
Chapter 9
An Invitation to Meteorological Data
Assimilation

Ágnes Bodó and Petra Csomós

Abstract The chapter introduces the basic data assimilation methods used in
meteorological modelling. After briefly recalling the mathematical notions and
tools needed, we present the optimal interpolation, the variational methods, and the
Kálmán Filter techniques in one and more dimensions. In order to illustrate the use
of the methods introduced, we present the results of numerical experiments done for
simple models.

Keywords Data assimilation • Ensemble transform Kálmán filter • Kálmán
filter • Optimal interpolation • Variational method

9.1 Introduction

The present chapter serves as an introduction to data assimilation methods used
in meteorological modelling. Our aim is to present the mathematical derivation of
the various methods and their applications to simple test models. Data assimilation
literally means that one aims at combining information from several sources
leading to a result which is better in some sense than the original data. Since
we are after the best weather forecast possible, meteorological data assimilation
aims at combining all the information being gathered about the present state of
the atmosphere: observations, numerical prediction, climatological data, etc. The
mathematical question is then how to combine all these data in order to get a result
being nearest to the true state of atmosphere. For a detailed introduction in this field
we refer to Kalnay [13] and Evensen [5] and the references therein.
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For the sake of simplicity, we consider only two information sources being
typical in meteorology: observations and numerical forecast obtained by a numerical
prediction model. Both of them can be considered as vectors containing the values
of the seven meteorological variables, that is, temperature, wind velocity in three
directions, pressure, density, and relative humidity, at each point of a certain three-
dimensional spatial mesh covering the whole atmosphere or its smaller region.
Let x 2 R

n denote the vector of numerical forecast and y 2 R
m the vector of

observations. In practice we usually have m � n (nowadays n � 107, m �
105). Hence, we are looking for that combination of x and y, called analysis in
meteorology, which approximates best the true state of the atmosphere. Since the
analysis at time t is the best approximation of the true state of the atmosphere at that
time, it plays two roles. On one hand, it serves as the weather forecast for time t,
being presented to the public. On the other hand, it is the best candidate for the initial
value of a numerical weather prediction model computing the numerical forecast for
the next time level, that is, for time t C �t with some time step �t > 0. Due to its
latter role, it should be compatible with the model’s variables, that is, it should be a
vector of size n. Hence, we denote the analysis by xa 2 R

n.
In the present chapter we introduce the basic data assimilation methods used

in numerical weather prediction models, such as optimal interpolation, variational
methods, and Kálmán Filter techniques. In Sect. 9.2 we summarise the mathematical
tools needed later on. In Sects. 9.3 and 9.4 the optimal interpolation and the varia-
tional method are introduced in one and more dimensions, respectively. Section 9.5
serves as an introduction to the variousKálmán Filter techniques, and in Sect. 9.6 we
present two test models and with the help of numerical experiments we compare the
data assimilation methods. Section 9.7 serves as an outlook on various procedures
used in nonlinear data assimilation.

9.2 Mathematical Background

In what follows we introduce the notions from mathematical statistics needed later
on.

Definition 9.1 Let ˝ ¤ ; denote the sample space being the space of all possible
outcomes and let a �-algebra E denote the set of all events where each event is a
set containing zero or more outcomes, that is, an event is a subset of the sample
space ˝ . Then the function P W E ! Œ0; 1� is called a probability function if it
possesses the following properties: P.˝/ D 1 and it is countably additive, that is,
for all An 2 E , n D 1; : : : ; N with Ai \ Aj, i ¤ j one has

P
� N[

nD1

An

�
D

NX
nD1

P.An/:
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The triple .˝; E ; P/ is called a probability space. The measurable function x W ˝ !
R is called a real-valued random variable if f! 2 ˝ W x.!/ � rg 2 E for all r 2 R

meaning that the set of events !, for which x.!/ � r holds, is again an event, that is,
we can talk about its probability. We will use the expression vector-valued random
variable x 2 R

n, if the coordinate functions of x W ˝ ! R
n are real-valued random

variables.

By having a random variable at hand, one can define its statistical quantities which
play an important role in data assimilation. From now on we suppose that ˝ is the
finite union of the intervals Ij � R for j D 1; : : : ; n with n 2 N.

Definition 9.2 Let .˝; E ; P/ be a probability space and x D .x.1/; : : : ; x.n// W ˝ !
R

n be a vector-valued random variable. We define the following quantities.

1. The cumulative distribution function Fx W Rn ! R of the vector-valued random
variable x is defined as

Fx.�
.1/; : : : ; �.n// D P.x.1/ < �.1/; : : : ; x.n/ < �.n//

for all � D .�.1/; : : : ; �.n// 2 R
n. Two random variables are called identically

distributed if they possess the same distribution function.
2. The probability density function fx W R

n ! R (if exists) of the vector-valued
random variable x is the function which fulfills

Fx.�/ D
Z �.1/

�1
: : :

Z �.n/

�1
fx.t

.1/; : : : ; t.n//dt.n/ : : : dt.1/

for any � D .�.1/; : : : ; �.n// 2 R
n.

In what follows we define the most important notions characterising a random
variable. Its expectation is intuitively the long-run average value of repetitions of
the experiment it represents. The variance measures how far a set of numbers is
spread out, and the covariance measures how much two random variables depend
on each other.

Definition 9.3

1. The expectation E of the vector-valued random variable x 2 R
n is defined as

E.x/ WD �
E.x.1//; : : : ;E.x.n//

�
with

E.x.i// WD
Z

Ij

tfx.i/ .t/dt for all i D 1; : : : ; n

(if exists). Let X D .x1; : : : ; xk/ 2 R
n�k be the matrix containing the k pieces of

vector-valued random variables x1; : : : ; xk 2 R
n in its columns. Then the notation

E.X/ means .E.X//i;j WD E.x.i/
j / for all i D 1; : : : ; n and j D 1; : : : ; k, i.e., we

take the expectation elementwise.
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2. Let x 2 R
n and y 2 R

m be vector-valued random variables. Their covariance is
defined as

cov.x; y/ WD E
�
.x � E.x//.y � E.y//>

� 2 R
n�m;

where > denotes the transposition, that is, xy> 2 R
n�m is the dyadic product of

the vectors x 2 R
n and y 2 R

m. We note that V.x/ WD cov.x; x/ 2 R
n�n is called

the variation of the random variable x. Since we have

�
V.x/

�
i;j

D cov
�
x.i/; x. j/

�
for all i; j D 1; : : : ; n;

that is, the entries of V.x/ are the covariances of the elements of x, V.x/ is also
called the covariance matrix of the random variable x.

