Efficient Results Merging for Parallel Data
Clustering Using MapReduce

Abdelhak Bousbaci and Nadjet Kamel

Abstract Data clustering is partitioning data into sub-groups using a distance mea-
sure. Clustering a large data amount requires an important execution time. Several
works have been proposed to overcome this problem using parallelism. One of the
parallel techniques consists in partitioning data and processing each partition apart,
the results obtained from each partition are merged to get the final clusters configura-
tion. Using an inappropriate merging technique leads to an inaccurate final centroids
and a middling clustering quality. In this paper, we propose two merging techniques
to improve the clustering quality.

In a first solution, the results are merged using the K-means algorithm, and in
a second one using the genetic algorithm. The results proved the efficiency of the
proposed strategies.

Keywords Data clustering + K-means -+ Parallelism + MapReduce - Results
merging - Genetic algorithm

1 Introduction

Data clustering is partitioning data into sub-groups using a distance function such
that data in the same group are similar [1]. Clustering a large data amount requires
an important execution time. In the literature, several works have been proposed
to overcome this problem using parallelism [2] [3] . One of parallelism techniques
consists in partitioning data and processing each partition apart [4] [5] [6], using a
cluster of machines or a multi-core CPU. In both cases, the results obtained from
each partition are merged to obtain the final clusters configuration.

A. Bousbaci(XJ) - N. Kamel
LRIA, Computer Science Department, USTHB Algiers, Bab Ezzouar, Algeria
e-mail: abousbaci@usthb.dz

N. Kamel
Computer Science Department, Faculty of Sciences, UFAS Setif, Setif, Algeria

e-mail: nkamel @univ-setif.dz
© Springer International Publishing Switzerland 2016 349

S. Omatu et al. (eds.), DCAI 13th International Conference,
Advances in Intelligent Systems and Computing 474,
DOI: 10.1007/978-3-319-40162-1_38



350 A. Bousbaci and N. Kamel

The merging techniques have a direct impact on the clustering quality. Using an
inappropriate fusion technique, results inaccurate centroids and a middling clustering
quality.

One of the existing merging methods, consists in gathering the clusters that overlap
in data space, according to a defined threshold. If we have two clusters A and B, and
there are data points from one of these two clusters that can belong to the other one,
then these two clusters are merged together and constitute a new single cluster. In [4],
the authors proposed a parallelization for the k-means algorithm. In their solution, the
initial data is divided randomly on several machines and each one processes its own
data partition independently. In a final step, the clusters from all the machines that
overlap in data space were merged. This method showed efficiency, but the obtained
final number of centroids, can differ from the one set in the beginning (K). This can
affect the clustering quality in the case where the initial chosen number of clusters
(K) is the optimal one.

Another existing simple merging technique consists in merging the centroids from
the different partitions, such that each centroid from a given partition is merged with
the N-1 nearest centroids from each of the other partitions; where N is the number
of all the partitions. This merging method is not efficient, according to [7], using
such simple merging techniques leads to inaccurate new centroids. If there are two
centroids A and B to merge, which have respectively M and N data points in their
clusters; with M > N, the new centroid will be closer to A’s cluster data points.
This will affect the performance of the algorithm.

In our previous work (SPKmMR) [6], we proposed a parallelization for the
Sampling-PSO k-means algorithm (SPKm) [8] using MapReduce and shared mem-
ory parallelism, and a simple merging technique to obtain the final clusters.

To improve the SPKmMR algorithm [6], we propose two different strategies for
an efficient final results selection. The first one is based on the K-means algorithm,
we obtain the final configuration by clustering the centroids resulted from all the par-
titions. In the second one, we supposed that involving all centroids from the different
partitions may not be the optimal solution, so we proposed to choose the best K
centroids among the N centroids using genetic algorithm; where N is the number of
all the centroids from the different partitions.

This paper is presented as follows: Section 2 introduces the related works to our
contribution. In section 3, our proposed strategies are detailed. Section 4 contains
the experimentation and results. Finally, in section 5 we present the conclusion and
perspective for future works.

2 Background and Related Work

2.1 K-means

K-means is one of the most used clustering algorithm for its simplicity and efficiency.
Several works based on k-means have been proposed. Otherwise its main objective



Efficient Results Merging for Parallel Data Clustering Using MapReduce 351

which is clustering data, K-means has been used in several work to perform many
tasks in relation with data clustering. In [9], k-means has been used for the initial
centroids selection.

In [8], the authors used k-means algorithm for data sampling, by partitioning data
into small sub-sets and applying k-means on each one, the resulted centroids from
each partition represent the full data set.

