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Abstract. Pour-El and Richards [PER89], Weihrauch [Weih00], and
others have extended Recursive Analysis from real numbers and con-
tinuous functions to rather general topological spaces. This has enabled
and spurred a series of rigorous investigations on the computability of
partial differential equations in appropriate advanced spaces of functions.
In order to quantitatively refine such qualitative results with respect to
computational efficiency we devise, explore, and compare natural encod-
ings (representations) of compact metric spaces: both as infinite binary
sequences (TTE) and more generally as families of Boolean functions via
oracle access as introduced by Kawamura and Cook ([KaCo10], Sect. 3.4).
Our guide is relativization: Permitting arbitrary oracles on continuous
universes reduces computability to topology and computational com-
plexity to metric entropy in the sense of Kolmogorov. This yields a crite-
rion and generic construction of optimal representations in particular of
(subsets of) Lp and Sobolev spaces that solutions of partial differential
equations naturally live in.

1 Introduction and Motivation

The Type-2 Theory of Effectivity (TTE) compares and studies transformation
properties of so-called representations for a given space X: surjective partial
mappings δ :⊆ {0, 1}ω → X describing an encoding of X’s elements as infinite
binary strings, such as sequences of (indices of) fast converging approximations
from a fixed countable dense subset. In particular several natural but different
representations of spaces of continuous functions on Euclidean domains have
been established as computably equivalent. Partial differential equations, how-
ever, exhibit counter-intuitive computability properties when considered on such
classical function spaces rather than than the advanced ones suggested by func-
tional analysis: Lp and more generally Sobolev spaces W k

p [WeZh02]. The qual-
itative computability theory of such spaces is well established [SZZ15]; and we,
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taking a refined complexity-theoretic perspective, suggest, and justify the choice
of, natural representations promising to bridge the gap to numerical practice.

Section 2 recalls notions and qualitative topological characterizations of rel-
atively computable functions on metric spaces. Section 3 collects quantitatively
refined notions under time and space bounds. Section 4 reports on Kolmogorov’s
entropy of a compact metric space. And Sect. 5 connects the latter two in terms
of ‘ordinary’ and second-order representations, the latter introduced in [KaCo10,
Sect. 3.4] and recalled in Sect. 6. Justified by these considerations, Sect. 7 finally
introduces a natural second-order representation for Sobolev spaces. Proofs are
deliberately omitted from this expository abstract.

2 Computing on Separable Metric Spaces

Similarly to the classical theory of computing encoding discrete structures
(graphs, integers etc.) as finite binary strings, the Type-2 Theory of Effectivity
(TTE) studies, and compares notions of, computation over continuous universes
by encoding as infinite binary strings. The following concepts are essentially from
[Weih00, Sect. 2.1+Sect. 2.3+Sect. 3.1+Sect. 8.1], Item f) from [Schr95]; cmp.
also [PER89, Sect. 2].

Definition 1.(a) An Oracle Type-2 Machine MO is a Turing machine with
read-only input tape, read-write working tape, and one-way output tape as
well as access to the — possibly empty — oracle O ⊆ {0, 1}∗ by means
of one-way query tape. MO is said to compute the partial function F :⊆
{0, 1}ω → {0, 1}ω if, on input w̄ ∈ dom(F ), it prints F (w̄). Its behaviour on
w̄ �∈ dom(F ) may be arbitrary.

(b) A representation of a space X is a partial surjective mapping ξ :⊆ {0, 1}ω �
X. A w̄ with ξ(w̄) = x is a ξ-name of x ∈ X.

(c) A partial multivalued mapping f :⊆ X ⇒ Y is a relation f ⊆ X × Y ,
considered as total function f : X � x �→ {y ∈ Y : (x, y) ∈ f}. Its domain
is dom(f) = {x : f(x) �= ∅}. A (partial) single-valued mapping is considered
as multivalued with singleton (or empty) values.

(d) For υ a representation of Y , a (ξ, υ)-realizer of f is a partial function F :⊆
{0, 1}ω → {0, 1}ω with υ ◦ F ⊆ f ◦ ξ. Call f :⊆ X ⇒ Y relativized (ξ, υ)-
computable iff there exists an oracle type-2 machine MO computing some
(ξ, υ)-realizer of f . We omit ξ = id in case X = {0, 1}ω.

