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Abstract The paper introduces a technique for representing quantifier relations that
can have different scope order depending on context and agents. The technique is
demonstrated by classes of terms denoting relations, where each of the arguments
of a relation term is bound by a different quantifier. We represent a formalization
of linking quantifiers with the corresponding argument slots that they bind, across
λ-abstractions. The purpose of the technique is to represent underspecified order of
quantification, for computationally efficient and adequate representation of scope
ambiguity in the absence of context and corresponding information about the or-
der. Furthermore, the technique is used to represent subclasses of larger classes of
relations depending on order of quantification or specific relations.
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Reduction · Quantifiers · Underspecification
1 Background

The formal theory of the technique introduced in the paper is a generalization of
the theories of recursion introduced by Moschovakis [12, 13]. The formal languages
and their respective calculi include terms constructed by adding a recursion operator
along with the typical λ-abstraction and application. The resulting theories serve as
a powerful, computational formalization of the abstract notion of algorithm with full
recursion, which, while operating over untyped functions and other entities, can lead
to calculations without termination. The untyped languages of recursion were then
extended to a higher-order theory of acyclic recursion Lλ

ar, see Moschovakis [14],
which ismore expressive, by adding typed, functional objects. In another aspect, Lλ

ar is
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limited to computations that always close-off, by allowing only acyclic terms. I.e., the
class of languages Lλ

ar, and their corresponding calculi, represent abstract, functional
operations (algorithms) that terminate after finite number of computational steps.
Such limitation is useful in many, if not most, practical applications. In particular,
algorithmic semantics of human language can be among such applications, for which
the simply-typed theory of acyclic recursion Lλ

ar was introduced inMoschovakis [14].
In this paper, we use an extended formal language and theory of Lλ

ar, with re-
spective calculi, that gives better possibilities for representation of underspecified
scope distribution of higher-order quantifiers. Firstly, we use the extended reduction
calculus of Lλ

ar introduced in Loukanova [6], which employs an additional reduc-
tion rule, γ -rule, see Loukanova [6]. Secondly, we use restrictions over Lλ

ar-terms
introduced in Loukanova [10]. This paper provides also a more general technique
than Loukanova [10]. Here we represent a formalization of linking quantifiers with
the corresponding argument slots that they bind, across λ-abstractions and reduction
steps. In addition, the technique presented here is applicable for any abstract, i.e.,
mathematical, n-ary argument-binding relations, n ≥ 2, while we illustrate it with
human language quantifiers.

Detailed introduction to the formal language Lλ
ar of Moschovakis acyclic recur-

sion, its syntax, denotational and algorithmic semantics, and its theory, is given in
Moschovakis [14] and Loukanova [6]. The formal system Lλ

ar is a higher-order type
theory, which is a proper extension of Gallin’s TY2, see Gallin [4], and thus, of
Montague’s Intensional Logic (IL), see Montague [15].

2 Brief Introduction to the Type Theory Lλ
ar

In this paper, we only give brief, informal introduction of Lλ
ar, for sake of space. For

details, see Moschovakis [14] and Loukanova [6].

2.1 Syntax of Lλ
ar

Types of Lλ
ar: The set Types is the smallest set defined recursively (using a wide-

spread notation in computer science): τ :≡ e | t | s | (τ1 → τ2).
The vocabulary of Lλ

ar consists of pairwise disjoint sets of: typed constants, K =⋃
τ∈Types Kτ ; typed pure variables, PureVars = ⋃

τ∈Types PureVarsτ ; and typed
recursion variables (called also locations), RecVars = ⋃

τ∈Types RecVarsτ .

