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Prediction is very difficult, especially if it’s
about the future.

Niels Bohr



Foreword

When I first began studying pure mathematics, I could never have foreseen that I
would spend the better part of my professional life in the area of meteorology. At
that time, designing a proof for some conjecture seemed much more appealing than
dealing with complex, high-dimensional weather forecasting models. Nevertheless,
the presence of rich dynamics for already low-dimensional dynamical systems
eventually piqued my curiosity for what the atmosphere, which could be considered
the ultimate chaotic dynamical system, might hold within it.

In the early 1990s, people started to give some thought on how to deal with
chaotic behaviour in the context of day-to-day weather forecasting. The opportunity
to contribute to an operational approach that would probe the predictability of the
atmosphere has been an exciting one. The Ensemble Prediction Systems, which at
the time were being developed at a few places worldwide, were all designed to
inform the forecasters about the occurrence of different possible weather regimes. It
was already a mathematical challenge to optimally select the model runs comprising
the ensemble. Given the computer capacity, it was only possible to conduct a
relatively small number of model runs, compared to the model phase dimension.

During the last two decades, predictability research has produced an important
shift from a deterministic to a probabilistic view in the field of weather and
climate forecasting. A closer connection between ensemble forecasting and data
assimilation naturally follows from this transition: the flow-dependent information
that ensembles provide regarding uncertainties for certain areas can be employed to
improve the use of observations in data assimilation, which in turn leads to better
performing ensembles. This hybrid data assimilation approach is a promising new
development that presents ample opportunities for mathematicians to excel, e.g. by
exploring the role of model error.

Without a doubt, the increase in computer performance has been a decisive factor
for the progress in meteorological modelling. As such, it is essential to be prepared
for the next generations of computer architectures, which will most certainly require
a high level of scalability for numerical models. Close interaction between computer
hardware and software experts, numerical scientists and modellers would therefore
seem to be a prerequisite to progress once exascale computers become the standard.
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viii Foreword

This book provides an attractive and varied introduction to topics where math-
ematicians and modellers from the meteorological community can cooperate with
and help one another. I sincerely hope it will stimulate mathematicians to engage
in solving problems which operational weather centres face now and in the near
future. I would also like to warmly acknowledge the editors and contributors for
their valued initiative and excellent work.

De Bilt, Netherlands Jan Barkmeijer
April 2016



Preface

Meteorological modelling, and in particular numerical weather prediction, belongs
to those frontiers of research where both mathematicians and meteorologists can
encounter striking new research problems. As a complex chaotic system, the atmo-
sphere can only be modelled using a large system of nonlinear partial differential
equations. Since theoretical investigations of these equations remain beyond our
reach, only numerical approximative solutions are feasible. However, great strides
have been made in the related mathematical disciplines in the last few years. The
corresponding keywords, like big data or the environment, are also central topics in
the European Union’s Horizon 2020 project.

These and many other aspects are what motivated us when, in May 2014,
we organized a workshop entitled “Mathematical Problems in Meteorological
Modelling” at Eötvös Loránd University in Budapest. The idea was to introduce
mathematicians to mathematical problems arising in meteorology and thus to spark
new collaborations and research. After the informative, stimulating talks by leading
experts, we decided to seek to reach a broader audience by publishing a volume
where selected problems could be highlighted. Many of the contributors to this
volume participated in or otherwise supported the conference. The main objective
of the present volume is to highlight the beauty of the development fields covered,
to demonstrate their mathematical complexity and more importantly to move
mathematicians to contribute to the further success of such practical applications
like weather forecasting and climate change projections.

Both the conference and this volume were made possible with the support of
the MTA-ELTE Numerical Analysis and Large Networks Research Group and the
European Consortium for Mathematics in Industry (ECMI). Founded more than
a quarter of a century ago, the ECMI is a consortium of academic institutions
and industrial companies that act cooperatively to promote and support the use of
mathematical models in any activity of social or economic importance. Although
traditionally meteorology has never been seen as an “industry”, it nevertheless
satisfies the previous definition, and one of the ECMI’s key priorities is to get
mathematicians involved in environmental applications.
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x Preface

We hope this volume can help reach this goal and reach many mathematicians.
We have divided the book into three parts, moving from mathematical and numerical
problems through air quality modelling to advanced applications in data assimilation
and probabilistic forecasting. We are confident that many mathematicians working
in numerical analysis, partial differential equations and stochastic analysis will find
a source of motivation and inspiration for their future research work.

Lastly, we of course wish to warmly thank the reviewers for their valued
contributions.

Budapest, Hungary András Bátkai
Budapest, Hungary Petra Csomós
Budapest, Hungary István Faragó
Solymár, Hungary András Horányi
Budapest, Hungary Gabriella Szépszó
April 2016
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Part I
Numerical Methods for Meteorological

Problems

The dynamics of the atmosphere is governed by physical, chemical, and even
biological processes which are commonly described by systems of time and space
dependent nonlinear partial differential equations. Since this kind of mathematical
description is rather complicated, the form of the equations’ exact solution is usually
unknown. In order to explore its properties or to compute its approximation, further
mathematical methods are needed. The resulting atmospheric models are then to
forecast the weather situation, the concentration of an air pollutant, or even the
changes in climate. Since the computation of the forecast should not miss the
events occurred in reality, it requires even faster and of course more accurate
numerical treatment. These requirements stimulate the researches to elaborate on
new numerical methods.

This part of the issue is devoted to the introduction and analysis of the basic ideas
and methods behind atmospheric modelling. The chapters give an insight to the most
commonly used numerical techniques. In order to distinguish the important features
of the numerical methods themselves from the ones caused by the processes being
described, the authors apply the methods to the same mathematical problems which
arise in meteorology, however, in their simplified forms. Only after having showed
the nice properties of a certain method, it can be applied to the more complex
atmospheric problems presented in Parts II and III of the issue.

In Chap. 1, the authors analyse finite difference schemes being the most basic
time discretisation method used when solving partial differential equations. They
apply them to the one-dimensional shallow water equations which served as the
first reliable model for large-scale atmospheric processes.

Chapter 2 introduces another discretisation method used in meteorological
modelling. After giving an introduction on the mostly applied space discretisation
methods, the authors focus on the combination of the semi-implicit finite difference
method in time with the semi-Lagrangian approach for the nonlinear advection part,
and apply it to two-dimensional shallow water equations.

Chapter 3 gives an introduction to the modelling of two-dimensional turbulence
by using fractional derivatives. The main idea is to treat the shear stresses as random
variables. The author present an algorithm, and apply it to a test problem.
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In Chap. 4, the authors derive and show the convergence of a parallel numerical
method for general nonlinear parabolic problems which usually arise in air pollution
transport problems. Due to the chemical part, they face with nonlinear elliptic
problems.

As seen from this short summary, Chaps. 1 and 2 treat numerical methods
being the right choice when modelling the large-scale dynamics of the atmosphere,
Chap. 3 deals with the modelling of turbulence occurring on much smaller scales,
and Chap. 4 gives a generic treatment of problems arising in, for instance, air quality
modelling. All of these fields will be covered in Parts II and III of this issue.



Chapter 1
On a Conservative Finite-Difference Method
for 1D Shallow Water Flows Based
on Regularized Equations

Alexander Zlotnik and Vladimir Gavrilin

Abstract We deal with the 1d shallow water system of equations and exploit its
special parabolic regularization satisfying the energy balance law. We construct a
three-point symmetric in space discretization such that the discrete energy balance
law holds and check that it is well-balanced. The results of numerical experiments
for the associated explicit finite-difference scheme are also given for several known
tests to confirm its reliability and some advantages. The practical error behavior is
also analyzed.

Keywords 1D shallow water equations • Discrete energy balance law • Parabolic
regularization • Practical error analysis • Three-point symmetric in space
discretization

1.1 Introduction

The 1d and 2d shallow water equations are widely exploited in hydrodynamics. The
vast literature exists on their numerical solving, in particular, see [14] and [1, 3, 12,
15, 17–19], etc.

Several years ago a special regularization of the equations together with explicit
two-level in time and symmetric in space finite-difference schemes based upon it
were suggested in [5, 8]. The approach is further applied for various problems
in [4, 9–11]. Previously the similar approach was developed for the more com-
plicated Euler and Navier–Stokes equations and its practical efficiency in various
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4 A. Zlotnik and V. Gavrilin

compressible gas flow computations was demonstrated [6, 7, 16]; it is called a quasi-
gas dynamic (QGD) approach. Moreover, the regularized shallow water system of
equations is nothing more than a special case of the main version of the barotropic
QGD system, see [20, 22].

In this chapter, following [21–23], we change the space discretization in the
above mentioned schemes in order to guarantee the discrete energy balance law
not available originally. We present the proof of the law and check the important
property that the new discretization is well-balanced. The results of numerical
experiments for the associated explicit in time finite-difference scheme are also
given. We treat known tests such as a dam break (a disintegration of discontinuity)
and subcritical, transcritical and supercritical flows over a hump to confirm the
reliability and accuracy compared with the original scheme. In addition, the
practical error behavior is analyzed as mesh refines. Here we confine ourselves by
the 1d case; the 2d case should be considered in a forthcoming paper.

1.2 The 1d Shallow Water System of Equations,
Its Regularization and Discretization

1.2.1.The 1d shallow water system of equations consists of the mass and momentum
balance equations

@th C @x.hu/ D 0; (1.1)

@t.hu/C @x.hu
2/C @xp D @x˘NS C hF; (1.2)

where 0 < x < X, t > 0 and @t and @x denote the time and space derivatives. The
main unknown functions are the water depth h.x; t/ > 0 (measured from the bottom
mark b.x/) and the velocity u.x; t/. The pressure, the Navier–Stokes viscous stress
and the density of external force are given by

p D 0:5gh2; ˘NS D �@xu; F.x; t/ D �g@xb.x/C f .x; t/; (1.3)

where g D const > 0, � D �.h/ > 0 is the viscosity coefficient (when � D 0,
viscosity is ignored) and f is a perturbation of the stationary force �g@xb. Remind
also the important quantities H D h C b (the water level) and hu (the discharge).

The equations are supplemented with the initial conditions

h.x; 0/ D h0.x/; u.x; 0/ D u0.x/; 0 6 x 6 X: (1.4)

The regularized 1d shallow water system of equations consists of the modified
mass and momentum balance equations

@th C @x.h.u � w// D 0; (1.5)

@t.hu/C @x.h.u � w/u C p/ D @x˘ C h�F: (1.6)
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Here the density of the mass flux j, the viscous stress˘ and the regularized density
h� are given by

j D h.u � w/; w D Ow C �

h
u@x.hu/; Ow D �

h
.hu@xu C @xp � hF/; (1.7)

˘ D �@xu C hu Ow C �gh@x.hu/; h� D h � �@x.hu/; (1.8)

where � D �.h; u/ > 0 is the relaxation multiplier. If one puts � D 0, the system
becomes the original system (1.1)–(1.3).

Note that the following simplified formula holds

Ow D �
˚
u@xu C g@x.h C b/� f

�
: (1.9)

The regularized system (in equivalent form) was derived from the original one
in [5, 8] in 1d and 2d cases. On the other hand, the latter system is nothing more
than the special case of the main version of the barotropic QGD system of equations
from [20] (its earlier version can be found in [24]) for the gas density � D h and the
pressure law p.�/ D 0:5g�2 with the adiabatic exponent � D 2. In 1d this is due to
formulas (1.9) and �.u@xp C �p@xu/ D �gh@x.hu/.

For the barotropic QGD system of equations, the Petrovskii parabolicity, the
energy balance law and the linearized stability of the equilibrium solutions were
proved in [20, 22]; its very short derivation can be also found there. Remind that,
first, the original system (1.1) and (1.2) is hyperbolic for � D 0 or of the composite
hyperbolic-parabolic type for� > 0 and, second, the Petrovskii parabolicity implies
a unique solvability (local in time) for the Cauchy problem in Hölder spaces, see
[24] for details. These results demonstrate the dissipative nature of the barotropic
system. They straightforwardly imply the corresponding results for the regularized
shallow water system of equations, in particular, the following important one.

