
Models and Model Transformations
Within Web Applications

Sergejs Kozlovics(B)

Institute of Mathematics and Computer Science,
University of Latvia (Riga, Latvia), Raina blvd. 29, Riga 1459, Latvia

sergejs.kozlovics@lumii.lv

Abstract. Unlike traditional single-user desktop applications, web
applications have separated memory and computational resources (the
client and the server side) and have to deal with multiple user accounts.
This complicates the development process. Is there some approach of
creating web applications without thinking about web-specific aspects,
as if we are developing stand-alone desktop applications? We say, “yes”,
and that is where models and model transformations come in handy.
The proposed model-driven approach simplifies the development of web
applications and makes it possible to use a single code base for deploying
both desktop and web-based versions of the software.

Keywords: Models · Model transformations · Web applications

1 Introduction

In 2001, Model-Driven Architecture (MDA) was considered a promising app-
roach for software development [30]. Indeed, models are a universal tool for
system and data modeling; they can be used at different levels of abstraction —
from domain-specific languages familiar to domain experts to platform-specific
aspects and neat implementation details. Automated transformations between
such models could replace traditional compilers. Although MDA and its further
developments like Model-Driven Engineering (MDE), Model-Driven Software
Development (MDSD), and other MD* have known success stories, some experts
consider that the model-driven approach (in general) has “missed the boat”
[13,14,18,29]. Although models are still in honor within academic researchers,
most practitioners continue to use traditional technologies (relational databases
and popular programming languages such as Java, C#, etc.; not models and
transformation languages) due to lack of stable, production-ready model-driven
infrastructure.

Nevertheless, another “boat”, by which models could go, appears on the hori-
zon — web-based software development. Currently, the majority of web applica-
tion is developed using well-known server-side technologies (PHP, SQL and no-
SQL databases, etc.), web protocols, and the client-side HTML+CSS+JavaScript
stack. While creating a web-based application, the developer has to think about
c© Springer International Publishing Switzerland 2016
G. Arnicans et al. (Eds.): DB&IS 2016, CCIS 615, pp. 53–67, 2016.
DOI: 10.1007/978-3-319-40180-5 4



54 S. Kozlovics

server-side code, the client-side code, the communication issues, and the user-
specific aspects (authentication and access control). This complicates the devel-
opment of web applications, since network-specific issues have to be considered in
addition to the primary functionality of the software. Moreover, it may be hard
to choose where the particular computation-intensive code has to be executed —
at the server side or at the client side. For instance, we faced this dilemma when
considering layout computation for graph-like diagrams.

In this paper we show that if we “resurrect” models and take them on board,
web-based applications can be developed much easier. In our approach, mod-
els are used as a memory (Random Access Memory, RAM) analog, which is
automatically synchronized between the client and the server, thus, making net-
work communication transparent. We also show how models help to manage
the resources (processor and memory) automatically and transparently between
multiple users, who can use the application simultaneously. Thus, the developers
can just assume a single user PC as a target.

The paper is structured as follows. First, we describe our previous approach
of using models and model transformations in classical desktop applications
(Sect. 2). Then we adapt it to meet the requirements of the web (Sect. 3). We
continue by providing solutions for certain issues arising when moving models
to the web. The “Related Work” section lists several alternative approaches for
developing web applications. It is followed by the conclusion, which presents our
experimental results and points to further research directions.

2 Traditional Approach

In 2008, we have proposed a domain-specific desktop tool building approach
called the Transformation-Driven Architecture, TDA [7,22]. TDA has been
successfully used to implement several domain-specific tools such as ProMod,
OWLGrEd, and VisiQuer [4–6]. The main concepts of TDA are model transfor-
mations, engines, and interface metamodels (Fig. 1). Model transformations are

Engine 4 

Model
transformations

Interface 
metamodel 2 

Interface metamodel 3 

Interface 
metamodel 4 

Interface 
metamodel 1 
(Environment 
metamodel) 

Engine 2 Engine 3 

Engine N 

Engine 1 

A
i:Integer

D

B

Interface 
metamodel N 

Transformation-specific 
metamodels;

domain metamodel

Interface 
metamodel 5

Engine 5 

Engine 4 

generates

plays

Fig. 1. The outline view on the Transformation-Driven Architecture, TDA.



Models and Model Transformations Within Web Applications 55

used to implement business logic. Unlike MDA, TDA uses model transforma-
tions at runtime. Engines are pluggable modules that provide certain auxiliary
functionality (such as services and graphical presentations) for transformations.
While transformations are usually written in a platform-independent way using
model transformation languages or traditional programming languages, engines
are usually implemented using platform-specific libraries and technologies. There
may be multiple variations of the same engine for different platforms (different
operating systems).