(e) A presented separable metric space is a triple (X, d, ξ), where X denotes the
carrier set with metric d : X × X → [0;∞) and ξ :⊆ N → X a partial
enumeration of some dense image(ξ) ⊆ X.

(f) For a presented separable metric space (X, d, ξ), a ξ-name of x ∈ X is an
integer sequence (am)

m
satisfying

∀m : am ∈ dom(ξ) ∧ d
(
ξ(am), x

)
< 2−m ∧

∧ ∀a′ < am : d
(
ξ(a′), x

) ≥ 2−m−1. (1)
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The induced representation of (X, d, ξ) is the partial mapping (abusing
names also denoted by) ξ :⊆ {0, 1}ω � X with

〈(
bin(am)

)
m

〉 �→ x for
every ā = (am)

m
satisfying Eq. (1).

(g) Here we denote by bin both the binary expansion

bin : {0, 1}∗ � (v0, . . . , vJ−1) �→ 2J − 1 +
∑J−1

j=0
vj2j ∈ N

and its inverse, where N = {0, 1, 2, . . .}. Furthermore write

〈(v1, . . . , vn)〉 := (1, v1, 1, v2, . . . , 1, vn−1, 0, vn)

for the binary string encoding with delimiter; and also for pairing functions

({0, 1}∗)∗ � (
�v(1), . . . , �v(k)

) �→ 〈�v(1)〉 . . . 〈�v(k)〉 ∈ {0, 1}∗

and ({0, 1}∗)∗ × {0, 1}ω → {0, 1}ω and ({0, 1}∗)ω → {0, 1}ω. Finally abbre-
viate [N ] := {0, . . . , N − 1} for N ∈ N; let �v<n and v̄<n mean the first n
symbols of �v ∈ {0, 1}n+m and of v̄ ∈ {0, 1}ω, respectively; write �vn and v̄n

for the n-th symbol.
(h) For metric spaces (X, d) and (Y, e) a mapping μ : N → N is a modulus of

continuity to the function f : X → Y if, for every m ∈ N and x, x′ ∈ X,
d(x, x′) < 2−μ(m) implies e

(
f(x), f(x′)

)
< 2−m. We write B(x, r) := {x′ ∈

X : d(x, x′) < r} for the open ball of radius r ≥ 0 around x ∈ X and
B̄(x, r) := {x′ ∈ X : d(x, x′) ≤ r} for the corresponding closed ball.

Our prototype presented metric space is the real unit interval X = [0; 1] equipped
with ρ : N → X enumerating the dyadic rationals {0, (2ã + 1)/2m : N �
ã ≤ 2m−1,m ∈ N+} in [0; 1) without repetition in ‘lexicographical’ order:
0, 1

2 , 1
4 , 3

4 , 1
8 , 3

8 , 5
8 , 7

8 , 1
16 , . . .; cmp. [BrCo06]. Computing on continuous universes

combines recursion-theoretic and topological aspects, reducing to the latter when
permitting access to arbitrary oracles; cmp. Items (b+c) of the following

Fact 2.(a) A function f : X → Y admits a modulus of continuity iff it is
uniformly continuous. On bounded X, f is Hölder continuous iff it admits a
linear modulus of continuity.

(b) A partial function F :⊆ {0, 1}ω → {0, 1}ω is continuous iff it is computable
by some oracle type-2 machine.

(c) Let (X, d, ξ) and (Y, d, υ) denote presented metric spaces. A partial function
f :⊆ X → Y is continuous iff it is relativized (ξ, υ)-computable.

(d) Reciprocals (0; 1] � x �→ 1/x are (ρ, ρ)-computable but, lacking uniform con-
tinuity, not within bounded time nor space.

(e) A partial function f :⊆ [0; 1] → R admits a polynomial modulus of continuity
iff it is (ρ, ρ)-computable by some polynomial-time oracle type-2 machine.

(f) The continuous function hexp : [0; 1] � x �→ 1/ ln(e/x) is computable (without
oracle) in exponential time but, lacking a polynomial modulus of continuity,
not (even with oracle) in sub-exponential time.