The Terms of Lλ
ar: In addition to application and λ-abstraction terms, Lλ

ar has re-
cursion terms that are formed by using a designated recursion operator, denoted by
the constant where in infix notation. The recursive rules for the set of Lλ

ar terms can
be expressed by using a notational variant of “typed” BNF, with the assumed types
given as superscripts:
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A :≡ cτ : τ | xτ : τ | B(σ→τ)(Cσ ) : τ | λ(vσ )(Bτ ) : (σ → τ)

| Aσ
0 where {pσ1

1 := Aσ1
1 , . . . , pσn

n := Aσn
n } : σ

where {pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } is a sequence of assignments that satisfies the
following acyclicity condition:

Acyclic System of Assignments: For any terms A1 : σ1, …, An : σn , and pairwise
different recursion variables p1 : σ1, …, pn : σn (n ≥ 0), the sequence {p1 :=
A1, . . . , pn := An} is an acyclic system of assignments iff there is a function rank :
{p1, . . . , pn} −→ N such that, for all pi , p j ∈ {p1, . . . , pn}, if p j occurs freely in
Ai then rank(p j ) < rank(pi ).

The terms of the form Aσ
0 where {pσ1

1 := Aσ1
1 , . . . , pσn

n := Aσn
n } are called

recursion terms. We shall skip the type assignments when the types are clear.

2.2 Two Kinds of Semantics of Lλ
ar

Denotational Semantics of Lλ
ar.Thedefinitionof the denotations of the terms follows

the structure of the Lλ
ar-terms, in a compositional way. Intuitively, the denotation

den(A) of a term A is computed algorithmically, by computing the denotations
den(Ai ) of the parts Ai and saving them in the corresponding recursion variable
(i.e., location) pi , step-by-step, according to recursive ranking rank(pi ).

The reduction calculi of Lλ
ar effectively reduces each term A to its canonical form

cf(A): A ⇒cf cf(A), which in general, is a recursion term:

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0) (1)

For each A, its canonical form cf(A) is unique up to renaming bound variables
and reordering the recursive assignments {p1 := A1, . . . , pn := An}. The order of
the recursive assignments is unessential since the order of the algorithmic steps in
computations of the denotations are determined by the rank(Ai ), for i = 1, . . . , n.

Algorithmic Semantics of Lλ
ar. The reduction calculi and the canonical forms of

the terms play an essential role in the algorithmic semantics of Lλ
ar. The algorithm

for computing the denotation den(A) of a meaningful Lλ
ar-term A, is determined by

its canonical form1. E.g., the sentence (2a) can be rendered into the Lλ
ar-term A, (2b),

which then, by a sequence of reduction steps (not included here, for sake of space,
and marked by ⇒ . . . ), is reduced to its canonical form cf(A), (2c).

1 The symbol “≡” is a meta-symbol, which is not per se in the vocabulary of Lλ
ar . We use it to

specify orthographical identity between expressions of Lλ
ar and definitional notations.
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John likes Mary’s father. (2a)
render−−−→ A ≡ [like(father_of (mary))](john) ⇒ . . . (2b)

⇒cf like( f )( j) where { j := john, m := mary,

f := father_of (m)} (2c)

≡ cf(A) (2d)

There is a rank function for the term (2c), which satisfies the acyclicity condition.
For each such rank function, rankm < rank( f ), since m occurs in the term-
part father_of (m) of the assignments f := father_of (m). E.g., rank( j) = 0,
rank(m) = 1, and rank( f ) = 2. And, the term, which is in canonical form, de-
termines the algorithm for computing A:

Step 1: Compute den( j) = den(john).
Step 2: Compute den(m) = den(mary).
Step 3: Compute den( f ) = den[father_of (m)].
Step4:Computeden(A) = den

[[like( f )]( j)] = den
[[like(den( f ))]](den( j))

For the reductions of terms to their canonical forms that are used in this paper, we
need the extended γ -reduction, which uses the (γ )-rule introduced in Loukanova [6].
While the detailed reduction steps of the terms A to their canonical and γ -canonical
forms are part of the computational attire, we do not include them here, for sake of
space limits. They are not essential for understanding the technique of underspecified
semantic representation introduced in the paper.

