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Abstract With the advent of smart grids, distribution utilities have initiated a large
deployment of smartmeters on the premises of the consumers. The enormous amount
of data obtained from the consumers and communicated to the utility give new
perspectives and possibilities for various analytics-based applications. In this paper
the current smart metering-based energy-theft detection schemes are reviewed and
discussed according to two main distinctive categories: A) system state-based, and
B) artificial intelligence-based.

Keywords Advancedmetering infrastructure ·Electricity theft · Smart grid · Smart
meter

1 Introduction

Aspower demand increases inmodern societies, the need for an advanced and reliable
power grid becomes increasingly imperative. In fact, the traditional power grid,which
is still remarkably based on a design already existing for more than 100 years, can no
longer satisfy the present-day needs and requirements [1]. The current emergence of
smart grids aims to increase the reliability, quality and security of supply, especially
in the face of the increased penetration by renewable energy sources in the form of
distributed generation [2]. The concept of a smart grid has also come into existence,
bringing into the state-of-the-art scope relative advancements in information systems
andcommunication technologies, oneofwhose cornerstones is thepresent large-scale
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deployment in many countries of advanced metering infrastructure (AMI) in order to
upgrade the aging energy metering system [3].

One of the principal problems which impacts the efficiency and security of the
power distribution networks are the power losses occurring within the process of
delivering energy to the consumer. These losses can be decomposed into two cate-
gories: i) Technical losses (i.e. losses due to naturally occurring phenomena in the
power system, such as power dissipationwithin transmission lines and transformers),
and ii) Non-technical losses (NTL), which can be attributed to the following reasons:
a) Actions of utility employees or an operator, such as administrative losses due to
accounting errors and record keeping, b) Customer theft, c) Customer non-payment,
and d) Theft by non-customers [4].

A critical issue for the distribution utility is that NTL cannot be precisely cal-
culated, only global losses; they are usually estimated as the difference between
the total amount of energy fed into the distribution system and the total amount of
energy recorded as sold to customers [5]. The excess of unbilled energy is energy
that is not scheduled or expected by the utility, thus it can severely affect the power
system operation [6]. Critical operational problems that may arise include overloads
of generation units and the stressing of network equipment due to congestion and/or
over-voltages. These result from the fact that the utility cannot schedule sufficient
active and reactive power due to system dynamic uncertainty and insufficient load
flow information. Furthermore, these over-loadings can have an impact on the equip-
ment of honest consumers. In extreme cases of excess unplanned load, blackouts and
brownouts may also occur. Concerning the distribution utilities, apart from the di-
rectly incurred economic losses as a consequence of purchasing energy that is not
billed for, maintenance costs also increase due to the aforementioned stressing of
the equipment. Hence, NTL deprive utilities from investing in the upgrading of their
equipment. Last but not least, the environmental impact of NTL is also considerable
due to the increase in CO2 emissions (the price signal is not considered in the de-
frauder decisions). A 10% reduction in NTL in India (around 83,000 GWh) would
result in 9.2 million tons CO2 reduction annually [7].

The nature of NTL poses serious challenges to utility companies in detecting
dishonest customers. It should also be pointed out that technical losses are correlated
with NTL, since the delivery of unbilled energy creates further physical losses on
the power system. Thus minimizing NTL contributes to the overall reduction of
power losses. ENEL, the Italian electricity utility, was motivated to initiate a large
scale roll-out of smart meter-based infrastructure in order to minimize NTL of their
distribution network. After the installation of smart meters (SMs) on the consumers’
premises, the theft hit-rate raised from 5% to 50% [9]. This massive deployment
of SMs is now extended to Spain, being facilitated by Endesa -one of the Spanish
distribution utilities- with 6.8 m SMs and 77,000 concentrators having been installed
by the end of December 2015. The data provided by the SM devices give a new
perspective and unveil numerous possibilities to develop efficient and effective theft
detection methods. Research in this respect has recently shown significant progress.
As a result, the authors felt motivated to investigate and present in this paper the
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state-of-the-art in NTL detection methods within the framework of AMI, including
artificial-intelligence techniques.