(g) A partial F :⊆ {0, 1}ω → {0, 1}ω admits a polynomial modulus of continuity
iff it is computable by some polynomial-time oracle type-2 machine.
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(h) There is no representation δ :⊆ {0, 1}ω � Lip1

(
[0; 1], [0; 1]

)
of the compact

space of uniformly bounded and equicontinuous functions f : [0; 1] → [0; 1]
with |f(x) − f(x′)| ≤ |x − x′| rendering application (f, x) �→ f(x) uniformly
(δ × ρ, ρ)-computable in relativized subexponential time.

Item (a) is from [KSZ14, Example 2.5], for (b) see [Weih00, Theorems 2.3.7+2.3.8],
and for (c) confer [Weih00, Theorem 3.2.11+Definition 3.1.3]. The latter has been
generalized from metric to topological so-called QCB-spaces [Schr06, Theorem 2],
to weaker representations, as well as from continuity to (levels of Borel) measura-
bility [Zieg07,dBYa10]. For (d) see for instance [Weih00, Theorem 4.3.2.6+Exam-
ple 7.2.8.3]. [Ko91, Theorem 2.19] asserts one direction of (e) for total functions
f : [a; b] → R. Regarding (f) consider [KMRZ15, Fact 3g]; and Lemma 6.3 in
[PaZi13] for (g). Claim (h) is contained in [Weih03, Sect. 6]; see also [FHHP15, The-
orem 3.1].

3 Computational Complexity on Compact Metric Spaces

Items (d) to (h) of Fact 2 refer to the following notions:

Definition 3.(a) For t : N → N, an oracle type-2 machine MO computing
F :⊆ {0, 1}ω → {0, 1}ω does so in time t(m) if it prints the m-th symbol
of F (v̄) after at most t(m) steps for every v̄ ∈ dom(F ). F is relativized
polynomial-time computable if there exists some d ∈ N and an oracle type-2
machine computing it in time t(m) = d · (1 + md).

(b) For s : N → N, an oracle type-2 machine MO computing F :⊆ {0, 1}ω →
{0, 1}ω does so in space s(n) if it prints the m-th symbol of F (v̄) after using
at most s(m) cells of the working tape (and ’arbitrary’ amounts of the input,
output, and query tapes) for every v̄ ∈ dom(F ).

(c) Fix s, t : N → N and a (possibly partial and multivalued) function f :⊆ X ⇒
Y between represented space (X, ξ) and presented metric space (Y, e, υ). An
oracle type-2 machine (ξ, υ)-computes f in time t(m) and space s(m) iff it,
for every input of any v̄ ∈ dom(ξ) with ξ(v̄) ∈ dom(f), produces an υ-name〈(

bin(wm)
)
m

〉
of some y ∈ f(x) such that bin(wm) ∈ {0, 1}∗ appears on the

output tape within ≤ t(m) steps and using ≤ s(m) cells of the working tape.
(d) The time and/or space of a machine according to (c) is bounded if there

exist mappings t and/or s as above. It is logarithmic/polynomial/exponential
if such mappings can be chosen to have asymptotic growth bounded by
O(log m), poly(m) := O(m)O(1), and 2poly(m), respectively.

(e) A representation ξ of X is polynomially admissible if for every representa-
tion δ of X the following holds: δ :⊆ {0, 1}ω � X has a polynomial modulus
of continuity iff there exists a mapping F : dom(δ) → dom(ξ) ⊆ {0, 1}ω

with polynomial modulus of continuity such that δ = ξ ◦ F .
(f) The product ξ×υ of ξ :⊆ {0, 1}ω � X and υ :⊆ {0, 1}ω � Y is the mapping

{0, 1}ω � (w0, w1, w2, w3, . . .) �→ (
ξ(w0, w2, . . .), υ(w1, w3, . . .)

) ∈ X × Y.
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(g) A mapping f : X → Y between topological spaces is proper if the pre-images
f−1[K] = {x ∈ X : f(x) ∈ K} ⊆ X of compact sets K ⊆ Y are compact.