2.2 Genetic Algorithm

Genetic algorithm (GA) is a meta-heuristic used in optimization problems. GA has
been used in many clustering tasks. It is known for its efficiency in the initial centroids
selection problem for the K-means algorithm. In [10], the authors proposed a solution
for initial centroids selection based on GA. The algorithm select the K optimal
centroids from the initial DataSet, the resulted centroids are then used as the starting
clusters’ centers for the K-means algorithm. In [11], an algorithm for clustering data
has been proposed based only on the GA.

2.3 Parallel Sampling-PSO-Multi-core-K-means Algorithm
using MapReduce (SPKmMR)

The algorithm presented in [6] is a parallelization of the Sampling-PSO-K-means
algorithm (SPKm). In that work we proposed to parallelize the SPKm algorithm using
MapReduce and shared memory parallelism. This algorithm can be summarized in
the following steps:

— Initial data is divided on the set of machines.
— Apply SPKm on each machine using its data partition to find local clusters.
— Merge the clusters from the previous step to get the final solution.

This method showed efficiency and enhanced the rendering of the SPKm algo-
rithm, but we aim to improve this algorithm by improving the merging step.

By analyzing each data partition’s centroids, we noticed in some cases that the
centroids resulted from a single partition give better results than the ones obtained
after the merging process. This proved that the used merging technique failed to
obtain an optimal solution and using an inappropriate merging technique provides
inaccurate and malformed centroids.

Parallel clustering by partitioning is sensitive to the used merging method. We aim
to propose an approach to improve the final selection step of our previous work [6].
We propose two techniques for the final selection process. The first one is based on
k-means’ work cited above, the use of k-means in initial selection and in sampling
algorithms inspired us to use it in the merging step. The second approach is inspired



352 A. Bousbaci and N. Kamel

from the hybrid genetic-k-means algorithm works cited above. In our case, we use
the genetic algorithm to select the K best centroids from the set obtained from the
different data partitions. The two proposed solutions will be detailed in the next
section.

3 Proposed Approach

We present in this section our two contributions in the merging step for the SPKmMR
algorithm. Our initial objective was to use k-means algorithm to get the final centroids
configuration. This proposition involves all the centroids obtained from the different
data partitions, as mentioned earlier, using all the centroids obtained from the different
machines may not be optimal because of the random data distribution between the
machines in the first step. For this reason we propose a solution where only the best
K centroids are chosen in the final selection step using the genetic algorithm. Before
detailing these two approaches we can summarize all the process in these steps:

1. Distributing randomly initial data input on the set of machines.

2. The algorithm SPKmMR is applied on each machine.

3. N local clusters are obtained from the previous step; with N = K x M; where
K is the number of clusters and M is the number of machines.

4. One of the proposed merging strategies is applied to obtain the final clusters
configuration.

3.1 K-means Algorithm Merging

In this solution, we use the k-means algorithm for selecting the final configuration.
In [8], the authors used the k-means algorithm for sampling the initial data and reduce
its size. The resulted centroids from the sampling step can represent all the initial
data set, so they applied the PSO-K-means algorithm on the results of the sampling
step instead of applying it on the entire data set. In [6], we applied SPKm on many
data partitions, and K centroids were obtained from each one.

We can consider each K centroids obtained from a data partition as the represen-
tative data points of this one, so the ensemble of all obtained centroids can represent
as well the entire initial data set.

Thus, at the end of SPKmMR, we have N centroids; with N = K x M where
K is the chosen number of clusters and M is the number of machines in the cluster.
Finally, instead of applying the overlap technique for merging the centroids, we
consider the N centroids as a sample for the entire initial data set. So we apply the
k-means algorithm on these centroids to get the final K centroids.



Efficient Results Merging for Parallel Data Clustering Using MapReduce 353

3.2 Genetic Algorithm Merging

The second proposed strategy for the final selection step is based on the GA. As
mentioned earlier, involving all the centroids may not be the optimal solution. Some
centroids can be malformed due to a bad initialization when applying SPKmMR, or
due to the random data distribution on the machines as proved in [12]. To avoid this,
we propose to select among the set of centroids the K best ones. This can be seen as
the k-means centroids initialization problem [10]. Therefore, we propose to use the
genetic algorithm to select the best K centroids among the ones resulted from each
data partition.In this solution, the genetic algorithm takes as input data the centroids
set obtained from the executions of the SPKmMR algorithm on the different data
partitions, the GA takes also as input data the entire initial data set, it is used when
evaluating (fitness calculation) the obtained solutions (chromosomes evaluation) of
the GA.