An important part of the implementation of an AMI is the replacement of the
legacy mechanical meters with SMs. The bidirectional communication capability of
the SM allows remote meter data-reading, recording of higher resolution measure-
ments, as well as outage reporting. SM and AMI data analysis remains a challenging
task for several reasons. Support databases with SM data "as is", is infeasible over
long time periods due to storage limitations. Those data are processed, depending
on the purpose of their use, and compressed before storage. The compression may
result in precision reduction of data, which could potentially be useful for future
re-analysis. Additionally, real- or nearly real-time data processing can be computa-
tionally heavy and resource-consuming. Last but not least, detailed measurements
from SMs allow the utility companies to extract the consumer load profile, which
is considered sensitive private data and even forbidden by some regulations. There
are confidentiality issues arising, with the possibility that such private information
can be sold to third-parties such as insurance companies, marketing companies etc.
Moreover the consumers may become easier targets for criminals, such as burglars
that can infer the victim’s daily habits by analyzing their load profile [8].

2 NTL Detection Techniques

There are various ways that the data retrieved from SMs have been analyzed and ex-
ploited in order to detect NTL. Existingmethods are categorized in this paper in three
groups: system state-based, artificial-intelligence-based and game-theory based. In
this review we will not consider the last one (see [4, 19] for more information).

2.1 System State-Based Methods

These methods are based on the coherence of data measured by SMs with respect
to the data collected from the network (probably performed on a routine basis by
the distribution system operator) and the features of the network (topology and line
parameters). Chen et al. present in [10] an electricity anti-theft method based on
state estimation (SE) algorithm [11], using redundant data from SM. It is claimed
that whichever the technology of stealing may be, the method is applicable. Other
advantages of this method include small-scale investment, wide-area and real-time
monitoring. It is also suggested that considering that the false voltage, current, or
power measurements due to stealing are the bad measurements, then for a limited-
size network its status can be estimated with high accuracy, while at the same time
localization of the electricity theft point can be achieved. The method was tested on
a 10 kV medium voltage (MV) network. However, the authors claim that the theo-
retical model can be applied on 400 V low voltage (LV) networks as well. A power
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balancing is initially performed to determine whether there is really need to further
investigate a feeder. If the difference between the total of power supply and the sold
power exceeds a threshold, then the following methodology is applied. The collected
three-phase real-time voltage, current, active and reactive powermeasurements at the
MV/LV transformers are used as inputs to a weighted-least-squares (WLS) three-
phase state estimation algorithm. This is applied in order to estimate the loading of the
distribution transformer. Note that it was considered that the phases are decoupled in
ungrounded MV networks. If the deviation of the estimation from the measurement
is greater than a threshold, this suggests the existence of possible electricity theft.
No results were presented to validate the performance of the method Another SE
approach is developed by Huang et al. in [9, 12] for almost real-time localization of
irregular energy consumption and NTL reduction. However, in [9] the SE is comple-
mented with an analysis-of-variance (ANOVA) model, constituting a more detailed
two-stage approach. The first-stage includes the implementation of the MV-level
SE, as in [12], for load estimation of the MV/LV distribution transformer. This stage
aims to identify feeders with tampered or defective meters. Abnormalities within the
feeder level in electricity consumption are determined by examining a measure of
overall fitting of the estimates to pseudo-measurements on the feeder bus, calculated
by aggregated customer data from SM at the MV/LV transformers. Following this
phase, ANOVA is performed in order to distinguish suspect customers with abnor-
mal measurements records. A WLS-based, three-phase polar form SE algorithm is
implemented to estimate the MV/LV distribution transformer load. This algorithm
requires, aside from the network parameters and configuration: a) the hourly LV bus
voltage and demand data from SMs at the points of power delivery (aggregated to
provide pseudo-measurements at the LV side of the MV/LV transformer), b) outage
management system (OMS) data, and c) customer information system (CIS) data in
order to examine customer connectivity and construct the feeder framework. When
the estimates from the SE are obtained, irregular usage at the distribution transformer
level is detected via the examination of the normalized residuals at the point of deliv-
ery. Following the identification of bad data, the corresponding LV network is closely
investigated by applying ANOVA. To this purpose, for all consumers that belong to
that network, their load baseline curves (as estimated by old data dating back a few
weeks) are compared with curves obtained by recent SM measurements. The afore-
mentioned method was validated using data from a typical distribution feeder of the
Taiwan Power Company. Several NTL cases are demonstrated: a) defective SMwith
zero reading, b) defective SM with higher reading, and c) electricity theft. The SE
was able to identify in every case the bad measurement data. Moreover, when they
were replaced by their estimates and the SE was run again, the results were very
accurate and close to the actual values. For the ANOVA, two datasets, one of normal
and one of fraudulent customers were used, of 8 hours and their baselines for 3 weeks
were considered. The model distinguished which was the fraudulent dataset from the
5 ones. Niemira et al. in [13] implement a SE model to detect malicious data attacks
by comparing the active and reactive power measurement residuals of a nonlinear
SE with those of a linear one (DC model). The main difference of the proposed
SE from the traditional ones is that it is designed not only to handle random sensor
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noise or errors, but also isolated, random bad data. It is assumed that the attacker
has partial knowledge of the topology, such as a column of the Jacobian H (which
is constant for the DC SE), to prepare an attack measurement vector z. Then, his
own measurement and a suitable subset of measurements are modified so as to leave
DC residuals unchanged. DC models disregard losses, uneven voltage profiles and
reactive power. Thus, if a measurement vector designed for a DC SE is used with
an AC one, there will be an increase in the residuals. Baseline residuals are required
for comparison with the current residuals. A 24-bus IEEE network was used to ex-
amine the performance of the model. When Monte Carlo noise was added to real
measurements, in order to produce data for baseline construction, it was concluded
that the active power injection residues of the generators are impacted the most by
the attack. Weckx et al. in [14] propose a linearized load flow algorithmic approach
using SMdata for electricity theft detection via illegal connections, when line lengths
are unknown or uncertain. At the same time, basic information of the topology can
be extracted and the phase of consumers can be identified in an automatic way. The
LV, three-phase, four-wire, radial distribution networks are considered. Active and
reactive power, as well as voltage magnitudes, are the required measurements from
the SMs to be used in the linear model for the execution of this algorithm:

Vh,k = V 0
k +

N∑

h̃=1

ah,h̃ Ph̃,k +
N∑

h̃=1

bh,h̃ Qh̃,k , (1)

where k is the time step, h the hth residential consumer and N the total number of
houses; V 0

k is the voltage magnitude at the LV side of the MV/LV transformer, Ph̃,k

and Qh̃,k the active and reactive power of the consumer h̃ at time step k respectively,
and ah,h̃ and bh,h̃ the influence factors of the active and reactive power respectively

of consumer h̃ on the voltage magnitude of consumer h.
If there are historical measurements from SMs which are free from fraud, then

ah,h̃ and bh,h̃ in 1 can be considered as the unknowns and an ordinary least squares
problem is defined. After the influence factors have been determined, then the voltage
at each consumer premises can be calculated from (1), using newmeasurements from
SMs that possibly entail electricity theft and can then be compared with the voltage
measurement of the SM.

The parameters ah,h̃ and bh,h̃ are also indicators of the relative location of the SM
and the phase they are connected to. If the SM h is connected at the same phase as
the h̃ the parameter ah,h̃ will be negative since the active power has created a voltage
drop. If it is connected to another phase, then the parameter will have a low positive
value.

The results of this approach were validated with the simulation of a LV, 4-wire
residential feeder inFlanderswith 32 customers. Thefirst customerwas far away from
the substation and the feeder does not have side branches. 1000 steps were required
to calculate the influence factors and the identification of the phases was successful.
A comparison between the errors of an exact load flow with a 10% uncertainty of
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cable lengths and the linearized one with unknown cable lengths is also presented;
the second case study was found to yield significantly smaller errors (less than 1 V).

In [15] Berrisford describes, within the context of electricity theft detection via
SMdata, a linear programming optimizationmethod to confirm the network topology
by estimating the feeder section impedances, and to provide estimates for theMV/LV
transformer LV-side voltage, which in many cases is not measured. The algorithm
uses hourly load and voltage measurements. The main idea behind this algorithm is
that the voltage of the transformer is equal to the sum of the voltage of any SMand the
voltage drop from the transformer to the SM. A set of equations, as many as the SMs,
estimating the voltage of the transformer can be formed. The unknown variables in
these equations are the line impedances since there are measurements for the SM
voltages and active powers. The criterion to obtain the most accurate values for the
impedances is the minimization of the transformer voltage variance. This is achieved
by using linear programming. When there is theft at a SM, the model exhibits poor
convergence. In the simulation, a virtual unknown load with known impedance was
added parallel to the irregular SM to represent theft, and the model converged in
this case. The method was tested on two transformers of BC Hydro in Canada for
hourly measurements of 4 weeks providing promising results. During the first week,
for transformer A, the mean standard deviation (MSD) was 0.016% for voltage. The
line impedance estimates were consistent for about 4 weeks testing, which implies
that the model is accurate. Transformer B had a 0.437 V MSD. This was attributed
to the fact that one of the SM had a completely different voltage trend, and it was
concluded that it belonged to another transformer. After the SM was removed the
MSD was 0.315 V but it was observed that for 2 SM the estimates were not in step
with the others. At this point, the virtual load to model theft was added and the MSD
decreased to 0.092 V.

