GCM. In two-way nesting, the results of some number
of time-steps for the RCM feed back into the boundary GCM cells, affecting the
subsequent results in the GCM.

The phenomenon I want to focus on is the limited interaction between the GCM
and the RCM. Parameter values are passed, according to systematic rules, from one
to the other (from the GCM to the RCM for one-way nesting, and in both directions
for two-way nesting). The equations used in each don’t cross over; instead, they are
applied to the parameters of a given state to calculate a new state at each time step in
each model. To capture this kind of reasoning, we need models of inferential systems
which allow the separation of contexts together with the passing of some results from
one context to another. One such model is ‘chunk and permeate’ (C&P)25: in this
model, separate ‘chunks’ contain different (sometimes inconsistent) premises, and
reasoning processes allow some results to ‘permeate’ from one cell to another. A cycle
of reasoning begins by closing each chunk under its consequence relation, following
which specified kinds of sentences in each chunk permeate to certain other chunks;
the ‘consequences’ of a C&P structure are the sentences found in a particular chunk
(called the designated chunk) in the limit of these cycles.

More importantly for our purposes, justifying such a reasoning practice requires
an account of how, why, when and in what sense it can be said to work. The standard
semantic model of a consequence relation relies on guaranteed truth preservation: if
certain premises are true, all (and only) their consequences are guaranteed to be true
as well. This ‘guarantee’ is achieved straightforwardly: by definition, � |= α iff

25See Brown and Priest, “Chunk and Permeate, A Paraconsistent Inference Strategy, Part I: The
Infinitesimal Calculus,” Journal of Philosophical Logic, 33, 379–388, 2004 [2], and Brown and
Priest [3], op. cit..
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α is satisfied in every model of �; syntactically, � � α if α is consistent with every
consistent extension of �. This also implies that |= and � are closure relations—that
is, {γ : � |= γ} |= α iff � |= α and {γ : � � γ} � α iff � � α.

But preservationism provides a broader approach to reasoning. Unlike other exam-
ples of preservationist systems, the preservationist suggestion here extends beyond
the formal accounts of a consequence relation: I propose that we should regard the
kind of reasoning I’ve been discussing here as aimed at the preservation of relia-
bility. That is, the inferences countenanced in successful models of these kinds are
inferences that are found to produce reliable conclusions about the systems we apply
them to. From this perspective ‘truth’ is a limit concept, corresponding to reliability
with no holds barred: a worthy goal, but its ‘all of nothing’ nature makes it a poor
measure of progress.

In this light, since chunk and permeate gathers its conclusions in the designated
chunk, to evaluate an instance of chunk and permeate reasoning we need to consider
the reliability of the sentences appearing there. In the case of Bohr’s hydrogen atom,
the designated chunk is the classical chunk, where spectra are predicted and their
observation can be reported. So on this account, Bohr’s model was a success because
it generated a collection of empirically reliable results, including agreement with
established results about the hydrogen spectrum as well as predictions that were
subsequently found to be empirically reliable.26 Extensions and refinements of the
model and other related models that produced still more reliable results across a
wider scope of systems emerged subsequently, as old quantum theory developed.
As a result, the Bohr model together with an increasingly systematized collection
of models using related methods came to be adopted as tools producing empirically
reliable inferences where none had been available before. Absent the initial reliable
results, Bohr’s model and its implications for the hydrogen spectrum would surely
have been still born; one suspects it would never have escaped Bohr’s working
notebooks.

The empirical reliability of this kind of reasoning cannot be a matter of truth
preservation: as a whole, the collection of premises used in the course of Bohr’s
reasoning was never a candidate for truth. Further, Bohr’s model didn’t match all
the features of the empirical spectra (for example, that the observed spectral lines
are broadened by the short half-lives of highly energetic states27)—it could never
have been a candidate for the ‘whole truth’ about the hydrogen atom. Bohr’s success
turned on the unprecedented and quite detailed partial agreement between accepted
spectral observations and the consequences derived from his model. The results of
reasoning with the model in the way prescribed by Bohr agreed with established
regularities about certain spectra as well as with subsequent observations of spec-
tral lines that hadn’t been previously observed. These observations in turn were

26This went beyond spectral data to include a satisfactory estimate of the typical size of a hydrogen
atom, and an explanation of why lines due very high-energy states were missing from known spectral
studies, due to the orbital radius of such states and their consequent instability/absence at normal
pressures.
27On this topic see, for example, [11]. “Observation of Inhibited Spontaneous Emission”. Physical
Review Letters 55 (1): 67–70, in which inhibition of emission is used to narrow spectral line-widths.
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considered reliable based on an established record of agreement (and resolution of
disagreements) on a range of observations of spectra. These in their turn relied on an
established background of reliable, independently replicated results including meth-
ods for producing gratings and other optical equipment, along with lab procedures
documented and transmitted in the training of new spectroscopists. From the point
of view proposed here, the reliability of such empirical observational practices and
the practices involved in constructing and using reliable instruments is neither more
nor less fundamental (and neither more nor less to be taken for granted) than the
reliability of the inferences scientists make with the help of theories and models.

The example of regional climate models is subtler still, since the aim of these
models is not straightforwardly predictive; instead, they aim to provide policy guid-
ance for government, agencies, corporation and individuals by identifying possible
changes in maximum precipitation, spring flood levels and other important clima-
tological variables. Reliability here is hard to determine directly, since we only get
one ‘real’ trial, and it is yet to be realized. But indirect tests are possible: we can
reliably fill deliberately imposed gaps in past temperature data, using both regional
and global models; we can try to model the periodicity of past cycles of glacial and
interglacial periods based on models of variations in distribution of insolation due
to Milankovitch cycles combined with models of various feedbacks; we can retro-
spectively impose unpredictable boundary conditions including ENSO and volcanic
eruptions to see whether their addition to our models produces a better fit to the actual
record, and we can improve data bases by developing better interpolation techniques
for thinly covered regions.28 The results suggest that the guidance provided by these
models is better than (i.e. more reliable than) guessing as a guide to risk management
and public policy.

Many important inferences in science are not easily understood as preserving the
truth of some accepted set of premises, i.e. as grounded in the fact that if the specified
premises are true, the conclusion must also be true. But if we focus on reliability as a
pragmatic property preserved by successful scientific inferences we see immediately
that it also applies, with limitations, to models long since relegated to the ‘junk pile’
of serious science, including earth-centred astronomy and phlogiston chemistry. I
suggest that these models have largely29 fallen out of use, not because they aren’t
reliable in certain conditions and within certain limits, but because we have more
generally reliable models whose use does not make significantly greater demands on
our ability to reason with them or compare them with the results of observation. By
contrast, we still confidently use models based on classical physics in many scientific
contexts, because they are both sufficiently reliable and simpler to apply than models
based on special or general relativity (such as in planning space probe missions) or
on quantum mechanics (for designing magnetic resonance imaging systems).

28[8], Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature
trends. Q.J.R. Meteorol. Soc. doi:10.1002/qj.2297.
29Of course for navigational purposes, earth-centered astronomy is still a convenient tool.

http://dx.doi.org/10.1002/qj.2297
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3 Preservation of Reliability, Scientific Revolutions
and Scientific Realism

Debates over scientific realism and scientific progress often focus on the question
of what is preserved over time in the development of science. Natural languages
provide persistent and apparently stable ways of describing our world, and we can
apply them to express much of what we’ve learned about the natural world in the
course of scientific inquiry. In contrast to this stability, history shows that scientific
theories are supplanted, over time, by distinct successor theories. This instability has
been a crucial premise in some familiar arguments against scientific realism, while
the apparent stability of the language we learn ‘at mother’s knee’ has been a strong
point in favour of a kind of common-sense realism about the world view Sellars
called the “manifest image”.30 The question of what is preserved and progressively
extended as science ‘advances’ seems easier to answer in natural language, while
scientific realism in all its forms has included a preference for the account of the
world expressed in the theoretical language(s) of science over one expressed in
natural language, even a natural language that has been carefully refined to make it
more philosophically clear and coherent.

Identifying some kind of epistemic accomplishment or success that is preserved
across changes of theory and that has increased over the course of the history of
science would provide a basis for the intuitively obvious claim that science is a
progressive enterprise. As a failed example, consider the logical empiricist distinction
between the observation language and theoretical languages: whatever its failings,
it explicitly allowed for the preservation and extension of observational successes
across theoretical changes. But in the latter half of the 20th century, the inseparability
of the language of observation from the language of scientific theory came to be
widely recognized. The actual observation reports of scientists could not be ‘cashed
in’ either in terms of a phenomenalist language or in terms of a philosophically
refined version of the common-sense language of everyday observations.

This new perspective raised difficult questions about what sort of ‘content’ is pre-
served across different scientific languages and scientific revolutions.31 A new form
of realism, inspired in part by new ideas about names and natural kind terms, made the
preservation of successful reference for theoretical terms central to its account of sci-
entific progress. But counter-arguments emerged quickly: many theoretical entities
belonging to ‘mature’ sciences, such as the ‘luminiferous ether,’ were subsequently
dropped from our scientific ontology. Thus even mature sciences don’t provide a
reliable partial inventory of what there is that is preserved over time: transformations

30Sellars, W., “Philosophy and the Scientific Image of Man,” in Frontiers of Science and Philosophy,
Robert Colodny (ed.) Pittsburgh, PA: University of Pittsburgh Press, (1962), 35–78; reprinted in
Science, Perception and Reality, London: Routledge and Kegan Paul, New York and The Humanities
Press [20], 1–40.
31(see T.S. Kuhn The Structure of Scientific Revolutions, 2nd ed., Chicago, University of Chicago
Press, 1972).
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of our theories’ conceptual structure can drop terms that were once taken to refer to
fundamental (even indispensable) entities.32

Bas van Fraassen’s empiricism33 presents a view of science as aimed, not at truth
or at an inventory of existing items, but more subtly at the pursuit of ‘empirical ade-
quacy’, something that science could come closer to achieving by replacing theories
shown to be in conflict with settled observations with theories that are compatible
with them. Since empirical adequacy can be achieved very simply by imposing no
constraints on the models of a theory at all, van Fraassen’s account also acknowledges
(though it does not emphasize) the value of empirical strength, whose preservation
would require retaining empirically successful predictions of a new theory’s prede-
cessors. And it’s clear that such successes have (at least often) been retained.34 For
example, the replacement of classical gravity by general relativity preserved clas-
sical gravity’s success in accounting for planetary orbits (and many other phenom-
ena) while improving on classical gravity accounting for the ‘anomalous’ precession
of Mercury’s perihelion and the displacement of the angular positions of stars as
observed by Eddington during the solar eclipse of 1919.

But here too, preservation and progress are hard to establish: like truth, empirical
adequacy is an ideal goal, demanding a perfect accord between the empirical sub-
structure of some model of the theory with the observable structures of the world.
Van Fraassen’s constructive empiricism departs from realism only by restricting the
required accord between theory and world to what could be observed by human
beings at the right time and place.35 Van Fraassen explains empirical adequacy in
terms of what he calls the empirical substructures of the models of a theory. These
are the substructures that, according to the theory’s model of human beings and their
sensory capacities, can be directly detected by a human being at the right place and
time, using only her senses. Thus reports constraining what models of a theory are
such that their empirical substructure is compatible with our observations can be
correctly made as an immediate cognitive response to being exposed to certain kinds
of systems as described by the theory, by human beings trained to make observations
in the language of the theory. A theory is empirically adequate if at least one of the
models of a theory satisfies all the observation reports that could made by (properly
trained) human beings if they were present, where those reports are limited to what

32Laudan, Larry. “A Confutation of Convergent Realism”, Philosophy of Science, Vol. 48, No. 1,
(Mar. [14]): 19–49.
33The Scientific Image, Oxford, Clarendon Press, 1980.
34Though examples of “Kuhn loss,” The Structure of Scientific Revolutions, Chicago: University
of Chicago Press ([13], 2nd edition, with postscript) 99–100), i.e. the surrender of what seemed
to be successful explanations in the transition to new theories, have been proposed including the
purported explanation of the similarities of different metals (shininess, ductility etc.) on the basis
of their containing phlogiston, I do not pursue this issue further here.
35[2], “The Pragmatics of Empirical Adequacy,” The Australasian Journal of Philosophy, 82, 2,
242–264.
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their sensory capacities, as described by the theory’s models of human beings, allow
them to detect.36

We have here what looks to be good evidence for progress in terms of empiri-
cal adequacy and strength with respect to currently accepted observations: scientists
generally favour theories that have survived empirical testing to date, along with the-
ories that constrain empirical results more strongly without conflicting with accepted
observations. But the way we go about using theories in practice is open to much
looser interpretation: in practice, there is a back-and-forth between efforts to produce
acceptable observations and the models we expect those observations to accord with.
Cartwright37 emphasizes that while models draw on theoretical concepts/ principles,
they make substantial compromises along the way: often we cannot prove, in princi-
ple, that inferences made from models really are good approximations to what strictly
follows from the theory. The implications for pro-tem judgements of the empirical
adequacy of a theory in relation to specific phenomena are difficult to reconcile with
confidence about steady progress towards empirical adequacy. We may well con-
clude that some observations refute a theory’s empirical adequacy, or that they are
compatible with it, only to find later, as our observations and calculations are refined,
that this is not the case. On the other hand, Cartwright’s phenomenal laws38 hold
in highly controlled/ specific conditions which often involve complex observational
practices. They may reliably characterize the phenomena they apply to, but they are
not derived from theories, and the observational practices that produce the phenom-
ena are not straightforward ‘recipes’ either. Consequently, for Cartwright, theories
get little credit when it comes to truth claims—however, their value as starting points
and conceptual ‘toolkits’ remains.

Nevertheless, from Cartwright’s anti-realist perspective successful theories are
repositories of concepts and inference patterns that scientists rely on to guide the
construction of reliable models, and to help us to discover and reliably produce a
range of phenomena.

The point I want to make here is that there is a subtler kind of realism, focused
in the here and now rather than on some conception of the ultimate aim of science.
Science as it stands today, with its rich variety of theoretical apparatus and con-
cepts, its complex observational instruments and methods, its regular phenomena
and models that account for them, constitutes a better, more powerful and unified

36This is not an easy account to follow through on. It is difficult to see how we can determine what
observations humans can make in the language of a theory when we don’t know how to describe
ourselves in the language of the theory without the help of a very substantial body of observations.

Setting aside this worry about epistemic circularity in hopes that a more pragmatic approach
could dissolve the problem, we still need to assume that a pragmatic approach to observation would
not entirely undermine the assumption of a privileged epistemic status for observations made using
unaided human senses. And at that point we would still need work out how to categorize the many
things that are, intuitively, humanly observable (that we believe would trigger a distinct sensory
response in a human being to whom they were present), but which occur in situations such that a
properly trained human being who was present would not survive long enough to actually recognize
and interpret her sensory response. See the discussion in [2], op. cit.
37[7], op. cit.
38[6], op. cit.
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description of the world than an account framed in the concepts provided by our
natural human languages. It is more precise and more powerful; it has given rise to
methods for producing startlingly unintuitive and practically valuable phenomena,
from antibiotics and microchips to aircraft, generators and electrical grids. It has
predicted strange and wonderful things, such as the cosmic microwave background
radiation. Our understanding of the world would be deeply impoverished by a philo-
sophical attempt to push our cognitive commitments back into the straightjacket of
common sense, or even that of Sellars’ refined ‘manifest image.’39

4 Conclusion

We do not know in advance what level of local, detailed reliability and breadth of
applicability can be achieved. The world need not have been as predictable, as reliably
and systematically describable or as effectively manipulable as it has turned out to
be (of course for all we knew, the task could also have turned out to be easier). The
emergence of modern science is, I suggest, best understood in terms of our having
stumbled across a ‘sweet spot’ in terms of both our concepts and the development
and application of instruments in observation, and, more recently, in calculation. In
retrospect, the path to contemporary science looks fraught: systems such as Euclidean
geometry and classical mechanics were fundamentally misleading, but still served
as helpful—even indispensable—stepping stones: despite being false, they were and
remain reliable as guides to reasoning about our world in many circumstances. Better
still, many of their features were retained in the later theories that emerged to replace
them, even though there seems to be no basis for ruling out the possibility of a world
in which such local, limited theoretical successes don’t occur, or in which they occur
but don’t provide a helpful ‘stepping stone’ towards better theories. In addition,
empirical measures have emerged that reliably identify conditions under which, and
the degree to which particular models, conceptual apparatus and judgments can be
relied on. Physical parameters we can use to do this include temperature, the strength
of gravitational fields as well as scales of size and relative velocities, but psychologists
have studied examples touching directly on human cognitive behaviour, revealing,
for instance, reliable patterns of perceptual and cognitive errors we tend to make as
well as standards and methods we can apply to avoid them (though, sadly, we often
fail to apply them).40, 41

An underlying philosophical uncertainty persists: setting aside the known limita-
tions, we cannot rule out the presence of other, unknown factors which undermine
the reliability of a thus-far reliable inference or observation in a particular case, even
when it respects the known limits of such inferences. But this is just a generalization

39Sellars, op. cit.
40See [12], Thinking, Fast and Slow (Doubleday) for a rich overview of some of this work.
41For climate simulations and nesting, http://www.ouranos.ca/en/scientific-program/climate-
science/climate simulations/, http://www2.mmm.ucar.edu/wrf/users/tutorial/200807/WRFNesting.pdf.
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of Hume’s worry about induction. From a pragmatist perspective, which recognizes
the indispensability of induction in our confidence regarding both observation and
reasoning, it justifies a fallibilist modesty about our judgments, but not despair about
our ability to justify them.
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1 Introduction. The Anathema Against Triviality
in Mathematics

One of themain outcomes of the growth and settlement of studies on paraconsistency
is inconsistent mathematics, which is now a well-established field of mathematical
research. One amoremethodological vein, the studies on paraconsistency propitiated
an adequate degree of intellectual freedom for honestly questioning the necessity
of any principle of logic, no matter how venerated it had been at some point. Some
paraconsistentists and their interlocutors (e.g. Priest’s [14, 16]), Mortensen’s [9, 12],
and Kabay’s [4]) have lately given a certain amount of airplay to trivialism, the idea
that everything is true. However, and although nothing is completely uncontentious,
the almost unanimous view is that trivialism is wrong.

In this short paper I discuss trivialism restricted to mathematics, that is, whether
there could be place for trivial theories (those where everything is true) and trivial
objects (those with every property) in mathematics. Again, the almost unanimous
view is that a trivial mathematical theory is the “worst sort of expansion [amathemat-
ical theory might have]” [1, p. 323] and that triviality in mathematics is “absolutely
unacceptable” [19, p. 612], an “Armageddon” [2, p. 1], to take just three random ver-
dicts on triviality in mathematics from among friends of inconsistent mathematics.
Even Mortensen, who is overall more sympathetic to trivialism in general, considers
even certain weak forms of triviality “useless [for serious mathematics]” [11, p. 205]
and then radicalized the claim to say that they are “catastrophic for mathematics”
since it would render all calculation not only useless but also “meaningless” and
“impossible” [13, p. 635]. He bases his case in a result by Dunn on real number
theory according to which a single false equation makes the theory trivial without
ever using ex falso quodlibet.

I want to argue, using some notions from category theory, that the step from trivial-
ity to meaninglessness, impossibility and uselessness is not as straight as Mortensen
suggests. Paraconsistency theorists used to push the envelope and investigate the lim-
its of logicality and mathematicality. This is an effort in the same, anti-incredulous
stares spirit.1 More than defending triviality in mathematics, which I do,2 this work
should be regarded as a plea for investigating it seriously, unless one is ready to
employ an awkward double standard to avoid trivialism consisting in making exactly
the same moves paraconsistentists railed against consistentists when it came to para-
consistency.

1And sometimes an incredulous stare means a lot of debate, because according to some, trivialism
deserves no stare at all; cf. [5, p. 252].
2I am not alone on thinking that mathematics might have place for triviality. Priest in [15] considers
models of arithmetic with (atomically) trivial objects in which, among other principles, neither the
transitivity of ‘=’ nor the substitutivity of identicals hold. That work was developed independently
of Dunn’s result, but the ideas serve to block it. Priest models are examples that no mathematical
catastrophe needs to follow from a trivial arithmetical object. Nonetheless, I do not aim to compile
here all the ways to block Dunn’s result, so acknowledging Priest’s work is enough for my purposes.
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The plan of the paper is as follows. In the second section I make some termi-
nological suggestions to give a better conceptualization of triviality in mathematics
–for example, there are several reasons to prefer the label “atomic triviality” over
Mortensen’s “mathematical triviality”– and then I reconstructDunn’s proof. In Sect. 3
I review Dunn’s result on the light of degenerate toposes. A degenerate topos is an
extremely simple mathematical universe (there is only one object up to isomorphism
and its identity morphism) yet one can interpret logical notions in it, with the result
that everything is true there due to the extreme simplicity of the universe. I will show
that this implies that either one of the premises of Dunn’s argument cannot obtain
(from a point of view “external” to the universe) or that it obtains in calculations
“internal” to such trivial universe and the theory associated, yet the calculations are
possible and meaningful albeit extremely simple.

2 Dunn’s Trivialization Result

2.1 Terminological Preliminaries

Mortensen abhors triviality in mathematics in a manner more thoughtful and cau-
tious than most of his peers. But before assessing his claims, let me introduce some
terminology. We can coin the term C-trivial theory for a theory T in which every
sentence of a class C is true. Thus, the truth of all logically atomic sentences of a
theory T is the atomic triviality of T . Mortensen calls “mathematical triviality” the
atomic triviality of a mathematical theory, since for him mathematicality is closely
tied to functionality –the validity of Substitutivity of identicals in atomic sentences,
because that would be “what ensures that calculations can proceed” [13, p. 636].
Anything of what follows depends on the connections between mathematicality and
functionality, so I stick to ‘atomic triviality’ because it is a more general case, neutral
on mathematicality theses.3

Many cases of C-triviality coincide with triviality simpliciter under the pres-
ence of ex falso quodlibet (EFQ), but in general they do not and Mortensen in [11]
presents some examples. However, he says that atomic triviality as has been just
defined already is “catastrophic for mathematics” because, for example, a single
false equation in real number theory is enough to produce atomic triviality without
using EFQ. Moreover, Mortensen falls within the tradition of people (from Aristotle
to Putnam through McTaggart and many others, see [17, Chap.1]) who say that at
least for some C , the C-triviality of T implies the meaninglessness of T : Mortensen

3At the eleventh hour prior to publication I was referred to two notions of relative triviality close
to mine: In [18], negation-triviality (all the negations of a theory hold) is defined and called quasi-
triviality, and in [7] ‘quasi-triviality with respect to i and C’ means that a contradiction with degree
of complexity i implies all the formulas of a class C . Thanks to María del Rosario Martínez-Ordaz
for the pointers.
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says that calculations in such trivialized real number theory “would mean anything”
and that they would not be “possible” or “useful” [13, p. 635].

In what follows, a version of the trivialization of real number theory through a
single false equation without using EFQ is described.

2.2 Sketch of Dunn’s Proof

Mortensen mounts his case on a result by Dunn which uses only some principles
from high school algebra, notably principles about identity such as Transitivity and
Substitutivity of Identicals, to show that real number theory becomes (logically)
trivial by merely adding a single false equation. The argument runs as follows4:
– Rules of inference
Modus ponens (MP)
Universal instantiation (UI)
Uniform substitution (US)
– Principles for ‘=’
Transitivity: For every x, y, z, if x = y and y = z, x = z.
Substitutivity of identicals: For every x, y, if x = y and P(. . . x . . .), then
P(. . . y . . .).5

– Basic principles from real number theory
1. For every x ∈ R, (x − x) = 0
2. For every x, y, z ∈ R, if x = y then (x − z) = (y − z)
3. For every x, y, z ∈ R, if x = y then z(x) = z(y)
4. For every x ∈ R, x(0) = 0
5. For every x, y, z ∈ R, there is a w ∈ R such that z(x − y) = w

– Rest of the argument
6. a �= b, that is, that a and b are distinct real numbers; hypothesis.
7. a = b, a single false equation added to the theory to trivialize it.
8. (a − a) = (b − a), from 2, 7, US and MP.
9. 0 = (b − a), from 1, 8 and Substitutivity of identicals.
10. z(0) = z(b − a), from 3, 9, US and MP.
11. 0 = z(b − a), from 4, 10 and Substitutivity of identicals.
12. 0 = w, from 5, 11 and Substitutivity of identicals.
Whether by Transitivity or the Substitutivity of the identicals, every real number
equals any other. This is not even yet enough for triviality simpliciter, but only for
atomic triviality.6

4I follow the version in [13, p. 635]; there are other, more intricate versions in [10, Chap.6] and
[11, Theorem 2].
5Actually, all what is needed is the “functional” version of this principle, that is, when P(. . . τ . . .)

is a sentence free of logical connectives. The “transparent” version is when P(. . . τ . . .) is any
sentence. Classically, the functional and the transparent versions of the principle are equivalent, but
in general they are not in inconsistent mathematics. See [10, Chaps. 1 and 2] and [11].
6The extra resources to get full triviality are described in [11, p. 205].
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Note that real number theory is then atomically trivialized by the addition of a
single false equation, without using EFQ. I think this can be granted. However, my
claim is that something else is needed to say that atomic triviality is “catastrophic
for mathematics” besides the fact that it equals any real number to each other.

In the next section I will show a case of a fully, not only atomical, trivial math-
ematical universe where either premise 6 in Dunn’s argument cannot obtain, or it
can obtain but calculations are not “meaningless”, “impossible” or “useless” and
therefore no “catastrophe” follows from triviality.

3 Degenerate Toposes and Dunn’s Result

3.1 Categorial Preliminaries

Categories are a kind of mathematical universe of objects and connections between
them –their morphisms– satisfying very general conditions, like composability
and associativity of morphisms as well as identity morphisms for every object –
connections of objects with themselves.7 An isomorphism is a morphism i between
two objects X and Y with a morphism i−1 from Y to X such that the composition of
i and i−1 is the identity morphism for X . Two objects are said to be isomorphic if
there is a an isomorphism between them.

A central feature of standard category theory is that it is structural in the sense
that each object in a category provably has all the same properties as any object
isomorphic to it. For example, the defining property of a singleton is having only one
element. Clearly, in usual set theories there are many singletons, but in a categorial
set theory each singleton has only the properties that all of them have in common,
so any of them can be denoted by the same sign, say ‘1’, and speak as if there were
only one of them.8

Toposes are categories with extra structure which allow for the interpretation of
set-theoretical notions and hence of significant parts of mathematics, some of them
even as much as ZFC. I do not need all the details of topos theory here, but only
some aspects presented in a rather informal way that convey the main logical ideas.
One of the crucial features of toposes is that there is a truth value ν which satisfies
the
Comprehension axiom: The proposition f (x) about an element x of a domain O
is ν if and only if x belongs to the part M of the Os which are f ’s.

7Clear introductions to category theory in general, and topos theory in particular, can be found
in [8].
8For those who might wonder of a definition in terms of objects and morphisms: a terminal object
in a category C, denoted ‘1C’, is an object such that for any object X there is exactly one morphism
from X to 1C. The dual notion, initial object, denoted ‘0C’, the categorial version of an empty set,
is an object such that for any object X there is exactly one morphism from 0C to X .
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The usual reading of this is that ν is the value true and so M would be the extension
of the predicate f . Propositions have the form “(An element) a belongs to the part
M of (an object) O”.9

This allows defining logical notions like f alse and n-ary connectives of different
orders in a way that a topos comes with an internal logic. This internal logic is
internal in two very important senses. First, it is internal because it is defined using
only the resources of the topos or mathematical universe in question; second, it is
internal because it is the right logic to reason about the topos in question since it is
determined by the definition of its objects and morphisms: Using a different logic to
reason about them would alter their defining properties and thus it would not be a
logic at all for the intended objects and their morphisms.

In short, truth values in such internal logic have the following features implied by
the Comprehension axiom and the characteristics of any topos:
(IL1) Truth values form a partial order, i.e. for every values p, q and r :
(IL1a) p ≤ p
(IL1b) If p ≤ q and q ≤ p then p = q
(IL1c) If p ≤ q and q ≤ r then p ≤ r
(IL2) There is a truth value called true with the following property:

For every p, p ≤ true

(IL3) One can define a truth value called f alse that has the following property:

false ≤ true

and
for every p, false ≤ p

(IL4) Rather than implied by the categorial data, the traditional, “Tarskian”, notion
of logical consequence is assumed:
Let ‘p |=E q’ denote that q is a logical consequence of p in a topos E , i.e. that
whenever p is true in E , so is q. Equivalently: if q is not true, p neither is. |=E p
means that p is true in E .

Nothing in the above rules out a mathematical universe where the following hold:
(T1) For every p, p = true
(T2) true = f alse
(T3) For every p, |=E p
(T4) By (T1) and (T2), p = true and p = f alse, for every p
These conditions are satisfied in a mathematical universe where all the objects are
isomorphic, so for all practical purposes it can be said that there is only one object, D,
and only one morphism, d, that must be with D itself. No element a and no part M of

9But there is an alternative, dual reading of ν as f alse, so M would be rather the anti-extension of
the predicate f , etc. See [10, Chap.11].
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D can make the propositional function “x belongs to the part M of D” distinct from
true, because D is the only object, it has no proper parts, and all of them is included
in itself, so to speak. Thus, every propositional function (the only one expressible
given the characteristics of this universe) is satisfied by every element of D –which
is just D itself– and every proposition –for practical purposes, only one, since all
propositions turn out to be equivalent given the characteristics of this universe– is
true –the only truth value given the characteristics of this universe–.

This goes further. As I have mentioned, a topos is a category which allows for
the interpretation of set-theoretical notions. Thus, one has in it general categorial
versions of, say, Cartesian binary products, disjoint unions or power sets. D and d
are enough for a degenerate topos to satisfy the definitions of all these notions, so
in a degenerate topos, a singleton is an empty set10; a Cartesian product is a disjoint
union and a power set and so on.

3.2 Dunn’s Result on the Light of Degenerate Toposes

A topos is a model of a set theory satisfying at least the axioms Extensionality, Empty
set, Pairs,Unions, Power-set, Foundation and Separation. But a set theory restricted
to these axioms is not enough for doing even some basic mathematics. For example,
it does not assure that we have an object able to support recursive functions; for
example, an object with infinite elements. One can introduce an axiom of Infinity
(saying that there is a set with infinite members) in order to achieve that.

The categorial version of such an axiom is as follows. Let C a category with a
terminal object 1. It is said that C has a natural numbers object (NNO for short) if in
C there is an object N , a morphism o :1−→N and a morphism s :N −→N with the
following property: For every object X of C, if there are morphisms o′ :1−→ X and
s ′ : X −→ X then there is a unique morphism h :N −→ X in C such that (h ◦ o) = o′
and (s ′ ◦ h) = (h ◦ s), i.e. such that makes the diagram below commutative:

1
s

> N
s

> N

X

h

∨

s′ >

o′
>

X

h

∨

In any topos with a NNO, it is also possible to repeat the usual construction of the
integers, the rationals, and then finally the real numbers; one thus obtainsR in those
categories. Actually, one can define a real numbers object (RNO) in any category
with sufficient structure, not necessarily a topos. Then one can prove that an RNO
exists in any topos with an NNO and in some other situations. I will not give the
details of the categorial construction of the reals, this can be found in [6, Chap. 6];

10In fact, the usual non-degeneracy axiom states that terminal and initial objects are not isomorphic.
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for my purposes it is enough to point out that a degenerate category supports a NNO
and then also a RNO, so it makes sense to evaluate Dunn’s proof in this setting.

Consider a degenerate topos viewed from the outside or “externally”.11 It consists
of only one object and one morphism, so there cannot be false equations in it: There
is no x in the topos such that it could be different from d. Thus, from an external
point of view, Dunn’s argument is unsound, for it requires in step 6 a distinction
between objects that cannot be obtained.

Internally, the proof is sound, and the conclusion is just a complex way of saying
that in a degenerate topos there is but a single number. Are calculations in such a
degenerate mathematical universe impossible? Not really; all of them can be done,
and very simply. Are calculations theremeaningless? It depends. If one requires that
some sentences mean something different from any other sentences, those calcula-
tions are meaningless. If one only requires that they mean something, they are not
meaningless: Every sentence in the proof, in particular a = b and a �= b, means the
same thing as any other sentence in a degenerate topos, namely “a [d] belongs to the
part M [D] of D”. Are those calculations useful? Probably not in a universe like ours
where (presumably) not all objects are isomorphic, but certainly they are useful qua
calculations for those degenerate toposes. Actually, any other kind of calculations
would distort what happens in a degenerate topos; its internal logic, the right logic
for doing calculations within that topos, is trivial after all.

What then about the catastrophic character of triviality in mathematics? Perhaps it
is catastrophic practically for us, living beings in a universe which presumably is not
a degenerate one. Even it might not be very interesting neither mathematically nor
philosophically,12 but there are reasons to think that there is nothing purely logically
or purely mathematically catastrophic about triviality in mathematics.

4 Summary and Conclusions

Mortensen has put forward one of the few explicit, and one of the most compelling,
cases against triviality inmathematics. He says that even someweak form of triviality
is “catastrophic” because it makes calculations impossible, meaningless and useless.
Apparently, a proof by Dunn on real number theory shows so. I have argued that
degenerate toposes, certain extremely simple mathematical universes consisting of
just one object and just one morphism (up to isomorphism) show that there is nothing
catastrophic in Dunn’s result for those universes. Thus, from a more general point of
view, triviality makes perfect sense in its appropriate domain.

11The contrast between internal and external perspectives of a mathematical universe are already
familiar in standard set theory. For example, up to some ordinal in the cumulative hierarchy one can
see from the outside that there are infinite elements in the universe, but within the universe (up to
that rank) those elements do not form yet a set, so within the universe there is no infinite set yet.
12Although I think it is, and this paper would be an argument for that, but I will not press this point
further. See [3] for an example of how interesting things become for Platonists when triviality is
taken a bit more seriously.
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On Gluts in Mathematics and Science

Andreas Kapsner

Abstract This essay investigates what role truth value gluts, statements that are
both true and false, might play in accounting for inconsistencies in mathematics
and science. More specifically, this essay asks whether truth value gluts should be
designated values in such applications. Up to now, gluts have virtually always been
designated, but I try to show that this might not be the best way to treat them.

Keywords Truth value gluts · Paraconsistency · Many valued logic · Designated
value · Early calculus · Age of the earth · Darwin · Kelvin

1 Introduction

In this essay, I want to investigate what role truth value gluts, statements that are
both true and false, might play in accounting for inconsistencies in mathematics
and science. More specifically, this essay asks whether truth value gluts should be
designated values in such applications. It is a special case of a general question that
has been on my mind for a while, and which I have discussed for other special cases
elsewhere1 and plan to investigate further in the future. That question is simply:
Should gluts be designated? There is a broad consensus that it can be uniformly
answered in the positive, an answer I came to doubt.

Indeed, at some point in thinking about this, I thought that a case could be made
for the opposite claim, that gluts should never be designated. But that now seems
doubtful to me, as well, as some applications of gluts seem to push in the one,
others to pull in the other direction. And some, like the ones I am about to discuss,
seem much harder to decide than others. In case saying that makes you wonder how
much rationale there is for asking the question in the first place, I will begin this

1See [12, 17]. [NB: Pietz was my name prior to marriage].
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investigation in the next section by giving an example for an application where I
think the answer is clearly that gluts should not be designated.2

Beforewe look at that example, we should first determinewhat the questionmeans
in the first place. What does it mean to say that a value is designated?

First of all, the notion of a designated value is a technical device to define conse-
quence in many valued logics. A valid inference in such a logic is one in which the
conclusion must take a designated value whenever all of the premises do.

Philosophically, that is not yet very satisfying. As it happens, I’ve found surpris-
ingly little discussion in the literature that addresses the question what designation
means. I think that one of the best discussions of this questions is still the one inDum-
mett’s famous paper Truth.3 It is not, however, completely straightforward to apply
his thoughts to the problem of truth value gluts, and I leave a detailed investigation
for another day.

I will, nonetheless, work with an idea that is inspired by his discussion. Accord-
ing to this idea, the important question to answer when we ask whether a value is
designated or not is this: What is the practical point of designation? What can you
do with a statement that has a designated value that you can’t do with a statement
that has an undesignated one?

The answer to this I take from Dummett, as well: First and foremost, statements
with designated values are the ones that we can correctly assert. Beyond that, these
statements are such that we would be right in basing our actions and decisions on
them. That much will do for the purposes of this essay. Our question, then, is this:
When we meet a glut in science or mathematics, would we be right to assert it?
Would we be right to base our decisions (e.g. about how to implement the scientific
ideas in technology) on what a glutty statement tells us?

2 Epistemic Truth Values

To set up my discussion, let me quickly review something I have said elsewhere4

about Belnap’s interpretation of First Degree Entailment,5 as it will not only help
make my point, but also illustrate what undesignated gluts might come to logically.
First Degree Entailment (FDE) has four truth values (T rue,False,N either andBoth)
and can be characterized by the following well known lattice:

2For the opposing view that gluts should categorically be designated, see almost any author but me
andmy collaborators whowrites about gluts; however, the topic is seldom even addressed explicitly.
As I just stated, there are also applications in whichI think gluts must be designated in order to do
any significant work, and the clearest examples of those seem to me to be analyses of inconsistent
art [15] and inconsistent fictions [16, 18].
3Reference [8].
4See [12, 17].
5Reference [3, 4].
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Conjunction is the meet (the greatest lower bound), disjunction the join (the least
upper bound) and negation is an operator that flips T and F but is a fixed-point
operator for B and N .