Model transformations communicate with engines via instances of interface
metamodels. There are special classes called events and commands (subclasses
of the Event class and the Command class). When a transformation needs to
call some engine, it creates a corresponding command instance, sets its attribute
values and creates necessary links to specify the command arguments and the
context. Then the command instance is linked to the submitter object in the
model, which is treated as a request to execute that command. Engines, in their
turn, are able to emit events, when certain actions (e.g., user clicks) occur. In
order to catch an event, some event-handling transformation has to be registered
as an event listener. Events are emitted in the same way as commands (e.g., an
event object is created and linked to the submitter). On the one hand, such
event/command mechanism keeps transformations away from technical issues of
calling different engines, which may be written in different programming lan-
guages. On the other hand, engines can be written in traditional languages,
without the need to know how to call particular model transformation, which
may be written in some specific transformation language or in some ordinary
high-level language. All calls between the engines and transformations are per-
formed automatically when corresponding links to the submitter are created.
TDA has different adapters for different programming and transformation lan-
guages.

Models are stored in a model repository (in-memory repository, in most
cases). Engines and transformations access models via a common API (we call
it Repository Access API, RAAPI1) implemented for various programming lan-
guages and platforms. Certain RAAPI wrappers have been developed to provide
query-based repository access (e.g., the lQuery language [24]). There are also
some code generators that produce C++/Java classes that can be used to access
objects stored in the model repository as if they were C++/Java objects. Thus,
RAAPI (or one of its wrappers) is the only API a particular transformation or
engine has to be aware of to be able to work within TDA.

3 Bringing Models to the Web

Now we show how the above-mentioned architecture for desktop tools can be
scaled for web-based applications. The first approximation is as follows:

1 http://tda.lumii.lv/raapi.html.

http://tda.lumii.lv/raapi.html


56 S. Kozlovics

– Transformations, which implement business logic, remain intact. They are
implemented using traditional high-level or transformation languages and exe-
cuted at the server side.

– Engines, which mainly implement graphical presentations, are executed in the
client browser. Engines must be re-written in JavaScript (or other language
that translates to JavaScript), utilizing HTML and CSS, to provide a neat user
experience without the need to install support for non-JavaScript languages.
We may think of web engines as engine variations for the web platform. The
interface metamodels of web engines remain intact, thus, we do not need to
re-write transformations (but a TDA adapter for web-based engines is needed).

– Communication between engines and transformations now has to be imple-
mented using network technologies.

Rewriting engines in the JavaScript+HTML+CSS stack as well as introducing a
web-server to deliver the code of web engines to the client browser is a technical
straight-forward process (once it is done, we need to maintain just the web-
based engine, since it can be used also for desktop tools). But ensuring the
communication between engines and transformations over the network involves
more complex issues, including:

– bi-directional communication (we have to communicate in both directions by
means of commands and events);

– asynchronous execution of commands and events;
– accessing the model repository from the server and from the client.

The next approximation is to get rid off the traditions and allow transformations
to be executed right in the client browser and allow non-interactive engines to
run at the server side. Thus, certain transformations and engines can be launched
without the round-trip delay between the client and the server.

To complete the picture, we introduce multiple users. This includes user
authentication and sharing server resources (processor and memory) between
multiple users, with the potential scaling in mind.

The issues we have just mentioned are addressed in the next section.
Notice that among these issues, every web application has to consider poten-

tial security risks. We assume that best practice recommendations for preventing
typical attacks are always kept in mind (e.g., escaping of HTML strings, using
secure HTTPS/WebSocket connections, session checks, etc.) [20]. Security issues
are mostly technical and are not considered in this paper.

4 Dealing with the Issues

4.1 Bi-Directional Communication Issues

The traditional HTTP protocol, designed in 1992, was developed to be a client-
server stateless protocol: a client initiates a request and waits for the server to
respond; each next request is treated as independent, since no state is stored
at the protocol level. To use HTTP for bi-directional communication between



Models and Model Transformations Within Web Applications 57

transformations and engines, where multiple users may be working with different
models, we need some means for the server to initiate the communication (in
order transformations running on the server side could send commands to engines
running at the client side). A session identifier is also required for each authenti-
cated user. These are well-known issues. Widely used solutions for bi-directional
HTTP include long polling, when the client asks the server for commands at cer-
tain intervals, and COMET, where the client initiates a request, but the server
delays the response until some command has to be sent to the client [15]. The
traditional way to identify the session is to use the JSESSIONID cookie along
with the list of active sessions at the server. Certain libraries, such as DWR2,
are able to factor out these technical issues. Still, in order to pass events and
commands over the network, we need to serialize and deserialize them.