The following properties will be used frequently.

1. The expectation E is a linear function.
2. The matrix V.x/ is symmetric and positive semidefinite for all random variables

x (whenever it exists).

One often investigates the jointly behaviour of two random variables but the
knowledge of their distribution functions is usually not sufficient. Therefore, we
need to define the joint distribution function of two random variables.

Definition 9.4

1. The joint distribution function Fx;y W Rn � R
m ! R of the vector-valued random

variables x 2 R
n and y 2 R

m is defined as

Fx;y.�; �/ WD P
�
x.1/ < �.1/; : : : ; x.n/ < �.n/; y.1/ < �.1/; : : : ; y.m/ < �.m/

�

for all � 2 R
n, � 2 R

m.
2. The vector-valued random variables x 2 R

n and y 2 R
m are called independent

if

Fx;y.�; �/ D Fx.�/Fy.�/ for all � 2 R
n; � 2 R

m:

3. The vector-valued random variables x 2 R
n and y 2 R

m are called uncorrelated
if

cov.x; y/ D 0 2 R
n�m:

We note that if two random variables are independent, then they are uncorrelated
as well.

In some cases the random variable x is unknown and it is approximated by another
random variable Qx called an estimator of x with the following properties.
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Definition 9.5 Let x be a vector-valued random variable and Qx one of its
estimators.

1. The estimator Qx is called unbiased if E.Qx/ D E.x/.
2. The estimator Qx is called optimal if the trace trE..Qx � x/.Qx � x/>/ is minimal

among all possible estimators.

We note that for a real-valued random variable x 2 R, the optimal estimator Qx
possesses the minimal varianceV.Qx/.

The sample (or empirical) mean and the sample covariance are statistics com-
puted from one or more random variables. These will be important later on when
the data assimilation methods are introduced.

Definition 9.6

1. The sample mean Ex1:::xk of the vector-valued random variables x1; : : : ; xk 2 R
n

is defined as

Ex1:::xk WD 1

k

kX
jD1

xj 2 R
n:

2. The sample covariance matrix V of the vector-valued random variables
x1; : : : ; xk 2 R

n is defined as

V WD 1

k � 1

kX
jD1

.xj � Ex1:::xk /.xj � Ex1:::xk /
> 2 R

n�n:

When introducing the basic data assimilation methods used in meteorology, we will
need the following result presented e.g. in Johnson and Wichern [11]

Proposition 9.1 Let x be a vector-valued random variable and x1; : : : ; xk its
mutually independent and identically distributed estimators. Then the following
assertions hold.

1. The sample mean Ex1:::xk is an unbiased estimator of the expectation E.x/.
2. The sample covariance matrix V is an unbiased estimator of the covariance

matrix V.x/.

9.3 Optimal Interpolation and Variational Method in One
Dimension

This section is devoted to the introduction of the basic data assimilation methods
when applied to one-dimensional problems, for example estimating the unknown
true temperature xt 2 R at a point. To do so we make two measurements, that is,
we take the real-valued random variables x; y and look for their (in some sense
best) combination, that is, the real-valued estimator xa. In meteorological data
assimilation, we always suppose the following.
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Assumptions 9.1 Let x and y be real-valued random variables and let xa be an
estimator of the constant true state xt 2 R. We suppose the following.

1. The estimator xa is the linear combination of x and y, that is, xa D ˛1x C ˛2y for
some constants ˛1; ˛2 2 R.

2. The estimator xa is unbiased, that is, E.xa/ D E.xt/ D xt.
3. The estimator xa is optimal, that is, the E..xa � xt/

2/ is minimal.
4. The measurements x and y are unbiased, that is, E.x/ D E.y/ D xt.
5. The measurements x and y are uncorrelated, that is, cov.x; y/ D 0.
6. The values of the variances V.x/ and V.y/ are given.

We present first the result of the optimal interpolation being a least mean square
estimate.

Theorem 9.1 Under Assumptions 9.1, the estimator xa has the form

xa D x C V.x/

V.x/ C V.y/
.y � x/: (9.1)

Proof Instead of just checking Assumptions 9.1, we present a constructive proof.
From the linearity of the expectation E and the estimator xa in x and y, it follows
that for some ˛1; ˛2 2 R the following identity holds

E.xa/ D E.˛1x C ˛2y/ D ˛1E.x/ C ˛2E.y/ D .˛1 C ˛2/xt:

Since the estimator xa is unbiased, we have that ˛1 C ˛2 D 1, hence, we obtain the
form

xa D .1 � ˛/x C ˛y D x C ˛.y � x/

for some constant ˛ 2 R. In order to minimize the variance V.xa/, we note first that
Definition 9.3 implies

V.xa/ D E
�
.xa � E.xa//2

� D E
�
.xa � xt/

2
�
;

and similarly for V.x/ D E."2
x/ and V.y/ D E."2

y/, where "x WD x � xt and "y WD
y � xt denote the errors of the measurements x and y, respectively, being real-valued
random variables as well. Hence, we have the identity

V.xa/ D E..xa � xt/
2/ D E

�
.x C ˛.y � x/ � xt/

2
�

DE
�
.xt C "x C ˛.xt C "y � xt � "x/ � xt/

2
� D E

�
"x C ˛."y � "x//

2
�

DE
�
.1 � ˛/2"2

x C ˛2"2
y � 2˛.1 � ˛/"x"y

�

D.1 � ˛/2
E."2

x/ C ˛2
E."2

y/ � 2˛.1 � ˛/E."x"y/:
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Since the measurements x and y are unbiased and uncorrelated, we have

0 D cov.x; y/ D E
�
.x � E.x//.y � E.y//

� D E..x � xt/.y � xt// D E."x"y/

by Definitions 9.4 and 9.5. This implies the result

V.xa/ D .1 � ˛/2
V.x/ C ˛2

V.y/;

which is minimal if its derivative with respect to the parameter ˛ vanishes:

0 D d
d˛
V.xa/ D d

d˛
.1 � ˛/2

V.x/ C ˛2
V.y/ D �2.1 � ˛/V.x/ C 2˛V.y/

which implies

˛ D V.x/

V.x/ C V.y/

completing the proof.

We note that formula (9.1) contains all the information given: the measurements x,
y and their variances V.x/, V.y/. In cases when the formula above is not feasible
to compute (e.g. in more dimensions presented later on), usually a statistical cost
function is minimised. As before, let x and y be estimators for the true state xt with
probability density functions fx and fy, respectively. The analysis xa is then derived
by maximising the maximum likelihood function L W z 7! fx.z/fy.z/ for the real-
valued random variable z. Such methods are called variational methods.

