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Abstract. The ad-hoc querying process is slow and error prone due to inability
of business experts of accessing data directly without involving IT experts. The
problem lies in complexity of means used to query data. We propose a new
natural language- and semistar ontology-based ad-hoc querying approach which
lowers the steep learning curve required to be able to query data. The proposed
approach would significantly shorten the time needed to master the ad-hoc
querying and to gain the direct access to data by business experts, thus facili-
tating the decision making process in enterprises, government institutions and
other organizations.
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1 Introduction and Problem Statement

The amount of data collected by enterprises, government institutions and other orga-
nizations grows significantly every year. Data alone do not guarantee a success – data
should be transformed into information, and it should be used accordingly in order to
succeed. This process has often been referred to as Business Intelligence (BI). Typi-
cally, BI tools offer wide possibilities of data analysis, however they require a sig-
nificant amount of investment and IT expertise. Needless to say that BI processes
involve IT experts whose task is to translate business requirements and queries into a
language which is understandable by computer. For example, the Children’s Clinical
University Hospital (Riga, Latvia) collects sensitive data of clinical processes. Data are
stored in the relational database and maintained by the team of local IT experts. The IT
experts take part in the clinical processes. They translate hospital managers, practi-
tioners and researchers questions into SQL queries. Although there are predefined
reports, the business requirements are changing very often and, consequently, IT
experts are overloaded. Therefore business decision processes are very slow and
error-prone because of miscommunication and hurry. Direct access to data by domain
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experts would be a solution. However the problem is that domain experts do not
possess the required skills to formulate queries by themselves, because of the com-
plexity of query languages used to retrieve answers from data stores. In our previous
work [1] we have defined so called “3How” problem which consists of three main
problems related to this context:

(1) how to describe data to be easily perceived by domain experts;
(2) how to query data simply enough for domain experts;
(3) how to perform query efficiently enough in order to get an answer to a sufficiently

wide class of queries in reasonable time.

Actually, the problem has been relevant for more than 40 years. The SQL
(SEQUEL) language [2] is the de facto standard of querying relational databases where
most of data are being stored at the moment. However, it turned out that the way data
are stored and retrieved in the relational databases was too complicated for domain
experts. There are similar languages to SQL (e.g. SPARQL for RDF ontologies [3])
which require a very precise formulation of the textual query (both syntax and
semantics) and deep knowledge of underlying technology, thus making them too
sophisticated to learn and use. Therefore there have been attempts to make wrappers for
these languages – e.g. graphical query builders like Graphical Query Designer for SQL
Server [4], ViziQuer [5] and Ontology Based Data Access (OBDA) approach [6],
particularly, the OptiqueVQS [7] for SPARQL and RDF databases, or form-based tools
using wizards and standard GUI elements (e.g. tables and lists) like SAP Quick
Viewer SQVI [8]. There are also other proposals which provide the means for direct
data access. One of the most well-known approaches is Self-Service Business Intelli-
gence (SSBI) which was proposed by Microsoft [9]. It provides a rich set of tools
(Power BI) allowing the end-user to build sophisticated data visualizations and make
data analysis mainly through spreadsheet applications.

Yet, there is a significant drawback of the mentioned approaches, namely, a steep
learning curve which is required to learn a new query language and to understand the
way data are stored. In order to make the learning of ad-hoc querying easier we propose
a new query language which is based on the controlled natural language. We rely on
simple semistar data ontologies which resemble the structure of documents which are
backing up the business processes in the organization. Health records are good
examples of such documents in a hospital. Semistar ontology defines a vocabulary
(terms) which are allowed to use while querying the data. This allows us to control the
language in the way which is familiar to the domain expert. Therefore, the complexity
of precise understanding of the rich natural language can be reduced in our imple-
mentation of natural language query interface. It should be noted that our query sys-
tem’s ability to explain to the user how his query has been understood plays an
important role for ad-hoc querying.