Theorem 1.1 For the regularized shallow water equations (1.5)–(1.8), the follow-
ing pointwise energy balance law holds

0:5@t
˚
g.h C b/2 C hu2

�C @x
˚
h.u � w/

�
g.h C b/C 0:5u2

� �˘u
�

C�.@xu/2 C �g
˚
@x.hu/

�2 C �h
˚
u@xu C g@x.h C b/

�2

D h�fu C �h
˚
u@xu C g@x.h C b/

�
f : (1.10)

In the law on the left, the second term is a divergence one whereas the third
(Navier–Stokes) term and fourth and fifth relaxation terms are non-negative; the
property remains valid for � > 0.
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For f D 0 and suitable boundary conditions at x D 0;X, for example, for the
periodic ones, clearly law (1.10) implies non-increasing of the total energy in time

0:5@t

Z X

0

˚
g.h C b/2 C hu2

�
dx 6 0: (1.11)

Notice that, for the equilibrium solutions h D hS.x/ > 0 and u D 0, both
systems (1.1)–(1.3) and (1.5)–(1.8) for f D 0 are reduced to the equation

@xp.hS/C ghS@xb D 0 on .0;X/; (1.12)

i.e., simply to the formula hS.x/C b.x/ � C on Œ0;X�.
1.2.2. We define a non-uniform mesh N!h in space with nodes 0 D x0 < x1 <

� � � < xN D X and steps �i D xi � xi�1. Let �max WD max16i6N �i. We also use an
auxiliary (conjugate) mesh !�

h with nodes xiC1=2 D .xi C xiC1/=2, 0 6 i 6 N � 1,
and steps O�i D xiC1=2 � xi�1=2 D .�i C�iC1/=2.

For functions v given on N!h and y given on !�
h , we introduce averages, shifts of

argument and difference quotients

Œv�iC1=2 D 0:5.vi C viC1/; v�;iC1=2 D vi; vC;iC1=2 D viC1; ıviC1=2 D viC1 � vi

�iC1
;

Œ y��i D �i

2 O�i

yi�1=2 C �iC1
2 O�i

yiC1=2; ı�yi D yiC1=2 � yi�1=2
O�i

:

The operators Œ��, .�/˙ and ı map functions given on N!h to ones defined on !�
h

whereas Œ��� and ı� map functions given on !�
h to those defined on !h D fxigN�1

iD1 .
We need two difference product rules

ı.uv/ D ıu � Œv�C Œu�ıv; (1.13)

ı�.yŒv�/ D ı�y � v C Œ yıv�� (1.14)

(u is given on N!h). To reduce the amount of brackets, hereafter we suppose that,
for example, ıu � Œv� D .ıu/Œv� (i.e., the multiplication sign � terminates action of
preceding operators). Formula (1.14) was effectively applied, in particular, in [2].
We also exploit the formulas

Œıv��i D ı�Œv�i D viC1 � vi�1
2 O�i

; (1.15)

Œ y��v D �
yŒv�

�� � 0:25ı�.�2Cyıv/: (1.16)

Turning to [23], we first construct a three-point symmetric in space discretization
to (1.5)–(1.8) and write down the semi-discrete mass and momentum balance
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equations as follows

@th C ı��Œh�.Œu� � w/
� D 0; (1.17)

@t.hu/C ı��Œh�.Œu� � w/Œu�C Œ p�
� D ı�˘ C Œh�F�� (1.18)

on !h for t > 0. Here the following discretizations for the density of the mass flux
j, the viscous stress ˘ and the regularized density h� are exploited

j D Œh�.Œu� � w/; w D Ow C �

Œh�
Œu�ı.hu/; Ow D �

Œh�

�
Œh�Œu�ıu C ıp � Œh�F�;

(1.19)

˘ D �ıu C Œh�Œu� Ow C �gŒh�ı.hu/; h� D Œh� � �ı.hu/; F D �gıb C f : (1.20)

The main unknown functions h and u together with the functions p and b are defined
on the main mesh N!h whereas the functions j, w, Ow, ˘ , h�, � , � and f are defined
on the auxiliary mesh !�

h . Note that ıp D gŒh�ıh and therefore similarly to (1.9) the
following formula holds

Ow D �fŒu�ıu C gı.h C b/� f g: (1.21)

We assume that h > 0 and derive the counterpart of the energy balance
law (1.10).

Theorem 1.2 For the semi-discrete method (1.17)–(1.20), the following pointwise
energy balance law holds

0:5@t
˚
g.h C b/2 C hu2

�C ı�˚j .g.h C b/C 0:5u�uC/�˘Œu�C B�
�

C��.ıu/2 C �g
˚
ı.hu/

�2 C �Œh�fŒu�ıu C gı.h C b/g2��

D Œh�f ��u C �
�Œh�fŒu�ıu C gı.h C b/gf ��; (1.22)

where B� WD �0:25�2C.ıp C gh�ıb/ıu.
In the law on the left, all three terms under the averaging sign Œ��� are non-

negative; the property remains valid for � > 0.

Proof We follow the derivation of the differential law (1.10) from [22], see also
[23], and first multiply the mass balance equation (1.17) by g.h C b/. Since

ı�j � g.h C b/ D ı�. jgŒh C b�/� �
jgı.h C b/

��

according to formula (1.14), we get

@t. p.h/C ghb/C ı�. jgŒh C b�/� �
Œh�gı.h C b/.Œu�� w/

�� D 0: (1.23)
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Next we multiply the momentum balance equation (1.18) by u. We apply the
formula

@t.hu/ � u D 0:5@t.hu
2/C 0:5@th � u2;

the mass balance equation (1.17) and twice formula (1.14) to obtain:

@th � u2 D �ı�j � u2 D �ı�. jŒu2�/C �
jı.u2/

��
;

ı�. jŒu�/ � u D ı�. jŒu�2/� �
jŒu�ıu

��
:

Then also taking into account elementary formulas

Œu�2 D 0:5Œu2�C 0:5u�uC; 0:5ı.u2/ D Œu�ıu (1.24)

and formula (1.15), we derive

0:5@t.hu
2/C 0:5ı�. ju�uC/C Œıp C gh�ıb��u � ı�˘ � u D Œh�f ��u:

We add equality (1.23) and the last one. Formulas (1.14) and (1.16), respectively,
imply

Œıp C gh�ıb�� � u D �˚
ıp C gŒh�ıb � �ı.hu/ � gıb�Œu��� C ı�B�;

�ı�˘ � u D �ı�.˘Œu�/C Œ˘ıu��;

with the above introduced B�. Since ıp C gŒh�ıb D Œh�gı.h C b/, we obtain

0:5@t
˚
g.h C b/2 C hu2

�C ı�.A C B�/

C�Œh�gı.h C b/w � �Œu�ı.hu/ � gıb C˘ıu
�� D Œh�f ��u;

with A WD j fg.h C b/C 0:5u�uCg �˘Œu�.
Extracting the terms � f in the multipliers w and ˘ , we rewrite the last equality

in the form

0:5@t
˚
g.h C b/2 C hu2

�C ı�.A C B�/C �
�.ıu/2 C �.h; u/

��

D Œh�f ��u C �
�fŒh�gı.h C b/C Œh�Œu�ıugf ��; (1.25)

where

�.h; u/ WD Œh�gı.h C b/.w C � f / � �Œu�ı.hu/ � gıb
CfŒh�Œu�. Ow C � f /C �gŒh�ı.hu/gıu
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D Œh�gı.h C b/.w C � f /C Œh�Œu�ıu � . Ow C � f /

��gıb � Œu�ı.hu/C �gŒh�ı.hu/ � ıu:

Applying the formulas

w C � f D Ow C � f C �

Œh�
Œu�ı.hu/; Ow C � f D �

˚
Œu�ıu C gı.h C b/

�
;

see (1.21), we transform �.h; u/ as follows

�.h; u/

D ˚
Œh�gı.h C b/C Œh�Œu�ıu

�
. Ow C � f /C �gıh � Œu�ı.hu/C �gŒh�ı.hu/ � ıu

D �Œh�
˚
Œu�ıu C gı.h C b/

�2 C �ı.hu/
˚
gıh � Œu�C gŒh�ıu

�
:

Finally, using the formula ıh � Œu�C Œh�ıu D ı.hu/, see (1.13), we rewrite �.h; u/ as
the sum of two squared terms and thus pass from (1.25) to the desired result (1.22).

ut
For f D 0 and suitable boundary conditions at x D 0;X, for example, for the

periodic ones, clearly law (1.22) implies non-increasing of the total energy in time

0:5@t

N�1X

iD0

˚
g.h C b/2 C hu2

�
i

O�i 6 0;

where O�0 D .h1 C hN/=2, that is the discrete counterpart of the energy inequal-
ity (1.11).

In the discrete energy balance law (1.22), the term u�uC is like the geometric
mean for u2. The summand ı�B� is the divergence mesh imbalance [additional with
respect to (1.10)] with B� D O.�2

max/ for the functions of the continuous argument
provided that h, @xh, @xu and @xb are bounded.

For the equilibrium solution h D hS.x/ > 0 and u D 0, method (1.17)–(1.20) for
f D 0 is reduced to the equations [with the help of formula (1.15)]

ı�˚�
�
ıp.hS/C gŒhS�ıb

�� D 0;
�
ıp.hS/C gŒhS�ıb

�� D 0 on !h:

Notice that ıp.hS/ C gŒhS�ıb D gŒhS�ı.hS C b/. By virtue of the first equation
�gŒhS�ı.hS C b/ D C0 � const on !�

h , and next C0 D 0 due to the second equation.
Consequently

gŒhS�ı.hS C b/ D 0 on !�
h ;
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i.e. hS C b � const on N!h. These results correspond to (1.12) and its consequence
for the regularized system and mean that the method is well-balanced which is the
known important property.

1.2.3. Let us compare our discretization and one from [5, 8, 11], for which
unfortunately the energy balance law is not known. The following two terms in
the momentum balance equation (1.18)

ı�Œ p.h/�; Œh�F�� D �fŒh�� �ı.hu/g.�gıb C f /
��

differ from those

ı�p.Œh�/;
˚�
Œh�
�� � Q�ı.Œh�Œu�/�.�gı�Œb�C Qf /;

in [5, 8, 11] (generalized for the non-uniform N!h and written in our notation), where
Q� and Qf are defined on N!h. Moreover, inserting formula (1.21) into the second
formula (1.19) leads to

w D �

Œh�

�
2Œh�Œu�ıu C Œu�2ıh

�C �
˚
gı.h C b/� f

�

whereas in [5, 8, 11] a formula equivalent to

w D Œ Q��
Œh�
ı.hu2/C Œ Q��˚gı.h C b/� Qf �

was applied. Since ı.hu2/ D 2Œh�Œu�ıu C Œu2�ıh but Œu�2 6� Œu2� [see (1.13)
and (1.24)], these two formulas for w also differ.

On the other hand, inserting formula (1.21) into the first formula (1.20) gives

˘ D �ıu C �Œh�Œu�
˚
ı
�
g.h C b/C 0:5u2

� � f
�C �gŒh�ı.hu/

similarly to [5, 11] (up to expressions for �, � and f ).
1.2.4. Now we define a non-uniform mesh in time with nodes 0 D t0 < : : : <

tM D tfin (which are not prescribed a priori) and steps �tm D tmC1 � tm, where tfin is
the given final time.

