
Web News Sentence Searching
Using Linguistic Graph Similarity

Kim Schouten and Flavius Frasincar(B)

Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands
{schouten,frasincar}@ese.eur.nl

Abstract. As the amount of news publications increases each day, so
does the need for effective search algorithms. Because simple word-based
approaches are inherently limited, ignoring much of the information in
natural language, in this paper we propose a linguistic approach called
Destiny, which utilizes this information to improve search results. The
major difference from approaches that represent text as a bag-of-words
is that Destiny represents sentences as graphs, with words as nodes and
the grammatical relations between words as edges. The proposed algo-
rithm is evaluated using a custom corpus of user-rated sentences and
compared to a TF-IDF baseline, performs significantly better in terms
of Mean Average Precision, normalized Discounted Cumulative Gain,
and Spearman’s Rho.

Keywords: News search · Natural language processing · Graph
similarity

1 Introduction

Nowadays, a significant portion of our mental capacity is devoted to the gath-
ering, filtering, and consumption of information. With many things that are
considered to be newsworthy, like updates from friends, twitter messages from
people we follow, news messages on websites, and the more classical form of news
like articles and news items, the amount of textual data (not to mention mul-
timedia content) has become too large too handle. Even when considering only
news items like articles, the number is overwhelming. And while some people
can safely ignore lots of the news items, others are obliged to keep up with all
the relevant news, for example because of their job.

While smart heuristics like skimming and scanning texts is of great benefit,
it can only go so far. People, like investment portfolio managers, who have to
monitor the stock of a certain group of companies, have to keep track of all
news concerning these companies, including industry-wide news, but also that
of competitors, suppliers, and customers. Therefore, being able to intelligently
search news on the Web, for example to rank or filter news items, is paramount.
Although text searching is very old, especially in computer science terms, the
advance of new paradigms like the Semantic Web, has opened the way for new
ways of searching.
c© Springer International Publishing Switzerland 2016
G. Arnicans et al. (Eds.): DB&IS 2016, CCIS 615, pp. 319–333, 2016.
DOI: 10.1007/978-3-319-40180-5 22



320 K. Schouten and F. Frasincar

This paper addresses one of these new search techniques, namely the search
for news sentences. Searching for specific sentences enables the user to both
search across and within documents, with the algorithm pointing the user to
exactly the sentences that matches his or her query. With a previous publica-
tion [17] outlining the general concept of such a method, this paper aims to
discuss the method in detail, providing additional analyses, and more insight
into the actual workings of the algorithm.

2 Related Work

The over two decades worth of Web research has yielded several approaches to
Web news searching. The most widely used approach is based on computing
similarity by means of vector distances (e.g., cosine similarity). All documents
are represented as a vector of word occurrences, with the latter recording either
whether that word is in the document or not, or the actual number of times the
word occurs in the document. Often only the stemmed words are used in these
vector representations. The main characteristic of these methods is their bag-of-
words character, with words being completely stripped of their context. However,
that simplicity also allows for efficient and fast implementations, a useful trait
when trying to provide a good Web experience. In spite of its simplicity, it has
shown to perform well in many scenarios, for example in news personalization [1],
but also in news recommendation [3]. Being the de facto default in text searching,
TF-IDF [15], arguably the most well-known algorithm in this category, has been
chosen to serve as the baseline for the evaluation of the proposed algorithm.

With the advance of the Semantic Web, a move towards a more semantic way
of searching has been made. This includes the use of natural language processing
to extract more information from text and storing the results in a formally
defined knowledge base like an ontology. An example of such a setup can be
found in the Hermes News Portal [8,16], where news items are annotated using
an ontology that links lexical representations to concepts and instances. After
processing the news items in this way, querying for news becomes a simple matter
of selecting the ontology concepts of interest and all news items being annotated
with these concepts are returned. Comparable to this is Aqualog [12], a question
answering application which is similar in setup as Hermes, and SemNews [9], a
news platform like Hermes using its own knowledge representation.