Belnap thought of the four values as epistemic truth values, useful for dealing with
information that a reasoning agent has received. They are contrasted with ontological
truth values, roughly a substantive and realist kind of truth. I believe that we’re much
more likely to find use for epistemic truth values in accounting for inconsistencies in
science, and the examples below will bear that out. For the time being, though, to get
an idea what epistemic truth values and epistemic gluts in particular might be, think
for example of the evidence at a trial. There can be conclusive-seeming evidence
for a claim, against it, or no evidence either way. There is, however, also the fourth
option of having convincing evidence for as well as against a claim. Think of two
very reliable witnesses that one would not hesitate to believe, were it not for the fact
that their testimonies contradict each other. The jurors will have to reason with what
is given to them, and FDE is one suggestion for such reasoning.

Another one of the more concrete interpretations that Belnap offered is to think
of the truth values as recording information that has been collected in a data base:

N : The computer has received no information pertaining to the statement
F : The computer has received the information that the statement is false
T : The computer has received the information that the statement is true
B: The computer has received the information that the statement is true and the

information that it is false
The usual choice for designated values is T and B, as they both contain some

truth. But think about the examples for a bit, and think whether we should really
assert or base our actions on statements with the value B. If the evidence strongly
suggests that “The defendant is guilty” should receive value B, should the jurors
assert it and thereby condemn the defendant?

Or suppose you are riffling through customer reviews in that big data base we
stumble through every day, the internet. One of two products receives five star reviews
throughout, while the other gets an even mix of five and zero stars. Supposing you
have only these reviews and no more time for further inquiries, would it be rational
for you to buy the second product because “This product is excellent (five stars)”
receive value B?
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It seems clear to me that the answer to these questions is “No”, and I’ve found
in the past that the thumbnail sketch of an argument here was enough to convince
many I put it to.6

The upshot is clearly that value B should not be designated. Designating only T
gives us a perfectly good consequence relation, though for the details I refer you to
my previous work. One thing that is noteworthy, though, is that not designating the
glutty value results in the loss of paraconsistency, as it is impossible to construct a
counter model for A ∧ ¬A � B.7

3 The Early Calculus

Now that we’ve seen an example of undesignated gluts, let us turn to scientific and
mathematical theories. I want to make a rough and ready distinction between two
possible sources of inconsistencies in scientific or mathematical theorizing. The first
is when we are dealing with a single theory that is found to be inconsistent, but
which we wish to work with for one reason or other. I will discuss one of the classic
examples of this in this section, the early calculus. The other kind of inconsistency
I want to discuss arises from two different theories that have no or little overlap
in content, but that, together with commonly shared auxiliary assumptions, lead to
contradictions. My example for this will be the question of the age of the earth, as it
was addressed by biologists and physicists in the second half of the 19th century. I
will turn to this in the next section; first, the calculus.

When the early calculus was developed by Newton and Leibniz, it was operating
on infinitesimally small quantities (dx) that had to be assumed to be different from 0
at some points in the calculation (because they were the denominators of fractions)
and equal to 0 at other points (because theywere dropped from sums, as in 2x + dx =
2x).

Now, it has always been obvious that it won’t do to add axioms of the form dx = 0
and dx �= 0 to a suitable paraconsistent mathematical theory. This would still allow
disastrous derivations as these:

dx = 0
2dx = dx
2 = 1
This suggests that simply treating dx = 0 as a glutty statement and treating the

statements of the calculuswith a logic inwhichgluts are designatedwill not be enough
for a credible rational reconstruction. One of the best known attempts to provide such
a reconstruction is the chunk-and-permeate strategy proposed by Brown and Priest

6For more detailed discussion, see [12, 17].
7As is customary, I understand a logic to be paraconsistent iff a contradiction does not logically
entail an arbitrary statement. In the logic at hand there is, however, a counter model to (A ∧ ¬A) ∨
(B ∧ ¬B) � C , which should give a sense that we are dealing with a somewhat interesting notion
of logical consequence here; it might be not too far off to see this feature as some deviant form of
paraconsistency. Again, see [12, 17] for details.
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[5]. In a nutshell, their idea is that reasoning with the calculus involved partitioning
the assumptions into consistent chunks, an idea that had been around before them
in the writings of non-adjunctive logicians. However, unlike them, Brown and Priest
allow for some controlled information exchange between the chunks, taking care
that no outright contradictions ensue.

Brown and Priest don’t speak of gluts in their paper, and it is not clear to me how
appropriate it would have been if they had. One could, I believe, maintain that their
approach signals a move away from gluts as a useful device to account for the early
calculus.

But let us go back and think about the following: Has the problem with the
simple idea to add gluts to the picture maybe been that they were by default taken
to be designated values? If they were taken to be undesignated values, disastrous
deductions like the above would not go through. On the other hand, it would seem
that many of the desirable deductions won’t go through, either. It seems that you act
on the belief that dx = 0 when you drop it from a sum, and act on the belief that
dx �= 0 when you divide by dx .

Peter Vickers in his book Understanding Inconsistent Science8 argues that this is
not the case, though. He makes a distinction between the algorithmic level and the
level of justification for the calculus. He points out that for practical purposes, the
“theory” of the early calculus was not a set of propositions, but rather a (sort of an)
algorithm. The calculations that seemed to suggest that dx is equal to zero appear at
very specific points in the procedure, while the ones that seem to suggest that dx is
different from zero at others. As the calculations were reliably leading to the right
results, it was quite possible to use the algorithm without a care about the existence
of a possible justification for the procedure. Leibniz, for example,

often stressed the pragmatic utility of his techniques, and how they could be exploited by
mathematicians without their having to trouble themselves with foundational problems.9

Oneof those foundational problemswould surely be to answerwhether or notdx = 0.
If one followed this advice, as many seem to have done,10 then, Vickers claims, there
was no need to attribute to them commitments to inconsistencies or gluts in any way
at all.

But of course people were not really that uninterested in the justification of the
calculus. They did not say nothing about it and accepted it as just a free floating
algorithm. Maybe it is better to rationally reconstruct them as realizing that the
calculus implied some statements to begluts, but not asserting those glutty statements.
To still be able to make use of the algorithm, maybe it is useful to recast the rules
in a way that disowns the burden of proof: Instead of, e.g., “If you can assert that

8Reference [21].
9Reference [1], p. 20.
10A particularly nice quote expressing this sentiment that Vickers has found is this, by Oliver
Heaviside: “Shall I refuse my dinner because I do not fully understand the process of digestion?
No, not if I am satisfied with the result. (...) First, get on, in any way possible, and let the logic be
left for later work” (Quoted from [21] p. 157).
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dx = 0, drop dx from sums”, adopt the rule “Drop dx from sums, unless you have
reason to assert that dx �= 0.”

To be sure, all this does not amount to an ultimately satisfying state to be in.
Berkeley would probably not have been silenced in his criticism by the retort that
the glutty ghosts of departed quantities shall not be spoken of. An epistemic glut
is always something that one hopes will go away with time, and in the case of the
calculus it did. Note also that the employer of a chunk-and-permeate strategy isn’t
in an ultimately satisfying situation, either. As Priest wrote:

If [a contradiction] is handled by a chunking strategy, then the theory is not a candidate for
the truth. If α is true and −α is true, then so is their conjunction. If a theory refuses to allow
this move then the theory cannot be correct, and we know this.11

4 Darwin and Kelvin on the Age of the Earth

I now propose to look in more detail at an example mentioned in Priest (2002) for
inconsistencies between different theories. It concerns a very interesting episode
in the history of science, the debate between biology and physics that took place
in the second half of the 19th century. More precisely, it was a debate between
evolutionary biology and thermodynamics, championed, respectively, by Darwin
and Lord Kelvin12 and their followers, and it went on for 60 years.

The point at which these theories were seen to be incompatible was the question
of the age of the earth. (Note that this question is neither one of evolutionary biology
nor of thermodynamics per se.) Here is the problem: On the basis of the new ideas in
thermodynamics and some auxiliary assumptions and estimates, Kelvin calculated
that the earth was probably around 100 million years old, maybe as young as 20
million years, but certainly not older than 500 million years. This was not enough
time for Darwinian evolution.

Darwin had introduced the idea of evolutionary progress by random mutation
and mechanical selection. This supplanted Lamarck’s notion of progress by striving
parental generations that passed on the fruits of their adaptive toils to their offspring,
such as the giraffe that spends its life stretching for ever higher leaves and finally
produces offspring with a slightly longer neck. Even Lamarck’s rather bee-lining
theory might not have worked in such a short time frame as was allowed by Kelvin;
Darwinwas certainly not able to entertain the plausibility of his theory ofmechanistic
progress under such a short estimate of the age of the earth.

He had been working on his theory of evolution relying on the assumptions of
geologists of the early 19th century, such as Charles Lyell. Lyell held that the earth
was very old, maybe indeterminably so. This was a slightly more cautions version
of James Hutton’s earlier view, who thought that the earth was cyclically reforming

11Reference [19], p. 126.
12At the beginning of the debate, Kelvin had not yet become a Lord and was known as William
Thomson.
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itself and thus eternal. The latter is an especially interesting extreme, given that
relatively shortly before, the best guess at the age of the earth was a very precise
calculation by Archbishop Ussher, based on biblical exegesis: The earth was created
on October 22nd at 6pm in the year 4004 BC.13 One can see the following scientific
debate as a fascinating process of zeroing in on the present estimate of 4, 5 billion
years that started at these extreme points.14

As is evident from the present estimate, Kelvin’s calculation did not stand up.
He had not, indeed could not have, taken a new source of heat energy into account.
This was nuclear radiation, which was only discovered towards the end of his life.
It is maybe with some hindsight bias that modern authors claim that he “entered the
debate with all the arrogance of a newly established ‘science of the century’, namely
the recently drafted laws of thermodynamics.”15 Though it is true that he did not
mince his words, would Kelvin have appeared all that arrogant to us if his estimate
of the age of the earth would have panned out?

Before Kelvin entered the debate (whether in an arrogant or deservedly self-
confident manner), Darwin was himself maybe a bit overconfident in voicing his
support of the old age of the earth. He wrote in On the Origin of Species:

He who can read Sir Charles Lyell’s grand work on the Principles of Geology, which the
future historian will recognize as having produced a revolution in natural science, yet does
not admit how incomprehensibly vast have been the past periods of time, may at once close
this volume.16

To illustrate the immense time scales of geological processes, he himself contributed
a back-of-the-napkin calculation of the length of a particular episode of erosion in a
valley in the south of England. The result of his quick calculation was that the process
“must have required 306,662,400 years; or say three hundred million years”.17

However, he very soon come to regret taking such a bold stance, and he came to
see Kelvin’s attack as one of the gravest problems for his theory.18 Even backed, as
he was, by formidable minds such as T.H. Huxley’s, he could not defuse that attack.

The long debate is a most fascinating one,19 with many surprising turns. For
example, Kelvin, notwithstanding his complete lack of sympathy for evolutionary
ideas, at one point offered a way out of his own vice-like grip: Life might not have
been developing on earth all along, but might have been brought in from elsewhere
on a meteorite. Instead of grasping that unexpected lifeline, Huxley made fun of it:

13Before you smirk, remind yourself that these kinds of estimates are still around today.
14An interesting account of the beginning of this debate up to Lyell is Gould (1987), who sets
out to debunk what he thinks is a myth, the claim that Hutton and Lyell were making any kind of
scientific progress over the theological arguments. In his view, early geology was in this question
as unencumbered by actual empirical evidence as the Mosaic speculations had been.
15Reference [20] p, 213.
16Quoted from [7], p. 301.
17Quoted from [7], p. 303.
18See [7], p. 303.
19Indeed, it has even been turned into a stage play [20].
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“God almighty sitting like an idle boy at the sea side and shying aerolites (with germs),
mostly missing, but sometimes hitting a planet!”20

Rather than latching on to this idea, Huxley tried to make do with the short time
frame handed to him by physics, an attempt that did not convince many critics.21

To sum up this long debate, Priest is unsurprisingly right that no one made asser-
tions that would be well modeled by designated gluts:

[G]iven the dispute about the age of the earth at the end of the 19th century, no one conjoined
the views that the earth was hundreds of millions of years old, and that it was not, to infer
that the earth really had a contradictory age.22

Might we better interpret them by employing undesignated gluts? Darwin himself
comes to mind. He did strike out passages as the following from later editions of On
the Origin of Species:

[I]t is highly important for us to gain some notion, however imperfect, of the lapse of time.
During each year the land and water have been peopled by hosts of living forms. What an
infinite number of generations, which the mind cannot grasp, must have succeeded each
other in the long roll of years.23

However, he in turn added statements like these:

With respect to the lapse of time not having been sufficient since our planet was consolidated
for the assumed amount of organic change, and this objection, as urged by Sir William
Thompson, is probably one of the gravest as yet advanced, I can only say, firstly that we
do not know at what rate species change as measured in years, and secondly, that many
philosophers are not yet willing to admit that we know enough of the constitution of the
universe and of the interior of our globe to speculate with safety on its past duration.24

This looks as if Darwin wanted to suggest the statement “The earth is older than
500 million years” to be an epistemic gap rather than a glut. Dialectically, this might
have been a more promising strategy, and in fact one that can be seen as having been
vindicated from our point of view.

In fact, no one I could identify appears to have been in an epistemic situation that
should be modeled by a glut. Every commentator, partisan or not, professed doubts
about some of the assumptions; sometimes these doubts were balanced out to speak
against both sides.25 More often, they were concentrated on one side or the other of
the debate, so as to warrant a definite stance on the question.

It would seem, then, that we would do justice to no one who publicly commented
on the debate if we ascribed a glutty commitment to them. That certainly doesn’t
mean that such commitments couldn’t be plausibly held at the time; indeed, it doesn’t
evenmean that theyweren’t held by someone, it onlymeans that such persons did not

20Cited from [11] p. 114.
21Reference [11], p. 115.
22Reference [19] p. 123.
23Quoted from [6], p. 311.
24Quoted from [6], p. 319.
25Such as in an article published in the Edinburgh Review, summarized in [7], p. 94.
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speak up. As it happens, that would be just what the undesignated glut view would
suggest to them, at least on the crucial question whether the earth was older than 500
million years.

You would have been pushed towards accepting this statement to be glutty if you
were, at the time, a firm believer both in natural selection and thermodynamics,26

and were additionally signing up to all the auxiliary assumptions (such as that the
physicists knew about all of the possible sources of energy or that terrestrial life
evolved in its entirety on planet earth and was not given a head start by, say, imported
bacteria imported on a meteorite).

Compare this situation with the situation of the juror as described above, and the
similarity should be conspicuous: The roles of the two credible witnesses are taken
up by the two theories.

Now, what should we say about the question of designation? What kinds of firm
assertions should you make about the age of the earth? Should you firmly state that,
given your scientific convictions, the earth is and isn’t older than 500 million years?
Or should you rather refrain frommaking such assertions about the age of the earth?27

It seems clear, again just as in the case of the juror, that the latter option is the
right one.

5 Conclusion

I hope to have shown that simply adding designated gluts to a logical semantics will
not lead to any satisfying result in the two examples I discussed. Leaving the gluts
undesignated, however, has someutility in accounting forwhat can rightly be asserted
by someonewhowants to reasonwith an inconsistent theory or a pair of incompatible
ones. As far as this goes, it lends support to my general thesis that it should not be
taken as a foregone conclusion whether or not gluts should be designated.

Undesignated gluts will take some time to get used to. The consequence relations
they give rise to might look a little unusual, as is the case for the logic I described
in Sect. 2. Also, they seem to push us toward some kind of non-monotonicity, at
least pragmatically (the logics themselves might well be monotonic). We may find
that things we thought were implied by our theories are actually gluts, and are thus

26Without, however, having skin in the game.
27One referee remarked that my discussion suggests a Popperian view in which these statements
should count as unfalsified, and that such statements might be better modeled as gaps than as gluts.
The present paper, as it were, operates on the assumption that gluts make sense in these settings, but
in fact I am quite sympathetic to the comment (see [12, 14] is a paraconsistent account of Popperian
science in which, to me at least, it seems neither fitting to speak of gluts nor of gaps). Relatedly,
both referees remark that the possibility of undesignated gluts seems to significantly blur the line
between gaps and gluts. This is especially true if one also allows for the possibility of designated
gaps (and I think there is a place for those, too; see, again, [12]). I think the line is still discernible,
but it might well be that one has to squint especially hard in the cases I discuss here.
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actually not consequences of our theories. When we combine two theories, we may
thus lose some statements that we had thought we could safely assert.

With a view to the name of this book, letme end on the following note: Imentioned
in passing that this strategy will yield a logic that is not paraconsistent.28 There is no
danger in this, as you will not be led to assert every statement whatsoever because it
logically follows from what you asserted earlier. After all, the gluts, though present,
are not asserted.29
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Contradictoriness, Paraconsistent Negation
and Non-intended Models of Classical Logic

Carlos A. Oller

Abstract Given that, by definition, two statements are contradictories if and only if
it is logically impossible for both to be true and logically impossible for both to be
false, some authors have argued that the negation operators of certain paraconsistent
logics are not “real” negations because they allow for a statement and its negation to
be true together. In this paper we argue that the same kind of argument can be levelled
against the negation operator of classical propositional logic. To this end, Carnap’s
result that there are models of classical propositional logic with non-standard or non-
normal interpretations of the connectives, and that one kind of those interpretations
violate the semantical principle of non-contradiction which requires of a sentence
and its negation that at least one of them be false can be used. We ponder the con-
sequences of these arguments for the claims that paraconsistent negations are not
genuine negations and that the negation of classical logic is a contradictory-forming
operator and we consider the arguments that challenge the conflation between nega-
tion and contradiction.

Keywords Classical negation · Paraconsistent negations · Contradictory-forming
operators · Carnap’s non-standard models of classical logic

1 Introduction

It is usually accepted in the literature that negation is a contradictory-formingoperator
and that two statements are contradictories if and only if it is logically impossible for
both to be true and logically impossible for both to be false. These two premises have
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been used by Hartley Slater [13] to argue that paraconsistent negation is not a “real”
negation because a sentence and its paraconsistent negation can be true together.

In this paper we claim that a counterpart of Slater’s argument can be directed
against the negation operator of classical logic. Carnap’s discovery that there are
models of classical propositional logic with non-standard or non-normal interpreta-
tions of the connectives will be used to build such an argument. One such non-normal
valuation which can be added to the set of classically admissible valuations without
altering the set of theorems or the set of valid consequences assigns true to every
well-formed formula and, therefore, assigns a designated value to every formula and
its negation.

We ponder the consequences of these arguments for the claims that paraconsis-
tent negations are not genuine negations and that the negation of classical logic
is a contradictory-forming operator. To this end, we follow the arguments that
Dutilh Novaes develops in [4] to challenge the conflation between negation and
contradiction.

2 “Genuine” and Paraconsistent Negations

Some authors have argued that the negation operators of certain paraconsistent
logics—i.e. logics which do not validate the ex contradictione quodlibet rule (ECQ):
{A,¬A} |= B, for every A and B—are not “real” negations. Given that, according to
them, a “genuine” negation is a contradictory-forming operator and two statements
are contradictories if and only if it is logically impossible for both to be true and
logically impossible for both to be false, the negations of those logics are not “real”
negations because they allow for a statement and its negation to be true together.

In a much quoted paper Hartley Slater maintains that the negation of Graham
Priest’s [9] paraconsistent logic LP (Logic of paradox) is not a genuine negation
because in the three-valued semantics for LP there are two designated truth values
that count as being true: t (true only), and b (both true and false), and both A and
¬A can receive the designated value b in LP. Ironically, some years earlier Richard
Routley and Graham Priest [10] had directed a similar criticism against the negation
operator of da Costa’s paraconsistent logic C1 and had concluded that da Costa’s
negation was merely a subcontrary-forming operator—i.e. that a sentence and its da
Costa’s negation cannot both be false though they may both be true—.

Slater maintains that the same line of reasoning can be applied to every para-
consistent system and concludes that, properly speaking, there is no paraconsistent
negation. The following argument—Slater’s argument against paraconsistent nega-
tions as reconstructed by Francesco Paoli [8]—summarizes the above:

(1) Contradictories cannot be true together.
(2) A sentence and its negation are contradictories.
(3) If L is a paraconsistent logic, then, in the semantics for L, there are valuations

which assign both A and ¬A a designated value, for some formula A.
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(4) If A and B both receive a designated value, under some valuation v, in the
semantics for L, then A and B can be true together according to L.

(5) In paraconsistent logics, A and ¬A may not be contradictories (from (1), (3),
(4)).

(6) Thus, paraconsistent “negations” are not negations (from (2), (5)).

It can be argued that Slater obtains an easy victory because he assumes that
“real” negations are, by definition, contradictory-forming operators [1]. Instead of
questioning this assumption, inwhat followswepresent an argument that usesSlater’s
premises to conclude that, if we accept them, not even classical negation can be
considered a “genuine” negation.

3 Classical Negation and Non-standard Models
of Classical Logic

In this section we will argue that the same kind of argument that Slater directs
against paraconsistent negations can be levelled against the negation operator of
classical propositional logic. To this end, Carnap’s result that there are models of
classical propositional logic with non-standard or non-normal interpretations of the
connectives can be used.

In his Formalization of Logic Carnap tried to solve what he called the problem
of a full formalization of (first-order) logic, i.e. “whether—and, in what way—it
is possible to construct a calculus (…) such that the principal logical signs can
be interpreted only in the normal way” [2, p. 3]. After proving that the customary
formalizations of first-order logic do not achieve full formalization he introduced a
multiple-conclusion presentation of elementary logic that he claimed to fulfill that
goal, even though in his review of Carnap’s solution Alonzo Church manifested
his scepticism and conjectured that “non-normal interpretations of the propositional
calculus can be excluded only by semantical (as opposed to purely syntactical) rules”
[3, p. 496].

Carnap proves that there exist sound bivalent valuations—with respect, for exam-
ple, to the standard natural deduction rules for classical propositional logic—that do
not conform to the classical truth tables for the connectives. One kind of non-normal
valuations violate the semantical principle of non-contradiction, which requires of a
sentence and its negation that at least one of them be false. Carnap proved that the
only non-normal (sound) bivalent valuation of this type is the valuation v� which
assigns the truth-value t (true) to every formula, i.e. for every sentence A, v�(A) = t .
Let V be the set of standard classically admissible valuations and V ′ an extended
set of admissible bivalent valuations such that V ′ = V ∪ {v�}. It is easy to show
that these two different sets of admissible valuations determine the same conse-
quence relation—in symbols, � |=V A iff � |=V′ A, for every set of formulas � and
every formula A—and, therefore, the same set of logical truths and valid inferences.
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The other kind of non-normal valuations violate the semantical rules that the negation
of a false sentence must be true and that a disjunction is false if its disjuncts are both
false. An example of a valuation of this second kind is the one that assigns the truth
value true to those formulas which are theorems of classical propositional logic and
false to those formulas which are not theorems of classical propositional logic.

The interest in Carnap’s discovery of non-standard models for classical logic
has recently been revived in relation with the inferentialist thesis that the meanings
of the logical constants are completely determined by their introduction and elim-
ination rules in a natural deduction system [7, 12]. But, as we will try to show in
what follows, those non-standard models are also relevant for the discussion of the
philosophically adequate characterization of metalogical notions—such as that of
contradictoriness—and their relation with different kinds of negation.

Taking into account Carnap’s results, it is possible to build the counterpart for
Slater’s argument against paraconsistent negations in the case of classical negation:

(1) Contradictories cannot be true together.
(2) A sentence and its negation are contradictories.
(3) There exists a (non-standard) sound and complete bivalent semantics for classical

logic such that there are valuations in this semantics which assign both A and
¬A the designated value, for every formula A.

(4) If A and B both receive the designated value, under some valuation v, in an
adequate bivalent semantics for classical logic, then A and B can be true together.

(5) In classical logic, A and ¬A may not be contradictories (from (1), (3), (4)).
(6) Thus, classical “negation” is not a negation (from (2), (5)).

4 Is Classical Negation a Contradictory-Forming
Operator?

In order to ponder the consequences of Carnap’s result for the case against classical
negation as a contradictory-forming operator we need to fix the definitions of “nega-
tion”, “contradictories”—the term “contradictories” allow us put into brackets the
question about the kind of entities involved in the notion of contradiction—and “clas-
sical logic”. The term “contradictories” used here allow us to postpone the question
about the kind of entities that can be used to characterize the notion of contradic-
tion. It has been pointed out that at least four different approaches to the notion of
contradictories can be found in the literature [6]: semantic definitions in terms of
possibility, truth and falsity; syntactic definitions in terms of form; pragmatic defin-
itions in terms of assertion and denial; and ontological definitions in terms of states
of affairs.

In his argument against paraconsistent negations Slater uses a semantic notion of
contradictories and assumes that genuine negations are contradictory-forming oper-
ators. But it should be noted that the usual semantic definition of “contradictories”—
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two statements (sentences, propositions, formulas) are contradictories if and only if
it is logically impossible for both to be true and logically impossible for both to be
false—does not involve the notions of negation or classical logic, two notions whose
characterization is certainly problematic. As pointed out by Dutilh Novaes, the idea
of negation as a contradictory-forming operator is a quite recent development in
the history of logic and an examination of the history of this discipline shows that
the syntactical notion of negation and the semantic notion of contradiction can be
conceptually independent of each other. In fact, Novaes points out that the notion of
contradiction in Aristotelian logic does not have a straightforward syntactical propo-
sitional counterpart because Aristotle’s negation is a term-negation and, therefore, a
non-propositional one. It is only in the twentieth century that the notion of negation
as a contradictory-forming propositional operator has become the predominant one
and its source can be found in Frege’s notion of negation as a function that maps the
True to the False and the False to the True. This concept of propositional negation
as the syntactic counterpart of the semantic notion of contradictory propositions is
clearly stated in Whitehead and Russell’s Principia Mathematica:

The Contradictory Function with argument p, where p is any proposition, is the proposition
which is the contradictory of p, that is, the proposition asserting that p is not true. This is
denoted by ∼p. Thus ∼p is the contradictory function with p as argument and means the
negation of the proposition p. It will also be referred to as the proposition not-p. Thus ∼p
means not-p, which means the negation of p. [15, p. 6]

Dutilh Novaes concludes that, given that most of the notions of negation that
can be found throughout the history of logic are not contradictory-forming opera-
tors, Slater’s argument is not sound because one of its premises is simply not true
and, therefore, Priest’s paraconsistent negation is, at least in principle, as genuine a
negation as any other.

Dutilh Novaes defense of paraconsistent negations can be used,mutatis mutandis,
to accommodate Carnap’s non-intended interpretations of propositional logic that
allow for a formula and its negation to be both true. Her point of view permits us to
accept the following statement made by Slater: “…[Priest] tries to show that Boolean
negation likewise involves an operator for which the truth of ¬α does not rule out
that of α. But, even if this was true, it would merely show that Boolean negation
was not a contradiction-forming operator …” [14, p. 458]. Given the premises he
accepts and taking into account the existence of Carnap’s non-normal valuations,
this would seem a sensible conclusion for Slater to draw with respect to classical
logic. Nevertheless, if contradictory-forming negations are just one kind of (real)
negations, the fact that classical negation is not a contradictory-forming operator
does not oblige us to accept that it is not a genuine negation. And this because it
is possible to assign both A and ¬A, for every formula A, the designated value t
within a sound and complete bivalent semantics for a natural deduction presentation
of classical logic.

Of course, one can try to circumvent Carnap’s results by characterizing classical
propositional logic as the logic determined by standard classical models—i.e. as the
set of logical truths and valid inferences determined by those models—and classi-
cal negation as the contradictory-forming connective characterized by its standard
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bivalent truth-table. But this strategy seems to be a question-begging one: it assumes
what needs to be proved, i.e. that Carnap’s non-standard semantics is not a bona fide
(bivalent) one for classical propositional logic. But, given that Carnap’s non-standard
models seem to provide such a semantics—because thesemodels determine the same
set of logical truths and valid inferences as standard classical models—the burden of
proof lies with those who maintain that these results do not concern classical nega-
tion or classical logic. They must make explicit the difference—and the relevance of
such a difference—between the logics determined by the standard and non-standard
models that justify their stance, because otherwise their strategy would seem an ad
hoc application of the advice “When you meet a contradiction, make a distinction.”

It might be argued that even though Carnap’s valuation v� is unobjectionable from
the point of view of a formal or pure semantics, it is not possible to provide a sensible
informal or intuitive account of v�. If valuations are considered as descriptions of
possible worlds or states of affairs, then v� seems to commits us to a (weak) form
of trivialism according to which there is a world where every sentence holds [5, 11].
However, it is debatable whether such a world can be discarded on purely logical
grounds. But, be that as itmay, even ifwe consider only those states of affairs inwhich
at least one proposition is false, Carnap’s second kind of non-normal valuations show
that the natural deduction rules for classical propositional logic do not constrain us
to accept that the classical negation operator is the syntactic counterpart of the truth
function which maps truth to falsehood and falsehood to truth.

5 Conclusion

Carnap’s non-standard models for classical logic have been mainly discussed in
relation with the inferentialist conception of the meaning of the logical constants.
But, as we have tried to show in this paper, those non-standard models are also
relevant for the discussion of the relation of semantic notions such as contradic-
toriness and its relation with different (syntactic) notions of negation. In particular,
we show that Slater’s argument against paraconsistent negation, which assumes that
a “genuine” negation is the syntactic counterpart of the notion of contradiction,
can be directed, mutatis mutandis, against classical negation: in view of Carnap’s
results, if Slater’s argument were a good one then neither paraconsistent negation nor
classical negation would be “real” negations. But, as the conflation between propo-
sitional negation and contradiction is not a conceptual necessity, the genuineness
of classical—and paraconsistent—negation can be defended but its contradictory-
forming nature—at least, according to the usual semantic characterization of the
notion of contradictoriness—is doubtful.
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From Paraconsistent Logic to Dialetheic
Logic

Hitoshi Omori

Abstract The only condition for a logic to be paraconsistent is to invalidate the
so-called explosion. However, the understanding of the only connective involved in
the explosion, namely negation, is not shared among paraconsistentists. By return-
ing to the modern origin of paraconsistent logic, this paper proposes an account of
negation, and explores some of its implications. These will be followed by a con-
sideration on underlying logics for dialetheic theories, especially those following
the suggestion of Laura Goodship. More specifically, I will introduce a special kind
of paraconsistent logic, called dialetheic logic, and present a new system of para-
consistent logic, which is dialetheic, by expanding the Logic of Paradox of Graham
Priest. The new logic is obtained by combining connectives from different traditions
of paraconsistency, and has some distinctive features such as its propositional frag-
ment being Post complete. The logic is presented in a Hilbert-style calculus, and the
soundness and completeness results are established.
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1 Introduction

Dialetheism is the metaphysical view, not restricted to any of the specific topics,
that some contradictions are true. At first sight, dialetheism looks not tenable at
all, due to the popular view that no contradictions are true, which is based on the
Law of Non-Contradiction since Aristotle. However, some philosophers, such as
Jc Beall, Graham Priest and Richard Routley (later Sylvan), have challenged the
Law of Non-Contradiction, and defended dialetheism.1

In this paper, I wish to pave the path towards satisfactory examination of dialethe-
ism in the context of foundations of mathematics which is one of the topics discussed
by Priest in his celebrated ‘In Contradiction’. The motivation behind this project is
rather simple: we want to see how much mathematics can be developed by keeping
the following claim of Priest:

I wish to claim that (Abs) and (Ext) are true, and in fact that they analytically characterise
the notion of set. ([32, p.30])2

Now, in order to develop some formal theory for foundations of mathematics, we
need to deploy an underlying logic which justifies the inferences made in the formal
theory. In mathematics, the standard underlying logic is classical logic. However, if
we buy the axioms for naive set theory, then we immediately face a contradiction.
And in order to handle contradictions, we need an alternative system of logic. A
family of non-classical logics that is capable of handling contradictions is known as
paraconsistent logic. Priest has been known for claiming that systems of paracon-
sistent logic that contain classical negation are not appropriate for the purpose of
developing dialetheic theories. However, this turned out to be not the case in general,
as observed in [25], if one follows the suggestion of Laura Goodship in [15]. In brief,
Goodship’s suggestion is to take the material conditional and biconditional defined
in terms of paraconsistent negation in formulating dialetheic theories. If one can have
classical negation as well, then this means that there are even more candidates than
before in deciding which logic should be the underlying logic, which at least needs
to be paraconsistent for the present purpose.

Butwhat are the desiderata for paraconsistent logic?As iswell known, paraconsis-
tent logics are independent of dialetheism in general. More specifically, dialetheism
calls for paraconsistent logic, but not the other way around. Indeed, at the modern
origin of paraconsistency, dialetheism was not the reason to develop paraconsistent
logics. And based on various reasons, infinitelymany systems of paraconsistent logic
have been developed. So far, the only condition for a logic to be called paraconsistent
is the following:

A,∼A � B (∗)

1Cf. [5, 30–33].
2Here, (Abs) and (Ext) are∃y∀x(x ∈ y ↔ B) and∀x(x ∈ z ↔ x ∈ y) → z = y respectivelywhere
B is any formula which does not contain y free, and → and ↔ are suitable conditional and bicon-
ditional.
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where∼ is a unary operation intended to be a negation and	 is a logical consequence
relation. Note here though that paraconsistentists even disagree on the understanding
of negation. For example, Priest and Routley, in [34], famously argued against the
systems of paraconsistent logic developed by Newton da Costa on the ground that
the unary operation satisfying the above condition is not a negation.

Based on these, the aims of the paper are twofold. First, I present an account of
negation based on the definition of paraconsistency given by Stanisław Jaśkowski,
and briefly examine some of the existing systems of paraconsistent logic (Sect. 2).
Second, I introduce a notion for a special kind of paraconsistent logic, called
dialetheic logic (Sect. 3.1), and present an expansion of the Logic of Paradox (LP
hereafter) of Priest that is dialetheic and suitable as the underlying logic for dialetheic
theories based on the suggestion of Goodship. Some basics, including semantics and
proof theory, are presented in Sect. 3.2, and this is followed by the soundness and
completeness results in Sect. 3.3. I will then prove some of the distinctive features
of the new system in Sect. 3.4, and consider two natural variants of the new system
in Sect. 3.5.

2 Negation: Towards a Desideratum for Paraconsistent
Logic

Negation3 is the central connective for paraconsistency since it is the only connective
used in stating the only criteria (∗) for logics to be paraconsistent. In this section,
we first revisit the definitions given by modern founders of paraconsistency, namely
Stanisław Jaśkowski and Newton da Costa, and observe the difference in their under-
standing of negation. We then turn to present an account of negation which nicely
realizes the idea of Jaśkowski. These will be followed by some observations on the
existing systems of paraconsistent logic. Note here that the following observations
are semantic, and more proof theoretic investigations will be kept for another occa-
sion. Note also that the discussion in this section is far from being conclusive, and is
meant to be a basis for further discussion.

The following definitions are given by Jaśkowski and da Costa respectively. Both
definitions clearly distinguish inconsistent systems from trivial systems.

Definition 1 (Jaśkowski, [17]) A deductive system S is called inconsistent, if its
theses include two such which contradict one another, that is such that one is the
negation of the other, e.g., A and ∼A. A system in which any meaningful formula is
a thesis shall be termed overfilled.4

Definition 2 (da Costa, [11]) A formal system (deductive system, deductive
theory, …) S is said to be inconsistent if there is a formula A of S such that A

3For an up-to-date survey on negation, see [16]. Note also that the following discussion focuses on
the sentential negation since this is the key notion in the criteria for paraconsistent logics.
4Cf. [17, p.38]. The notation of negation is adjusted.



114 H. Omori

and its negation, ∼A, are both theorems of this system. In the opposite case, S is
called consistent. A deductive system S is said to be trivial if all its formulas are
theorems. If there is at least one unprovable formula in S, it is called non-trivial.5

At first glance, one may not find differences between the above two definitions.
However, in my view, Jaśkowski’s definition is slightly more informative than da
Costa’s definition, since Jaśkowski seems to be aiming at an understanding of nega-
tion through contradictory pairs of sentences. The details on contradictory pairs are
not spelled out by Jaśkowski himself, so we need to fill in the gap. But how? There
are many options, but one of the most popular definitions goes as follows.

Definition 3 (C-Contradictories) Let A and B be sentences. Then,

• A and B are C-contraries iff whenever one of them is untrue, the other is true;
• A and B are C-subcontraries iff whenever one of them is true, the other is untrue;
• A and B are C-contradictories iff they are C-contraries and C-subcontraries.

Another definition of contradictory pairs, which is probably less popular, goes as
follows.

Definition 4 (P-Contradictories) Let A and B be sentences. Then,

• A and B are P-contraries iff whenever one of them is false, the other is true;
• A and B are P-subcontraries iff whenever one of them is true, the other is false;
• A and B are P-contradictories iff they are P-contraries and P-subcontraries.

Needless to say, C-contradictories and P-contradictories coincide if untruth and
falsity are identified. But this does not have to be the case in general. This can be
made clear with the help of formal language.

Let L be a propositional language that consists of a finite set of propositional
connectives and a countable set Prop of propositional parameters. We assume that
at least two unary operations ¬1 and ¬2 are included in the set of propositional
language. We may of course include more connectives, but that is not necessary for
the present purpose.Then, an interpretation for the languageL is a relation, r , between
propositional parameters and the values 1 and 0. More precisely, r ⊆ Prop × {1, 0}.

Once we have a formal device, it is easy to clarify the difference between untruth
and falsity. Indeed, let p be a propositional parameter. Then p being untrue is rep-
resented as it is not the case that pr1 whereas p being false is represented as pr0.
And since r is a relation, not a function, it is not necessarily the case that pr0 iff it
is not the case that pr1.

