
Chapter 11
Ensemble Methods in Meteorological Modelling

Mihály Szűcs, András Horányi, and Gabriella Szépszó

Abstract Numerical modelling is a continuously developing discipline in mete-
orology, which provides meteorological forecasts and climate change projections
based on the numerical solutions of the set of equations describing the processes
in the atmosphere and the related spheres. The progress in numerical weather
prediction (NWP) and climate modelling has been enormous in the last few decades
thanks to the improved theoretical understanding of the meteorological processes,
the growing number of observations and the increasing available computer power.
In spite of the steady progress, meteorological forecasts cannot be fully perfect due
to the intrinsic characteristics of the atmosphere and the climate system. Weather
forecast uncertainties exist in initial conditions and in the model formulations
themselves and evolve rapidly with lead time. In climate change projections the
initial conditions have negligible role, but the internal climate variability and the
unknown future evolution of the anthropogenic activity are additional sources of
uncertainties. Since they cannot be avoided (just minimized), their representation
and quantification are essential tasks both in numerical weather prediction and
climate research. Currently the only feasible way to challenge this problem is
the ensemble approach, which delivers probabilistic information and attributes
uncertainty information to the numerical weather forecasts and climate projections.
This additional uncertainty estimation is a valuable bonus for the users and can be
efficiently applied in decision-making.
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11.1 Introduction

The main objective of this chapter is to give a general overview of the present state
of ensemble forecasting methods based on already existing references. Ensemble
approaches applied in short-range and climate time scale are introduced in detail,
together with ensemble visualization and interpretation possibilities, which are used
at the Hungarian Meteorological Service (HMS).

The present chapter contains five sections. After the introduction, Sect. 11.2
provides a general description of uncertainties in atmospheric weather prediction
models and climate models and gives motivation for using probabilistic forecasts.
Sect. 11.3 focuses on ensemble designs that are quantifying the previously described
uncertainties. Specific techniques are detailed which define different kinds of
perturbations in an ensemble system. Section 11.4 represents how operational
ensemble systems can be constructed and how ensemble methods can be applied
in the practice of climate modelling research. Furthermore, this section gives
examples for the interpretation and visualization of ensemble probabilistic products.
Section 11.5 is a short summary of the chapter.

11.2 Uncertainties in Numerical Weather Predictions
and Climate Projections

Theoretically, the error sources in NWP can be divided into two main groups
[39]. First group is called “God-given errors” which refers to the intrinsic chaotic
characteristic of the atmosphere and the climate system. Similarly to simple low-
dimensional systems described by non-linear equations [30], the atmosphere is also
very sensitive to its initial conditions. Small differences in the current initial states
can cause large differences among the future ones. In other words, even small uncer-
tainties can grow rapidly and might have significant impact on the weather forecast
outputs. Since perfect initial conditions cannot be given, predictability has been
always limited in numerical weather predictions. Evolution of the climate system
also has sensitivity to its initial state, however, within this initial condition descrip-
tion of the oceans and ice sheets is also included. The other group of errors can be
called “man-made errors” which refers to the incomplete human knowledge about
the system to be described and technical limitations about its modelling. Numerical
models are not perfect counterparts of the Earth system and they contain many
approximations, for instance the underlying mathematical equations are solved
numerically with temporal and spatial discretization. In practice these two main
types of errors cannot be separated and they affect each other in a very complex way.

The initial conditions of NWP models are mostly produced by complex data
assimilation methods which are using observations and background information.
This background is usually a short-range forecast valid at the analysis time and
consequently imperfect. Observations can also contain errors, since there might be
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instrument errors or they might not be representative for their vicinity. Additionally,
there might be significant spatial and temporal inhomogeneities in the observations.
The assimilation algorithms themselves also use approximations providing another
source of errors. Specifying initial conditions for climate simulations faces similar
challenges, but it requires measurements and background information about the
climate system, (e.g., the deep ocean) making the data assimilation procedure even
more complex.

Governing model equations are partial differential equations which cannot be
solved analytically, thus they are discretized and then solved numerically. Taking
the available computer resources into account, the discretization is limited. In spite
of the fact that the current supercomputers are extremely powerful, the model grid
is still unable to directly resolve all the meteorological phenomena at the desired
spatial scales, consequently some of the processes have to be parameterized. These
parametrizations can only give an estimation of the net effect of sub-grid scale pro-
cesses. Models also need lower and upper boundary conditions and their specifica-
tion can be particularly difficult for the surface. Additionally, in limited area models
the proper treatment of lateral boundary conditions (LBCs), which are used to con-
nect the processes inside and outside the regional domain, is non-trivial and a poten-
tial source of error. In climate modelling, not only natural processes are represented
in approximate way but also human activity has to be taken into account as the forc-
ing factor of future climate change. Anthropogenic activity is quantified in climate
model simulations via hypothetic emission scenarios (discussed in Sect. 11.3.3).

It is important to underline that atmospheric predictability is highly varying
and affected by the weather situation (Fig. 11.1a, b), meaning that it is higher
in stable conditions. It also depends on the forecasted parameter. For instance,
500 hPa geopotential field describes the large synoptic-scale motions and it is
more predictable than precipitation, which is influenced by local effects and
small-scale phenomena like convection. Although non-hydrostatic models can
describe convection explicitly, predictability is overall lower towards smaller
scales.

All these uncertainties reveal the necessity of providing not only single-forecasts
and single-projections but probabilistic information corresponding to the pre-
dictability of the given atmospheric state and limitations of modelling. Since
smaller-scale phenomena have lower predictability, the importance of probabilistic
forecasts is growing along with the increased model resolution and continuous
model improvements.

11.3 Ensemble Methods

Nowadays the only feasible way to produce probabilistic forecasts is to conduct an
ensemble of model integrations. In ensemble prediction systems (EPS) not only
a single model run predicts the future state, but an ensemble of forecasts gives
many possible realizations of the atmospheric (climate) system. The members of
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Fig. 11.1 (a) An example of the plume diagram from the results of LAMEPS at the HMS. It
shows the time evolution of the 6 h total precipitation values predicted by the ensemble members.
Forecasts were run at 18UTC 15 March 2014. Blue curves belong to the perturbed members while
orange denotes the control member and grey is the ensemble mean. (b) The same as (a) but forecast
was started at 18UTC 15 May 2014

such ensemble in NWP can differ slightly from each other in their initial conditions
or model formulations. These small differences are called perturbations and they
are supposed to be large enough to produce sufficient ensemble spread within the
existing uncertainties. There are many perturbation generation methods that are
dedicated for special types of possible uncertainties mentioned in the previous
section. These methods are divided into two main groups: the first one focuses on
initial condition perturbations (see Sect. 11.3.1), while the second one represents
model uncertainties (see Sect. 11.3.2). There are some practical ways to generate
ensemble systems, which are detailed in Sects. 11.3.2–11.3.4.