3 Distributions of Multiple Quantifiers

3.1 Specific Instances of Quantifier Distributions

We represent the general problem with a sentence like (3) that represents a specific
instance of a general problem. E.g., the sentence (3) is an instance of a whole class of
human language sentences that have a head verb with syntactic arguments, which can
be noun phrases interpreted as semantic quantifiers. In human language, such verbs
are common,while verbswithmore syntactic arguments are relatively limited.A verb
similar to “give” denotes a relation with three semantic arguments. Each of these
arguments can be filled up by a different quantifier. Furthermore, in general, each
of the syntactic complements of the head verb in a sentence may have components
that are also quantifiers, and thus contribute to the combinatorial possibilities of
scope distributions. In this paper, we do not consider such additional quantifiers,
since that is not in its subject. We focus on quantifiers contributed directly by the
major arguments of the head relation and their scope distributions and corresponding
binding of variables filling the argument slots of the relation denoted by the head
verb. In a given, specific context, the speaker may intend an interpretation of the
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sentence S represented by the closed, i.e., fully specified, Lλ
ar-term T1, with the scope

distribution (4b)–(4e).

S ≡ Every professor gives some student two papers. (3)

S
render−−−→ T1 (4a)

T1 ≡ every (professor) (4b)
[
3 λ(x3)some(student) (4c)

[
1 λ(x1)two(paper) (4d)

[2λ(x2)give(x1)(x2)(x3)]2
]
1

]
3 (4e)

By using the reduction rules, we reduce the term T1 to its canonical and γ -canonical
forms (by suppressing the detailed, long, sequence of intermediate reductions). Note
that, in the reductions and formulas, we use superscripts not only to distinguish
variables, but also as counters of applications of (λ) and (γ ) rules. The term (5g)–
(5k) is obtained by three applications of the (γ ) rule, once for s1 := λ(x3)student,
and two times for b2 := λ(x3) λ(x1)paper.

T1 ⇒cf every(p)(R3) where { (5a)

R3 := λ(x3)some(s
1(x3))(R

1
1(x3)), (5b)

R1
1 := λ(x3) λ(x1)two(b

2(x3)(x1))(R
2
2(x3)(x1)), (5c)

R2
2 := λ(x3) λ(x1) λ(x2)give(x1)(x2)(x3), (5d)

b2 := λ(x3) λ(x1)paper, s
1 := λ(x3)student, (5e)

p := professor } by (B-S) (5f)

⇒γ
3 every(p)(R3) where { (5g)

R3 := λ(x3)some(s)(R
1
1(x3)), (5h)

R1
1 := λ(x3) λ(x1)two(b)(R

2
2(x3)(x1)), (5i)

R2
2 := λ(x3) λ(x1) λ(x2)give(x1)(x2)(x3), (5j)

b := paper, s := student, p := professor } (5k)

Similarly to the specified T1, (4b)–(4e), depending on context, the sentence S can
be rendered to T2, (6b)–(7e), with a different distribution of quantification.

S
render−−−→ T2 (6a)

T2 ≡ some (student) (6b)
[
1 λ(x1)every(professor) (6c)

[
3 λ(x3)two(paper) (6d)

[2λ(x2)give(x1)(x2)(x3)]2
]
3

]
1 (6e)
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⇒gcf some(s)(R1) where { (7a)

R1 := λ(x1)every(p)(R
1
3(x1)), (7b)

R1
3 := λ(x1) λ(x3)two(b)(R

2
2(x1)(x3)), (7c)

R2
2 := λ(x1) λ(x3) λ(x2)give(x1)(x2)(x3), (7d)

b := paper, s := student, p := professor } by 3 times (γ ) (7e)

Note that by using indexed variables corresponding to the order of the argument
slots of the constant give, i.e., give(x1)(x2)(x3), we maintain expressing the order of
the quantifiers that bind the corresponding variables filling up those argument slots.
Thus, the quantifier order is expressed by the order of the λ-abstracts in the recursion
assignment for the constant give rendering the head verb of the sentence S in (3). In
general, the variable names are irrelevant, in sense that we can rename them, as we
wish, in the λ-sub-terms, without variable clashes. However, maintaining the corre-
sponding indexes is not only simple mnemonics, since it represents quantifier order,
and represents corresponding bindings. As we shall see in what follows, indexing fa-
cilitates the representation of respective bindings, which we will use in representing
underspecified order of quantification.