Experiments have shown that the proposed query language can be taught in a short
time to medical students. Even after a short (2 h) lecture for a group of medicine
students almost every participant could understand the given examples of queries
written in the proposed language. Most of the students were also able to formulate
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queries for the proposed questions about the clinical processes of the hospital. This
paper is organized as follows. Section 2 sums up the related work done by other
authors. In Sect. 3 we introduce the concept of semistar data ontology which is heavily
exploited in designing the proposed query language. The language itself is described
in Sect. 4 where we give its syntax and semantics together with its typical examples. In
Sect. 5 we briefly outline the basics of the implementation of the language, and in
Sect. 6 we describe the practical experiments we have performed to test our language
from different points of view. Section 7 concludes the paper.

2 Related Work

A viable option to query data simply enough for domain experts (2nd problem of
“3How”) is a natural language. Therefore in this section we will discuss the existing
natural language interfaces to databases (NLIDB-s). A lot of work has been done in this
area [10–14]. “Natural language is an effective method of interaction for casual users
with a good knowledge of the database, who perform question-answering tasks, in a
restricted domain” [15]. It should be noted that the formulation of the precise query
itself is a hard problem for users without mathematical background, e.g. Ogden et al.
showed that users would not be able to specify the meaning of “and” clearly enough for
unambiguous understanding of a query [16]. Related research [17] in the knowledge
base area has reported that there are still lots of problems in the understanding of
complex queries.

In order to make an NLIDB system usable by domain experts it is necessary to
solve the problem of linguistic coverage. People do not know what the computer
“knows”, i.e. when a natural language is used there is no common context in the
conversation between the user and the database [18]. It is very important to explain to
users what the database “knows” and what can be asked. Database schemas used by IT
experts (like ER models) are too complex and contain too many technical details to be
useful for the explanation of the underlying data. Computers, on the other hand, cannot
properly understand what users mean by their queries because of richness and ambi-
guity of the natural language. In order to achieve a consensus between the user and the
computer an intermediate representation of data schema is needed.

Many NLIDB solutions rely on the user’s domain knowledge and meaningful
names used in the schema’s elements. These solutions search for similarities between
the names and the terms written by user [10, 12]. There are NLIDB solutions that use
ontologies (lexicons, vocabularies) to represent the data schema [10, 19, 20].
Ontologies define concepts, their properties and relationships which can be used by
user. Ontology is automatically obtained from the relational database schema. Ontol-
ogy hides some technical details, but still requires the understanding of basic
entity-relationship model principles. Thus, the traditional NLIDB approaches have not
reached wide usage, at least not for deep querying with nontrivial calculations.
Therefore other approaches have to be studied in order to solve the “3How” problem. It
is the main goal of this paper.

20 J. Barzdins et al.



3 Semistar Data Ontologies

Analysis of current situation suggests that it is hopeless to try to develop an easily
perceptible query language that can be used on arbitrary ontologies, because such
language has not yet appeared after 30 years since the invention of relational databases.
Therefore we introduce an important subset of data ontologies called the Semistar
ontologies (see also [1, 21, 22]). A typical example of a semistar ontology is depicted
in Fig. 1. This is a simplified version of data ontology used in Riga Children’s Clinical
University Hospital (the actually used ontology consists of 25 classes and 142 attri-
butes). Semistar ontologies are data ontologies whose graphical representation corre-
sponds to a star-like structure (having no loops) with a restriction on multiplicities, such
that all associations must have the multiplicity equal to 1 at the end of the association
that is nearer to the star’s center. Semistar ontologies have only one type of associations
between basic classes – the “has” relation (e.g. Patient has HospitalEpisodes, Hospi-
talEpisode has TreatmentWards, etc.). Besides basic classes, a semistar ontology can
also contain other classes called the classifiers (depicted with white background in
Fig. 1). Associations between basic classes and classifier classes are coded as attributes
(e.g. familyDoctor: CPhysician).

Semistar ontology is a practically important and expressive subset of all data
ontologies, and practical use-cases often exploit exactly this type of ontologies. As can
be seen in Fig. 1, hospital ontology viewed from patients’ and physicians’ point of
view comes out to be a semistar ontology. Our experience shows that even in more
general cases, when some ontology is not a semistar ontology, one can usually find an
important subset of it to comply to principles of semistar ontology. We can always
think of a semistar ontology as a subject-oriented ontology where the role of the subject
can be performed by a patient (in case of medical domain), a customer (in case of some
service domain), etc.