We approximate the time derivatives in the mass and momentum equations (1.15)
and (1.16) by the forward differences and get the explicit finite difference scheme

Oh D h ��t ı��Œh�.Œu� � w/
�
; (1.26)

bhu D hu ��t
˚
ı��Œh�.Œu� � w/Œu�C Œ p� �˘

� � Œh�F��
�

(1.27)

on !h for 0 6 m 6 M � 1, where Oh and bhu are the values for the upper time level.
After computing them, we set Ou WD bhu=Oh assuming that Oh > 0. Here we also exploit
the same expressions (1.19) and (1.20).
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For solving the inviscid shallow water system of equations, the viscous and
relaxation terms are considered as artificial regularizers with � and � in the form

� D 4

3
�Œ p� or � D 0; � D ˛

�

c
; c D p

gŒh�

on !�
h like in [7, 16], where c is the counterpart for the velocity of sound and 0 <

˛ < 1. To satisfy a stability condition of the Courant-Friedrichs-Lévy type, the time
step at the current time level is chosen as

�t D ˇ min
16i6N

�

jŒu�i�1=2j C ci�1=2

with 0 < ˇ < 1, and thus �t varies from one time level to another. The scheme
parameters ˛ and ˇ are adjusted experimentally in each problem.

Notice that, at least for the uniform space mesh, the approximation order of the
semi-discrete method (1.17)–(1.20) [with respect to the regularized system (1.5)–
(1.8)] is O.�2/ with � D X=N for smooth solutions but it is reduced to O.�/ for
the finite-difference scheme owing to the above choices of � and �t.

1.2.5. In our computations below, we use a uniform mesh in space and take f D 0.
We investigate the convergence of functions v D h; u and hu for our finite difference
scheme at the final time tfin as the space mesh refines; this is a standard matter,
for example see [13, 15, 17], and especially important in the case of non-smooth
solutions where the theoretical information is poor. In those rare cases where a
sought function vex is known, we compute the average absolute value of the error
on the mesh (the scaled mesh L1-norm)

E.N/ex Œv� WD 1

N C 1

NX

iD0

ˇ̌
vex i � v.N/i

ˇ̌
; (1.28)

where vex i and v.N/i are the exact and approximate quantities at xi D iX=N.
Otherwise, we apply two formulas

E.N/Œv� WD 1

N C 1

NX

iD0

ˇ
ˇv.N/

iN=N
�v.N/i

ˇ
ˇ; E.N/R Œv� WD 1

N C 1

NX

iD0

ˇ
ˇv.2N/2i �v.N/i

ˇ
ˇ; (1.29)

where v.N/ is the pseudo-exact solution computed for the finer mesh with the step
� D X=N. Here N is a multiple of 2N, and due to our numerical experience it is
desirable that 4N 6 N. The second formula is associated to the Runge rule for the
practical error estimation and is cheaper in implementation (v.N/ is not required).
We compare both of them with (1.28) if possible.
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Below we plot the dependence of
ˇ
ˇlnE.N/Œv�

ˇ
ˇ (the subscripts are omitted) on lnN.

Moreover, we approximate them by linear functions using the least square method
and thus get the corresponding approximate error orders pexŒv�, pŒv� and pRŒv�.

1.3 Numerical Results

1.3.1. We first compute a flow in a channel of the length X D 1500m. In its central
part, a rectangular ledge is symmetrically located (having the height 8 m and the
length 375 m), and the other bottom is flat. At the center of the channel, a dam is
situated. Initially the water level H0.x/ equals 20m to the left and 15m to the right
of the dam, and the flow is at rest, i.e. the initial velocity is zero: u0.x/ D 0. The
dam breaks at the moment t D 0. The open boundary conditions are imposed for h
and u at the both boundaries x D 0;X, i.e., for example, h0 D h1 and u0 D u1 for
the left boundary.

The computational results are shown in Fig. 1.1 for t D 15 s and t D 60 s, for
N D 400; the scheme parameters are ˛ D 0:35 and ˇ D 0:5. They are in a good
agreement with [15] for N D 200 and in [11] for N D 400 (for other schemes).

100 200 300 400
0

10

20

25
H

100 200 300 400
0

1.25

2.5

3
u

100 200 300 400
0

10

20

25
H

100 200 300 400

0.5

1.5

2.5

3.5

u

Fig. 1.1 Dam break in the channel with the rectangular ledge: H and u at t D 15 s (above) and
t D 60 s (below)
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Fig. 1.2 Dam break in the channel with the rectangular ledge:
ˇ
ˇlnE.N/

ˇ
ˇ for h and u

In Fig. 1.2, the errors in h and u for t D 15 s are presented for N D 200, 400, 800
and 1600 as well as N D 6400. We note that the error polylines are not completely
linear. The error orders pŒh� � 0:946 and pŒu� � 0:908 are rather close to each other
but both less than 1.

1.3.2. Next we consider a channel of the length X D 25m with a flat bottom
except for the small hump of the parabolic shape in its middle part:

b.x/ D
(
0:2 � 0:05.x � 10/2; 8m � x � 12m

0; otherwise:

Initially the water level is constant: H0.x/ � CH , and the flow is at rest. The left
boundary conditions are hujxD0 D Chu for the discharge together with the open
boundary condition for h, and the right boundary conditions are HjxDX D CH (in
general, up to a certain time moment) together with the open boundary condition
for u.

This problem may seem simple but only at first glance. There are three types of
flows in it: subcritical, transcritical and supercritical depending on values of the flow
parameters. In what follows, examples of all three types of flows are considered.
Results of computations are presented at tfin D 200 s (at this moment the flows
become stationary for the chosen values of the parameters). Note that, for these
flows, the exact discharge at the final time is known: hu � Chu. As a rule, namely
the computation of hu causes difficulties. The results are accurate enough for N
listed below; they are comparable with those obtained in [3] (for N D 100), [12]
(for N D 300) and [1, 18, 19] (for N D 200) by other schemes but much better for
hu than in [11] (for the same N).

(a) Subcritical flow. This is the simplest type of flows. Here CH D 2m and Chu D
4:42m2/s are taken. At tfin, the water level is almost flat with only a small cavity
above the hump.

We select ˛ D 0:9, ˇ D 0:2 and � D 0. Figure 1.3 shows the water level H
and the discharge hu for N D 400. In the vicinity of the hump edges, “hubbles”



14 A. Zlotnik and V. Gavrilin

100 200 300 400
0

1

2

2.5 H

100 200 300 400
4.418

4.42

4.422 hu

Fig. 1.3 Subcritical flow over the hump: H and hu at tfin D 200 s
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Fig. 1.4 Subcritical flow over the hump:
ˇ̌
lnE.N/

ˇ̌
for h, u and hu

of hu values are observed (damping as N increases) but the absolute error in the
discharge Eabs WD max

0�i�N
j.hu/i � Chuj � 7:375e-5 is small.

In Fig. 1.4, errors in h, u and hu are shown for N D 100, 200, 400 and 800 as
well as N D 3200. The same values are taken for two other flow types below.

The polylines of errors in h and u are more close to linear ones than for the
previous problem (though this is not the case for jlnEexŒhu�j). Now all the orders
pŒh� � 1:193, pRŒh� � 1:139, pŒu� � 1:183 and pRŒu� � 1:121 are all close to each
other and slightly greater than 1. They are essentially less than pexŒhu� � 1:709.
Comparing the results by formulas (1.28) and (1.29) for hu, we see that the error
orders pRŒhu� � 2:023 and pŒhu� � 2:017 are close to each other but both
overestimate the value pexŒhu�.

(b) Transcritical flow. Here CH D 0.66 m and Chu D 1:53m2/s are chosen. For this
and the next types of flows, the right boundary condition H.X; t/ D CH is posed
only for t � 40 s whereas it is replaced by the open boundary condition for h
for t > 40 s. In this case, the behavior of the stationary water level H is more
complicated exhibiting much more sharp change (its values on the left and right
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Fig. 1.5 Transcritical flow over the hump: H and hu at tfin D 200 s

4.5 5 5.5 6 6.75

6

8

11

14

ln N

| l
n 

E 
|

E(h)

E(u)

E(hu)

E
R
(h)

E
R
(u)

E
R
(hu)

E
ex

(hu)

Fig. 1.6 Transcritical flow over the hump:
ˇ̌
lnE.N/

ˇ̌
for h, u and hu

sides of the hump are very different, and there is a zone of smooth transition
over the hump).

We take ˛ D 0:9, ˇ D 0:1 and � D 0. Figure 1.5 shows the level H and the
discharge hu at N D 400. Similarly to the previous case, there are “hubbles” of hu
values over the hump edges (damping as N increases) but Eabs � 9:882e-5 is small
once again.

Figure 1.6 shows the errors in h, u and hu. The polylines of errors in h and
u are once again close to linear ones. Moreover, the polylines for jlnEexŒhu�j and
jlnERŒhu�j are almost the same. The orders pŒh� � 1:243, pRŒh� � 1:196, pŒu� �
1:187 and pRŒu� � 1:113 are once again close to and slightly greater than 1 whereas
all of pexŒhu� � 2:009, pŒhu� � 2:038 and pRŒhu� � 2:010 are much larger and
close to 2 (not 1).

(c) Supercritical flow. Here CH D 0:33m and Chu D 0:18m2/s are taken. In this
case, the behavior of the stationary water level H is strongly non-monotone (its
graph over the hump has a narrow sharp hollow) and more complicated than
previously.
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Fig. 1.7 Supercritical flow over the hump: H and hu at tfin D 200 s
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Fig. 1.8 Supercritical flow over the hump:
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We take ˛ D 0:8, ˇ D 0:1 and N D 800. We have checked that the
presence of the Navier–Stokes-type viscosity (the term with the coefficient �)
is essential namely in the present case; the stable computations are impossible
without it. From Fig. 1.7, we see that hu is now computed worse. There is a
sharp oscillation near the right edge of the hump. Now Eabs � 0:0266 is about
two orders of magnitude worse than in the previous two cases.

Figure 1.8 shows the errors in h, u and hu. Now the polylines of errors in
h and u differ from linear ones. It is natural that the order pexŒhu� � 1:014 is
now much less and close to 1; pRŒhu� � 0:950 is slightly closer to pexŒhu� than
pŒhu� � 1:116. Other orders are pŒh� � 1:086, pRŒh� D 1:056, pŒu� � 0:956 and
pRŒu� � 0:895 (two last now less than 1).

Notice that generally both formulas (1.29) give different error results but rather
close error orders though the second one seems slightly more exact in the latter
respect.
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Fig. 1.9 The flow over the hump in cases (a)–(c): the mean total energy E.tot/ in time

Finally, in Fig. 1.9 we present the behavior of the mean total energy

E.tot/ D 1

N
.0:5e0 C

N�1X

iD1
ei C 0:5eN/; e D 0:5g

˚
.h C b/2 C hu2

�

in time in all the cases (a), (b) and (c). For simplicity of comparison, it is computed
for the uniform mesh in time for N D 100. We observe the stabilization of this
quantity after one or several oscillations (with no any purely numerical oscillations).
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Chapter 2
Discretization in Numerical Weather Prediction:
A Modular Approach to Investigate Spectral
and Local SISL Methods

Steven Caluwaerts, Daan Degrauwe, Fabrice Voitus, and Piet Termonia

Abstract An overview of some spatial and temporal discretization methods used
in NWP is given. The authors focus on the spectral semi-implicit semi-Lagrangian
scheme, which was and still is one of the most successful schemes. A Z-grid
approach with an identical timestep organization as the current semi-implicit semi-
Lagrangian schemes is proposed. This provides a testbed to undertake comparison
studies between spectral and local spatial discretization schemes.

Keywords Dispersion • Dynamical core • Semi-implicit time discretization •
Spectral spatial discretization • Z-grid

2.1 Introduction

It is obvious that accurate weather forecasts are beneficial for society. Due to
the complex and multiscale nature of the weather, the only approach to predict
it consists of solving the equations governing the motions in the atmosphere in a
numerical way by using computers. Lewis Fry Richardson was the first to come up
with the concept of numerical weather forecasting. In 1922 he published his book
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[36], which outlined how to make an estimate of the future weather by integrating
differential equations in time. His brilliant work proposed to use a finite difference
spatial discretization method to solve a set of equations describing atmospheric
motion. Richardson realised that huge calculation power was needed to forecast
the weather at the pace the weather is evolving. The advent of the first computers
in the forties made these computational resources available and numerical weather
forecasts became a reality [7]. Since then increasing computer power and a better
understanding of meteorological processes fuelled a continuous and still ongoing
improvement and sophistication of numerical weather prediction (NWP) models.
However, this would not have been possible without accurate and efficient numerical
schemes.