Now, what Jaśkowski is suggesting is to capture the notion of negation through
contradictory pairs, and if we make use of the formal language, the above definitions
of C- and P-contradictories become as follows:

• A and B are C-contradictories iff ((Ar1 iff not Br1) and (not Ar1 iff Br1))
• A and B are P-contradictories iff ((Ar1 iff Br0) and (Ar0 iff Br1))

5Cf. [11, p.497]. The notation of negation is adjusted.
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If we assume that the biconditional contraposes and that the double negation can
be introduced and eliminated in the metalanguage, then the first condition will be
simplified, and we obtain the following conditions.

• A and B are C-contradictories iff (Ar1 iff not Br1)
• A and B are P-contradictories iff ((Ar1 iff Br0) and (Ar0 iff Br1))

These conditions suggest how to interpret unary operations intended to be negations.
Indeed, let the truth condition for ¬1, and the truth and falsity conditions for ¬2 as
follows.

• ¬1Ar1 iff not Ar1
• ¬2Ar1 iff Ar0
• ¬2Ar0 iff Ar1

Defined in this way, we obtain that A and ¬1A are C-contradictories and that A and
¬2A are P-contradictories. In other words, the above two negations seem to realize
the idea of Jaśkowski.

Remark 5 In the above observation, we did not specify the falsity condition for
¬1. The lack of falsity condition for ¬1 implies that, in general, there are several
operations that will form C-contradictories. See Remark13 for such an example in
an expansion of LP. Moreover, if we assume that ‘not’ in our metalanguage is both
exclusive and exhaustive, and that semantic consequence relation is defined in the
usual manner, then ¬1 behaves exactly the same as the negation in classical logic.

Remark 6 One might argue against ¬1 as a paraconsistent negation if we assume
that ‘not’ in our metalanguage is both exclusive and exhaustive since it seems to
imply the explosion principle immediately. This is true if we define the semantic
consequence relation in the usual manner. However, there are some paraconsistent
negations obtained with a relativized version of the truth condition for¬1 as follows.

• ¬1Ar1 at a world/state w iff not Ar1 at a world/state w

For example, Jaśkowski’s discussive (or discursive) logicD2 (cf. [17, 18]) is one such
example. Indeed, if one follows theKripke semantics for discussive logic as presented
by Janusz Ciuciura in [10, Sect. 2], then one can observe that paraconsistency of D2
is obtained by an unusual definition of semantic consequence relation which reflects
the idea of Jaśkowski who originally definedD2 through translation into modal logic
S5.

Remark 7 The truth and falsity conditions for ¬2 reflect a very simple idea of nega-
tion as flip-flopping the truth and falsity. And it deserves noting that such a simple
account of negation is connected to a version of contradictory pairs, as we observed
above.

Since we wish to keep the usual definition for the semantic consequence relation
when the truth and falsity conditions are relativized, we focus on ¬2 in the rest of
this section.
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Proposition 1 The following facts hold for ¬2 where the semantic consequence
relation |= is defined in terms of the preservation of truth.

• ¬2¬2A |= A and A |= ¬2¬2A for any A;
• For some A and B, A |= B does not imply that ¬2B |= ¬2A;
• For some A and B, A �|= ¬2A and ¬2B �|= B.

The first shows that the validity of the laws of double negation introduction and
elimination is a necessary condition for an unary operation to be negation satisfy-
ing the truth and falsity conditions for ¬2. The second shows that contraposition,
which is necessarily valid in some accounts of negation, such as those based on
(in)compatibility semantics, is not necessarily valid for ¬2. The last condition has
been claimed by Wolfgang Lenzen [20] and João Marcos [21] to be a necessary
condition on negation, and that is met by ¬2.

Now, having an account of negation, the next question to ask is which unary oper-
ations in nonclassical logics are negation satisfying the truth and falsity conditions
for ¬2. The basic logics that are equipped with negation in the above sense include
classical logic, LP, Kleene’s strong three valued logic (K3 hereafter), and the four-
valued logic of Belnap and Dunn (BD hereafter). Indeed, the semantic condition for
classical negation is obtained once we assume that truth and falsity are both exclusive
and exhaustive. Moreover, if one assumes only one of exclusivity or exhaustivity,
then we obtain the semantics for negations ofK3 and LP respectively. And finally, if
we leave open the relation between truth and falsity, we obtain the semantics for the
negation of BD. These facts imply that any of the expansions of the above systems
contain negation. For example, modal logics that expand classical logic,CLuNs (cf.
[4]) and LFI1 (cf. [9]) that expand LP, Nelson logic N3 (cf. [19, 40]) that expands
K3, and relevant logics (à la American plan) that expand BD all contain negation in
the above sense.6

Needless to say, there are some paraconsistent “negations” that are not counted
as negation in the above sense. These include negation in systems such as many
of the Logics of Formal Inconsistency (LFIs, cf. [7, 8]), including the base system
mbC, and CLuN (cf. [3]). This observation follows by the fact that introduction
of double negation fails in both systems. Note that these paraconsistent “negations”
not being negation in our sense only means that those unary operations are meant
to do something else than flip-flopping truth and falsity. I do not mean that those
“negations” are incoherent or so. One may have an entirely different story to tell
about those “negations”, and that should be perfectly coherent as well.

6Note that we need the relativized truth and falsity conditions for modal logics, Nelson logics and
relevant logics.
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3 Dialetheic Logic

3.1 Preliminary Remarks

In the context of considering formal theories, one may view propositional logics as
representing the most abstract structure of formal theories in the following sense. As
an illustration, consider the classical Peano Arithmetic. Then we can first strip off all
the axioms unique to Peano Arithmetic, and this leaves us with the classical predicate
logic. However, one may take the further step to ignore the ‘internal structure’ of
the sentences. This leaves us with the classical propositional logic. Then, in the
case of classical arithmetic, we will have some formulas being provable which are
represented by tautologies in propositional logic.Butwhat is the characteristic feature
of dialetheic theories? As one may expect, some formulas and their negations will
both be provable.

In sum, if one agreeswith the aboveway to look at logic, then it is natural to require
logic to have sufficient expressive power so that a formula, representing a dialetheia,
be definable at the level of propositional logic. And once this requirement is met, we
may distinguish this special kind of paraconsistent logic from other paraconsistent
logics.7 I will refer to this special kind of paraconsistent logics as dialetheic logic for
the obvious reason. With this remark in mind, most systems of paraconsistent logic
deployed in developing dialetheic theories are not dialetheic. For example, LP is not
dialetheic since it is a subsystem of classical logic. As another example, ZachWeber
proves some interesting results in naive set theory based on a relevant logic in [43,
44], marking a big progress in dialetheic set theory. But again, the underlying logic
is not dialetheic for the same reason.

Now, there are various approaches in developing dialetheic theories of truth and
sets. One of the approaches is to follow the suggestion by Goodship in [15]. More
specifically, Goodship pointed out the advantages of formulating dialetheic theories
in terms of material biconditional defined in terms of paraconsistent negation. As for
naive set theory based on LP, it is proved to be non-trivial by Greg Restall in [36],
and this carries over even when classical negation is definable in the underlying logic
such as LFI1, an expansion of LP (cf. [25]). However, LFI1 is not dialetheic, since
it can be regarded as a subsystem of classical logic. In particular, LFI1 is not expres-
sively full since the matrix of LFI1 is not functionally complete,8 where functional
completeness is one of the common standards in measuring the expressive power
of many-valued logics. But, one may motivate having fully expressive logic follow-
ing the reasons that classical logicians have. And assuming the motivations being
reasonable, I will present an expansion of LP, referred to as dLP (dialetheic LP),
whose matrix is functionally complete. Note here that when it comes to functional

7One may of course have some strong arguments against such a view on logic, and if that is the
case, then the above expressivity requirement will not be substantial.
8A simple way to see this is that ‘classical’ values are closed under the operations in LFI1, and thus
the constant function mapping every argument to the intermediate value is not definable.
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completeness, there are already some detailed studies in the literature (cf. [1, 2, 23,
35, 37]). The novelty of the observation to follow is in the fact that the expansion
involves two different traditions in paraconsistency: Logics of Formal Inconsistency
and connexive logic. Connexive logics are characterized as logics having the follow-
ing formulas as theorems of the system.9

∼(A → ∼A) (AT)

(A → B) → ∼(A → ∼B) (BT)

∼(∼A → A) (AT’)

(A → ∼B) → ∼(A → B) (BT’)

As one can see, none of the above formulas are provable in classical logic, and thus
connexive logics are highly nonclassical logics. For an up-to-date survey on the topic,
see [42].10

3.2 Basics

The language L◦ consists of the following vocabulary: a set {∼, ◦,∧,∨,→} of
propositional connectives, the universal and particular quantifiers∀ and∃, a countable
set {x0, x1, . . . } of variables, a countable set {c0, c1, . . . } of constant symbols, and a
countable set {P0, P1, . . . } of predicate symbols, where we associate each predicate
Pk with a fixed finite arity.We regard 0-ary predicate symbols as propositional letters.
We define the set of formulas in L◦ as follows:

A ::= P(t1, . . . , tn) | ∼A | ◦A | A ∧ B | A ∨ B | A → B | ∀x A | ∃x A,

where ti is a term, namely a variable or a constant symbol. We say that a formula
is propositional if it is constructed from propositional letters (i.e., 0-ary predicate
symbols) by using the propositional connectives. We define the notions of free and
bound variable, and sentence as usual. We write Ax (t) to mean the result of substi-
tuting all the occurrences of free variable x in A by the term t , renaming the bound
variables, if necessary, to avoid variable-clashes. We denote sets of formulas by �,
�, etc.

Now I introduce the semantics.

9Note that connexive logics are not necessarily paraconsistent in general. But the idea imported in
expanding LP relies on a kind of connexive logics that are also paraconsistent, and this is why I
counted connexive logic as a tradition in paraconsistency.
10See also [22] for a survey by Storrs McCall, one of the modern founders of connexive logics.
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Definition 8 An interpretation I is a pair 〈D, v〉 where D is a non-empty set D and
we assign v(c) ∈ D to each constant c, assign both the extension v+(P) ⊆ Dn and
the anti-extension v−(P) ⊆ Dn to each n-ary predicate symbol P where v+(P) ∪
v−(P) = Dn . Given any interpretation 〈D, v〉, we can define dLP-valuation v for
all the sentences of L◦ expanded by {kd : d ∈ D} inductively as follows: as for the
atomic sentences,

1 ∈ v(P(t1, ..., tn)) iff 〈v(t1), . . . , v(tn)〉 ∈ v+(P),

0 ∈ v(P(t1, ..., tn)) iff 〈v(t1), . . . , v(tn)〉 ∈ v−(P).

The rest of the clauses are as follows:

1 ∈ v(∼A) iff 0 ∈ v(A), 0 ∈ v(∼A) iff 1 ∈ v(A),

1 ∈ v(◦A) iff 1 /∈ v(A) or 0 /∈ v(A), 0 ∈ v(◦A) iff 1 ∈ v(A) and 0 ∈ v(A),

1 ∈ v(A ∧ B) iff 1 ∈ v(A) and 1 ∈ v(B), 0 ∈ v(A ∧ B) iff 0 ∈ v(A) or 0 ∈ v(B),

1 ∈ v(A ∨ B) iff 1 ∈ v(A) or 1 ∈ v(B), 0 ∈ v(A ∨ B) iff 0 ∈ v(A) and 0 ∈ v(B),

1 ∈ v(A→B) iff 1 /∈ v(A) or 1 ∈ v(B), 0 ∈ v(A→B) iff 1 /∈ v(A) or 0 ∈ v(B),

1 ∈ v(∀x A) iff 1 ∈ v(Ax (kd )), for all d ∈ D, 0 ∈ v(∀x A) iff 0 ∈ v(Ax (kd )), for some d ∈ D,

1 ∈ v(∃x A) iff 1 ∈ v(Ax (kd )), for some d ∈ D, 0 ∈ v(∃x A) iff 0 ∈ v(Ax (kd )), for all d ∈ D.

Finally, let � ∪ {A} be any set of sentences. Then, A is a dLP-semantic consequence
from � (� |=dLP A) iff for every interpretation I = 〈D, v〉 and for every dLP-
valuation v, 1 ∈ v(A) if 1 ∈ v(B) for all B ∈ �.

Remark 9 First, note that the truth and falsity conditions for ∼ are those for ¬2 in
the previous section. Second, the falsity condition for the conditional being quite
different from the more familiar clause “1 ∈ v(A) and 0 ∈ v(B)”. This is the key to
obtain the connexive conditional introduced by HeinrichWansing in [41]. Moreover,
the truth tables for the propositional connectives become as follows11:

A ∼A ◦A
t f t
b b f
f t t

A ∧ B t b f
t t b f
b b b f
f f f f

A ∨ B t b f
t t t t
b t b b
f t b f

A → B t b f
t t b f
b t b f
f b b b

Note here that designated values are t and b. The only difference from the truth
tables for LFI1 lies in the truth table for →, now having the value b, not t, when
A is assigned the value f . This implies that the propagation of consistency over the
conditional fails in dLP. Indeed, the formula (◦A ∧ ◦B) → ◦(A → B) takes the
value f when A and B are both assigned the value f .12

11Note here that if expansions ofBD is concerned, then not only thatwe obtain truth tables from truth
and falsity conditions of relational semantics, but we can also go the other way aroundmechanically,
namely to obtain truth and falsity conditions of relational semantics out of given any truth tables.
For the details, see [27].
12For an examination of the propagation of consistency in LFIs, see [29].
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Remark 10 There is a closely related system in the literature developed by John
Cantwell in [6]. More precisely, he takes the propositional language L expanded
by ⊥ (L⊥ hereafter), not ◦, where ⊥ is always assigned the value f , and other
connectives are exactly as in dLP. Then, a natural question to ask is the relation
between Cantwell’s logic CN and dLP. The answer is that dLP is strictly stronger
than CN. More specifically, ◦ is not definable in CN. (The details are spelled out in
the appendix.) Recall here that if the conditional is taken to be the one in LFI1, then
expanding the language by⊥ and ◦ have the same effect which shows the equivalence
of the two systems LFI1 and CLuNs.

Note also that Grigory Olkhovikov introduced a three-valued logic equivalent
to dLP in [24].13 One of the differences lies in the language. More specifically,
Olkhovikov’s system includes a unary operation L instead of ◦, and L is characterized
by the following truth table.

A LA
t t
b f
f f

It is easy to observe the equivalence of the two systems. Indeed, ◦A is definable in
Olkhovikov’s system as LA ∨ L∼A, and LA is definable in dLP as ◦A ∧ A.

Now I turn to the proof theory.

Definition 11 The system dLP consists of the following axioms and rules of infer-
ence where A ↔ B =def. (A → B) ∧ (B → A).

A → (B → A) (A1)

(A → (B → C)) → ((A → B) → (A → C)) (A2)

((A → B) → A) → A (A3)

A → (A ∨ B) (A4)

B → (A ∨ B) (A5)

(A → C) → ((B → C) → ((A ∨ B) → C)) (A6)

(A ∧ B) → A (A7)

(A ∧ B) → B (A8)

13This was discovered after the first submission. I would like to thank Heinrich Wansing who
informedme ofOlkhovikov’s system, andGrigoryOlkhovikovwho sentme his paper and translated
some of the results during a discussion.
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(C → A) → ((C → B) → (C → (A ∧ B))) (A9)

A ∨ ∼A (A10)

◦ A → ((A ∧ ∼A) → B) (A11)

∼∼A ↔ A (A12)

∼(A ∧ B) ↔ (∼A ∨ ∼B) (A13)

∼(A ∨ B) ↔ (∼A ∧ ∼B) (A14)

∼(A → B) ↔ (A → ∼B) (A15)

∼(◦A) ↔ (A ∧ ∼A) (A16)

∀x A(x) → A(a) where a is a term. (A17)

A(a) → ∃x A(x) where a is a term. (A18)

∼∀x A(x) ↔ ∃x∼A(x) (A19)

∼∃x A(x) ↔ ∀x∼A(x) (A20)

A A → B

B
(MP)

B → A(x)

B → ∀x A(x)
(∀-intro)

A(x) → B

∃x A(x) → B
(∃-intro)

where x is not free in B of (∀-intro) and (∃-intro).
Finally, if � is a set of formulas and A is a formula, then � 	dLP A iff there is a

sequence of formulas B1, . . . , Bn, A, n ≥ 0, such that every formula in the sequence
B1, . . . , Bn, A either (i) belongs to �; (ii) is an axiom of dLP; (iii) is obtained by
(MP), (∀-intro) or (∃-intro) from formulas preceding it in sequence.

Remark 12 The distinctive axiom here is (A15) that gives us the falsity condition
of the conditional. The more familiar form is ∼(A → B) ↔ (A ∧ ∼B), and if we
replace (A15) by the familiar one, then we obtain the axiomatization for the three-
valued logic known as LFI1 (cf. [9, 28]), which is equivalent to J3 of d’Ottaviano
and da Costa (cf. [13, 14]), and to CLuNs (cf. [4]).
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Remark 13 We may define two unary operations: ¬3A := ∼A ∧ ◦A and ¬4A :=
A → ⊥ where ⊥ =def. ◦B ∧ B ∧ ∼B for some B. Semantically, these two opera-
tions satisfy the truth condition for ¬1 discussed in the previous section. Thus we
may conclude that these two negations are classical negations. However, these two
negations do not coincide, unlike inLFI1, due to (A15).More specifically, for¬4, we
have that∼¬4A is derivable for any A since∼¬4A is∼(A → ⊥) by the definition of
¬4, and this is equivalent to A → ∼⊥ in view of (A15), and this is provable in dLP.
This does not hold for¬3, however. Semantically speaking, the falsity conditions for
¬3 and ¬4 are as follows.

• ¬3Ar0 iff Ar1,
• ¬4Ar0.

That is, ¬3A is false iff A is true, and ¬4A is always false. This is an example in
which two different operations both form C-contradictories (cf. Remark5). In what
follows, we will refer to ¬3 as ¬. Note finally that we do have the biconditional
¬A ↔ (A → ⊥) as a provable formula, as observed in the following proposition.

Proposition 2 The following formulas are provable in dLP.

∼(A → ∼A) (1)

∼(∼A → A) (2)

(A → B) → ∼(A → ∼B) (3)

(A → ∼B) → ∼(A → B) (4)

(A ∧ ∼B) → ∼(A → B) (5)

◦A ↔ ¬(A ∧ ∼A) (6)

¬A ↔ (A → ⊥) (7)

(A ∧ ¬A) → B (8)

A ∨ ◦A (9)

A ∨ (A → B) (10)

Proof Equations (1) and (2) are obtained by applying (A15) to (A → ∼∼A) and
(∼A → ∼A) respectively. As for (3), we again use (A15), and (4) is the right-to-left
direction of (A15). Equation (5) immediately follows in view of (4). As for (6), the
left-to-right direction is immediate in view of (A11). For the other way around, we
make use of (A16) and (A10).As for (7), the left-to-right direction is immediate again
in view of (A11). For the other way around, we need to prove (A → ⊥) → ∼A and
(A → ⊥) → ◦A. But these are easy to prove in viewof (A10) and (A16) respectively.
Equation (8) follows immediately in view of (7). For (9), we make use of (A10) and
(A16). Finally, for (10), we first obtain A ∨ ¬A by (A10) and (9), and the desired
result follows by (7). �
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Remark 14 Equations (1)–(4) show thatdLP is a connexive logic, as expected.More-
over, (5) shows that A ∧ ∼B is sufficient for the conditional A → B to be false, but
not necessary. Indeed, if we assign f and t for A and B respectively then the formula
∼(A → B) → (A ∧ ∼B) takes the value f .

3.3 Soundness and Completeness

We now turn to the soundness and completeness results. The soundness is routine as
usual.

Proposition 3 (Soundness) Given any set of sentences � ∪ {A}, if � 	dLP A then
� |=dLP A.

Proof By induction on the derivation � 	dLP A, as usual. �

For the completeness, we need the following notions.

Definition 15 Let � be a set of formulas. Then,

• � is a theory if it is closed under 	dLP, i.e., if � 	dLP A then A ∈ � for any
formula A;

• � is prime if A ∨ B ∈ � implies that A ∈ � or B ∈ � for any A and B;
• � is non-trivial if for some formula A, A /∈ �;
• � is saturated if the following holds:

– ∀x A ∈ � iff Ax (c) ∈ � for any constant c, and
– ∃x A ∈ � iff Ax (c) ∈ � for some constant c.

The rest of the proof is quite standard.

Lemma 1 If � is a prime theory, then A → B ∈ � iff (A /∈ � or B ∈ �).

Proof For the left-to-right direction, suppose that A → B ∈ � and that A ∈ � and
B /∈ �. Then by the first two conditions and (MP), we obtain � 	dLP B, and since
� is a theory, we have B ∈ �, but this contradicts to the third condition. For the
other direction, it suffices to prove that (i) if A /∈ � then A → B ∈ �, and (ii) if
B ∈ � then A → B ∈ �. For (i), assume that A /∈ � and A → B /∈ �. Then since
� is prime, we obtain A ∨ (A → B) /∈ �. Moreover, since � is a theory, we obtain
� �dLP A ∨ (A → B), but this is a contradiction in view of (10). For (ii), if B ∈ �,
then � 	dLP B, and by (A1) and (MP), we obtain � 	dLP A → B. Since � is a
theory, we obtain the desired result. This completes the proof. �

Lemma 2 If � is a non-trivial prime theory, then ◦A ∈ � iff (A /∈ � or ∼A /∈ �).
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Proof For the left-to-right direction, suppose that ◦A ∈ � and that A ∈ � and∼A ∈
�. Then, in view of (A11), we obtain � 	dLP B for any B, and thus B ∈ � since �

is a theory. But this contradicts the assumption that � is non-trivial. For the other
direction, it suffices to prove that (i) if A /∈ � then ◦A ∈ �, and (ii) if ∼A /∈ � then
◦A ∈ �. For (i), assume that A /∈ � and ◦A /∈ �. Then since � is prime, we obtain
A ∨ ◦A /∈ �. Moreover, since � is a theory, we obtain � �dLP A ∨ ◦A, but this is a
contradiction in view of (9). The proof for (ii) is similar to (i), and this completes
the proof. �

Lemma 3 Let � ∪ {A} be any set of sentences. If � �dLP A, then by adding
countably new constant symbols, we can extend 〈�, {A}〉 to 〈�+,�+〉 such that
� ⊆ �+, A ∈ �+, �+

�dLP �+, either B ∈ �+ or B ∈ �+ holds for all B, and �+
is a prime and saturated theory.

Proof Let us expand our language with a countable set E := {en : n ∈ ω} of fresh
constant symbols. Let (An)n≥1 be an enumeration of all formulas in the expanded
syntax. We inductively define the sequence (〈�n,�n〉)n∈ω such that �n �dLP �n as
follows:

• �0:= � and �0:= {A}.
• Suppose that we have constructed 〈�n−1,�n−1〉 such that �n−1 �dLP �n−1. We
have the following two cases:

– if �n−1 ∪ {An} �dLP �n−1, then we split the case depending on the form of An:
If An = ∃x B, we define �n := �n−1 ∪ {An, Bx (e)} and �n := �n−1, where e
is the first constant in the enumeration of E such that it is fresh in �n−1, �n−1

and An .
Otherwise, �n := �n−1 ∪ {An} and �n := �n−1.

– If �n−1 ∪ {An} 	dLP �n−1, then we again split the case depending on the form
of An:
If An = ∀x B, we define �n := �n−1 and �n := �n−1 ∪ {An, Bx (e)}, where e
is the first constant in the enumeration of E such that it is fresh in �n−1, �n−1

and An .
Otherwise, we put �n := �n−1 and �n := �n−1 ∪ {An}.

In both cases, it is easy to see that �n �dLP �n .
We define the ‘limit’ of the sequence (〈�n,�n〉)n∈ω as �+ :=

⋃
n∈ω �n and �+ :=⋃

n∈ω �n . It is clear that �+
�dLP �+. By construction, A ∈ �+ or A ∈ �+ for any

A. Moreover, �+ is a prime and saturated theory. Here we only show the saturation
requirement for ∀ of �+: ∀x A ∈ �+ iff Ax (c) ∈ �+ for any constant c. The left-to-
right direction is not difficult to show (if we assume that we have established �+ is
a theory). As for the converse, we show the contrapositive. Assume that ∀x A /∈ �+.
Since ∀x A ∈ �+ or ∀x A ∈ �+, we have ∀x A ∈ �+, which implies Ax (e) ∈ �+
for some e by construction. Then, we obtain Ax (e) /∈ �+ as follows. Suppose for
reductio that Ax (e) ∈ �+. Then, it follows from Ax (e) ∈ �+ that �+ 	dLP �+, a
contradiction. �

Now we are ready to prove the completeness result.
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Theorem 1 (Completeness)Given any set of sentences� ∪ {A}, we have� |=dLP A
iff � 	dLP A.

Proof Since we have already observed the soundness, we here prove the complete-
ness part. And to this end, we prove the contrapositive. Assume that � �dLP A.
Then by Lemma3, there is a prime and saturated theory �+ such that � ⊆ �+
and �+

�dLP A. Now, define an interpretation I�+ = 〈D, v〉 as follows: D =
{c : c is a constant symbol} and, for any n-ary predicate symbol P:

v+(P) := {〈t1, . . . , tn〉 : P(t1, . . . , tn) ∈ �+},
v−(P) := {〈t1, . . . , tn〉 : ∼P(t1, . . . , tn) ∈ �+},

and, for any constant symbol c, v(c) = c. Then, for any sentence A, the following
holds.

1 ∈ v(A) iff A ∈ �+,

0 ∈ v(A) iff ∼A ∈ �+.

This can be proved by induction on A. We will here only check the cases in which
A is of the form ◦B and B → C . For the positive case for the consistency operator,

1 ∈ v(◦B) iff 1 /∈ v(B) or 0 /∈ v(B)

iff B /∈ �+ or ∼B /∈ �+ IH

iff ◦B ∈ �+. Lemma 2

For the negative case for the consistency operator,

0 ∈ v(◦B) iff 1 ∈ v(B) and 0 ∈ v(B)

iff B ∈ �+ and ∼B ∈ �+ IH

iff B ∧ ∼B ∈ �+ �+ : theory
iff ∼◦B ∈ �+. (A16)

For the positive case for the conditional,

1 ∈ v(B → C) iff 1 /∈ v(B) or 1 ∈ v(C)

iff B /∈ �+ or C ∈ �+ IH

iff B → C ∈ �+. Lemma 1

For the negative case for the conditional,

0 ∈ v(B → C) iff 1 /∈ v(B) or 0 ∈ v(C)

iff B /∈ �+ or ∼C ∈ �+ IH

iff B → ∼C ∈ �+ Lemma 1

iff ∼(B → C) ∈ �+. (A15)
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Therefore we obtain the desired result since we have that 1 ∈ v(C) for any C ∈ �+
and that 1 /∈ v(A) (since�+

�dLP A, i.e. A /∈ �+), that is,� �|=dLP A. This completes
the proof. �

3.4 Some Distinctive Features of dLP

I now turn to observe three distinctive features of the propositional fragment of dLP:
inconsistency, definitional completeness, and Post completeness. First, we observe
the inconsistency of dLP.

Proposition 4 	dLP (A ∧ ¬A) → B and 	dLP ∼((A ∧ ¬A) → B). Thus, dLP
itself is inconsistent.

Proof The first result is (8). The second result is also immediate in view of the first
result and (A15). �

Remark 16 Another example that observes the inconsistency ofdLP is the following
(cf. [42]):

	dLP (A ∧ ∼A) → (∼A ∨ A) and 	dLP ∼((A ∧ ∼A) → (∼A ∨ A)).

An even simpler example is the following:

	dLP (A ∧ ∼A) → ∼A and 	dLP ∼((A ∧ ∼A) → ∼A).

This can already be derived by combing elimination of conjunction (A7), (A8),
Boethius’ thesis (BT), and Modus Ponens (MP). Thus we may safely conclude that
connexive logics are very “close” to paraconsistent logics even though connexive
logics are not paraconsistent in general.

Second, we observe the definitional completeness of dLP. To this end, we intro-
duce some notions.

Definition 17 (Functional completeness) A matrix 〈A, B〉 where A = 〈A, f1, . . . ,
fn〉, is said to be functionally complete provided that every function f : An → A is
definable by superpositions of the functions f1, . . . , fn alone.

Definition 18 (Definitional completeness) A logic L is definitionally complete if
there exists a functionally complete matrix that is strongly adequate for L .

For the characterization of the functional completeness, the following theorem of
Jerzy Słupecki is elegant and useful. In order to state the result, we need the following
definition.
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Definition 19 Let A be an algebra, and f be a binary operation defined in F . Then,
f is unary reducible iff for some unary operation g definable in F , f (x, y) = g(x)
for all x, y ∈ A or f (x, y) = g(y) for all x, y ∈ A. And f is essentially binary if f
is not unary reducible.

Theorem 2 (Słupecki, [38]) A (�V ≥ 3) is functionally complete iff in A

(i) all unary functions on V are definable, and
(ii) at least one surjective and essentially binary function on V is definable.

Based on this characterization by Słupecki, the desired result is obtained as fol-
lows.

Theorem 3 dLP is definitionally complete.

Proof With the help of Theorem2 what we need to show is that dLP satisfies the
above two conditions (i) and (ii) of Theorem2. However, (ii) is already met by the
presence of ∧ (or ∨), so the remaining task is to show that all unary operations on
{t,b, f} are definable. Now assume that the following unary operations are definable
where a ∈ {t,b, f}:
x δt(x) δb(x) δf (x) Ca(x)
t t f f a
b f t f a
f f f t a

Then any unary operation ϕ(x) can be defined as follows:

ϕ(x) =
∨

a∈{t,b,f}(Cϕ(a)(x) ∧ δa(x))

Finally, the definability of the above operations are easy. Indeed, x ∧ ◦x , ∼ ◦ x , and
∼x ∧ ◦x define δt(x), δb(x), and δf (x) respectively, and ◦◦x , (x∧¬x)→y, and∼◦◦x
define Ct(x), Cb(x), and Cf(x) respectively. This completes the proof. �

Remark 20 In fact, the algebra without conjunction and disjunction is already func-
tionally complete. The details are spelled out in the appendix.

Finally, the Post completeness of dLP is observed.

Definition 21 The logic L is Post complete iff for every formula A such that � A,
extension of L by A becomes trivial, i.e. 	L∪{A} B for any B.

Theorem 4 (Tokarz, [39]) Definitionally complete logics are Post complete.

In view of Theorems3 and 4, we obtain the following result.

Corollary 1 dLP is Post complete.
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3.5 Two Variants of dLP

Once some basic results are established, it is also natural to consider some variants
of dLP. Here we consider two of them. First, the logic dLP will be formulated in
a different language, and second, the logic BD, instead of LP, will be taken as the
base system.

So far, the consistency operator is taken to be the distinctive notion for the systems
of paraconsistent logic in the tradition of da Costa. However, sometimes it has been
also characterized as having classical negation definable in the logic.14 Based on this,
we introduce a language L¬ having ¬ instead of ◦, and consider a variant of dLP,
called dLP′, in L¬. Semantically, dLP′-valuation is obtained by replacing the truth
and falsity conditions for ◦ by the following conditions for ¬.

1 ∈ v(¬A) iff 1 /∈ v(A), 0 ∈ v(¬A) iff 1 ∈ v(A),

The truth table for ¬ is as follows.

A ¬A
t f
b f
f t

Proof theoretically, dLP′ is obtained by first dropping (A11) and (A16), and second
adding the following axioms for ¬:

A → (¬A → B) (A¬1)

A ∨ ¬A (A¬2)

∼¬A ↔ A (A¬3)

Then, the soundness and completeness results carry over from dLP. Moreover,
dLP′, is essentially equivalent to dLP. Indeed, we have the following result.

Proposition 5 ¬A is definable in dLP by ∼A ∧ ◦A (or ∼◦(A→∼◦◦A) if conjunc-
tion is not available), and ◦A is definable in dLP′ by¬(A ∧ ∼A) (or¬¬(∼A→¬A)

if conjunction is not available).

Proof One may easily check through truth tables. �
I now turn to the four-valued case, namely the case inwhichBD is taken as the base

logic. On the one hand, if we take the language L◦, then we face the problem about
the reading of ◦. One way is to stick to the reading of the connective as consistency
operator. Another way is to read the connective as classicality operator. If we follow

14For some discussions on classical negation in expansions of Belnap-Dunn logic, see [12].
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the latter reading, then it is proved in [26, Theorem 4] that classical negation is not
definable in the expansion of BD by the classicality operator. Therefore, two cases
starting with LP and BD are not completely parallel.

On the other hand, if we take the language L¬, then we face the problem of
choosing one of the classical negations out of 16 candidates (cf. [12]). If we take
the system BD+ of [12] which is obtained by adding Boolean complementation to
BD, then the same trick, namely to replace the falsity condition for the conditional
by the connexive one, will give us a functionally complete expansion of BD. Let
us refer to the new expansion of BD as dBD (dialetheic BD). Semantically, dBD-
valuation is obtained from dLP-valuation by dropping the exhaustivity condition
v+(P) ∪ v−(P) = Dn , and replacing the truth and falsity conditions for ◦ by the
following conditions for ¬.

1 ∈ v(¬A) iff 1 /∈ v(A), 0 ∈ v(¬A) iff 0 /∈ v(A),

Then the truth tables for the propositional connectives become as follows.

A ∼A ¬A
t f f
b b n
n n b
f t t

A ∧ B t b n f
t t b n f
b b b f f
n n f n f
f f f f f

A ∨ B t b n f
t t t t t
b t b t b
n t t n n
f t b n f

A → B t b n f
t t b n f
b t b n f
n b b b b
f b b b b

Note here that designated values are t and b. Proof theoretically, dBD is obtained
from dLP′ by dropping (A10), and replacing (A¬3) by the following axiom:

∼¬A ↔ ¬∼A (A¬3′)

Based on these, the soundness and completeness results again carry over from dLP.
Definitional completeness can be also proved in a similar manner. I only note here
that x ∧ ¬∼x ,�(x ∧ ∼x),�(¬x ∧ ¬∼x), and¬x ∧ ∼x define δt(x), δb(x), δn(x),
and δf(x) respectively, and x ∨ ¬x , (x∧¬x)→y,¬((x∧¬x)→y) and x ∧ ¬x define
Ct(x),Cb(x),Cn(x), andCf(x) respectively, where ◦x and�x are defined as¬(x ∧
∼x) ∧ (x ∨ ∼x) and ◦(x ∨ Cn(x)) respectively.

4 Concluding Remarks

What I hope to have established in this paper are the following two points. First,
I presented and explored an account of negation which realizes the understanding
that Jaśkowski seems to have had in mind when he first formulated the problem of
paraconsistency. One of the implications of buying the account of negation presented
in this paper, is that the validity of the laws of double negation introduction and
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elimination becomes a necessary condition. As a future topic, I will investigate the
more proof theoretic implications of the account given in this paper.

Second, I briefly motivated and introduced the notion of dialetheic logic, a special
kind of paraconsistent logic that is expressive enough to represent dialetheia already
in the level of propositional logic. Then I presented a new system of dialetheic logic
that is definitionally complete, and thus Post complete, in its propositional fragment
and expands the well-known system of paraconsistent logic LP by adding elements
from different traditions in paraconsistency, namely Logics of Formal Inconsistency
and connexive logic of Wansing. In brief, take Priest, and then first da Costize and
second Wansingize to obtain a fully expressive paraconsistent logic! Moreover, I
observed how to expand BD into a dialetheic and definitionally complete logic by
adding the Boolean complementation and a connexive conditional.

As a next step, I will explore the naive set theory based on dLP. Here, I only note
that non-triviality result is preserved, even if we take dLP as the underlying logic,
as far as we formulate the axioms of naive set theory by making use of material
conditional and biconditional based on paraconsistent negation. Moreover, we may
formulate stronger extensionality principles with the help of detachable conditional,
and we may still prove the non-triviality result.

Note finally, that ifwe takedBD in developing naive set theory, then there is a prob-
lem to be faced. More specifically, if one sticks to the conditional and biconditional
based on paraconsistent negation, then we lose the intuitive reading of biconditional.
Indeed, in LP-based setting, the biconditional A ≡ B is true iff A and B are both
true or both false, but this will no longer be the case once we move to BD-based
theories. Note also that one will be in trouble if one tries to redefine the biconditional
as (A ∧ B) ∨ (∼A ∧ ∼B) to keep the intuitive reading of the biconditional. This is
because (A ∧ ¬A) ∨ (∼A ∧ ∼¬A) leads us to triviality in view of (A¬3’). What to
say in this case remains to be seen.

Appendix

Details of Remark10 Consider the algebra 〈{t,b, f}, {⊥,∼,∧,∨,→}〉 where the
operations are defined as follows:

A ⊥ ∼A
t f f
b f b
f f t

A ∧ B t b f
t t b f
b b b f
f f f f

A ∨ B t b f
t t t t
b t b b
f t b f

A → B t b f
t t b f
b t b f
f b b b

The aim here is to show that ◦ is not definable in this algebra. To this end, we prove
the following lemma.

Lemma 4 Let ϕ(p) be any formula in the language L⊥ whose only propositional
variable is p. Then, there are seven cases for the value of ϕ(p) depending on the



From Paraconsistent Logic to Dialetheic Logic 131

value assigned to p, namely:

p (1) (2) (3) (4) (5) (6) (7)
t t t b b b f f
b t b t b f b f

Proof Weproceed by induction on the complexity ofϕ(p). For the base case, ifϕ(p)
is p or⊥, then it satisfies the condition (2) or (7) respectively. For the induction step,
we cover only three of the four cases, as the others are similar.