We allow attributes of basic classes to have two kinds of data types – the primitive
types and the classifiers. We use the following predefined data types and operations:

– Integer (e.g. 75, −75), Real (e.g. 0.75, −75.0), operations: +, −, *, /;
– Boolean (true, false), operations: and, or, not;

Fig. 1. Simplified semistar ontology used in Riga Children’s Clinical University Hospital.
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– String (e.g. “abc”), operations: substring (e.g. “abcde”.substring(2,3)=“bc”);
– Date (e.g. 2015.06.17), unary operations: year(), month(), day(), dayOfWeek(),

binary operation: - (e.g. 2015.06.17−2015.05.12 = 1M5D);
– DateTime (e.g. 2015.06.17T10:45), unary operations: year(), month(), day(), hour(),

minute(), second(), date(), binary operation: − (subtraction);
– Duration (e.g. 3Y4M5DT6H7M30.25S), unary operations: years(), months(), days(),

hours(), minutes(), seconds().

If some attribute a has a classifier class as data type and this classifier class has some
attribute k, then also a.k denotes a valid attribute expression and its data type will be that of
attribute k. If x is an instance of some class, for which attribute a is defined, then also x.a (or
x.a.k, if type of a is a classifier class) denotes a valid attribute expression.We can buildmore
complex attribute expressions from simpler ones using the abovementioned operations
allowed for the given data types. Some examples of attribute expressions: personCode,
x.personCode, x.familyDoctor.surname, x.admissionTime.month(), (dischargeTime-
admissionTime).days(), etc.

We can now compare two attribute expressions (or constants) to obtain attribute
conditions, e.g. personCode=250285-10507, x.personCode=250285-10507, person
Code.substring(1,4)=2502, dischargeTime-admissionTime>25d (meaning – 25 days),
x.birthDate.year()>=1985, familyDoctor<>nil (a family doctor exists), etc.

4 Query Language

4.1 Basic Ideas

The query language we propose in this paper is to be used for formulation of ad-hoc
queries, meaning queries that can be formulated in one sentence (perhaps together with
some subordinate clauses) in natural language, so that the end-user can still understand
it very well. The language will work on semistar ontologies. The simplicity of the “has”
relation is the main factor, which allows query language to be simple and similar to a
natural language. It is therefore convenient to build queries in a controlled natural
language. This feature allows the language to be easily perceptible by non-IT
specialists.

Let us introduce an example query that will be exploited further in this section – count
Patients, who have at least one HospitalEpisode, which has Manipulation with
manipul.code=02078. This natural language sentence is understandable by the domain
expert. Let us now inspect a bit more complicated query: count Patients, who have at least
one HospitalEpisode, which has at least one TreatmentWard, which has at least one
Manipulation with manipul.code=02078. This sentence may cause a certain ambiguity as
it is not clear whether the asked Manipulation refers to HospitalEpisode or to Treat-
mentWard. It could be used in both meanings. In other words, relative pronouns such as
“who” and “which” not always give us accurate understanding of what we relate to. To
cope with such situations we introduce a concept of so called short name in our controlled
natural language. Formally, the short name is a variable over instances of the given class –
count Patients p, where exists p.HospitalEpisode e, where exists e.TreatmentWard t,
where exists t.Manipulation m, where m.manipul.code=02078. Now we are able to specify
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also the second of abovementioned meanings – count Patients p, where exists p.Hospi-
talEpisode e, where exists e.TreatmentWard t, where exists e.Manipulation m, where
m.manipul.code=02078. We have also unified other components of the natural language,
e.g. we use the keyword “where” instead of “who”, “which” and “with”, and the keyword
“exists” instead of “have/has at least one”. The dot notation after the short name must be
perceived as the “of” relation – count Patient p, where exists HospitalEpisode e of Patient
p, where exists TreatmentWard t of HospitalEpisode e, where exists Manipulation m of
TreatmentWard t, where manipul.code of Manipulation m equals 02078.