Assumptions 9.2 We suppose that the real-valued random variables x and y are
equally distributed and are of normal distribution with given variances V.x/ and
V.y/.

Theorem 9.2 Under Assumptions 9.1 and 9.2, the solution of the maximum
likelihood method leads to the same solution (9.3) as the optimal interpolation.

Proof Since x and y are of normal distribution, the maximum likelihood function
has the following form for any � 2 R:

L.�/ D fx.�/fy.�/

D 1p
2�V.x/

e� 1
2

.x��/2

V.x/ 1p
2�V.y/

e� 1
2

.y��/2

V.y/

D 1

2�
p
V.x/V.y/

e� 1
2

.x��/2

V.x/ � 1
2

.y��/2

V.y/ :
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The function L is maximal if the absolute value of the exponent

J.�/ WD 1

2

.x � �/2

V.x/
C 1

2

.y � �/2

V.y/
(9.2)

is minimal, that is, its derivative with respect to � vanishes. Hence, we obtain

xa D V.y/

V.x/ C V.y/
x C V.x/

V.x/ C V.y/
y D x C V.x/

V.x/ C V.y/
.y � x/

which completes the proof.

The function J defined by formula (9.2) is called cost function in meteorological
data assimilation. We note that it is a quadratic function.

9.4 Optimal Interpolation and Variational Method in More
Dimensions

In the previous section we have seen how the optimal interpolation and the
variational method work in one dimension. Since in meteorology one aims at
estimating the true state of the whole atmosphere, or at least the true values of
the meteorological variables in the spatial grid points, the measurements x and y
are (quite long) vectors. Hence, in this section we seek the best combination of the
model’s forecast x 2 R

n and the observations y 2 R
m by supposing the same as in

Assumption 9.1 in the appropriate form. To do so, we introduce first the operator
H W Rn ! R

m, called observation operator, which maps the forecast vector x onto
the grid of the observations’ vector y.

Assumptions 9.3 Let x 2 R
n and y 2 R

m be vector-valued random variables with
m � n and xa 2 R

n be an estimator of the constant true state xt 2 R
n.

1. The estimator xa is a linear function of x and y, that is, there exists a matrix
K 2 R

n�m such that

xa D x C K.y � H.x//: (9.3)

2. The estimator xa and the data x, y are unbiased, that is, E.xa/ D E.x/ D xt and
E.y/ D H.xt/, and are of normal distribution.

3. The estimator xa is optimal in the sense of Definition 9.5.
4. The data are uncorrelated, that is, cov.x; y/ D 0.
5. The values of the variances V.x/ and V.y/ are given.
6. The observation operatorH D H 2 R

m�n is linear.

Remark 9.1 Let "x WD x � xt 2 R
n and "y WD y � H.xt/ 2 R

m denote the errors of
x and y, respectively, being vector-valued random variables as well. Since the data x
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and y are unbiased, the variances have the form

V.x/ D E
�
.x � E.x//.x � E.x//>

� D E
�
.x � xt/.x � xt/

>
� D E."x"

>

x /

and similarly for V.y/ D E."y"
>

y /. Hence, they are usually called error covariance
matrices. Moreover, since the data x and y are uncorrelated, we have

0 D cov.x; y/ D E
�
.x � E.x//.y � E.y//>

� D E..x � xt/.y � xt/
>/ D E."x"

>

y /

and similarly E."y"
>

x / D 0.

The next question is how to choose the matrix K, called Kálmán gain matrix, in
order to obtain an optimal estimator xa.

Theorem 9.3 Under Assumptions 9.3, the Kálmán gain matrix K in formula (9.3)
has the form

K D V.x/H>.V.y/ C HV.x/H>/�1: (9.4)

Proof Since the vector-valued random variables x 2 R
n and y 2 R

m are of normal
distribution, their probability density functions have the following form for any
� 2 R

n:

fx.�/ D 1p
2�jV.x/je

� 1
2 .x��/>

V.x/�1.x��/;

fy.�/ D 1p
2�jV.y/je

� 1
2 .y�H�/>

V.y/�1.y�H�/;

where j � j denotes the determinant of the correspondingmatrix. Thus, the maximum
likelihood function reads as

L.�/ WD fx.�/fy.�/

D 1p
2�jV.x/jjV.y/je

� 1
2 .x��/>

V.x/�1.x��/� 1
2 .y�H�/>

V.y/�1.y�H�/:

The function L is maximal if the absolute value of the exponent

J.�/ WD 1
2
.x � �/>

V.x/�1.x � �/ C 1
2
.y � H�/>

V.y/�1.y � H�/ (9.5)

is minimal, that is, if its derivative vanishes:

d
d�

J.�/ D V.x/�1.x � �/ C H>
V.y/�1.y � H�/ D 0:

Hence, we obtain

xa D x C �
V.x/�1 C H>

V.y/�1H
��1

H>
V.y/�1.y � Hx/:
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From the identities

�
V.x/�1 C H>

V.y/�1H
��1

H>
V.y/�1 D V.x/H>

�
V.y/ C HV.x/H>

��1

and

H>
V.y/�1

�
HV.x/H> C V.y/

� D �
V.x/�1 C H>

V.y/�1H
�
V.x/H>;

we have that

�
V.x/�1 C H>

V.y/�1H
��1

H>
V.y/�1 D V.x/H>

�
V.y/ C HV.x/H>

��1
;

which completes the proof.

Theorem 9.4 Under Assumptions 9.3, for any matrix K 2 R
n�m, the analysis error

covariance matrix V.xa/ is given by

V.xa/ D �
I � KH

�
V.x/

�
I � KH

�
> C KV.y/K>: (9.6)

If the Kálmán gain matrix K has the special form defined in (9.4), the expression
becomes

V.xa/ D �
I � KH

�
V.x/: (9.7)

Proof From formula (9.3), we obtain for the errors that

"a � "x D xa � xt � x C xt D K.y � Hx/

D K."y C Hxt � Hx/ D K."y C H.xt � x//

D K."y � H"x/;

which implies

"a D "x C K"y � KH"x D .I � KH/"x C K"y:

Hence, the error covariance matrix V.xa/ of the analysis can be expressed as

V.xa/ D cov."a/ D E
�
."a � E."a//."a � E."a//>

�

DE
�
..I � KH/"x C K"y/..I � KH/"x C K"y/

>
�

D.I � KH/E."x"
>

x /.I � KH/> C .I � KH/E."x"
>

y /K>

C KE."y"
>

x /.I � KH/> C KE."y"
>

y /K>:
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Remark 9.1 further implies