Case 1: letϕ(p) be of the form∼ψ(p). Then, by induction hypothesis,ψ(p) satisfies
one of the seven cases. And with the truth table for ∼ in mind, ϕ(p) satisfies the
condition (8 − i) when ψ(p) satisfies (i) (i ∈ {1, 2, . . . , 7}) respectively.
Case 2: let ϕ(p) be of the form ψ(p) ∧ ξ(p). Then, by induction hypothesis, ψ(p)
and ξ(p) both satisfy one of the eight conditions. And with the truth table for ∧ in
mind, ϕ(p) behaves as follows:

ψ(p)∧ξ(p) (1) (2) (3) (4) (5) (6) (7)
(1) (1) (2) (3) (4) (5) (6) (7)
(2) (2) (2) (4) (4) (5) (6) (7)
(3) (3) (4) (3) (4) (5) (6) (7)
(4) (4) (4) (4) (4) (5) (6) (7)
(5) (5) (5) (5) (5) (5) (7) (7)
(6) (6) (6) (6) (6) (7) (6) (7)
(7) (7) (7) (7) (7) (7) (7) (7)

The case for disjunction is similar to the case for conjunction.
Case 3: let ϕ(p) be of the form ψ(p) → ξ(p). Then, by induction hypothesis, ψ(p)
and ξ(p) both satisfy one of the eight conditions. And with the truth table for ∧ in
mind, ϕ(p) behaves as follows:

ψ(p) → ξ(p) (1) (2) (3) (4) (5) (6) (7)
(1) (1) (2) (3) (4) (5) (6) (7)
(2) (1) (2) (3) (4) (5) (6) (7)
(3) (1) (2) (3) (4) (5) (6) (7)
(4) (1) (2) (3) (4) (5) (6) (7)
(5) (3) (4) (3) (4) (4) (5) (5)
(6) (2) (2) (4) (4) (6) (4) (6)
(7) (4) (4) (4) (4) (4) (4) (4)

This completes the proof. �

This implies that ◦ is not definable. Indeed, if ◦ is definable, then we will have the
case in which ◦t = t and ◦b = f , but this is not the case in view of the above lemma.
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Details of Remark20 In view of Theorem2, and that → is essentially binary,
it suffices to show that all unary functions are definable in the algebra 〈{t,b, f},
{∼, ◦,→}〉. In other words, we need to show 27(= 33) functions are definable. This
can be done as follows.

◦◦x ∼(x→∼◦◦x) ◦(x→∼◦◦x) ∼(◦x→∼◦x) x→x x ◦x x→◦x ◦(x→x)
t t t t t t t t t
t t t b b b f f f
t b f t b f t b f

∼◦(x→x)→◦◦x ∼(∼◦x→◦x) ∼◦(x→x)→∼◦x ∼(∼x→x) ∼◦◦x→x
b b b b b
t t t b b
t b f t b

∼x→x ∼◦(x→x)→◦x ∼◦x→◦x ∼◦(x→x)→∼◦◦x
b b b b
b f f f
f t b f

∼◦(x→x) ∼(x→◦x) ∼◦x ∼x ∼(x→x) ◦x→∼◦x ∼◦(x→∼◦◦x) x→∼◦◦x ∼◦◦x
f f f f f f f f f
t t t b b b f f f
t b f t b f t b f

This completes the proof. �
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Rendus de l’Academie de Sciences de Paris (A-B), 270:1349–1353

15. Goodship, L. (1996). On dialethism. Australasian Journal of Philosophy, 74(1), 153–161.
16. Horn, L. R., & Wansing, H. (2015). Negation. In E. N. Zalta (Ed.), The stanford encyclopedia

of philosophy. http://plato.stanford.edu/entries/negation/ (Spring 2015 edition).
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Paradoxes of Expression

Martin Pleitz

Abstract In this note, I show how to construct Liar-like and Curry-like paradoxes in
a framework Graham Priest has been considering recently, in which he tries to solve
the paradoxes by giving up the rule of modus ponens (detachement) instead of the
rules of ex falso and contraction. The Curry-like paradox presents a serious challenge
to the detachment-free framework because it threatens to trivialize the system, just
as Curry’s original paradox does for the more standard paraconsistent approach to
the paradoxes.

Graham Priest in some recent talks and unpublished work investigates the possibility,
also discussed favorably but in less detail in Goodship [4] and defended in Beall [2],
of solving the semantic and set theoretic paradoxes by restricting the truth schema,
the naive set abstraction schema, and so on by formulating them with a biconditional
that does not detach, i.e., that does not satisfy modus ponens [12]. But a detachable
truth schema is needed for the usual account of blind endorsement, i.e., of the ascrip-
tion of truth to sentences that are identified in a way that gives no clue about their
content (e.g., when someone holds that everything the Bible says is true). To solve
this problem, Priest deliberates whether to add a further, detachable conditional,
propositional quantifiers, and an “expression predicate” (Priest [12], Sect. 5.2). In
this note, I will show that given a natural principle about expression, both Liar-like
and Curry-like paradoxes can then be constructed without any appeal to the truth
schema or to its relatives. I will discuss briefly what these paradoxes of expression
mean for such detachment-free approaches to paradox.1

Given Priest’s usual paraconsistent approach to paradox that is based on the logic
LP (Priest [11], 53ff.), it is natural for him to work with a non-detachable bicondi-
tional, as LP does not in general sanction the move from ‘p ⊃ q’ and ‘p’ to ‘q’ if

1I would like to thank an anonymous referee, Johannes Korbmacher, Tobias Martin, Graham
Priest, Stewart Shapiro, and Niko Strobach for helpful discussions and comments.
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‘⊃’ is defined in the usual way from negation and disjunction or conjunction. And
he explores some metaphysical options that open up when the theory of identity is
based on a non-detachable conditional in his book on unity (Priest [13], 16ff.). In
his usual approach to the paradoxes, however, the Liar and its ilk are not solved by
restricting the truth schema, but by dropping the ex falso rule, so that it becomes
acceptable that there are (some) dialetheias, i.e., true contradictions. Later on, Priest
and other dialetheists normally add a detachable conditional (Priest [11], 82ff.),
probably because modus ponens is held in high regard even among the most rad-
ically revisionist logicians. This additional conditional must not obey the rule of
contraction, though, because otherwise Curry’s paradox would trivialize the system
(Meyer/Routley/Dunn [6]; Beall [1], Sect. 3.1).

As LauraGoodship points out, the alternative strategy of solving the paradoxes not
by giving up ex falso to deal with paradoxes like the Liar and the rule of contraction
to deal with Curry’s paradox, but by giving up modus ponens for the conditional that
figures in the truth schema etc., has the advantage of solving the Liar and Curry’s
paradox in a uniform way (Goodship [4], 157ff.; Priest [12], Sect. 4.1). A uniform
solution is desirable if these paradoxes are of the same kind (Priest [10], 166f.) –
which arguably they are (Grattan-Guinness [5], 826f.; Pleitz [7]).

So, despite the price of giving up modus ponens, a detachment-free approach to
the paradoxes is worth investigating. According to this approach, the biconditional
‘≡’ in the truth schema2

True(α) ≡ α

is understood as not obeying the rule ofmodus ponens.3 This restriction of the schema
blocks the paradoxical arguments of both the Liar and Curry, all of which employ
modus ponens at one point or another.

But Priest thinks that there is a problem for this proposal according to which
“truth does not detach” that is connected to a role the truth predicate is often thought
to play – the role of making expressible blind endorsement, as for instance in the
statement that everything that the Bible says is true (Priest [12], Sect. 3.2). Priest
wants to accommodate arguments like the following, which move from some such
blind endorsement to the fact that a certain state of affairs obtains:

P1 Everything that the Bible says is true.
P2 The Bible says: ‘For every purpose, there is a season.’
C So, for every purpose, there is a season.

Standardly, this is understood as elliptical for an argument that makes use of an
instance of the truth schema:

2I use underlining to indicate a name-forming operator.
3Although Priest thinks of it as the biconditional of LP, he calls it the “material biconditional”.
I find this terminology misleading, because when the conditional of LP is contrasted with some
conditional that does detach, the latter need not at all be intensional and might even be the material
biconditional of classical logic.
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P1 Everything that the Bible says is true.
P2 The Bible says: ‘For every purpose, there is a season.’
C1 ‘For every purpose, there is a season.’ is true.
P3 ‘For every purpose, there is a season.’ is true iff …

… for every purpose, there is a season.
C2 For every purpose, there is a season.

This argument, however, makes use of modus ponens (in the move from C1 and P3
to C2, and – given the usual formalization of restricted quantification – already in
the move from P1 and P2 to C1). So, if the ‘if and only if’ of the truth schema (here
in P3) does not detach, the argument is not valid.

Priest thinks about solving this problem by adding to the system he discusses
(where the truth schema is formulated with a biconditional that does not detach)
propositional quantification and a further, detachable conditional ‘→’. This would
amount to “cutting out the middle man [i.e., the truth predicate] entirely” (Priest
[12], Sect. 5.2). Using ‘B : p’ as a sentential operator with the intended meaning
‘The Bible says that p’ and the propositional constant ‘p0’ for the proposition that
for every purpose, there is a season, the original argument can now be formalized in
the following way:

1 ∀p(B : p → p) P1; blind endorsement
2 B : p0 → p0 from 1 by ∀-Elim
3 B : p0 P2; what the Bible says
4 p0 from 2 and 3 by MP

As the conditional ‘→’ detaches, this argument is valid. The truth schema was
not employed at all, so this explication is compatible with the truth schema being
formulated with a non-detachable biconditional. The problem that detachment-free
approaches to paradox had with accounting for blind endorsement thus seems to be
solved.

∗ ∗ ∗

But things aremore complicated. It will turn out that if in addition to propositional
quantification and the further, detachable conditional ‘→’ and the corresponding
detachable biconditional ‘↔’, there is an expression predicate-operator that satisfies
a very natural principle, then both a counterpart of the Liar paradox and a counterpart
of Curry’s paradox can be recovered in the system discussed by Priest.

The expression predicate-operator is ‘E(x : p)’, with the intended meaning ‘x
expresses that p’. Here, ‘x’ can be replaced by a term (a constant or a variable) that
refers to a sentence (or another kind of object) and ‘p’ can be replaced by a particular
proposition (i.e., a sentence of the language) or a propositional constant or variable.
So ‘E(. . . : . . .)’ is a predicate with regard to the left hand side of the colon and a
sentential operator with regard to the right hand side of the colon (which is why I
call it a predicate-operator).
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The expression predicate-operator can be used to define other notions in the vicin-
ity4:

(D1) ∃p E(x : p) the sentence x is meaningful
(D2) ∃x E(x : p) the proposition that p is expressible
(D3) ∀p(E(x : p) ↔ E(y : p)) the sentences x and y are synonymous (if meaningful)

For the following recovery of the Liar and Curry’s paradox, let us think of the
expression predicate-operator as governed by a single axiom:

(E) ∀x∀p∀q(E(x : p) ∧ E(x : q) → (p ↔ q))

Note that, if definition (D3) does indeed capture the notion of synonymity adequately,
then (E) says nomore than that every (meaningful) sentence is synonymous to itself.5

Asmodus ponens holds for the conditional ‘→’, the axiom (E) sanctions the inference
from the three premises ‘E(x : p)’, ‘E(x : q)’, and ‘p’ to the conclusion ‘q’. It’s
worth noting that the following conundrum could also be formulated on the basis
of the requirement that the expression predicate-operator, instead of the axiom (E),
satisfies this inferential rule.6 So the questionwill really be: Is expression detachable?

Now for the paradoxes. By making use of propositional quantification and the
expression predicate-operator, we can formulate that what a certain sentence says is
not the case, which comes close to saying that it is false, and we can formulate that
everything a certain sentence says entails a certain proposition, which comes close
to saying that the truth of that sentence entails that proposition. Given some device
that can make a sentence self-referential, there would thus be sentences much like a
Liar sentence and a Curry sentence.7 Their existence could for instance be stipulated
by the following identity statements:

(L=) l = ∀p(E(l : p) → ¬p)

(C=) c = ∀p(E(c : p) → (p → q0))

In the presence of the expression predicate-operator, however, we do not need the
usual devices of the identity symbol and a name-forming operator to claim that there

4I call ‘E(x : p)’ not an ‘expressibility’ but an ‘expression’ predicate-operator because, given the
intended meaning of ‘E(x : p)’, the notion of expressibility is captured much better by the defined
operator ‘∃x E(x : p)’; cf. (D2).
5In my discussion of the paradoxes of expression, I will consider and reject an objection to (E) that
is based on the observation that some sentences are ambiguous.
6However, the conditional that obeys modus ponens would still be needed for the formulation of
the Liar and Curry sentences.
7Thiswayof formalizing aLiar sentence via propositional quantification andnegation is not original.
Cf., e.g., Prior [14]. But to my knowledge, it has not yet been transferred to Curry’s paradox.
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is a certain self-referential sentence. We need only say of a certain sentence that it
expresses that it has a certain property. More specifically, to stipulate the existence
of a Liar sentence, we need only claim that there is a sentence l that expresses that
for every proposition p expressed by l, it is not the case that p. And to stipulate the
existence of a Curry sentence, we need only claim that there is a sentence c which
expresses that for every proposition p expressed by c, if p then q0 (where ‘q0’ is an
arbitrary propositional constant). Formally:

(L) E(l : ∀p(E(l : p) → ¬p))

(C) E(c : ∀p(E(c : p) → (p → q0)))

The following derivation shows that l behaves like a Liar sentence insofar it allows
to infer a contradiction.

(E) ∀x∀p∀q(E(x : p) ∧ E(x : q) → (p ↔ q)) a property of expression
(L) E(l : ∀p(E(l : p) → ¬p)) the existence of a Liar sentence
1 ∗ E(l : p0) assumption (for CP)
2 ∗ E(l : p0) ∧ E(l : ∀p(E(l : p) → ¬p)) → . . . (E), ∀-Elim

. . . (p0 ↔ ∀p(E(l : p) → ¬p))
3 ∗ p0 ↔ ∀p(E(l : p) → ¬p) (L), 1, 2, MP
4 ∗∗ p0 assumption (for RA)
5 ∗∗ ∀p(E(l : p) → ¬p) 4, 3, MP
6 ∗∗ E(l : p0) → ¬p0 5, ∀-Elim
7 ∗∗ ¬p0 1, 6, MP
8 ∗ ¬p0 4–7, RA (¬-Intro)
9 E(l : p0) → ¬p0 1–8, CP
10 ∀p(E(l : p) → ¬p) 9, ∀-Intro
11 ∃r E(l : r) (L), ∃-Intro
12 E(l : r0) 11, ∃-Elim
13 E(l : r0) ∧ E(l : ∀p(E(l : p) → ¬p)) → . . . (E), ∀-Elim

. . . (r0 ↔ ∀p(E(l : p) → ¬p))
14 r0 ↔ ∀p(E(l : p) → ¬p) (L), 12, 13, MP
15 r0 10, 14, MP
16 E(l : r0) → ¬r0 10, ∀-Elim
17 ¬r0 12, 16, MP
18 r0 ∧ ¬r0 14, 17, ∧-Intro

Because of line 12 and (E), r0 can be seen as the unique proposition expressed by the
Liar sentence l (modulo the detachable biconditional ‘↔’).8 Hence the result in line
18 is very close to the conclusion of the usual argument of the Liar paradox: What
the Liar sentence expresses is and is not the case.

8Note that, as ‘l’ is an individual constant that can only stand in the position of a singular term,
‘l ∧ ¬l’ is ill-formed and cannot be used to express the result of the Liar reasoning. ‘r0’, in contrast,
is a propositional constant so that ‘r0 ∧ ¬r0’ is well-formed.
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The following derivation shows that c behaves like a Curry sentence insofar it
allows to infer the arbitrary proposition q0.

(E) ∀x∀p∀q(E(x : p) ∧ E(x : q) → (p ↔ q)) a property of expression
(C) E(c : ∀p(E(c : p) → (p → q0))) the existence of a Curry sentence
1 ∗ E(c : p0) assumption (for CP)
2 ∗ E(c : p0) ∧ E(c : ∀p(E(c : p) → (p → q0))) → . . . (E), ∀-Elim

. . . (p0 ↔ ∀p(E(c : p) → (p → q0)))
3 ∗ p0 ↔ ∀p(E(c : p) → (p → q0)) (C), 1, 2, MP
4 ∗∗ p0 assumption (for CP)
5 ∗∗ ∀p(E(c : p) → (p → q0)) 4, 3, MP
6 ∗∗ E(c : p0) → (p0 → q0) 5, ∀-Elim
7 ∗∗ p0 → q0 1, 6, MP
8 ∗∗ q0 4, 7, MP
9 ∗ p0 → q0 4–8, CP
10 E(c : p0) → (p0 → q0) 1–9, CP
11 ∀p(E(c : p) → (p → q0)) 10, ∀-Intro
12 ∃r E(c : r) (C), ∃-Intro
13 E(c : r0) 12, ∃-Elim
14 E(c : r0) ∧ E(c : ∀p(E(l : p) → (p → q0))) → . . . (E), ∀-Elim

. . . (r0 ↔ ∀p(E(c : p) → (p → q0)))
15 r0 ↔ ∀p(E(c : p) → (p → q0)) (C), 13, 14, MP
16 r0 11, 15, MP
17 E(c : r0) → (r0 → q0) 11, ∀-Elim
18 r0 → q0 13, 17, MP
19 q0 16, 18, MP

Note that it is essential to these derivations that the conditional in the Liar sentence
that is stipulated to exist by (L) and both conditionals in the Curry sentence that is
stipulated to exist by (C) are detachable.9 But it will not help the paradox solver to
question whether the conditionals in (L) and (C) should rather be the non-detachable
ones used for the truth schema. Because once the possibility of self-reference is
granted,10 there will be all kinds of self-referential sentences; and although many of
them – including detachment-free variants of l and c – might be harmless, there will
also be l and c, which lead to trouble.

The two derivations show that the combined resources of propositional quantifi-
cation and an expression predicate-operator that conforms to the principle (E) suffice
to produce Liar-like and Curry-like paradoxes. This is not too big a surprise, as these
resources allow to define a (detachable) truth predicate that applies to sentences by
introducing ‘True(x)’ as an abbreviation for ‘∃p E(x : p) ∧ ∀p(E(x : p) → p)’

9This is witnessed by line 7 of the Liar derivation and line 7 and 8 of the Curry derivation.
10One could (and I personally would) draw an entirely different moral from the paradoxes of
expression and all other paradoxes that are based on self-referential expressions, namely that the
required kind of self-referential expressions which attribute semantic properties to themselves do
not exist, after all; cf. Pleitz ([8]). But in the present context of a discussion within the horizon of
those paradox-solvers who have taken the path of logical revision, the existence of the problematical
self-referential expressions is of course a given.
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(or for ‘∃p(E(x : p) ∧ p)’, which in the presence of (E) is equivalent).11 Given this
formalization of truth, (L) says that the Liar sentence l says of itself that it is not
true if meaningful. And as (L) further entails that l is meaningful (cf. line 11 in the
first derivation), this come close enough to l saying of itself that it is not true. In
a similar way, the second derivation shows that c comes close to saying of itself
that if it is true, then q0. But this illustration in terms of truth is only by way of an
intuitive understanding. For the assessment of these paradoxes in the context of the
detachment-free approach to paradox discussed by Priest it is important to keep in
mind that it is not the notion of truth, but the notion of expression that leads to trouble
here.

∗ ∗ ∗

For an approach to the paradoxes that is based on the idea that truth does not
detach, these results are problematic. More specifically, as soon as we follow Priest
in formally explicating blind endorsement by adding propositional quantifiers and
a further, detachable conditional to the machinery with the non-detachable truth
schema, newLiar-like and Curry-like paradoxes recur as soon as a predicate-operator
of expression is added. The dialetheist can of course accept the Liar-like paradoxes
(and even see them as adding grist to his or her mill) because they produce only
a few further true contradictions. But the dialetheist cannot stomach the Curry-like
paradoxes, because theywill trivialize the system. The paradoxes of expression could
of course be solved by going paraconsistent and contraction-free, but then the truth
schema might as well be formulated with a contraction-free conditional that does
obey modus ponens, and the dialetheist would be back with Priest’s non-uniform
solution of In Contradiction.

So, do we really need to add an expression predicate-operator? Does it really have
to conform to principle (E)? I think that both questions should be answered in the
affirmative.

The introduction of a predicate-operator of expression can arguably be moti-
vated already from the Bible example; in the following way. While the phrase
‘everything in the Bible’ is most naturally understood to range over sentences,
the machinery of propositional quantification calls for expressions that allow to
talk about propositions to formalize the phrase ‘is true’, e.g. like this: Let ‘B(x)’
be a predicate of sentences with the intended meaning ‘x is a sentence of the
Bible’. Then the sentence ‘Everything in the Bible is true’ gets formalized as
‘∀x(B(x) → (∃p E(x : p) ∧ ∀p(E(x : p) → p)))’.

More generally, and more to the point, it can be argued that it is the specific
characteristics of the system discussed by Priest themselves which call for the addi-
tion of the expression predicate-operator. As the main purpose of this system is to

11Priest makes a brief remark about an expression ‘E(x, p)’, which he calls a “binary predicate”
(towards the end of Sect. 5.2 of Priest [12]), that is similar in intended meaning to our expression
predicate-operator ‘E(x : p)’. He proposes to define a truth predicate from it as ‘∃p(p ∧ E(x, p))’
or as ‘∀p (E(x, p) ⊃ p)’. I note that these are not equivalent, because in contrast to the first, the
second of these two open formulas will be vacuously satisfied by anything that does not express
something.
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solve paradoxes like the Liar, it needs to have resources to talk about sentences
(so that there are Liar sentences to start with). Priest’s emendation of the system
with propositional quantification allows to quantify into sentence position and – via
propositional variables and constants – to talk about what sentences express, i.e.,
propositions. Hence it would be quite unnatural if the language could not express
whether a certain sentence expresses a certain proposition.12

Even more generally, it would hardly be in the spirit of the dialetheist approach
to the paradoxes, which tries to regain the semantic closure surrendered by classical
and many other approaches to paradox, if it needed to ban a resource that allows to
express expression.

With regard to the crucial principle (E), let me repeat first that because it is
formulated with a detachable conditional, it justifies the inference from ‘x expresses
that p and x expresses that q’ and ‘p’ to ‘q’, and that this rule of inference alone
would suffice for the above paradoxical reasoning. In contrast, changing principle (E)
by replacing the detachable biconditional ‘↔’ with the non-detachable biconditional
‘≡’ would remove the justification from this form of argument. So the question is
really whether there is anything objectionable about these inferences. To me they
seem even more intuitive than the argument from the truth of everything the Bible
says to the conclusion that for every purpose, there is a season.

One possible objection focuses on the issue of ambiguity. Someone might think
that the sentence ‘Sarah goes to the bank’ expresses both that Sarah goes to the side
of the river and that Sarah goes to the money institute, and even though they know
that Sarah goes to the river-side resist the inference to the conclusion that she goes to
a money institute. But this example would be relevant to the question at hand only if
‘x expresses p’ were construed as expressing a relation, and quantification into the
second place of this dyadic expression would not be propositional quantification, but
first-order quantification over propositions construed as objects (maybe in a language
with many-sorted quantification). For note that propositional quantification – that is,
quantification into sentence position – does not enable us to speak about propositions

12With a view of recovering the paradoxes in the system discussed by Priest, we could put the
predicate-operator ‘E(x : p)’ to the side, and work in its stead with a unary expression-operator
(Footnote 12 continued)
for each one of the problematic sentences, e.g., ‘L(p)’ with the intended meaning that the specific
sentence l expresses that p, and ‘Cn(p)’ with the intended meaning that the specific sentence
cn expresses that p. In parallel to the stipulations (L) and (C) above, we could lay down that
L(∀p(L(p) → ¬p), that Cn(∀p(Cn(p) → (p → q0))), and so on, and would thus guarantee that
l would be a Liar sentence, cn would be a Curry sentence, and so on. Now, given principles much
like the respective instances of (E) for each one of the sentences associated with these unary
operators – e.g., ∀p∀q(L(p) ∧ L(q) → (p ↔ q)) for the operator ‘L(...)’ that concerns sentence
l, – counterparts of the above derivations would be valid. I would like to thank an anonymous
referee for alerting me to this possibility. But I am not convinced that much would be gained for
our discussion of Priest’s system by the ensuing proliferation of unary operators, each governed
by its own specific principle. In view of the dialectic of the debate and the aim of testing the
system discussed by Priest, it is important to introduce resources that capture a detaching notion
of expression in a way that is motivated independently of the paradoxes. And, in contrast to the
principles governing the specific operators needed for the paradoxical derivations, there are general
considerations that provide such independent motivation in the case of principle (E).
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that are more fine-grained than the sentences that express them! In the example
concerning the word ‘bank’, we smuggled in resources to distinguish two meanings
of one sentence (the phrases ‘river-side’ and ‘money institute’), but this move cannot
be formalized in terms of those symbols that allow to talk about propositions in a
language with propositional quantification. If E(‘Sarah goes to the bank’: p0), then
the proposition p0 arguably is the ambiguous sentence meaning that Sarah goes to
the river-side / the money institute.

Note also that even if ambiguity did constitute a good reason to restrict principle
(E), this need not change anything for Liar sentences and Curry sentences. For why
should they be ambiguous?13 To construe Liar sentences and Curry sentences as
ambiguous would move us into the vicinity of Stephen Read’s Bradwardinian solu-
tion to the paradoxes [15], which in present terms amounts to accepting the above
definition of truth, but rejecting principle (E).

In sum, Priest’s emendation of the detachment-free proposal to solve the para-
doxes by the addition of propositional quantification and a detachable conditional to
formalize blind endorsement does not fare well. As there are strong reasons to also
add an expression predicate-operator that is in general governed by principle (E), the
above variant of Curry’s paradox threatens to trivialize the system. At this point, a
friend of the detachment-free proposal can still go two ways: reject contraction for
the additional, detachable conditional, or argue that a Curry sentence says several
different things. But either way will take him or her away from the detachment-free
proposal. The first way leads back to Priest’s proposal in In Contradiction, and the
second way leads to Read’s Bradwardinian solution.
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Dialetheism in the Structure
of Phenomenal Time
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Abstract In practice, phenomenology is an investigation of one’s own conscious-
ness bymeans of introspective awareness. Nonetheless, it can be considered a special
sort of science, given that it obtains its data using a rigorousmethodology.On the basis
of these data, phenomenologists can devise “models” that describe the structures of
consciousness. Husserl in fact thought that even the forms of logical judgments can
be traced to more basic structures of consciousness. After examining the way that
he locates the origin of negation in experiences of phenomenal “disappointment,”
which result in part from the layered structure of time-constituting consciousness,
we turn to Barry Dainton’s construction of models of the specious present. One type
that is built upon Husserl’s writings is a “retentional” model where the objective
present is a simple instant, but all the while other recent moments have stacked up in
retentional awareness to create the illusion of a present with a durational thickness. In
Dainton’s own rival “extensional” model, however, the present really does extend for
a duration of about a second or so, and all the moments that seem present in fact are.
At the end I propose a model of the specious present that is based on Graham Priest’s
spread hypothesis. It does not vindicate dialetheism; rather, it is merely built upon
the assumption that we directly perceive dialetheias of motion. It is both retentional
and extensional, since in it the actual present of our conscious activity has a very tiny
extensive spread, all while recent prior spreads stack up in our retentional awareness
to create the impression of an enduring present. This model has the advantages of
explaining the continuity of phases in the specious present while also accounting for
experiences of phenomenal disappointment.
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1 Introduction: Phenomenology as a Science

The founder of modern phenomenology, Edmund Husserl, considered his new field
of inquiry to be a science like all other disciplines taking that name. This claim is
controversial given that phenomenology obtains its evidences bymeans of subjective
introspection rather than from objectively verifiable scientific experimentation. And
also, the data obtained using the methods of phenomenology are the contents of our
awareness. Yet, these contents are given to us in a ceaseless “Heracleitean flux,” and
for that reason they would seem to be unable to provide us with any self-consistent
entities whose regularities can be scientifically determined [1, pp. 77–78]. How-
ever, Husserl invented reliable methodologies, called the “reductions,” to study the
contents of our consciousness. They allow us to be aware both of the continuously
varying stream of contents and as well, to some degree, of the fixed fundamental
structures of our consciousness. The eidetic reduction, for example, enables us to
study the essential structures of a phenomenon by stripping away all of its accidental
phenomenal determinations. Husserl considered phenomenology more specifically
to be an a priori science, like mathematics for example. Such disciplines may begin
as pure a priori sciences but can later come to find application in empirical studies,
as for example how mathematics and geometry were for the most part developed
independently of physics but were later successfully applied in this domain [1, p.
83]. Nonetheless, phenomenology is not purely a priori like math, since it studies
actual experiences happening in the present, and yet it still is methodologically dis-
tinct from the empirical sciences. If we allow the name, we might call it a “subjective
science.” Using contemporary phenomenologist Barry Dainton’s usage of the term
“model,” we may say that phenomenology is a science that produces models of
the structures of consciousness. By “model” Dainton means simply a description,
sometimes depicted with diagrams, of the structural features of consciousness and
their relations. A general methodology that one may use in phenomenology is as
follows. (1) By employing Husserl’s reductions or some other method of introspec-
tive analysis of one’s own acts of consciousness, one discovers specific phenomenal
properties of these experiences. For example, in our temporal consciousness, time
as a phenomenon is given with the phenomenal property of continuous flow. Then
(2) one constructs models whose described structural elements should explain how
it is that consciousness is constituted in such a way as to produce these phenomenal
features. (3) Themodel is then tested to determine whether the phenomenal traits that
it implies we should experience are ones that we really do find in our introspections,
and also we look to see if there are still features of experience that the model should
account for but fails to do so. This evaluation is performed by again introspectively
analyzing one’s own awareness, and it helps determine the viability of the model.1

1This specific sort of methodology is not shared by all phenomenologists, since Husserl for
example was less concerned with the second and third steps. For him, phenomenology should
be conducted in a mode of “understanding [Verstehen]” rather than in a mode of “explanation
[Erklärung]” [7, pp. 1–14], and thus his work was not devoted to creating explanatory models.
This other task is something that has been taken up more recently for example by phenomenologist
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2 Husserl and the Phenomenology of Logic

To conduct this investigation into the logical principles underlying our models of
time-consciousness, we should begin first by seeing how it is that phenomenological
models can be formed on the basis of logical relations and principles. Such a study
can for example be found in Edmund Husserl’s Experience and Judgment: Investiga-
tions in a Genealogy of Logic.Here he argues that in order to attain a “comprehensive
concept of logic,” we need in addition to digging into its historical ancestry to as well
probe into its phenomenological “genealogy.” By this he means that in our studies of
logic we want to know more than just the rules and principles of formulation, infer-
ence, and other formal concerns; we as well need to know in what way consciousness
provides the conditions for logic judgments to be constructed in the first place.

Now, if the logician really aims at a logic in the comprehensive and serious sense of the
word, then his interest is directed toward the laws of formation of judgments – the principles
and rules of formal logic – not toward the mere rules of a game but toward rules which the
constitution of the forms must satisfy if any knowledge whatever is to be possible. [6, pp.
16–17]

Husserl takes particular care in this book to analyze predicative judgments, since
they stand “at the center of formal logic as it has developed historically” [6, p. 11];
for, “[s]ince Aristotle, it has been held as certain that the basic schema of judgment
is the copulative judgment, which is reducible to the basic form S is p” [6, p. 15]. As
we dig deeper into the structures and processes of consciousness, we then discover

not only that logical activity is already present at levels in which it was not recognized
by the [logical] tradition and that, accordingly, the traditional logical problematic begins
at a relatively higher level, but that, above all, it is precisely in these lower levels that the
concealed presuppositions are to be found, on the basis of which the meaning and legitimacy
of the higher-level self-evidences of the logician are first and ultimately intelligible. Only
in this way will it be possible to come to grips with logical tradition in its entirety, and
– as a further, distant goal of the phenomenological elucidation of logic – to attain that
comprehensive concept of logic […] of which we spoke. [6, p. 13]

Sowhile S is p is a form of judgment conducted on a higher level of consciousness,
it is made possible by means of structures on a lower “passive” level of object

(Footnote 1 continued)
Barry Dainton, whose models we discuss later and whose works inspire many of the basic questions
and methodology of our treatment here. He draws from Husserl’s descriptive analyses of time
consciousness and formulates models of the “specious present,” aiming to make them as faithful as
possible to Husserl’s descriptions. As we noted, Husserl generated these descriptions presumably
by performing his “reductions,” with another example being the epoché or “phenomenological
reduction.” By means of it, we may turn our awareness away from our normal consciousness of
objects, in which we regard them as being existing things, and move our attention instead toward
those conscious acts through which we experience their appearing and as well toward the structures
of consciousness involved in these experiences [8, pp. 51–62]. Yet, Husserl’s descriptions as we
said do not go as far as presenting explanatory models, and so it is not always obvious what the
best way is to formulate those models. See for example Gallagher’s [5] and Dainton’s [3] debate
regarding the proper modelling of Husserl’s structures of time-consciousness.
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constitution. For, in order to judge some subject as having a certain predicate, our
consciousness in a more basic way needs to be structured so that particular contents
are phenomenally given not just as they are in themselves but as well as being
attributed to some more generalized phenomenal component of our awareness.

The basic structure of consciousness that enables us to make predicative judg-
ments, according to Husserl, is a “mental overlapping” of the apprehension of the
subject with the apprehension of its predicate. In this way, consciousness takes the
form of a “single double ray,” meaning that in one synthetically unified act of present
awareness we direct our attention in a doubled way to both the phenomenal substrate
and to its “pre-predicated” determinations [6, p. 115]. This structure of doubled
awareness is at work in all acts of consciousness; for, never are the data of our aware-
ness somehow given to our consciousness as though they were not parts or features
of something greater. There is an automatic, “passive,” operation that synthetically
groups contents such that no individual datum stands alone. In our visual percep-
tion, for example, we never see any color variation independently, but rather, regions
of variation are automatically grouped together and appear as attributes of singular
things.

So as a stream of phenomenal data is given to us in its continual variance, we all
the while attribute these contents to one unified phenomenal object or another. This
constant phenomenal elaboration of objects’ properties Husserl calls “explication.”
He formulates the substantial unity of the thing being explicated and the phenomenal
data that explicate it in the following way.

Let us take an object, call it S, and its internal determinations α, β, . . . ; […] in the whole
process of individual acts which lead from the apprehension of S to the apprehension of α, β,
. . . we come to know S. […] Through the entire process the S retains the character of theme;
and while, step by step, we gain possession of the moments, the parts, one after the other –
and each one of them is precisely a moment or part, i.e., what is generally called a property
or determination – each is nothing in itself but something of the object S, coming from it
and in it. […] In the development, the indeterminate theme S turns into the substrate of the
properties which emerge, and they themselves are constituted in it as its determinations. [6,
pp. 113–114]

So the reasonwe can form predicative judgments in the first place, Husserl argues,
is because our consciousness contains a structure that allows the flux of determi-
nate phenomenal contents to be synthetically co-apprehended with a more constant
substrate-object, and by means of this synthesis the object is attributed with its deter-
minate properties.

Husserl then makes the following distinction, which will lead us into our discus-
sion of time consciousness. The two parts in the phenomenal structure of “explica-
tive coincidence” that we just noted above are both given as simultaneous with one
another. Yet, there is another sort of coincidence in the structures of consciousness
that brings together contents given in different moments. We are not just aware of
whatever is contained in any one instant, but in addition, our consciousness somehow
reaches out beyond the present such that whatever has happened very recently is also
quite apparent now. Barry Dainton calls this “diachronic co-consciousness” [2, p.
113]. By means of such a structure containing temporalized parts, Husserl argues,
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we are aware that from one moment to the next it is one same substrate S receiving
all of its temporally varied determinations. This he calls the “total coincidence of
identity,” which is made possible by the structure of time-constituting consciousness
[6, pp. 116–118].

3 Husserl and the Structure of Time-Constituting
Consciousness

Time consciousness, in Husserl’s analysis, is composed of a tripartite structure. (a)
Our intentional awareness is directed toward contents given in present immediacy.
(b) Those moments that have passed remain under the “gaze” of our retentional
awareness. And (c) in a less explicit way, our attention is as well directed toward
what we anticipate we will be intentionally aware of in the next moment, by means
of our protentional awareness [6, pp. 107–108].

An important complicating feature of Husserl’s model is that in a following
moment, we are not retentionally aware merely of the prior moment’s intentional
contents, that is, of what was previously present to consciousness. In addition, we
also hold in our current retentional awareness the just prior protentional contents. In
other words, within each present moment we are doubly aware of what actually has
come into our consciousness, and additionally, of what we anticipated, perhaps inac-
curately, to be there. This combination is evinced in cases of surprise. According to
this model, we are confused in these moments because what we anticipated to come
into our awareness is regarded, on a higher level of consciousness, as being some-
how contradictory to what actually did come into mind, even though we apprehend
doubly these incompatible contents in one conjoining act of consciousness.