Formally speaking, the short name must be used before every attribute name to get
rid of ambiguities. However, in cases when it is clear to which class the particular
attribute refers the short name can be omitted. We also allow omitting other features of
the language that are not critical for understanding of queries (e.g. one can omit the
empty parentheses after the unary Date and DateTime operations like year() orminute()).

Let us now introduce some basic notations that we will use describe the query
language. We will use the terms parent class and child class to refer to classes that are
higher or lower in the “have” hierarchy. For example, the class “TreatmentWard” has
two parent classes – “HospitalEpisode” (direct parent) and “Patient” (further ancestor)
and one child class “Manipulation”. If x is an instance of the class “TreatmentWard”,
then its parent instances will be denoted as x.HospitalEpisode and x.Patient. In both
cases they denote exactly one instance, i.e. that of the class “HospitalEpisode” and of the
class “Patient”, respectively. We use the same dot notation also for accessing instances
of child classes, but in this case we obtain a set of instances. For example, x.Manipu-
lation would be a set of manipulations reachable from the given treatment ward x.

In more complicated cases another concept of brother class is important. If x is an
instance of the class “HospitalEpisode”, then by x.HospitalEpisode we understand
y.HospitalEpisode, where y=x.Patient (i.e. y is the closest parent of x, which is also
parent class of the given class “HospitalEpisode”). Similarly, if x is an instance of the
class “TreatmentWard”, then x.OutpatientEpisode=y.OutpatientEpisode, where y=x.
Patient.

If AClass is an arbitrary class of the ontology, we will use the term AClass attribute
expression to denote attribute expressions of both AClass itself and all of its parent
classes (we assume here that parents and children share no common attribute names).
We cannot use attribute expressions of child classes here, because there can be many
children instances for the given AClass instance. We will be able to access these
instances by introducing quantors exists/notexists later.

We can also perceive our query language as an analogue to some many-sorted
predicate language with a difference that it is written in such syntax that is more
user-friendly. There has been an attempt to create such a language [23], though it has
not led to a practical implementation.

4.2 Syntax and Semantics of the Query Language

Queries are to be written in a controlled natural language and are based on seven
sentence templates. The main part of the templates is the so called selection condition,
which is a selection condition over instances of the given class. We assume that
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selection conditions are to be written in a natural language. We describe the used
language constructs more formally at the end of this section. However, the sentence
templates described in this section can be understood without knowing the precise
syntax of selection conditions.

Semantics: counts instances of AClass, which satisfy the selection condition.
Examples:

– COUNT Patients, WHERE EXISTS HospitalEpisode, WHERE referringPhysician =
familyDoctor (count of patients who have been referred to hospital by their family
doctors);

– COUNT HospitalEpisodes, WHERE dischargeTime-admissionTime>15d (how
many episodes have lasted longer than 15 days);

– COUNT HospitalEpisodes e1, WHERE EXISTS HospitalEpisode e2, WHERE
e1<>e2 AND e2.admissionTime>e1.dischargeTime AND e2.admissionTime-e1.
dischargeTime<30d (how many there have been such episodes, after which the
patient has returned to hospital in less than 30 days).

Semantics: selects instances of AClass, which satisfy the selection condition, calculates
the attribute expression for each of these instances obtaining a list to which the
specified aggregate function is then applied. Examples:

– SUM totalCost FROM HospitalEpisodes, WHERE dischargeReason=healthy AND
birthDate.year()=2012 (how much successful treatments of patients born in 2012
have cost);

– MOST diagnosis.code FROM DischargeDiagnoses, WHERE nr=1 AND dis-
chargeReason=deceased (get the most frequent main (nr=1) death diagnosis).

Semantics is obvious. Examples:

– SELECT FROM HospitalEpisodes, WHERE dischargeReason=deceased,
ATTRIBUTE responsiblePhysician.surname ALL DISTINCT VALUES;

– SELECT FROM DischargeDiagnoses, WHERE nr=1 AND dischargeReason=
deceased, ATTRIBUTE diagnosis.code ALL DISTINCT VALUES.