Unfortunately, because searching is performed in the ontology instead of the
actual text, only concepts that are defined in the ontology and correctly found
in the text can be returned to the user. A deeper problem however is caused by
the fact that ontologies are formally specified, meaning that all information in
the text first has to be translated to the logical language of the ontology. While
translation always makes for a lossy transformation, in this case it is worse as the
target language is known to be insufficient to represent certain natural language
sentences. Barwise and Cooper [2] proved that first-order logic is inadequate
for some types of sentences, and most ontologies are based on propositional or
description logics which have even less expressive power.



Web News Sentence Searching Using Linguistic Graph Similarity 321

3 Problem Definition

Using the linguistic principles [6] of homophonic meaning specification and com-
positionality, a natural way of representing text is a graph of interconnected
disambiguated words, with the edges representing the grammatical relations
between words. While this representation is not as rich in semantics as an ontol-
ogy, it avoids the problems of ontology-based approaches while at the same time
providing more semantics than traditional word-based approaches.

With both the news items and the query represented by graphs, the prob-
lem of searching for the query now becomes related to graph isomorphism: the
algorithm needs to rank all sentence graphs in the news database according to
similarity (i.e., the measure of isomorphism) with the graph that describes the
user query. Since we need a measure of isomorphism instead of exact graph
isomorphism, we cannot simply implement Ullmann’s algorithm [18].

This approximate graph isomorphism has a much larger search space than
regular graph isomorphism which already is an NP-complete problem [4]. There
are however some constraints that make the problem more tractable. Because
all graphs are both labeled and directed, they can be referred to as attributed
relational graphs, which are easier to deal with in this regard than unlabeled or
undirected graphs. Furthermore, missing edges in the query graphs are allowed
to be present in the news item graph (i.e., this is related to induced graph
isomorphism), a characteristic which also makes the problem easier to solve
since now the algorithm only has to check for the query’s edges in the news
sentence graph and not the other way around.

We have chosen to use an augmented version of the backtracking algorithm
described in [13] to compute the graph similarities. The original algorithm iter-
ates through the graph, checking with each step whether adding that node or
edge to the partial solution can still yield a valid final solution. Because of this
check, partial solutions that are known to be incorrect can be pruned, thus limit-
ing the search space. Because parse graphs are labeled graphs, nodes can only be
matched to nodes when their labels are identical, again limiting the search space.
However, this will not work when considering measures of similarity or approx-
imate matches. Then, its backtracking behavior is essentially lost as adding a
node never renders a solution invalid, only less relevant. Because of this we can
only speak of a recursive algorithm in the case of approximate matching. Such
a recursive algorithm would assign similarity scores to all nodes and edges in
the solution graph, and the sum of all these similarity scores would be the final
score for this solution.

4 The Destiny Framework

The Destiny framework is the implementation that follows from the above dis-
cussion. It has two main tasks: first, it transforms raw text into a graph, and
second, it ranks all graphs in a database based on similarity with a given user
graph. In the current use case, news items are transformed into graphs and stored



322 K. Schouten and F. Frasincar

in a database. The user graph represents the user query which is executed on
the database.

4.1 News Processing

A natural language processing pipeline has been developed that transforms raw
text into a grammatical dependencies-based graph representation. The pipeline
consists of a set of components with a specific natural language processing task
that are consecutively ordered, each processing the result of the previous compo-
nent, sending the outcome as input to the next component in the pipeline. The
same pipeline is used to process both news items and user queries. An overview
of the pipeline design is given in Fig. 1. The top half denotes the process of news
transformation, whereas the bottom half denotes the process of searching the
news.

Fig. 1. Conceptual representation of framework

The pipeline is constructed on top of the GATE framework [5]. The same
framework comes packaged with an extensive set of components, hence three
out of the seven components are simply standard GATE components: the tok-
enizer to determine word boundaries, the sentence splitter to determine sentence
boundaries, and the morphological analyzer to lemmatize words. While a default
GATE component exists for the Stanford Parser [11], a slightly modified version
is used to take advantage of a newer version of the parser itself. Porter’s stem-
ming algorithm [14] is used to determine the stem of each word.