Generally an EPS contains 10–50 members, which would make an enormous
computational growth if the high resolution operational model versions were
applied in the ensemble system. To avoid this extraordinary cost, a compromise
is needed and EPS members run usually at a coarser resolution. The member using
unperturbed initial condition and model formulation is called control. Usually EPS
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is designed in a way that perturbed initial conditions have a symmetric structure
around the control.

Let us present the partial differential equation system of the atmosphere in a very
schematic way for the better understanding of the perturbation generation methods
detailed in the present section.

dx
dt D F .xI t/

x .t D 0/ D x0

(11.1)

In Eq. (11.1) vector x contains the state variables (e.g., pressure, temperature,
wind component, humidity) describing the atmospheric state, F denotes the forecast
model and x0 is the corresponding initial condition of the equation. The model state
at time T is the time integral of Eq. (11.1):

x.T/ D
TZ

tD0

F .xI t/ dt D
TZ

tD0

.A .xI t/ C P .xI t//dt (11.2)

In Eq. (11.2) F can be divided into two parts: the explicitly handled non-
parameterized (A) and the parameterized small-scale processes (P). The latter
processes are typically convection in non-hydrostatic models, turbulence, micro-
physics and radiation. This separation is important because the second term (P)
is more uncertain than the first one (A). The unperturbed control member of an
ensemble system can be directly described by Eqs. (11.1) and (11.2), while modified
equations are needed to explain the various perturbation generation methods.

11.3.1 Initial Condition Perturbations

Historically the first and currently the most commonly used methods to create
ensemble prediction systems are perturbing the initial conditions of NWP models.
These methods are mostly based on either finding the most unstable perturbations,
which are growing fastest during the model forecasts, or determining and quantify-
ing the model initial condition (analysis) error sources. In the next sections the most
popular methods are briefly summarized, like the computation of Singular Vectors
(SV), the determination of the Breeding Vectors (BV) and the application of the
Ensemble of Data Assimilations (EDA) method.

If these methods are applied then the initial condition equation of Eq. (11.1)
should be modified with an additional perturbation term. Consequently, the initial
condition of an arbitrary j-th ensemble member can be written as

xj .t D 0/ D x0 C yj .t D 0/ : (11.3)

Below different ways of defining yj are explained.
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11.3.1.1 Singular Vectors

The computation of singular vectors is one of the first perturbation generation
methods and was developed at the European Centre for Medium-Range Weather
Forecasts (ECMWF) in the early 1990s [6]. The basic idea is to find such directions
of the phase space (defined by the state variables of the model), where perturbations
can grow fastest in the early forecast evolution when the linear approximation is still
valid, normally the first 12–48 h of the forecast.

Let us consider the system described by Eq. (11.1) and its initial condition
perturbation y(tD 0) as defined by Eq. (11.3) which will result in the solution
x(t) C y(t) at time t. If y(t) is sufficiently small then the Taylor-series of the right-
hand-side function F around x(t) can be written as

F .x.t/ C y.t// D F .x.t// C dF

dX
y.t/ C O

�
y2.t/

�
: (11.4)

Equations (11.1) and (11.4) can be combined as

d .x.t/ C y.t//

dt
D dx.t/

dt
C dF

dX
y.t/ C O

�
y2.t/

�
; (11.5)

which can be further simplified into the tangent linear equation considering the
linear approximation:

dy.t/

dt
D dF

dX
y.t/: (11.6)

The general solution of the tangent-linear equation can be also formulated by
the propagator matrix (denoted as M in Eqs. (11.7)–(11.11)), which holds the
relationship between perturbations at the initial t0 and final t1 instants:

y .t1/ D My .t0/ : (11.7)

As mentioned above, the main idea of the SV method is to find the fastest growing
perturbations in a linear system (so the assumption of linearity is important while
considering the SVs). This linear perturbation growth in the [t0; t1] time-interval can
be quantified with a properly selected norm. For the perturbation growth the ratio
described by Eq. (11.8) must be maximized.

ky .t1/kE
ky .t0/kE

D kMy .t0/kE
ky .t0/kE

(11.8)
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The proper choice of the norm E is crucial in practice. Note that the norm defined
in the initial and final time instants might be different. This norm can be defined in
association with an inner product <;>E as follows:

kyk2
E D hyIEyiE: (11.9)

In Eq. (11.9) E is a positive definite Hermitian matrix. In case of Euclidean norm
this E matrix becomes the identity and consequently all the state vector variables are
combined with the same weight. The use of Euclidean norm provides an unphysical
metric since the state variables with larger units would dominate in the norm,
e.g., temperature. Therefore, a norm is desirable which has physical meaning when
combining the various model state variables. For instance, the total energy is widely
used as a physically sound norm, where the weights are provided according to the
contribution of the given variable to the total energy. There are also experiments
with CAPE (convective available potential energy) norm in limited area models
[42].

It can be noted that the norm might also contain a geographic projection operator
calculated over a given area of interest. The definition of such target areas can help to
focus e.g. on the tropics, where the perturbations are often improperly represented
by the global models [40]. Targeted SVs also allow to focus on such areas where
dynamically downscaled limited area ensemble systems run (see in the next section).

If in Eq. (11.9) the size of the initial perturbation jjy(t0)jjE is defined as a unit,
then the goal is to find the maximum of jjy(t1)jjE. The formula of Eq. (11.9) can
be deduced after considering the propagator Eq. (11.7) and transforming the norms
into scalar products and using the definition of the adjoint of the propagator matrix
M*:

ky .t1/k2
E D kMy .t0/k2

E D hMy .t0/ IMy .t0/iE D hM � My .t0/ I y .t0/iE: (11.10)

Equation (11.10) shows that the search of the fastest growing perturbations is
equivalent to finding the vi(t0) eigenvectors of the M*M matrix having the largest
eigenvalue of � i

2:

M � Mvi .t0/ D �2
i vi .t0/ : (11.11)

The square roots of the � i
2 eigenvalues are called singular values and the

eigenvectors vi(t0) are the singular vectors of M. The eigenvectors belonging to the
largest eigenvalues show those directions of the phase space, where the perturbations
have the largest growth in the [t0;t1] time interval based on the E norm. In realistic
atmospheric models the dimension of the eigenvalue problem is huge, therefore its
solution is non-trivial and it is obtained through special numerical algorithms. In
meteorology generally the Lanczos-algorithm is applied [29]. The initial condition
perturbations of Eq. (11.3) can be computed as one solution with combining the
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largest singular vectors of the different target areas:

xj D x0 C ySV D x0 C
NTAX
kD1

NSVX
iD1

˛kivki: (11.12)

In Eq. (11.12) NTA is the number of target areas, NSV is the number of used singular
vectors and ˛ is a parameter scaling the perturbation to the size of the estimated
analysis error.