4 The Phenomenological Origins of Negation

InHusserl’s account, normally our anticipationsflowseamlessly into our forthcoming
present intentions, and this continual matching of overlapping temporalized contents
he calls “fulfillment” [6, p. 87]. However, in those moments of surprise and confu-
sion when our prior anticipations do not match with our actual current experiences,
we undergo phenomenal “disappointment,” which he considers to be “the origin of
negation” [6, p. 88]. For example,

suppose that we have observed a ball uniformly red; for a time the course of the perception
continues in such a way that this apprehension is harmoniously fulfilled. But now, in the
progress of the perception, a part of the back side, not seen at first, is gradually revealed; and,
in opposition to the original prescription, which ran “uniformly red, uniformly spherical,”
there emerges a consciousness of otherness which disappoints the anticipation: “not red, but
green,” “not spherical, but dented.” ([6], p. 88, emphasis mine)
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Using Husserl’s previous notation, let us consider the ball’s phenomenal substrate
as S, the visual contents of its seemingly uniform redness as α, and its forthcoming
additional greenness as β. While being aware of the substrate S, we first attribute α

to S, then in the next moment ∼α& β to S. But this does not yet take into account
the disappointing non-fulfillment of our prior anticipation. If we only consider that
the ball is not just red but also green, that does not alone account for why we are
surprised. As we noted, in addition to seeing that the ball is ∼ α, we also keep just
as vibrantly and potently in mind our retained prior expectation that it will be α, and
thus the awareness of ∼α & β, in such cases of disappointment, is also α& ∼α, or if
expressed in the form of propositions: “the ball is uniformly red” and “it is not that
the ball is uniformly red.”

One important thing to note in this example is that the substrate Sremained intact
despite it having inconsistent determinations. Yet, Husserl offers an example of phe-
nomenal “doubt”where even the identity of the substrate comes to be in contradiction
with itself for a sustained period.

perhaps we see a figure standing in a store window, something which at first we take to be
a real man, perhaps an employee working there. Then, however, we become hesitant and
ask ourselves whether it is not just a mere mannequin. With closer observation, the doubt
can be resolved in favor of one side or the other, but there can also be a period of hesitation
during which there is doubt whether it is a man or a mannequin. In this way, two perceptual
apprehensions overlap […]. ([6], p. 92, emphasis mine)

In the prior case of the ball, there was “a radical break in the form of a decisive dis-
appointment, thus […] a conflict of an anticipatory intention with a newly emerging
perceptual appearance, resulting in the cancellation of the first” [6, p. 92]. In that
case, the contradiction held for no longer than a fleeting moment. Here, however, we
begin with a stream of contents which leads us to anticipate the substrate for a man,
and there comes a period when “there is superposed on it the sense ‘clothed man-
nequin”’ [6, p. 92]. During this period of uncertainty, there is a sustained “undecided
conflict” where

Neither of the two is canceled out […]. They stand in mutual conflict; each one has in a
certain way its own force, each is motivated, almost summoned, by the preceding perceptual
situation and its intentional content. But demand is opposed to demand; one challenges the
other, and vice versa. ([6], p. 92, emphasis mine)

In this case, to one same stream of determinations α, β, . . . we are co-consciously
attributing these contents to two inconsistent substrates, man and mannequin. Yet
in these experiences, a phenomenal trait of this combination is not just its binarity
but as well the tension they produce. That we are conscious of the figure being both
a man and a mannequin is not enough to produce this phenomenal trait of tense
conflict or opposition. What is needed as well, like in the prior ball example, is
that we be conscious of negation, that is, “the figure is a man” and “it is not that
the figure is a man.” Both the one phenomenal sense and its negation are conjoined
phenomenally by means of synthetically overlapping branches of our consciousness,
and their prolonged inconsistency is what gives these experiences their phenomenal
trait of irresolution.
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Merleau-Ponty, a phenomenologist who takes up and elaborates Husserl’s tripar-
tite model of time consciousness, describes a situation that also exemplifies these
states of phenomenal doubt.

If I walk along a shore towards a ship which has run aground, and the funnel or masts
merge into the forest bordering on the sand dune, there will be a moment when these details
suddenly become part of the ship, and indissolubly fused with it. As I approached, […]
I merely felt that the look of the object was on the point of altering, that something was
imminent in this tension, as a storm is imminent in storm clouds. [10, p. 20]

There is a sustained period when certain “trees” (which are really ship masts) in the
hull’s background seem both to be trees and seem to not be trees, perhaps because
they do not sway in the wind in the same manner.

Note that both Husserl andMerleau-Ponty consider these experiences of phenom-
enal inconsistency to be exceptional cases. For Husserl, once one of the conflicting
senses of the phenomenal object is judged to be the only valid one, the other is
“nullified” and deemed invalid in our consciousness. Furthermore, Husserl says, our
consciousness retroactively modifies all its retentions of the invalid one, “painting
over” them with the newly validated object constitution. In other words, Husserl
thinks that not only is the tension eventually dissolved into consistency, but all prior
moments of this inconsistency are retroactively dissolved as well ([6, pp. 92–94], [9,
pp. 68–71]). Similarly, Merleau-Ponty thinks that the phenomenal world is always
in an “organic” state of intermeshed harmonious consistency. In the case of the ship
masts, for example, to experience the figures for a brief time as trees and conjointly as
not being trees is not really a case of true phenomenal inconsistency. This is because
Merleau-Ponty assumes that even when we first began seeing the tree-like figures,
we had implicitly constituted them as ship masts, yet this more valid sense lied unno-
ticed in themargins of our awareness. Thus always on some level, inMerleau-Ponty’s
model, phenomena are consistent with themselves, even if we are misled at times to
not notice this explicitly [10, p. 20].

Nonetheless, might Merleau-Ponty and Husserl still be suggesting that given
time-consciousness’ overlapping structure, we could still understand those moments
of phenomenal disappointment or doubt as being to some extent experiences of
dialetheias, since both the phenomenon and its negation are conjoined and regarded
as having equal validity? It seems not, since these exceptional experiences are not
of dialetheias in the sense of true contradictions in the physical world. The figure
in Husserl’s example of doubt for some time is regarded both as a mannequin and
not as one, but in reality it is only one of the two possibilities, and we eventually
discern the correct one [6, p. 92]. Also, on the level of direct immediate perception,
the ball never had contradictory perceptual determinations. This was only the case
on a higher conscious level of “apperception,” which is aware of more than just the
immediately given contents [9, pp. 624–626]. Thus, the ball was not really at the
same time entirely red and also not entirely red. Rather, the features of its other side
were merely anticipated incorrectly at first. Such “dialetheias,” then, seem really to
be phenomenally artificial and anomalous.
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5 The Specious Present

In order to work toward a model of time consciousness based on an awareness of
actual dialetheias in the perceived physical world, we will look first at ways of
modeling what is often called “the specious present.” The present as we experience
it does not seem to be an instantaneous snapshot giving us only the singularly present
contents, nor are we aware only of this moment and the immediately prior one. In
fact, we seem to be directly aware of very many instants in a series that all appear
to be equally present. When seeing a moving object, for example, it is as if many
successive positions, and thusmany successivemoments of our consciousness, are all
“hanging” in our present experience.We are aware, then, of a little window of present
time and not just the tiniest sliver. Graham Priest offers the following illustration for
this phenomenal experience.

A graphic way of focusing attention on the extended present is by concentrating on our
experience of certain sorts of motion. For example, consider an analog watch or clock, with
hands for the hour, theminute, and the second. One cannot see theminute hand (and a fortiori
the hour hand) move—unless it is of the kind that jumps occasionally. One sees it in a certain
position and infers that it has moved, since one remembers its being elsewhere. The second
hand, by contrast, can actually be seen to move. One does not infer its motion by comparing
present position with remembered position. Its motion is part of the phenomenological
furniture. It is as if one can see the whole of a short stretch of motion at once. But of course,
every point of the motion occurs at a different instantaneous time. The conclusion that we
experience a present extended through a certain period of time seems mandatory. [11, p.
217]

This phenomenal feature was termed the “specious” present, since it was assumed
to be an illusion: the vibrancy of retained just-passed contents trick us into experienc-
ing them as present when in fact the present could have no such extended duration.
Contemporary phenomenologist Barry Dainton has thoroughly analyzed the histor-
ical development of phenomenological models of the specious present, identifying
problems in each, and on the basis of these analyses, proposes his own original
“overlap model.” It structures the specious present as objectively extending some
brief period, somewhere in the neighborhood of a second or so [2, p. 113].2 The
alternate sort of model is the retentional one, like Husserl’s, which structures the
objective present as only an instant long, while the vibrancy of retentions gives our
present experience an illusory “thickness.” For a variety of reasons that will not con-
cern us here, Dainton concludes that retentional models are not viable and that his
proposed extensional overlap model succeeds where they fail.

2 Dainton writes that there are no scientific studies which directly address the question of how long
the specious present lasts. He does cite ones that indicate that the contents of our experience hold
together in units of about three seconds long. Yet, these studies do not determine whether or not all
those contents are perceived as present or if they also include memorial content. Without adequate
scientific data to determine the length of the specious present, Dainton says we must use our own
introspection. He reports that his specious present seems to last for a half of a second or so, but he
generally uses the approximation of around one second [2, pp. 170–171].
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In the overlap model, the specious present is one singular, but flowing, act of
consciousness. Yet, it is long and complex enough that it can be said to contain a
series of distinct phases or moments that pass into one another within that singular
present. Nonetheless, all of them somehow are equally present to one another, both
objectively and phenomenally. To explain the continuous flow from one specious
present to another, Dainton’s model depicts that movement as being based on an
overlapping structure such that part of the prior act of consciousness carries over
into the current one. But, since none of the present contents are retentional, that
overlap cannot be the superposition of a retended memorial present with an actual
immediate present. Instead, in his model one present overlaps by sharing common
parts with the prior present. Part of the prior present somehow hangs in the current
present, and it “overlaps” in the sense that it continues on in it. He distinguishes these
two structures with diagrams similar to the ones below (Fig. 1).

So, how would Dainton’s extensive overlap model explain the experience of tem-
poral inconsistencies that Husserl described? As we see from the diagram, within
the specious present, it appears that no content could be overlapping in a manner that
would allow for self-contradiction (Fig. 2).

Thus, although Dainton’s model does account for the phenomenal trait of the
present’s durational quality, it is not entirely clear from it how we would experience
phenomenal disappointment, since the contents from one present to the next are the
self-same content and hence would not be held in consciousness in a conjunctive
structure. Yet our concern is not just in formulating a model that explains such
phenomenally artificial “dialetheias,” but as well it will assume that we experience
actual dialetheias existing in the changing physical world that we perceive. To see
how such a model could be constructed, we turn now to Graham Priest’s “spread
hypothesis.”

Fig. 1 Modified versions of
Barry Dainton’s diagrams
distinguishing the two types
of structural overlap in
temporal consciousness [3,
p. 21]

Fig. 2 It is not clear how
Dainton’s model would
account for the experience of
temporally contradicting
contents
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6 Graham Priest’s Spread Hypothesis Applied
to the Specious Present

In his In Contradiction, GrahamPriest notes how a conception of the specious present
as being extensive can lead to absurdity, even though experience tells us that this is
really so. For, “[h]ow can we possibly experience two times at the same time? By
the time we experience the later one, the earlier one must be over” [11, p. 217].

However, he says that “the extended present is accommodated very happily by
the assumption that time itself satisfies the spread hypothesis” [11, p. 217]. He
explains his spread hypothesis earlier in this book in the context of accounts of phys-
ical motion. We begin first by considering the “Russellean” or “orthodox” account.
According to Bertrand Russell, an object is in motion merely because it is at some
location at some instant, and at some other location at some other instant, and it is
at intermediary positions in between [12, p. 84]. However, bodies can never be in
more than one place at the same time [13, p. 473], and thus the object is never in a
state of transitional motion from place to place.

we must entirely reject the notion of a state of motion. Motion consists merely in the occupa-
tion of different places at different times […]. There is no transition from place to place, no
consecutive moment or consecutive position, no such thing as velocity […]. ([13], p. 480,
emphasis mine)

With this in mind, Priest formulates the “Russellean state description” of motion.
Consider an object whose various positions at certain times are described by some
function. In the orthodox account, at some given point in time, the object is only at
the location determined by the function, and not anywhere else.

Now, consider a body, b, in motion […] moving along a one dimensional continuum, also
represented by the real line. Let us write Bx for ‘b is at point x’. Let us also suppose that each
real, r , has a name, r . […] Let the motion of b be represented by the equation x = f (t). Then
the evaluation, v, which corresponds to this motion according to the Russellean account, is
just that given by the conditions:

(1a) 1 ∈ vt (Br ) iff r = f (t)

(1b) 0 ∈ vt (Br ) iff r �= f (t)

[11, p. 177]

In Priest’s diagram, we see how only one position is assigned to only one time
value (Fig. 3).

One concern we might raise regarding this Russellean state description of motion
is its “counter-intuitiveness;” for, regarding a moving body, as for example the arrow
in Zeno’s paradox, “[a]t any point in its motion it advances not at all. Yet in some

Fig. 3 Priest’s diagram of
the Russellean state
description (modified
slightly from [11, p. 178])
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apparently magical way, in a collection of these it advances. Now a sum of nothings,
even infinitely many nothings, is nothing. So how does it do it?” [11, p. 175; 180].

Opposed to this is the “Hegelian” account of motion. Priest quotes the following
fromHegel’s Science of Logic: “motion itself is contradiction’s immediate existence.
Somethingmoves not because at onemoment of time it is here and at another there, but
because at one and the samemoment it is here and not here . . .” (Hegel, qtd. in [11], p.
175). In this Hegelean conception, the location of moving objects cannot be localized
during very tiny intervals of time [11, p. 176]. With this in mind, Priest formulates
his spread hypothesis: “A body cannot be localised to a point it is occupying at an
instant of time, but only to those points it occupies in a small neighbourhood of that
time” [11, p. 177]. He incorporates his spread hypothesis into his formulation for the
“Hegelean state description” of motion. In this case, at some specific point in time
during the object’s motion, there would be a tiny spread of neighboring time points
around it during which the object would be found at all points within a tiny spread
of space.

In accordance with the [spread] hypothesis, there is an interval containing t , θt […] such that,
in some sense, if t ′ ∈ θt v , b’s occupation of its location at t ′ is reproduced at t . I suggest
that a plausible formal interpretation of this is that the state description of b at t is just the
“superposition” of all the Russellean state descriptions, vt ′, where t ′ ∈ θt . More precisely, it
is the evaluation, v, given by the conditions

(2a) 1 ∈ vt (Br ) iff, for some t ′ ∈ θt , r = f (t ′)
(2b) 0 ∈ vt (Br ) iff, for some t ′ ∈ θt , r �= f (t ′)
[11, p. 178]

We then “write �t for the spread of all the points occupied at t” [11, p. 178]. In
the diagram below, we see depicted the small spread of time points in �t , during
which the object will be found at all locations within the corresponding spread of
spatial points (Fig. 4). So long as the spread of time points around t really do go
slightly beyond it,then “at ta number of contradictions are realised. For all r ∈ �t ,
1 ∈ vt (Br ∧ ¬Br )” [11, p. 178].

Returning to the section of Priest’s book on the specious present, wemay see what
he means when writing that the spread hypothesis can accommodate the “extended”
(specious) present [11, p. 217]. Here we are applying the spread hypothesis to just
time itself rather than tomotion. In such a temporal applicationwewould for example
say that “at 12 noon it is every time around 12 noon” [11, p. 215]. Similarly, wewould
say that at anygivenmoment of our consciousness,we are aware alsoof everymoment

Fig. 4 Priest’s diagram of
the Hegelean state
description (modified
slightly from [11, p. 178])
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around that instant [11, p. 217]. Thus “[t]here is, to put it picturesquely, some past
occurring at the present. The extended present just is the spread of time around the
present (or perhaps just some part of it if we do not experience it all)” [11, p. 217].
As well, it would seem then from this formulation that at some given moment of
awareness, we are equally aware of the contradicting contents in the nearby times.
We now ask, how would the spread hypothesis be implemented in a model of the
sort that Dainton constructs?

7 Conclusion: Modeling the Specious Present with Priest’s
Spread Hypothesis

Like Priest, Dainton also finds the Russellean at-at account to be counterintuitive, but
for Dainton its problems are also phenomenologically evident. “Intuitively it seems
wrong,” he says, since “there seems to be a big difference between something that
is flashing through the air and something that is resolutely motionless.” Common
sense, he continues, tells us that we directly see movement itself, because “objects
in motion look different than their static counterparts. […] A sequence of static
snapshots looks different than things that move” [4]. In Dainton’s extensional model,
our direct awareness of transitional movements is our consciousness of the content
within one of the specious present’s smallest phases “giving way to” and “flowing
into” the content of the next tiny phase within that same specious present [2, p. 173].
Thus, at each smallest phase of the specious present, we are directly aware of moving
objects’ states of transition and not just of their fixed positions. But, it is not clear if
Dainton thinks that momentary transitions in the physical world involve dialetheias
where the object both is and is not in a certain location at a certain time. Yet, before
we design a model based on the direct perception of real dialetheias in the physical
world of change, we should note another element of Dainton’s model that we might
want to modify. The extensive “spread” of the specious present for him endures for
about a half of a second to a second or so, rather than being a matter of very close
neighboring instants. Yet, perhaps for one reason or another we would not want our
model to assume that the present moment in the physical world has such a relatively
long duration. The dialetheic model of the specious present that I propose would
be both retentional and extensional, even though in Dainton’s classifications, the
models are only one or the other type. In ours, there is an objective present with a
tiny spread of neighboring instants during which we are directly aware of dialetheias
of motion. So in our visual experiences of moving objects, we would each moment
see a tiny blur rather than a perfectly resolute still image. All the while, we still hold
in our retentional consciousness many prior tiny blurs, which all blend together in
our visual awareness as the blurry streak we sometimes see when viewing objects
speeding by.

This model, then, does not vindicate dialetheism, but rather presupposes it.
Nonetheless, as a phenomenological model, it has certain advantages, namely, the
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retentional overlapping of its tiny spreads does well to explain our experience of the
blended continuity of phases in the specious present while also providing a basis to
account for the experiences of disappointment that Husserl describes. A dialetheist,
then, has this model as one option for modelling the specious present in a phenom-
enologically useful way. This model views the sequence of moments contained in
the specious present not as a series of mere contents but instead as a series of con-
tradictory ones, the combination of which in our retentional awareness giving us the
impression that at present a brief slice of change and temporal passage is taking place.
This could serve as one way that phenomenological studies of time may benefit from
incorporating the recent advances in paraconsistent logic in efforts to create new
models of time-constituting consciousness. Dialetheias have been uncovered both in
the physical world, in states of motion for example, and in the workings of language,
evinced for instance in the liar’s paradox. To these we could add that dialetheias
might be found at the basis of every moment in our temporal experience.

Acknowledgments The author would like to thank Ullrich Melle of the Husserl Archives at the
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Saving Proof from Paradox: Gödel’s Paradox
and the Inconsistency of Informal
Mathematics

Fenner Stanley Tanswell

Abstract In this paper I shall consider two related avenues of argument that have
been used to make the case for the inconsistency of mathematics: firstly, Gödel’s
paradoxwhich leads to a contradiction withinmathematics and, secondly, the incom-
patibility of completeness and consistency established by Gödel’s incompleteness
theorems. By bringing in considerations from the philosophy of mathematical prac-
tice on informal proofs, I suggest that we should add to the two axes of completeness
and consistency a third axis of formality and informality. I use this perspective to
respond to the arguments for the inconsistency of mathematics made by Beall and
Priest, presenting problems with the assumptions needed concerning formalisation,
the unity of informal mathematics and the relation between the formal and informal.

1 Introduction

Is mathematics consistent? While in practice we generally proceed as if it is, for
dialetheists such as Priest in [15], mathematics is one of the main battlegrounds on
which to establish that inconsistencies do indeed arise and require their dialetheist
solutions. In this paper I shall consider two related avenues of argument that have been
used to make the case for the inconsistency of mathematics: firstly, paradoxes which
lead to contradictions internal to mathematics and, secondly, the incompatibility
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of completeness and consistency established by Gödel’s incompleteness theorems.
These two strands of argument are closely connected, for the most apparently prob-
lematic paradox in the case of mathematics is Gödel’s paradox, that of the sentence
which says of itself that it is unprovable, which is closely related to common con-
structions of Gödel sentences for formal systems whereby we get to the balancing
act between completeness and consistency.

My response to the two lines of dialetheist argument will bring in considerations
from the philosophy of mathematical practice on the nature of informal proofs.
One thing I will argue for is that we should add to the two axes of completeness
and consistency a third axis of formality and informality. Given this third axis, we
can consider the dialetheist arguments in two different ways. At the informal end,
the previously problematic paradoxes may be genuine, but I argue that there is no
compelling reason to see them as internal to mathematics. Meanwhile, at the formal
end of the scale, considerations of the practical role of formalisation in mathematics
will allow me to make a positive case for incompleteness over inconsistency without
begging the question against the dialetheists. My main conclusion will be that the
dialetheist arguments considered do not establish that mathematics is inconsistent.

Answering the ultimate question of whether mathematics is consistent from this
perspective which encompasses informal proofs and mathematical practice would, I
believe, be a major undertaking, and one which I am not intending to complete here.
The intention is rather to take the first step in this direction by demonstrating that the
matter is not already settled, since the standard arguments from Gödel’s theorems
and the paradox of provability do not succeed. In fact, I believe these arguments
fall apart through a number of the assumptions they need about informal proofs, the
nature of mathematics and the process of formalisation, so I shall proceed to raise
these objections in turn.

To begin, Sect. 2 will introduce the key distinction between formal and informal
proofs that my arguments will focus on. Next, in Sect. 3 I will lay out what Gödel’s
paradox is and why I do not take it to be a concern for mathematics. In Sect. 4 I lay
out Priest’s longer argument for the inconsistency of informal mathematics based on
the application of Gödel’s first incompleteness theorem to informal mathematics and
the conclusions he draws from this concerning the inherent inconsistency of informal
mathematics. In Sect. 5, I argue that the way of understanding formalisation onwhich
Priest’s argument succeeds is a bad one, then show that a better understanding means
the argument no longer goes through. In Sects. 6 and 7, I argue against the thought
that we can formalise mathematics as single theory, proposing that a better thought
would be to approach formalisation in a fragmented way. Finally, in Sect. 8 I consider
formality and informality as a third axis, and a final argument against Priest that he
changes the subject in switching between the formal and informal.
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2 Formal and Informal Proofs

Before we can begin, we need to be sufficiently clear on the distinction between
formal and informal proofs, as this will play a central role in the remainder of this
paper.1

Formal proofs are those which are studied in logic and proof theory, and may be
defined in the usual way. For example, we might define a formal language, give rules
for well-formed formulae in that language, specify axioms to be taken as basic and
lay down inference rules for stepping between formulae. A formal proof (relative to
such a specified system) will be a (usually finite) sequence of formulae where each
is either an axiom or follows stepwise from previous formulae by an application of
one of the inference rules, where the final formula is a statement of what was to be
proven and is thus established as a theorem in the system.

However, formal proofs are rarely seen in actual mathematical practice. Instead
the type of proofs that are employed by mathematicians in their daily activities,
teaching and published work tend to be very different. In most cases no formal
language is specified, axioms are rarely given and inferences are not confined to just
the basic rules. Steps in these proofs can rather be leaps and invoke the background
knowledge of your target audience, the semantic understanding of the terms being
employed, visualisation, diagrams and topic-specific styles of reasoning. Let us call
proofs in this sense informal proofs. Although this would be extremely unsatisfying
as a definition, it is certainly not intended as such as one of the main challenges for
philosophers of mathematical practice is to pin down exactly what counts as a good,
legitimate, correct and rigorous informal proof and filling this out further would take
me beyond the scope of this paper. Nonetheless, there is a good deal of literature that
does deal with this issue that elaborates on the distinction I am invoking (see [8–11,
17, 19] etc.).

A number of the differences between these two types of proof will affect the
assessment of whether the arguments I am considering successfully establish that
mathematics is inconsistent. Gödel’s first incompleteness theorem relates to proof as
an explicitly defined, formal notion attached to a formal system and one of my main
counter-arguments in what is to come is that this will not transpose across to apply
to informal proofs. Gödel’s proof tells us about the limits of formal systems which
meet certain conditions, like having a certain amount of expressive power, being able
to prove a certain amount of basic mathematics (enough to allow for the required
coding etc.) and having an effective procedure for enumerating its theorems. What
will be required for the dialetheist line to work, then, will be to show that informal
proofs are close enough to formal ones to even begin applying these conditions
and that they then meet them. I will argue to the contrary that informal proofs are
sufficiently different that the proof will not apply. Some key differences of informal
proofs that will play a role later include the social and contextual components of

1A terminological note: while I speak of ‘informal proofs’ and ‘formal proofs’, some of the literature
on this subject instead speaks of ‘proofs’ and ‘derivations’ to get at the same distinction. In [15],
Priest also uses the term ‘naïve proof’ to refer to the informal proofs.
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whether such a proof is successful or not; the partially-fragmented nature of modern
(informal) mathematics; and the fact that informal mathematics extends to include
diagrammatic proofs which have more intuitive inferential rules. Finally, even if the
dialetheist arguments manage to establish that informal proofs can be formalised
appropriately, there will still be the need to show that the conditions are met.2

Before getting the details of the argument from Gödel’s theorems, let me assess
whether a simpler argument from paradox outlined by Beall is sufficient to show that
mathematics is inconsistent.

3 Gödel’s Paradox and Beall’s Argument

The first argument I will consider comes from Gödel’s paradox.3 Let us begin,
therefore, by examining the paradox:

GP: This sentence is (informally) unprovable.

Suppose GP is false; then it is informally provable. Since we take our informal
mathematical proofs to establish mathematical truths, it follows that GP is also true.
Yet this contradicts the assumption that GP is false, so using proof by contradiction
we establish that GP is true. However, since we have just proved GP, it is informally
provable. But GP states that it is unprovable, so it must be false. Contradiction.

Now consider how it is that this paradox might show that mathematics is incon-
sistent. Beall gives the following argument:

There seems to be little hope of denying that [GP] is indeed a sentence of our informal
mathematics. Accordingly, the only way to avoid the above result is to revert to formalising
away the inconsistency— a response familiar from the histories of naïve set theory, naïve
semantic theory, and so on. If one does this, however, then (by familiar results) one loses
completeness, which can be regained only by endorsing inconsistency. Either way, then, we
seem to be led to inconsistent mathematics. [3, p. 324]

Setting aside the option to formalise away the inconsistency until Sect. 4, the initial
argument is that since GP is part of mathematics and GP leads to an inconsistency,
it must therefore be that there is an inconsistency in mathematics. In the rest of this
section I will undertake the (purportedly hopeless) task of denying that GP is part of
mathematics.

The only sensible suggestion as towhyGP should be part ofmathematics, it would
seem, is that GP concerns the broadly mathematical concept of informal provability.
I contend, though, that this is not sufficient to make GP a statement of mathematics.
The reason is that I take the concept of informal proof to be used to talk and reason

2In [15], Priest argues that these conditions will bemet. I believe that the flawed step in the argument
is the earlier one of formalisation (as will be covered in Sect. 5), so I will not actively engage in a
discussion about whether this formalisation will have an effective calculus etc.
3At this point we are only concerned with the informal version of the paradox. Later I take on the
formal results of Gödel’s theorems.
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about mathematics without it being a part of mathematics. While the former is
obvious, for the paradox to render mathematics inconsistent we actually need the
later, more contentious claim. Of course, I hold that informal proof and provability
are very important notions in talking aboutmathematics, but it is crucial to emphasise
that these are notions about mathematics. To establish that the paradox will render
mathematics inconsistent, though, we need the extra claim that it is a part of informal
mathematics. In general, a statement being about mathematics and a statement being
part of mathematics can coincide, but certainly don’t always. Consider the following:

(1) Mathematics is traditionally done on blackboards.
(2) This square building with 12m sides must have an area of 144m2.
(3) 111, 111, 111× 111, 111, 111 = 12, 345, 678, 987, 654, 321.
(4) Ron likes bacon and eggs.

Here (1) is a statement about mathematics but is not itself a part of mathematics. In
contrast, (2) is a mathematical statement which is being applied to a situation, so in
a relevant sense is not about mathematics. The third item is both mathematical as a
statement and about a mathematical fact, while the fourth sentence is neither. Since
these two notions can be pulled apart with minimal effort, that a sentence falls under
one of them certainly can’t constitute a reason to think that it falls under the other.
It can therefore be concluded that the notion of informal provability being about
mathematics is not sufficient to establish that GP falls within mathematics.

One can also give positive arguments as to why informal provability should not be
considered a concept within mathematics. For example, the lack of a precise math-
ematical definition we observed in Sect. 2 clearly supports the claim that informal
provability is not a notion internal to mathematics. Nor does it interrelate with other
mathematical concepts in the way that standard mathematical concepts do (such as,
for example, group, integer, derivative, line, etc.). The only notable conceptual link
it has is with truth, as exploited by the paradox, but if anything the informal notion
of truth in mathematics (before being formalised into some formal theory of truth)
will belong to the same category of notions about mathematics that are not within
mathematics.

By denying that informal provability is a concept within informal mathematics, it
can consequently also be denied that GP is a sentence of our informal mathematics.
It is thus reasonable to deny that Beall has showed that informal mathematics is
inconsistent by using GP. This certainly does not provide an ultimate solution to
Gödel’s paradox, but it does keep the derived inconsistency out of mathematics and
allows us to set aside the paradox to be solved in line with whatever one’s favourite
solution is to paradoxes generally.4

Now, let me note two things about what has gone on here which will be recurrent
throughout the paper. Firstly, although this section does not solve Gödel’s paradox,

4A final note on Beall: although the argument I am criticising is from an older paper, the response
offered here would fit well with Beall’s more recent work in Beal [4]. The suggestion I have made
may be appropriated to make the case that informal proof should join truth in the category of useful
devices, which when introduced bring ‘merely’ semantic paradoxes as by-products or ‘spandrels’
without thereby rendering the base language (in this case, that of mathematics) inconsistent.
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this is not really necessary for the purposes of the current project. Beall, Priest and
others have a substantial case for the inconsistency of natural languages, a case which
is not the target of this paper and would have to be addressed separately if one were
so inclined. For both of these authors the claim that mathematics is inconsistent is
an additional one that is supported by additional argumentation and it is precisely
these arguments which I am targeting. Thus, by rejecting that Gödel’s paradox is
part of mathematics, what has been done is to show that these additional arguments
do not cover more ground than the original case for the inconsistency of natural
languages and therefore don’t provide added support for dialetheism from the realm
of mathematics. Secondly, the separation between being part of mathematics and
the concepts used about mathematics is not just a way to re-introduce the object
language/meta-language distinction for informal mathematics. A separation of lan-
guages is not important because the point is not really one about languages, instead
it is about the subject-matter of mathematics. While we may use GP to argue that the
concept of informal provability is inconsistent, this does no more work than the liar
or any other semantic paradox unless it infects the realm of mathematics. As such,
showing that informal proof is not the kind of thing to be investigatedmathematically
blocks the argument considered in this section.

4 Priest’s Argument for the Inconsistency
of Informal Mathematics

In Chap.3 of [15], entitled “Gödel’s Theorem”, Priest makes use of Gödel’s paradox
in the same way as Beall subsequently went on to do, arguing that it shows that
informal mathematics is inconsistent. In Priest’s case, however, it is given as the
culmination of a longer argument which aims to show that informal proof satisfies
the conditions for Gödel’s first incompleteness theorem in such a way as to lead to its
inconsistency. This section will focus on explaining the details of Priest’s argument.

Priest wants to show that informal proof is susceptible to Gödel’s first incomplete-
ness theorem. The first hurdle is that the theory of informal proofs is, on the surface
at least, not formal and hence not immediately susceptible to Gödel’s theorem. Priest
addresses this in the following way:

It should be said at once that naive proof, or at least the naive theory it generates, is not a
formal theory in the sense of the theorem; but it is accepted by mathematicians that informal
mathematics could be formalised if there were ever a point to doing so, and the belief seems
quite legitimate. The language of naive proof, a fragment of English, could have its syntax
tidied up so that it was a formal language, and the set of naïve theorems expressed in this
language would be deductively closed. Hence wemay, without injustice, talk about the naive
theory as if it were a formal theory. [15, p. 41]5

5As the target of his argument, Priest needs to explain what he takes naïve or informal mathematics
to be exactly. He says:
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In Sect. 5, I will claim that Priest’s reasoning fails to go through at this point. For now,
though, let us complete Priest’s argument that informal proof satisfies the conditions
of Gödel’s theorem. The other pieces that Priest needs are that the formalised theory
can express all recursive functions and that the proof relation of the formalised theory
is recursive. He rightly takes the first requisite to be obviously satisfied and the second
to be the contentious one, listing a number of possible objections and his replies. A
discussion of these would be irrelevant to the purposes of this paper, so for now we
shall grant that the formalised proof relation is recursive.

Given that Priest has now established that informal proof satisfies the conditions
of Gödel’s theorem, the thrust of his argument is as follows:

For let T be (the formalisation of) our naive proof procedures. Then, since T satisfies
the conditions of Gödel’s theorem, if T is consistent there is a sentence ϕ which is not
provable in T , but which we can establish as true by a naive proof, and hence is provable
in T . The only way out of the problem, other than to accept the contradiction, and thus
dialetheism anyway, is to accept the inconsistency of naive proof. So we are forced to admit
that our naive proof procedures are inconsistent. But our naive proof procedures just are
those methods of deductive argument by which things are established as true. It follows that
some contradictions are true; that is, dialetheism is correct. [15, p. 44]

Priest soon makes the link between ϕ and Gödel’s paradox. For if we take ϕ to be
the formalisation of GP,6 the inconsistency of Sect. 3 will quickly re-emerge within
the formalisation of informal mathematics. A key point is that a standard move
towards incompleteness over inconsistency is to separate the object language from
the meta-language, but that here we are dealing with informal proof and informal
mathematics, for which there is no such distinction, meaning that the orthodox move
towards incompleteness is not available. Indeed, this is the entire point of focusing
on informal mathematics.

The conclusion that Priest draws is that we are left with true contradictions and
dialetheism.7 Informal mathematics is seen to be inconsistent, but even more pene-
tratingly he can claim that there is no escape from this application of the incomplete-
ness theorems to informal mathematics and so “... we might say that our naive proof
procedures are not just contingently inconsistent, but essentially so... [D]ialetheism

Proof, as understood by mathematicians (not logicians), is that process of deductive argu-
mentation by which we establish certain mathematical claims to be true. [15, p. 40]

His distinction is, in effect, the same as the distinction between formal and informal mathematics
as found in Sect. 2.
6The matter is somewhat more complicated than this suggests, of course. Milne discusses in [12]
the many ways that Gödel sentences can be constructed and what exactly they ‘say’.
7Not just this, though, since Priest takes it that the theory given by the formalisation of informal
mathematics can prove its own soundness and hence must be able to give its own semantics. From
here he takes it to follow that it must be able to prove the T-scheme for this theory inside the theory,
giving him all of the paradoxes he describes as semantic (as opposed to set-theoretic paradoxes).
For example, he lists the liar, Grelling’s paradox, Berry’s paradox, Richard’s paradox and Koenig’s
paradox as falling under the umbrella of semantic paradoxes. In fact, then, Priest argues that “Our
naive theory is semantically closed and inconsistent. By contrast, any consistent theory cannot be
semantically closed.” [15, p. 47].
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is inherent in thought.” [15, pp. 47–48] That dialetheism is inherent in thought is
one of the main claims of In Contradiction, supported by several pillars of argument.
The argument described here that informal mathematics is essentially inconsistent
forms one of these pillars, but I shall argue that this pillar will not hold any weight.

5 Formalising Mathematics

The move from the informal version of mathematics to a formalisation thereof is,
in my opinion, too quick. By endorsing the claim that mathematicians take it that
informal mathematics can be formalised, Priest moves from the informal theory to
the formal one without much consideration of what this move entails or how the
mathematicians he is invoking conceive of the formalisation process. For one thing,
Priest might not want to endorse the naïve claims of mathematicians at all, since they
most likely take mathematics to also be consistent. If such claims were definitive it
might thus spell the end of dialetheism.

Nevertheless, it is worth considering how exactly the idea thatmathematics should
be formalisable will work precisely. In the first half of this section I discuss two
options, along with how they interact with Priest’s argument. The first follows a
straightforward interpretation of Priest’s claim but is shown to fail as an account of
the formalisation of informal mathematics. The second avoids the problems with the
first but, I argue, no longer lets Priest’s argument go trough.

5.1 A First Option

Let us call the first option many-one formalisation.8 The idea is that one takes the
entirety of informal mathematics and tidies up the fragment of natural language
expressing it to give a formal language. All of the informal theorems will have
particular formal counterparts expressed in this one formal language, and the set of
these formalised theorems is then deductively closed. For the first option, we consider
this as the one single correct formal counterpart for the informal mathematics, a
type of super-theory9 of mathematics, in which all the current basic assumptions
and their consequences are contained. This mirrors a standard idea of formalisation
involving a routine procedure of ‘filling in the gaps’ (as is discussed, for instance, in
the debate between Rav [17, 18] and Azzouni [1, 2] though ultimately rejected by
both). Since the formalisation that occurs is crucial to the application of Gödel’s first
incompleteness theorem to informal mathematics, it would be very convenient for

8The ‘many’ here is due to the fact that it might end up being case that multiple informal proofs are
mapped to the same formal proof.
9I use the terms ‘super-theory’ and ‘super-system’ throughout this paper. I do not intend anything
of the ‘super-’ prefix besides that it is all-encompassing of mathematics in the way described.
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Priest’s argument if the picture that is sketched here is the correct one, as this would
take formalisation to effectively reduce informal mathematics to something formal,
and thereby allow the argument to proceed.