The parser can be considered the main component of the pipeline, since it is
responsible for finding the grammatical dependencies, thus directly influencing
the graph output. Furthermore, it provides Part-of-Speech (POS) tags, essential
information regarding the grammatical type of words (e.g., noun, verb, adjective,
etc.). Based on the information extracted thus far, the graph builder component
can construct a graph representation for all sentences. First, a node is generated
for each word, encoding all known information about that word, like its POS,
lemma, etc., in the node. Then, each syntactical dependency between words
is used to generate an edge between the corresponding nodes, with the type



Web News Sentence Searching Using Linguistic Graph Similarity 323

Fig. 2. Graph representation of the example sentence

of syntactical dependency encoded as an edge label. Even though a word can
appear more than once in a sentence, each instantiation of that word has its own
unique grammatical role in the sentence. As such it has its own dependencies,
and is therefore represented as a unique node in the resulting graph as well.

An example of a graph dependencies representation of a sentence is shown in
Fig. 2. As can be seen, some words are integrated into an edge label, in particular
prepositions and conjunctions do not receive their own node. Integrating them
in an edge label gives a tighter and cleaner graph representation.

The last step of this process is the disambiguation of words, where the correct
sense of a word is determined and encoded in the corresponding node. Having the
word senses allows the search process to compare words, not only lexically, which
would not be very accurate in a number of situations, but also semantically.
Even better, the search algorithm can effectively use this information to find
relations of synonymy and hypernymy between words, something that would not
be possible otherwise. Because the development of a word sense disambiguation
algorithm is outside the scope of this paper, an existing, widely used, algorithm
is implemented: the simplified Lesk algorithm [10].

4.2 News Searching

The news search algorithm is essentially a ranking algorithm, where all sentences
in the database are ranked according to their similarity to the user query graph.
As such, its core element is the part where the similarity between a sentence in
the database and the user query is determined. This is the graph comparison,
for which we decided to use a recursive algorithm.

However, an initial hurdle is the problem of finding a suitable starting point
from where the graph comparison can commence. Since the structure of sentences
can vary greatly, it would not suffice to simply start comparing at the root of
both sentence graphs. On the other hand, comparing each node with every other
node would be too computationally expensive. As a compromise, each noun
and verb is indexed by stem and are used as starting location for the graph



324 K. Schouten and F. Frasincar

comparison, the intuition being that nouns and verbs are the most semantically
rich words in a sentence. In practice, this means that for each noun and verb in
the query sentence, an index lookup is performed, returning a list of nodes that
would be suitable to start searching from for that node in the query graph. The
recursive graph comparison algorithm is then executed for each of those nodes,
however, each pair of (query sentence, news sentence) is associated with (and
thus ranked according to) only the highest score over all runs. Suboptimal scores
are discarded. This process is described in Eq. 1.

sentenceScore(query, sentence) =
max

startNodek∈sentence
score(query, startNodek)

(1)

where startNodek denotes the kth starting node for this query. The implemen-
tation of this formula is represented in the pseudocode of method search in
Algorithm 1. This algorithm makes use of compare, which is described in Algo-
rithm 2, to compute the raw scores. Being a recursive function, Algorithm 2 also
calls itself with the next set of parameters to be compared. The object holding
the raw score is forwarded as a parameter as well, so that each recursive loop will
add some points to the overall raw score when applicable. Algorithm 2 uses two
methods: similarityEdge and similarityNode, which compute the similarity
scores for the edges and nodes, respectively.

Algorithm 2 compares the two graphs by first comparing the two starting
nodes in the query graph and a news sentence graph. Then, using the edges
of both nodes, the most suitable set of two nodes is determined to continue
the graph comparison. This is done by looking one node ahead: the algorithm
compares each connected node of the ‘query node’ with each connected node
of the ‘news node’ to find the best possible pair. By means of a threshold,
any remaining pairs with a preliminary score that is below the threshold are
discarded. An additional effect of this policy is that when the preliminary score
of a node is too low to be visited, its children will be discarded as well. While
discarding regions of the graph that are likely to be irrelevant saves time, errors
can also be introduced. As such this is a design choice, trading off a possible
increase in accuracy against a decrease in running time. In the pseudocode, the
process of looking ahead and finding the best pair of nodes to continue the graph
comparison, if any, is encoded as a call to getBestScoringEdge, which can
be found in Algorithm 2. The recursive process will thus continue until either
all nodes have been visited or no suitable matching pair is available for the
remaining unvisited nodes that are connected to at least one visited node.