11.3.1.2 Breeding Method and Kalman Filter

The breeding method [46] was developed in the US simultaneously to the above-
mentioned singular vector technique. The main conceptual difference of the breed-
ing method with respect to the singular vectors is that the largest uncertainties are
sought in the past (in the assimilation cycle) and not in the near future. This is
achieved by “breeding” of past perturbations with retaining only the most unstable
ones. The applied procedure is iterative. First, some small, random perturbations
are generated and added to the NWP analysis. Then short range numerical forecasts
are run based on the unperturbed control and the perturbed initial conditions. The
evolution of these initial perturbations is monitored by tracking the differences
between the control and perturbed forecasts. Cyclically, these perturbations are
rescaled and then added again to a new analysis. After that new forecasts are
started from the newly perturbed initial condition and the process restarts. In such
an iterative procedure after few steps the system is able “to breed” the necessary
perturbations (Fig. 11.2), with selecting the perturbations growing fastest during the
assimilation cycle. They can be used for perturbing the model initial conditions and
create a forecast ensemble.

The original implementation of the breeding method was built on the top of a data
assimilation cycle, so forecast perturbations were rescaled in every 6 h having the
same size as in initial time and they were added to a regular analysis. In further tests
even longer time periods were applied (12 or 24 h) to find the fastest growing modes

Fig. 11.2 The schematic
description of the breeding
method in case of two
members. x1 denotes the
unperturbed and x2 the
perturbed member, di refers
to the rescaled perturbations
and df to the bred
perturbations at the end of
each breeding cycle
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of the perturbations [47]. These tests also underlined the weakness of the method,
namely that a globally constant rescaling factor is not able to reflect geographical
variation and accuracy of the observing system. One possible solution can be
the so called masked breeding method where a latitude and longitude dependent
rescaling factor is defined. Although none of the above described breeding method
realizations can correctly take into account the forecast error variances.

This problem can be handled by Kalman Filter (KF) based methods. The classic
KF concept provides relationship between forecast and analysis error covariances
via the linear model, its transposed version and the model error covariance matrix.
Such a relationship can help to iteratively evolve the analysis and background error
covariance matrices through the data assimilation cycles and take into account flow
dependent errors. While the classic KF method is computationally expensive the
Ensemble Transform Kalman Filter (ETKF) was introduced. In ETKF a special
transformation matrix is defined by the estimation of background error covariance
matrix (given by the forecast perturbations of an ensemble system) and the
observation error covariance matrix. Such a transformation matrix can be used to
upgrade the error covariance matrices in a data assimilation system, but moreover
it is possible to use it to transform forecast perturbations into analysis perturbations
again [1]. Such a transformation has the advantage against the breeding method that
it can reflect the background error variances.

The Ensemble Kalman Filter (EnKF) can be also mentioned as a data assimi-
lation related application of ensemble systems. In EnKF both the forecast and the
analysis error covariances are estimated from the spread of the forecast and analysis
perturbations, respectively. Unlike to KF, EnKF uses the nonlinear model operator
to evolve the analysis state into the forecast state [20].

11.3.1.3 Ensemble of Data Assimilations

The main idea behind the Ensemble of Data Assimilations technique is the
simultaneous execution of more data assimilation cycles [24]. The differences
among these data assimilation cycles are provided by the quantified uncertainties
in the data assimilation system. The knowledge of these uncertainties provides a
clue about the realistic error sources of the system and makes possible to compute
analysis and short range error statistics. The analysis error statistics can be used to
define suitable perturbations to an ensemble prediction system and the short range
error statistics can be used for computing the background error covariances for the
data assimilation system.

For the better understanding, first we will show how a variational data assim-
ilation system can be formulated by defining a cost function, which measures
the deviations of the analysis from the various information sources used in the
assimilation process. The solution of the variational problem can be obtained
by minimization of a cost function ensuring that the meteorological analysis is
optimally near to all the ingredients of the assimilation system taking into account
their corresponding reliabilities. The two most important sources of information in
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a data assimilation system are the observations and the background fields (short
range NWP forecasts valid at the analysis time). The cost function of the variational
system can be written as:

J.x/ D .x � xb/
TB�1 .x � xb/ C .o � H.x//TR�1 .o � H.x// : (11.13)

In Eq. (11.13) x is the model state, B is the background error covariance matrix,
xb is the background state, o contains the observations, R is the observation error
covariance matrix and H is the observation operator (which establishes relationship
between model space and observation space). The B and R covariance matrices
are essential ingredients of the system, providing proper weighting between the
observation and background information.

In such data assimilation system considering the linear approximation the
analysis update can be defined as follows:

xka D xkb C Kk
�
ok � Hkxkb

�
xkC1
b D Mkxka:

(11.14)

In Eq. (11.14) superscript k refers to the assimilation cycling and the gain matrix Kk

can be written as:

Kk D Bb
kH

T
k

�
HkB

b
kH

T
k C Rk

��1
: (11.15)

In practice the uncertainties taken into account in EDA are related to the
observations, to the background fields, to the model formulation and to the lower
boundary conditions. In an EDA system, the observations are usually perturbed
by a random number �k drawn from a Gaussian distribution which has zero
mean (no systematic errors are assumed) and its standard deviation equals to the
estimated standard deviation of the observation error. Consequently, the formula of
the perturbed analysis can be written as a modification of Eq. (11.14):

.Qx/ka D .Qx/kb C Kk
�
ok C �k � Hk.Qx/kb

�
�k 2 N .0IR/ :

(11.16)

The background fields are not explicitly perturbed since they will be automat-
ically different during the assimilation cycles through the evolved perturbations
coming from the previous step (Fig. 11.3). Additionally, model uncertainties can
be also quantified in the assimilation cycle by perturbing the model formulation
(M0) and consequently the modified equation of the forecast step of the analysis Eq.
(11.14) can be written as:

.Qx/kC1
b D M0.Qx/ka: (11.17)
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Fig. 11.3 The schematic representation of the Ensemble of Data Assimilations (EDA) system.
Only the control member (x) and an arbitrary perturbed member (x0) are visualized with the
corresponding unperturbed (y) and perturbed (y0) observations

Model error representation methods will be detailed in Sect. 11.3.2. It has to be
noted that boundary condition uncertainties can be taken into account in the above-
mentioned forecast step. A possible lower boundary condition perturbation method
is described and the perturbed lateral boundary conditions of the limited area models
are mentioned in Sect. 11.4.1.