Population and Chromosomes. The population of the genetic algorithm is gener-
ated randomly from the centroids ensemble obtained from the SPKmMR algorithm
executed on the different data partitions. N chromosome are generated, and at each
iteration the best NV ones are selected. Each chromosome from the population is a vec-
tor of K random centroids selected from the centroids ensemble. Each chromosome
is a potential clusters solution.

Crossover and Mutation Operations. At each iteration of the genetic algorithm,
new chromosomes are obtained by applying mutation and crossover operations on
the population. The crossover operation combines two randomly selected solutions
and generates two new solutions. The mutation operation in our case consists in
changing randomly one of the K elements of a given chromosome and replace it by
another one from the set of centroids. The best solutions are selected for the next
iteration and so on until the last iteration. At the end of the genetic algorithm, the
best obtained solution represents the final clusters configuration.

4 Implementation

To analyze our propositions, we implemented our previous algorithm SPKmMR
and the two proposed merging strategies. The tests were done on “The Individual
household electric power consumption” data set [13], which contains 2075259 data
points with 9 dimensions.

Before staring the clustering process, data is preprocessed. This step is very im-
portant to obtain good results. In our case, it consists of cleaning data, eliminating
the insignificant attributes, normalize the data values and finally each data point is
represented with a numerical vector which fits with the MapReduce data structure
(Key/Value pair).



354 A. Bousbaci and N. Kamel

4.1 Evaluation

To evaluate a solution we should determine how close the objects of a same cluster
are. We use the formula (1) to calculate the average distance between a centroid and
the data points of its cluster. The smaller this value is the better is the clustering
quality. It is defined as follows:

Zk {Z;{ild(oi-PU) }
e
f= (1

with p;; is the j data point in the i"" cluster; o; is the center of the i"" cluster;
d(o;, pij) represents the distance between the data point p;; and the centroid o;; n;
is the number of data instances in the cluster C; and K is the defined number of
clusters. To calculate the distance between two data points we used the euclidean
distance.

For the evaluation of the solutions (chromosomes) generated by the GA, we also
used the formula (1), because evaluating a chromosome means to determine how
compact is the clusters configuration contained in this chromosome.

5 Experimentation

To evaluate our proposed solutions, we implemented the following algorithms: K-
means, Sampling+PSO+Kmeans (SPKm), k-means using MapReduce (KmMR) and
Sampling+PSO+McK-means using MapReduce (SPKmMR).

We tested the proposed merging strategies with the parallel algorithms from the
list above (KmMR, SPKmMR).

To evaluate our propositions, we used a cluster of 5 machines. Each node is
equipped with a Dual Core CPU and 2 GB of RAM. The cluster runs on Linux Ubuntu
10.04. We used the framework Hadoop 1.2.1 which is an open source implementation
of the MapReduce framework. The experiments were done on the normalized data
set “The Individual household electric power consumption”.

Many algorithms have been implemented to test our approach, and each one has
its own parameters. For the Sampling+PSO step, the used parameters are the same
used in [6]. The table 1 summarizes the k-means algorithm step and the genetic
algorithm (GA) parameters.

In this section we discuss the obtained results from the different implemented
algorithms. To evaluate the clustering quality of the obtained solutions, we use the
formula 1.

Table 2 shows the results of the implemented algorithm on “The Household Elec-
trical Consumption” data set.



Efficient Results Merging for Parallel Data Clustering Using MapReduce 355

Table 1 Algorithms parameters

Number of clusters (K) in K-means 50-100 [7]
Number of iterations in k-means 25
Population size in GA 50
Number of generation in GA 100

Table 2 The performances of algorithms

K=50 K =100
. . k-means 0.079233 0.067021
sequential algorithms
SPKm 0.073251 0.063955
. . KmMR 0.077204 0.064242
Simple merging
SPKmMR 0.071459 0.063574
. KmMR 0.071763 0.061751
K-means merging
SPKmMR 0.070317 0.059569
. KmMR 0.057541 0.051913
GA merging
SPKmMR 0.054363 0.049195

The results show that the proposed merging techniques give better results than
the simple merging strategy. The simple merging strategy showed its inability to
exploit the centroids obtained from different partition. We can notice this in the case
of the SPKmMR algorithm where K = 100; the fitness value obtained after using a
simple merging is equal to 0.063574 whereas the fitness obtained with the sequential
algorithm SPKm is almost identical to it.

For the other cases of the simple merging strategy, we can see that for each
algorithm, the results are slightly better than the ones obtained from those of the
sequential versions.