The success of NWP was realised in parallel with the evolution in high
performance computing (HPC). Today the scalability of NWP codes on massively
parallel supercomputers is becoming one of the main issues that may affect future
evolutions. The aim of this chapter is to give first an overview of numerical schemes
used in NWP before focussing on the spectral semi-implicit semi-Lagrangian
techniques, where scalability is felt most, and see how these schemes could be
extended with local spatial discretization methods, which are expected to scale
better.

This chapter is structured in the following way.
In Sect. 2.2 a non-exhaustive overview of the different choices for the numerical

discretization in NWP is presented. The text is written within the context of weather
modeling, but its ideas and concepts remain valid for climate models especially
since there is an increasing trend towards unified modeling over all spatial and
temporal scales [5, 24]. It will be clear that there does not exist one optimal
discretization choice and therefore various approaches, all with (dis)advantages,
are used by modeling groups. The choices are often explained by the historical
background of the group or the main application of the model (e.g. tracer modeling)
at the time the development was initiated.

Section 2.3 will review the merits of the so-called spectral semi-implicit (SI)
semi-Lagrangian (SL) technique. It will be shown that once the choice of SI time
discretization has been made, the choice for the treatment of the non-linear terms of
the advection by a SL scheme follows quite naturally. The combined spectral SISL
method has a long and successful history in NWP. The reasons for this are discussed
and some challenges for its future applicability to atmospheric modeling are listed.

Spectral methods are defined on collocation grids, also known as Arakawa A-
grids [28]. In [6] a Z-grid scheme was proposed that retains appropriate geostrophic
adjustment while maintaining the A-grid. Section 2.4 will review the Z-grid method
as an example of introducing local discretization methods while staying as close
as possible to the code organization of the currently used spectral models. This
could offer a scientific testbed for an intercomparison study between spectral and
local methods while changing one discretization for another and keeping all other
schemes of the model equal.

At the end, Sect. 2.5 will present some conclusions and ideas for future work.
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2.2 Discretization of the Dynamical Core in NWP

In a weather model the state of the atmosphere at a certain time t is specified by
a very large state vector F.t/ containing the values of meteorological variables
(e.g. wind velocity, temperature, pressure,: : :) at time t in all gridpoints of the 3D
numerical mesh. The goal of a NWP model consists of forecasting how this state
vector will evolve in time. To do so, three main components can be distinguished in
a NWP model:

• The dynamics (or dynamical core) may be defined as the part of the model
responsable for solving the dry, adiabatic equations, which describe the main
flow in the atmosphere. This chapter concerns the discretization methods used
for the solution of this dynamical core.

• All the subgrid phenomena, whose scales are too small to be represented
explicitly on the chosen mesh, are taken into account by the so-called physics.
The former includes microphysics (for precipitation), convection, turbulence,
radiation,: : : The physics processes are coupled to the dynamics by means of
a diabatic source term P.F.t// in the dry, adiabatic equations.

• As understood already by Richardson [36], the creation of an accurate initial state
of the atmosphere is a condition sine qua non for an accurate weather forecast.
The data assimilation block combines the output of previous model forecasts and
millions of observations to calculate an optimal initial state F0.

The physical basis of the NWP models is formed by the fundamental laws of
momentum, mass and energy conservation. For the sake of simplicity we will limit
the discussion in this section to the conservation of momentum. Expressed in vector
form for a coordinate framework rotating with the earth, conservation of momentum
can be written as:

@V
@t

D �V � rV � 2� � V � rp

�
C g (2.1)

with 3D velocity V, density � and pressure p [21]. Advection (i.e. transport by
the wind) is one of the main drivers for weather evolutions and is represented by
�V � rV. Three different forces can be distinguished in Eq. (2.1): the Coriolis force
�2� � V with � the angular velocity of the earth, the pressure gradient force �rp

�

and gravity g.
Symbolically one could synthesize atmospheric modeling by the following initial

value problem:

@F.t/
@t

D A.F.t//C M.F.t//C P.F.t// ; F .t D 0/ D F0 (2.2)

with A.F.t// D �V � rF.t/ representing advection, M representing the other
resolved forcings (pressure gradient force, Coriolis force and gravity) and P the
earlier mentioned tendencies of the physics. Integrating the dynamical core, the
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Table 2.1 Overview of the discretization choices made in some European NWP models that are
operationally in use

Time discretization Horizontal space discretization/grid

ICON [60] (DWD) 2 TL predictor-corrector
scheme

FD-FV icosahedral-triangular on
Arakawa C-grid

IFS/ARPEGE/ALADIN
[1, 51] (ECMWF/Météo-
France/ALADIN)

2 TL SISL Spectral on reduced Gaussian grid,
stretched grid or rectangular LAM
domain

UM [14] 2 TL SISL FD on lat-lon Arakawa C-grid

(UK Metoffice)

SL-AV [55] 2 TL SISL Partly FD, partly spectral

(Russia Hydrometeor) on lat-lon Arakawa A-grid

The used abbreviations: 2 TL = two time level, SISL = semi-implicit semi-Lagrangian, FD = finite
differences and FV = finite volume

scope of this chapter, could then be presented as solving:

@F.t/
@t

D A.F.t//C M.F.t// : (2.3)

This section will provide an introduction about the discretization of Eq. (2.3).
The numerical scheme will consist of both a time discretization and a space
discretization because A and M contain spatial derivatives. The spatial operators
act along the horizontal and vertical direction. Thanks to the difference in scales in
the horizontal and vertical direction, the 3D numerical problem is typically split up
in a complementary but rather independent 2D horizontal problem and 1D vertical
problem. Largest problems with scalability are in the horizontal, we thus limit
ourselves to horizontal spatial discretization. The presented methods ought to form
a first introduction to this broad topic. The interested reader is referred to textbooks
(e.g. [4, 8, 16]) for more exhaustive overviews of discretization approaches in NWP.

Table 2.1 presents the discretization choices made in some of the European
models that are operationnaly used with ongoing research and development. The
table illustrates that a broad spectrum of methods is used. All methods mentioned
in Table 2.1 will be explained in this document.

2.2.1 Time Discretization of the Dynamical Core

Two main categories of time discretization schemes are used in NWP: explicit and
semi-implicit schemes. In a scheme based on an explicit time discretization all
forcing terms [right-hand side of Eq. (2.3)] are evaluated at previous times resulting
in a direct update problem. By evaluating some of the forcing terms both at previous
times and at the current instant of time, one obtains a semi-implicit scheme that
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results in an elliptic problem. The choice of the time discretization scheme has an
impact on:

1. the propagation properties of waves, e.g. waves can be slowed down by a semi-
implicit treatment.

2. the numerical stability of the scheme, it is well known that an explicit time
discretization results in a necessary condition for the timestep �t in order to
obtain a stable scheme. This so-called Courant-Friedrichs-Lewy or CFL criterion
[12] reads Vmax

�t
�x < C with Vmax the velocity of the fastest propagating mode,

�x the grid mesh,�t the timestep and C a constant depending on the used spatial
discretization. Finer model resolutions will make this timestep criterion more
strict.

3. the order of accuracy. An evaluation based on more instants of time will result in a
higher order of accuracy. However, it would also necessitate more data storage. In
NWP the timestep is mostly determined by stability and not by accuracy, which
explains why often two timelevel methods with first or second order accuracy are
used.

The straightforward explicit time discretization of Eq. (2.3) would be the forward
Euler scheme resulting into:

FC D F0 C�t
�A �F0�C M �

F0
��
; (2.4)

with FC and F0 the vectors containing the prognostic variables in all the gridpoints
at time t0 and tC D t0 C �t and A and M the spatially discretized operators
corresponding with A and M. However, this scheme turns out to be unconditionally
unstable as derived for example in [8], meaning the amplitude of physically neutral
waves will be amplified numerically by this scheme, independent of the choice
of the timestep. In NWP other explicit temporal discretization methods are used.
As an example consider the two-timelevel predictor-corrector scheme, also known
as the second-order Runge–Kutta scheme or the Heun scheme, which could be
summarized as:

F� D F0 C�t
�M �

F0
�C A �F0�� (2.5)

FC D F0 C �t

2

�M �
F0
�C M �

F��C A �F0�C A �F��� : (2.6)

The predictor step, Eq. (2.5), uses a forward Euler scheme to find a preliminary state
vector F�. During the corrector step, Eq. (2.6), FC is calculated by interpolating the
forcing over F0 and F�. This scheme could be evaluated easily in the sense that
one does not need to solve elliptic problems. This approach is still unconditionally
amplifying [16], despite having an amplification that is much weaker than the one
of the forward Euler scheme. The ICON model [60] that is based on a dynamical
core solving the Euler equations with a 2TL scheme is based on a stable variant of
such a scheme.
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As an alternative one could average the forcing terms between times t0 and
tC. This slows down the fastest waves and permits in this way the use of longer
timesteps. These schemes introduced in NWP by Robert [42] are called implicit
time discretization schemes and result in an elliptic problem to solve

FC D F0 C �t

2

�A �F0�C A �FC�C M �
F0
�C M �

FC�� : (2.7)

The form of Eq. (2.7) is not used as such in NWP because of its complexity, indeed
the operators A and M contain non-linear terms making an implicit treatment very
cumbersome. Therefore, the dynamics operator is splitted into a linear operator L
and a non-linear residual M � L and only the linear part is treated in an implicit
way:

FC D F0 C �t

2

�L �F0�C L �FC�C 2A �F���C 2 .M � L/ �F���� : (2.8)

This approach is called the semi-implicit (SI) or implicit-explicit (IMEX) method
[17] and results in an Helmholtz problem:

h
1 � A .�t/2 r2

i
fC D R; (2.9)

with fC one of the prognostic fields at tC, r2 D @2

@x2
C @2

@y2
the Laplacian operator and

A depending on the field f . The efficiency and accuracy of the solver for Eq. (2.9)
will largely determine the success of the SI scheme.

Analysis shows that the waves described by the implicitly treated part L are
significantly slowed down. The linear part L will be unconditionally stable and
second order accurate. By carefully choosing the term L so that it contains the terms
responsible for the fastest moving waves (e.g. sound waves in fully compressible
equations), one could exploit this property to weaken the CFL-timestep criterion.
The method was first illustrated in NWP in 1971 by Kwizak and Robert [25], where
it was used to slow down the short scale gravity waves, resulting in an increase of
the timestep by a factor 6. The non-linear part of the dynamics operator and physics
could be evaluated in multiple ways (symbolized by F��), e.g. a predictor-corrector
scheme as for the UM [14] or by extrapolation as for IFS [22]. Remark that the
stability of the implicitly treated part is no guarantee that the scheme as a whole
will be stable as explained for example in [45].

The horizontally explicit vertically implicit (HEVI) scheme can be considered
as a member of the SI family of schemes. These days there is a trend in NWP
towards unified modeling, meaning one model is used to simulate atmospheric
phenomena over all scales [5]. For this purpose one can no longer use filtered
equation sets (e.g. the hydrostatic primitive equations used for global NWP where
the hydrostatic approximation filters out sound waves), and the fully compressible
equations are gaining importance [13]. But this equation set does permit 3D
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sound waves, which do not have any meteorological relevance but propagate at a
high speed. In modern NWP the vertical grid spacing is varying, high up in the
atmosphere the resolution is low but close to the surface the vertical grid spacing
can be in the order of meters, much smaller than the horizontal resolution. If
treated explicitly vertically propagating sound waves would necessitate a very short
timestep. Therefore, the HEVI approach, which is an explicit scheme treating only
the terms for vertical sound wave propagation implicitly, is gaining importance, e.g.
the recently developed ICON model [60].

