
Applications of Wavelet Transform
Technique in Hydrology—A Brief Review

Khandekar Sachin Dadu and Paresh Chandra Deka

Abstract Recently, wavelet transform analysis has become a popular analysis tool
due to its ability to elucidate simultaneously both spectral and temporal information
within the signal. This overcomes the basic shortcoming of Fourier analysis, which
is that the Fourier spectrum contains only globally averaged information. Therefore,
a data preprocessing can be performed by time series decomposition into its sub-
components using wavelet transform analysis. Wavelet transforms provide useful
decompositions of the main time series, so that wavelet-transformed data improve
the ability of a forecasting model by capturing useful information on various res-
olution levels. The wavelet decomposition of a nonstationary time series into dif-
ferent scales provides an interpretation of the series structure and extracts significant
information about its history, using few coefficients. For these reasons, this tech-
nique is largely applied to time series analysis of nonstationary signals. In terms of
hydrologic applications, this modeling tool is still in its nascent stages. The prac-
ticing hydrologic community is just becoming aware of the potential of wavelet
transform as an analyzing tool. This paper is intended to serve as an introduction to
wavelet transformation for hydrologists. Apart from descriptions of various aspects
of wavelet transform and some guidelines on their usage, this paper offers brief
comparisons of the nature of wavelet transformations and other modeling
philosophies in hydrology. The merits of wavelet transform applications have been
discussed.
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1 Introduction

The hydrology system is a highly complex nonlinear system under the influence of
rain-bearing system and underlying surface system. It is influenced by many fac-
tors, such as weather, land with vegetal cover, infiltration, evapotranspiration, so it
includes the good deal of stochastic dependent component, multi-time scale, and
highly nonlinear characteristics. Forecasting of hydrological time series can be done
using stochastic models like Auto regressive (AR), Auto regressive moving average
(ARMA), Auto regressive integrated moving average (ARIMA), etc. These models
are basically time series models and have a limited ability to capture nonstation-
arities and nonlinearities.

A nonstationary time series can be decomposed into certain number of stationary
time series by wavelet transform (WT). Then different single prediction methods are
combined with WT to improve the prediction accuracy. In most of the hybrid
models, WT is used as preprocessing technique. The wavelet-transformed data aid
in improving the model performance by capturing helpful information on various
resolution levels. Due the above-mentioned advantages of WT, it has been found
that the hybridization of wavelet transformation with other models like ANN, FL,
ANFIS, linear models, etc., improved the results significantly than the single reg-
ular model (Prahlada and Deka 2011).

Wavelet theory (Mallat 1989) is first developed in the end of 1980s of last
century. Nowadays, it has been applied in many fields, such as signal process,
image compression, voice code, pattern recognition, hydrology, earthquake inves-
tigation, and many other nonlinear science fields. The objective of this paper is to
examine how successfully WT has been used in hydrologic problem. The resear-
ches and applications of wavelet analysis have already begun in hydrology and
water resources. The document (Li et al. 1997) points out the potential applications
of wavelet analysis to hydrology and water resources. Li et al. (1999) probed
longtime interval forecast of hydrological time series with combining neural net-
work models based on WT. Wang et al. (2000) have proposed a wavelet transform
stochastic simulation model, which generates synthetic streamflow sequences that
are statistically similar to observed streamflow sequences. The multi-time scale
characteristics of hydrological variable have been studied by Wang et al. (2002).
Wavelet analysis has been a hot research point in prediction of time series analysis
due to its multiresolution function (Zhou et al. 2008). In this study, general
applications of WT are discussed briefly. However, this study did not present any
detail on hydrologic applications. Rather, it complements earlier studies.
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2 Wavelet Transformation Basics

2.1 General

In the last decade, WT has become a useful technique for analyzing variations,
periodicities, and trends in time series. A wavelet transformation is a strong
mathematical signal processing tool like Fourier transformation with the ability of
analyzing both stationary as well as nonstationary data, and to produce both time
and frequency information with a higher resolution, which is not available from the
traditional transformation. WT provides multiresolution analysis, i.e., at low scales
(high frequency) it gives better time resolution and poor frequency resolution and at
high scales (low frequency) it gives better frequency resolution and poor time
resolution and in actual practice for all the time series signals such information is
important. The lower scales (i.e., compressed wavelet) trace the abrupt change or
high frequency of a signal and the higher scales (i.e., stretched wavelet) trace slowly
progressing occurrences or low-frequency component of the signal.