Item (e) refines the well-known qualitative condition of computable admissibility
[Schr06]; see [Weih00, Theorem 3.2.9]. For X = {0, 1}ω = Y condition (c) boils
down to (a) and (b), but for other represented spaces it may be unrelated to
that of computing a (ξ, υ)-realizer within the given resource bounds [Weih00,
Examples 7.2.1+7.2.3]: ξ and υ could require/admit very long/short initial seg-
ments of names before reaching precision 2−m. Moreover, said precision is to
be met within the given resource bound, regardless of the argument. To avoid
counter-examples like Fact 2(d) we focus on proper representations of compact
spaces; compare [Schr95,Weih03,Schr04] and [Weih00, Exercise 7.1.2].

4 Metric Entropy of Compact Metric Spaces

Theorem 6 will generalize Items (e) and (g) in Fact 2, and the complexity-
theoretic characterizations of Items (f) and (h) from Cantor space and the real
unit interval to certain compact metric spaces in the spirit of Fact 2(c), based
on the following notions essentially dating back to Andrey N. Kolmogorov:

Definition 4. Fix a bounded metric space (X, d).

(a) For ε > 0 let C(X, d, ε) := sup
{

Card(C)
∣
∣ C ⊆ X, ∀x, x′ ∈ C : x =

x′ ∨ d(x, x′) ≥ ε
}

denote the size of a largest collection of points fitting into
X while avoiding each other by at least distance ε.

(b) For ε > 0 let H(X, d, ε) := inf
{

Card(C)
∣
∣ C ⊆ X, ∀x ∈ X ∃c ∈ C :

d(x, c) < ε
}

denote the least number of open balls of radius ε covering X.
(c) The capacity �(X, d)� : N → N of (X, d) is the truncated binary logarithm

of n �→ C(X, d, 2−n); i.e. X admits 2�X�(n), but not 2�X�(n)+1, points of
pairwise distance ≥ 2−n.

(d) Dually, the entropy �(X, d)� : N → N of (X, d) is the truncated binary
logarithm of n �→ H(X, d, 2−n); i.e. X can be covered by 2�X�(n) open balls
of radius 2−n, but not by 2�X�(n)−1.

Compare for instance [KoTi59] or [Weih03, Sect. 6] and the related notion of a
modulus of total boundedness [Kohl08, Definition 17.106]. Lemma 5(a) asserts
that �X� and �X� have equal asymptotic growth as long as either one is at
most exponential, i.e. ≤ 2poly(n): such as, e.g., Cμ(Y, [0; 1]) for both μ and �Y �
polynomials according to Item d) of the following

Lemma 5.(a) Suppose C ⊆ X is maximal w.r.t. ⊆ satisfying ∀x, x′ ∈ C : x =
x′ ∨ d(x, x′) ≥ ε. Then

⋃
c∈C B(c, ε) = X.

For (X, d) totally bounded, C(X, d, ·) and H(X, d, ·) are non-increasing total
functions (0;∞) → N satisfying H(X, d, ε) ≤ C(X, d, ε) ≤ H(X, d, ε/2). In
particular it holds �(X, d)�(n) ≤ �(X, d)�(n) ≤ �(X, d)�(n + 1).
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(b) The finite set X := {1, 2, . . . , 2k} of integers has constant capacity and
entropy �X�(n) ≡ k ≡ �X�(n). The Euclidean cube/torus [0; 2k)d, equipped
with the maximum norm, has capacity

⌈
[0; 2k)d

⌉
(n) = (n + k) · d =⌊

[0; 2k)d
⌋
(n) and thus polynomial entropy.

(c) The compact space from Fact 2(h) equipped with the supremum norm has
asymptotically exponential capacity and entropy:

⌈
Lip1

(
[0; 1], [0; 1]

)⌉
(n) =

Θ(2n) =
⌊
Lip1

(
[0; 1], [0; 1]

)⌋
(n). The same holds for Lip1

(
[0; 1], [0; 1]

) ⊆ Lp

equipped with the norm f �→ ‖f‖p := p

√∫ 1

0
|f(t)|p dt for any fixed p ≥ 1.