The WebSockets protocol, standardized in 2011 (drafts from 2010), is
intended for high-speed bi-directional communication [16,19]. The protocol does
not perform a handshake each time a message is sent. Moreover, message encod-
ing overhead is minimal (compared to heavyweight HTTP headers). Currently,
all recent versions of popular web-browsers support web sockets. Still, if we go for
web sockets, we need some TDA event/command serialization or synchronization
solution. We discuss it in Sect. 4.3.

To ensure the correct execution of commands and event handling, we need
two additional TDA components, which are present regardless of the particular
technique used for network communication. They are the web engine adapter
and the client-side command manager3.

Web engine adapter. When a transformation creates a command and stores
it in the model repository, TDA calls the corresponding engine via a specific
adapter. There are different adapters for different types of engines, usually,
depending on the programming language or calling conventions (DLL, Java class,
.NET assembly, etc.). We can assume that web engines have to be called via a
special TDA “JavaScript” adapter. However, unlike traditional engine adapters,
which work locally, this adapter starts the web-server (if it has not been done
before), serializes the command, and sends it to the client browser.

Client-side command manager. Each TDA-based tool has Environment
Engine, which is responsible for creating the main application window and
attaching/detaching child windows. In case of web-based TDA, Environment
Engine occupies one browser window (or tab), while other windows are attached
as embedded frames (iframes) by means of some windowing library such as
jQueryUI4 or Dojo5. Each TDA engine has some function for processing com-
mands. For desktop-based TDA tools, TDA takes care of calling the appropriate
function for the given command, since the engines are attached locally. How-
ever, for web-based applications, engines are at the client side. Thus, we need

2 http://directwebremoting.org/.
3 we do not need a manager for events, see Sect. 4.3.
4 http://jqueryui.com/.
5 http://dojotoolkit.org/.

http://directwebremoting.org/
http://jqueryui.com/
http://dojotoolkit.org/


58 S. Kozlovics

some client-side command manager, which determines the correct engine and
its iframe, and passes the command to that frame. For web-based TDA, the
manager can be a part of Environment Engine. It listens for command messages
from the server. Then, given a command object, the manager searches for a
corresponding Frame object in the model repository (each presentation engine
must have created such object). Since Environment Engine already maintains a
map that associates Frame objects with iframes, the command manager can use
this map to get the correct iframe and forward the command message to it.

4.2 Asynchronous Issues

The major arguments for introducing asynchronous calls between the client and
the server are as follows:

– When some engine (running in the browser) emits an event, some event-
handling transformation is called at the server side. In order not to freeze
the browser (taking into a consideration the network latency and the event
handling transformation execution time), event handling should be asynchro-
nous.

– When some transformation at the server side creates a command for some
presentation engine, the engine usually needs to repaint some GUI elements.
There is only one JavaScript thread in the browser; the thread is common to all
engines, thus, command processing should not block other engines. Moreover,
a separate GUI thread (which is the JavaScript browser thread is our case) is a
de facto best practice standard (otherwise, deadlocks are inevitable) [10]. Since
there is only one GUI thread, all GUI operations must be enqueued (as it is
in the case of JavaScript operations), and thus, they cannot be synchronous6.

– When some transformation at the server side creates a command for some
engine, it must not block the server. Then other users can use the server
resources, while the asynchronous command is being executed at the first
user’s browser.

Based on this, we require all events and commands of web-based engines to be
asynchronous7. Thus, when a command or an event is being submitted, the caller
thread is not blocked. If a callback is needed, an engine can emit an event, when
it finishes processing the command, and a transformation can issue a command
after the event has been handled. In the latter case, if the engine needs to repaint
its presentation, it can use some optimistic prediction technique to visualize the
expected state before the transformation finishes (the state can be adjusted later,
if needed).

To support asynchronous communication, we introduce the AsyncCommand
class in the metamodel (all events have been already asynchronous in TDA).
6 Similar approach is used in traditional GUI libraries, such as Java Swing (the

function SwingUtilities.invokeLater), JavaFX (the function Platform.runLater), Bor-
land/Embarcadero VCL (the Synchronize function), etc.

7 Any bi-directional communication technique mentioned in Sect. 4.1 can be used asyn-
chronously.



Models and Model Transformations Within Web Applications 59

Since all GUI commands of existing presentation engines are asynchronous, we
can just make them subclasses of AsyncCommand. The TDA event/command
mechanism now checks whether the given command is asynchronous. If yes, the
command is forwarded to the corresponding engine. For desktop-based tools,
TDA supports synchronous command calls as well (thus, when the transforma-
tion emits a command, the control is returned only when the command execution
has finished).

4.3 Accessing the Model Repository from the Server
and from the Client

Since model transformations use the model repository intensively, it is reason-
able to run the repository at the server side. Before sending commands (with
their context) to engines, commands are serialized. We may expect that the seri-
alization should contain all the necessary information for the engine. However,
engines may need to access objects that are not directly linked to the commands
(not in the context). The full context serialization (or the full repository seri-
alization in the worst case) is unreasonable, if the engine has to visualize just
some of the objects. Also, when an event occurs, the engine needs to store it in
the repository. Thus, some means to access the repository from the client side
(engine side) is needed. There are two approaches:

– Provide some client-side query mechanism, while keeping the repository at the
server side.