The figure 1 illustrates the obtained results of the implemented parallel algorithms
(KmMR and SPKmMR) with the different merging strategies in the case where
K=100.

We notice that by using the k-means merging strategy we obtained a visible im-
provement compared to the simple merging strategy on both of the implemented par-
allel algorithms. We can see also that the GA merging technique gives the best fitness
values especially when applied on our previous algorithm (SPKmMR) [6]. Another
important point to highlight is that the improvement obtained with the SPKmMR
algorithm compared to the KmMR algorithm changes according to the used merging
strategy. We can see that the difference in the fitness value between SPKmMR and
KmMR is more important when using K-means merging than when using the simple
merging strategy. We can notice also that the difference in the fitness value between



356 A. Bousbaci and N. Kamel

Fig. 1 Performances of the merging strategies
0.066 T T

Simple-merging E——
K-means-merging s |
GA-merging .

0.062 1

0.064

0.058

0.056

Fitness values

0.054

0.052

KmMR SPKmMR
Parallel algorithms

SPKmMR and KmMR is the most significant when using the GA merging strategy
compared to the two other merging techniques. This is explained by the fact that
the GA merging strategy exploits the results generated by the SPKmMR algorithm
better than the two other strategies.

6 Conclusion

In this paper, we proposed solutions to improve our work presented in [6]. We pro-
posed to improve the merging step which showed deficiency in some cases. In a first
place we proposed to use the K-means algorithm to get the final clusters configu-
ration, next we suggested to use the genetic algorithm for selecting the K optimal
centroids and consider them as the final solution. These two methods proved their
efficiency by improving the performances of our previous work. In the Map phase of
the MapReduce process, data is partitioned randomly on the cluster’s machines. As
future work, we aim to propose an efficient data partitioning approach to improve
the clustering quality of our algorithm.

References

1. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations.
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
California, USA, vol. 1, pp. 281-297 (1967)



Efficient Results Merging for Parallel Data Clustering Using MapReduce 357

11.

12.

13.

Ene, A.,Im, S., Moseley, B.: Fast clustering using mapreduce. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 681-689.
ACM (2011)

Guerrieri, A., Montresor, A.: Ds-means: distributed data stream clustering. In: Euro-Par 2012
Parallel Processing, pp. 260-271. Springer (2012)

Ferreira Cordeiro, R.L., Traina Junior, C., Machado Traina, A.J., Lépez, J., Kang, U.,
Faloutsos, C.: Clustering very large multi-dimensional datasets with mapreduce. In: Proceed-
ings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 690-698. ACM (2011)

Mashayekhi, H., Habibi, J., Voulgaris, S., van Steen, M.: Goscan: Decentralized scalable data
clustering. Computing 95(9), 759-784 (2013)

Bousbaci, A., Kamel, N.: A parallel sampling-pso-multi-core-k-means algorithm using mapre-
duce. In: 2014 14th International Conference on Hybrid Intelligent Systems (HIS), pp. 129-134.
IEEE (2014)

. Cui, X.,Zhu, P, Yang, X.,Li, K., Ji, C.: Optimized big data k-means clustering using mapreduce.

The Journal of Supercomputing 70(3), 1249-1259 (2014)

. Kamel, N., Ouchen, I., Baali, K.: A sampling-pso-k-means algorithm for document clustering.

In: Genetic and Evolutionary Computing, pp. 45-54. Springer (2014)

. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In: ICML, vol. 98,

pp. 91-99. Citeseer (1998)

. Kwedlo, W., Iwanowicz, P.: Using genetic algorithm for selection of initial cluster centers for

the k-means method. In: Artifical Intelligence and Soft Computing, pp. 165-172. Springer
(2010)

Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern recog-
nition 33(9), 1455-1465 (2000)

Hore, P., Hall, L., Goldgof, D.: A cluster ensemble framework for large data sets. In: IEEE
International Conference on Systems, Man and Cybernetics, SMC 2006, vol. 4, pp. 3342-3347.
IEEE (2006)

Lichman, M.: UCI Machine Learning Repository (2013)



	Efficient Results Merging for Parallel Data Clustering Using MapReduce
	1 Introduction
	2 Background and Related Work
	2.1 K-means
	2.2 Genetic Algorithm
	2.3 Parallel Sampling-PSO-Multi-core-K-means Algorithm using MapReduce (SPKmMR)

	3 Proposed Approach
	3.1 K-means Algorithm Merging
	3.2 Genetic Algorithm Merging

	4 Implementation
	4.1 Evaluation

	5 Experimentation
	6 Conclusion
	References