Semantics: shows n or all instances of AClass which satisfy the selection condition.
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Semantics: the same as “show”, but shows also the child class instances attached to the
selected AClass instances.

Semantics: selects all instances of AClass, which satisfy the selection condition, then
makes a table with columns C1 to Cn, which for every selected AClass instance
x contains an individual row, which in column C1 contains the value of the <x-expr’1>,
…, in column Cn contains the value of the <x-expr’n>. Then it is possible to perform
some basic operations with the table like filtering out unnecessary rows, sorting the
rows by values of some column and then taking just the first or the last n rows from the
table. Examples:

– SELECT HospitalEpisodes x, WHERE dischargeReason=deceased, DEFINE TABLE
x.surname (COLUMN Surname), x.dischargeTime.date() (COLUMN Dying_
date), (COUNT x.Manipulation, WHERE manipul.code=02078) (COLLUMN
Count_02078), (SUM manipul.cost FROM x.Manipulation, WHERE manipul.
code=02078) (COLUMN cost_02078);

– SELECT CPhysicians k, WHERE name=Gatis AND EXISTS HospitalEpisode,
WHERE responsiblePhysician=k, DEFINE TABLE surname (COLUMN Physician_
surname), (COUNT HospitalEpisodes, WHERE responsiblePhysician=k)
(COLUMN Episode_count), (MOST diagnosis.code FROM AdmissionDiagnoses,
WHERE nr=1 AND responsiblePhysician=k) (COLUMN Most_frequent_main_
diagnosis), KEEP ROWS WHERE Episode_count>5, SORT DESCCENDING BY
COLUMN Episode_count, LEAVE FIRST 10 ROWS.

Let us now talk a bit more precisely about the means for defining columns. The
expression <x-expr’i> defines the value of column Ci in the row that corresponds to the
AClass instance x. This expression can be defined in one of four ways:

<x-dependent attribute expression> examples: x.surname, x.discharge
Time.date(). Prefix “x.” can be used before attributes of both x and its parents.
Semantics is obvious.
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<x-dependent count expression> examples: (COUNT x.Manipulations,
WHERE manipul.code=02078), (COUNT HospitalEpisodes, WHERE responsi-
blePhysician=x). In the first example we use the prefix x in “x.Manipulations” to denote
that we do not select from the whole set of manipulations, but only from those that are
reachable from x.

<x-dependent {SUM/MAX/MIN/MOST} expression> examples: (SUM
manipul.cost FROM x.Manipulations, WHERE manipul.code=02078), (MOST diag-
nosis.code FROM AdmissionDiagnoses, WHERE nr=1 AND responsiblePhysician=x).

<x-dependent child attribute selector expression> examples: (x.
DischargeDiagnosis, WHERE nr=1).diagnosis.code, (x.TreatmentWard, WHERE
nr=*).ward (by * we denote the number of the last instance of TreatmentWard con-
nected to the given HospitalEpisode x). This is a new kind of construction whose
general form is as follows: (x.<name of x children class A>, WHERE <selection
condition>).<name of attribute a of class A>. Its value is defined in the following way –
we start by taking all instances of class A that are reachable from x, then select of them
those instances that satisfy the selection condition and then create a list of values of the
attribute a of the selected instances. The most important case here is the one where this
list contains only one instance, e.g. in the following table definition example:

SELECT HospitalEpisodes x, WHERE dischargeReason=deceased, DEFINE TABLE
x.surname (COLUMN Surname), x.dischargeTime.date() (COLUMN Dying_date), (x.
DischargeDiagnosis, WHERE nr=1).diagnosis.code (COLUMN main_diagnosis), (x.
TreatmentWard, WHERE nr=*).ward (COLUMN last_ward).