– Synchronize the repository between the client and the server

The first approach requires some query language. Our first approximation is to
provide functions such as findObjects, loadObjects, storeObjects, and deleteOb-
jects. The arguments and the result are in the JSON syntax (see Fig. 2).

The second (synchronization) approach requires some means to synchronize
the server-side repository with some client-side data structure, containing the
same model. The synchronization can be done in several ways:

– By means of bi-directional HTTP implementations (e.g., COMET). Since
HTTP connection has to be established on each message (and this involves cer-
tain delay), it is reasonable to synchronize models in batch mode. For instance,
repository write operations can be recorded at the server side while a trans-
formation is being executed. When a command is being issued, the collected
write operations are serialized and sent to the client browser. Likewise, while
an engine is performing some operations, all model changes are recorded and
then sent back to the server on events.

– By means of web sockets. The benefits of web sockets are:
• the connection has to be established only once;
• keeping the connection alive involves almost no overhead;
• the connection is asynchronous, but the order of messages is preserved;
• data do not need to be serialized, since binary communication is possible.



60 S. Kozlovics

Fig. 2. (a) A JSON object representing a query for findObjects for finding a Person
with the given name. (b) A possible result of that query. Links are encoded as JSON
arrays. Two special attributes, reference and class, specify the object identifier in the
model repository and the class name, respectively. The loadObjects function can be
used then to get attribute values for objects 1002 and 1003.

Thus, all repository write operations can be sent to a web socket right away,
without introducing a special buffer for batch processing.

– By means of existing infrastructures, which provide automatic data synchro-
nization. For instance, we can use the Meteor8 infrastructure for that. Meteor
stores data on the server side in a MongoDB and implements a common query
language for both the server and the client, while keeping data synchroniza-
tion transparent. While MongoDB is optimized for efficient queries, it has slow
write operations.

Unfortunatelly, the client-side query mechanism as well as the HTTP syn-
chronization requires data serialization/deserialization to/from JSON syntax.
It proved to be slow in our experiments, where it may take around 2 seconds
to serialize/deserialize graph diagrams of moderate size (around 100 elements),
including network delay. The Meteor/MongoDB approach is optimized for effi-
cient queries, but it has slow write operations (around 10000 write operations
per second on a 3.4 GHz i7 processor, including optimizations). Our experiments
show that existing transformations use write operations quite intensively (see
Sect. 4.5), thus, only a small number of users can be connected to a web appli-
cation without exceeding the processor power limits. The only feasible solution
(from the above) is to use web sockets. In fact, web sockets allow data synchro-
nization to be performed in parallel with computation. Still, we need some means
to represent data at the client side. Binary JavaScript objects stored according
to the syntax from Fig. 2 can be used for that. If we use binary web sockets,
expensive JSON serialization can be replaced with lightweight object creations
or attribute updates. While such JavaScript objects can be “touched” directly
for read access, write access requires special functions (“setters”), since we need
to listen to the changes to be able to synchronize them back to the server. In the
example from Fig. 2, the object would be augmented with the functions setName
and setChildren.
8 https://www.meteor.com.

https://www.meteor.com


Models and Model Transformations Within Web Applications 61

The server-side repository automatically takes care of launching engines and
transformations, when command and event objects are put into the repository
and connected to the submitter object. The client-side repository replica, how-
ever, needs some adjustments. In case of Meteor, we can introduce a client-side
listener, which listens to new command objects and passes them to the client-side
command manager. In case of HTTP/web sockets, when a message is received
at the client, the message is analyzed. If the message contains a repository write
operation for connecting a command object to the submitter, the client forwards
the command to the client-side command manager.

With events, the process is much simpler. The client just creates an event
and links it to the submitter at the client side. When the event reaches the server
(during synchronization), the server-side repository will process it as usual.

We have already mentioned that code generators can be used to generate
wrappers for repository classes in different programming languages (C++, Java,
etc.) in the traditional TDA. They can still be used for server-side code, but syn-
chronized client-side JavaScript objects are already native JavaScript objects.
Thus, regardless of the programming language (and the server or client side),
developers of transformations and engines may treat repository objects as native
OOP-objects in RAM. Moreover, since the synchronization between the client
and the server is automatic, the developers can assume they are writing appli-
cations for a single PC. We believe that this is an important benefit that models
can bring. Models are like lens, beyond which network aspects can be hidden. In
addition, function calls can also be implemented in a way native to the particular
programming language by providing glue code for commands and events in the
repository.