Salinas et al. in [16], taking into account customers privacy preserving, propose
three distributed algorithms based on peer-to-peer computing in order to calculate
customers "honesty coefficients". The distributed LU and QR decompositions are
employed to solve a linear system of equations (LSE) while preserving each node’s
information. For a small network, LU decomposition (LUD) can localize the thieves:
unfortunately, the same methodology can prove to be unstable for large networks.
For the latter ones, LUD with partial pivoting (LUDP) is implemented, as well as
QR decomposition (QRD). The aforementioned methods are applied in cases with
constant fraud. In addition to this case, adaptive LUD, LUDP and QUD for scenarios
with variable theft activity are also presented.

Those algorithms are intended to be implemented in the SM firmware. An as-
sumption that there is a SM at the concentrator is made, in order to know the overall
energy consumption of an area. For a neighborhood with n consumers, let SP be
the sampling time, pti , j and P̄ti the recorded energy consumption by the user j at
time ti and the overall consumption recorded at the concentrator level respectively,
and k j the honesty coefficient of the j customer such that k j pti , j gives the actual en-
ergy consumption of j th customer for the time period ti . The sum of all consumers’



Detection of Non-technical Losses in Smart Distribution Networks: A Review 49

actual energy at time ti should be equal to the energy consumption at the concentrator
level, thus

k1 pti ,1 + k2 pti ,2 + . . . + kn pti ,n = P̄ti (2)

The aim is to determine the k j coefficients. If k j = 1 then the customer is considered
honest, if k j > 1 then the recorded energy from that SM is lower than the realized one,
and the customer is characterized as fraudulent, and if 0 < k j < 1 then the recorded
energy is more than the consumed one, suggesting that this SM is defective. With n
equations like (i.e. energy measurements for n points in time), a LSE is formed:

Pk = P̄ , (3)

where the j th column of P is the recorded energy of the j th SM. Then the data in
P are factorized in a lower triangular matrix L and an upper triangular matrix U , so
that P = LU . A new system is then derived:

Ly = P̄ (4)

Uk = y (5)

The L , U and y are collaboratively and sequentially calculated by the SMs. For this
task, the concentrator has to transmit P̄t j+1 to each SM while each SM calculates
only one column of L and y. In order to perform this task it needs the previously
calculated columns of these matrices to be transmitted to it by the previous SM. Then
backward substitution is used to determine the honesty coefficients k j . Each SM
sends to the previous one the product of one column ofU and the calculated honesty
coefficient.Additionally, eachSMencrypts k j using the concentrator’s public key and
the concentrator decrypts all the k j after the LSE has been solved and the fraudulent
SM locations are identified. The LUDP is based on partial pivotingwhich refers to the
exchange of rows of the P matrix in order to arrange all the elements with the greatest
absolute value in each column in the diagonal positions. In comparison to LUD, this
algorithm requires greater execution time. The QRD algorithm decomposes P into
an orthogonal matrix Q (Q−1 = QT ) and an upper triangular matrix R, so that,

Rk = QT P̄ (6)

The adaptive LUD, LUDP and QRD algorithms consider variable honesty coeffi-
cients. In the area of n consumers, it is assumed that each one may commit fraud
with the same probability p. If X is the total number of energy thieves in the area,
then X is a random variable with a binomial distribution. When the concentrator
decrypts k, it can find the elements that are not equal to 1, denoted as Y , and thus it
can calculate the probability of this event happening:

P(X = Y ) =
(
n

Y

)
pY (1 − p)n−Y (7)