Outside any context available, there may not be enough information to render an
ambiguous sentence like (3) to a Lλ

ar-term with a single, specific, quantifier scope
distribution. And even in a specific context, the scope distribution is still dependent
on agents in it. From computational point, it is inefficient to render such a sentence to
the set of all possible distributions of scopes. Even when impossible distributions of
quantifier order are factored out, e.g., by lexical or other type incompatibilities, more
complex sentences can have multiple, alternative quantifier scopes. For notorious
examples, see, e.g., Hobbs and Shieber [5]. This topic continues to be one of the
major difficulties in computational semantics and language processing, and here we
present a formal approach to it.

3.2 Combinatorial Permutations of Quantifier Scopes

In the major Section 4, we develop technique for representing multiple, alternative
terms, each representing a specific quantifier distribution, by a single, underspecified
Lλ
ar-term. Such an underspecified term has free recursion variables for quantifiers,

that leaves the scope distributions open, to be specified when sufficient information
is available, by context. Before that, in this section, we make general observations,
with formal representations by Lλ

ar-terms of the shared patterns in specific quantifier
distributions. By this, we formalize the linkage over the argument slots that are
bound by the corresponding quantifiers. These formal linkages are exhibited formally
by the λ-abstractions over corresponding applications and are maintained during
reduction steps. We use permutation functions that represent the specific quantifier
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distributions. The canonical forms of the above two rendering represent the common
pattern of the quantificational structure.

Here, we will focus on the special case of n = 2, 2-argument generalized quanti-
fiers, where σi ≡ e, fromwhichwe canmake generalization to n-argument quantifier
relations between state-dependent sets of objects of state dependent types σ̃i , for any
natural number n ∈ N. In Lλ

ar, and in this paper, we use Curry coding of relations
with unary functions and corresponding terms denoting them. A Lλ

ar-term Q denot-
ing an n-ary, generalized quantifier is of type (8a), and we consider the 2-argument
quantifiers of type (8b).

Q : (
(̃σ1 → t̃) → · · · → (

(̃σn → t̃) → t̃
))

, for n ∈ N (8a)

Q : (
(̃e → t̃) → (

(̃e → t̃) → t̃
))

(8b)

A Lλ
ar-term Q for a 2-argument, generalized quantifier between individuals of

type ẽ, e.g., a constant some, every, two, etc., denotes the characteristic function
T(

(̃e→̃t)→((̃e→̃t)→̃t)
) of a relation T(

(̃e→̃t)×(̃e→̃t)→̃t
) between properties of entities of

the domain Tẽ. From the above template examples of quantifier distribution in Sec-
tion 3.1, we can conclude a general pattern. The general pattern provides instan-
tiations to specific instances of: (1) quantifiers, e.g., every, some, one, two, etc.;
(2) quantifier scope distribution; (3) quantifier domains. e.g.,man, student, professor,
paper, etc.; (4) quantifier range, which can be provided by rendering of a head verb,
e.g., give in the examples in Section 3.1, or other syntactic head construction.

Given a permutation π : { 1, . . . , n } → { 1, . . . , n }, we take recursion variables
Qi , Ri , qi , di , h ∈ RecVars that are appropriately typed.

By the extended γ -reduction, see Loukanova [6], the general quantification pat-
terns in terms like (5g)–(5k) and (7e)–(7a) can be reduced to the term Q, (9a)–(9f).
In a brief summary, the term Q has congruent forms with respect to renaming the
pure variables in the λ-abstracts, as well as the recursion variables bound by the
constant where. However, maintaining the indexes provides visualization of linking
the quantifier bindings.