Robert [43] estimated that even in SI schemes the spatial discretization errors
are 40 times larger than the temporal discretization errors, thus the timestep is
still limited by stability constraints and not by accuracy. Advection processes
were found to limit the maximal stable timestep. Apart from the direct evaluation
of the non-linear advection terms, which was used in these days in NWP, a
Lagrangian alternative, where advection was evaluated by following parcels along
their trajectory, was known [19]. Because this Lagrangian approach is difficult to
combine with a fixed grid, Sawyer proposed a semi-Lagrangian (SL) approach
where trajectories were calculated for parcels on a uniform grid [44]. Robert showed
that combining the SL treatment for advection with a SI discretization made stable
integrations of the equations with even longer timesteps possible [43]. Symbolically
SISL schemes can be represented as:

FC D F0D C �t

2

�L �F0D
�C L �FC�C 2 .M � L/ �F��

T

��
: (2.10)

Remark there is no longer an evaluation of the non-linear advection terms A.
Computations at the previous time t0 are evaluated in the departure points, found
by tracking back the positions at time t0 of parcels that are at time tC in the
gridpoints of the fixed grid. This is symbolized by the subscript D. The non-linear
terms are evaluated along the SL trajectory (subscript T ) but different methods
do exist. Remark that the SL efficiency gain by the reduction of the number of
time integrations will be partly offset by the trajectory calculations and the extra
communications needed to do the interpolations to departure points.

SISL schemes became popular time discretization schemes for atmospheric
modeling. Table 2.1 shows that today the SISL method is used for example in IFS,
SL-AV and UM.

2.2.2 Space Discretization of the Dynamical Core and Grids

In this section a brief overview of horizontal spatial discretization strategies will
be given. For more information the reader is referred to the earlier mentioned
textbooks. Remark that different discretization strategies could in the end lead to
the same discretized equation.
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Richardson used second order centered finite differences to approximate deriva-
tives, e.g.

@f

@x
.x0/ � f .x0 C�x/ � f .x0 ��x/

2�x
; (2.11)

with�x the grid distance [36]. In fact the previous formula could be considered as a
direct application of the definition of the derivative. The accuracy of Eq. (2.11) could
be improved by refining the resolution or by using a higher order approximation
based also on evaluations of the function f further away than one grid distance �x.
Finite difference schemes are often combined with a staggered grid formulation
where different variables are evaluated in different gridpoints. This will be explained
in more detail in Sect. 2.4.

Schemes based on finite difference approximations for horizontal derivatives are
commonplace in NWP (e.g. second order finite differences in the Met Office UM
[5], fourth order finite differences for some of the derivatives in SL-AV [55]).

A second category of spatial discretization schemes is based on an expansion
in terms of basis functions. Let us illustrate this principle by solving the following
equation:

@u

@t
D F .u/ ; (2.12)

which corresponds to Eq. (2.3) written out for one field u of the state vector F and
with F .u/ representing the total forcing. This method then assumes that the solution
uN.r; t/ could be written as an expansion in basis functions 	i .r/ defined over the
domain˝

uN.r; t/ D
NX

iD1
Ui.t/	i .r/ ; (2.13)

where Ui .t/ represents the weight of the basis function 	i and r the position vector.
The modeling problem is now translated into finding the evolution in time of the N
expansion coefficients Ui .t/. Using Eq. (2.13), one could define the residual R as:

R .r; t/ D
NX

iD1

dUi

dt
.t/ 	i .r/� F

 
NX

iD1
Ui.t/	i .r/

!

: (2.14)

One must strive towards a minimal R. If R .r; t/ D 0 for each position r and time
t, the proposed solution uN .r; t/ would be an exact solution of Eq. (2.12). Different
strategies for the minimization of the residual will result in different coefficients Ui.
One could for example use the collocation method, which dictates the residual to
be exactly equal to 0 in N gridpoints called the collocation points rj. However, in
NWP the Galerkin method based on the evaluation of the residual against the N
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basis functions 	j .r/ over the whole domain˝ , is most often used:

Z

˝

	j .r/R .r; t/ dr D 0 I 8j D 1; 2; : : : ;N (2.15)

or thus

NX

iD1
Mji

dUi

dt
.t/ D

Z

˝

	j .r/F

 
NX

iD1
Ui .t/ 	i .r/

!

dr I 8j D 1; 2; : : : ;N: (2.16)

with

Mji D
Z

˝

	i .r/ 	j .r/ dr: (2.17)

In general the update equations for the different coefficients Ui are coupled resulting
in an implicit problem. However, by choosing a set of orthogonal basis functions,
the mass coefficients Mji become diagonal i.e.

Mji D
Z

˝

	i .r/ 	j .r/ dr D ıij I 8i; j D 1; 2; : : : ;N; (2.18)

which decouples Eq. (2.16) into a set of simple update equations for the expansion
coefficients Ui.

One could opt for global basis functions defined over the whole domain, or
local functions that are only non-zero in a limited part of the domain. The first
method, called the spectral method, was introduced in meteorology in 1966 by again
Robert [41] and permitted a highly accurate calculation of derivatives. In a global
model spherical harmonics are the logical choice for the basis functions whereas for
limited area forecasts double Fourier series are used [1]. Both define an orthogonal
basis. The spectral method in combination with SISL time discretization became
very popular due to its high accuracy and efficiency and it is still today one of
the main methods (e.g. IFS [51]). Recently, questions were raised about the future
applicability of the spectral method and a more thorough discussion will follow in
Sect. 2.3.

A spatial discretization scheme based on the use of local basis functions only
non-zero in a limited part of the domain is called a finite element method . A
good introduction can be found in [56], which presented the first finite element
scheme in NWP. Finite element methods are becoming more popular although
they have a lower degree of accuracy compared to spectral methods but they
need less communication and can be used in a more flexible way. There exists
a whole spectrum of different subtypes: spectral elements [15], discontinuous
Galerkin methods [30], mixed finite elements [11],: : : Until now, most of the finite
element developments were undertaken in research institutes outside Europe e.g. the
operational GEM model of CMC is based on a finite element discretization [35]. In



28 S. Caluwaerts et al.

Europe there is (to the authors’ knowledge) currently no operational NWP model
based on finite elements.

The finite volume approach could be distinguished as a third main category
of spatial discretizations. Its origins date back to 1959 [20] and the method was
extended during the following decades but it is only quite recently that it became
more commonplace in NWP, again mainly in some US research groups (e.g. [26]
developed at NCAR and NASA). The finite volume method starts from the equations
reformulated in their conservative form. In 1D this looks like

@u

@t
C @

@x
f .u/ D S .u; x/ ; (2.19)

with f .u/ the flux determining the reaction of the flow to gradients and S .u; x/ a
source term. By assuming a division of the grid in different elements, one could
spatially integrate the conservative equations over each element. By assuming a 1D-
element Œxi�1=2; xiC1=2� around xi, integrating Eq. (2.19) over this element results in:

d

dt

xiC1=2Z

xi�1=2

u .x; t/ dx C f
�
u
�
xiC1=2; t

�� � f
�
u
�
xi�1=2; t

�� D
xiC1=2Z

xi�1=2

S .u; x/ dx: (2.20)

Time integration from tn to tnC1 D t C�t leads to:

xiC1=2Z

xi�1=2

u
�
x; tnC1� dx �

xiC1=2Z

xi�1=2

u .x; tn/ dx C
tnC1Z

tn

f
�
u
�
xiC1=2; t

��
dt

�
tnC1Z

tn

f
�
u
�
xi�1=2; t

��
dt D

tnC1Z

tn

xiC1=2Z

xi�1=2

S .u; x/ dxdt: (2.21)

By introducing

• the average of the u field at time tn in element Œxi�1=2; xiC1=2�:

uni D 1

�x

xiC1=2Z

xi�1=2

u .x; tn/ dx (2.22)

• the average flux through the element boundary at xi�1=2 during Œtn; tnC1�:

f ni�1=2 D 1

�t

tnC1Z

tn

f
�
u
�
xi�1=2; t

��
dt (2.23)
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• the time and space averaged source term:

Sni D 1

�t�x

tnC1Z

tn

xiC1=2Z

xi�1=2

S .u; x/ dxdt (2.24)

one obtains for Eq. (2.21) the following update equation:

unC1
i D uni � �t

�x

�
f niC1=2 � f ni�1=2

�
C�tSni : (2.25)

This equation to find the updated cell averaged quantities is still exact. However, one
needs approximations to evaluate the fluxes at the boundaries [Eq. (2.23)] and the
averaged source term [Eq. (2.24)]. There exists a lot of literature on different ways to
do so, but [16] is a good starting point. One of the main advantages of the finite vol-
ume method is its good conservation properties. The NASA Goddard Space Flight
Center finite volume dynamical cores, which were developed for global modeling
focused on transport processes, form a good illustration of this method [26].

Finally, numerical models are formulated on a grid covering the region of
interest. For limited area models this does not pose serious problems, but gridding
the sphere for global modeling is challenging. Until now the lat-lon grid that defines
gridpoints at the intersections of meridians and latitude circles was the dominant
choice for NWP. It possesses a logically rectangular structure, orthogonality and
symmetry [48], but the converging meridians result in a very high resolution over the
two poles as examplified in the introduction of [23]. Using a reduced grid that has
less gridpoints on latitude circles closer to the poles (e.g. the reduced Gaussian grid
of Hortal and Simmons [23] used for spectral models) does relax this pole problem
somewhat. Due to the pole problem the CFL stability condition discourages explicit
time integration on a lat-lon grid contrary to SISL discretizations, which do not suf-
fer from this strict timestep limitation. It has been advocated that also SISL schemes
may become unfeasible for high-resolution lat-lon modeling on massively parallel
computer architectures where communication and not computation becomes the
bottleneck. This would be due to the extensive data communication needed around
the poles [48]. This explains why there is a renewed interest in alternative gridding
methods for global modeling as reviewed recently in [48] and [59]. Until now the
operational use of these non lat-lon grids is limited. In Table 2.1 the ICON-model,
formulated on an icosahedral-hexagonal grid, is currently the only one.

2.3 Spectral SISL Discretization Schemes

After this broad overview of discretization in NWP, the focus in Sect. 2.3 will be
narrowed to the spectral SISL method. The reasons for the spectral success are
reviewed and at the end, currently raised issues about the spectral method are
discussed.
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The truncation errors caused by using finite differences for the spatial discretiza-
tion were Robert’s main motivation to start experimenting with the spectral method
for the integration of the primitive equation [41]. The highly accurate calculations
in spectral space result in wave propagation properties close to the analytical ones.
However, he realised that this method was computationally very demanding, e.g.
the evaluation of non-linear terms requires the calculation of triple products of basis
functions, which are no longer orthogonal like the double products in Eq. (2.18):

Mkji D
Z

˝

	i .r/ 	j .r/ 	k .r/ dr ¤ ıijk I 8i; j; k D 1; 2; : : : ;N: (2.26)

Robert thought that the spectral formulation would not be able to challenge the
gridpoint methods used for NWP [41]. However, his expectations for the use of
spectral forms in weather modeling turned out to be too pessimistic. During the
nineties a majority of the operational global NWP models was based on spectral
schemes, e.g. IFS/ARPEGE [39] (ECMWF and France), GM [27] (Germany), GSM
[34] (Japan), GEM [40] (Canada),: : :

Two key reasons for the success of the spectral method could be distinguished:

1. As mentioned earlier, some of the calculations (e.g. non-linear terms) are
computationally very demanding in spectral space. In [18] and [33] a method,
the spectral transform method, was introduced that proposed to evaluate this part
of the computations of a spectral method in gridpoint space. With this proposal
the best of two worlds is combined in the algorithmic organization of the timestep
computation: derivatives are calculated in a highly accurate way in spectral space
whereas non-linear terms, physics,: : : are evaluated efficiently in gridpoint space
(e.g. [52]). Transformations every timestep back and forth between spectral and
gridpoint space is the price to pay. All spectral models in NWP make use of this
transform approach.