If the R observation error covariance matrix is properly estimated and the
perturbed M0 model formulation gives back the model errors correctly, then the
perturbations of the data assimilation system realistically represent the uncertainties
of the system.

ya � Qxa � xa
yb � Qxb � xb

(11.18)

In practice perturbed EPS members can be directly initialized by the perturbed
analysis. In this case Eq. (11.3) can be rewritten in a very simple way:

xj D x0 C yEDA D xa C ya: (11.19)

Another possibility is to define EDA perturbations as a difference between the
perturbed background fields and their ensemble mean. These perturbations can be
added to an analysis, which is produced independently from the EDA system (let
us denote as xA). This procedure has the advantage that this additional analysis can
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have better quality (finer resolution or created by a more sophisticated assimilation
method) and there is no need to wait for the most recent analysis of the EDA
members. In this case the perturbed initial condition of the arbitrary j-th member
of an EPS containing N members can be written as:

xj D x0 C yEDA D xA C �Qxj � xb
� D xA C Qxj � 1

N

NX
iD1

Qxbi: (11.20)

If the perturbations of EDA are correctly defined using adequate observation
and background error statistics then EDA shows those directions of the phase
space, where the data assimilation uncertainties are the largest. Therefore these
perturbations can effectively contribute to the initial condition perturbations used
for an EPS. Some more details of the ECMWF specific application is described in
Sect. 11.4.1.

11.3.2 Representation of Model Uncertainties

As already mentioned in Sect. 11.2 there are many sources of uncertainties
related to the atmospheric models. Although in principle, inflated initial condition
perturbations can partly account for model imperfections, they are not designed for
that goal and therefore other methods should be used to represent model-related
uncertainties. For that purpose, generally model formulations are not identical for
every ensemble member and their variety will result in such perturbations which
represent the model uncertainties in an ensemble system. Based on these model
formulation differences Eq. (11.2) can be modified for perturbed ensemble members
as follows:

xj.T/ D
TZ

tD0

F0 �
xjI t

�
dt: (11.21)

In Eq. (11.21) the F forecast model is replaced by its perturbed counterpart F0.
The multi-model method simply uses more types of models and then combine their
results, which means that in Eq. (11.21) F0 represents a set of the applied NWP
models (see below). Other methods try to identify perturbations from the most
uncertain parts of the model, which are the various parameterizations of the sub-
grid scale processes. Following this concept the parts of F0 can be separated like it
was the case in Eq. (11.2).

xj.T/ D
TZ

tD0

F0 �
xjI t

�
dt D

TZ

tD0

�
A

�
xjI t

� C P0 �
xjI t

��
dt (11.22)
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In Eq. (11.22) P0 represents the perturbed contribution of the parametriza-
tion schemes while the contribution of non-parametrized processes A remains
unchanged. Similarly to the multi-model method, these perturbations can be gen-
erated simply by using more parametrization schemes (multi-physics method, see
below) or using the same scheme but with perturbed settings (perturbed parameter
method, see below) or applying identical schemes with stochastic modifications in
their net contribution (stochastic physics, see below).

11.3.2.1 Multi-Model, Multi-Physics and Perturbed Parameter Method

In current NWP modelling practice there is no superior model, which performing
best in all conditions: all models have strengths and weaknesses. Different models
are better or worse depending on multiple factors like the current weather situation
or forecasted variable for instance. This variety of model performances motivates
experts to use several numerical models at the same time and provide information
from all of them to the users of forecast and climate model outputs (e.g., forecasters,
end users). The integrations of these models can be handled as members of an
ensemble system and they can provide information about forecast uncertainty
[10]. This ensemble generation method is called multi-model approach which
is rather a practical way to express model uncertainties without defining model
perturbations in a scientifically rigorous manner. This technique is often applied to
estimate uncertainties in climate projections, since running simulations on decadal
or longer time frame requires huge computational capacity, especially on global
scale. Therefore, climate ensembles are usually created by merging single (or
at best a few) climate experiments of individual institutes. Results of the most
typical multi-model climate ensemble are published in assessment reports of the
Intergovernmental Panel on Climate Change (IPCC; e.g., IPCC AR5 WGI, 2013),
however, several ensemble systems composed of regional climate simulations are
also available (see Sect. 11.4.1).

It should be mentioned that even inside an NWP model there are more avail-
able parameterization schemes which performance is also situation and variable
dependent. As already mentioned and described by Eq. (11.22) these parameterized
processes are the most uncertain parts of the model formulations and they can
be perturbed while non-parameterized processes stay unchanged. A practical way
to take into account this uncertainty is provided by multi-physics method where
different parameterization schemes are paired to different members of an ensemble
system [51].

A practical disadvantage of the multi-model and multi-physics methods is that
forecast centres cannot easily maintain many models at the same time or construct
large number of equally reliable parametrization schemes and consequently ensure
the sufficient ensemble population.

In a well-designed model and parametrization system there are large number
of tuning parameters which are empirically defined and their precise tuning is
uncertain. The main idea behind the perturbed parameter approach is to keep the
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same model and physical parameterization schemes for every ensemble member and
perturb only the most uncertain parameters. These parameters can be set differently
for all members or their value can vary stochastically between realistic thresholds
[8].

11.3.2.2 Stochastic Physics

The original stochastic physics scheme was developed in ECMWF and later it was
referred to as BMP scheme [5]. Similarly to the previously described approaches
it is supposed that sub-grid scale processes (described by model physics) are more
uncertain than the large-scale motions (described by the model dynamics on the
model grid). Due to this reason the total contribution of parametrization schemes is
perturbed by multiplying its original value with a random number. In this case P0 of
Eq. (11.22) can be described as follows:

P0 �
xjI t

� D ˝
rj .�; �; t/

˛
D;T � P

�
xjI t

�
: (11.23)

In the BMP scheme rj values are uniformly distributed in the [1� ˇ; 1C ˇ]
interval. ˇ is an important parameter of the scheme which can control the scale
of the perturbation and in practice it is usually set to 0.5. The rj values are kept
constant in several grid boxes over a D�D large geographical domain and for more
time steps over a T time interval. Their typical values vary between some hundreds
of kilometers for D and between 3 and 12 h for T. A disadvantage of the BMP
scheme is that rj values are independently picked random numbers which might
lead to unphysical spatial and temporal jumpiness in the perturbed tendency fields.