Signals whose frequency content does not change with time are called stationary
signals. In other words, the frequency content of stationary signals does not change
in time. In stationary signals it is not necessary to know at what times frequency
components exist, since all frequency components exist at all times.

Mathematical transformations (viz., Fourier transform (FT), Short Time Fourier
transform (STFT), WT, etc.) are applied to time domain signals (raw signals) to
obtain further information from that signal that is not readily available in the raw
signals. The above-mentioned mathematical transformation techniques are briefly
described in the following sections.

2.2 Fourier Transform (FT)

If the FT of a signal in time domain is taken, the frequency–amplitude represen-
tation of that signal is obtained. That is, we have a plot with one axis being the
frequency and the other being the amplitude. This plot tells us how much of each
frequency exists in the raw signal. But it does not tell about what spectral com-
ponent exist at any given time instant, i.e., the time information is lost. So FT is not
suitable for nonstationary data. The FT is defined by the following two equations:

FðxÞ ¼
Z1

�1
xðtÞ � e�2jpxtdt ð1Þ

xðtÞ ¼
Z1

�1
FðxÞ � e2jpxtdx ð2Þ
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In the above equation x stands for frequency, t stands for time, and x(t) denotes
time domain signal. Equation (1) is FT of x(t) and Eq. (2) is inverse FT of F(x). In
Eq. (1), the signal x(t), is multiplied with an exponential term, at some certain
frequency “x”, and then integrated over all the times. This integral is calculated for
every value of “x”. If the value of this integration is large, then this means that the
signal have a major component of “x” in it.

2.3 Short Time Fourier Transform (STFT)

The STFT is an improvement on the FT (frequency) because it provides a measure
of time and frequency resolutions. The difference between STFT and FT is that in
STFT, the signal is divided into small enough segments, where these segments
(portions) of the signal can be assumed to be stationary. For this purpose, a window
function “w” is chosen. The width of this window must be equal to the segment of
the signal where its stationarity is valid. This window is first located to very
beginning of signal. The window function and signal are then multiplied. This
product is assumed to be another signal, whose FT is to be taken. In other words,
FT of this product is taken, just like taking FT of any signal. The next step is
shifting this window to new location, multiplying with the signal, and taking FT of
the product. This procedure is followed until the end of the signal is reached.

STFT is defined as

STFTðt;xÞ ¼
Z
t

½xðtÞ � w�ðtÞ��e�2jpxt � dt ð3Þ

In the above equation x(t) denotes raw signal, w(t) denotes window function, and
* is complex conjugate.

Wide window gives good frequency resolution, but poor time resolution. Narrow
window gives good time resolution, but poor frequency resolution. The use of a
fixed window size at all times and for all frequencies is a limitation of this method.

2.4 Wavelet Transformation

The wavelet representation addresses the above limitation, by adaptively parti-
tioning the time–frequency plane, using a range of window sizes. At high fre-
quencies, the WT gives up some frequency resolution compared to the FT. Figure 1
shows representation of the effect of using FT and WT.

The WT breaks the signal into its wavelets (small wave) which are scaled and
shifted versions of the original wavelet so-called mother wavelet.
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The generation of wavelet coefficients for a time series involves five steps (The
Mathworks 2010):

(i) Given a signal Xt and a wavelet function Ψj,k compares the wavelet to a
section at the start of the signal (Fig. 2a).

(ii) Compute the coefficient, cj,k, which is an indication of the correlation of the
wavelet function with the selected section of the signal.

(iii) Shift the wavelet to the right and repeat steps (i) and (ii) until the entire signal
is covered (Fig. 2b).

(iv) Dilate (scale) the wavelet and repeat steps (i) through (iii) (Fig. 2c).
(v) Repeat steps (i) through (iv) for all scales to obtain coefficients at all scales

and at different sections of the original signal.

The wavelet transformation is divided into two types:

1. Continuous wavelet transform (CWT)
2. Discrete wavelet transform (DWT).

2.4.1 Continuous Wavelet Transform (CWT)

The Continuous Wavelet Transform (CWT) of a signal x(t) is given by Eq. 4.

CWTða; bÞ ¼ 1ffiffiffi
a

p
Z1

�1
xðtÞ � w� t � b

a

� �
� dt ð4Þ

In the above equation, the transformed signal is a function of two variables,
a and b, the scale and translation factor, respectively, of the function w(t). * cor-
responds to complex conjugate. w(t) is the transforming function, and is called the
mother wavelet, which is defined mathematically as

Fig. 1 Fourier Transform
and wavelet transformation
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Z1

�1
wðtÞdt ¼ 0 ð5Þ

The term translation is related to the location of the window, as the window is
shifted through the signal. This term, obviously, corresponds to time information in
the transform domain. The scale parameter is defined as 1/frequency. Low fre-
quencies (high scales) correspond to a global information of a signal (that is usually
spans the entire signals), whereas high frequencies (low scales) correspond to a
detailed information of a hidden pattern in the signal (that usually lasts a relatively
short time).