T7. There are two more cases in the definition of the table, where table rows come
from other source, not being instances of some class. Being very similar these two
cases form two subtemplates of the last template:

Semantics of both cases is obvious. Examples:

– SELECT FROM TreatmentWards ATTRIBUTE ward ALL DISTINCT VALUES x,
DEFINE TABLE x (COLLUMN Ward), (SUM manipul.cost FROM Manipulations,
WHERE ward=x) (COLUMN Cost);

– SELECT FROM INTERVAL (1-12) ALL DISTINCT VALUES x, DEFINE TABLE x
(COLUMN Month), (COUNT HospitalEpisodes, WHERE admissionTime.month()
=x) (COLUMN Episode_count) (MOST diagnosis.code FROM AdmissionDiag-
noses, WHERE nr=1 AND admissionTime.month()=x) (COLUMN
Most_frequent_main_diagnosis).
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Let us conclude this section by defining more formally the constructs of a con-
trolled natural language allowed in the selection conditions. They can, of course, be
guessed from the examples given above.

Short name provides a name for the given object and can be any string different from
the class and attribute names. The abovementioned grammar provides a formal language
(for formulating selection expressions) that is close to a natural language and therefore
easily perceptible. From a natural language’s point of view selection expressions are
sentences in a controlled natural language that exploit both words of a natural language
(like AND, OR, WHERE, EXISTS, NOTEXISTS) and “foreign” words – attribute
expressions whose syntax and semantics were described above. The grammar is only
needed as a guide how to build the selection expressions. We do not use it in teaching the
language to domain experts. We, instead, use the same principle exploited when a child
learns to speak a natural language, i.e. learning from examples. It was therefore necessary
to first see the sentence templates together with some examples and only afterwards see
the formal grammar underlying parts of these templates.

5 Implementation of the Query Language

In this section we will lay out the basics of the system underlying the query imple-
mentation. The very basic component here is the system metamodel which describes
the classes, associations and attributes used in the particular hospital metamodel on
which the query is to be executed. A simplified version of the system metamodel can be
seen in Fig. 2. This metamodel is coded in Java, where each logical class of the
metamodel corresponds to one Java class. There are only two types of multiplicities
used for roles in the system metamodel – 1 and *. These are coded as Java attributes of
types A and List<A> respectively (where A is the name of the class to which the
respective association end is attached).

The overall architecture of the system is depicted in Fig. 3. The system metamodel
described above forms the basis of the architecture and serves as an input for three
types of generators seen in Fig. 3.

The first generator is used for generating information about abstract data types for
the querying system. It takes as an input information about classes from the above-
mentioned system metamodel and gives as an output a set of Java classes together with
their respective attributes (including associations). These classes are the ones
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describing the underlying hospital information system. Let us call them hospital
classes. The query will be formed and executed on hospital classes.

The second generator generates operations for the hospital classes generated by the
first generator. It takes as an input the system metamodel and the operation templates
and generates necessary operations for hospital classes. These operations lay a foun-
dation to which the natural language queries will be translated. The structure of
operation templates and their consisting parts are outside the scope of this paper.

The third generator generates the Java code (called the Loader) that loads particular
instances of hospital classes from .csv files into the hospital classes themselves. The
generator takes the system metamodel and a mapping from .csv to Java classes as
inputs and gives the fully functioning Loader code as an output. The Loader can then
read the .csv files obtained from the database of the hospital information system and
generate from them respective instances of the hospital classes (each .csv file more or
less corresponds to one hospital class). The Loader must be able to cope with
incomplete or even incorrect data, which are typical situations, as our experience has
shown. For example, the loading process must work well, when some attribute is not
set in the .csv file, when the value of some attribute does not comply with the expected
data type, when the foreign key points to a non-existent instance of another table etc.

Fig. 2. The system metamodel (a simplified version).

Fig. 3. The overall system architecture.
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The mapping from .csv to Java classes is currently very simple, it only links text fields
to attributes. The development of this mapping is a broad topic itself, and we have
several ideas about how it can be improved – it can take into account only things
needed for the execution of a particular query, it can be bi-directional etc. This is,
however, not in the scope of this paper.

All three generators are started one after another, when the system is started. It can
take some time, depending on the volume of data to be read from .csv files. When the
process has ended all the necessary data are located in RAM, and the system is ready to
execute user queries.