4.4 Server-Side Engines and Client-Side Transformations

Most TDA engines are graphical and, in case of web applications, are executed
in the browser. Still, some engines can perform certain computation without
the need to visualize anything, but requiring server resources (e.g., intensive
computations are inefficient, if running as browser scripts). On the other hand,
it may be reasonable to develop certain model transformations in JavaScript to
be executed directly in the browser (e.g., small GUI event handlers, which may
need just to adjust the presentation). Thus, server-side engines and client-side
transformations are needed.

Technically, if an engine does not have any own graphical presentation, it
can be executed at the server side by means of existing TDA event/command
mechanism. When a command for a not-web-based engine is created, it is passed
to some adapter at the server side, which executes the command.

For client-side event handlers the process is not that easy. We need a client-
side event manager, which monitors write operations that are sent from the
client to the server. If an event is being sent, the client-side event manager gets
the associated event listener (its name is stored in the repository). If the corre-
sponding event listener is written in JavaScript and has to be run at the client
side, the event manager executes that listener right away. The event may still be



62 S. Kozlovics

posted to the server, where the corresponding client-side JavaScript adapter will
be searched. Since no such adapter exists (or, we may create a fictive adapter,
which ignores all its events), the event will not be executed at the server side.
Another option is just not to post the event to the server, but then the client and
the server repositories would not be identical until the event object is deleted at
the client side.

If all transformations are client-side transformations (called as event han-
dlers), then the whole application can be run within a web browser. To persist
the model, either a server-side repository, or a third-party cloud storage can
be used. For instance, DropBox9 and OneDrive10 files can be used to store the
serialized models (public APIs are available). If no server-side transformations
and engines are present, then no model synchronization is needed. Models can
be loaded from the cloud, when the web application is loaded, and saved on exit
(or on regular basis).

4.5 Multi-user Issues

For authentication we can use a traditional login/password approach, or delegate
the authentication to third parties (such as Google or Facebook). Web-based
Environment Engine implement the client-side authentication, while the server
process performs necessary checks and marks the given user (associated with the
given HTTP session) as logged in. For Meteor-based variant, we can use Meteor
authentication with plugins.

For traditional desktop-based TDA we used our proprietary repositories
(MII REP/OUR and JR) as well as ECore files to store models [8,31,33]. Since
there may be multiple users accessing their models at the same time, for web-
based TDA we can use a traditional or no-SQL database as well. Databases
implement all necessary services, such as disk cache, optimized search, support
for multiple threads/processes, etc., which are essential in a multi-user environ-
ment.

It is reasonable that one server process is dedicated to the web-server.
Another one may be dedicated for the database. Depending on the number
of processor cores at the server, we can create N worker processes, which can
be used to execute server-side transformations and engines. Ideally, N would be
equal to the number of processor cores minus 2, since 2 processes are occupied
by the web server and the database. Each server-side transformation or engine
call is enqueued and then processed by one of the N “workers”.

Another solution is to create N workers, where each worker has its own in-
memory database (instead of a common single database). Thus, we do not need
a dedicated database process, and if the number of users does not exceed N, they
can use the server in parallel. When the N + 1-th user comes in, the in-memory
database of the user, who was idle for the longest time, is flushed to the disk,
and the repository of the new user is loaded in that place.

9 https://www.dropbox.com.
10 https://onedrive.live.com.

https://www.dropbox.com
https://onedrive.live.com


Models and Model Transformations Within Web Applications 63

In case of some runtime exception in a server-side transformation, the corre-
sponding worker process can be terminated (and a new “healthy” process can be
launched for further transformations). In case of a common database, the previ-
ous repository state (before the error) has to be restored. In case of in-memory
database, no actions are required (since repository flushing to disk is performed
only after successful execution of server-side transformations).

For a server having 8 GB RAM, we can assume 4 GB are free. Taking into a
consideration our experience with desktop-based TDA, the 100 MB upper bound
for each in-memory repository seems to be reasonable. Thus, a single server can
serve up to 40 users without swap. Based on our existing experience, we can
assume that each transformation performs 1000 model operations on average11.
Thus, we have 40000 model operations per 40 users, where 10000, could be write
operations and 30000 read operations. Our in-memory repositories can deal with
40000 operations in a few milliseconds. Since repository actions are synchronized
asynchronously at once, we just need to add the network delay (usually, 100–
200 ms), thus the total time is below one second, which is considered adequate
[26,27]. MongoDB (used by Meteor), in its turn, has slow write operations (10000
write operations could be executed in 1000 ms on a 3.40 GHz processor, if we use
the batch mode). Thus, we can assume 10000 write operations take one second,
while other 30000 read operations take another second, resulting in 2 s, which is
less efficient and is at the bound of the “seamless” user experience [28].