Q ≡ Rn where { (9a)

R(n−1)
π(n)

:= λ(xπ(1)) . . . λ(xπ(n))h(x1) . . . (xn) (9b)

R( j−1)
π( j) := λ(xπ(1)) . . . λ(xπ( j))Qπ( j+1)[ (9c)

λ(xπ( j+1))R
j
π( j+1)(xπ(1)) . . . (xπ( j))(xπ( j+1))] (9d)

(for j = 1, . . . , (n − 1))

Rn+1 := Qπ(1)[λ(xπ(1))Rπ(1)(xπ(1))], (9e)

Qi := qi (di ) (for i = 1, . . . , n) } (9f)
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While the term Q in (9a)–(9f) is underspecified with respect to the free recursion
variables h, qi , di ∈ FreeV(Q), the order of the relations Qi , for i = 1, . . . , n,
is specified by any given, specific permutation π . One way to represent the under-
specified quantification order could be to leave the permutation function π under-
specified, i.e., without being instantiated. However, then the underspecified π is at
meta-theoretical level outside of Lλ

ar.
There is a better technique, presented in the next section, which provides specific

cases for π . It also is flexible with respect to imposing constraints on excluding some
of the permutations π . Such constraints depend on specifications of the recursion
variables qi , di , h ∈ RecVars with specific relations. Such restrictions are not in
the subject of this paper. Typically, they depend on the semantic properties of the
properties and the relations, but also on lexical classifications of human languages.

4 Underspecified Scope Distribution

The expression (9a)–(9f) implicitly carries a pattern for underspecified Lλ
ar-term

that represents underspecified scope of the relations Qi . In this section, we intro-
duce a technique for underspecified quantification in the case n = 3, which ten
can be generalized to n ∈ N. We bring again, temporarily the specifications of
qi , di , h ∈ RecVars as in Section 3.1 to illustrate the technique. Note that we use
extended terms with additional sub-expressions (10e) that add constraints over free
recursion variables, as introduced in [10]. The technique introduced here uses the
formal representation of the links that maintain the binding argument slots corre-
sponding to quantification across λ-abstractions and reductions to canonical forms,
visualized via indexing. The formal definition of the constraints that Qi λ-binds the
i-th argument of h via Ri , (for i = 1, . . . , 3), in (10e) is rather technical and spacious
and we leave it outside the subject of this paper, for an extended paper.

Here we note that the definition formalizes the linking of each quantifier Qi

with the variable xi that it binds, i.e, with the corresponding i-th argument slot
filled up by xi , by avoiding explicit usage of metalanguage symbols Qπ(i) with a
unspecifiedpermutationπ : { 1, . . . , n } → { 1, . . . , n }. Loukanova [10] uses another
kind of constraints, and the relation between them and the constraints in (10e) is also
outside the subject of this paper. Here we only mention that the choice between them
is open and depends on possible applications of the quantifier underspecification.
An important difference is that the technique presented here is more general and
applicable for any abstract, i.e., mathematical, n-ary quantifier relations, n ≥ 2.
Such quantifiers are abstract mathematical objects, in syntax and semantics of formal
languages, not only those originating in human language NPs and sentences.
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U ≡ R4 where { l1 := Q1(R1), l2 := Q2(R2), l3 := Q3(R3), (10a)

Q1 := q1(d1), Q2 := q2(d2), Q3 := q3(d3), (10b)

q1 := some, q2 := two, q3 := every, (10c)

d1 := student, d2 := paper, d3 := professor, h := give } (10d)

s.t. { Qi λ-binds the i-th argument of h via Ri , (10e)

R4 is assigned to a closed subterm with

fully scope specified Qi (for i = 1, . . . , 3), } (10f)

Now, from the underspecified (10a)–(10f), we derive one of the possible closed
Lλ
ar-terms, (11a)– (11j), having fully specified quantifier scopes: Note: 1. The λ-

abstractions are the tool for linking the quantifiers with the respective argument slots
that they bind, i.e., in satisfying the constraints (10e)–(10f). 2. The λ-abstracts are
nested within the where-scopes, accordingly, by the dependencies.