50 A. Fragkioudaki et al.

Then, if the customer j commits fraud with different probability p j , X is a random
variable with an expectation E[X ] = ∑n

j=1 p j . By setting a threshold, the con-
centrator can decide whether a k is valid or not if P is lower than the threshold in
which case the SP is reduced, and the process is repeated until the obtained k is the
same as the previous one. The performance of the algorithms was verified with sim-
ulations where the power measurements were generated using some surveys. LUD
performed well with 15 and 30 users with constant honesty coefficients but with 50
users it became unstable, QRD and LUDP however gave good results with 50 users.
With variable coefficients, LUD is stable for 25 users and LUDP, QRD performed
well even with 100, 200 and 300 users. Lo and Ansari in [17] deal with false data
injection (FDI) attacks by suggesting the combination sum of energy profiles (CON-
SUMER) attack, involving a number of consumers’ SM aiming to achieve a lower
consumption record for the attacker and a higher one for the other consumers. The
proposed CONSUMER attack model minimizes the number of the violated SMs.
This detection technique is based on a grid-sensor placement algorithm that pro-
vides increased monitoring to achieve higher hit-rates. In this work, it is assumed
that grid operators have complete knowledge of the network topology while radial
networks are considered. Let H denote the network configuration matrix, z a set of
measurements z = [PG, P1, P2, . . . , Pi ]T where PG is the power at the supply point
and Pi the powermeasured by the SM. It is assumed that no irregularities are detected
by the traditional bad data detectors. The attacker is considered to have knowledge
of H and the state estimation error. With this information, the attacker can build a
strategy such that for the normalized residuals applies ‖zb −Hx̂b‖ = ‖z−Hx̂‖ < δ,
where δ is a pre-determined threshold, zb and xb are respectively the measurement
and state vectors modified by the attacker. A vector c is designed such that x̂b = x̂+c
and a vector a can be fabricated so that zb = z + a = [P̄G, P̄1, P̄2, . . . , P̄i ]T �= 0
and a = [aG, a1, a2, . . . , ai ]T , ∑∀i∈NSM

ai = aG = 0, where NSM is the number of
SMs in the examined area. In other words, there are load alterations, and some ai
values will be negative, thus the corresponding SM will exhibit lower energy con-
sumption, and some will be positive by the same overall amount; these will refer to
the compromised SMs. The state estimation performed by the grid operators cannot
detect the linear alteration of a. The proposed intrusion detection system with power
information requires sensor placement across the distribution network. These sensors
are of a more simplified design in comparison to SMs, and they belong to the utility.
They build a sensor network which is less vulnerable to attacks, as it is designed
for grid monitoring. The data of the SMs will be compared with the ones obtained
from these sensors. In order to avoid placing sensors in all grid nodes and having an
over-determined system, an algorithm that identifies the optimal nodeswhere sensors
should be located is presented. Han et al. in [18] propose a NTL Fraud Detection
(NFD) method based solely on data obtained from SMs; no other information of
the consumers is required. The criterion used to identify dishonest customers is the
difference between the billed energy and the realized consumption. Assuming that
technical losses have been estimated by the utility company and excluded, there is
also a SM at the distribution transformer recording the overall energy supplied to n
customers in a neighborhood. Let E j denote the energy measured at the distribution
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transformer and Ei, j the actual energy at the i th SM, and xi, j the electricity reported
to the utility by the i th SM. By performing energy balance, considering that the
technical losses have been calculated and removed, yields

E j =
n∑

i=1

Ei, j (8)

If the consumer is honest, then Ei, j/xi, j ≈ 1; for a dishonest customer |Ei, j/xi, j −1|
will be very large. For each SM an accuracy coefficient is defined as ai, j = Ei, j/xi, j .
While the reported energy is available, the actual values are not. There is a function for
each SM such that fi (xi, j ) = Ei, j , j = 1, 2, . . . ,m. Based on Taylor approximation
fi (x) = ∑o

k=m ak,i xk . By replacing the previous two equations in (8) yields

E j =
n∑

i=1

o∑

k=m

ak,i x
k
i, j (9)

With m samples of xk for each SM and E j known, the accuracy coefficients can
be estimated. Simulations were performed to examine the performance of the model.

2.2 Artificial Intelligence-Based

Artificial Intelligence-based theft detection techniques are the most popular ones,
since they were available to use before the deployment of SMs, and because now
they can further advance and improve remarkably within the framework of SMs.
These methods usually refer to the classification of the consumers load profile. The
aim is to determine irregular patterns in the electricity consumption over time, based
on a training dataset that includes normal and irregular cases. The main steps fol-
lowed in a classification approach are: a) data acquisition, b) data preprocessing,
c) feature selection, d) classifier training, e) data-of-interest classification, f) data
post-processing, and g) theft-suspects identification.