Query execution consists of a Read-Evaluate-Print loop – user enters a query in a
controlled natural language, it is then translated to Java syntax (largely exploiting the
operations generated for hospital classes by the second generator), executed in Java,
and finally the obtained result is depicted back to the user. There is one side branch to
this general schema as can be seen in Fig. 3 – evaluation of the natural language query
is performed by the query translator during the query forming phase, and the parsed
query is shown back to the user immediately so that he can alter the query accordingly
if necessary. To be able to understand and parse the query, the translator also exploits
the system MM to obtain information about class names, attributes and associations.

Large part of the system functionality is composed of the operations generated for
hospital classes during the system start-up. Let us now take a bit deeper insight into
how these class methods look like. These are functions written in the functional pro-
gramming style:

– F<T1,T2,…,Tn,R> – function of n arguments (with types T1, T2, …, Tn) whose
return type is R;

– pred<T> – predicate of one argument with type T (the same as F<T,bool>).

There are two types of functions, namely, global functions over all instances of
some class and more local functions over only those instances of some class that can be
reached from some given instance. For example, there is a method countA(pred<A>)
generated for every class A. It returns the total count of instances of class A, for which
the given predicate returns true. Similarly, there is a method countAB(b,pred<A>),
which only inspects those instances of class A that are reachable through links from the
given instance b of class B. A list of the main methods can be seen in Table 1.

In the process of designing the operation structure and syntax two contradicting
things were to be taken into account – logical clearness and potential performance. One
of the first goals for this system was its ability to respond to queries rapidly (in no more
than 1–2 s on one year data of Riga Children’s Clinical University Hospital) and to do
that on a regular computer at hospital, not on a supercomputer. Thus, the implemen-
tation efficiency was the main factor that dictated the design of the class methods to
which queries are translated. It is therefore not the best solution from the logical
clearness point of view.

Concluding the description of the query execution engine, it can be noted that we
have developed our own No-SQL embedded in-memory database with a functional
query language and with a good API in the form of the generated operations. We have
eliminated the need for interpreter and reflection, which has given us an opportunity to
improve the performance of query execution. Of course, some improvements have been
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made possible thanks to the fact that we exploit the data only in read-only mode. We
have explored other in-memory databases before and found no solution suitable for our
specific needs. We will not analyze deeper other approaches in this paper.

Let us conclude with an example showing the translated result of a query.
Query in our language: COUNT Patient p, WHERE EXISTS HospitalEpisode e,

WHERE EXISTS Manipulation m, WHERE manipul.code=02078
Translated query in Java: countPatient(p->anyHospitalEpisodePatient(p,e-

>anyManipulationHospitalEpisode(e,m->m.manipul.code.equals(“02078”))));

6 Proof of Concepts

We showed in Sect. 3 that semistar ontologies cover quite a wide spectrum of prac-
tically important data ontologies including hospital data schemas from patients’ and
physicians’ point of view. In this section we will briefly inspect the other aspects of the
“3How” problem mentioned in Introduction, i.e. (1) Is the offered query language
expressive enough for practical use-cases and simple enough for understanding by
domain experts; and (2) Does the query language have sufficiently efficient
implementation?

The first aspect consists of two parts. The expressiveness of the query language was
demonstrated by turning it into a working language for Riga Children’s Clinical
University Hospital when annual reports had to be generated. It turned out to be
expressive enough for this task. During the two year period, when it was used for report
generation, the language underwent a continuous improvement process. It was
important to achieve such a level that managers of wards are able to formulate
themselves all the necessary queries without going to a programmer with every 5th or
10th query to write the desired query in SQL. Results of such queries were either single
numbers or data fields, or tables of data fields. In case of tables, we do not undertake all
the necessary calculations and table operations provided by other applications such as
MS Excel. Our aim is to generate a table containing all the necessary data that can then
be exported to a spreadsheet or an R tool (a tool for statistical analysis).

Table 1. List of the main methods of hospital classes.