U321 ≡ R4 where { (11a)

R4 := l3, l3 := Q3(R3), Q3 := q3(d3), (11b)

q3 := every, d3 := professor, (11c)

R3 := λ(x3)
[

3
l2 where {3 l2 := Q2(R2), Q2 := q2(d2), (11d)

q2 := two, d2 := paper, (11e)

R2 := λ(x2)
[
2l1 where {2 l1 := Q1(R1), (11f)

Q1 := q1(d1), (11g)

q1 := some,d1 := student, (11h)

R1 := λ(x1)h(x1)(x2)(x3), (11i)

h := give }2
]
2 }3

]

3
} } (11j)

By using reductions including the important (λ) and (γ ) rules, similarly to the ones
in Section 3.1, we reduce the term U321 in (11a)–(11j), to the γ -canonical form in
(12a)–(12g). Note that these reductions use more applications of the (γ ) rule, due to
the additional assignments in the scope of the λ-abstractions, which are subject to
the (λ) rule.

cfγ (U321) ≡ R4 where { (12a)

R4 := l3, l3 := Q3(R3), Q3 := q3(d3), (12b)

R3 := λ(x3)l
1
2(x3), l

1
2 := λ(x3)Q2(R

1
2(x3)), Q2 := q2(d2), (12c)

R1
2 := λ(x3) λ(x2)l

2
1(x3)(x2), l

2
1 := λ(x3) λ(x2)Q1(R

2
1(x3)(x2)), (12d)

Q1 := q1(d1), R2
1 := λ(x3) λ(x2) λ(x1)h(x1)(x2)(x3), (12e)

q3 := every, d3 := professor, q2 := two, d2 := paper, (12f)

q1 := some, d1 := student, h := give } (12g)
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Each pair of the first two assignments in (12b), (12c), and (12d) can be merged.
Formally, this merging is via extending the reduction calculi of Lλ

ar by adding suit-
able reduction rules, which is not in the subject of this paper. The result is the term
S321, (13a)–(13g), that is not algorithmically (step-by-step) equivalent to the terms
U321, (11a)–(11j), and cfγ (U321), (12a)–(12g), while U321 and cfγ (U321) are algo-
rithmically equivalent, i.e., U321 ≈ cfγ (U321). However, the term S321, (13a)–(13g),
is more simple, by avoiding the unnecessary computations denoted by the merged
assignments. Otherwise, U321, (11a)–(11j), preserves all other computational steps,
represented by the assignments.

S321 ≡ R4 where { (13a)

R4 := Q3(R3), Q3 := q3(d3), (13b)

R3 := λ(x3)Q2(R
1
2(x3)), Q2 := q2(d2), (13c)

R1
2 := λ(x3) λ(x2)Q1(R

2
1(x3)(x2)), Q1 := q1(d1), (13d)

R2
1 := λ(x3) λ(x2) λ(x1)h(x1)(x2)(x3), (13e)

q3 := every, d3 := professor, q2 := two, d2 := paper, (13f)

q1 := some, d1 := student, h := give } (13g)

5 Conclusions and Future Work

In this paper, we have introduced a technique of underspecified, acyclic recursion,
for representation of a class of relations, belonging to the same class as quantifiers,
that can bind arguments by multiple, ambiguous binding scope. Several, e.g., n,
quantifiers, can interact and bind the arguments of n-arguments relations (n ≥ 2), in
alternative orders depending on context and agents in context. The technique gives
possibilities for leaving the order of quantifiers underspecified, in the absence of
relevant information.

The order of the quantifier scopes, i.e., the order in which several quantifiers bind
arguments of a relation, or a function, having n-arguments (n ≥ 2), is typically
dependent on specific contexts and agents. The quantifiers, and the relations whose
argument slots they bind, can also be underspecified. Thus, the term Q, (9a)–(9f), is a
computational pattern that represents a wider class of binding relations that can bind
in alternative orders represented by permutation function π . It is not computationally
efficient to generate the set of all possible alternatives π for binding orders, without
context, and even in specific context without sufficient information. This is not also
rational from general considerations, e.g., cognition, and how information should be
presented and processed efficiently.