The similarity score of a news sentence with respect to the query sentence is
essentially the sum of similarity scores of all selected pairs of nodes and pairs of
edges. As such the actual score is determined by the similarity function of two
nodes and the corresponding one for edges. While edges only have one feature,
nodes have many aspects that can be compared and proper weighting of all
these features can substantially improve results. As such, all feature weights



Web News Sentence Searching Using Linguistic Graph Similarity 325

Algorithm 1. Pseudocode for the search algorithm
1: function search(Document query, List of Documents processedDocuments) : SortedList
2: Initialize finalResults as SortedList of Scores
3: Initialize allScores as SortedList of Scores
4: Initialize matchedSentences as List of Strings
5: for all newsItem in processedDocuments do
6: Intialize queryStartNodes as List of Nodes
7: queryStartNodes = query.getStartNodes()
8: for all qStartNode in queryStartNodes do
9: Initialize newsStartNodes as List of Nodes

10: newsStartNodes = newsItem.getNodes(queryStartNode.getStem())
11: for all nStartNode in newsStartNodes do

/* A new Score object is created. This object will be propagated through all recursive runs
of the compare method. */

12: Initialize score as Score

/* The recursive method compare as described in Algorithm 2 is started here. When it
ends, the score collected over all recursive runs is saved. */

13: compare(qStartNode,nStartNode,score)
14: allScores.add(score)
15: end for
16: end for
17: finalResults.add(allScores.getHighestScore())
18: end for
19: return finalResults
20: end function

are optimized using a genetic algorithm, which was described in our previous
paper [17].

The similarityEdge function returns the similarity score for two edges.
Since the only attribute edges have is their label, it returns a score only when
the labels are identical. The exact score assigned to having identical edge labels
is defined using a parameter which is optimized with the employed genetic algo-
rithm. The similarityNode function is slightly more complicated as nodes have
more features that can be compared than edges. Each feature is again weighted
using the genetic algorithm to arrive at a set of optimal weights for each of the
features. The similarity score for nodes is computed as the sum of all matching
feature scores that are applicable for the current comparison.

Nodes are compared using a stepwise comparison. First, a set of five basic fea-
tures is used: stem, lemma, the full word (i.e., including affixes and suffixes), basic
POS category, and detailed POS category. The basic POS category describes the
grammatical word category (i.e., noun, verb, adjective, etc.), while the detailed
POS category gives more information about inflections like verb tenses and nouns
being singular or plural. For each feature, its weight is added to the score, if and
only if the values for both nodes are identical.

If the basic POS category is the same, but the lemma’s are not, there is
the possibility for synonymy or hypernymy. Using the acquired word senses and
WordNet [7], both nodes are first checked for synonymy and if so, the synonymy



326 K. Schouten and F. Frasincar

Algorithm 2. Pseudocode for the raw score computation
1: procedure compare(currentQueryNode, currentNewsNode, score)
2: Initialize nodeScore as double

/* The two nodes are compared, and their similarity score is added to the total score. Both
nodes are now marked as being visited. */

3: nodeScore = similarityNode(currentQueryNode,currentNewsNode)
4: score.addScore(nodeScore)
5: currentQueryNode.setVisited(true)
6: currentNewsNode.setVisited(true)

/* Now the parents and children of both nodes need to be compared. */
7: Initialize queryEdges as List of Edges
8: queryEdges = currentQueryNode.getEdges()
9: Initialize newsEdges as List of Edges

10: newsEdges = currentNewsNode.getEdges()

/* Using similarityEdge and similarityNode the best possible route for the recursion
is determined by comparing queryEdge with each possible newsEdge in newsEdges in
getBestScoringEdge. This method also makes sure that parents are compared only with
parents and children only with children. If an edge exist that is good enough, the recursion
will continue through that node. */

11: for all Edge queryEdge in queryEdges do
12: Initialize Edge bestEdge
13: bestEdge = getBestScoringEdge(queryEdge,newsEdges)
14: if bestEdge �= ⊥ then
15: double edgeScore = similarityEdge(queryEdge,bestEdge)
16: score.addScore(edgeScore)
17: queryEdge.setVisited(true)
18: bestEdge.setVisited(true)

/* Recursion can only continue if there exists an unvisited node linked to bestEdge and one
linked to queryEdge. */