This deficiency is addressed by the revised version of stochastic physics scheme
which is called as Stochastically Perturbed Parameterized Tendencies (SPPT)
scheme. Its main aim is to ensure well-defined temporal and spatial correlation
between the rj values of the different model grid boxes.

P0 �
xjI t

� D �
1 C ˛rj

� � P
�
xjI t

�
(11.24)

If the SPPT scheme is applied in spectral models, then rj fields can be generated
in spectral space and then transformed to grid point space where the actual
parameterization computations are performed. Therefore rj is described by spherical
harmonics in a spectral global model [38] and by bi-Fourier functions in a spectral
limited area model [3]. The rj field is evolved by a so-called spectral pattern
generator where its spectral coefficients (rj0)mn are described by a first order auto-
regressive [AR(1)] process which ensures the temporal correlation.

�
r0
j

�
mn

.t C �t/ D 'r0
mn.t/ C ��mn.t/

' D exp .��t=�/
(11.25)
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In the AR(1) process described by Eq. (11.25) all the new (rj0)mn values are
calculated from two parts. The first part is the previous value multiplied by ®

which is the one-timestep correlation set by the decorrelation-timescale � . In the
second part 	 values are independent random numbers picked from a Gaussian
distribution with 0 mean, 1 variance and bounded into the [�2; 2] interval. These
values are multiplied by the � parameter which is responsible for the size of the
perturbations and it is (similarly to the original BMP scheme) most commonly set
to 0.5. While rj fields are represented in spectral space, the horizontal correlation of
grid-point values are ensured after the spectral transformation. In the spectral pattern
generator the so-called space correlation length (L) can control the “smoothness”
of rj fields (Fig. 11.4). In practice horizontal and temporal correlation are set
according to the characteristic scale of the errors in the atmospheric processes
which is represented by the scheme. There are experiments where two rj fields are
combined [38]: one of them represents fast evolving synoptic-scale errors (� D 0.5,
� D 6 h, LD 500 km) and the other one represents slow evolving planetary-scale
errors (� D 0.2, � D 30 days, LD 2500 km).

In Eq. (11.24) ˛ is an additional height-dependent function which can modify
the vertical structure of the perturbations. In the recent implementations it is set to

Fig. 11.4 An example for rj field used in SPPT scheme and evolved by the spectral pattern
generator of the ALADIN model. The horizontal correlation length is set to 500 km
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1 except near to the surface and near to the model top where it smoothly relaxes
to 0. This relaxation is necessary to avoid numerical instabilities coming from
inconsistencies between the surface (top of the model) and the perturbed low-level
(high-level) atmospheric tendencies. Although experiments are started recently to
apply SPPT also in boundary layer [37].

As it is expected and experienced, SPPT scheme is able to improve ensemble
systems by ensuring sufficient spread through the model integration by the perturbed
model formulations. It can be also noted that its positive impact can be measured
in the quality improvement of model climatology (especially in the case of
precipitation and in the tropics; [38]). It is related to the fact that SPPT not only
takes into account the model uncertainty but it can recover the variety of the sub-
grid scale process tendencies which is often hidden by the “deterministic” nature of
the parameterization schemes.

11.3.3 Representation of Uncertainties Related
to Anthropogenic Activity

On multi-decadal and longer time scales, besides the natural drivers, anthropogenic
activity is also an important forcing of the climate system, consequently, climate
models must take them into account. Human activity can contribute to the climate
change in several ways: e.g., through the emissions of greenhouse gases (GHG) and
aerosol particles, land use or demographic change. These effects can be considered
in climate models uniquely through meteorological parameters, e.g., via equivalent
carbon dioxide concentration as external forcings. An important type of climate
simulations is when CO2 level is changed to a fixed value (e.g., to its double) and
the model is run until a new equilibrium. Such an experiment does not provide
information about the temporal evolution and the dynamics of climate change,
however, it allows exploring (and possibly explaining) the sensitivity of different
models to a given radiative forcing.

With the increasing computational capacity, the so-called transient method was
introduced: climate model integrations are forced with time-dependent atmospheric
greenhouse gas and aerosol concentration levels. Transient model runs can simulate
a number of important aspects of climate variability, like North Atlantic Oscillation,
monsoon systems, El Nino events. Most importantly, it can be applied to study
the future climate change trends and their impacts. Time series of concentrations
derived by Integrated Assessment Models (IAMs), which calculate GHG concen-
trations as response to the assumed environmental and economic processes (and
vice versa). Since there are several possible pathways of the global future socio-
economic developments, the most likely future concentration equivalents can be
described only with limitations. Therefore, climate simulations based on these
scenarios are called and treated as projections (instead of forecasts).
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An important scenario family is SRES (Special Report on Emissions Scenarios;
[36]) which consists of four basic scenario sets distinct in assumed global population
change and main features of the economic and technological developments from
2001 onwards along the twenty-first century. It was widely applied in global
climate model (GCM) experiments providing scientific basis for the third and
fourth assessment reports of Intergovernmental Panel on Climate Change [21, 22].
Measurements of the anthropogenic emissions in the last decade urged the need
to review the SRES scenarios. The RCP (Representative Concentration Pathways;
[35]) scenarios were constructed following a new methodology: using selected
pathways of radiative forcings or equivalent CO2 concentration levels, Earth System
Models (i.e., climate models) and IAMs are integrated simultaneously and interac-
tively to estimate the future response of climate and socio-economic conditions to
the varying atmospheric and radiative forcings. RCPs cannot be identified with any
given socio-economic scenario: they are referred to their radiation forcing value
for 2100, which can be resulted along several socio-economic development paths.
RCPs have four representative versions depending on their radiative forcing levels
considered for 2100 from pre-industrial value (Fig. 11.5). The RCP scenario family
has been used in the GCM simulations serving results for [23].

Fig. 11.5 Time evolution of the total anthropogenic radiative forcing relative to pre-industrial
(about 1765) level between 2000 and 2300 for RCP scenarios, and SRES scenarios (until 2100) as
computed by the Integrated Assessment Modelling Consortium (IAMC) [23]
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11.3.4 Other Methods

Multi-model and multi-physics methods have already been described in Sect. 11.3.2.
This list can be supplemented with other methods following a similar basic idea. For
instance multi-analysis methods start forecasts from various analyses computed by
different forecast centres. This technique can be also combined with the multi-model
method or with the multi-LBC approach used in limited area ensemble systems,
where EPS members can be coupled to different global models [10, 12]. Such multi-
LBC methods are addressing uncertainties of the lateral boundary conditions.