The formal theory Lλ
ar provides highly expressive computational utilities, includ-

ing for representation of algorithmic semantics that is underspecified,whilemaintain-
ing algorithmic structure that can be expanded and specified when more information
is available.E.g.,without context and sufficient information, the semantic information
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carried by a sentence like “Every professor gives some student two papers”, does not
need to be represented by the set of all alternatives, i.e., both scope distributions T1,
(4b)–(4e), and T2, (6b)–(7e). It is more efficient and rational to render the common
information that is carried by both of these specific interpretations, in an underspec-
ified term U in (10a)–(10f). The Lλ

ar-term U is in canonical form, i.e., it represents
algorithmic instructions for computing the denotations of U depending on context.
The algorithmic instructions that are available in U contain available computational
structure and facts, in their most basic forms, because U is in a canonical form. In
a given context, with available information, an agent (which can be a computational
system embedded in a device) can specifyU , e.g., to the termU321 in (11a)–(11j) by
instantiating the binding scope of the quantifiers. Furthermore, the agent can derive,
from U321, the more simple term S321, (13a)–(13g).

Here, we briefly overview several areas of application of the computational tech-
nique introduced in this paper, which in the same time are subject of future work and
developments.

Computational Semantics. A primary application is to computational semantics of
human language. As we described and exemplified in Section 3, human language is
abundant of ambiguities that present the major difficulty to computerized processing.
Ambiguities and underspecification, typically can be resolved by context. Quantifiers
in human language are among the major contributors of ambiguities. Expansion of
multiple semantic representations have been avoid by the technique of semantic
storage, e.g., see Loukanova [7]. While such techniques are successful, they involve
meta-theoretic means and are specialized for quantifiers. The technique here has the
superiority of using the facilities of the type theory of recursion Lλ

ar at its object level.
In addition, it is applicable to more general relations.

The technique of Minimal Recursion Semantics (MRS), see Copestake et al. [2],
has been useful for underspecified semantic representation of multiple semantic
scopes. MRS has been implemented and used very successfully in large scale gram-
mars, e.g., see [1] and [3]. MRS lacks strict logical formalization, and our work
provides such via currying encoding of relations. Further work is due for direct,
relational formalization, without currying, for semantic representation in large scale
grammars, and in computational grammar in general.

Computational Syntax-Semantics Interface. Loukanova [8, 9] introduces a technique
for syntax-semantics interface in computational grammar, which uses Lλ

ar for seman-
tic representations, in compositional mode. While that work represents syntactic
phrases that include NP quantifiers, quantifier scope ambiguities are not covered.
Our upcoming work includes incorporation of the technique for underspecified se-
mantic scopes, introduced in this paper, in computational syntax-semantics interface.
The work by Loukanova and Jiménez-López [11] can be extended by the introduced
technique for underspecified scopes.

Other Applications. We envisage that the formal theory introduced here has many
potential applications, where covering semantic information that depends on context
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and information is important and includes relations that have scope binding. E.g.:
(1) type-theoretic foundations of: a. semantics of programming languages b. formal-
ization of algorithm specifications, e.g., by higher-order type theory of algorithms
Lλ
ar, L

λ
r , or their extended, or adapted versions c. compilers and techniques for con-

verting recursion into tail-recursion and iteration (2) information representation sys-
tems, e.g., in: a. data basis b. health and medical systems c. medical sciences d. legal
systems e. administration.

Many of these areas include and depend on semantic processing of human lan-
guage. Some of them include semantic data with quantifiers, or other relations having
multiple scope binding. In particular, we consider that, for a better success, it is im-
portant to develop new approaches in the areas ofMachine Learning and Information
Retrieval that use techniques for integration of the quantitative methods (e.g., from
mathematical statistics), which, typically, are used in these areas, with logic meth-
ods for semantic representations. We consider that Lλ

ar and its extended versions, by
including the technique from this paper, can be very fruitful in such developments.

MathematicalQuantifiers. The technique introduced in this paper is used to represent
not only quantifier relations, but also classes of relations that, similarly to quantifiers,
have scope dependent arguments, where the scopes depend on order of binding the
corresponding arguments. While we illustrate the formalization by examples from
human language, it is useful for abstract, mathematical quantifier relations having n-
arguments (n ≥ 2), and for applications in areas with domains consisting of relations
between sets of objects. Such applications are subject to future work.

Extending the Formalization. A more immediate future line of work is to provide
details of the formalization of the constraints (10e)–(10f) for linking the quantifiers
to the respective argument slots they bind.
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