V.xa/ D �
I � KH

�
V.x/

�
I � KH

�
> C KV.y/K>

D V.x/ � V.x/H>K> � KHV.x/ C KHV.x/H>K> C KV.y/K>

D V.x/ � KHV.x/ � KHV.x/ C KHV.x/H>K> C KV.y/K> (9.8)

D .I � KH/V.x/ C 4

with 4 WD �KHV.x/ C KHV.x/H>K> C KV.y/K>. We only have to prove now
that 4 D 0 hold. From formula (9.4) we have

K D V.x/H>
�
HV.x/H> C V.y/

��1 D V.x/>H>
�
.HV.x/H> C V.y//�1

�
>

;

which implies

K> D �
HV.x/H> C V.y/

��1
HV.x/

and

HV.x/ D �
HV.x/H> C V.y/

�
K> D HV.x/H>K> C V.y/K>:

Then from the identity

KHV.x/ D KHV.x/H>K> C KV.y/K>

we finally conclude the proof with

0 D �KHV.x/ C KHV.x/H>K> C KV.y/K> D 4:

By inserting the form (9.4) of K into formula (9.6), one obtains the identity (9.7)
which was to prove.

Besides the specific form (9.3) of the analysis xa, we will show its optimality as
well. To do so we will need the following technical Lemma.

Lemma 9.1 Let g W Rn�m ! R be a continuously differentiable function, and A 2
R

m�a, B 2 R
m�m be arbitrary fixed matrices for some m; a 2 N. Then the following

holds for its derivative for any K 2 R
n�m.

1. For g.K/ D trKA one has @g
@K D A>.

2. For g.K/ D trKBK> one has @g
@K D KB> C KB.

Proof For the whole proof we refer to Schönemann [16]. For the conviction of the
reader we note that since the function g is continuously differentiable with respect
to K D .Kjk/j;k 2 R

n�m (j D 1; : : : ; n and k D 1; : : : ; m), its derivative can be
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expressed as

@g

@K
D

0
BB@

@g
@K11

: : : @g
@K1m

::: : : :
:::

@g
@Kn1

: : :
@g

@Knm

1
CCA : (9.9)

We can now state the main result of this section.

Theorem 9.5 Under Assumptions 9.3, the analysis xa, given by the formula (9.3)
with the Kálmán gain matrix (9.4), is optimal in the sense of Definition 9.5.

Proof The analysis xa is optimal if the trace of the matrix

E..xa � xt/.xa � xt/
>/

is minimal. Since xa is an unbiased estimate, this is equivalent to the minimisation
of trV.xa/. Formula (9.7) in Theorem 9.4 implies that

V.xa/ D .I � KH/V.x/;

therefore, its trace is given in (9.8) as

trV.xa/ D trV.x/ C trKHV.x/H>K> � 2 trKHV.x/ C trKV.y/K>:

Since the expression above is minimal if its derivative with respect to the matrix
K vanishes, we need to compute @ trV.xa/

@K . We use Lemma 9.1/2 first for the matrix
B WD HV.x/H>, and obtain

@ trKHV.x/H>K>

@K
D K.HV.x/H>/> C KHV.x/H>

D .HV.x/H>K>/> C KHV.x/H>:

Similarly, for the choice B WD V.y/, Lemma 9.1/2 implies

@ trKV.y/K>

@K
D .V.y/K>/> C KV.y/:

Finally, for the matrix A WD HV.x/, Lemma 9.1/1 implies

@ trKHV.x/

@K
D V.x/>H>:
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So the derivative of trV.xa/ is given by

@ trV.xa/

@K
D.HV.x/H>K>/> C KHV.x/H> C KV.y/

C .V.y/K>/> � 2V.x/>H>

D2KHV.x/H> C 2KV.y/ � 2V.x/H>;

which is zero if and only if

K D V.x/H>.HV.x/H> C V.y//�1

holds, which completes the proof.

Since formula (9.3) together with formula (9.4) is the best linear unbiased estimate,
this method is called BLUE from the initials. We note that if the observation operator
H is nonlinear but linearisable around xa (i.e. there exists H 2 R

m�n being the first
derivative ofH at xa) then formula BLUE reads as

xa D x C K.y � H.x//

and together with (9.4) yield an approximatively optimal estimate to xa, being
however the only analysis which is possible to compute in practice in this way.

9.5 Kálmán Filter Techniques

In the previous section we presented the two basic data assimilation methods used
in meteorology. From formulae BLUE (9.3) and (9.4) one can see how important
role the error covariance matrices V.x/ and V.y/ play. Their computation, however,
is a challenging task in practice. As a first attempt, they are usually supposed to
be constant in time, however, in reality they may strongly depend on the weather
situation. In the present study we focus on V.x/ and assume that V.y/ is constant
in time. This can be supposed, because the spatial propagation of that part of xa

which causes the changes to x (called analysis increment) is based on V.x/ solely.
We present now a procedure due to Kálmán [12] to update the value of the error
covariance matrix V.x/ of the model’s forecast in each time step. To do so, we need
to introduce a model operator. Since the model operator describes time-dependent
processes, we denote it byMi W Rn ! R

n acting between the time levels i and iC1.
It contains the spatially and temporally discretised version of the partial differential
equations describing the atmosphere’s dynamics and the physical parametrisations.
By applying the BLUE data assimilation method, the numerical forecast xfiC1g at
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time level i C 1 is then obtained from the analysis xfig
a valid at the ith time level as

xfiC1g D Mi.x
fig
a /;

xfiC1g
a D xfiC1g C KiC1.yfiC1g � H.xfiC1g//

for all i 2 N, where x.0/
a is a given initial value (e.g. from another numerical weather

prediction model) and the Kálmán gain matrix is defined by formula (9.4), that is,

Ki D V.xfig/H>

i

�
V.yfig/ C HiV.xfig/H>

i

��1

for all i 2 N, where Hi denotes the linear observation operator. We note that if one
takes the derivative of the nonlinear observation operator H at xfig

a instead of H
itself, the method described above only leads to an approximation to xfiC1g

a at the ith

time level. We denote the model’s error at time level i by "
fig
M and its error covariance

matrix by V.Mi.x
fig
t // WD E."

fig
M."

fig
M/>/. As before, we suppose that the various

errors are uncorrelated.

Assumptions 9.4 We suppose that the model’s error and the error of the other
data x and y are uncorrelated. We further suppose that the model operator and
the observation operator are linear for all i 2 N, that is, Mi D Mi 2 R

n�n and
Hi D Hi 2 R

m�n.