Considering that many meteorological services and forecast centres run their
own EPS, a logical step can be combining them and generating a more populous
ensemble. Such systems are able to represent many types of uncertainties due to
the big variety of the applied methods and the large number of EPS members. In
practice, the setup of multi-ensembles (ensemble of ensembles) can be technically
challenging because of the significant data transfers between forecast centres. In
case of limited area ensembles, the different integration domains can add additional
difficulties. Due to the mentioned issues multi-ensembles are more used for research
and quality control purposes [14].

11.4 Applications of Ensemble Forecasts

In the past decades ensemble systems have become increasingly popular tools to
provide probabilistic forecasts and projections both in numerical weather prediction
and in climate applications.

The ensemble method was first implemented in medium-range global models
(see below). Later many national meteorological services started to run ensembles
with their limited area models (LAMEPS) to refine global probabilistic forecasts
on a shorter time range and for a smaller area of interest (see below). Recently
the focus of research and development is shifted towards the so-called convection-
permitting ensembles, where such fine-resolution, non-hydrostatic models are used
and are able to resolve deep convection explicitly [12, 34, 50]. The prediction of
small-scale meteorological events is very uncertain due to their low predictability.
This fact motivates the use of probabilistic forecasts on finer resolution even more.

Adaptation to climate change impacts requires high-cost efforts from the eco-
nomics and societies. Therefore, credibility of the climate information providing
input for these actions has great importance. Due to long-term consequences of
the adaptation strategies, the most essential aspect of this credibility is to quantify
the uncertainties of climate model simulations. In climate projections targeting
multi-decadal and centennial time scales, uncertainties are mainly originated from
approximations used in description of physical and anthropogenic processes. It
means in practice that climate ensembles are constructed with choosing different
anthropogenic scenarios and different climate models. The huge computational
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requirements and the limited national resources motivate the international co-
operations in establishing climate ensembles. The first climate ensemble system was
composed of GCM simulations in 1995. Although limited area models have been
used for climate purpose since the 1990s [13], the first ensemble system consisting
of regional climate model simulations was organized only in mid-2000s.

11.4.1 Some Examples of Ensemble Systems

11.4.1.1 The ECMWF Ensemble Prediction System

The ECMWF operational Ensemble Prediction System (ENS) produces 51 forecasts
(1 control and 50 perturbed members) for the quantification of the forecast
uncertainties in the Integrated Forecasting System (IFS). The forecast uncertainties
are quantified as the result of initial and model perturbations.

The initial perturbations of the ENS are determined by adding a combination of
EDA and SV perturbations to the unperturbed analysis (which is the high resolution
ECMWF analysis) described by Eq. (11.26).

xj D x0 C yEDA C ySV (11.26)

EDA perturbations (yEDA) are generated by computing differences between the
6 h EDA forecasts and the EDA mean, like in Eq. (11.20). The 6 h EDA forecasts
are chosen since the latest EDA is not yet available at the time of analysis. The
SVs are computed by the optimization of the total energy growth in a 48 h time
interval using various target areas for the extra-tropics and the tropics. The SVs
are linearly combined (see Eq. (11.12)) and the perturbations are scaled to have
an amplitude locally similar to the analysis error estimation obtained from 4D-Var
(4- dimensional variational data assimilation).

The uncertainties of the lower boundary conditions can be also considered in an
ensemble of data assimilation cycles. The method applied in ECMWF generates
perturbations with errors correlated with the sea surface temperature fields [49].
Model uncertainties are taken into account by adding stochastic perturbations to
the physics parameterization tendencies using SPPT (see Sect. 11.3.2) and Spectral
Kinetic Energy Backscatter (SKEB) schemes [38].

11.4.1.2 Limited Area EPS Activity at Hungarian Meteorological Service

The operational regional EPS of the Hungarian Meteorological Service (HMS)
is based on the hydrostatic ALADIN model [18] and runs with 8 km horizontal
resolution over a continental European domain (Fig. 11.6a). The system has a
control and 10 perturbed members which are the dynamical downscaling of the
first 11 members of the French global EPS, called PEARP (Prévision d’Ensemble
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Fig. 11.6 (a) ALADIN model domain. (b) AROME model domain
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ARPEGE). In that global system initial condition perturbations are generated as
a combination of EDA and SV perturbations and model uncertainty is taken into
account by the multi-physics approach [11]. Global perturbations have impact
in the limited area system through the downscaled initial and lateral boundary
conditions. The operational LAMEPS can provide useful probabilistic guidance for
the forecasters and the end-users as it is shown on some examples in Sect. 11.4.2.
Some experiments showed the efficiency of targeted singular vectors which can
inject locally efficient perturbations into the global system. These perturbations can
also penetrate into the limited area model domain through the downscaling process
[15]. The slightly positive impact of an EDA implementation was also shown where
only near-surface observations were perturbed in an ensemble of surface optimal
interpolations [19].

HMS has also started its convection-permitting ensemble research based on the
AROME non-hydrostatic model [41, 44]. Integrations run with 2.5 km horizontal
resolution over a domain covering the Carpathian Basin (Fig. 11.6b). Most of the
tests were launched (similar to the operational LAMEPS) with 10C1 members
coupled to the PEARP or in some cases to the ECMWF’s EPS. Such a convection-
permitting ensemble system is able to properly describe the small-scale structure
of thunderstorms and help in the early warning of hazardous events as will be
demonstrated in Sect. 11.4.2.

The EDA scheme was extensively tested and its positive impact was quantified
[44]. In the applied configuration 10C1 EDA members were used to initialize the
10C1 EPS members in accordance with Eq. (11.19). During the data assimilation
cycles all the observations were perturbed both in atmospheric variational assimila-
tion and in surface optimal interpolation. The quality of the single members were
improved by the impact of data assimilation itself and the spread of the ensemble
system was increased by the injected initial condition perturbations.

The influence of the SPPT scheme was also examined in AROME-EPS [44].
The parameters of the SPPT scheme were tuned in a way to attribute smaller scale
errors to the perturbations which are adequate to the finer model resolution of a
non-hydrostatic model (� D 0.5, � D 2 h, LD 500 km or 125 km). The impact of the
scheme proved to be more neutral than generally in global systems.