Notice that the calculations above are at the full load of 40 users, who emit
events each 1 or 2 s. In practice, transformations are called occasionally, thus,
more users can be connected and using server resources without interference
(still, for the in-memory solution, repository flushing/loading may be required).
As a result, the number of simultaneously connected users may reach several
hundreds. For thousands of users, we need to configure load-balancing between
multiple servers. While the number of 10000 users is considered appropriate for
existing operating systems (the C10K problem), serving millions of users (the
C10M problem) requires bypassing the OS by using sophisticated techniques
(and currently this is not our goal).

5 Related Work

In 2007, de Castro et al. presented an MDA-based approach for developing
service-oriented web applications [17]. This approach has been applied using
the AMMA tools and the ATL transformation language for modeling web appli-
cations [1,3,12]. A different, but also MDA-based approach was used in Visual-
Wade12 (currently obsolete). It was intended as a out-of-box product for gener-
ating PHP code for web applications from source models, which could be defined
graphically with a few mouse clicks. While models were used at the development
stage, traditional databases such as MySQL, PostreSQL, and ORACLE were
11 These are transformations with non-intensive computation, as transformations in

existing TDA-based tools.
12 http://visualwade.software.informer.com/.

http://visualwade.software.informer.com/


64 S. Kozlovics

used at runtime. Other similar tools include WebRatio13 (using Web Modeling
Language, WebML14) and OpenUWE (using the ArgoUWE, an ArgoUML-base
tool) followed by MagicUWE [11,21]. The WebSA approach also uses MDA, but
explicitly focuses on the functional requirements of web applications [9]. WebTA
is a transformation engine specifically designed to bring transformations into
WebSA [25]. An extensive survey on different MDA-based approaches for web
applications can be found in the article by Schwinger and Koch [32]. Still, all
these approaches use models and transformations at development time. This
differs from our approach, where models and transformations are executed at
runtime. Currently, the MDA/MDE field is in the state of stagnation (espe-
cially, after the Bezivin “Why did MDE miss the boat?” talk in 2011 [13]). We
believe that our web-based approach can give a new breath to models, thus new
results in the field can appear.

While we use either a model repository or a database to store models, one can
use third-party cloud storage for that (reasonable, when all transformations and
engines are running at the client side). While we can use any file format for that,
using spreadsheets (like Google spreadsheet15 or Microsoft Excel online16, which
have JavaScript APIs) and the appropriate encoding (e.g., sheets are classes,
rows are objects, and columns are attribute values), we also get a free tabular
repository browser for debug purposes as a by-product.

The EASA Spreadsheet Deployment platform is an interesting approach to
creating web application from Excel files [2]. The Excel file is treated as a source
model, from which an out-of-box web application is obtained.

Google Apps Script17 is a platform to developing web applications intended
to be run in a web browser. Google provides a graphical form designer, where
JavaScript code can be attached to user events (clicks). Since applications are
being executed in a web browser, additional services are required to persist data
(e.g., to store user projects). Since Google Apps Script integrates with Google
services, Google Drive can be used as a storage device. Still, if we need certain
server-side computation or access to some proprietary database, the integration
does not work; we need to create a web-service or some API for that. Thus, the
system becomes heterogeneous. In contrast, our TDA-based approach provides
persistency automatically, since all the models are saved in a repository. Both
the server and the client use the same model (and they do not need to be aware of
model synchronization). The TDA event/command mechanism is a unified way
to call transformations (functions) or web-services regardless of their location
and particular protocols used.

RollApp18 is an interesting solution for bringing existing desktop applications
to the web. It builds a Linux-based virtual environment, where the content of the

13 http://www.webratio.com/.
14 http://www.webml.org/.
15 https://apps.google.com/products/sheets/.
16 https://office.live.com/start/Excel.aspx.
17 https://www.google.com/script/start/.
18 https://www.rollapp.com/.

http://www.webratio.com/
http://www.webml.org/
https://apps.google.com/products/sheets/
https://office.live.com/start/Excel.aspx
https://www.google.com/script/start/
https://www.rollapp.com/


Models and Model Transformations Within Web Applications 65

application window is sent to the browser (technically, this can be implemented
easily, since X Window System already implements that feature). File dialogs
are redirected to the cloud storage. Since not all programs are supported and
mainly they are open source, we can assume that certain minor modifications
of code are required. RollApp is a paid subscription. A a free plan, where the
changes could not be saved, is also available. Although this solution provides
a universal way of bringing desktop applications to the web, it requires much
more server resources (processor and memory for creating a virtual environment)
than creating web applications by means of traditional web technologies, where
resources can be shared among multiple users more efficiently.