(d) Suppose totally bounded (X, d) has diameter diam(X) := sup{d(x, x′) :
x, x′ ∈ X} ≤ 1 and super-logarithmic yet at most exponential entropy �X� :
N → N. Moreover fix some strictly increasing μ : N → N. W.r.t. sup-norm
the space Cμ

(
X, [0; 1]

)
:=

{
f : X → [0; 1] has modulus of continuity μ

}

has log
⌊
Cμ

(
X, [0; 1]

)⌋
(n) = Θ

(
�X�(μ(

n ± Θ(1)
)))

. A set Y ⊆ C(X, [0; 1])
is relatively compact iff it belongs to Cμ(X, [0; 1]) for some μ.

(e) Cantor space 2ω = {0, 1}ω, equipped with the metric β(v̄, w̄) :=
2−min{n:vn 
=wn} has linear capacity �(2ω, β)�(n) = n + 1; equipped with the
topologically equivalent metric β′(v̄, w̄) := 1/(1 + min{n : vn �= vm}) on the
other hand it has exponential capacity �(2ω, β′)�(n) = 2n − 1.

(f) However whenever d and d′ are strongly equivalent metrics on X in the sense
that d′ · 2−c ≤ d ≤ d′ · 2c holds for some c ∈ N (such as in case X lives in
some finite-dimensional normed real vector space), their induced capacities
and entropies differ by at most a constant shift, i.e., it holds ∀n ≥ c :

�(X, d′)�(n − c) ≤ �(X, d)�(n) ≤ �(X, d′)�(n + c),
�(X, d′)�(n − c) ≤ �(X, d)�(n) ≤ �(X, d′)�(n + c)

(g) Let (X, d) and (Y, e) be compact metric spaces and f : X → Y have modulus
of continuity μ. Then the image f [X] ⊆ Y has entropy �F [X]� ≤ �X� ◦ μ.

Item (d) quantitatively refines the classical Arzelá-Ascoli Theorem; cmp.
[Weih03, Theorem 6.7.3].

5 Relativized Complexity and Entropy

The entropy/capacity of compact metric spaces essentially determines the rela-
tivized computational complexity of functions on them:

Theorem 6. For a compact metric space (X, d) the following are equivalent:

(i) X has polynomially bounded entropy: �X�(m) ≤ p(m) for some p ∈ N[m].
(ii) X has a proper representation δ :⊆ {0, 1}ω � X with polynomial modulus

of continuity.
(iii) X admits a representation δ rendering the following parameterized par-

tial/fuzzy/ soft equality test relativized δ×δ-computable in time polynomial
in m:

X × X × N � (x, y,m) �→ 1ω for x = y, �→ 0ω for d(x, y) ≥ 2−m. (2)
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(iv) There exists a representation δ of X rendering Equation (2) relativized
δ × δ-computable in space logarithmic in m.

(v) There exists a representation δ of X rendering the metric d : X × X →
[0;∞) relativized (δ × δ, ρ)-computable in polynomial time

(vi) or in logarithmic space.
(vii) There exists a representation δ of X and polynomial q ∈ N[m] such that

every 1-Lipschitz function f : X → [0; 1] is relativized (δ, ρ)-computable in
time q(m)

(viii) or space O(
log q(m)

)
= O(log m).

Perhaps surprisingly, the same holds with δ replaced, in Items (iii) to (viii), by
a second-order representation Δ of X in the following sense:

6 Second-Order Complexity Theory

According to Fact 2(h) compact space Lip1([0; 1], [0; 1]) does not admit a
complexity-wise reasonable representation, i.e., encoding as infinite binary
strings {0, 1}ω ∼= 2{1}∗

: essentially due to their restriction to sequential access
which requires ‘skipping’ over the f ’s (approximate) values at many arguments
f(x′) before reaching the desired f(x); whereas function arguments in practice
provide oracle-like random access to their values. This has been formalized by
encoding real function arguments as oracles [KaCo10].