Unfortunately, we have good reason to think that this picture cannot be correct.
It is obvious that tidying-up syntax is not going to be a many-one mapping. If we
start with the natural-language versions of our mathematical theorems, there will
be a whole selection of ways in which we can reproduce these theorems in some
particular formal language. Even translating very simple fragments of mathematics
into simple formal systems can easily lead to a plurality of results. Scaling this up to
include all ofmathematics exacerbates this problem significantly. Add to that the fact
that we don’t start with a particular formal language that we are to be translating the
informal into, but instead generate it “on the fly” based on the syntax of our informal
mathematics. That there will only be one possible result is clearly absurd.10

Note also that the conversion of informal mathematics into this super-theory is not
really like the standard conversion of informal mathematics into some ‘foundational’
theory such as ZFC set theory (which is potentially what the mathematicians that
Priest invokes might have in mind). For if this were the case we would quickly find
ourselves with the Benacerrafian problem that there are a large number of different
adequate representations for our informal concepts (see [5]). This would lead us
out of the first option and its super-theory, into a picture where there are multiple
different formalisations of informal mathematics.

I would like to emphasise here that theworry I am raisingwith the generated super-
theory is nothing to do with its inconsistency (for such a theory would undoubtedly
be inconsistent) and as such it is not open to the usual charge of begging the question
against the dialetheist.

5.2 A Second Option

As a second option, Priest could hold it that the formalisation process for all math-
ematics that he is after is actually a case of many-many formalisation. As I have
already argued, there may be many different formalisations of mathematics, which
Priest can accept as the case in order to avoid the problems presented against the
many-one formalisation picture. In essence, this approach is embracing the plurality
of formalisations as opposed to letting it become a problem.

However, accepting this path immediately adds an extra complication to the argu-
ment, in that now Priest’s claims about the formalised version of informal proof must
implicitly be quantifying over formalisations. In particular, each time he mentions

10An anonymous referee suggests that we may be able to distinguish between a plurality of results
which are equivalent under translation and those which genuinely disagree. I believe, however, that
this will not save the argument. In a critical discussion of Azzouni’s formalist account of proofs
[20], I have previously argued that such a move is not going to deliver the substantial kind of
formalisation required for the argument to proceed.
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the formalised version of a proof of informal mathematics, there is no one thing
this refers to but instead a selection of different formalised versions of the informal
proof. The next natural question to follow this up with is how to determine which
formalisations fall under this quantification for any given proof. Put another way:
which formalisations of informal mathematics will be adequate and acceptable? For
example, a formal language which is too expressively weak to even state standard
theorems would be inadequate and unacceptable. The question, then, comes down
to finding (and defending) criteria of adequacy for these formalisations of informal
mathematics.

Formalisation, as it is being conceived of here, is not a process of exposing an
underlying logical form already present in the informal proof, or any thought in this
direction. I take this to be the case because informal proofs will underdetermine the
language, systemand structure that such a proofwould adhere to andhave. It is instead
taken to be a process that is inextricably linked to the context in which it occurs.
Relevant factors include the agent performing the formalisation, their purposes in
doing so and the formal theory they intend to formalise the given informal proof
into. It might be useful here to consider an analogy to Carnap’s notion of explication
(as in [6]) where there is also no definitive fact of the matter as to what the correct
explication is for some given concept. Instead the different results are compared and
evaluated using pragmatic measures such as usefulness, simplicity, explanatoriness,
precision etc.

In a similar way, there could be a whole range of formalisations that can be
of varying degrees of usefulness in making some informal piece of mathematical
reasoning fully formal. In Priest’s formalisation of all of informal mathematics we
may find a number of different results which are of varying degrees of usefulness,
explanation, accuracy, simplicity etc.Of course, amongst these theremaybe anumber
of formalisations that we would want to recognise as inadequate, such as that in the
above example of an expressively weak language. We want some way of excluding
these examples of ‘bad’ formalisations of informalmathematics frombeing implicitly
quantified over in Priest’s argument. However Priest would want to go about this
project, we can see that it adds significant philosophical ground that needs to be
supplemented to the argument in question before it goes through.11

6 On Mathematical Super-Theories

Anewworry that emerges from the consideration of different formalisations concerns
the reliance on one (or indeed many) mathematical super-theories. Since we have
seen the analogy to Carnap and want to evaluate our formalisations using pragmatic
principles, we must consider whether unified mathematical super-theories, in the

11An anonymous referee proposes an additional argument against Priest based on this section: that
the translation on the many-many case is not effective means that informal proof can therefore not
meet the minimum requirements for falling under Gödel’s theorems. Grist to the mill!
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sense that Priest has proposed, are indeed the best when evaluated in this way. In this
subsection I will briefly consider three reasons why this might not be the case.

Before I begin, though, let us just make explicit why for Priest’s argument there is
now the need to formalise all of informal mathematics in one go, in its entirety, into a
super-theory. If this is not done another key step of the argument cannot go through,
namely the step where it is insisted that the Gödel sentence is indeed provable. If
we were to replay the argument just in arithmetic, for example, we would code in
(the formalisation of) informal provability in arithmetic and soon discover the Gödel
sentence is not provable in this formalisation. But here we would be free to take
the traditional lesson that this is just a limitation on the formalisation, which may
well be incomplete.12 It is only be squeezing out all room for this incompleteness by
quantifying over all mathematics and informal proof simpliciter that the argument
could hope to successfully establish that the answer is actually inconsistency rather
than mere incompleteness.13

Let us now consider why this super-theory will run into difficulties.
Oneworrymaybe that different fields or areas ofmathematicsmight be best served

by different formal systems, or even different styles of formal systems. For example,
the study of algebra, set theory and geometry all appear very different at first glance,
and so it may be that they are best served by being formalised into different formal
systems (say, with different proof rules which better track the kinds of inferences
made in these fields). Of course, the judgment here must be relative to some purpose
of formalisation, but we may take the purpose at hand to be (something like) giving
a formal reconstruction of the informal proofs, which tracks the inferential steps that
were being used. To justify this, recall that Priest’s treatment of informalmathematics
as a formal theory was meant to be “without injustice”.

The first problem I am proposing, then, is that it might be that different formal
systems, that are tailored to different sub-areas of mathematics, might allow the
more accurate reconstruction of the reasoning present in the informal proofs for
those different areas. It also seems that Priest cannot point to the fact that the super-
system(s) he is after are those that represent a “tidying up’ of the fragment of natural
language that mathematics is expressed in, because the point that is being pressed
here is that this talk is an over-simplification of a more complex process.

Relatedly, the second concern I have is that diagrammatic proofs may lead to a
significant worry for Priest. In referring to the “fragment of English” that informal
mathematics is expressed in, Priest seems tomiss awide selection ofmathematics that
is communicated pictorially. Pictures can serve to communicate mathematical facts,
but can also function as components of informal proofs or proofs in their entirety
(see [13, 14]. How is this to be accommodated in the super-systems which are
meant to formalise all of informal mathematics? What will the formalisation process

12And we are well used to theories being incomplete for more reasons than Gödel theorem. For
instance, Peano arithmetic also has examples like Goodstein’s theorem and the Paris-Harrington
theorem.
13Note that this cannot be avoided by insisting that the Gödel sentence must be part of naïve
arithmetic without running afoul of the distinction of Sect. 3.
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do to diagrammatic proofs? If they are simply to be eliminated, this once again
means that informal mathematics is undergoing a drastic change in the formalisation
process. Alternatively, there are formal systems for diagrams which may serve to
formalise someof thediagrammatic proofs.However,we are nowengaged in aproject
of making the super-systems, which originally sounded straightforwardly close to
informal mathematics, encompass much broader pieces of mathematical reasoning.
At the very least, this is a non-trivial undertaking which involves constructing a
mixed-mode formal system which combines traditional syntactic components with
formal diagrammatics. A deeper worry, however, is that we are now able to question
whether it will even be possible to capture all of the mathematical reasoning that
occurs in informal proofs in formal systems, without doing violence to the source
material. I shall return to this line of thought in Sect. 8.

A third problem we encounter for the mathematical super-theory can draw on
Priest’s own considerations of mathematical pluralism in Priest [16]. Modern math-
ematical investigation extends to examining which results obtain from adopting dif-
ferent logics to work in. Yet if all the various investigations of different logics are
taken to be part of informal mathematics, what happens when we formalise them into
the one super-theory? Not only do we face the prospect of systems collapsing into
one another, but the more alarming danger of triviality looms. Observe that some of
the logics we might want to use will include the principle of explosion, most notably
classical logic. As soon as a contradiction arises somewhere in the system (which is
exactly what Priest’s argument is attempting to force), immediately it follows that the
whole super-system is trivialised. This is regardless of whether we think that there
is something philosophically wrong with classical mathematics, and the principle of
explosion in particular, since we are just formalising informal mathematics as we
found it. This worry also doesn’t rely on logical pluralism, instead just the more
uncontroversial fact of logical plurality.14 In the case of this worry, Priest’s argument
will still go through but using the fact that a trivial super-system is also inconsistent,
which is hardly a desirable result.

7 Fragmented Formalisations

The counter-suggestion to formalising all of informal mathematics simultaneously
into one super-theory, with which we have seen some serious difficulties, is that
the formalisation process may be one that can only be successful when done in a
fragmented way. The suggestion is that constructing a formal system is achievable
when we take smaller “chunks” of mathematics that we want to formalise, just not
when we want to take it all at the same time. Such an understanding would provide
reasonable solutions to dealing with the problems of previous section, without giving
up the possibility of formalising parts of mathematical reasoning.

14I take it that, as mathematicians, we don’t need to commit ourselves to the truth, in some philo-
sophical sense, of the mathematics that is being carried out.
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Let us see why switching from the idea of a super-theory to the fragmented
approach is not a good option if we want to maintain Priest’s argument that informal
mathematics is inconsistent by Gödel’s First Incompleteness Theorem. The issue is
that the argument relies on capturing informal mathematics fully to insist that the
sentence ϕ, which is unprovable in the formalised version of informal mathematics
but is nonetheless established by informal proof, must also by provable in the for-
malised system. If, however, it fails to obtain that any one theory does successfully
formally represent all of informal mathematics as a whole, then it cannot be insisted
that the last step holds. The point is that we get to the fact that the sentence must be
true in the system because the system includes all informal mathematical reasoning.
If we do not guarantee this, then the inconsistency is not guaranteed either.

Undermining this last step is sufficient for giving a criticism of Priest’s argument,
butwhatwehave seen so far forms a somewhat deeper difficulty. Priest’smore general
project in In Contradiction is to re-examine the balance between completeness and
consistency, insisting that it is the latter we jettison in light of Gödel’s theorems
rather than the former, which is the orthodox choice. Recall that in Sect. 3 we set
aside Beall’s use of the same balancing act, where he suggests that when formalising
mathematical reasoning we are returned to the completeness/consistency dichotomy.
What has implicitly been done here, then, is to use considerations of the process of
formalisation to give an independent motivation for why we might prefer to end
up with an incomplete system when formalising informal proofs, without making
reference to any concerns about consistency.

8 On the Formal and the Informal

For all that has been said, I think there is anothermore devastating objection to Priest’s
argument. In Sect. 5.1 we saw that the idea that there would only be one formalised
counterpart of informal mathematics would not hold any water. However, it was
only on this reading that it seemed acceptable to treat informal mathematics as if it
were a formal theory, at least superficially, stemming from the fact that there was
one ‘body’ of informal mathematics and one formalisation thereof. Nonetheless,
having been discussing the difficulties involved in formalising theories, it should
now be becoming clearer that there was something fishy going on in this step of the
argument.

The objection is the following: by moving from informal proof to a formalised
version thereof, Priest’s argument is guilty of changing the subject. The argument
intended to show that informal proof was inconsistent, and not just coincidentally
but inherently so. Yet, almost immediately in the reasoning, to get the application of
the incompleteness results off the ground, Priest needs the subject of his argument
to be a formal theory. The answer, therefore, is that mathematics is not a formal
theory and that transforming it to be one will do an injustice to its source material.
The argument speaks as if the multiple representations that informal mathematics
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can have as formal systems are identical to the informal mathematics itself, but this
is just a confusion of distinct things.

While Priest was looking to demonstrate that informal mathematics was inher-
ently inconsistent, an option that is now on the table is that mathematical reasoning is
inherently informal, a view common in the mathematical practice literature (e.g. [9]),
or that it may be inherently incomplete, or indeed both. The thought would then, in
these cases, be that no formal system would suffice to adequately capture math-
ematics in its entirety. Indeed, this is the traditional lesson that people take from
the incompleteness results, but this standard result relies on the question-begging
move from consistency to incompleteness. Now, though, we have seen independent
motivations for thinking so and rejecting the argument.

Priest’s challenge was looking to adjust the balance between consistency and
completeness in favour of the latter over the former. But now, by considering the third
axis of formality and informality, we have obtained a way to defend incompleteness
over inconsistency in the formal setting without begging the question.15 For the
argument relies on a number of assumptions about the nature of formalisation which
allow one to easily and without injustice take informal mathematics into formal
mathematics. I have, to the contrary, argued that this distinction runs deep and cannot
be bypassed lightly, meaning that arguments that work for formal theories cannot
be straightforwardly applied to informal mathematics, and ultimately that Priest’s
argument does not go through.
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1 Introduction

The description of the scientific goals of the recent conference on Paraconsistent
Reasoning in Science and Mathematics1 circulated to the invited speakers of the
conference, contains the following considerations on the methodology of paracon-
sistent logic:

The variety of approaches to paraconsistency raises two obvious questions: what are the
desiderata that a paraconsistent logic ought to satisfy? Which paraconsistent logics score
well given certain desiderata? Regarding the first question, there is some consensus on there
being three core desiderata:

(1) A paraconsistent logic ought to capture the inferential use of inconsistent but non-trivial
theories.

(2) A paraconsistent approach should explain how one can weaken the underlying logic of
classical logic to get rid of the explosion principle and still have enough inferential power
to be successful.

(3) It is desirable to have a philosophical motivation for the deviation from classical logic in
terms of epistemological and, possibly, also metaphysical considerations.

It is obvious that full preservation of classical logic is incompatible with satisfaction of the
first desideratum. So, we are confronted with an optimisation problem. It is no exaggeration
to call it the central optimisation problem of paraconsistent logics. This problem, of course,
may admit of more than one solution. Also, it is not clear whether a single and universal
solution is achievable or even desirable.

This paper contains a discussion of some methodological aspects of paraconsis-
tent logic, and a special emphasis is put on “the central optimisation problem of
paraconsistent logics”. It is argued that there are several reasons not to consider clas-
sical logic as the reference logic for developing systems of paraconsistent logic, and
it is suggested to weaken a certain maximality condition that may be seen as essential
for “optimisation”. Moreover, irrespective of how strongly paraconsistent reasoning
may be motivated by applications to knowledge representation or by ontological
considerations, it is argued that for logic as a theory of valid inference, the guiding
motivation for the development of systems of paraconsistent logic should be neither
epistemological nor ontological, but informational. We also briefly discuss the idea
of ex contradictione nihil sequitur as another conception of maximality, consider a
methodology of paraconsistent logic due to Priest and Routley [57], and present a
methodology that imposes a condition of minimal loss of expressiveness relative to
a given reference logic.

1See http://www.paraconsistency2014.philosophie.uni-muenchen.de/index.html, Munich, June
11–13, 2014. Although this description was not intended for publication, we include it here because
it presents methodological views many paraconsistent logicians seem to agree with and which
therefore may serve as a suitable starting point for our methodological considerations.

http://www.paraconsistency2014.philosophie.uni-muenchen.de/index.html
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2 Constraints and Desiderata: A Brief History

The methodological discussion of constraints on and desiderata to be fulfilled by
systems of paraconsistent logic has some tradition, and presenting it partly explains
why the methodological views quoted in the introduction seem to be fairly represen-
tative. The above desiderata (1)–(3) to some extent echo the list of conditions stated
by Stanisław Jaśkowski in his seminal paper on paraconsistent logic from 1948:

Accordingly, the problem of the logic of inconsistent systems is formulated here in the
following manner: the task is to find a system of the sentential calculus which: 〈1〉 when
applied to the inconsistent systems would not always entail their overfilling, 〈2〉 would
be rich enough to enable practical inference, 〈3〉 would have an intuitive justification.
([33, p. 38])

Jaśkowski admits that it is difficult to assess the third condition objectively.2

Newton Da Costa [19, p. 498] lists a number of conditions his propositional calculi
Cn , 1 ≤ n ≤ ω, ought to satisfy if they are to serve as logical bases for non-trivial
inconsistent theories, where C0 is classical propositional logic:

(I) In these calculi the principle of contradiction, ¬(A&¬A), must not be a valid schema;
(II) From two contradictory formulas, A and ¬A, it will not in general be possible to deduce
an arbitrary formula B; (III) It must be simple to extend Cn , 1 ≤ n ≤ ω, to corresponding
predicate calculi (with or without equality) of first order; IV) Cn , 1 ≤ n ≤ ω, must contain
the most part of the schemata and rules ofC0, which do not interfere with the first conditions.
(Evidently, the last two conditions are vague.)

Da Costa and Alves [20, p. 185] present the following conditions:

(1) From two contradictory formulas, P and ¬P , it should not be possible in general to
deduce an arbitrary formula.
(2) The system should contain most of the schemata and deduction rules of the classical
calculus that do not inference3 with the first condition.

The conditions (1), 〈1〉, (I), (II), and (1) may be seen as unproblematic because
they define the subject, although nowadays (I) is usually not used in definitions of
paraconsistency. There is room for being critical about assuming the availability of
conjunction in (I) and room for discussing (I), (II), and (1) by asking which char-
acterization of contradictoriness is assumed or whether ¬ may also be an operation
that gives rise to contrary instead of contradictory pairs of formulas, cf. [67], but

2Alexander Karpenko [36] suggests a concrete reading of conditions 〈2〉 and 〈3〉. He requires
that a propositional paraconsistent logic should validate modus ponens and the three schemata
characteristic of BCI-logic:

(I) p → p,
(B) (q → r) → ((p → q) → (p → r)),
(C) (p → (q → r)) → (q → (p → r)).

Moreover, in a three-valued semantics, the truth tables for negation, implication, conjunction, and
disjunction should coincide with the classical tables on the classical values 0 and 1.
3This should probably be “interfere”.
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the general idea is uncontentious. It is assumed that the language under considera-
tion contains a negation connective, and a theory containing both a formula and its
negation should not, in general, be trivial. Condition (2) is much less uncontrover-
sial; it declares classical logic as the reference logic. The notion of a reference logic
has two aspects. One aspect is that a paraconsistent logic ought to be faithful to the
reference logic in the sense of being a subsystem of it. A second aspect is that a para-
consistent logic should be a maximally paraconsistent subsystem of the reference
logic. The requirement of maximal paraconsistency can, of course, be detached from
considering any particular background logic.

Ofer Arieli, Arnon Avron, and Anna Zamansky [7] take the multitude of different
kinds of paraconsistent logics that can be found in the literature as a reason to look for
“ideal” paraconsistent propositional logics. Their starting point is the methodology
of da Costa, so that an ideal paraconsistent logic preserves as much of classical logic
as possible, and they wonder what exactly that constraint amounts to. According
to them [7, p. 32] a preliminary analysis reveals three fundamental and intuitive
properties:

Containment in Classical Logic. As the general characterization given above
to ‘ideal paraconsistent logics’ suggests, classical logic is usually taken as the
reference logic for such logics. This means that while a reasonable paraconsistent
logic is necessarily more tolerant than classical logic (since it allows non-trivial
contradictions), it should not validate any inference which classical logic forbids.
In other words: it should be contained in classical logic.
Maximal Paraconsistency. The requirement from a paraconsistent logic L to
retain as much of classical logic as possible, while still allowing non-trivial incon-
sistent theories has two different interpretations, corresponding to the two aspects
of this demand:

Absolute maximal paraconsistency. Intuitively, this means that by trying to further
extend L (without changing the language) we lose the property of paraconsistency.
Maximality relative to classical logic. Here the intuitive meaning is that L is so close
to classical logic, that any attempt to further extend it should necessarily end up with
classical logic.

Ideally, we would like of course an ideal paraconsistent logic to have both types
of maximality.4

4That the combination of absolute maximal paraconsistency (or some other notion of maximal para-
consistency not defined with respect to a given reference logic) and maximality relative to classical
logic is indeed ideal is not so clear. Even Arieli, Avron, and Zamansky [6, p. 32] refer to maximality
simpliciter as the “more natural” notion of maximal paraconsistency as compared to maximality
with respect to classical logic. In Chap. 2 of a book manuscript on the theory of effective propo-
sitional paraconsistent logics, they change their terminology. The logics they previously referred
to as ideal paraconsistent logics are now called “fully maximal and normal”. The reason for that
choice of a more neutral term, as they told us, is that on the one hand in their book they consider
approaches to paraconsistency different from da Costa’s and on the other hand they regard the class
of all “ideal” paraconsistent logics as still too broad to indeed justify designating all these logics as
ideal.

http://dx.doi.org/10.1007/978-3-319-40220-8_2


On the Methodology of Paraconsistent Logic 179

Reasonable language. Obviously, the language of a paraconsistent logic should
have an official negation connective which is entitled to this name. This is insuffi-
cient, of course. Thus, in [3] we have shown that the three-valued logic whose only
connective is Sette’s negation [32], is maximally paraconsistent and it is obviously
contained in classical logic. Still, nobody would take it as an ideal paraconsistent
logic, because its language is not sufficiently expressive. So an ideal paraconsistent
logic should be in a language which is reasonably strong.

In their [5, p. 706], Arieli, Avron, and Zamansky present four properties as “desir-
able for a decent logic for reasoning with inconsistency,” the first is paraconsistency
and the second is more explicit about a reasonably strong language:

1. Paraconsistency. The rejection of the principle of explosion, according to which
any proposition can be inferred from an inconsistent set of assumptions, is a
primary condition for properly handling contradictory data.

2. Sufficient expressive power. Clearly, a logical system is useless unless it can
express non-trivial, meaningful assertions. In our framework, a corresponding
language should contain at least a negation connective, which is needed for
defining paraconsistency, and an implication connective, admitting the deduction
theorem.

3. Faithfulness to classical logic. As observed by Newton da Costa, one of the
founders of paraconsistent reasoning, a useful paraconsistent logic should be
faithful to classical logic as much as possible. This implies, in particular, that
entailments of a paraconsistent logic should also be valid in classical logic.

4. Maximality. The aspiration to retain as much of classical logic as possible, while
still allowing non-trivial inconsistent theories is reflected by the property of max-
imal paraconsistency, according to which any extension of the underlying conse-
quence relation yields a logic that is not paraconsistent anymore.

They refer to logics that satisfy the four properties as ideal for reasoning with
inconsistency and develop a precise definition of ideal paraconsistency. In Sect. 5
we will take up their general setting for discussing the methodology of paraconsis-
tent logic, their condition of expressive strength, and the rather general condition
they impose on negation connectives. As already indicated, we will, however, criti-
cize their choice of classical logic as a reference logic and their notion of maximal
paraconsistency.5

3 Motivation in Terms of Epistemological
or Metaphysical Considerations

Let us first consider the above listed desideratum (3) and only later consider the
question of classical logic as a reference logic, the notion of maximality, the idea
of ex contradictione nihil sequitur, and methodologies different from da Costa’s.
We believe that logic should avoid as many ontological commitments as possible.

5The depth and beauty of their results is, however, undoubted.
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With the conception of logic as the theory of valid inferences and the conception of
logics as consequence relations, logic, by definition, is committed to the existence
of languages but not necessarily to the existence of language users. Furthermore,
if models are to be constructed, then they are built from the unavoidable linguistic
entities. Moreover, the notion of valid inference does not refer to the knowledge or
belief states of any epistemic or doxastic subjects. That is not to say that logic does
not have an epistemic dimension as well. We “draw” conclusions and in doing so
form beliefs and acquire knowledge. The exact nature of this process is complicated,6

and it is not at all obvious that systems of paraconsistent logic should be motivated
in terms of epistemological considerations or metaphysical ones.

Also, the motivation of a system of paraconsistent logic may well lead to abandon-
ing the characterization of entailment in terms of truth preservation. Nevertheless, if
a convincing motivation for a system of paraconsistent logic can be given without
appeal to language users, epistemic subjects possessing mental states, or without
appeal to dialetheia, i.e., true contradictions, then prima facie such a motivation is
to be preferred over a motivation that comes with the mentioned epistemological or
ontological commitments. That does not mean that a motivation in epistemological
or ontological terms or by applications to knowledge representation may not be very
useful, but nevertheless it may be seen as an advantage if a paraconsistent logic can
be motivated independently of epistemological or ontological commitments.

A motivation that omits such commitments can be given in terms of informa-
tion. There exist various notions and theories of information, but for our present
purposes it suffices to share Michael Dunn’s [24, p. 423] general and basic view of
information: “information is what is left of knowledge when one takes away belief,
justification, and truth. . . . Information is . . . a kind of semantic content – the kind
of thing that can be expressed by language.” In [25, p. 582], Dunn explains that
information is something like a Fregean thought. Information so understood clearly
is not veridical and thus has to be distinguished from semantic information as under-
stood by, for example, Luciano Floridi, see the surveys [2, 28] and the references
given there. Having said that much, we may suppose that collections of assumptions
(sets, multisets, lists, or even more complex structures of formulas) provide informa-
tion even if this information happens not to be processed by any human or artificial
information processor. Let us, for determinacy, consider sets. A consequence rela-
tion holds between a set and another set of formulas, an at most single-element or
possibly multi-element set. If a formula A (or rather the singleton {A}) is entailed
by or derivable from the set of premises �, then � provides the information that A,
irrespective of whether that is recognized or not by some epistemic subject. If we
assume a language containing a negation operation ∼, then we assume that there
exists some kind of semantic opposition between A and ∼A. What this opposition
amounts to and how exactly it is to be spelled out in the semantics of a paraconsistent
logic is a fundamental question. In any case the very idea of paraconsistent logic,
namely that the schematic inference from {A,∼A} to an arbitrary formula B (or,
more generally, the schematic inference from � ∪ {A,∼A} to � for arbitrary sets

6See [51].
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of formulas �,�) is invalid, receives a very intuitive motivation if it is phrased in
terms of information: in general, it just is not the case that {A,∼A} provides the
information that B (� ∪ {A,∼A} provides the information that �), for arbitrary B
(� and �). If we employ a conjunctive reading of premise sets and a disjunctive
reading of conclusion sets, then in perfect duality to the case of inconsistent premise
sets we obtain a very intuitive motivation for the invalidity of the entailment from �
to � ∪ {A,∼A} for arbitrary sets of formulas �,�: in general, it just is not the case
that � provides the information that � ∪ {A,∼A}).7

The intuitive, pre-theoretical understanding of information seems to admit both
partial and conflicting “pieces” of information. A piece of information is partial if
for at least one proposition (expressed by the formula) A it neither provides the
information that A nor the information that ∼A. A piece of information provides
conflicting information if for at least one proposition A it provides not only the
information that A but also the information that ∼A.

Not only strike us these motivating ideas as simple and clear, they are also apt
to logic as a discipline free from unnecessary epistemological (and ontological)
commitments. As Jon Barwise [12, p. 368] once put it, “[i]nformation travels at
the speed of logic, genuine knowledge only travels at the speed of cognition and
inference.”

4 Classical Logic as the Reference Logic
for Paraconsistent Logics

Before turning to maximal paraconsistency, we shall next discuss faithfulness to
classical logic and maximality relative to it, i.e., the notion of a reference logic and
of faithfulness presented in [5, p. 706]. In the mentioned declarations of classical
logic as the reference logic for the development of paraconsistent logics, the choice
of classical logic is more or less taken for granted, although one may wonder why
exactly a nonclassical paraconsistent logic, if correct, should have a distinguished
status in virtue of being faithful to classical logic “as much as possible”.

Classical logic is a natural logic for reasoning about what is and what is not the case
in classical, platonistic mathematics. It is not, however, a natural reference logic (in
the mentioned sense) for reasoning about the universe of constructive mathematical
objects. Moreover, classical logic is not at all a natural reference logic for reasoning
about information and information structures. On the other hand, it is reasoning about
information that suggests paraconsistent reasoning.

We will present four considerations that together may cast doubt on using classical
logic as the reference logic for developing systems of paraconsistent logic: (i) Clearly,
a reference logic is a distinguished logic, and being classical is a distinction. How-

7The guiding ideas of relevance logic and containment logic are in the same spirit but far more
specific, see, for example, [4, 27, 42, 65].
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ever, the classicality of classical logic may be seen as a contingent historical fact.8

(ii) The fundamental motivation of classical logic is in conflict with the motivation
of paraconsistent logic as a logic of information structures. (iii) Classical, Boolean
implication tends to be in conflict with paraconsistent reasoning. (iv) It is not clear
that closeness to classical logic is justified by the intended applications of paracon-
sistent logic. In view of these observations, it is doubtful that the choice of classical
logic as a reference logic is indeed justified.

Ad (i). Indeed, many important non-classical logics in the vocabulary of classical
logic are subsystems of classical logic. Avron [11, p. 1] remarks that “in practice
almost all non-classical logics ever seriously studied” are subsystems of classical
logic. There is a continuum of superintuitionistic logics that are intermediate between
intuitionistic and classical logic, and, as an anonymous referee highlighted, any non-
trivial supersystem of intuitionistic logic in its vocabulary is a subsystem of classical
logic. Systems of relevance logic and other substructural logics are subsystems of
classical logic, and in [11] it is shown that language-preserving extensions of almost
every relevance logic in the tradition of Anderson and Belnap [4] can have only
classical tautologies as theorems. Classical logic seems to be the upper limit for
logical systems in its language. The fact that there exist “contra-classical” logics the
connectives of which cannot be (definitionally) translated so as to obtain a subsystem
of classical logic (see [32]) might, perhaps, be seen as a fact that only slightly disturbs
the general picture. But maybe the threatening disturbance is not so small, also
from a historical perspective. It seems that Aristotle and Boethius advocated an
understanding of negated implications that is orthogonal to classical logic. In so-
called systems of connexive logic, certain non-theorems of classical logic are taken
to be valid, in particular, “Aristotle’s Theses”

∼(∼A → A) and ∼(A → ∼A).

and “Boethius’ Theses”

(A → B) → ∼(A → ∼B) and (A → ∼B) → ∼(A → B).

The validity of these schemata involving negated implications can be motivated
in various ways,9 and the classical understanding of negated implications expressed
by the bi-conditional ∼(A → B) ↔ (A ∧ ∼B) may be seen critically. If one, for
instance, assumes the (contentious) denial equivalence view, according to which the
denial of a statement A can be adequately analyzed as the assertion of A’s negation,10

then it is not obvious that denying (A → B) is to be analyzed as a compound speech
act consisting of the assertion of A and the denial of B.

8We do not intend to deny that platonistic mathematics and the entire realistic tradition in ontology,
metaphysics, and science play an important role in the history of ideas.
9Cf. [43, 69, 70].
10See [60].
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Moreover, also in terms of its meta-theory, the classicality of classical predicate
logic might turn out to be accidental. We are so used to the fact that classical predicate
logic is undecidable that we are not much inclined to see this property as being in
conflict with classical predicate logic’s distinction as classical. There are, however,
decidable subsystems of classical predicate logic in its full vocabulary, see [37] and
[38]. Classical (and intuitionistic) logic have presentations as sequent calculi such
that dropping the contraction rule results in decidable systems. Moreover, giving
up contraction has the pleasant side-effect of getting rid of the Curry paradox. If
logic had not, as a matter of fact, been developed for classical mathematics but
for modelling resource-sensitive reasoning, the contraction-free, affine subsystem of
classical first-order logic might well have emerged as the logical orthodoxy.

Paraconsistency does deviate from logical orthodoxy, but it is not at all clear
that classical logic indeed is the logical orthodoxy from which paraconsistent logics
ought to deviate only minimally. The first-order extension QN4 of Nelson’s con-
structive paraconsistent logic N4 with strong negation, for example, is a subsystem
of classical predicate logic and is faithfully embeddable into positive first-order intu-
itionistic logic. QN4 is constructive insofar as it enjoys the disjunction property, the
constructible falsity property and the existence property. Why should one require
that QN4 deviates only minimally from classical first-order logic QCL? It is even
less plausible to require that the paraconsistent connexive first-order logic QC from
[69] deviates only minimally fromQCL. Arieli, Avron, and Zamansky’s requirement
of being “faithful to classical logic as much as possible” is not convincingly justified.

Ad (ii). Classical logic is a logic for realists; it is a logic for reasoning about what
is and what is not the case.11 Classical negation is the Boolean complement, and
the classical negation ¬A of A treats falsity as the absence of truth. If we deal with
information about what is or is not the case, falsity and the absence of truth fall apart
and we are in an at least four-valued setting. As already remarked, information with
respect to a given proposition may be partial or conflicting; it may even be both,
cf. [62].

Ad (iii). The conflict between disjunction introduction, disjunctive syllogism, and
paraconsistent reasoning has been observed several times by various authors and can
be traced back to the logician(s) from the 14th century called “Pseudo-Scotus”.12 It
is very nicely described, for example, in Zach Weber’s entry on paraconsistent logic
for the Internet Encyclopedia of Philosophy. Weber explains:

11There are several, sometimes subtly nuanced notions of realism. Roughly speaking realism is
usually understood as the doctrine that there are entities (of a certain kind) that exists independently
of any conscious beings. Dummett [23] characterizes realism semantically by the assumption of
bivalence, according to which every meaningful declarative sentence from a certain discourse is
either true or false but not both true and false and not neither true nor false, provided it is neither
vague nor ambiguous. In that sense realism is tied to classical logic, and it would be incorrect, for
example, to classify dialetheists as realists.
12In [18, Footnote 3] John of Cornwall is mentioned as the most probable author.
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But we cannot simply remove the inference of explosion from classical logic and automat-
ically get a paraconsistent logic. The reason for this, and the main, serious constraint on a
paraconsistent logic, was discovered by C.I. Lewis in the 1950s. Suppose we have both A
and ¬A as premises. If we have A, then we have that either A or B, since a disjunction only
requires that one of its disjuncts holds. But then, given ¬A, it seems that we have B, since
if either A or B, but not A, then B. Therefore, from A and ¬A, we have deduced B. The
problem is that B is completely arbitrary—an absurdity. So if it is invalid to infer everything
from a contradiction, then this rule, called disjunctive syllogism,

A ∨ B,¬A � B

must be invalid, too.

If we consider the following variant of the modus tollendo ponens

¬A ∨ B, A � B

it is clear that disjunction introduction and modus ponens for Boolean implication
¬A ∨ B result in trivializing inconsistent premise sets. If we consider disjunction
introduction as unrelated to the problem of reasoning from inconsistent assump-
tions, then, because the deduction theorem (in both directions) and cut ensure modus
ponens, the Pseudo-Scotus or Lewis argument shows that for a paraconsistent tran-
sitive consequence relation and an implication satisfying the deduction theorem,
implication cannot be Boolean implication.13

Ad (iv) Paraconsistent logics are logics that can be fruitfully applied to reasoning with
inconsistent data, and it is not really surprising that paraconsistent, inconsistency-
tolerant reasoning has become increasingly important in knowledge representation
and in artificial intelligence research in general.14 The relevance of paraconsistent
logics for modelling everyday reasoning has been realized already in the 1990 s when,
for example, systems of paraconsistent circumscription and minimally inconsistent
LP, LPm, a non-monotonic version of Graham Priest’s Logic of Paradox, have been
suggested, see [21, 40, 53]. If reasoning is granted to be both paraconsistent and
defeasible, and if in the intended application areas classical logic fails, it is more than
doubtful that classical logic is justified as a reference logic for the development of
paraconsistent logics, even if in discussions of LPm the idea of “classical recapture”
is sometimes seen as indicating the use of classical logic as a reference logic. One
notion of recapture compatible with [53] could be defined as follows. Let L1 and L2

be two distinct logics with the same languageL and with consequence relation �1 and
�2, respectively. Then L1 recaptures L2 iff there exists a family of sets of L-formulas
such that for every element � from that family, {A | � �1 A} = {A | � �2 A}. If
a logic L recaptures classical logic, L enjoys classical recapture. If, for example,
there is a classically inconsistent set of formulas � which is also L-trivial, then

13The invalidity of modus ponens (alias detachment) in the form of modus tollendo ponens has
recently been argued for by Jc Beall [15] based on a distinction between logic and rational theory
change.
14We have contributed to this area with [48, 49].
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L recaptures classical logic via the family {�}. So one may want to impose some
conditions on the family of sets with respect to which recapture obtains. There is no
space here to discuss notions of recapture and the various possible attitudes towards
classical recapture; a very illuminating and careful discussion can be found in [1].
In our opinion, the point of classical recapture is reconstructing the classically valid
reasoning that is acceptable according to the ideas that motivate the logic by which
classical logic is recaptured. Classical logic is not the canon and yardstick here, but
rather it is the non-classical conception of inference that helps identify an acceptable
fragment of another consequence relation. The consequence relations of LPm and
classical logic, for example, coincide on classically consistent premise sets [53], so
that a certain fragment of classical logic is identified as acceptable from the point of
view of LPm.

In inconsistency adaptive logics (see, for example, [14, 63] and the references
given there), the so-called upper limit logic sets the standards of logical normality. In
standard format an adaptive logic is given by a lower limit logic that remains stable in
the reasoning process, a set of abnormalities, and an adaptive strategy for minimizing
abnormalities. The set of abnormalities is chosen so that adding the axioms that
trivialize abnormal theories to the lower limit logic gives the upper limit logic. In
other words, we chose abnormalities among formulas that imply everything in the
upper limit logic. Note that this approach does not come with a binding commitment
to classical logic as the upper limit logic. As a matter of historical fact, the upper limit
logic and the set of abnormalities of the most prominent adaptive logics CLuNr and
CLuNm are classical logic together with the set of formulas of the form A ∧ ¬A.

One might object (and an anonymous referee did so) that for certain applications,
inferences such as disjunctive syllogism are needed that are typically valid in clas-
sical logic but invalid in paraconsistent logics. The case of disjunctive syllogism at
least does not dictate minimal divergence from classical logic. In the paraconsistent
logic N4⊥ [46, 47] the defined intuitionistic negation satisfies disjunctive syllogism,
whereas the primitive strong negation does not.