In what follows we present the Kálmán Filter method for updating the error
covariance matrix.

Theorem 9.6 Under Assumptions 9.4, the update of the forecast’s error covariance
matrix reads as

V.xfiC1g/ D MiV.xfig
a /M>

i C V.Mix
fig
t / for all i 2 N: (9.10)

Proof We consider the following two relations:

8
<
:

xfiC1g D Mix
fig
a ;

xfiC1g
t D Mix

fig
t � "

fig
M;

where xfig
t denotes the (unknown) true state at the ith time level. By subtracting the

second equation from the first, one obtains

xfiC1g � xfiC1g
t D Mix

fig
a � Mix

.t/
t C "

fig
M:

Due to the linearity of the observation and the model operators, we can write

xfiC1g � xfiC1g
t D Mi

�
xfig

a � x.t/
t

� C "
fig
M:
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Since xfig
a � x.t/

t D "fig
a for all i 2 N, we have

V.xfiC1g/ DE
�
"fiC1g

x ."fiC1g
x />

�

DE
��

Mi
�
xfig

a � x.t/
t

� C "
fig
M

��
Mi

�
xfig

a � x.t/
t

� C "
fig
M

�
>

�

DE
��

Mi"
fig
a C "

fig
M

��
Mi"

fig
a C "

fig
M

�
>

�

DMiE
�
"fig

a ."fig
a />

�
M>

i C E
�
"M">

M
�

C E
�
"M."fig

a />
�
M>

i C MiE
�
"fig

a ."
fig
M/>

�
:

Since the different kinds of data are uncorrelated and from Definition 9.3, we obtain
for all i 2 N that

V.xfiC1g/ D MiV.xfig
a /M>

i C V.Mix
fig
t /;

which completes the proof.

We remark that if the model operator Mi is nonlinear but linearisable, for-
mula (9.10) stays valid but gives only an approximation to the update of the error
covariance matrix. We note that in meteorologyMi and M>

i are called tangent linear
and adjoint model, respectively.

Formula (9.10) seems to be promising but it is absolutely not feasible for
meteorological purposes. Due to the large number of grid points, n � 107, that
is, the size n times n of the matrix Mi and its transpose makes the matrix product
impossible to compute in a reasonable time. Hence, some other procedures are
needed to approximate its effect. All the attempts in this direction originate from
the ensemble predictions so far. Instead of taking only one initial analysis xfig

a , let us

consider k 2 N pieces of them, that is, we take xfig
a;j for j D 1; : : : ; k. At the end of the

section we list some techniques how they are generated in practice. Proposition 9.1
implies that the error covariance matrix V.xfig

a / of the analysis can be estimated by

V
fig
xa;1:::xa;k

WD 1

k � 1

kX
jD1

�
xfig

a;j � 1

k

kX
jD1

xfig
a;j

��
xfig

a;j � 1

k

kX
jD1

xfig
a;j

�
>

(9.11)

for all i 2 N. Formula (9.11) is the basic of all presented methods approximating
the effect of the Kálmán Filter (9.10). In what follows we will sometimes drop the
index of the time level in order to ease the notation.

Ensemble Kálmán Filter enables us to update the forecast’s error covariance
matrix by multiplying smaller matrices, that is, it desires much less computational
effort than the original Kálmán Filter (9.10), see e.g. in Houtekamer and Mitchell
[10] and Evensen [5]. Given the analysis ensemble members xfig

a;j for j D 1; : : : ; k
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we compute their sample mean from Definition 9.6 as

E
fig
xa;1:::xa;k

WD 1

k

kX
jD1

xfig
a;j for all i 2 N:

We define the matrices Zfig
a ; Zfig

x 2 R
n�k of the analysis and forecast perturbations,

respectively, such that they contain the vectors

1p
k�1

�
xfig

a;j � E
fig
xa;1:::xa;k

�
and 1p

k�1

�
xfig

j � E
fig
x1:::xk

�

in their jth column, respectively, for all j D 1; : : : ; k and i 2 N. Proposition 9.1
implies that

V.xfig
a;j / � V

fig
xa;1:::xa;k

D Zfig
a .Zfig

a /> 2 R
n�n and

V.xfig
j / � V

fig
x1:::xk

D Zfig
x .Zfig

x /> 2 R
n�n

for any j D 1; : : : ; k, where the approximation sign means an unbiased estimate.
The forecast ensemble is now generated by updating the analysis perturbations by
the model, that is,

ZfiC1g
x D MiZ

fig
x for all i 2 N: (9.12)

Then we automatically obtain formula (9.10) for negligible V.Mix
fig
t / as

V.xfiC1g/ D ZfiC1g
x

�
ZfiC1g

x

�
> D MiZ

fig
a

�
Zfig

a Mi
�

>

D MiZ
fig
a

�
Zfig

a

�
>

M>

i D MiV.xfig
a /M>

i :

Ensemble Kálmán Filter’s advantage is that one needs to integrate with the model
only k times in formula (9.12). We note that in the original setting the ensemble
members xa;j stem from the application of multiply analyses, i.e., application of
the BLUE estimate (9.3) multiple times with a set explicitly perturbed observations
(with a perturbation size in the range of the observation error variances) and a set
of implicitly perturbed forecasts. In this case the estimate is optimal. If the model
Mi is nonlinear but linearisable, formula (9.12) reads as ZfiC1g

x D Mi.Zfig
x /, and

formula (9.10) gives only an approximation to the error covariance matrix.
Ensemble Transform Kálmán Filter is a technique which not only updates the

forecast’s error covariance matrix but also generates ensemble members for the next
assimilation step. It is based on the idea that, as in the case of Ensemble Kálmán
Filter, there is a relation between the analysis’s and the forecast’s perturbations.
From the analysis ensemble, the new forecast members xfiC1g

j are obtained by

integrating with the model. By introducing the matrix Zfig
x 2 R

k�k as before, we
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are after the transformation matrix T 2 R
k�k for which ZfiC1g

a D Zfig
x Tfig holds for

all i 2 N. Bishop et al. [1] showed that T D V.� C I/�1=2 with

Z>

x H>
V.y/�1HZx D V�V>:

Thus, matrix V contains the normalised eigenvectors and � the eigenvalues of the
matrix on the left-hand side. Therefore, an eigenvalue decomposition has to be
solved in each time step. By choosing a control member xfig

a;1, the columns of the

matrix Zfig
a contain the perturbations to be added to xfig

a;1 in order to generate the

ensemble members. Given the analysis ensemble xfig
a;j for j D 1; : : : ; k and i 2 N,

the algorithm of the Ensemble Transform Kálmán Filter together with BLUE data
assimilation (9.3) and optimal Kálmán gain matrix (9.4) is the following for all
i 2 N:

xfiC1g
j WD Mi.x

fig
a;j / for j D 1; : : : ; k

�
ZfiC1g

x

�
j
WD 1p

k�1

�
xfiC1g

j � E
fiC1g
x1:::xk

�
for j D 1; : : : ; k

.ZfiC1g
x />H>

iC1V.yfiC1g/�1HiC1ZfiC1g
x D VfiC1g�fiC1g.VfiC1g/>

TfiC1g WD VfiC1g.�fiC1g C I/�1=2

ZfiC1g
a WD ZfiC1g

x TfiC1g

V
fiC1g
x1:::xk

WD ZfiC1g
x .ZfiC1g

x />

KiC1 WD V
fiC1g
x1:::xk

H>

iC1

�
V.yfiC1g/ C HiC1V

fiC1g
xk :::xk

H>

iC1

��1

xfiC1g
a;1 WD xfiC1g

1 C KiC1

�
yfiC1g � H.xfiC1g

1 /
�

xfiC1g
a;j WD xfiC1g

a;1 C �
ZfiC1g

a

�
j

generating the new analysis ensemble members xfiC1g
a;j and the updated approximate

value VfiC1g
x1:::xk

of the forecast’s error covariance matrix.
We note again that the same procedure works for nonlinear model and observa-

tion operators Mi and Hi as well, however, it only leads to an approximative time
evolution of the error covariance matrix. For more methods in the nonlinear case we
refer to Sect. 9.7.

Previously, we supposed that there existed k pieces of analysis perturbations xfig
a;j ,

j D 1; : : : ; k being valid at time level i. The question arises how they are generated
in practice. The perturbation of the observations has already been mentioned. One
can of course randomly perturb the actual analysis xfig

a field itself. The time-lagged
approach uses a mixture of two analyses initiated from two different time levels
but being valid at the same time level, see e.g. in Hoffman and Kalnay [9]. This
latter techniques will, however, not necessarily lead to perturbations being near to
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the directions along that the model stretches the most, which would be one of the
most beneficial requirements.

To this end, the breeding method was initiated where some initial random
perturbations are added to the nonlinear model, and these models integrate the same
initial analysis field xf0g

a . The solution to the unperturbed model is then subtracted
from the other solutions at each step, and the appropriately scaled differences are
added to the unperturbed solution again to generate the new analysis perturbations
for the next step. After some time, breedingmethod yields the so-called bred vectors
approximating the directions in phase space where the instabilities grow fastest. The
technique is described e.g. in Tóth and Kalnay [18, 19], and Kalnay [13].

Another popular perturbation generating technique is the method of singular
vectors. The idea behind the method is the following. One considers a spatially
discretised partial differential equation leading to an ordinary differential equation
of the form d

dt x.t/ D N .x.t//, t 	 t0 for the continuously differentiable functions
x W RC

0 ! R
n, N W Rn ! R

n for some n 2 N. If the initial value x.t0/ D x0 is
oppressed by a certain error e0, a first-order approximation to the time evolution of
the error term e.t/ can be obtained from the linearised equation d

dt e.t/ D J .t/e.t/
with the initial value e.t0/ D e0, where J .t/ D N 0.x.t// denotes the Jacobian ofN
taken at the state x.t/ for all t 	 t0. Then there exists a matrix 	.t/ 2 R

n�n such
that the solution to this problem has the form x.t/ D e	.t�t0/x0 for all t 	 t0. Since
the matrix 	.t/ is difficult to compute exactly (it is the sum of infinitely many terms
containing the integral of various commutators of J .t/), certain approximation is
computed in practice (e.g., Magnus method). By choosing the initial error term such
that ke0k D " for some " > 0, that is, being on the surface on the n dimensional
sphere of radius ". Our aim is now to determine how this sphere evolves subject the
nonlinear model N . To this end, we denote the propagator by E.t; t0/ WD e	.t�t0/

and the scalar product in R
n by h�; �i. We compute now

ke.t/k2 D kE.t; t0/e0k2 D hE.t; t0/e0; E.t; t0/e0i D hE.t; t0/
>E.t; t0/e0; e0i:

Due to the norm inequality we also have that

ke.t/k2 D kE.t; t0/e0k2 � kE.t; t0/k2ke0k2 D "2kE.t; t0/k2:

Altogether we have hE.t; t0/>E.t; t0/e0; e0i � "2kE.t; t0/k2, that is,

hE.t/e0; e0i � 1 (9.13)

with the matrix

E.t/ D 1

"2kE.t; t0/k2
E.t; t0/>E.t; t0/:

Formula (9.13) gives the equation of an ellipsoid. The directions of its axes are given
by the eigenvectors of the matrix E.t/. These directions give, namely, the directions
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along which the nonlinear model N stretches/compresses the error function e.t/
initially lying on the sphere. When generating the analysis perturbations, one is
interested in that directions where the stretching the larger is. The direction of the
largest stretching is given by the eigenvector belonging to the largest eigenvalue
of the matrix E.t/, and so on. Since the eigenvectors/eigenvalues of the matrix
E.t; t0/>E.t; t0/ are called singular vectors/values of the matrix E.t; t0/, we call
this procedure the method of singular vectors. In order to get the singular vectors
belonging to the leading singular values, one needs to integrate with the tangent
linear model forward in time and then with the adjoint model backward in time
many times, see e.g. in Errico [4].

We note, however, that in numerical weather prediction, the method of singular
vector is always combined with either ensemble analyses with perturbed observa-
tions (EDA) or with perturbations generated by the Ensemble Transform Kálmán
Filter. As we have already mentioned, Ensemble Transform Kálmán Filter generates
not only the forecast’s error covariance matrix VfiC1g but the analysis perturbations
as well. Comparisons between breeding method and Ensemble Transform Kálmán
Filter, between singular vectors and EDA, and between EDA and Ensemble
Transform Kálmán Filter are presented in Wang and Bishop [2, 24], and [7],
respectively.

9.6 Numerical Experiments

In order to illustrate the use of the methods introduced above, we present the results
of numerical experiments done for simple models. The reason of choosing these
models for the experiments is twofold. On one hand, they are of low dimensionswith
n D 1 and n D 3, respectively, therefore, Kálmán Filter can directly be applied and
there is no need to apply one of its approximations (such as Ensemble or Ensemble
Transform Kálmán Filter). On the other hand, the exact solution of the first system
is known, therefore, the behaviour of the data assimilation methods can easily be
explained. Although the second system does not admit a known exact solution,
it shares certain properties with the meteorological models (such us nonlinearity,
sensitivity to the initial values, etc.), making it a perfect test model to study the
performance of data assimilation methods.