2. Ritchie showed that the spectral method could be combined with SISL time
discretizations paving the way to long timestep spectral schemes [38]. Moreover,
the elliptic problem, Eq. (2.9), characteristic for the SI approach becomes trivial
in spectral space, because the spherical harmonics (or double Fourier functions
for LAMs) are eigenfunctions of the Laplacian; by using the spectral method
you get the SI nearly for free. The SL treatment avoids an explicit evaluation
of the large non-linear advection terms and increases the timestep even further,
improving the efficiency of the method. This explains why to the authors’
knowledge spectral schemes are always combined with SISL.

Spectral SISL schemes dominated global NWP models from the nineties on. By
replacing the spherical harmonics by double Fourier series and by periodisation of
the in general non-periodic fields, this approach was succesfully extended to LAMs,
e.g. ALADIN [1].

Since some years concern has been expressed by some communities about the
applicability of the spectral method in the future, and some institutes using spectral
models before, switched to other discretization methods (e.g. ICON [60] and GEM
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[10]). One could distinguish two concerns about the spectral SISL method as it is
used today:

• Scientific issues: The most fundamental scientific limitation of spectral methods
seems to be the global character of the basis functions. It is impossible to
include non horizontally-homogeneous coefficients in the linear operator L in
Eq. (2.10), because this would introduce triple products [Eq. (2.26)] of basis
functions in the elliptic equation and thus make the calculations very complex.
This is in contrast with more local discretization schemes (FD, FE,: : :), which
permit reference states depending on the horizontal position in the implicit
calculations (e.g. a horizontally varying orography or reference temperature).
Being limited to horizontally-homogeneous coefficients could lead to large non-
linear residuals, which are a potential source of instabilities. As an example the
use of a homogeneous background state may lead to a decrease in accuracy when
used over steep slopes in future high resolution models.

• Technological issues: A trend towards massively parallel high performance
computing (HPC), which makes data movement costly in terms of wall-clock
time and energy, is observed. As this evolution is expected to continue and if
there would be no new technology to speed up communication, NWP modelers
should reflect on the communication needs of their schemes. A distinction should
be made between two kinds of communications. Some numerical methods (e.g.
derivative calculations with finite differences or SL advection) need only local
communication of data from nearby points. By adapting the computer topology
to the grid, local communication becomes quite inexpensive and the code could
scale well. However, if global communication is needed the topology of the
computers can not avoid data communication between distant cores. For such
problems the communication will become more problematic if more cores are
used. For the transforms back and forth between spectral and gridpoint space
the spectral transform method needs so-called transpositions. This comprises
that all data of one latitude or longitude have to be collected on one processor
thus necessitating poorly scalable global communication. Reducing the need for
global communication is one of the motivations in [57] to study the impact of
solving the spectral part with a coarser resolution than the gridpoint part.

Although the viability of the spectral method has been questioned already in [9],
it is still today one of the main NWP approaches. This illustrates the difficulty
to estimate the future of a modeling approach. However, it is sure that it will be
challenging to find a highly scalable and flexible alternative that retains the success
properties (e.g. high accuracy, no grid imprinting,: : :) of the spectral method.

2.4 Study of Local SISL Z-Grid Schemes

Local (finite differences or finite element) discretization schemes should not suffer
from the two issues raised in the previous section, thereby it would be interesting
to make a scientifically clean comparison between spectral and local methods. Here
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we use the example of the Z-grid method to illustrate how the spectral discretization
could be complemented by a local method while keeping the timestep structure
equal to the one of the spectral transform method described in the previous section.

First the Z-grid scheme is introduced in Sect. 2.4.1, then its raison d’ être being
its ability to represent accurately wave propagation is reviewed. In Sect. 2.4.3 it is
explained how to combine a SISL time discretization with the Z-grid method with a
timestep organization equal to what is used in IFS/ARPEGE/ALADIN. And finally,
there is a short discussion about the computational aspects of SISL Z-grid schemes
combined with finite differences or finite elements.

2.4.1 The Z-Grid Approach

Because of the complexity of the equations solved in NWP, new schemes are first
examined by studying its impact on the less complex shallow water equations
(SWE) as motivated in [2]. The 2D Cartesian SWE on an f -plane, meaning the
Coriolis constant f is assumed constant, look like:

du

dt
D �@	

@x
C fv (2.27)

dv

dt
D �@	

@y
� fu (2.28)

d	

dt
D �	

	
@u

@x
C @v

@y



; (2.29)

with

d

dt
D @

@t
C u

@

@x
C v

@

@y
; (2.30)

u and v the wind velocity components in the x- and y-direction and 	 the
geopotential. The wave solutions of these SWE have very similar properties to
their counterparts for the complete set of equations used for atmospheric modeling
as nicely demonstrated in [2]. Equations (2.27)–(2.29) represent the momentum
formulation of the SWE.

It is possible to reformulate Eqs. (2.27)–(2.29) in terms of divergence D and
relative vorticity 
,

D D @u

@x
C @v

@y
(2.31)


 D @v

@x
� @u

@y
; (2.32)
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resulting in
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d


dt
D � .
 C f /D (2.34)

d	

dt
D �˚D : (2.35)

Schemes based on the vorticity-divergence formulation are denoted as Z-grid
schemes.

2.4.2 Geostrophic Adjustment of Z-Grid Schemes

In [48] some important constraints are listed for NWP schemes. Among others
representing the process of geostrophic adjustment appropriately is one of them. An
atmospheric situation that violates this equilibrium, will try to restore geostrophic
balance by radiating inertia-gravity (IG) waves [21]. An inappropriate treatment
of these waves could disturb the energy redistribution corresponding with the
propagation of these waves.

In what follows we focus on the impact of the spatial discretization on the wave
properties by using the 2D SWE. Due to its highly accurate calculation of deriva-
tives, the spectral method guarantees an appropriate representation of geostrophic
adjustment. But using finite differences, finite elements or finite volumes could
seriously alter the wave behaviour as illustrated for example in [28].

For geostrophic adjustment studies one uses Eqs. (2.27)–(2.29) linearized around
a reference state at rest with geopotential ˚ (u D u0, v D v0, 	 D ˚ C 	0):

@u0

@t
D �@	

0

@x
C fv0 (2.36)

@v0

@t
D �@	
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@y
� fu0 (2.37)
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; (2.38)

where u0, v0 and 	0 represent perturbations to the reference state. By introducing a
spatial discretization in Eqs. (2.36)–(2.38), assuming a wavelike behaviour for these
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Table 2.2 Responses of the second order finite differences, linear finite-elements and spectral
spatial discretization of a wave like Eq. (2.39)

Second order FD Linear FE Spectral

p 1 1
3
.2C cos.k�x// 1

px
i
�x sin.k�x/

i
�x sin.k�x/ ik

pxx
2

.�x/2
.cos.k�x/ � 1/ 2

.�x/2
.cos.k�x/ � 1/ �k2

fields

x D OXei.kxClyC!t/ with x D u0; v0 or 	0 ; (2.39)

with OX the amplitude, ! the frequency, k and l the wavenumber,1 and exact time
derivation, one finds:

i!p OU D �px O̊ C fp OV (2.40)

i!p OV D �py O̊ � fp OU (2.41)

i!p O̊ D �˚
�
px OU C py OV

�
: (2.42)

The spatial derivatives @
@x and @

@y are replaced by the responses px and py of the
discretized derivative operator on a wavelike field like Eq. (2.39) [46]. Remark that
even in the absence of a spatial derivation a response p is written; this is needed
for example for Galerkin schemes with non orthogonal basis functions, e.g. the
finite element scheme with bilinear basis functions. Table 2.2 shows the responses
for second order finite differences, linear finite elements and spectral (Fourier)
discretization.

The three equations Eqs. (2.40)–(2.42) define three wave solutions allowed by
the discretized 2D SWE on a f-plane. One could solve this set of equations to find
the frequency ! in function of the wavenumbers k and l (and thus wavelength) of
the waves:

!ro D 0 (2.43)

!ig D ˙
s

f 2 � ˚

p2
�
p2x C p2y

�
: (2.44)

The first frequency !ro corresponds with a so-called stationary Rossby wave. By
filling in !ro D 0 in Eqs. (2.40) and (2.41), one will retrieve the geostrophic relation
between wind and geopotential. The inertia-gravity waves have a frequency !ig

1The wavenumbers are related to the wavelengths in the x and y-direction �x and �y by k D 2�
�x

and l D 2�
�y

.
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Fig. 2.1 1D dispersion relation (l D 0) of the IG-wave propagating in the positive x-direction for
exact time derivatives and with

p
˚= .f�x/ D 2: spectral (black), A-grid second order FD (red),

C-grid second order FD (green) and Z-grid second order FD (blue) spatial discretization

depending on the wavenumber. This is represented in Fig. 2.1 for the second order
finite differences (red) and spectral (black) discretization. The spectral discretization
completely agrees with the analytical dispersion relation. Indeed its responses
in Table 2.2 agree with the exact responses. However, the second order finite
difference dispersion relation is bending towards 0 for k�x going to � . This will
correspond to a negative group velocity of the shortest scale waves, which is
considered unacceptable, because it leads to rapidly propagating short scale noise
in the opposite direction. It turns out that all finite difference and finite element
discretization suffer from this problem independent of the order of the method.
Apart from using a spectral method two other approaches that give appropriate
geostrophic adjustment exist [48]:

1. Solving the SWE in momentum formulation on a staggered grid formulation
where the velocity variables and geopotential are defined on different gridpoints.
Arakawa proposed different staggered grids, but the C-grid is generally con-
sidered as the best one [28]. When the momentum formulation is solved on an
unstaggered grid, it is called the A-grid approach. C-grids are operationally used
in ICON and UM, see Table 2.1.

2. Applying the discretization on the Z-grid formulation of the SWE does also
result in appropriate geostrophic adjustment as reported in [58]. This could
be demonstrated by considering the version of Eqs. (2.33)–(2.35) linearized by
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assuming D D D0, 
 D 
 0, 	 D ˚ C 	0:

@D0

@t
D �r2	0 C f 
 0 (2.45)

@
 0

@t
D �fD0 (2.46)

@	0

@t
D �˚D0 : (2.47)

Wavelike solutions will now obey:

!ro D 0 (2.48)

!ig D ˙
s

f 2 � ˚

p

�
pxx C pyy

�
: (2.49)

The dispersion curves of the second order finite differences combined with the
C-grid and Z-grid discretization (green and blue in Fig. 2.1) do indeed no longer
suffer from this bending. The previous geostrophic adjustment discussion was
illustrated by using second order accurate space discretization. Increasing the order
of accuracy does influence the dispersion relations but it does not change its
qualitative properties, e.g. the negative group velocity will remain independent of
the order of the method.

A good way to understand the practical impact of numerical dispersion behaviour
consists of integrating a strongly ageostrophic initial state with different discretiza-
tion schemes. The initial state

	0.x/ D 	0 sgn .x � x0/ (2.50)

u0.x/ D 0 (2.51)

v0.x/ D 0 (2.52)

will evolve towards geostrophic balance by radiating away IG waves as explained
in [21]. Figure 2.2 shows the results of the A-grid, C-grid and Z-grid second order
finite difference simulations after 40 timesteps. An integration based on the spectral
discretization is used as reference. In Fig. 2.2a it can be seen that all schemes result
in IG waves propagating away from the discontinuity. Zooming in at x D x0,
Fig. 2.2b reveals that for the reference, the C-grid and Z-grid scheme the shortest
waves are standing still in agreement with the flattening of ! for k going to �x

�

in Fig. 2.1. For the A-grid scheme even waves with wavelengths around 4�x are
standing still again in agreement with the zero group velocity @!