Remark 7 Classical oracles are decision problems O ⊆ {0, 1}∗, that is, they
return a single bit. Function oracles on the other hand return finite strings,
that is, they correspond to elements of Baire space N

N encoded in binary as
mappings ϕ : {0, 1}∗ → {0, 1}∗. Now if the answer �w = ϕ(�v) to a query �v is
‘long’, an oracle machine Mϕ arguably should be allotted more time than the
same when run with an oracle ψ giving ‘short’ answers. This leads to second-
order polynomial resource bounds; see [KaCo96]. Function oracles of polynomial
length, on the other hand, can be encoded into decision oracles queried bitwise
(and in particular satisfying effective polynomial boundedness [KaPa15]).

For the purpose of this work we focus on the latter:

Definition 8.(a) A second-order representation of a space X is a partial sur-
jective mapping Ξ :⊆ 2{0,1}∗ � X, where 2Y denotes the set of all subsets
O ⊆ Y , each identified with its characteristic function 1O : Y → {0, 1}.

(b) An oracle Type-2 machine with variable/generic oracle is called contingent
and denoted M?. It computes a partial function F :⊆ 2{0,1}∗ × {0, 1}ω →
{0, 1}ω if, for every (O, v̄) ∈ dom(F ), MO on input v̄ prints F (O, v̄). It does
so in logarithmic/polynomials/exponential time/space if the n-th symbol of
F (O, v̄) appears within such resource bounds of time/work tape cells, inde-
pendently of (O, v̄) ∈ dom(F ) while permitting unbounded use of the input,
output, and query tapes. More precisely M? may peruse a fixed-depth stack
of write-only query tapes where an oracle call refers to, and purges, the top
one.
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(c) Fix a second-order represented space (X,Ξ), (first-order) represented space
(Y, υ), and presented metric space (Z, e, ζ) with induced representation ζ.
A contingent oracle machine M? (Ξ, υ, ζ)-computes f :⊆ X × Y ⇒ Z in
time t(m) and space s(m) iff, for every O ∈ dom(Ξ) and v̄ ∈ dom(υ) with(
Ξ(O), υ(v̄)

) ∈ dom(f), MO on input v̄ produces a ζ-name
〈(

bin(wm)
)
m

〉

of some z ∈ f
(
Ξ(O), υ(v̄)

)
such that bin(wm) ∈ {0, 1}∗ appears on the

output tape within at most t(m) steps and using at most s(m) cells of the
working tape (and again ’arbitrary’ amounts of the input, output, and query
tapes).

(d) For second-order representations Ξ :⊆ 2{0,1}∗ � X and Υ :⊆ 2{0,1}∗ � Y ,
their (binary) product Ξ × Υ is the mapping

2{0,1}∗� O �→ (
Ξ({�v : 0�v ∈ O}),Υ({�w : 1�v ∈ O})

) ∈ X × Y.

(e) Following up on Definition 1f), the second-order representation induced by
a presented metric space (X, d, ξ) is the mapping

Ξ :⊆2{0,1}∗� {〈bin(2m),bin(2j)〉 : bin(am)
j

= 1
} �→ x ∈ X

for every ξ-name ā = (am)
m

∈ N
ω of x.

(f) Fix presented metric spaces (X, d, ξ) and (Y, e, υ) with induced (first-order)
representations ξ and υ. Justified by Fact 2(c), equip (any fixed compact
subset Z of) the space C(X,Y ) of continuous total functions f : X → Y
with the following second-order representation υξ: Let

O =
{〈bin(a),bin(2m),bin(2j)〉 : a ∈dom(ξ),

〈
bin

(
ϕ(a,m)

)〉
j

= 1
} ⊆ {0, 1}∗

be an υξ-name of f ∈ C(X,Y ) for every mapping ϕ : dom(ξ)×N ⊆ N×N →
dom(υ) ⊆ N where

(
ϕ(a,m)

)
m

is an υ-name of f
(
ξ(a)

)
.

So Item (c) is about functions with ordinary/first-order represented co-domain,
(g) with second-order ones. And υξ according to Item (f) encodes (approxima-
tions in terms of the dense sequence in Y given by υ to) the values of f on the
dense sequence in X given by ξ; cmp. [KaPa15, top of p. 8]. The fixed-depth
stacks and subtle semantics of query tapes have been well justified in the discrete
setting [Wils88,Buss88,ACN07] as well as in computational analysis [KaOt14].
Definition 8(f) does not (yet) incorporate quantitative information about con-
tinuity of f . In the case Z = Lip1([0; 1], [0; 1]) the representation here called
ρρ is (equivalent to one) well-known [KaCo10,KORZ12,FHHP15,FeZi15]; and
renders application (f, x) �→ f(x) computable in polynomial-time.