9.6.1 Linear Iteration

We consider the system xfiC1g D xfig for xfig 2 R and i 2 N with xf0g D 1. One can
see that the true state equals xt D xf0g D 1. We suppose that the observations are
unbiased and normally distributed perturbations of the true state:

yfig D xt C N.0;V.y// for all i 2 N (9.14)



184 Á. Bodó and P. Csomós

where V.y/ D 0:3 is given. The simulations aim at illustrating the effect of the
forecast’s error covariance matrix V.x/. Since V.x/ represents the reliability of the
forecast, we can study how the solution changes depending on howmuch we rely on
the forecast. Another goal is to show the advantage of Kálmán Filter, therefore, we
present the same numerical experiments using BLUE (9.3)(9.4) and BLUE together
with Kálmán Filter (9.10). This enables us to study how the analysis, being initially
xf0g

a D 2 far away from the true state xt D 1, evolves in time in the two different
cases.

In Figs. 9.1, 9.2, and 9.3 the numerical results are shown for three values of the
error covariance matrix V.x/ D 10�4; 10�2; 10, respectively. Figure 9.1 illustrates
the case when we trust the forecast very much: The results of both the BLUE and
the Kálmán Filter methods are far from the true value xt D 1 and follow the initial
(wrong) analysis value xf0g

a D 2. Figure 9.2 corresponds to the case when we treat
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Fig. 9.1 Linear iteration with V.x/ D 10�4
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Fig. 9.2 Linear iteration with V.x/ D 10�2
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Fig. 9.3 Linear iteration with V.x/ D 10

the observations more reliable than in the latter case but still less reliable than the
forecast. One can see that we obtain better results: Both methods converge to the
true value xt D 1. Figure 9.3 illustrates the case when V.x/ has a much greater
initial value than V.y/, that is, we believe the observations much more reliable than
the forecast. Then the numerical results of the BLUE method completely follows
the observations, while the Kálmán Filter method updates V.x/ in a perfect way: Its
result finds the true solution very quickly.

9.6.2 Lorenz System

Our second example is the nonlinear three-dimensional Lorenz system. In 1963
Edward Lorenz developed a simplified mathematical model for atmospheric con-
vection in [14]. The model is a system of three ordinary differential equations now
known as the Lorenz equations:

d
dt x.t/ D �.y.t/ � x.t//; (9.15)

d
dt y.t/ D x.t/.
 � x.t// � y.t/; (9.16)

d
dt x.t/ D x.t/y.t/ � ˇx.t/; (9.17)

where x; y; z W .0; 1/ ! R are the unknown functions, and �; 
; ˇ 2 R are
parameters with specific values � D 10; 
 D 28; ˇ D 8

3
. Since its exact solution is

not known, we solve the system numerically by using the first-order Euler method
and the fourth-order Runge–Kutta method with time step �t D 0:01. We consider
the latter as the observations y at each time step. The solution with the Euler method
is considered as the model’s forecast. In the simulations we fix the covariance
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Fig. 9.4 The different trajectories in the phase space with parameters V.Mi.xt// D 10�2 , t D 2,
N D 10

matrices as V.y/ D .�t/8 � I 2 R
3�3 and V.x/ D 1

2
V.y/. Our aim is to investigate

the role of the covariance matrix of the model’s error V.Mi.xt//, therefore, we set
it to the following three value: V.Mi.xt// D 1; 10�2; 10�10. As before, we apply
BLUE (9.3), (9.4) with and without Kálmán Filter (9.10).

Figure 9.4 shows the trajectories in the phase space .x; y; z/ from the initial point
.2; 5; 10/ by applying the fourth-order Runge–Kutta (RK4) method and the explicit
Euler method with data assimilation method BLUE with and without Kálmán Filter.
One can immediately see that the three solutions differ, a more detailed study will
follow. We analyse first how the solution depends on the frequency of the data
assimilation, that is, on the number N of the time steps after which the analysis
xa is computed. Figure 9.5 shows the results when the data assimilations methods
are performed in each time step. One can see that all the three trajectories are
closed to each other at the beginning, however, the Kálmán Filter method performs
better then the BLUE method alone. Figure 9.6 illustrates the case when the data
assimilation methods are performed only at every 10th time step. One can see
that both methods have greater distance form the observations (RK4) as before.
Furthermore, they experience “jumps” after each 10 time steps when their solutions
are forced to follow the reliable observations by the data assimilation procedure. The
same phenomena can be observed in Fig. 9.7 when data assimilation is performed
in each 50th time steps. Both Figs. 9.6 and 9.7 show that the solutions cover each
other at the beginning, hence, the Kálmán Filter benefits from the update of the error
covariance matrix V.x/ only after the first data assimilation step.

In Fig. 9.8 the relative error of BLUE

errfig WD kxfig
a � yfigk2

kyfigk2
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Fig. 9.5 Lorenz system with
data assimilation frequency
N D 1

RK4

Euler+Blue

Euler+Blue+Kalman

Fig. 9.6 Lorenz system with
data assimilation frequency
N D 10

RK4

Euler+Blue

Euler+Blue+Kalman

with and without Kálmán Filter is shown. One can see that the Kálmán Filter always
performs better then the BLUE alone.

We investigated the effect of the model’s error covariance matrix V.Mi.xt//

as well. Figure 9.9 shows our results for the values V.Mi.xt// D 1, 10�8, and
10�16, respectively. One can see that in the first case the solutions follow almost
the same trajectories. The explanation is that in this case V.Mi.xt// D 1, that is,
the model is considered unreliable, therefore, the solutions rely on the measurements
(obtained by the fourth-order Runge–Kutta method RK4). If the value of V.Mi.xt//

is decreased, the data assimilation methods treat the model more reliable and try to
follow its trajectory. In the case V.Mi.xt// D 10�16 the situation is clear: The
BLUE method still follows the measurements (because V.Mi.xt// does not play
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Fig. 9.7 Lorenz system with data assimilation frequency N D 50
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Fig. 9.8 Relative error of the BLUE method with and without Kálmán Filter technique

any role in its computation), however, the Kálmán Filter method tries to converge to
the model’s trajectory.