There are at least two questions that remain to be addressed:

1. If classical logic is not justified as a reference logic for defining systems of
paraconsistent logic, should there at all be such a reference logic?

2. Is the standard notion of maximality unproblematic even if it is detached from
classical logic or any other suggested reference logic?

A positive answer to the first question needs justification and gives rise to a plethora
of other questions. Should the choice of a reference logic depend on the possession
of other properties such as decidability, the disjunction property, the constructible
falsity property, the existence property, the existence of a cut-free sequent calculus
(of a certain kind), . . .? Should the choice of a reference logic depend on particular
applications? We shall not address these questions here but instead first turn to the
notion of maximality. We will then consider two different methodologies, one due
to Priest and Routley and another one focusing on a minimal loss of expressiveness
instead of maximal faithfulness with respect to some given reference logic.
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5 Maximality

Arieli, Avron, and Zamansky’s notion of maximality is strong insofar as it is defined
with respect to the entire language of the paraconsistent logic in question. In partic-
ular, on pain of violating paraconsistency, there is no room for adding theorems or
sequents that are negation-free. Since paraconsistency is defined in terms of a unary
negation connective, ∼, and derivability (or, semantically, entailment), it seems jus-
tified to consider in the first place maximality with respect to formulas containing at
most occurrences of ∼, i.e., to restrict attention to the formulas of the language L∼,
based on a fixed denumerable set At of atomic formulas (alias sentence letters). If,
in addition, the natural requirement is imposed that the language contains an impli-
cation, →, satisfying the deduction theorem, it seems justified to consider sets of
formulas in the language L∼,→ based on At .

In this section, we first present and adopt the general inferential framework of
[5, 7]. We then generalize the notion of maximal paraconsistency and present some
increasingly complex examples of maximally paraconsistent logics. We close the
section with a tentative definition of desirable paraconsistent logics.

Let L be a propositional language based on At , and let Fm(L) be the set of all
L-formulas. We use p, q, r, p1, p2, . . . as schematic sentence letters, A, B,C, A1,
A2, . . . to denote L-formulas, and �,�,�1,�2, . . . to denote subsets of Fm(L).15

We write �, A (�,�) instead of � ∪ {A} (� ∪ �).

Definition 1 A Tarskian consequence relation for a language L is a binary relation
� between sets of L-formulas and single L-formulas satisfying:

Reflexivity: if A ∈ �, then � � A
Monotonicity: if � � A and � ⊆ �, then � � A
Transitivity (Cut): if � � A and �, A � B, then �,� � B

Definition 2 A Tarskian consequence relation � for a language L is structural iff
for every uniform L-substitution θ, � � A implies θ(�) � θ(A). The relation � is
said to be non-trivial iff there exists a set � ⊆ Fm(L) and A ∈ Fm(L) with � � A;
� is called trivial iff it is not non-trivial. The relation � is called finitary iff � � A
implies that there exists a finite � ⊆ � with � � A.

Definition 3 A propositional logic is a pair (L,�) such that L is a propositional
language and � is a structural, non-trivial, and finitary consequence relation for L.

Definition 4 Let L = (L,�) be a propositional logic and let L contain the unary
connective ∼. The logic L is called ∼-paraconsistent iff there are formulas A, B
∈ Fm(L) with A,∼A � B.16 L satisfies double-negation introduction (dni) iff A �
∼∼A and it satisfies double negation elimination (dne) iff ∼∼A � A.

15We will not pay much attention to the mention-use distinction when there is no risk of creating
misunderstandings.
16Equivalently, one may restrict this condition to sentence letters or require that for every sentence
letters p, q it holds that p,∼p � q. The requirement that there are formulas A, B ∈ Fm(L) with
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It is quite standard to characterize implication in terms of the deduction theorem,
i.e., in terms of the familiar right introduction rule for implication in the sequent
calculus and its converse. Arieli et al. [6, 7] impose a not so standard condition on
negation operators, that differs from the constraints on Avron’s “perfect negations”
[9, 10] but can be found, for example, in [41]; one direction of the condition is
suggested in [39].17 They refer to the so defined operations as weak negations; for
uniformity of terminology we will call them “proper negations”.

Definition 5 Let L = (L,�) be a propositional logic. A unary connective ∼ from L
is a proper negation for L iff there exist formulas A and B ∈ Fm(L) with: A � ∼A
and ∼B � B. A binary connective → from L is a proper implication for L iff for
every A, B ∈ Fm(L) and every � ⊆ Fm(L) the following holds: �, A � B iff
� � (A → B).

Definition 6 ([5]) Let L = (L,�) be a ∼-paraconsistent propositional logic. The
logic L is maximally paraconsistent in the weak sense iff every logic (L,�) that
extends L without changing the language (i.e., �⊆�), and whose set of theorems
properly includes that of L, is not ∼-paraconsistent. The logic L is maximally para-
consistent iff every logic (L,�) that properly extends L without changing the lan-
guage (i.e., �⊂�), is not ∼-paraconsistent.18

Arieli et al. [5, 7] define other notions of maximal paraconsistency as well, in
particular the notion of maximal paraconsistency relative to classical logic and the
notion of an ideal paraconsistent logic.

Definition 7 ([5]) Let L = (L,�) be a propositional logic and let L comprise a
unary connective ∼. A bivalent ∼-interpretation for L is a function F that associates
a two-valued truth table with each connective of L, such that F(∼) is the classical
truth table for negation. Let MF be the two-valued matrix for L induced by F, and
let �MF be the structural, non-trivial, and finitary Tarskian consequence relation
induced by MF.

• If F is a bivalent ∼-interpretation for L, then L is F-contained in classical logic if
A1, . . . , An �L A implies A1, . . . , An �MF A.

• L is ∼-contained in classical logic if it is F-contained in classical logic
for some F.

A,∼A � B may be seen as too weak. This opinion is often justified by pointing to Johansson’s
minimal logic [34], in which for arbitrary formulas A and B it holds that A,∼A � ∼B. In the book
manuscript referred to in Footnote 4, Arieli, Avron, and Zamansky distinguish between ∼-para-
consistency and strong ∼-paraconsistency, where the latter requires that there are atomic formulas
p, q ∈ Fm(L) with p,∼p � ∼q. It could make sense to generalize this condition by requiring that
for every n-place connective �, there are atomic formulas p, q1, . . ., qn with p,∼p � �(q1, . . . , qn).
17Moreover, Arieli et al. [5–7] do not consider the dual of implication, co-implication. We will refrain
from considering co-implication in the present paper; see, however, [71, 72] and the references
therein.
18Note that in [6], maximally paraconsistent logics are called strongly maximal and maximally
paraconsistent logics in the weak sense are called maximally paraconsistent.
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Arieli et al. observe that if a logic L is ∼-contained in classical logic, then ∼ is a
proper negation for L.19

Definition 8 ([5]) Let L be a language with a unary connective ∼, and let F be
a bivalent ∼-interpretation for L. Then A ∈ Fm(L) is a classical F-tautology iff
every two-valued valuation, which for every connective � of L respects the truth
table F(�), satisfies A. A logic L = (L,�) is F-complete iff its set of theorems
includes all classical F-tautologies.

Definition 9 ([5]) Let F be a bivalent ∼-interpretation. A logic L = (L,�) is F-
maximal relative to classical logic iff the following conditions hold:

• L is F-contained in classical logic.
• If A is a classical F-tautology not provable in L, then the addition of A as a new

axiom schema results in an F-complete logic.

The logic L is maximal relative to classical logic iff there exists a ∼-interpretation
F such that L is F-maximal relative to classical logic.

This definition of maximality relative to classical logic is meant to make the idea
of faithfulness to classical logic precise.

Definition 10 ([5]) A ∼-paraconsistent logic L is ideal iff it is ∼-contained in clas-
sical logic, has a proper implication, is maximal relative to classical logic, and is
maximally paraconsistent.

Examples and counterexamples

• [5]: Ideal paraconsistent logics are:

– Sette’s logic P1 [61] (and fragments of P1 containing Sette’s negation),
– the three-valued logics PAC [8, 13] and J3 [50],
– all the 220 three-valued logics considered in [6], including the 213 logics of

formal inconsistency introduced in [17].

• [5]: Priest’s LP [52] is maximally paraconsistent and maximal relative to classical
logic but it fails to be ideal because it lacks a proper implication, as shown in [6].

• Nelson’s constructive paraconsistent logic N4 with strong negation ∼ [3, 68] and
its extension N4⊥ by a falsity constant ⊥ [46, 47] fail to be ideal ∼-paraconsistent
logics because they fail to be maximally ∼-paraconsistent.

• Johansson’s minimal logic [34] fails to be ideal because it fails to be maximally
∼-paraconsistent for the paraconsistent minimal negation ∼.

19In [6] Arieli et al. write that for a unary connective ∼ of a logic L to deserve the name “negation”,
L necessarily would have to be ∼-contained in classical logic.
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• Dual-intuitionistic logic and bi-intuitionistic logic [30, 58, 72] fail to be maximally
∼-paraconsistent for the paraconsistent co-negation ∼, and so does Priest-da Costa
logic [26, 55, 56].

Since in the present paper the idea of classical logic as the reference logic for
defining paraconsistent logics is rejected, the focus in what follows is on maximal
paraconsistency. We deviate from Arieli, Avron, and Zamansky and define a weaker
notion of maximal paraconsistency that relativizes maximality to extensions of logics
(L,�) by sequents or formulas from a given subset of Fm(L), for example from
Fm(L∼).

Definition 11 Let L = (L,�) be a ∼-paraconsistent propositional logic and let � ⊆
Fm(L). A propositional logic (L,�) properly extends L in � iff (���) ⊂ (���).
The logic L is maximally ∼-paraconsistent with respect to � iff every propositional
logic (L,�) that properly extends L in � is not ∼-paraconsistent.

The following observation shows that maximal ∼-paraconsistency with respect
to Fm(L∼) is a rather liberal notion of maximal paraconsistency.

Proposition 1 LetL= (L,�) be a∼-paraconsistent logic that satisfies dni and dne,
and let → be a proper implication for L. Additionally we assume that ∼A,∼B � A
for some formula A and a theorem B of L.20 Then L is maximally ∼-paraconsistent
with respect to Fm(L∼).

Proof Suppose (L,�) properly extends L in Fm(L∼). Let ({A1, . . . , An}, A) ∈
� but ({A1, . . . , An}, A) /∈ �, with A1, . . . , An, A ∈ Fm(L∼). Since � satisfies
Cut, dni and dne, we may assume without loss of generality that A1, . . . , An, A are
literals, i.e., sentence letters or negated sentence letters. We also may assume that
A1, . . . , An, A and the theorem B mentioned in the assumption have no common
sentence letters. Since � satisfies Reflexivity and Monotonicity, A is different from
each of the A j (1 ≤ j ≤ n). Suppose A is a sentence letter p. We show by reductio
that ∼p is not among A1, . . . , An . Suppose it is. Then 1 < n because ∼ is a proper
negation. We substitute all the sentence letters different from p in A1, . . . , An by the
theorem B and apply Cut to � B and A1, . . . ,∼p, . . . , An � p, so as to remove B.
Then we obtain ∼p � p or ∼p,∼B � p, quod non. Next, suppose A is a negated
sentence letter ∼p and p is among the A1, . . . , An . We substitute ∼p for p and
use dne and Cut to obtain A1, . . . ,∼p, . . . , An � p, so that we can proceed as
in the previous case. We thus have A1, . . . , An � p or A1, . . . , An � ∼p, where
neither p nor ∼p is an element from {A1, . . . , An}. But then, given closure under
uniform substitution, dni, dne, Cut, and Monotonicity, � is not ∼-paraconsistent
if there are literals q,∼q in {A1, . . . , An}, or � is trivial and hence fails to be
∼-paraconsistent. �

20Clearly, ∼ is a proper negation for L under our assumptions.
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Examples and counterexamples

• N4 and N4⊥ are maximally ∼-paraconsistent with respect to Fm(L∼) because
strong negation satisfies double negation introduction and elimination. Moreover,
p does not follow from ∼p and ∼B in N4 (N4⊥) if p does not occur in B.

• For the same reason, every paraconsistent axiomatic extension of N4⊥ and N4 is
maximally ∼-paraconsistent with respect to Fm(L∼).

• Co-negation ∼ in dual-intuitionistic logic, bi-intuitionistic logic, and Priest-da
Costa logic is paraconsistent but these systems are not maximally ∼-paraconsistent
with respect to Fm(L∼). The addition of weak ex falso ({∼A,∼∼A}, B) results
in a logic intermediate between these logics and classical logic, see [26].

We now consider axiomatic extensions of propositional logics.

Definition 12 A two-place connective → from a propositional language L with a
proper negation ∼ is a connexive implication for a propositional logic (L,�) iff
for every A, B ∈ Fm(L) the following holds: ∼(A → B) � (A → ∼B) and (A →
∼B) � ∼(A → B).

Definition 13 Let L = (L,�) be a ∼-paraconsistent propositional logic and let
� ⊆ Fm(L). A propositional logic (L,�) properly a-extends L in the set � iff
(L,�) extends L in � (i.e., (�� �) ⊆ (�� �)) and ({A | ∅ � A} � �) ⊂ ({A | ∅ �
A} � �). The logic L is a-maximally ∼-paraconsistent with respect to � iff every
propositional logic (L,�) that properly a-extends L in � is not ∼-paraconsistent.

Definition 14 An implication (A → B) is left-literal iff (i) A is a literal and (ii) every
implication in B is left-literal. IfL is a propositional language and � ⊆ Fm(L), then
Fml(�)={A∈� | A does not contain a subformula (B → C) that is not left-literal}.
Definition 15 Let L be a propositional language. A formula A ∈ Fm(L) is in nega-
tion normal form (nnf) iff it contains ∼ only in front of atomic subformulas.

Lemma 1 Let L = (L,�) be a propositional logic that satisfies dni and dne, and
let → be a connexive proper implication for L. Then for every A ∈ Fm(L∼,→) there
is a formula A′ ∈ Fm(L∼,→) in nnf with A � A′ and A′ � A.

Proof By induction on the number n of connectives in A ∈ Fm(L∼,→). If n = 0 or
n = 1, the claim is trivially true. Assume that n + 1 ≥ 2 and that the claim holds
for every m ≤ n. If A ≡ (B → C), the claim follows by the induction hypothesis.
If A ≡ ∼∼B the claim follows with dni and dne. Let A ≡ ∼(B → C) and assume
that B,∼C are interderivable with formulas B ′ and C ′, respectively, in nnf. Then we
have:

B ′ � B

∼(B → C) � (B → ∼C)

∼(B → C), B � ∼C ∼C � C ′

∼(B → C), B � C ′

∼(B → C), B ′ � C ′

∼(B → C) � (B ′ → C ′)
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B � B ′

(B ′ → C ′) � (B ′ → C ′)
(B ′ → C ′), B ′ � C ′ C ′ � ∼C

(B ′ → C ′), B ′ � ∼C
(B ′ → C ′), B � ∼C

(B ′ → C ′) � (B → ∼C) (B → ∼C) � ∼(B → C)

(B ′ → C ′) � ∼(B → C)

�

Proposition 2 Let L = (L,�) be a ∼-paraconsistent logic that satisfies dni and
dne, and let → be a connexive proper implication for L. Additionally we assume
that ∼A,∼B � A for some formula A and a theorem B of L. Then L is a-maximally
∼-paraconsistent with respect to Fml(L∼,→).

Proof Suppose that (L,�) is a proper a-extension of L in Fml(L∼,→). Let ∅ � A
but ∅ � A, with A ∈ Fml(L∼,→). If A is a literal, then � is trivial and hence not
paraconsistent. If A is not a literal, then by Lemma 1, A may be assumed to be an
implication (B1 → (B2 → . . . (Bm → B) . . .)) in nnf. Since → is a proper impli-
cation and A ∈ Fml(L∼,→), B1, . . . , Bm � B, where B and all the B1, . . . , Bm are
literals, whereas B1, . . . , Bm � B. We may now argue as in the proof of Proposition
1. �

Definition 16 Let L = (L,�) be a ∼-paraconsistent propositional logic and let � ⊆
Fm(L). A propositional logic (L,�) properly l-extends L in � iff (L,�) extends
L in � (i.e., (���) ⊆ (���)) and for some set of literals �, ({A | � � A} � �)
⊂ ({A | � � A} ��). The logic L is l-maximally ∼-paraconsistent with respect
to � iff every propositional logic (L,�) that properly l-extends L in � is not ∼-
paraconsistent.

The following observation immediately follows from Proposition 2.

Corollary 1 Let L = (L,�) be a ∼-paraconsistent logic that satisfies dni and dne,
and let→ be a connexive proper implication forL.Moreover, assume that∼A,∼B �

A for some formula A and a theorem B ofL. ThenL is l-maximally∼-paraconsistent
with respect to Fml(L∼,→).

Definition 17 LetL= (L,�) be a propositional logic. A binary connective ∧ fromL
is a proper conjunction for L iff for every A, B ∈ Fm(L) and every � ⊆ Fm(L) the
following holds: (� � A and � � B) iff � � (A ∧ B). A binary connective ∨ from
L is a proper disjunction for L iff for every A, B ∈ Fm(L) and every � ⊆ Fm(L)
the following holds: (�, A � C and �, B � C) iff �, (A ∨ B) � C .

The above equivalences are the corresponding “double-line rules” for conjunction
and disjunction (restricted to single succedents) from [22]. Familiar left rules for
conjunction and right rules for disjunction are then derivable:
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(A ∧ B) � (A ∧ B)

(A ∧ B) � A

(A ∧ B) � (A ∧ B)

(A ∧ B) � B
A � C

A, B � C
A, (A ∧ B) � C

(A ∧ B), (A ∧ B) � C
(A ∧ B) � C

(A ∧ B) � (A ∧ B)

(A ∧ B) � A

(A ∧ B) � (A ∧ B)

(A ∧ B) � B
B � C

A, B � C
A, (A ∧ B) � C

(A ∧ B), (A ∧ B) � C
(A ∧ B) � C

� � A
(A ∨ B) � (A ∨ B)

A � (A ∨ B)

� � (A ∨ B)

� � B
(A ∨ B) � (A ∨ B)

B � (A ∨ B)

� � (A ∨ B)

Definition 18 A proper disjunction ∨ for a propositional logic L = (L,�) is Har-
ropian for L iff for every A, B ∈ Fm(L) and every � ⊆ Fm(L) such that the for-
mulas in � do not contain a disjunction as a strictly positive part21 the following
holds: � � (A ∨ B) iff (� � A or � � B).

Definition 19 A proper conjunction ∧ and a proper disjunction ∨ from a proposi-
tional language L with a proper negation ∼ are a De Morgan conjunction, respec-
tively a De Morgan disjunction for a propositional logic (L,�) iff for every A, B ∈
Fm(L) the following holds: ∼(A ∧ B) � (∼A ∨ ∼B), (∼A ∨ ∼B) � ∼(A ∧ B),
∼(A ∨ B) � (∼A ∧ ∼B), (∼A ∧ ∼B) � ∼(A ∨ B).

Lemma 2 Let L = (L,�) be a propositional logic that satisfies dni and dne, let →
be a connexive proper implication for L, and let ∧ and ∨ be a proper De Morgan
conjunction, respectively a proper De Morgan disjunction for L. Then for every A
∈ Fm(L∼,→,∧,∨) there is a formula A ∈ Fm(L∼,→,∧,∨) in nnf with A � A′ and
A′ � A.

Proof Analogous to the proof of Lemma 1. �

Proposition 3 Let L = (L,�) be a ∼-paraconsistent logic that satisfies dni and
dne, let → be a connexive proper implication for L, let ∧ be a proper De Morgan
conjunction for L and let ∨ be a proper Harropian disjunction for L. Additionally
we assume that ∼A,∼B � A for some formula A and a theorem B of L. Then L is
l-maximally ∼-paraconsistent with respect to Fml(L∼,→,∧,∨).

Proof Suppose that (L,�) is a proper l-extension of L in Fml(L∼,→,∧,∨). Let � be
a set of literals and let � � A but � � A, with A ∈ Fml(L∼,→,∧,∨). If A is a literal,

21That is, the disjunction is not contained in the antecedent of an implication.
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then we may argue as in the proof of Proposition 1. If A is not a literal, then by Lemma
2, A may be assumed to be in nnf. We show by induction on the number n of binary
connectives in A that if � � A and � � A, then there exist literals B1, . . . , Bn, B
with �, B1, . . . , Bn � B and �, B1, . . . , Bn � B or with � � B and � � B, so that
we may argue as in the proof of Proposition 1. Assume n = 1. If A is an implication
(B1 → B2), we have �, B1 � B2; �, B1 � B2. If A is a conjunction (B1 ∧ B2), we
have � � B1 and � � B2. Since, moreover, (i) � � B1 or (ii) � � B2, there is a case
in which we may argue as in the proof of Proposition 1. If A is a disjunction (B1 ∨ B2),
we have � � B1 or � � B2. Since, moreover, (i) � � B1 and (ii) � � B2 we again
have a case in which we may argue as in the proof of Proposition 1. If n = m + 1, we
may just use the induction hypothesis. If A is an implication, the induction hypothesis
may be applied because of the restriction to left-literal implications. �
Examples

• All paraconsistent extensions of the connexive propositional logic C [35, 69, 70]
are l-maximally ∼-paraconsistent with respect to Fml(L∼,→,∧,∨) (= Fml(L)).22

We argued that since paraconsistency is defined in terms of negation and deriv-
ability, it seems justified to require maximal paraconsistency with respect to L∼. In
view of this consideration and the above observation that, for example, N4 and N4⊥
are maximally ∼-paraconsistent with respect to Fm(L∼), we propose the following
definition as a still very tentative characterization of ∼-paraconsistent logics which
is perhaps not “ideal” but “desirable”.

Definition 20 A ∼-paraconsistent logic L = (L,�) is desirable iff it is maximally
∼-paraconsistent with respect to Fm(L∼) and L contains a proper implication.

6 Another Conception of Maximality

Maximal paraconsistency is a kind of minimal avoidance; the idea is to have a logic
that comprises as many inferences as possible but still admits non-trivial incon-
sistent theories. On this approach it is unproblematic to draw consequences from
inconsistent premise sets as long as the logic is not “explosive”. Another approach
to paraconsistency aims at maximal avoidance: nothing at all follows from an incon-
sistent premise set, ex contradictione nihil sequitur, see [64]. If a logic in a language
with negation ∼ has theorems, then satisfying ex contradictione nihil sequitur results
in a system of non-monotonic logic because the simultaneous addition of premises
A and ∼A is precluded. In our view maximal avoidance is problematic. If there
are premises, no matter whether in the case of finitary logics they are aggregated

22The system C is a non-trivial inconsistent system; ∼(p ∨ ∼p) → (p ∨ ∼p) and ∼(∼(p ∨
∼p) → (p ∨ ∼p)), for example, are both provable. Therefore, one may wonder whether ∼ deserves
to be viewed as a negation. Note that ∼ in C not only is a proper negation as defined above, but also
has several negation-related properties; it satisfies the double negation and the De Morgan laws.
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conjunctively by additive conjunction, ∧, or by multiplicative conjunction, ◦, the
premises do provide information. The premises A and ∼A provide the information
that A and the information that ∼A; the assumption A ∧ B gives the information that
A, that B, and that A ∧ B, and the assumption A ◦ B provides the information that
A ◦ B. From the perspective of information processing, multiple premises always do
provide information.

Nevertheless, the idea that a contradiction provides no information has its attrac-
tion if one thinks of negation as a cancellation of propositional content, cf. [54]. But
even if ∼p cancels the content of p, an inconsistent theory {p,∼p, q} still provides
the information that q. The motivation of paraconsistency by considerations of infor-
mation processing does not support ex contradictione nihil sequitur for inconsistent
theories. Note that q does stand in the strong Rescher–Manor consequence relation
with (is a classical consequence of every maximally consistent subset of) the premise
set {p,∼p, q} [59], but that relation is not reflexive.

The following variation of the concept of maximality is also possible. In the
previous section we restricted the consequence relation to a set of formulas of a
special form. Equally, we may restrict attention to non-trivial sets of premises. A
set � of premises is non-trivial with respect to the consequence relation � if the
set {A | � � A} differs from the set of all formulas. Having in mind one or another
reference logic with consequence relation �, we can try to construct its paraconsistent
variant whose consequence relation is as close as possible to � on non-trivial sets of
premises. In fact, this approach is realized in the already mentioned adaptive logics,
which are constructed so that the adaptive consequence relation coincides with the
consequence relation of the upper limit logic on normal (equivalently, non-trivial)
sets of premises. But this is done at the expense of non-monotonicity of adaptive
consequence.

7 Another Methodology: Priest and Routley

In their presentation of systems of paraconsistent logic, Priest and Routley [57]23

apply a methodology that is considered here because it is quite different from the
da Costa tradition of preserving as much as possible from classical logic, although
they remark concerning their favoured approach to paraconsistency that “a pleas-
ing feature of the semantics is that the set of zero degree logical truths is exactly
the set of classical tautologies” (p. 169). This remark reflects Priest’s [52, p. 235]
methodological maxim, MM:

Unless we have specific grounds for believing that paradoxical sentences are occurring in
our argument, we can allow ourselves to use both valid and quasi-valid inferences

where an inference is understood to be quasi-valid if it is “valid provided all the truth
values involved are classical (i.e., true only or false only)” [52, p. 231]. Clearly, there

23As Graham Priest told us, the paper was written already around 1979.
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is a difference between accepting classical logic in specific contexts, say for languages
without self-reference or for reasoning about decidable predicates, versus maximally
approaching some reference logic, be it classical logic or some non-classical system.
Graham Priest (personal communication) never advocated maximal paraconsistency.

Priest and Routley [57] identify three main approaches to paraconsistency and
use certain desiderata to determine “the most satisfactory” approach (p. 180). In
discussing the three approaches, they develop a number of “suitability requirements”
(p. 175) any satisfactory logic and hence any satisfactory paraconsistent logic ought
to satisfy. These are:

1. The availability of a “genuine” conjunction operation ∧ that is adjunctive:
{A, B} |= A ∧ B (p. 159);

2. Recursive truth conditions (p. 159, p. 163);
3. The “normal relationships between conjunction, disjunction and negation,”

namely the De Morgan laws (p. 159);
4. The presence of valid multi–premise inferences (p. 161), which echoes in a sense

Jaśkowski’s requirement of being rich enough to enable practical inference;
5. The semantic evaluation clauses should be well-motivated (p. 163);
6. The presence of a negation that is “really negation” (p. 164 f.), which according

to Priest and Routley means (i) the presence of a contradiction forming functor,
so that they are inclined to require the law of non-contradiction to be valid,
although they “do not wish to be too dogmatic about this” (p. 164), and (ii) that
at least some of the “inferential properties traditionally associated with negation”
hold;

7. The presence of an implication that satisfies modus ponens because “[n]o oper-
ator which fails to satisfy this can be implication” (p. 171);

8. Relevance: “an implication should hold between A and B only in virtue of some
common content between A and B,” where Anderson and Belnap’s variable-
sharing property provides a test for irrelevance (p. 171)24;

9. The invalidity of Absorption, (A → (A → B)) → (A → B), since any logic
that comprises bothmodus ponens and Absorption gives rise to the Curry paradox
(p. 172);

10. [not only {A,∼A} |= B and A ∧ ∼A |= B should fail, but also] A ≡ ∼A |= B
should fail for an equivalence connective ≡ (p. 173);

11. The validity of certain “natural implication rules”, including {A → B, A →
∼B} |= ∼A and the following form of contraposition, A → B |= ∼B → ∼A
(p. 174);

12. Transitivity of implication because “it seems to be such a fundamental principle
of implication, almost as fundamental as modus ponens, that it should be given

24Priest and Routley explain that there are paraconsistent logics that are not relevance logics and
that there exist relevance logics that are not paraconsistent. For the latter they refer to Ackermann’s
system of strong implication, which uses Disjunctive Syllogism in rule form (p. 182). However, they
also emphasize that “any relevant logic will avoid the paraconsistently execrable ex falso quodlibet
and therefore will be a prima facie candidate for a paraconsistent logic” (p. 177).
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up only under the most extreme circumstances. Since there are other approaches
which validate transitivity, these circumstances do not obtain” (p. 178).

This methodology is much more informal than the one developed by Arieli, Avron,
and Zamansky, and hence it is more difficult to apply it. Several of the above condi-
tions are completely unproblematic. It is, e.g., obviously uncontroversial to require
that the semantic evaluation clauses ought to be well-motivated (but it would be
interesting to further specify this extremely vague requirement). Some items from
the above list of conditions, however, invite comments or objections.

As to recursive truth conditions, it is normally taken for granted that the set of
atomic formulas forms the inductive basis. If positive and negative information are
treated on a par, and if support of truth and support of falsity of atomic propositions
are treated as independent notions in their own right so that in a four-valued setting
both gaps and gluts of ordinary truth values are admitted, then it is quite natural to
use the set of literals as the inductive basis for a recursive definition of the truth and
falsity conditions of compound formulas. Under this conception, the separate truth
and falsity conditions of complex formulas in the paraconsistent logics N4, N4⊥, and
C are recursive.

As to negation, what negation really is, and whether there exists the unique and
correct notion of negation is contentious, cf. [29, 31, 66]. To require that at least
some of the inferential properties traditionally associated with negation hold seems,
however, quite agreeable, in particular the De Morgan laws form a core set of negation
principles if negation is to be understood as expressing falsity. In their concluding
paragraph, Priest and Routley [57, p. 180] list contraposition as one of the right
properties of negation. Requiring contraposition as a rule or as a valid schema is
objectionable from the point of view of information processing with support of truth
and support of falsity as independent notions. Suppose the implication connective
satisfies the deduction theorem, as required above, so that A → B is provable iff B
is derivable from A. If the information that A gives the information that B, it is not
at all clear or obvious that the information that ∼B provides the information that
∼A.25 If negation expresses falsity, in a four valued setting it may happen that an
information state supports the truth of A and B, supports the falsity of B, but fails
to support the falsity of A.

Relevance and the invalidity of Absorption are general suitability requirements
and are imposed with no particular view on paraconsistency; relevance is imposed
to “get implication right"(p. 172). Priest and Routley present what they take to be
the most satisfactory approach to paraconsistency in the context of a classification
of relevance logics (“relevant logics,” as they call them) and advocate paraconsistent
depth relevance logics26:

25An anonymous referee remarked that using “giving information” to interpret the consequence
relation is at odds with using it to interpret the implication connective in a discussion of the con-
traposition schema, but contraposition as a schema and modus ponens give one the problematic
contraposition rule.
26Note that in the statement of Disjunctive Syllogism, (A ∧ (∼A ∨ B)) → B, in [57, p. 156] there
is a disturbing typographical mistake: (A ∧ (∼A ∧ B)) → B.
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Accept Disjunctive Syllogism

Reject Disjunctive Syllogism

↗
↘

↗
↘

Retain Transitivity

Reject Transitivity−→ Sieve systems

Retain Absorption−→ Anderson-Belnap systems

Reject Absorption −→ Depth relevant logics

↗
Connexive positions

↘
Conceptivist (Parry) systems

The notion of a depth relevance logic is due to Ross Brady [16], who defines
depth relevance as a strengthened relevance condition. Intuitively, the depth of an
occurrence of a subformula in a given formula is the number of implications under
which the occurrence of the subformula is nested. The depth of the occurrence of p
in r → ((p → q)) → q), for instance, is 3. The depth relevance condition holds for
a logic L iff for all formulas A and B, the provability of A → B in L implies that
for some sentence letter p and natural number d, there exists an occurrence of p in
A at depth d and also an occurrence of p in B at depth d. An example of a formula
the provability of which violates depth relevance is (p ∧ (p → q)) → q, so that it is
clear that the well-known relevance logics E, T, and R do not enjoy depth relevance,
and Brady [16] remarks that the addition of Absorption to the weak, depth relevance
logic B results in a loss of depth relevance.

The above schema needs an amendment. The placement of connexive positions
in the schema is based on the connexive logics that had been dealt with in literature
when [57] was written. Priest and Routley [57, p. 181] argue that

[s]ince in connexive logics A and ∼A cancel one another, A and ∼A are never designated
together, and A ∧ ∼A is not designated. Thus both {A,∼A} |= B and A ∧ ∼A |= B hold
(on designation-preserving accounts), and connexive logics are not paraconsistent.27

In the meantime, however, paraconsistent connexive logics have been presented.
As a result, the use of a connexive implication is an option also in relevance (relevant)
logics that retain or reject Absorption. Therefore, the lower part of the above figure
can be expanded to the following diagram:

Reject DS
↗

↘

Retain Absorption−→ A-B systems

Reject Absorption −→ Depth rel. logics

↗Connexive implication

↘Conjunctive negated implication

↗Connexive implication

↘Conjunctive negated implication

27As to Parry systems, also called “containment logics” or “logics of analytic implication”, they
explain that “on the so far received semantics for these systems, A and ∼A are never designated
together, and A ∧ ∼A is not designated” (p. 181). A recent reference to Parry systems is [27].
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where “conjunctive negated implication” refers to interpreting ∼(A → B) as
A ∧ ∼B.

A linear, contraction-free relevance logic with an orthodox understanding of
strongly negated implications has been presented in [65]. A linear relevance logic
with a connexive implication can be obtained from the cut-free sequent calculus for
the connexive logic C in [35] by deleting the structural rules of weakening and con-
traction. Priest and Routley’s methodology for developing systems of paraconsistent
logic thus seems to lead to linear logics that contain either an implication that is in
accordance with the conjunctive understanding of negated implications or a connex-
ive implication (if one assumes that no other readings of negated implications are
convincing and, moreover, only systems with one implication and one negation are
countenanced).

8 Minimality Instead of Maximality

In this section we sketch an approach to constructing paraconsistent logics that is
based on principles essentially different from the maximality approach. It assumes a
variety of different reference logics, agrees well with an informational treatment of
paraconsistency, and is motivated by David Nelson’s work [45] devoted to the sep-
aration of concepts. Earlier Nelson had suggested a constructive logic with strong
negation [44] as a new version of intuitionistic logic. According to [45], the most
important motivation for constructing this logic was the trivialization of the construc-
tive meaning of negated formulas in intuitionistic arithmetic: “Under the recursive
interpretation of a formal system for intuitionistic arithmetic, the provable impli-
cations of the form A ⊃ 1 = 0 receive a trivial interpretation”. Further justification
for a logic with strong negation can be obtained in terms of concept separation [45,
p. 215]:

As we have suggested earlier, an argument favoring intuitionistic logic over the classical is the
fact that the intuitionistic logic allows the classical distinctions in meaning and further ones
besides. Classical logic is open to possible objection in that it identifies certain constructively
distinct entities. Since we are speaking here of formal systems, we are interested in the general
question of finding when one formal system allows distinctions among concepts which are
not possible in the other. This involves the general question of methods of representing one
system in another.

The answer to the mentioned question is the following.

Definition 21 ([45]) Let L2 be a subsystem of L1, let ≡i be a specified equivalence
symbol of Li . A transformation ∗ of formulas of L1 to formulas of L2 is said to be
regular just in case:
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1. For every formula A of L1, A ≡1 A∗ is provable in L1.
2. For every pair of formulas A and B of L1, if A∗ ≡2 B∗ is provable in L2, then

A ≡1 B is provable in L1.
3. If E is an atomic formula, then E∗ is E .

According to [45], if there is a regular transformation from L1 to L2, then ≡2

in L2 allows all the distinctions among concepts which are allowed by ≡1 in L1. If
there is no regular transformation from L1 to L2, then ≡1 allows distinctions which
are not regularly presented by ≡2 in L2.

In [44, § 5], it was proved that in QN3, the first-order version of the three-valued
(explosive) Nelson logic, the strong negation is independent from the other connec-
tives. From this result one can infer that there is no regular transformation from QN3
to its intuitionistic subsystem. This means that first-order explosive Nelson logic
distinguishes concepts better than first-order intuitionistic logic.

If we have any explosive logic L1 and an arbitrary paraconsistent sublogic L2

in the same language, then it is clear that the identical transformation is a regular
transformation from L1 to L2. Thus, every paraconsistent subsystem allows all the
distinctions among concepts which are allowed in its explosive extension. Moreover,
the equivalence connective of a paraconsistent logic allows to distinguish contradic-
tions, which are equivalent in explosive logics. It makes sense, however, to strengthen
the definition by Nelson, to show that in passing from an explosive logic to a paracon-
sistent subsystem we do not lose the expressive power of the reference logic. We also
have to reject the condition 3. For Nelson this condition means that “…both systems
are concerned with the same subject matter and start with the same basic concepts.”
However, if we pass to a paraconsistent logic, we have to take into consideration
new concepts corresponding to non-equivalent contradictions as well as concepts
which are logically incomparable with contradictory concepts. So, a transformation
of atomic formulas must be non-trivial and must distinguish the concepts treated by
the explosive reference logic among an extended “universe” of concepts taken into
consideration by a paraconsistent version of this logic.

Further, a paraconsistent subsystem must have essentially the same non-negative
connectives. Therefore, it is natural to assume that the desired transformation com-
mutes with all these connectives. Moreover, it is natural to require that a paraconsis-
tent logic and its explosive extension have the same negation-free fragment.

Definition 22 Let L2 be a paraconsistent subsystem of an explosive logic L1. A
transformation ∗ from the language of L1 into itself is essential iff it commutes with
every connective except from negation.

The logic L2 is called an expressive paraconsistent subsystem of L1 iff there is
an essential transformation that faithfully embeds L1 into L2 and both logics L1 and
L2 have the same negation-free fragment.