19: qNextNode = getNextNode(queryEdge)
20: nNextNode = getNextNode(bestEdge)
21: if !qNextNode.isVisited() then
22: if !nNextNode.isVisited() then
23: compare(qNextNode,nNextNode,score)
24: end if
25: end if
26: end if
27: end for
28: end procedure

weight is added to the similarity score for this pair of nodes. If there is no
synonymy, the hypernym tree of WordNet is used to find any hypernym relation
between the two nodes. When such a relation is found, the weight for hypernymy,
divided by the number of steps in the hypernym tree between the two nodes is
added to the similarity score. In this way, very generic generalizations will not
get a high score (e.g., while ‘car’ has a hypernym ‘entity’, this is so general it
does not contribute much).



Web News Sentence Searching Using Linguistic Graph Similarity 327

The last step in computing the similarity score of a node, is the adjustment
with a significance factor based on the number of occurrences of the stem of that
node in the full set of news items. For words which appear only once in the whole
collection of news items, the significance value will be one, while the word that
appears most often in the collection a significance value of zero will be assigned.
Preliminary results showed that adding this significance factor, reminiscent of
the inverse document frequency in TF-IDF, has a positive effect on the the
obtained results. Equation 2 shows the formula used to compute the significance
value for a sentence node.

significancen =
log(max #stem) − log(#stemn)

log(max #stem)
(2)

where
n = a sentence node,

#stemn = how often stemn was found in news,
max #stem = the highest #stem found for any n.

Complexity Analysis. As with any action that would require a user to wait for
the results to be returned, the speed of the search algorithm is important. The
query execution speed is highly dependent on the size of the data set, as well as
on the size of the query. Furthermore, the higher the similarity between the query
and the data set, the more time it will take for the algorithm to determine how
similar these two are, as the recursion will stop when encountering too much
dissimilarity between the query and the current news item, as defined in the
threshold parameter. To give some insight into the scalability of the algorithm
with respect to the size of the data set and the size of the query, the complexity
of the algorithm (in the worst case scenario) is represented in the big-O notation:

f(n, o, p, q, r) = O(no2pqr) (3)

where
n = the # of documents in the database,
o = the # of nodes in the query,
p = the average # of nodes in the documents in the database,
q = the # of edges in the query, and
r = the average # of edges in the documents in the database.
In order to attain this (simplified) complexity, it is assumed that the number of
nodes in a query is equal to the average number of nodes in the documents in the
database, and the number of nodes is roughly equal to the number of edges for
each sentence. In practice, a query will usually be much smaller than the average
size of the documents in the database. Furthermore, this complexity, as it is a
worst-case scenario, assumes it will have to compare each node of the query to
all other nodes from the database. Again, this is usually not the case because of
the threshold value limiting the recursion.



328 K. Schouten and F. Frasincar

Interestingly, when scaling this up, the o5 will quickly be dwarfed by n,
the number of documents in the data set. We can therefore conclude that the
algorithm is linear in the number of documents in the database.

Implementation Notes. The system is developed in Java, using the Eclipse
IDE (Helios). In order to have an easy and intuitive way of storing and retriev-
ing the graph representations of text, we have chosen to use the object database
provided by db4object (www.db4o.com). To access WordNet, the Java Word-
Net Library (www.sourceforge.net/projects/jwordnet) is used. This also provides
convenient methods for determining synonymy and hypernymy relations between
synsets.

5 Evaluation

In this section, the performance of the Destiny algorithm will be measured and
compared with the TF-IDF baseline. First, some insight is given into the used
data set. Then the performance in terms of quality, including a discussion on the
used metrics, and processing speed are given. Last, a section with advantages of
using Destiny is included, as well as a failure analysis based on our experiments.

5.1 Setup

Since Destiny searches on a sentence level (i.e., not only among documents but
also within documents), a corpus of sentences is needed where each sentence is
rated against the set of query sentences. From 19 Web news items, the sentences
were extracted and rated for similarity against all query sentences. The news
items yielded a total of 1019 sentences that together form the data set on which
Destiny will be evaluated. From this set, ten sentences were rewritten to func-
tion as queries. The rewritten sentences still convey roughly the same meaning,
but are rephrased by changing word order and using synonyms or hypernyms
instead of some original words. Each sentence-query pair is rated by at least
three different persons on a scale of 0 to 3, resulting in a data set of over 30500
data points. For each sentence-query pair, the final user score is the average of
the user ratings. From these scores, a ranking is constructed for each query of
all sentences in the database.