Nagi et al. in [20] approach the electricity theft detection problem by develop-
ing an artificial intelligence technique, namely a support vector machine (SVM).
In this method historical consumption data and additional consumers attributes are
used to identify irregular consumption profiles that are highly correlated with NTL.
The consumers are classified either as "normal" or "fraud" by the SVM model. The
consumers’ consumption patterns are determined by employing data-mining and sta-
tistical analysis tools trying to identify sudden changes in the consumption profiles.
Specifically in this paper, the SVM solves a binary classification problem by finding
the optimal f (x) =sgn(g(x)), where g(x) is the decision boundary between the
two classes, that accurately classifies new data into the two classes while minimiz-
ing the classification error. The method of structural risk minimization is exploited.
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The method was tested using historical data of three Malaysian cities for 265,870
customers and for 25 months. The features that were eventually chosen include: a)
24 daily average energy consumption values for each customer, which correspond
to their load profile (estimated as the monthly consumption divided by the number
of days between two consecutive measurements), and b) the credit worthiness in-
formation CWR (this is produced by the utility’s billing system automatically for
customers that do not pay their bills) for each customer. The data were normalized,
formatted and then used for the training and testing of the SVMmodel. After collab-
oration and on-site inspection with Tenaga Nasional Berhad, it was found out that
the expected hit rate increased from 3 % to 60 %.

In Nagi et al. [21] the work of [20] was extended, introducing a fuzzy inference
system (FIS) in the form of IF-THEN rules. For each customer, an output ranging
from 0 to 1 is produced by the FIS. The customers with outputs from 0.5 and higher
are considered to have higher probability to be fraudulent. This method seemed to
improve the previously 60% hit rate to 72%. It is worthy tomention the work of [24],
where a method to identify the features that best describe possible illegal consumers
is proposed.

Babu et al. in [22] use fuzzy C-Means clustering to categorize consumers based on
their consumptionpatterns. Thedifference of clustering to classification ismainly that
the latter one has a training dataset where the response of the observations is already
known and classifies new data. Clustering is the grouping of observations into classes
of similar objects. In fuzzy clustering, an observation can belong to more than one
class, with a different degree-of-membership. The fraud identification relies on the
fuzzymembership function and the normalized Euclidean distances of cluster centers
ordered by unitary index score. The highest score represents fraudulent consumers.
Themethod uses five attributes that are considered to describe a consumption pattern.
These attributes include: a) the average consumption, b) the maximum consumption,
c) the standard deviation of consumption, d) the sum of inspection comments during
the last six months, and e) the average consumption of the neighborhood. Data of
another twelvemonths are required for the clustering process. Themethodwas tested
with real data from one neighborhood with 57 consumers from India and it achieved
a hit rate of 80 %.

Faria et al. in [23] utilize the consumer baseline load calculation methods that
have been developed within the context of demand response. For each period of the
historical data, the expected consumption is estimated, then this is compared with
the realized one and if there is considerable difference the consumer is characterized
as a possibly fraudulent one. The baseline types that were used are the following: a)
type I, which uses load historical data and may include other data such as weather,
and b) type II, which is used for aggregated loads. After the expected energy con-
sumption calculation, statistics regarding the expected and measured consumption
are produced and compared. These statistics include whole data average (WDAVG),
whole data standard deviation (WDSTD), past data average (PDAVG) and past data
standard deviation (PDSTD). Whole data refers to the overall data of the exam-
ined consumer, and past data refers to the past data of each calculation period. The
performance of the proposed method is demonstrated by a case study.
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3 Conclusions

Non-technical losses detection is a hard and challenging issue for the distribution
operators. With the massive deployment of SMs, new possibilities to detect electric-
ity theft are opened up. This paper has discussed the challenging issues in energy
theft detection and provided some research directions. In addition, NTL detection
methods within AMI have been investigated and categorized in three groups. After
examination of existing approaches, it can be concluded that each proposal addresses
only a few aspects of the multidimensional problem of electricity theft. Therefore,
the authors believe that energy-theft detection robust methods of the future will in-
clude both system state-based techniques that lie in the Kirchhoff laws applied to low
voltage circuits and artificial-based methods that lie in the detection of anomalies
in the consumption pattern of consumers. With the assistance of both methods, the
weaknesses of each technique, related mainly with lack of information, could be
compensated successfully.
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