@k around k�x D �
2

for the A-grid scheme in Fig. 2.1. Figure 2.2c zooms in on part of the domain where
the long waves are dominant and reveals for the A-grid a superposition of very
short scale noise on the longer waves again in agreement with Fig. 2.1. Thus the
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Fig. 2.2 Geopotential field ˚ C 	0 of 1D geostrophic adjustment test for linearized SWE with
f D 0, �t D 300 s, �x D 10 km, ˚ D 9000m2=s2 and x0 D 1500 km. The legend is the same as
in Fig. 2.1. Remark that the green C-grid and the blue Z-grid curve are nearly identical: (a) general
overview (b) zoom in around x0 and (c) zoom in at longer scale waves

fingerprint of the inappropriate A-grid dispersion is clearly visible in this numerical
test. However, the relevance on operational weather forecasts, where diffusion,
truncation, interpolations to departure points in SL schemes, physics,: : : influence
the shortest scales, is unknown.

To study the propagation properties of Rossby modes, which are very important
for synoptic meteorology, one needs to analyse the ˇ-plane 2D SWE where the
Coriolis parameter f is no longer constant. Neta showed that Z-grid schemes do
represent this well [31].

The Z-grid and C-grid approach seem to be very similar based on Figs. 2.1 and
2.2. However, concerning wave properties the Z-grid has some advantages over the
C-grid:

• For the evaluation of Coriolis terms the C-grid formulation needs some averaging
and special care is needed to not impact the Rossby waves [53].

• The good IG-wave dispersion are unconditional for the Z-grid approach, but
for C-grid they depend on the relative importance of the Coriolis terms. The
dispersion curve of the C-grid for

p
˚= .f�x/ D 0:1 shows similar problems as

the A-grid (not shown) [37].
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2.4.3 SISL Z-Grid Schemes

In the previous subsection it was shown that both the C-grid and Z-grid approach
result in appropriate dispersion. To exploit the long timesteps of the SISL approach,
the staggered C-grid does need extra trajectory calculations compared to unstag-
gered methods. However, the Z-grid framework permits the use of a finite differ-
ences or finite element method on an unstaggered grid while retaining appropriate
geostrophic adjustment. Contrary to the staggered formulations, the Z-grid method
does not increase the computational cost of SL advection. The price to pay consists
of solving a Poisson equation every timestep

r2u D @D

@x
� @


@y
(2.53)

r2v D @


@x
C @D

@y
(2.54)

to retrieve the wind velocities from the relative vorticity and divergence.
To circumvent the evaluation of the non-linear terms in the divergence equation

Eq. (2.33), one could construct the discrete divergence equation from the SISL
discretized momentum equations Eqs. (2.27) and (2.28) instead of discretizing
Eq. (2.33). This formed the basis of the SISL Z-grid schemes proposed earlier, e.g.
[47], [49] and [54].

This approach is surprisingly similar to what is done in the spectral SISL model
of IFS/ARPEGE/ALADIN, which also uses divergence and vorticity although for
a different reason. The wind vector components u and v are discontinuous at the
poles and therefore not appropriate to use in a spherical harmonics decomposition
[50]. This explains why spectral methods are often applied on equations formulated
in terms of divergence and vorticity, which are true scalars [3].

As a result the organisation of the SISL Z-grid timestepping is similar to the SISL
spectral timestepping (a good overview can be found in Table 2 of [52]) except for

• the elliptic problem and calculation of derivatives, which is done now in finite
element space or with finite differences instead of in spectral space.

• the need to solve a non-trivial Poisson problem to retrieve the wind velocities
from divergence and vorticity if finite elements or finite differences are used.

This analogy could be employed to use the IFS/ARPEGE/ALADIN model as a
testbed to compare spectral SISL and finite differences or finite element Z-grid SISL
schemes.

Recently, the importance of using the same operators at tC and t0 in an implicit
discretization was pointed at in [6], e.g. the operator L must be discretized in the
same way at both times in Eq. (2.8). If not, the dispersion relation of the resulting
IG waves may become unphysical for part of the spectrum.

At first sight this analysis could seem meaningless, why would one construct an
asymmetric scheme? However, it is easy to introduce inadvertently asymmetries
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especially if one needs some manipulation of equations. As one illustration,
remember that in the Z-grid approach, to circumvent the evaluation of the extra non-
linear terms in Eq. (2.33), the discrete divergence equation is constructed starting
from the time discretized momentum equations Eqs. (2.27) and (2.28). For a two
timelevel SISL scheme the discrete divergence equation writes as:

DC C �t

2
r2	C � f�t

2

C D @Ru

@x
C @Rv

@y
(2.55)

with

Ru D u0D � �t

2

	
@	

@x


0

D

C f�t

2
v0D (2.56)

Rv D v0D � �t

2

	
@	

@y


0

D

� f�t

2
u0D: (2.57)

To not overload the notations, the primes are omitted in the previous equations.
Mind that for the complete model equations the right-hand sides of Eqs. (2.56)
and (2.57) include: non-linear residuals evaluated explicitly, physics, SL trajectory
computations and interpolations. In the spectral transform method this is done in
gridpoint space, which is exactly identical to what is done in the Z-grid approach.
The only difference resides in the method to calculate the derivatives in Eqs. (2.56)
and (2.57).

Whereas the construction of Eq. (2.55) seems logical, an asymmetry has been
introduced: at time tC the Laplacian r2 D @2

@x2
C @2

@y2
of the geopotential appears

whereas at that time t0 first order derivatives are taken twice @
@x

@
@x C @

@y
@
@y . The

previous does not result in an asymmetry if one evaluates the operators in a spectral
way. However, for most spatial discretizations the operations will be no longer
symmetrical as illustrated in Table 2.2, where p2x ¤ pxx for second order finite
differences or linear finite elements.

In [6] two potential sources of asymmetries were distinguished in SI Z-grid
schemes and solutions were proposed:

1. the evaluation of the second order derivatives of the geopotential as explained
in the previous section. The symmetry could be restored by evaluating the
Laplacian in the implicit part as taking twice first order derivatives. However,
the scheme then comes down to an A-grid scheme and as explained earlier the
geostrophic adjustment will be no longer appropriate. A better way to remove
the asymmetry consists of using in Eqs. (2.56) and (2.57) first order derivatives

for the geopotential of the form
�
@
@x

��1 @2

@x2
and

�
@
@y

��1
@2

@y2
.

2. the retrieval of the wind velocities from divergence D and relative vorticity 
.
In Eq. (2.55) the divergence DC and relative vorticity 
C in the implicit part
correspond with @u0

@x C @v0

@y and @v0

@x � @u0

@y in the explicit part. One must construct
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the diagnostic equations to calculate the wind in accordance with the previous
and obtains:

	
@

@x

@

@x
C @

@y

@

@y



u D @D

@x
� @


@y
(2.58)

	
@

@x

@

@x
C @

@y

@

@y



v D @D

@y
C @


@x
; (2.59)

where the operator in the left hand side must be discretized as twice a first order
derivative and not as 1 s order derivative.

Taking into account the previous recommendations results in a symmetric SISL
Z-grid scheme. However, the solution described for the geopotential asymmetry,
which was proposed in [6], is expensive because it necessitates another inversion
problem. As shown hereafter, there is a more practical way to remove this asym-
metry. The direct discretization of the divergence equation Eq. (2.33) is avoided due
to the presence of extra non-linear terms compared to the momentum equations.
However, none of these non-linear terms is related to the geopotential. This means
that the following discretization should also work:

DC
A C �t

2
r2	C

A � f�t

2

C
A D @Ru

@x
C @Rv

@y
� �t

2
r2	0D (2.60)

with

Ru D u0D C f�t

2
v0D (2.61)

Rv D v0D � f�t

2
u0D : (2.62)

In this way the Laplacian of the geopotential r2	 appears both at time tC and t0

and symmetry is guaranteed.
To summarize, using the Z-grid approach in a SISL way with finite difference

or finite elements does not seem to pose any problems except that care needs to be
taken not to introduce asymmetries. The calculations needed during one timestep
show an equal organization as in the currently used spectral SISL models. This
modularity could be exploited to investigate further finite difference or finite element
SISL Z-grid schemes within an existing NWP framework.

2.4.4 Computational Aspects

As explained in Sect. 2.2 the SI schemes gain efficiency by allowing long timestep
integrations at the cost of solving an Helmholtz problem every timestep. Moreover,
if the Z-grid approach is used, the wind retrieval from vorticity and divergence
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adds two more Poisson problems [Eqs. (2.58) and (2.59)]. By using a spectral space
discretization highly accurate solutions for these elliptic problems can be obtained
efficiently. However, Fourier and Legendre transforms back and forth are needed
every timestep. SI schemes combined with local spatial discretization methods
like finite differences, finite elements,: : : do translate these elliptic equations into
algebraic problems:

Ax D B (2.63)

with A a .N � N/ matrix, x the .N � 1/ column vector of unknowns, B the .N � 1/
column vector containing known values and N the number of unknowns. The local
way to approximate derivative operators is reflected into the sparse structure of the
matrix A. In Fig. 2.3 the non-zero elements of the A matrices for the Helmholtz
equation and the Poisson equation are shown for a second order finite difference
discretization on a 10� 10 grid (thus N D 100). It can be seen that in general every

Fig. 2.3 Non-zero elements of the sparse A matrices for a 10� 10 domain and for a second order
finite difference discretization. On the left we have the matrices in the case that the boundaries
values are imposed, at the right we have the matrices for periodic boundaries. (a) and (b) represent
the structure of the A matrix corresponding with the Helmholtz problem Eq. (2.9) whereas (c) and
(d) represent the Poisson problem Eqs. (2.58) and (2.59)
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row consists of five non-zero elements, e.g. in the Helmholtz equation Eq. (2.9) the
second order finite difference Laplacian in a point is indeed calculated based on the
values in the point itself and its four closest neighbours. By employing higher order
methods the matrix A will contain more non-zero values. Remark that the structure
of A connects all gridpoints, this means that solution methods for this problem do
also need communication.

The boundary conditions and the used grid will influence the exact form of the
A matrices. Figure 2.3a and c represent the matrices obtained if one assumes that
the boundary values are known already (e.g. LAM forecast with boundary values
specified by a run on a larger domain) whereas for (b) and (d) periodic boundary
conditions were assumed. It would be interesting to study the impact of the boundary
conditions on the conditioning of the A matrices.

Assuming that 1 day global models will be used at 1 km resolution, the matrix
dimension N is estimated by Müller and Scheichl [29] to be around 1010. It is clear
that scalable algorithms well adapted to the massively parallel computer architecture
used will be needed to make SI NWP feasible on these scales. Müller and Scheichl
[29] recently presented an overview of efficient and scalable solution methods used
for the elliptical problems resulting from a SI time discretization in atmospheric
modeling. Contrary to the direct spectral solution of elliptic problems, local spatial
discretization methods will in general need iterative solvers. Two main solver types
could be distinguished and both are used in NWP: Krylov and multigrid solvers. It
seems that some of these solution methods scale reasonably well as demonstrated
for example by Notay and Napov [32], which tested a particular multigrid solver for
Poisson problems on machines consisting of up to 373,000 cores. The promising
conclusion in [29] stated that (semi-) implicit methods do not limit scalability.

2.5 Conclusion and Outlook

A non-exhaustive overview of both temporal and spatial discretization schemes used
in NWP is presented. It is reviewed that the transform method made the combination
of a spectral spatial discretization and a SISL time scheme very attractive. The
spectral SISL scheme forms today the fundament of the dynamical core of some
of the main European models.