The inter-annotator agreement, computed as the standard deviation in scores
that were assigned to the same sentence-query pair, is only 0.17. However, this
includes a lot of pairs with a score of zero. As the majority of the sentences in
the data set is completely dissimilar, a fact easily recognized by most people,
the standard deviation is severely impacted by these scores. When we exclude
all scores of zero and recompute the standard deviation, we attain a standard
deviation of 0.83, which is slightly worse.

As discussed in the previous section, the weights are optimized using a genetic
algorithm. In order to have a proper evaluation, the data set is split into a
training set and a test set. The split itself is made on the query level: the genetic

www.db4o.com
www.sourceforge.net/projects/jwordnet


Web News Sentence Searching Using Linguistic Graph Similarity 329

algorithm is trained on 5 queries plus their (user-rated) results, and then tested
on the remaining 5 queries. The results of the algorithm on those 5 queries are
compared against the golden standard. This process is repeated 32 times, for 32
different splits of the data. All splits are balanced for the number of relevant
query results, as some queries yielded a substantial amount of similar sentences,
while others returned only a handful of good results.

5.2 Search Results Quality

The performance of Destiny is compared with a standard implementation of TF-
IDF. As TF-IDF does not require training, the training set is not used and its
scores are thus computed using the test set of each of the 32 splits only. The
comparison is done based on three metrics: the Mean Average Precision (MAP),
Spearman’s Rho, and the normalized Discounted Cumulative Gain (nDCG) [12].
This gives a better view on the performance than when using only one metric,
as each of these has its own peculiarities.

For this kind of data, the MAP is less suitable, as it assumes a Boolean
similarity between query and candidates. A result is either similar, or it is not.
This is in contrast with the graded similarity that is employed in this work. This
means, that in order to compute the MAP, the user scores for all sentence-query
pairs, ranging from 0 to 3, have to be mapped to either true or false. The cut-off
value that will determine which user scores are mapped to dissimilar and which
are mapped to similar is however rather arbitrary. We therefore made the choice
to use a range of cut-off values, going from 0 to 3 with a stepsize of 0.1 and
compute the MAP for each cut-off value. Hence, the MAP score reported in the
next section is the average of these 30 computed MAP scores.

Both the nDCG and the Spearman’s Rho do not suffer from the above prob-
lem and thus are more suitable metrics in this case. There are two concerns when
computing Spearman’s Rho. The first is that it computes the correlation between
the ranked output of Destiny and the user scores over all sentence combinations
in the list. This is not true in reality, as most users do not go through the whole
list. Second, while the rankings are computed based on the degree of relevance,
the latter is not directly used to compute the overall score. This means that it
effectively assigns as much value to a top-ranking sentence being correct as to a
lower- ranking sentence being correct.

In contrast, the nDCG only uses the first k number of results, and computes
the added value of each of these k results for the total set by discounting for
the position in the ranked results list. In this way the degree of relevance is also
taken into account as results with a higher degree of relevance contribute more
to the overall score than results with a lower degree of relevance.

To evaluate the performance of the Destiny algorithm, it is compared with
the TF-IDF baseline on the ranking computed from the user scores. The results,
shown in Table 1, clearly show that Destiny significantly outperforms the TFIDF
baseline on the Spearman’s Rho and nDCG ranking. The p-value is computed
for the paired one-sided t-test on the two sets of scores consisting of the 32 split



330 K. Schouten and F. Frasincar

Table 1. Evaluation results

TF-IDF mean score Destiny mean score rel. improvement t-test p-value

nDCG 0.238 0.253 11.2 % <0.001

MAP 0.376 0.424 12.8 % <0.001

Sp. Rho 0.215 0.282 31.6 % <0.001

scores for both Destiny and TF-IDF, respectively. The reported scores are the
average scores over all 32 splits.