The CWT is computed by changing the scale of the analysis window, shifting
the window in time, multiplying by the signal, and integrating over all times.

The original signal is reconstructed using the inverse wavelet transform as

Fig. 2 Generating wavelet coefficients from a time series
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xðtÞ ¼ 1
Cw

Z1

�1

Z1

0

1ffiffiffi
a

p w
t � b
a

� �
� CWTða; bÞ da � db

a2
ð6Þ

where Cw is admissibility constant.

2.4.2 Discrete Wavelet Transform (DWT)

Calculating the wavelet coefficients at every possible scale is a fair amount of work,
and it generates a lot of data. If one chooses scales and positions based on the
powers of two (dyadic scales and positions) then the analysis will be much more
efficient as well as accurate. This transform is called discrete wavelet, and has the
form as

wm;nð
t � b
a

Þ ¼ 1ffiffiffiffiffiffi
amo

p w
t � nboamo

amo

� �
ð7Þ

where m and n are integers that control the wavelet dilation and translation,
respectively; bo is the location parameter and must be greater than zero; ao is a
specified fixed dilation step greater than 1. From this equation, it can be seen that
the translation step nboao

m depends upon the dilation, ao
m. The most common and

simplest choice for parameters ao and bo are 2 and 1 (time steps), respectively. This
power of two logarithmic scaling of the translations and dilations is known as the
dyadic grid arrangement. The dyadic wavelet can be written in more compact
notation as

wm;nðtÞ ¼ 2�m=2wð2�mt � nÞ ð8Þ

Discrete dyadic wavelets of this form are usually chosen to be orthonormal. This
allows for the complete regeneration of the original signal as an expansion of a
linear combination of translate and dilate orthonormal wavelets. For discrete time
series xi, where xi occurs at discrete time i, the dyadic wavelet transform becomes

Tm;n ¼ 2�m=2
XN�1

i¼0

wð2�mi� nÞxi ð9Þ

where Tm,n = wavelet coefficient for the discrete wavelet of scale a = 2m and
location b = 2mn. Equation (9) considers a finite time series, xi, i = 0, 1, 2,…, N−1,
and N is an integer power of 2: N = 2M. This gives the range of m and n as,
respectively, 0 < n < 2M−m − 1 and 1 < m <M. At the largest wavelet scale (i.e., 2m,
where m = M), just one wavelet is needed to cover the time interval and only one
coefficient is produced. At the next scale (2M−1), two wavelets cover the time
interval, therefore two coefficients are produced, and so on down to m = 1. At m =
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1, the a scale is 21, i.e., 2M/21, i.e., 2M−1 or N/2 coefficients are needed to describe
the signal at this scale. The total number of wavelet coefficients for a discrete time
series of length N = 2 M is then 1 + 2 + 4 + 8 +⋯+ 2M−1 = N−1 (Addison et al.
2001).

DWT operates two sets of function viewed as high-pass and low-pass filters (see
Fig. 3). The original time series are passed through high-pass and low-pass filters
and separated at different scales. The time series is decomposed into one comprising
its trend (the approximation) and one comprising the high frequencies and the fast
events (the detail).

3 Applications of Wavelet Transform in Hydrology

Recently, WT analysis has become a popular analysis tool due to its ability to
elucidate simultaneously both spectral and temporal information within the signal.
Some of the recent works carried out in the Hydrology are discussed below.

Addison et al. (2001) used WT analysis to a variety of open channel wake flows.
Feature location was undertaken using a continuous WT, and both turbulent sta-
tistical analysis and thresholding of the turbulent signal components are undertaken
using a discrete WT. It was found that the CWT is the preferred method for feature
detection within fluid velocity time signals.

Wensheng and Ding (2003) carried out a multi-time scale prediction of ground
water level at Beijing and daily discharge of Yangte River Basin at China using
Hybrid Model of Wavelet-Neural Network. Through a Trous algorithm and
three-layer neural network forecasting results were carried out. Twelve years of
shallow monthly ground water level data were used, 9 years for calibration, and
3 years for validation. Daily discharge data of 8 years were used for training and
2 years for testing. The comparisons revealed that the model increase the forecasted
accuracy and prolong the length time of prediction. The proposed WLNN model
focused on improving the precision and prolonging the forecasting time period.