7 Representing Lp and Sobolev Spaces

Recall that, for compact X ⊆ R
d, Lp(X) = W 0,p(X) consists of all mea-

surable (but not necessarily continuous) functions f : X → R such that
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‖f‖p < ∞; and, more generally, W k,p(X) of all f whose weak partial deriv-
atives ∂

�jf := ∂xj1
1 · · · ∂xjd

d f up to order ‖�j| := j1 + · · · + jd ≤ k belong to
Lp(X), equipped with the norm ‖f‖k,p := max|�j|≤k ‖∂

�jf‖p. By Lemma 5(c)
and the extension of Theorem 6, no (first or) second-order representation of
Lip1([0; 1], [0; 1]) ⊆ Lp[0; 1] can simultaneously render both (f, g) �→ |f − g| and
f �→ ‖f‖p polynomial-time computable.

Definition 9.(a) Inspired by Definition 1(h) call μ : N → N an Lp-modulus of

f ∈ Lp[0; 1] if p

√∫ 1

0
|f(t + h) − f(t)|p dt < 2−m whenever |h| < 2−μ(m), with

the convention f(t) ≡ 0 for t �∈ [0; 1].
(b) Abbreviate W k,p

μ [0; 1] :=
{
f ∈ W k,p[0; 1] : ∂kf has Lp-modulus μ

}
.

(c) Let Ξ denote the second-order representation of L1[0; 1] ⊇ W k,p[0; 1] s.t. a
Ξ-name of f is a ρρ-name of the continuous [0; 1] � s �→ ∫ s

0
f(t) dt ∈ R.

By Fréchet-Kolmogorov, Y ⊆ Lp([0; 1]) is relatively compact iff there exists some
μ with Y ⊆ W 0,p

μ [0; 1]: Our convention of extending f with zero asserts W 0,p
μ to

be bounded by 2μ(0). Although harder than Lemma 5d), we can prove

Theorem 10. Fix polynomial-time computable p ≥ 1 and strictly increasing μ.

(a) log
⌊
W 0,p

μ

(
[0; 1]

)⌋
(n) = μ

(
n ± Θ(1)

)
.

(b) For any fixed polynomial μ, the embedding W 1,p
μ [0; 1] ↪→ Cn�→μ(n+1)[0; 1] is

well-defined and (Ξ, ρρ)-computable in polynomial time.
(c) For any fixed k ∈ N and polynomial μ, differentiation ∂ : W k+1,p

μ [0; 1] →
W k,p

μ [0; 1] is well-defined and (Ξ,Ξ)-computable in polynomial time.
(d) For any fixed k ∈ N and polynomial μ, the embedding W k+1,p

μ [0; 1] ↪→
W k,p[0; 1] is (Ξ,Ξ)-computable in polynomial time.
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[KORZ12] Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity

of smooth differential equations. In: Rovan, B., Sassone, V., Widmayer,
P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 578–589. Springer, Heidelberg
(2012)

[KoTi59] Kolmogorov, A.N., Tikhomirov, V.M.: E-Entropy and E-Capacity of Sets
in Functional Spaces. Uspekhi Mat. Nauk 14(2), 3–86 (1959). also pp. 86–
170 in Selected Works of A.N. Kolmogorov vol. III (Shiryayev, A.N. Ed.),
Nauka (1993) and Springer (1987)

[KSZ14] Kawamura, A., Steinberg, F., Ziegler, M.: Complexity of Laplace’s and Pois-
son’s Equation. Bulletin of Symbolic Logic 20(2), 231 (2014). Full version
in Mathem. Structures in Computer Science (2016)

[PaZi13] Pauly, A., Ziegler, M.: Relative computability and uniform continuity of
relations. J. Log. Anal. 5, 1–39 (2013)

[PER89] Pour-El, M.B., Richards, I.: Computability in Analysis and Physics.
Springer, Heidelberg (1989)
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