The m-Power19 platform branch can be traced back to 1983. The goal is to
build a web-interface for legacy applications. The platform uses traditional data-
bases and Java for the resulting applications, and the process is not model-driven.
We believe that models help the developers think at a higher level of abstrac-
tion, which is proposed by our approach. However, in case of legacy applications,
which usually are not model-based, m-Power could be a better solution.

6 Conclusion

The paper provided a sketch of a TDA-based solution for developing web appli-
cations using models and model transformations at runtime. We have imple-
mented a prototype, using the ECore repository for model storage. The proto-
type includes:

– the web-based Environment Engine (utilizing the Dojo toolkit for attaching
child windows);

– a simple client-side query language (utilizing the JSON syntax mentioned in
the paper) for accessing server-side repository from the client;

– some web-based engines, which have been developed or re-written in
JavaScript.

A recent TDA-based DataGalaxy tool can be considered as approbation of the
main ideas of the approach [23]. Since this tool has only web-based engines, they
can be used in both desktop and web modes without change. Java transforma-
tions can also be used either as ordinary TDA transformations, or server-side
transformations. Thus, the same code base can produce both desktop-based and
web-based versions of DataGalaxy. This is the main strength of the approach.

We are working on developing web versions of engines used in our desktop-
based ontology editor OWLGrEd, thus, OWLGrEd (as well as some other tools)
can be launched in the web in the near future. The main benefit of our app-
roach is that web based tools can be treated by developers as desktop-based
tools. Another benefit comes from models. Models provide a universal platform-
independent encoding for data as well as for operations. In the future this can
lead to a high-level network-transparent RAM analog. We believe that the poten-
tial power of models will eventually reveal itself, if we start using models in the
web.
19 http://www.mrc-productivity.com.

http://www.mrc-productivity.com


66 S. Kozlovics

Acknowledgments. The work has been supported by Latvian State Research pro-
gramme (2014–2017) NexIT project No.1 ‘Technologies of ontologies, semantic web and
security’.

References

1. ATL use case - modeling web applications. http://www.eclipse.org/atl/usecases/
webapp.modeling/

2. EASA Spreadsheet Deployment. http://www.easasoftware.com/solutions/
spreadsheet-deployment/

3. Allilaire, F., Idrissi, T.: ADT: Eclipse development tools for ATL. In: Proceedings
of Second European Workshop on Model Driven Architecture (2004)

4. Barzdins, G., Liepins, E., Veilande, M., Zviedris, M.: Ontology enabled graphical
database query tool for end-users. Frontiers in Artificial Intelligence and Applica-
tions, vol. 187, pp. 105–116. IOS Press (2008)

5. Barzdins, J., Barzdins, G., Cerans, K., Liepins, R., Sprogis, A.: OWLGrEd: a UML
style graphical notation and editor for OWL 2. In: Proceedings of OWLED 2010
(2010)

6. Barzdins, J., Cerans, K., Kalnins, A., Grasmanis, M., Kozlovics, S., Lace, L.,
Liepins, R., Rencis, E., Sprogis, A., Zarins, A.: Domain specific languages for busi-
ness process management: a case study. In: Proceedings of DSM 2009 Workshop
of OOPSLA 2009, pp. 34–40, Florida, USA (2009)

7. Barzdins, J., Kozlovics, S., Rencis, E.: The Transformation-Driven Architecture.
In: Proceedings of DSM 2008 Workshop of OOPSLA 2008, pp. 60–63, Nashville,
Tennessee, USA (2008)

8. Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,
Podnieks, K.: Towards semantic Latvia. In: Vasileckas, O., Eder, J., Caplinskas, A.
(eds.) Proceedings of Seventh International Baltic Conference on Databases and
Information Systems, Communications, Lithuania, Vilnius pp. 203–218 (2006)

9. Beigbeder, S.M., Castro, C.C.: An MDA approach for the development of web
applications. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS,
vol. 3140, pp. 300–305. Springer, Heidelberg (2004)

10. kgh blog: Multithreaded toolkits: A failed dream? Originally. https://community.
oracle.com/people/kgh/blog/2004/10/19/multithreaded-toolkits-failed-dream,
http://tecnologia.revistacocktel.com/multithreaded-toolkits-a-failed-dream/.
Accessed 5 May 2016

11. Busch, M., Koch, N.: MagicUWE – a CASE tool plugin for modeling web applica-
tions. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol.
5648, pp. 505–508. Springer, Heidelberg (2009)

12. Bzivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: The AMMA platform support
for modeling in the large and modeling in the small. Technical report, LINA,
Universite de Nantes (2005)

13. Bzivin, J.: Why did MDE miss the boat? In: First International Workshop on
Combined Object-Oriented Modeling and Programming (COOMP 2011) (2011)

14. Cabot, J.: Clarifying concepts: MBE vs MDE vs MDD vs MDA.
Post at MOdeling LAnguages. http://modeling-languages.com/
clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/