Kim and Valdes (2003) developed nonlinear model for drought forecasting
based on a conjunction of wavelet transforms and neural networks in the Conchos

g[n] = Low pass filter 

h[n] = High pass filter 

Fig. 3 Wavelet decomposition tree
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river basin in Maxico. The results indicate that the conjunction model using dyadic
wavelet transform significantly improves the ability of neural network in
forecasting.

Cannas et al. (2005) studied the river flow forecasting 1 month ahead with
Neural Networks and Wavelet Analysis using monthly runoff data for the Tirso
Basin, Italy. The dataset was split into three parts, first 40 years was used for
training, next 9 years for cross validation, and last 20 years for testing. The
reconstruction of the data was done by traditional feed forward, MLP networks. For
the nonstationary and seasonal irregularity of runoff time series, the best results
were obtained using data clustering and DWT combination. Tests showed that
neural networks trained with preprocessed data showed better performance.

Zhou et al. (2008) developed monthly discharge predictor–corrector model
based on wavelet decomposition using 52 years records of monthly discharge at
Yichang station of Yangtse river. The decomposed times series data were used as
input to ARMA model for prediction which improves the prediction accuracy.

Rao and Krishna (2009) carried out modeling using Hydrological Time Series
data adopting Wavelet-Neural Network for four west flowing rivers in India namely
Kollur, (22 years data from 1981 to 2002), Seethanadi (26 years data from 1973 to
1998), Varahi (26 years 1978–2003), and Gowrihole (25 years data from 1979 to
2003). The results of daily Streamflow and monthly Groundwater level series
modeling indicated that the performances of WNN Models are more effective than
ANN Models.

Nourani et al. (2009a, b) studied the rainfall–runoff modeling using Wavelet–
ANN approach for predictions of runoff discharge 1 day ahead of the Ligvanchai
watershed at Tabriz, Iran. The daily rainfall and runoff time series for 21 years were
used. The time series were decomposed up to four levels using Haar, Daubechies
(db2), Symlet (sym3), and Coiflet (coif1). The Study showed that both short- and
long-term runoff discharges could be predicted considerably. The model results
show the high merit of Haar wavelet in comparison with the others. Authors also
recommended that WT could be used for trend analysis in watersheds.

Kisi (2009) developed neuro-wavelet (NW) model by combining two methods
DWT and artificial neural network (ANN), for 1 day ahead intermittent streamflow
forecasting and results were compared with those of the single ANN model.
Intermittent streamflow data from two stations in the Thrace Region, the European
part of Turkey, in the northwest part of the country were used in the study. In NW
model, the original time series were decomposed into a five number of subtime
series components by Mallat DWT algorithm. The correlation coefficients between
each subtime series and original intermittent streamflow time series were found.
These correlation values provide information for the determination of effective
wavelet components on streamflow. The new subtime series having high correlation
coefficient was used as input to the ANN model. The NW model was found to be
much better than the ANN in high flow estimation. The test results showed that the
DWT could significantly increase the accuracy of the ANN model in modeling
intermittent streamflows.
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Rajaee et al. (2010) investigated the Prediction of daily suspended sediment load
1 day ahead with wavelet and neuro-fuzzy combination model using time series
data of discharge and suspended sediment load as input in a gauging station from
the Pecos River in USA. Results showed that the wavelet analysis and neuro-fuzzy
model performed better predictions rather than neuro-fuzzy and sediment rating
curve (SRC). The cumulative suspended sediment load estimated by this technique
was closer to the actual data. The WNF model considers periodic and stochastic
characteristics of suspended sediment phenomenon and may provide suitable
constructions not clearly seen in the suspended SRC. The model also could be
employed to stimulate hysteresis phenomenon, while the SRC method is incapable
in this event.

Shiri and Kisi (2010) studied short-term and long term streamflow forecasting
using a wavelet and neuro-fuzzy conjunction model to investigate the daily,
monthly, and yearly streamflow of Derecikviran station on Filyos River in the
Western Black Sea region of Turkey using 31 years of streamflow data. The results
obtained showed that the neuro-fuzzy (NF) and wavelet–neuro-fuzzy
(WNF) models increased the accuracy of the single NF models especially in
forecasting yearly streamflow. Also the single NF and WNF models were compared
with each other by adding periodicity components into the inputs. The comparison
results indicated that adding periodicity component generally increased the models
accuracy.