5.3 Processing Speed

Query execution time is measured for the ten queries in our data set and com-
pared with TF-IDF in Fig. 3. The average time needed to search with Destiny
is about 1570 ms, while TF-IDF needs on average 800 ms to execute one query.
As such, TF-IDF is on average approximately twice as fast as Destiny.

5.4 Advantages

Due to its focus on grammatical structure and word sense disambiguation, Des-
tiny has some typical advantages compared to traditional search methods. The
first is the focus on sentences rather than separate words. When searching is
based on word occurrence in a document, the document can get a high score
even though different words from the query are not related at all but simply
occur somewhere in that document. By focusing on sentences, words from the

Fig. 3. Some query execution speed measures for Destiny and TF-IDF (Color figure
online).



Web News Sentence Searching Using Linguistic Graph Similarity 331

query are at least within the same sentence, making it much more likely that
they are indeed semantically related.

Because grammatical relations are utilized when searching, users can actively
use that to search for very specific information. While many different news items
can be matched to the same bag-of-words, a group of words connected by a
certain grammatical structure is much more specified. As such, it is more likely
that a user will find his target when he can indeed specify his search goal by
means of a sentence.

While grammar can be used to specify the query, the fact that the search
algorithm employs synonyms and hypernyms improves the number of hits. Using
synonyms and hypernyms, sentences can be found without explicit knowledge
of the words in that sentence. This is obviously a great benefit compared to
traditional word-based search algorithms which only take the literal word into
account.

5.5 Failure Analysis

In order to analyze the errors made by Destiny and assess their origin, a failure
analysis has been performed. This yielded a list of situations the algorithm is
not able to handle well. These situations are summarized below.

With respect to dealing with named entities, Destiny is rather limited. Var-
ious versions of a name are for example not correctly identified as being the
same, neither are different names belonging to the same concept. For example,
“Apple” is not recognized to be the same as “Apple Inc.” or “Apple Comput-
ers Inc.”, nor is it matched properly to the ticker “AAPL”. Another example
of the same problem would be the mismatch of the algorithm between “United
States of America” and “U.S.A.” or just “USA”. Also, co-reference resolution
is missing, so pronouns are not matched to the entity they are referring to. A
graph-based approach like [11] seems particularly well suited for this work.

Also problematic in terms of semantics are proverbs, irony, and basically
all types of expressions that are not to be taken literally. This caused some
specific errors in the evaluation as in the data set many equivalent expressions
are used for “dying”: “to pass away”, “to leave a void”, “his loss”, etc. While
word synonyms can be dealt with, synonymous expressions are not considered.

Another issue is related to the fact that the search algorithm, when com-
paring two graphs, cannot cope well with graphs of varying size. Especially the
removal or addition of a node is something the algorithm is unable to detect.
When comparing Destiny with an algorithm based on graph edit distance [8], it
can only detect substitution of nodes in a certain grammatical structure. Addi-
tional or missing nodes can thus break the iterative comparison, resulting in a
significantly lower score than expected. For example, in the sentence “Microsoft
is expanding its online corporate offerings to include a full version of Office”, it
is Microsoft that is the one who will include the full version of Office, but instead
of Microsoft being the grammatical subject of “include”, it is the subject of “is
expanding”, which in turn is linked to “include”. When searching for “Microsoft



332 K. Schouten and F. Frasincar

includes Office into its online corporate offering”, a full match will therefore not
be possible.

6 Concluding Remarks

We have shown the feasibility of searching Web news in a linguistic fashion
by developing Destiny, a framework that uses natural language processing to
transform both query and news items to a graph-based representation and then
searches by computing the similarity between the graph representing the user
query and the graphs in the database. In the graph representation, much of
the original semantics are preserved in the grammatical relations between the
words, encoded in graph as edges. Furthermore, the search engine can also utilize
semantic information with respect to words because of the word sense disam-
biguation component: words can be compared on a lexical level, but also on a
semantic level by checking whether two words are synonyms or hypernyms.

While Destiny is slower than the TF-IDF baseline because of all the natural
language processing, it is, nevertheless, better in terms of search results quality.
For all three used metrics (e.g., Mean Average Precision, Spearman’s Rho, and
normalized Discounted Gain), Destiny yielded a significantly higher score.