15. Carbou, M.: Reverse Ajax, Part 1: Introduction to Comet. http://www.ibm.com/
developerworks/library/wa-reverseajax1/index.html. Accessed 5 May 2016

http://www.eclipse.org/atl/usecases/webapp.modeling/
http://www.eclipse.org/atl/usecases/webapp.modeling/
http://www.easasoftware.com/solutions/spreadsheet-deployment/
http://www.easasoftware.com/solutions/spreadsheet-deployment/
https://community.oracle.com/people/kgh/blog/2004/10/19/multithreaded-toolkits-failed-dream
https://community.oracle.com/people/kgh/blog/2004/10/19/multithreaded-toolkits-failed-dream
http://tecnologia.revistacocktel.com/multithreaded-toolkits-a-failed-dream/
http://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
http://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
http://www.ibm.com/developerworks/library/wa-reverseajax1/index.html
http://www.ibm.com/developerworks/library/wa-reverseajax1/index.html


Models and Model Transformations Within Web Applications 67

16. Carbou, M.: Reverse Ajax, Part 2: WebSockets. http://www.ibm.com/
developerworks/library/wa-reverseajax2/index.html. Accessed 5 May 2016

17. de Castro, V., Vara, J., Marcos, E.: Model transformation for service-oriented web
applications development. In: Workshop Proceedings of 7th International Confer-
ence on Web Engineering, pp. 284–198 (2007)

18. Dubray, J.J.: Why did MDE miss the boat? (A summary). InfoQ News, 27 Oct
2011. http://www.infoq.com/news/2011/10/mde-missed-the-boat

19. IETF: The WebSocket protocol. RFC 6455. https://tools.ietf.org/html/rfc6455
20. Kern, C.: Securing the tangled web. Commun. ACM 57(9), 38–47 (2014). http://

dx.org/10.1145/2643134
21. Knapp, A., Koch, N., Moser, F., Zhang, G.: ArgoUWE: a CASE tool for web

applications. In: Proceedings of the 1st International Workshop on Engineering
Methods to Support Information Systems Evolution (EMSISE 2003) (2003)

22. Kozlovics, S., Barzdins, J.: The transformation-driven architecture for interactive
systems. Autom. Control Comput. Sci. 47(1/2013), 28–37 (2013). Allerton Press
Inc

23. Kozlovics, S., Rucevskis, P.: Manipulating and visualizing data by means of data
galaxies. Frontiers in Artificial Intelligence and Applications, vol. 270, pp. 85–98.
IOS Press (2014)

24. Liepiņš, R.: Library for model querying: IQuery. In: Proceedings of the 12th Work-
shop on OCL and Textual Modelling, OCL 2012, pp. 31–36. ACM, New York
(2012)

25. Meliá, S., Gómez, J., Serrano, J.L.: WebTE: MDA transformation engine for web
applications. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS,
vol. 4607, pp. 491–495. Springer, Heidelberg (2007)

26. Miller, R.: Response time in man-computer conversational transactions. In: Pro-
ceedings of AFIPS Fall Joint Computer Conference, vol. 33, 267–277 (1968)

27. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1993)
28. Nielsen, J.: Website response times (2010). https://www.nngroup.com/articles/

website-response-times/
29. Object Management Group: MDA Success Stories. http://www.omg.org/mda/

products success.htm
30. Object Management Group: Model Driven Architecture. http://www.omg.org/

mda/
31. Opmanis, M., Čerāns, K.: Multilevel data repository for ontological and meta-

modeling. In: Databases and Information Systems VI - Selected Papers from the
Ninth International Baltic Conference, DB&IS 2010 (2011)

32. Schwinger, W., Koch, N.: Web engineering: the discipline of systematic develop-
ment of web applications (chap.) In: Modeling Web Applications, pp. 39–64. Wiley,
Hoboken (2006)

33. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Reading (2008)

http://www.ibm.com/developerworks/library/wa-reverseajax2/index.html
http://www.ibm.com/developerworks/library/wa-reverseajax2/index.html
http://www.infoq.com/news/2011/10/mde-missed-the-boat
https://tools.ietf.org/html/rfc6455
http://dx.org/10.1145/2643134
http://dx.org/10.1145/2643134
https://www.nngroup.com/articles/website-response-times/
https://www.nngroup.com/articles/website-response-times/
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/
http://www.omg.org/mda/

	Models and Model Transformations Within Web Applications
	1 Introduction
	2 Traditional Approach
	3 Bringing Models to the Web
	4 Dealing with the Issues
	4.1 Bi-Directional Communication Issues
	4.2 Asynchronous Issues
	4.3 Accessing the Model Repository from the Server and from the Client
	4.4 Server-Side Engines and Client-Side Transformations
	4.5 Multi-user Issues

	5 Related Work
	6 Conclusion
	References