Kisi (2010) developed neuro-wavelet models for daily suspended sediment
estimation for two stations on tongue river in montana using daily streamflow and
suspended sediment data. The comparison results reveal that the developed model
could increase the estimation accuracy.

Adamowski and Sun (2010) investigated a method based on coupling discrete
wavelet transform (WA) and ANN for flow forecasting applications in nonperennial
rivers in semiarid watersheds at lead times of 1 and 3 days for two different rivers in
Cyprus. The discrete trous wavelet transform was used to decompose flow time
series data into eight levels of wavelet coefficients which are used as inputs to
Levenberg Marquardt artificial neural network models to forecast flow. WA–ANN
model provided more accurate results than regular ANN.

Nourani et al. (2011) studied two hybrids for two watersheds located in
Azerbaijan, Iran. Artificial Intelligence approaches for modeling rainfall–runoff
process. Two hybrid AI-based models which are reliable in capturing the period-
icity features of the process are introduced for modeling. In the first model, the
SARIMAX (Seasonal Auto Regressive Integrated Moving Average with exogenous
input)–ANN model, an ANN is used to find the nonlinear relationship among the
residuals of the fitted linear SARIMAX model. In the second model, the wavelet–
ANFIS model, WT is linked to the ANFIS concept and the main time series of two
variables (rainfall and runoff) are decomposed into some multifrequency time series
by WT. Afterward, these time series are imposed as input data to the ANFIS to
predict the runoff discharge one time step ahead. The obtained results showed that,
although the proposed models can predict both short and long terms runoff dis-
charges by considering seasonality effects, the second model is relatively more
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appropriate because it uses the multiscale time series of rainfall and runoff data in
the ANFIS input layer.

Kisi and Shiri (2011) developed precipitation forecasting model using wavelet–
genetic programming andWNF conjunction. They found that hybridwavelet–genetic
programming model was of better performance than hybrid wavelet–neuro-fuzzy
model.

Rajaee et al. (2011) developed ANN, wavelet analysis and ANN combination
(WANN), multilinear regression (MLR), and SRC models for daily suspended
sediment load (S) modeling in the Iowa gauging station in the US. In the WANN
model, DWT was linked to the ANN method. For this purpose, the observed time
series of river discharge (Q) and S were decomposed into five levels by DWT which
were imposed as input to ANN to predict 1 day ahead S. A complex Morlet wavelet
technique was applied to analyze wavelet construction of daily Q and S. The
number of nodes in the input in WANN model was determined by (i +1) × 2,
because this model uses two variables (Q and S) and each time series is decom-
posed into i, i = (1,2,…,5) detailed time series and approximation time series.

This study was aimed at examining the effects of employed mother wavelet type
on the proposed WANN model efficiency. Seven different mother wavelets were
used [viz., Daubechies-2 (db2) (the most popular wavelet), the Haar wavelet (a
simple wavelet), and some irregular wavelet such as Bior1.1, Rboi1.1, Coif1,
Sym1, and Mayer wavelets].

It was found that, increasing the decomposition level, in levels over Level 1,
decreases the model’s performance, because high decomposition levels lead to a
large number of parameters with complex nonlinear relationships in the ANN
technique. The WANN model was more accurate in predicting the S and its per-
formance was better than the ANN, MLR, and SRC models.

Wang et al. (2011) utilized wavelet transform method for synthetic generation of
daily streamflow in Jinsha river of China. Daily streamflow sequences with different
frequency components are decomposed into the series of wavelet coefficients at
various resolution levels using wavelet decomposition algorithm. Based on these
sampled subseries, a large number of synthetic daily streamflow sequences are
obtained using wavelet reconstruction algorithm. They concluded that this newly
developed method is able to generate streamflow sequences based on probability
distributions and type of dependence structure.

4 Conclusion

This paper serves as an introduction to WT with emphasis on their application to
hydrologic problems. It presents brief description of WT, the underlying concept,
and mathematical aspects, and the role of WT relative to other approaches in
hydrology. Guidelines for application of WT to hydrological problems are pre-
sented. The role of WT in various branches of hydrology has been examined here
and found that WT is robust tool in analysis of many nonlinear and nonstationary
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hydrologic processes such as rainfall–runoff, streamflow, groundwater modeling,
precipitation, evaporations. However, WT tends to be data (signal) intensive and
prudent on statistical properties of dataset. For this emerging technique, still more
questions arises which must be further studied.
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