It is known (see [47]) that the minimal logic of Johansson is an expressive paracon-
sistent subsystem of intuitionistic logic, whereas the version N4⊥ with intuitionistic
negation of Nelson paraconsistent logic is an expressive paraconsistent subsystem of
the explosive Nelson logicN3. For example, in the case of minimal logic the required
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transformation ∗ can be defined as follows: A∗ is obtained from A by replacing every
occurrence of a sentence letter p by p ∨ ⊥. The atomic formulas p and ⊥ are
incomparable wrt the consequence relation of minimal logic, whereas p ∨ ⊥ is a
consequence of ⊥.

The above definition imposes some minimality condition on the paraconsistent
subsystem: we should not lose the expressive power of the explosive reference logic.
To which extent the expressive power must increase is an open question.28 It depends
on the intended applications of the defined paraconsistent sublogic and the super-
structures over it we want to consider. A more detailed answer to this question is the
subject of further investigations. Here we give only one example: how to explicate the
consequence relation between contradictory concepts in (axiomatic) extensions of
minimal logic. With an arbitrary extension L of minimal logic we associate its nega-
tive counterpartLneg = L + {⊥} (see [47]). This logic is contradictory, but non-trivial
if L is not explosive. Moreover, it turns out that the consequence relation between
formulas in Lneg simulates the consequence relation in L between contradictions
constructed from these formulas. More exactly, the transformation C(A) = A ∧ ¬A
defines a strong embedding of Lneg into L, it preserves not only the set of theorems,
but the consequence relation too. Of course, we may need more sophisticated super-
structures, e.g., belief revision systems transforming contradictory theories over a
paraconsistent logic into consistent theories over an explosive reference logic, and
so on.

9 Summary

We argued that classical logic should not be used as a reference logic for developing
systems of paraconsistent logic. Moreover, we suggested to relativize a certain notion
of maximal paraconsistency to a given subset of the set of all formulas, in particular
to the set Fm(L∼) of all formulas containing at most negation as a logical connective.
We also argued that the guiding motivation for the development of systems of para-
consistent logic should be neither epistemological nor ontological, but informational
and pointed to problematic aspects of ex contradictione nihil sequitur as another con-
ception of maximality. Finally, we commented on Priest and Routley’s methodology
that does not make use of a notion of maximal paraconsistency. The combination
of the latter methodology and the requirement of maximal ∼-paraconsistency with
respect to Fm(L∼) seems to lead to a class of “ideal” paraconsistent logics that
comprises the contraction-free fragments of the logics N4, N4⊥, and C.

There are many directions for future research. These include the presentation of
other examples of logics that are maximally paraconsistent with respect to certain
fragments of their language, a rigorous formal development of (part of) Sylvan and
Priest’s suitability requirements, a further development of the minimality approach

28The fact that requiring an increase of expressive power is a natural demand justifies regarding the
above definition as imposing a minimality condition.
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of the previous section, and a discussion of whether one should at all use a reference
logic for the development of paraconsistent logics.
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as “A propositional calculus for inconsistent deductive systems” Logic and Logical Philosophy
7, 35–56, cited after the English translation.

34. Johansson, I. (1936). Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Com-
positio Mathematica, 4, 119–136.

35. Kamide, N. Wansing, H. (2011). “Connexive modal logic based on positive S4”, In J.-Y. Bèziau,
M. Coniglio (Eds.), Logic without Frontiers. Festschrift for Walter Alexandre Carnielli on the
Occasion of His 60th Birthday, 389–409. London: College Publications.
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Paraconsistent Computation and Dialetheic
Machines

Zach Weber

Abstract Are there are any properly paraconsistent computations—effective pro-
cedures that are recognizable as such, but which are not recognized by non-
paraconsistent logic? First we motivate a positive answer, from arguments by Sylvan
and Copeland, Routley, and Priest. Then we look at some simple formulations of
dialetheic machines and their basic properties, and discuss these in relation to the
halting problem.

Keywords Dialetheism · Inconsistent computation

1 Introduction

1.1 More Things in Heaven and Earth ...

In inconsistent mathematics, some objects exist that cannot according to any other
practice. For example, in a dialetheic naive set theory, e.g. [10, 22, 24] (in [4]), the
collection of all non-self-membered sets is itself a set, and so is inconsistent, both
self-membered and not. Famous diagonal arguments that would otherwise conclude
in paradox are proofs that end in theorems. Closer to the ground, in what might
be thought of as ‘naive computability theory’, it seems plausible that analogous
diagonal arguments—like those around the famous halting problem [23, p. 24]—
would lead to paradoxical theorems in the same way. If so, it makes sense to look
for novel mathematical computational objects, analogous to inconsistent sets. Are
there any properly paraconsistent effective procedures? Are there computations that
are recognizable as such, but which are not recognized by non-paraconsistent logic?
In the first half of this chapter, we motivate a positive answer to this question, in
the spirit of [9, 29]; in the second half, we sketch some of the technical details of
dialetheic machines.

Z. Weber (B)
Department of Philosophy, University of Otago, Dunedin, New Zealand
e-mail: zach.weber@otago.ac.nz

© Springer International Publishing AG 2016
H. Andreas and P. Verdée (eds.), Logical Studies of Paraconsistent
Reasoning in Science and Mathematics, Trends in Logic 45,
DOI 10.1007/978-3-319-40220-8_13

205



206 Z. Weber

1.2 ... and How to Talk About Them

Any discussion of computationwill involve terms like ‘algorithm’, ‘function’, ‘recur-
sive’, and ‘machine’. And ‘not’, for that matter. Given that the paragraph above
promises to countenance some highly non-classical notions, in highly unfamiliar set-
tings, a word about the vocabulary and perspective of this chapter is needed before
we get going.

To rethink the conceptual, logical, and mathematical foundations of computa-
tion, in light of (radical) alternative possibilities emerging from paraconsistent logic,
requires us not to take terms to be pegged to classical logic/mathematics. For exam-
ple, if ‘consistency of a theory’ just means ‘not every sentence is a theorem’ then
the suggestion of an inconsistent theory becomes absurd. A fortiori the notion of
an ‘inconsistent function’. We have to stand at some remove from the orthodox
understanding of terms, however innocuous they may seem. While the terms and the
(meta)logic of the chapter are not definitively situated in one particular paraconsis-
tent system (for the sake of generality), they are definitively not situated in a classical
system.

The informal idea of a step-by-step program that can be executed with diligence
but no creativitywas codified in the 20th century as an algorithm.The broad idea, only
begun here, is to return to Turing’s original analysis, but to imagine, counterfactually,
that Turing’s philosophical reasoning was grounded in paraconsistency. Now, to
conduct this thought experiment, we must also imagine a fair amount of arithmetic
in the background; but the nature of arithmeticmust itself be oneof themovingparts in
the research, not a fixed formal object. In the pages below,wewill entertain alternative
models of arithmetic, some of which are finite, some of which are inconsistent but
in which still 0 = 1 is not a theorem, and some of which have very different models
of the successor ‘function’. Defaulting to classical Peano Arithmetic would preempt
some of the very decisions we want to reconsider, and would render the discussion
incoherent.1

The discussion is oriented in the direction of a strong paraconsistency: dialethe-
ism. There are many non-dialetheic approaches to paraconsistency, and so paracon-
sistent computation, some discussed below (e.g. Sect. 3.1). Our research question
makes dialetheism—strong paraconsistency—central to the findings. Amathematics
embedded in weaker-than-classical logic calls out for stronger-than-classical subject
matter.

1With so much up in the air, then, it is not even possible to ask yet whether e.g. there are purely
paraconsistent computations that make use of primitive recursive functions. The question isn’t well-
defined. Similarly, literature on the different formal definitions of algorithms [8] is too far along
in its development to apply here. Perhaps for these reasons, the pioneering Copeland and Sylvan
[29] talk about algorithmic derivations, not recursive functions. In that work, they also talk about
dialetheic machines, which I have embraced for the title, with the understanding that machines are
not attached to a particular formal meaning, and are mathematical objects, not empirical ones.
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2 Motivation: Two Paradoxes

2.1 The Paradox of All Algorithmic Functions

An abstract background motivation for looking to paraconsistency is a putative
paradox in the foundations of recursion theory. This is a diagonalization argument,
adapted from Rogers’ seminal textbook [23, pp. 10–11]. In [29] it is used to motivate
dialetheic machines.

Claim: There are properly paraconsistent computiations.

Consider functions taking natural numbers as inputs and giving natural numbers as
outputs. An algorithm is a procedure for computing a function (a devicewith a unique
output); algorithmic functions are, intuitively, effectively computable functions. An
algorithmic function can be formalized as a finite string of symbols, and it is decidable
whether or not a string constitutes an algorithmic function. So there is an enumerable,
comprehensive list: all the strings of length 1; all the strings of length 2; and so forth.
The list itself is infinite, but each member of the list is reached by some finite stage.
Consider the list A for algorithmic functions in just one variable. Let Fx be the
(x + 1)th member of A, and fx be the corresponding function. Define

d(x) := fx (x) + 1

To compute d, generate A up to Fx , then compute fx and add 1. This process is fool-
proof: therefore d is algorithmic. Since d is an algorithmic function in one variable,
there is a z such that d = fz corresponding to some Fz on A. Then

fz(z) = d(z) = fz(z) + 1

and so n = n + 1 for some natural number n.
Therefore d is an inconsistent computation. To phrase it as a reductio, we could

say that the comprehensive list of all algorithmic functions is not comprehensive
(even though it apparently is). Or we could say that d is not algorithmic (even though
we independently argued that it is, by giving an algorithm to compute it)—it is both
algorithmic and not. Sylvan and Copeland conclude that “there are more algorithmic
functions than all algorithmic functions” [29, p. 195].

Rogers agrees that this presents itself as a serious problem [23, p. 11]; assuming
consistency, it could be a disaster for recursion theory before it even gets started:

The diagonal method would seem to throw our whole search for a formal characterization
[of algorithm] into doubt. It suggests the possibility that no single formally characterizable
class can correspond exactly to the informal notion of algorithmic function.

The standard solution, as Rogers goes on to say, is incompleteness. We learn the
object fz is only a partial function, not defined for all values (such as z itself). As
with dialetheic reaction to the other logical paradoxes [16, 24], it looks like there is
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nothing to explain why some functions cannot take all inputs from the very domain
they are meant to draw on—nothing except the inconsistency that results. Rogers
draws the line thus:

We might perversely hope to reinstate diagonalization by effectively selecting just those sets
of instructions which do yield total functions...[but] if we are to avoid diagonalization, it
must be the case that no algorithm for such a selection process can exist [23, p. 12].

A consequence of the incompleteness solution, then, is that no algorithm can effec-
tively select just those sets of instructions that yield total functions. So, if consis-
tency is a constraint, then there is terminal uncomputability in the foundations of
computation. The distinction between partial and total functions, the very crux of the
standard solution, cannot be effectively drawn; and there is nothing except pain-of-
inconsistency to explain why not. Contrapositively, if it is possible that an algorithm
for such a selection process exists, then diagonalization is unavoidable. Once the
impossibility of contradiction is reconsidered, the possibility of such a procedure
reopens.

2.2 The Paradox of Naive Proof

A more concrete motivation is from mathematical practice. The idea is that proofs
are step-by-step effective procedures, that can also generate inconsistency [5, 16,
25]. We present it here in thumbnail, as a motivation for paraconsistent computation,
not a definitive argument.

Naive proof is proposed as a formal, axiomatic reconstruction of proofs as they are
given in mathematical English [19, p. 237]. Naive proofs are “chunks of discourse”
that “amount to a compelling proof” [27], and they are treated, in practice, as bona
fide proofs.2 Azzouni describes proofs as corresponding to “derivations in one or
another algorithmic system...[which] are (in principle) mechanically recognizable”
[3, p. 83]. The putative upshot is that, because the mathematical community can
always reach consensus about the soundness of a proof, there is an effective check,
a computable way of establishing that a proof is valid [19, p. 41]. In a slogan, naive
proof is recursive.

The claim that naive proofs are mechanically recognizable is, no doubt, con-
tentious [21, 30]. Formalizing a proof for the purpose of checking it is fraught and,
as with any translation between languages, is as much poetry as it is precision. But
let us set this aside for now and follow out the implications of mechanical naive
proof, to a problem. To put it colorfully, if proofs are all mechanical, then you have a
Turing mirror—amachine that formally mimics all your proofs. This mirror is itself
a mathematical object. You can reason about it, and it has to mimic your reason-
ing. What happens when you consider well-formed sentences like ‘my mirror will
conclude that this sentence is false’?

2Augmented mathematical English “could have its syntax tidied up so that it was a formal language,
and the set of naive theorems expressed in this language would be deductively closed” [19, p. 41].
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For the duration, let � be the naive proof relation. A naive prover will be able to
encode various facts about her own proving habits, via a suitable coding system, �·�.
It seems reasonable to hope that she can ensure proofs are representable3: there is a
two place arithmetic predicate Pr(x, y) such that

• m is the code of a proof of sentence with code n iff � Pr(m, n)
• m is not the code of a proof of sentence with code n iff � ¬Pr(m, n)

Define a provability predicate: Prov�A� := ∃yPr(y, n) with n = �A�.
What then can the naive prover prove about her own proof relation? There is at

least one basic adequacy condition to check: soundness. This is the uncontentious
observation that, if a theorem is proven, it is ipso facto true. Proof is a source of truth.
And since naive proofworkswith a fixed alphabet on finite strings, arguing soundness
to a theorem is straightforward induction: either A is an axiom, and therefore true,
or it follows from true sentences by valid rules, and so is true,

Prov�A� � A

And then a corollary
If � A then � Prov�A�

since the proof of soundness itself shows that, if � A, then it is either a theorem or
an axiom—provable either way: “if something is naively proved, then this fact itself
constitutes a proof that [it] is provable” [19, p. 238]. Internalizing this claim amounts
to ‘reflexivity’: Prov�A� � Prov(�Prov(�A�)�).

The point of all this is that naive proof thus appears to satisfy the conditions
for Gödel’s theorem: naive proof is a sound formal system with a recursive proof
relation, able to represent recursive functions.4 Therefore the diagonal lemma kicks
in: there is a sentence G that (provably) says ‘G is not provable’. Reasoning with
excluded middle, if G is provable then it is true, and so not provable; so G is not
provable. But that is what G says, so we’ve just proved

� G ∧ ¬G

As Horsten nicely summarizes the situation, “the informal notion of provability is
reflexive, whereas formal [consistent] notions of provability are not” [12, p. 21].
Friends of consistency will have to explain why some apparently effective proce-
dures (like the inductive argument proving soundness) are somehow not, and more
generally, why apparently effective naive proof methods must always somehow out-

3This would follow by showing that all recursive functions are representable, and the (naive)
proof relation is recursive. For the classical steps of this highly-non-trivial exercise, see [28], esp.
Chaps. 11–12. Cf. [19, Chap.17], [6, p. 81].
4In standard frameworks, soundness would imply consistency, and the more usual statement of
Gödel’s theorem (“no sufficiently rich consistent system...”). These are also classically equivalent
to non-triviality. Here the notions come apart. See [13].
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strip machines.5 This is, more than any Liar-paradox, the centerpiece of Priest’s
original argument for dialetheism [16]: naive proof is inconsistent.

3 Inconsistent Computation: The Very Idea

These two paradoxes urge us to reconsider the notion of computability, widening
the class of all algorithmic functions to paraconsistent objects that do not classically
exist. There is much more that could be said, pushing back on these arguments,
e.g. [27, 30]. But supposing that we are sufficiently interested in looking for these
properly-non-classical algorithms, more practical questions arise: what is the main
approach to take, and what immediate obstacles does it face?

3.1 Non-Determinisitic Machines

Agudelo and Carnielli have produced a model of computation [1], using the para-
consistent logic LFI1*. The main idea is to take an axiomatization of deterministic
Turing machines, and apply it to non-deterministic Turing machines (NDTMs).6

The results are called (entangled) paraconsistent Turing machines. A paraconsistent
Turingmachine is a NDTM such that, “when themachine reaches an ambiguous con-
figuration, it simultaneously executes all possible instructions” [1, p. 580]. Agudelo
and Carnielli investigate this as a simulation of phenomenon from quantum compu-
tation.

It is not too hard to see thatNDTMs are equivalent in computational power toTMs:
a NDTM is like several deterministic Turing machines running at once. Similarly,
quantumcomputation is knownnot to surpass the power of standardTuringmachines.
Agudelo and Carnielli are explicit that their aims are conservative: they do not aim
to break the Church-Turing thesis or extend the class of computable functions. They
express a (healthy) skepticism aboutmore radical approaches [1, p. 574, esp. footnote
2]. Their paper is a framework for modeling quantum and parallel processing.

Our introductory comments point in more radical directions. Without explicitly
taking a stand on the status of the Church Turing thesis (cf. [9], [28, Chap. 34]),
we are interested in the set of ‘naively’ computable functions—perhaps itself an
inconsistent class. If the goal is to get at some mathematically novel objects, then a
more unorthodox approach is required.

5Of course, friends of consistency do have answers to these questions, e.g. [28, Chap.28]. For a
good general discussion, see [26].
6For standard background on Turing machines, [28, Chaps. 31–33] is reccomended. For other para-
consistent approaches, the idea of non-deterministic matrices for paraconsistent logic has been
studied by Avron, Zamansky, et al. [2]. Since truth tables are rudimentary computers, one can take
this work to be in a similar vein; cf. [33].
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3.2 Dialetheic Machines

Sylvan and Copeland sketch the full dialetheic plan [29, pp. 197–198]: to treat com-
putation in an inconsistent metalanguage. I quote their ‘dialethic machines’ passage
(with Sylvan’s preferred spelling ‘dialethism’) at length:

It is not difficult to describe how a machine might encounter a contradiction: for some
statement A, both A and ∼A appear in its output or among its inputs. ... [A] machine
programmedwith a dialethic logic can proceedwith its computation satisfactorily. Let us call
such machines D-machines of type 1 (D for Dialethic). D-machines of type 2 are machines
whose meta logic is dialethic: for such a machine, M, one of whose states is x , ‘M is in
x’ and ‘∼(M is in x)’ may both be the case. D-machines of type 1 are nothing more than
Turing machines, albeit a conspicuously useful sort of Turing machine if inconsistent data
is in the offing. .... [A] central idea of paraconsistent computability theory: such Turing
machines may be employed to compute diagonal functions that are classically regarded as
uncomputable. It is an open question whether D-machines of type 2 compute classically
uncomputable functions and, if so, which. We recommend the question to the paraconsistent
community.

From the text we can discern at least two open problems about dialetheic machines:
(1) Do they break the Church-Turing barrier? (2) What is that status of the halting
problem?

Taking up the call fromSylvan andCopeland afresh,7 our interest is in the abstract,
mathematical objects of dialetheic machines—the theoretical software, so to speak,
for D-machines of type 2. The aim from here, in keeping with the motivations, is to
get a feel for what it would be like toworkwith no classical metatheorywhatsoever—
looking for unreconstructed inconsistency, so to speak. As far as hardware questions,
we do at the end of Sect. 3.3 below try to address what a machine M of which it is
true to say ‘M is in state x and also not in state x’ might look like; cf. [33]. The
discussion, though, remains at the theoretical or ‘pure’ level.

3.3 Inconsistent Proofs

Once one is thinking about dialetheic machines, the main conceptual hurdle to clear
is the natural question: when we actually turn the machine on and press ‘GO’, what
does it do?

To make things more concrete, we return to our competent, diligent clerk who is
capable of carrying out algorithms, and imagine her carrying out proofs within true
mathematical theories. We can see how to address dialetheic machines in general by
trying to think about paraconsistent proofs.

7Agudelo and Carnielli’s ParTMs yield negative answers to both questions. However, even granting
their assertion that ParTMs are D-machines of type 2, a negative answer for them does not exhaust
the space of possible solutions. And so while ParTMs lead neither to hypercomputation nor to
revising the halting problem, this does not constitute a complete or definitive answer to the open
questions.
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Already in Sect. 2.2 above we had the naive derivation of a contradiction, the
‘Gödel paradox’ that � G ∧ ¬G. In a critique of dialetheism, Stewart Shapiro has
observed that these internal inconsistency facts ought to make their way out to the
metalevel [27]; cf. [19, pp. 239–243]. The internal inconsistency is

� ∃x Pr(x, �G�) and � ¬∃x Pr(x, �G�)

A fortiori, by soundness, G is provable and not provable. But now the extra step: if
the biconditionals in the representation of proof contrapose,

• m is not the code of a proof of sentence with code n iff � Pr(m, n)
• m is the code of a proof of sentence with code n iff � ¬Pr(m, n)

then the negation facts on the Pr predicate push out to the relation�. The conditions
on proof itself take on the appearance of ‘consistency’

� Pr(m, n) iff � ¬Pr(m, n)

� ¬Pr(m, n) iff � Pr(m, n)

which (ironically?) generate a stronger form of contradiction:

� G and � G

This is not merely a contradiction in naive proof theory; this is a contradiction about
naive proof theory.

Aside from suggesting that, through Gödel coding, there is an inconsistency about
the natural numbers (!), this suggests that there is an inconsistent proof (!!). What is
an inconsistent proof? As Shapiro puts it [27, p. 828–9, some symbolism changed],

On all accounts—including the non-dialetheic perspective—we have that n is the code of
a derivation of G. This can be verified with a painstaking but completely effective check.
How can the dialetheist go on to maintain that, in addition, n is not the code of a derivation
of G? What does it mean to say this? Since ¬Pr is a recursive predicate, we can supposedly
verify—at the same time, in almost the exact sameway—that n is not the code of a derivation
of G. How? ... All goes well everywhere, and something goes wrong somewhere.... Some
one step in the procedure must yield contradictory results. Which step can do that?

The questions are largely rhetorical, I take it. Here is an answer.
As a general point, the ‘all well everywhere/something wrong somewhere’

dynamic is a very apt description for dialetheic data. In truth theory, all contradictions
are false; some of them are also true. In vagueness, all possible cutoff points for the
predicate ‘is a heap’ are unbelievable; some cutoff point must also be correct, since
everything is not a heap. In set theory, all ordinal numbersα = {β ∈ On : β < α} are
strictly ordered, α �< α; also, some ordinal number On < On. And so forth. So qua
dialetheism, there is nothing immediately special to say about Shapiro’s objection.

What may seem extra peculiar is that a proof is a finite object, open to exhaustive
inspection, unlike a transfinite ordinal. But a heap of sand is finite, too (for the record).
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What needs explaining, then, is how some specific step in a proof can be both valid
and invalid. The answer may be more banal than one might have expected. A proof
of G looks like this:

πG = 〈A0, . . . , An,G〉

Now, as we tell students, a proof is invalid if it can have premises true but conclusion
false. With this intuition, then of course πG is not a proof of G, because it is invalid.
The premises A0, . . . , An are axioms or theorems of arithmetic, and therefore true;
but¬G is a theorem, soG is false. Shapiro asks, which step was invalid? The answer
is: the step from truth to falsity, which at the very latest occurs at G. Any proof of a
contradiction is also not a proof, because all contradictions are false.

The guiding intuition, then, is that what a dialetheic machine does when you turn
it on is...what any other machine would do. Some descriptions of its actions will be
inconsistent, but all the individual actions are exactly as they’ve always seemed, to
dialetheists and non-dialetheists alike. This is only so much story-telling, though.
Let us move to some more details.

4 Implementing Inconsistent Computation

The foregoing amounts to an abstract prediction of a legitimately inconsistent algo-
rithmic procedure. The dialetheic machinist has work to do.

4.1 On Whether 0 = 1

In the paradox of all algorithmic functions Sect. 2.1, on assumption, if diagonal d
is algorithmic then 0 = 1; so by standard reductio, it is not a algorithmic. We wish
to say that d is algorithmic: there is a clear recipe to compute it. To maintain this
conclusion, there are at least two ways to do it:

• Accept 0 = 1

This might sound like madness, but it can be done, in at least two ways. (Cf. [19,
Chap. 18].) First, one could arrange that 0 = 1 can hold without absurdity, ⊥, by
using a weak definition like 0 := {x : x �= x}. This ‘zero’ need not be empty; it
contains the Russell set, for example. Second, one could even allow 0 = 1 ⊃ ⊥ and
0 = 1 both to hold, but have ⊃ be the material conditional and so fail to obey modus
ponens.8 Sylvan and Copeland seem to indicate that accepting 0 = 1 is tenable.

There are some severe drawbacks for this sort of approach. For the first case,
defining zero weakly makes it not behave much like 0 [19, p. 253]. In the second
case, using ⊃, we lose modus ponens. But in any case, I am not rushing to clear
brush on this path. If 0 = 1 is acceptable, then the original ‘paradox of all algorithms’

8The material conditional is p ⊃ q := ¬p ∨ q, so ‘modus ponens’ for it p, p ⊃ q ∴ q is just
disjunctive syllogism, which is not paraconsistently valid. See [19, Chap.8].
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reductio does not go through! Such an arithmetic base is so weak, it has defused its
own raison d’être. There are no algorithmic functions that are also not algorithmic;
there is at most an inert contradiction in arithmetic.

This makes the other, more attractive option, more attractive:

• Avoid 0 = 1

How can this be done? By rebuilding recursive function theory in an appropriate
inconsistent arithmetic, with non-self-identical programs, so that a properly incon-
sistent simulacra of d can be built, but one which does not churn out pure noise.

This is a rather more involved project, to put it mildly. For this chapter, we will
leave the further technical options as open as possible.9 In this vein, the expression
is informal, e.g. we use the natural language ‘if...then...’, ‘implies’, ‘iff’ etc. on the
assumption that it may be specified later as a paraconsistent conditional, in any num-
ber of suitable systems. Minimally, from the discussion above we presume that any
conditional will satisfy at least some minimal conditions (p implies p, transitivity)
and obey modus ponens; it will also help to have a contraposable conditional, but we
will flag any place that contraposition is appealed to. The law of excluded middle
and arguments by cases are taken for granted.

4.2 Functions

The most immediate problem for founding a ‘theory of paraconsistent functions’ is
that functions (as usually conceived) do not perform at all well with inconsistency.
The characteristic function of the Pr predicate is

gPr (x, y) =
{
1 if Pr(x, y);
0 if ¬Pr(x, y)

But then, given the Gödel sentence, it follows that 1 = gPr (πG,G) = 0.
What are we to say about this? Either 0 = 1, or identity is not transitive, or g is not

a classical function. The first case has been dealt with; the second case is explored in
[20] but again requires a non-ponenable ⊃ to work. Let us investigate the tenability
of the third case.

Going forward, we assume that there is a set N called ‘the natural numbers’ (see
[14, 17]), and stipulate that the pair

{0, 1} := {x : if x �= 0 then x = 1}

is non-empty. For a material ‘if...then...’, this is equivalent to the more familiar
{x : x = 0 ∨ x = 1}, but without disjunctive syllogism, the conditional phrasing is

9The background is assumed to be a paraconsistent set theory/arithmetic, along the lines of [7, 24],
but the foundational details are not the main issue here. Readers may take assertions of the existence
of e.g. relations as accomplished by axiomatic fiat, with foundations to be filled in elsewhere.
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preferred.10 We do get, by excluded middle, that if x ∈ {0, 1} then x = 0 or x = 1,
but not vice versa. With contraposition, the definition gives {0, 1} = {x : if x �=
1 then x = 0}, too. And modulo the discussion of 0 = 1 above, we have

0 = 1 implies⊥

where ⊥ implies any sentence whatsoever. These modest requirements will generate
some ‘functional’ properties below.

Let g be a relation g : N −→ {0, 1}. Some notation: for two place relations taking
natural numbers to {0, 1},

〈a, b〉 ∈ g ⊆ N × {0, 1}

we can write the usual b ∈ g(a), as well as the more suggestive

g(a) � b

This can be pronounced ‘g(a) outputs b’. For any A, its characteristic relation gA is

gA(x) �
{
1 iff A(x);
0 iff ¬A(x)

Characteristic relations still track whether or not x is A; they are entirely deter-
ministic; they just allow overdetermination: the characteristic relation of the Pr
predicate is

gPr (x, y) �
{
1 iff Pr(x, y);
0 iff ¬Pr(x, y)

Then 1 ∈ gPr (πG,G) � 0.
In many cases, characteristic relations are indistinguishable from functions, espe-

cially if we make explicit the negation clauses (which can either be stipulated, or
follow automatically if the ‘iff’ is contraposable):

gA(x) ��
{
1 iff ¬A(x);
0 iff A(x)

Any characteristic relation then has ‘function’ properties:

1. Exclusive: g(a) � 1 iff g(a) �� 0; g(a) �� 1 iff g(a) � 0
2. Discriminating: If b �= c and g(a) � b then g(a) �� c
3. Materially univocal: If g(a) � b then g(a) �� c or b = c

10In this we are following Dunn’s axiomatization of relevant robinson arithmetic [11], where he
explains that this phrasing is “less deductively sterile”.
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Exclusivity is from putting together the positive and negative defining clauses
of characteristic relations. Then relations are discriminating as follows. Let
b, c ∈ {0, 1}, so they are both either 0 or 1. Assume b �= c. There are then four
cases to consider, or only two without loss of generality. If b = 0 and c = 1, that’s
good; if b = 0 = c, then ex hypothesis 0 �= 0, and then using the conditionalized def-
inition of {0, 1}, we get 0 = 1 which implies ⊥. (Mutatis mutandis for b = 1 = c.)
So either way, the premise b �= c ensures that exactly one of b and c are 0 and exactly
one of them is 1. Then using exclusivity, if g(a) � 1 then g(a) �� 0 and vice versa.
Generalization gives the result. Finally, material univocality follows by con-
traposing on discriminating, or else repeating the reasoning by cases in a slightly
different order.

It is worth emphasizing that (3), material univocality, is classically equiv-
alent to the classical definition of function. We have not merely replaced a func-
tional input-output Turing machine with a non-functional relation. We have familiar
machines, but where unfamiliar assumptions must be articulated: g is a function—or
else there is something it both outputs and also doesn’t. The latter clause is usu-
ally simply never considered, but it is always there. So any failures of functionality
are accounted for with the additional possible case of inconsistency—inconsistency
which is generated by insisting on extra ‘consistency’ properties, in exclusivity
and the definition of {0, 1}. This all generates an object which to the classical eye is
rightly called a function.

In the event of some contradictory A(a) ∧ ¬A(a), then the relation will report
gA(a) � 1 and gA(a) �� 1. Then

4. Inconsistency: If 〈a, 1〉 ∈ g and 〈a, 1〉 /∈ g then g �= g

since by set extensionality g differs from itself with respect to membership, and so is
not identical to itself. Therefore as conceived here, a paraconsistent function does not
merely process inconsistency, but is itself inconsistent: in the language of Sect. 3.2,
a type-2 dialetheic machine.

4.3 The Halting Problem

How does this play out against the famous halting problem?11 In the standard picture
of computation, some programs halt on input, and some do not. Computing whether
or not a program π halts on an input is to consider two options; in a flow-chart,

11See [28, Chap.33] for background.
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• π

∞

•

depicting an input that either sends π into some infinite routine, or else arrives at an
output and stops. As was remarked in the early days of recursion theory, it would be
good to have an effective check for which routines terminate, and which never come
back. To capture this with notation, for any f , if f does not terminate on n, as a kind
of slang we’ll write f (n) � ∞, and if it does terminate then f (n) �� ∞.

Consider a relation halt : N × N −→ {0, 1} such that

halt(x, y) �
{
1 iff x(y) �� ∞;
0 iff x(y) � ∞

Then halt can be used to define d as follows12:

d(x) �
{
1 iff halt(x, x) � 0;
∞ iff halt(x, x) � 1

Therefore

halt(�d�, �d�) � 1 iff d(�d�) � ∞ iff halt(�d�, �d�) � 0

With the law of excluded middle, or at least a reductio principle, these biconditionals
yield contradictions:

halt(�d�, �d�) � 1 and halt(�d�, �d�) � 0

and
halt(�d�, �d�) �� 1 and halt(�d�, �d�) �� 0

By extensionality, halt �= halt.
More intriguingly, for the diagonal, we have d(�d�) � ∞ and d(�d�) �� ∞. The

diagonal halts and does not halt. In a final section, we will try to say more about what
this could mean.

12See [23, p. 24]; the ‘∞’ case can be specified by any process that will go on forever, e.g. ‘lather,
rinse, repeat’. This d is not a characteristic relation onto {0, 1} as defined above, but the only
‘functional’ property needed to make this argument go isExclusivity, which is stipulated anyway;
all that matters is that it is a mathematical object that exists if halt does.
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4.4 Finite and Infinite Machines

The lines and nodes in the diagram above are pictures of objects that ultimately exist
in arithmetic. If the background arithmetic is classical PA, then we know a lot about
it. What about in paraconsistent arithmetic? In particular, consider collapsed models
of arithmetic [14, 15, 18]. These are finite models of numerical succession that can
look like this (with these arrows representing successor, not the flow-chart arrows in
the previous diagram):

0 1 2 ∞ ...

The idea is to define an equivalence relation on the natural numbers, and then treat
as identical any two numbers that are so equivalent. The first number at which such a
collapse occurs is denoted ∞ above.13 The interest of these collapsed models comes
from the fact that in them, no truths are lost: if a sentence is satisfied in a standard
model of arithmetic, it remains satisfied in a collapsed model [19, p. 232]. And there
is a salient number, ∞ = ∞ + 1.

Most logicians who think about such things have regarded these models as prag-
matic ways to prove non-triviality; dialetheists and finitists have taken them more
seriously, seeing in ∞ either a least inconsistent number [17] or the last finite num-
ber [32]. In either interpretation, after ∞ everything is settled: for all n > ∞, the
model has it that n = ∞, so there is nothing more to discover in continuing out the
successor line (other than perhaps adding the negations of established facts). In the
notation of the previous section, f (n) � ∞ meant that f does not halt on n; now we
read it, f gets all the way to ‘the end of the numbers’, which can be charitably taken
an oblique way of saying what is usually meant by ‘not halting’. But since ∞ is a
number, if f goes on ‘forever’ to∞ then f also halts. That is, if we take inconsistent
arithmetic very seriously, we get a flow-chart of computation

• π

∞

•

•

13Succession on this conception is not a classical function, since clearly there is at least one node out
of which are coming two separate arrows. There are mainly unanswered questions in the philosophy
of inconsistent mathematics: how ‘long’ is the cycle between a number and itself? how many
numbers come after the first inconsistent number? what does ‘finite’ or ‘infinite’ mean here? etc.
We must defer to another day.
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where as before, either a program halts on input, or it goes off into an infinite
subroutine—but on that second path, after the process has gone on for ∞ many
steps, it reaches the last one, has no more steps to take. That branch of the flowchart
ends too. While there are many details to fill in here (if one so desired) the basic idea
is simple enough. Since both possibilities on input are ‘finite’, all computations halt.

It is not my intention to defend finitism; see [32], about which some questions
would be easier to answer than others. For example, what about a simple program
that oscillates between 0 and 1; at ∞ is the output 0 or 1? The answer would seem
to be: if ∞ is even, then 0, and if odd than 1. How to conceptualize these things is
more difficult. E.g. after ∞ steps, perhaps we should say that the internal state of the
machine is no longer sensibly describable, but distinguish this from the computation
halting at this step.14 Or perhaps we should say that when a phenomenon become
inconsistent, even unstable, it can still be “sensibly describable”, as dialetheic. This
turns on what counts as sensible, about which I shall recuse myself for now.

It should be pointed out that the extreme conclusions of this section are of limited
interest, since it is a consequence of a sort of finitism, more than anything paracon-
sistent/dialetheic. If finitism is true, then the halting problem is trivial: the answer
is always ‘yes’.15 On the other hand, if the idea is not infinitistic but inconsistent,
then still no hints have been given about where on the number line ∞ lies. If it is
an extraordinarily large number, something well beyond the number of subatomic
particles in the universe, with “no physical meaning or psychological reality” [17, p.
338], then in terms of feasibility the halting problem remains a problem. Alternately,
if ∞ is small enough, then the halting function is constant,16 and the problem is
trivialized again—but now for even more discomfiting reasons.

5 Rise of the Inconsistent Machines

In looking for novel inconsistent computations, this chapter has been about, in effect,
how diagonal arguments in the language of Turing machines translate into dialethe-
ism. A patient reader may want to interject, though, that the hard core of the halting
problem, the paradox of all algorithms, etc., is not the mere derivation of a Russell-
esque contradiction. The problem with these diagonal arguments is that they show
that computations do not always work as expected: the aim of halt is to predict the
behavior of all programs, but halt must get the diagonal wrong! Listen to Tarski:

We know (if only intuitively) that an inconsistent theory must contain false sentences; and
we are not inclined to regard as acceptable any theory which has been shown to contain such
sentences [31].

14Thanks to referees here.
15Similarly, by the Church-Turing thesis, the unsolvability of the halting problem implies the unde-
cidability of first order logic. I do not suggest otherwise. I am just noticing that if the above picture
of arithmetic were accurate, then first order logic is automatically decidable.
16Thanks to Tomasz Kowalski for pointing this out.
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Isn’t that the real sticking point for any would-be ‘naive computability theory’?
Sensible as these sentiments are, Tarski is only reporting half the story. We also

know (to a certainty) that consistent theories leave out true sentences; and we are
not inclined to regard as acceptable any theory which has been shown to leave out
such sentences. The choice here is: be falsity-avoiding at all costs, and so accept
incompleteness; or be truth-seeking at all costs, and so accept some inconsistency.
What it means to have a dialetheic machine is that some sound computations are
not impossible, but their outputs are false. The halting program can get some com-
putations wrong—as long as it gets everything right. If we want to reckon with all
computations, there will be surprises, but there is a way.

Thanks
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