The explanation of the expected behaviour is the following. The measurements
stem from the use of the fourth-order Runge–Kutta method being more accurate
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Fig. 9.9 Lorenz system with V.Mi.xt// D 1; 10�8; 10�16, respectively

than the first-order Euler method which provides the model’s forecast. Without
applying any data assimilation methods, the model’s forecast (indicated by “Euler”
in the Figures) differs very much from the (more accurate) measurements (indicated
by “RK4” in the Figures). Hence, contrary to the case of the models used in
numerical weather prediction where the true state of the atmosphere is somewhere
“between” the measurements and the model’s forecast, in this setting it is clearly
known that the (unknown) exact solution is nearer to the measurements’ trajectory.
Application of a data assimilation method results in a more accurate solution which
approaches therefore the trajectory of the measurements. Exactly this scenario can
be observed in Fig. 9.9: Both data assimilation methods (BLUE and BLUE with
Kálmán Filter) improves the model’s forecast. In the third case, when the inaccurate
model is undeservedly trusted too much (i.e. its error covariance matrix is small,
V.Mi.xt// D 10�16), the Kálmán Filter follows the trajectory of the Euler method
causing a significant error in the analysis.

The results above illustrate that the use of a flow-dependent data assimilation
method (e.g. Kálmán Filter or its approximate versions) itself is not enough for
improving the weather forecast, setting the appropriate value of the model’s error
covariance matrix V.Mi.xt// is important as well. Since the model’s error includes
not only the numerical error originated from the space and time discretisation
of the corresponding partial differential equations, but also the error done by
the parametrisations of various physical processes and the error of the boundary
conditions, very little is known about the its covariance matrix V.Mi.xt//. It is
usually modelled by adding some noise with zero mean to the forecast (or to each
member of the forecast ensemble). Although there are several results related, see
e.g. in Raynaud et al. [15], Trémolet [20], Düben and Palmer [3] and the references
therein, the further study of this issue is highly anticipated.

The studies presented above aim at giving an insight how the parameters of
the data assimilation methods effect the solution’s accuracy. We showed that the
analysis xa depends very much on the frequency of the assimilation step and on the
corresponding error covariance matrices. Hence, their right choice is crucial for the
efficient use of data assimilation methods.
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9.7 Outlook: Nonlinear Data Assimilation

We have seen previously that the solution to the linear data assimilation prob-
lem (9.3) is known and given in formula (9.4). The solution to the nonlinear data
assimilation problem, that is, when the model and observation operatorsM and H
are nonlinear, is given and studied e.g. by van Leeuven and Evensen in [21]. Since
its derivation is based on Bayes’ theorem, and in practice the probability density
functions can be far from being Gaussian, there is a demand for new techniques
which (1) do not use linearisation and (2) lead to a nonlinear analysis.

In this section we present some ideas how to proceed when the system is not
linear. For a more detailed introduction, we refer the reader to van Leeuven [23].
The most common approaches of treating the nonlinearity are the use of incremental
variational analysis and the particle filter methods.

We present the incremental variational analysis by applying it to the four-
dimensional variational analysis (4D-Var), see e.g. in Talagrand and Courtier [17],
Trémolet [20], which belongs to the class of variational data assimilation techniques
presented in Sect. 9.4. Its cost function is similar to that presented in (9.5), however,
it takes into account the effect of the various observations at their proper time levels.
We consider the nonlinear model Mi, the nonlinear observation operator Hi, the
observations yfig at the ith time level, and the previous forecast x being valid at the
time level t0. Then the cost function J.�/ of the 4D-Var method reads as

J.�0/ W D 1
2
.x � �/>

V.x/�1.x � �0/

C 1
2

IX
iD0

.yfig � Hi.�
fig//>

V.y/�1.yfig � Hi.�
fig//

(9.18)

with �fig subject the nonlinearmodel �fig D Mi�1.�
fi�1g/, i D 1; : : : ; I. By denoting

ı0 WD K.y � H.x//, the identity (9.1) reads as xa D x C ı0, hence, formula (9.18)
can be rewritten as

J.ı0/ WD 1
2
ı>

0 V.x/�1ı0 C 1
2

IX
iD0

.yfig � Hi.�
fig//>

V.y/�1.yfig � Hi.�
fig//:

The terms in the sum can be approximated by using the linearisation of the nonlinear
operatorsMi and Hi around the state �fi�1g WD �fig � ıfi�1g with the vector-valued
random variables ıi 2 R

n, i D 0; : : : ; I:

Mi.�
fig/ � Mi�1.�fi�1g/ C M0

i�1.�
fi�1g/ıfi�1g; i D 1; : : : ; I;

Hi.�
fig/ � Hi�1.�fi�1g/ C H0

i�1.�fi�1g/ıfi�1g; i D 1; : : : ; I:
(9.19)

Putting these formulas together, one obtains an approximative cost function those
minimisation leads to an approximation to Qı0. In order to take the linear operators
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M0
i.�

fig/ andH0
i.�

fig/ at the proper time levels, one needs an outer loop to compute
the linearisations (9.19) at each time level.

The inner loop contains then the minimisation of the cost function, that is, we
seek that state xa WD � for which d

d�
J.�/ D 0. This problem can be rewritten

in the form Aı D b where matrix A contains the linear operators M0
i.�

fig/ and
H0

i.�
fig/ as well, and the vector b contains the terms yfig � Hi.�

fig/. Such problems
are usually solved by the conjugate gradient method which global error depends
on the condition number � WD kAkkA�1k, that is, it converges fast if � is small
enough. There exist several preconditioning technics used to reduce the condition
number of the problem and to obtain faster convergence, see e.g. in Faragó and
Karátson [6]. A survey about the (pre)conditioning of the model operators appearing
in meteorological modelling can be found e.g. in Haben et al. [8].

Another approach to treat nonlinearity is the particle filtering. The idea behind it
is already presented in Sect. 9.5 about Ensemble Kálmán Filter, that is, the model’s
probability density function is approximated by using random ensemble members
(also called as particles). More precisely, in this case we need to approximate
the conditional density function which measures the probability density of the
atmosphere’s actual state given the specific observations. Then the conditional
density function is represented as the weighted sum of Dirac functions positioned
at the various particles (i.e., model states). Intuitively, we choose various particles
and make them propagate with time subject the nonlinear model. For the next step
we consider only those particles which “arrived” near to the observations, and by
a resampling procedure we generate new particles from them. The weights in the
sum correspond to the particles’ distance from the observations. Then we repeat
the cycle with the same amount of particles as in initial step. Since the derivation
of particle filtering is based on the conditional probability theory (e.g. Bayesian
statistics, stochastic filtering, Monte–Carlo methods), this is out of the scope of the
present chapter, however, a detailed introduction can be found in van Leeuven [22].
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