Based on the failure analysis in the previous section, it would be useful to
improve the accuracy of the search results by adding a module to match named
entities with different spelling or using abbreviations. Also co-reference resolution
might be beneficial, as sentences later in a news item often use pronouns to refer
to an entity previously introduced, while a query, being only one sentence, usually
features the name of the entity. Last, as discussed in the previous section, some
form of graph edit distance might be implemented to mitigate the problem of
important nodes not being present in both graphs.

While not within range of real-time processing speed, the processing and
query execution times of the prototype provide an acceptable basis for fur-
ther development. Currently, the system is entirely single-threaded, so a multi-
threaded or even distributed computing system (e.g., processing news items in
parallel) is expected to improve the speed.

Acknowledgment. The authors are partially supported by the Dutch national pro-
gram COMMIT.

References

1. Ahn, J., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for adap-
tive news systems: help or harm? In: 16th International Conference on World Wide
Web (WWW 2007), pp. 11–20. ACM (2007)

2. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguist.
Philos. 4, 159–219 (1981). http://dx.doi.org/10.1007/BF00350139

3. Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Model.
User-Adap. Inter. 10(2–3), 147–180 (2000)

http://dx.doi.org/10.1007/BF00350139


Web News Sentence Searching Using Linguistic Graph Similarity 333

4. Cook, S.A.: The complexity of theorem-proving procedures. In: Third Annual ACM
Symposium on Theory of Computing (STOC 1971), pp. 151–158. ACM (1971).
http://doi.acm.org/10.1145/800157.805047

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I.,
Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.A.,
Saggion, H., Petrak, J., Li, Y., Peters, W.: Text Processing with GATE (Version
6), University of Sheffield Department of Computer Science (2011)

6. Devitt, M., Hanley, R. (eds.): The Blackwell Guide to the Philosophy of Language.
Blackwell Publishing, Oxford (2006)

7. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press,
Cambridge (1998)

8. Frasincar, F., Borsje, J., Levering, L.: A semantic web-based approach for building
personalized news services. IJEBR 5(3), 35–53 (2009)

9. Java, A., Finin, T., Nirenburg, S.: SemNews: a semantic news framework. In:
The Twenty-First National Conference on Artificial Intelligence and the Eigh-
teenth Innovative Applications of Artificial Intelligence Conference (AAAI 2006),
pp. 1939–1940. AAAI Press (2006)

10. Kilgarriff, A., Rosenzweig, J.: English SENSEVAL: report and results. In: 2nd
International Conference on Language Resources and Evaluation (LREC 2000),
pp. 1239–1244. ELRA (2000)

11. Klein, D., Manning, C.: Accurate unlexicalized parsing. In: 41st Meeting of the
Association for Computational Linguistics (ACL 2003), pp. 423–430. ACL (2003)

12. Lopez, V., Uren, V., Motta, E., Pasin, M.: AquaLog: an ontology-driven question
answering system as an interface to the semantic web. J. Web Semant. 5(2), 72–105
(2007)

13. McGregor, J.J.: Backtrack search algorithms and the maximal common subgraph
problem. Softw. Pract. Experience 12(1), 23–34 (1982)

14. Porter, M.F.: An algorithm for suffix stripping. In: Readings in Information
Retrieval, pp. 313–316. Morgan Kaufmann Publishers Inc. (1997)

15. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-
Hill, Maidenherd (1983)

16. Schouten, K., Ruijgrok, P., Borsje, J., Frasincar, F., Levering, L., Hogenboom, F.:
A Semantic web-based approach for personalizing news. In: ACM Symposium on
Applied Computing (SAC 2010), pp. 854–861. ACM (2010)

17. Schouten, K., Frasincar, F.: A linguistic graph-based approach for web news sen-
tence searching. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.)
DEXA 2013, Part II. LNCS, vol. 8056, pp. 57–64. Springer, Heidelberg (2013)

18. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

http://doi.acm.org/10.1145/800157.805047

	Web News Sentence Searching Using Linguistic Graph Similarity
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Destiny Framework
	4.1 News Processing
	4.2 News Searching

	5 Evaluation
	5.1 Setup
	5.2 Search Results Quality
	5.3 Processing Speed
	5.4 Advantages
	5.5 Failure Analysis

	6 Concluding Remarks
	References