11.4.1.3 Coupled Model Intercomparison Projects (CMIPs)

The climate system is composed of atmosphere, hydrosphere, cryosphere, land sur-
face and biosphere, including highly non-linear feedbacks between them. Weather
prediction is concentrating primarily on short- and medium-range description of
the atmosphere, which is the most well-known and rapidly changing part of the
Earth system. Climate models simulate the asymptotic behaviour of the complex
climate system, where their components have a variety of adjustment time scales
changing from years to hundreds of thousand years. Consequently, response of
the climate system to an external forcing can be determined by coupled models,
which incorporate mainly atmospheric and ocean model components, simulating not
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only the atmospheric and ocean motions but also sea-ice processes and interactions
between them. Even though the first realistic atmosphere–ocean general circulation
model (AOGCM) experiment dates back to 1975 [31], systematic collection of
AOGCM output of leading climate centres was started in mid-1990s by the
Working Group on Coupled Modelling of WCRP.1 Simulations were based on a
common protocol in order to establish a database supporting the climate community
to study, validate, evaluate and intercompare AOGCM results. While CMIP12

[28] and CMIP2 [9] were composed of control runs (i.e., experiments for the
past climate with observed forcing) and idealized forcing scenario runs (i.e.,
experiments with 1 % CO2 concentration increase per year), respectively, series
of realistic climate change simulations were started with CMIP3 [32] in 2005.
These model runs described not only the natural forcings for the past, but the
future projections were preceded by comprehensive scenario constructions resulted
in SRES emission scenarios. Experiments focused on three emission scenarios
(SRES A2, A1B and B1), each of them representing a substantially different future
pathway of anthropogenic activity (indicating approximately 850, 700, 550 ppm
CO2 concentration by 2100, respectively). Results are freely available in CMIP3
database and provided input to the IPCC Fourth Assessment Report [22]. CMIP3
was followed directly by CMIP5 [45] in 2010; a new numbering was introduced
referring to the corresponding IPCC reports (since CMIP5 results served as input for
IPCC AR5; [23]). CMIP5 model simulations have already applied RCP scenarios
for prescribing future anthropogenic forcings. Experiments addressed three main
issues: (1) to assess the scientific background of model differences in carbon cycle
and clouds feedbacks, (2) to examine climate predictability on decadal time scales,
(3) to identify reasons for different responses produced by similarly forced models.
The sixth phase of CMIP [33] is still under design: simulations will be carried out
with Earth System models extended with additional model components and their
main focus will be on model biases, predictability and uncertainty issues.

11.4.1.4 Ensembles of Regional Climate Model Simulations

The first ensemble of regional climate model simulations in Europe were produced
in the PRUDENCE3 FP54 project [7]. The time horizon of the RCM experiments
was 2071–2100 and 1961–1990 was chosen as reference. Due to limited com-
puter resources, time-slice simulations were achieved, meaning that RCM runs
concentrated only on the selected two time frames. This is scientifically sound
in regional modelling (especially if the RCM contains exclusively an atmospheric

1World Climate Research Programme
2First phase of Coupled Model Intercomparison Project
3Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks
and Effects
45th Framework Programme of European Union
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model component), since regional models provide dynamical downscaling of GCM
outputs and the downscaled outcomes are basically independent of initial date of
the integration. The regional experiments focused on Europe with 50 km horizontal
resolution using two largely different SRES emission scenarios (A2 and B2, with
approx. 850 and 600 ppm CO2 concentration levels in 2100, respectively). Contrary
to PRUDENCE, in the ENSEMBLES FP6 project (2004–2009) transient climate
simulations (cf. transient method in Sect. 11.3.3) were accomplished for the period
of 1951–2100 covering Europe on 25 km horizontal resolution [48]. The simulations
were conducted with various RCMs driven by outputs of various GCMs. More focus
was put on precipitation projections: the finer resolution and the improved model
features led to better representation of related fine scale structures and temporal
distribution [2]. The main target of studies was 2021–2050, and it is known based
on Hawkins and Sutton [16, 17] that choice of emission scenario has no significant
impact to the range of climate projection uncertainties in this time frame. Therefore,
the same scenario forcing was applied in most RCM experiments, which is SRES
A1B considered as a medium scenario by the end of the century. Consequently,
ensemble of ENSEMBLES represents the model uncertainties, which is of key
essence in case of precipitation projections (see also Chap. 12 of Szabó and Szépszó
in the same volume, [43]). At the same time, this ensemble was not fully well-
balanced, because the majority of the RCMs were driven only by two GCMs. Since
lateral boundary conditions have great importance on regional outcomes, over-
representation of 1 or 2 selected GCMs in the ensemble may bias the probabilistic
information.

Recently, the most important cooperation in regional climate modelling is
CORDEX [26], initiated by WCRP in 2009. Its original objective was to cover the
poorly researched continents (especially Africa) with high- (12–50 km) resolution
regional climate model experiments. Nowadays, CORDEX has lots of branches
focusing on different regions of the Earth, for instance EURO-CORDEX [25] for
Europe. The unprecedented fine-resolution simulations with most recent climate
models show improved performance over Europe with respect to the ENSEMBLES
outputs [27]. Forcings and lateral boundary conditions for CORDEX RCM exper-
iments are provided by CMIP5 results using different RCP scenarios. As a result,
the CORDEX ensemble represents both model and scenario uncertainties, moreover
it makes possible to study the impact of emission scenario families (through inter-
comparisons with earlier results obtained by PRUDENCE or ENSEMBLES).

11.4.2 Visualization Methods

In this section some visualization methods are shown which are connected to the
above-described applications. The primary aim of these interpretation methods
is generally to concisely summarize all the information which is provided by
the ensemble members. They can for instance quantify the uncertainty of the

http://dx.doi.org/10.1007/978-3-319-40157-7_12
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forecasts or represent them in a probabilistic way or underline the likelihood of
any meteorological event of interest.

11.4.2.1 Plume Diagram

Plume diagrams have been already referred to in Sect. 11.2 as the demonstration of
flow-dependent uncertainty. These plots show the values of a given meteorological
variable in all the ensemble members as a function of time for a given geographic
location. They are very informative about the growth of the forecast uncertainty and
the range of possible future values of a given variable.

The precipitation values predicted by the LAMEPS of the HMS can be compared
in a forecast started from 18UTC on 15th of March 2014 (Fig. 11.1a) and in another
case, exactly 2 months later (Fig. 11.1b). In the first case a light cold front crossed
Hungary which precipitation pattern was rather certain and consequently similar
in all the EPS members. In the second case the so-called Yvette storm hit the
whole Central European region causing damages by its strong wind gusts and large
precipitation amounts. A very complex precipitation field belonged to this cyclone
which had low predictability and therefore the ensemble members showed large
spread.