Prefix of method name Global method Method with context

count + +
sum + +
min/max + +
avg + +
most + −

countDistinct + −

findOne/findAll + +
any/all + +
map + +
table + +
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The second part of the first abovementioned aspect regards the possibility for
domain experts to learn the language. To test this aspect we performed both individual
experiments with potential end-users and group tests. General situation from the lan-
guage teaching point of view was best demonstrated in an experiment with experienced
nurses who study to obtain Master Degree at the Medical Faculty, University of Latvia.
We presented a two hour long lecture about the language and the tool for querying the
data. One third of that time was devoted to explanation of the underlying data ontology
(to explain to non-programmers what is a class, an attribute, etc.). Afterwards the
language was explained on examples, and homework was given to test the level of
understanding. The homework consisted of two parts. Firstly, students had to under-
stand sentences written in our controlled natural language and to write them in a good
really natural language. Secondly, they had to work in the opposite direction turning
natural language sentences into our formal language. Results obtained from this
experiment can be seen in Table 2. The main conclusion here is that another two hours
long lecture after the completion of homework would be beneficial for a better
understanding of the proposed query language.

A very important factor related to the teaching process is the fact that the under-
lying data ontology was anonymized (from patients’, physicians’ and wards’ point of
view), but real. Our experience shows that students being domain experts of this
ontology rapidly got very interested in the querying process and started to perceive this
as a game. This fact had a beneficial impact on the learning process.

Finally, let us talk a bit about the ability to implement the language efficiently. The
main principles of such implementation were already given in Sect. 4. To test the
performance of our implementation we gathered 120 typical query examples from real
annual report analysis of intensive care ward and from discussions with managers of
other wards. The complexity of these queries is similar to those demonstrated in
Sect. 4. The volume of data over the period of year 2015 was the following – there
were about 35’000 hospital episodes and 70’000 outpatient episodes in Riga Children’s
Clinical University Hospital (in total the data took up less than 2 GB RAM). The
performance on such queries and data volume can be seen in Fig. 4, where queries are
sorted in an increasing order by their execution time.

We can see that the vast majority of these 120 queries executes in less than 0.3 s.
According to statistics there are about 350’000 hospital episodes together in all hos-
pitals in Latvia per year (about ten times more than in Riga Children’s Clinical
University Hospital). It means that all these data would take up less than 20 GB RAM.
Currently a quad-core computer with 32 GB RAM costs about 1’000 euro. Since the

Table 2. The results of the experiment

Number of students succeeded (n = 15)

Task execution level (%) � 90 � 75<90 � 50<75 � 25<50 <25
Understanding of queries 9 2 2 1 1
Writing of queries 3 5 2 3 2
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semistar data ontology is granular [21, 22], the query execution can be done in parallel
on all four cores thus improving the execution time four times (our experiment seen in
Fig. 4 was performed on only one core). We can conclude that the performance of the
query execution over data of all the hospitals in Latvia would only be 2.5–3 times
slower than it is now providing the ability to answer a vast majority of queries in less
than one second.

We are, of course, not limited by only one computer with four cores. We can also
use several computers connected via high throughput Ethernet thus reducing the
waiting time even more (e.g. one second on ten year data of all Latvian hospitals). Of
course, sufficient performance on very large data volumes is another research topic that
requires more studies.

By working on the proof of concepts we can conclude that practical testing of our
approach has demonstrated that the “3How” problem can be successfully solved at least
for the scope of the health system in Latvia.

7 Conclusions and Future Work

Practical experiments with our query language have shown that there are yet at least
two important features that must be added to increase its usability – subset definition
feature (DEFINE InfectiousDisease = SELECT …) and attribute definition feature
(DEFINE HospitalEpisode.duration = dischargeTime-admissionTime). These and
similar features are currently under development and require some technical work to be
implemented. Another useful feature would be to obtain event distribution in time,
which could further be analyzed in MS Excel using its time axis component.

In this paper we have sketched a formal natural language for formulating queries
that is still quite a bit controlled. Our future goals include reducing the level of control,
so that the language would become more and more usable for domain experts being

Fig. 4. Performance of the query execution.
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non-programmers. Queries would be formulated very inaccurately (perhaps providing
only some basic keywords), and the system could try to understand the query the user
has wanted to formulate and offer the resulting query (or more than one potential
queries) back to the user for affirmation. This would be the next step towards a really
user-friendly query language.
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