Climate projections can also be visualized similarly to the plume diagrams.
Figure 11.7 shows the evolution of global mean annual temperature as projected by
an ensemble of climate models. The first panel depicts temperature change relative
to 1961–1990 based on results of 15 GCM simulations, in which the future CO2

concentration values were uniquely prescribed according to SRES A1B emission
scenario. So the 15 projections were conducted with different global climate models
taking the same external forcing into account. The annual mean temperature change
is foreseen to be in the ranges of 1.0–2.2 ıC by 2050 and 2.2–3.8 ıC by 2100. In the
second panel of Fig. 11.7, projections are extended with outputs of 30 additional
experiments achieved with the same GCMs, but applying two additional SRES
emission scenarios, A2 and B1. It can be noticed that uncertainty is growing using
significantly different scenarios. This enhancement is not uniform in time, scenario
choice has greater impact during the second part of the twenty-first century: the
projected interval of mean temperature change does not increase significantly (0.5–
2.2 ıC) until 2050, while warming is expected to be between 1.7 and 4.5 ıC until
2100 considering all the three emission scenarios. This means that in projections
for the next few decades there is larger departure between results of simulations
obtained with different GCMs but with the same emission scenario than vice
versa. (What is not surprising considering that CO2 concentration levels in different
scenarios start to diverge from around 2030.)
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Fig. 11.7 (a) Global annual mean temperature change (ıC) relative to 1961–1990 based on results
of 15 global climate model simulations using SRES A1B emission scenario for description of
future anthropogenic activity. (b) Same as (a), but results are based on 45 global climate model
simulations using three different SRES emission scenarios (red: A2, green: A1B, blue: B1). Thick
curves represent the multi-model means within the given scenarios, grey and black curves indicate
the results of control runs and their multi-model mean, respectively

11.4.2.2 Probabilistic Map

Probabilities can be computed based on the individual EPS members, where mostly
the members are taken into account with equal weight. First a meteorological
variable (or a climate parameter) and a corresponding threshold value should be
defined; for instance temperature below zero degree (or mean precipitation change
over zero percent, i.e., precipitation increase). Then the probability of reaching
such a threshold can be calculated from the ensemble members at every point of
a given domain. The geographical visualization of those probabilities represents the
likelihood of the occurrence of a given meteorological event or a climatological
tendency.

Probabilistic maps can draw attention to extreme or dangerous meteorological
events. On 14th of March, 2013 the probability of a devastating snowstorm was
studied in the LAMEPS of the HMS (see Fig. 11.8). The probability of this event
can be defined by the joint probability distribution of more meteorological variables
(such as temperature, the amount of fresh snow and wind gust) which provide
the necessary conditions for the occurrence of a snowstorm. For every variable a
different threshold can be defined and some of their combinations can be used.
In this way the probability and strength of such complex weather event can be
determined together with its geographic extension. From the top left panel to the
bottom right panel of Fig. 11.8 the thresholds of fresh snow amount and wind gust
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Fig. 11.8 Probability of devastating snowstorm defined as joint probability reaching given
thresholds for temperature, fresh snow and wind gust. On all the maps the threshold of temperature
was set to 0ı, while the amount of fresh snow in 12 h is increasing from left to right (5, 10, 15 cm)
and wind gust is increasing from top to bottom (10, 15, 20 m/s). Colors refer to the level of the
threat and orange shows the probability of reaching the highest thresholds. Figures were drawn
from a 12h forecast of LAMEPS run at 18UTC 14 March 2013

values increase, i.e., the joint probabilities show the likelihood of conditions with
increased threat.

A probabilistic map can also be used in climate applications and its construction
is based on the same methodology. Nevertheless, one has to be careful with inter-
preting this information in the same way as in weather prediction: while ensemble
members in NWP represent equally likely forecasts, this cannot be considered
for climate projections. In long-term projections, uncertainty due to scenario-
type description of anthropogenic activity becomes more and more important
with increasing lead time. However, probabilities cannot be associated to these
scenarios, since future aspects of human activity strongly depend on socio-economic
decisions and cannot be specified with any accuracy [4]. Consequently, the resulted
projections are evaluated rather as possible (instead of probable) outcomes with
given conditions. Figure 11.9 was created using results of 17 RCM simulations
of ENSEMBLES, each of them applied 25 km horizontal resolution and the A1B
emission scenario. Percentage values correspond to the ratio between the numbers
of model experiments producing winter mean precipitation increase and decrease
from 1961–1990 to 2021–2050. Assuming A1B emission pathway as realistic
and probable emission pathway, it can be stated that probability of winter mean
precipitation increase exceeds 70 % North from Hungary, whereas in Southern and
Eastern Europe increase and decrease are equally likely.
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Fig. 11.9 Probability of winter mean precipitation increase (%) for 2021–2050 with respect to
1961–1990 based on results of 17 RCM experiments available in ENSEMBLES database

11.4.2.3 Stamp Diagram

It is possible to visualize all the ensemble members next to each other for a given
meteorological variable. These diagrams cannot be informative about the details but
they are able to warn forecasters on the possibility of hazardous weather, even if it
appears only in a limited number of members.

As it was already mentioned the predictability of such small-scale phenomena
like thunderstorms is rather low but at the same time they might mean risk in
terms of disaster management. That was the case on the evening of 20th of August,
2013 when several events with mass public participation were held in Hungary and
which were threatened by the convective activity. In the test version of convection-
permitting EPS of HMS (AROME-EPS, see Sect. 11.4.1) almost all the members
predicted thunderstorms with small-scale structure (Fig. 11.10). While the existence
of precipitation seemed very certain its localization and intensity showed a large
variability from member to member. Stamp diagram can easily warn the decision-
makers if any of the members predicts hazardous thunderstorm for a given area and
possibly suggest the cancellation or postponement of an event.

11.5 Summary

In this work the recent ensemble approaches have been reviewed both in the
numerical weather prediction and climate projection fields. The uncertainties of
atmospheric and Earth system modelling were underlined giving the motivation for
using probabilistic forecasts. Ensemble methods were presented as the only feasible
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Fig. 11.10 The stamp diagram of forecast for 3-h precipitation amount between 21 UTC on
20th and 00UTC on 21st of August, 2013. Top left panel shows precipitation estimated from
radar measurements, while other panels represent the members of convection-permitting ensemble
system tested at the HMS (AROME-EPS)

way to get probabilistic information, meaning not only a single but an ensemble of
model runs are taken into account.

The key issue in ensemble prediction systems is how differences between the
members of an ensemble are defined. Various methods can perturb the initial condi-
tions of the atmosphere, while other methods can represent the model formulation
uncertainties. In climate projections, the initial state of the system is less important,
but anthropogenic activity is an additional source of uncertainty taken into account
through different emission scenarios.

Some examples have been given how the described ensemble approaches can be
used in NWP and climate projection systems. It was noted that despite the recent
model improvements, uncertainties cannot be neglected. As the resolution of the
applied models is getting finer, the smaller-scale motions are resolved explicitly in
the dynamical equations. Predictability of these motions is also limited resulting
that probabilistic forecasts will be important in the future.
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