Some claim this approach may become less attractive for scientific and/or
technological reasons. To investigate this, a testbed to compare spectral and local
methods within a code organization otherwise identical is necessary. It is shown
that the Z-grid approach could be employed to introduce a local method, finite
differences or finite elements, within the existing timestep framework of the spectral
SISL models. The only differences would be the Helmholtz solver, the derivative
calculations and the extra Poisson solver. This modular approach could allow a
scientific comparison between spectral and local spatial discretization methods.
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Two important issues related to the use of the SISL Z-grid scheme were
discussed:

1. To obtain within a SI time discretization appropriate geostrophic adjustment,
special care must be taken to maintain symmetry between the explicit and
implicit part of the calculations. This constraint is valid for all SI schemes but
is shown to become particularly relevant for Z-grid schemes because this method
needs some manipulations of equations to construct the discretized equations.

2. The SISL Z-grid approach will necessitate to solve both a Poisson and Helmholtz
problem every timestep. To be operationally attractive, it is thus crucial to
develop an efficient sparse matrix solver for elliptic problems that scales well
on massively parallel machines. Some recent studies showed promising results.

Finally, it would be valuable to understand the impact and thus importance of
the quality of geostrophic adjustment within a real model test. The effect of poor
geostrophic adjustment is well known for simplified equation sets. However, its
impact on real atmospheric modeling is unknown. As an example the A-grid is
generally considered as not appropriate in NWP. However, only the shortest waves
show an inappropriate propagation. One could argue that the physics and not the
dynamics is dominant on these scales. If this would turn out to be true local
discretization methods combined with SISL on the A-grid could be an alternative.

The authors believe that the Z-grid approach is worth more investigations because
it may help us in better understanding some scientific and technological questions
and forms a promising alternative for current day spectral SISL dynamical cores.

Acknowledgements The authors gratefully acknowledge the anonymous reviewer for his/her
comments and suggestions, which substantially improved the manuscript.
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Chapter 3
Turbulence Modeling Using Fractional
Derivatives

Béla J. Szekeres

Abstract We propose a new two-dimensional turbulence model in this work. The
main idea of the model is that the shear stresses are considered to be random
variables and we assume that their differences with respect to time are Lévy-type
distributions. This is a generalization of the classical Newton’s law of viscosity. We
tested the model on the classical Backward Facing Step benchmark problem. The
simulation results are in a good accordance with real measurements.

Keywords Backward facing step • Fractional derivative • Turbulence

3.1 Introduction

Turbulence is a velocity fluctuation of the mean flow in fluid dynamics. For this
phenomenon there is no any exact definition, we can hardly quantify it and its
numerical simulation is also challenging. Its study has a long history, it is enough
to refer to the famous wish of Albert Einstein: “After I die, I hope God will explain
turbulence to me.”

Our study is based on the Navier–Stokes equations as a widely accepted model
for fluid dynamics. Starting from this point there are many variant ways to modeling
this phenomenon, for example the direct numerical simulation, the large eddy
simulation and modeling with the Reynolds averaged equations. We propose here a
new two-dimensional model and a new way for modeling turbulence. We consider
the quantity obtained from the Newton’s law of viscosity as a special expected value
for the shear stresses. According to our approach, in the simulation we should take
into account not only the actual velocity field but also the history of the velocity
field to calculate this expected value.

We generalize the Navier–Stokes equation, using this hypothesis and get a two-
dimensional probabilistic–deterministic model.
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3.2 Preliminaries

The Navier–Stokes equations for incompressible fluids in two space dimensions can
be given as

@vx

@t
C vx

@vx

@x
C vy

@vx

@y
D 1

�

�@x
@x

C @�yx

@y

�
(3.1)

@vy

@t
C vx

@vy

@x
C vy

@vy

@y
D 1

�

�@y
@x

C @�xy

@y

�
(3.2)

@vx

@x
C @vy

@y
D 0: (3.3)

Here the terms x; y denote the tensile stresses, �xy; �yx denote the shear stresses,
� the fluid density and v D .vx; vy/ the velocity vector. According to the Newton’s
law of viscosity we additionally have

�ij D �
�@vj
@i

C @vi

@j

�
; i; j 2

n
x; y
o
: (3.4)

The tensile stresses are given as

i D �P C ��ii D �P C 2�
@vi

@i
; i 2

n
x; y
o
: (3.5)

Let us introduce the notations p WD P
�

for the pressure and � WD �

�
for the kinematic

viscosity. Using (3.4), (3.5) in (3.1) we can make it explicit, to obtain the classical
Navier–Stokes equations

@vx

@t
C vx

@vx

@x
C vy

@vx

@y
D �@p

@x
C ��vx (3.6)

@vy

@t
C vx

@vy

@x
C vy

@vy

@y
D �@p

@y
C ��vy (3.7)

div v D 0: (3.8)

3.3 Results

3.3.1 The Fractional Newton’s Law of Viscosity

We first assume in our model that the stear stresses are random variables. The
physical interpretation of this assumption is that by measuring we can observe an
average viscosity only. It is also assumed that the number of small changes in the
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shear stresses compared to the number of large changes is not so high: the stress is
supposed to arise from a Lévy type distribution. Note that a similar observation was
made by Mandelbrot [7] by examining the cotton prices over a certain time period.
In this subsection we give a mathematical formalization of the above model using
fractional order differentiation.

To work with fractional order differentiation we need the following definition
(see, e.g., [10]).

Definition 3.1 For each q 2 Œ0; 1/ and a 2 R we say that f is q-times differentiable
if the following limit exists:

1

� .1 � q/

@

@t

Z t

a

f .s/

.t � s/q
ds DWa Dqf .t/: (3.9)

In [10] the authors investigated the accuracy of the approximation of (3.9):

aD
qf .t/ � ŒaD

q
h� f .t/ WD

� t � a

N

��q N�1X

kD0

 
q

k

!

.�1/kf �t � k
t � a

N

�
: (3.10)

Using the fractional order derivatives in (3.9) we introduce the following
generalization of (3.4):

�ij.t; �/ D �
h

t�T
Dq
�@vj
@i
.t; �/C @vi

@j
.t; �/

�i
; 0 � q < 1; i; j 2

n
x; y
o
: (3.11)

We modify the equations for the tensile stresses accordingly to obtain

i.t; �/ D �p.t; �/C �ii.t; �/; i 2
n
x; y
o
: (3.12)

Using the notation in (3.9) and substituting (3.11) and (3.12) into (3.6) we arrive at
the fractional Navier–Stokes equations
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�
(3.14)

div v D 0: (3.15)

We call ˛ as a stability parameter and T the fluid memory. These parameters specify
the Lévy type distribution, which describes the wobbling of the shear stresses.

We need the following two theorems, the second one is discussed in [8] and we
proved the first one in the Appendix. For this we recall that for ˛ 2 R and j 2 N we
define

�
˛
j

� D ˛.˛�1/:::.˛�jC1/
jŠ .
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Theorem 3.1 For each ˛ 2 C and h D 1=N the following is true:
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Theorem 3.2 For any ˛ 2 Œ0; 1/ and j 2 Z
C we have

�
˛
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�
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following equality holds:
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Let f W R ! R ˛-times differentiable by means of Definition 3.1 and it is
approximated using (3.10). For simplicity we assume that T WD 1, then the following
estimations are valid
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Let

pk D � .1 � ˛/
� 1
N

��˛
 
˛

k

!

.�1/kC1: (3.19)

According to Theorem 3.2 we have pk > 0, and Theorem 3.1 gives that

lim
N!1

N�1X

kD1
pk D 1: (3.20)

Consequently, the values f pkgk2N define a probability density function, and the limit
distribution is Lévy type. We can also conclude that the generalization (3.11) of the
Newton’s law can be considered as the expected value of the variation of the shear
stresses, where the distribution function is defined by the values pk. This serves as a
motivation for our model.

Note that the standard Newton’s law corresponds to the case q D 0 in (3.11),
which can be interpreted as the distribution of the variation is Gaussian, and then
the shear stresses are independent from the earlier stress values.
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3.3.2 The Algorithm

To discretize (3.13) we use the method of the work [4], which is a finite difference
approximation on a staggered grid. The semidiscretization results then in the
following ODE:

ut C Lh.u/u C gradh p D 0

divh u D 0;
(3.21)

where Lh.u/ D Dh.u/ � �Œt�TD˛h ��, Dh.u/u is the approximation of the nonlinear
terms, divh is the discrete divergence, gradh is the discrete gradient operator, � is the
viscosity parameter and Œt�TD˛h � defined in (3.10).

We solve then Eq. (3.21) using a simple predictor-corrector algorithm. We start
from an initial velocity field u0 and an initial value for the pressure and apply the
time step � . The main steps of the algorithm are the following.

1. Solve the first equation in (3.21) for w:

w � un

�
C Lh.un/w C gradh p

n D 0: (3.22)

2. Solve the following equation for q:

divh gradh q D 1

�
w: (3.23)

3. Compute the pressure values pnC1 D q C pn.
4. Compute the velocity vector unC1 D w � � gradh q.

3.3.3 The Test Problem

To test our simulation we use the real measurements of the work [6] and we
also compare our results with other numerical predictions. We choose a classical
benchmark problem, the Backward Facing Step. The geometric setup of this
problem is shown in Fig. 3.1. We set the fluid memory T D 2:5 s, and the time
step � D 0:005 s. It is sufficient to assume this fluid memory because for N D 500

and ˛ D 0:2 we have 1 �PN
kD1 pk D 2 � 10�4.

The fluid flows into the channel on the upper part of the left hand side of the
channel and it flows out at the right hand side. We set the geometric parameters to
H D 1 cm, L D 10 cm, h D 0:5 cm and � D 2

3
� 10�5 m2

s and use the the Reynolds
number Re D 4hvmax

3�
. With these the exact boundary conditions are the following:

• x D 0; y 2 ŒH � h; h� (inflow section): vy D 0 and vx D � 4.H�y/.H�h�y/
h2

vmax,
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Fig. 3.1 The Backward Facing Step problem

Fig. 3.2 Reattachment lengths r; s and rs. The subdomains of the computational domain with
vx < 0 are shaded

• x D L (outflow section): @vx
@x D @vy

@x D 0 and p D 0,
• on the remaining part of the boundary: vx D vy D 0.

We notice that one can take also a channel before the inlet stage, because it has some
effect on the velocity field [1]. Focusing to the simplest version of the problem
we do not use this inlet channel. Whenever the problem seems to be easy, many
recent calculations underpredict certain well-measurable quantities, the location of
the so-called reattachment lengths r; s and rs. The corresponding error rate is about
5 � 15%. For a visualization of the reattachment lengths we refer to Fig. 3.2.

An important advance of our model is that we can predict this quantity very
precisely for different Reynolds number by choosing the parameter ˛ properly.
We made some comparison with other predictions and summarized the results in
Tables 3.1, 3.2, and 3.3.

For the computations we divided the domain into 300 � 30 elementary cells.
Implementing then the algorithm in Sect. 3.3.2 we found that the numerical method
converges to a stationary solution. The simulated time was 30 s using a number of
6000 time steps both for the Eqs. (3.6) and (3.13).

We also tested our model on a similar benchmark problem using a different
parameter set H D 1 cm, L D 12 cm, h D 0:6 cm and � D 8 � 10�6 m2

s , with the
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Table 3.1 Summarized results for the reattachment lengths with Re D 800

Experimental results Computed results

Lee, Present Present

Mateescu Gartling Kim, study, study, FNS,

Length on Exp. [6] [6] [3] Moin [5] Sohn [9] NNS (˛ D 0:06)

Lower
wall

r=H 6:45 6:0 6:1 6.0 5.8 6:11 6:43

Upper
wall

s=H 5:15 4:80 4:85 – – 5:08 5:33

FNS fractional Navier–Stokes, NNS classical Navier–Stokes

Table 3.2 Numerical results for the reattachment lengths with Re D 1000

Experimental results Computed Results

Length on Exp. [6] Present study, NNS Present study, FNS, (˛ D 0:17)

Lower wall r=H 7:5 6:68 7:46

Upper wall s=H 6:5 5:51 6:16

FNS fractional Navier–Stokes, NNS classical Navier–Stokes

Table 3.3 Numerical results for the reattachment lengths with Re D 1200

Experimental results Computed results

Length on Exp. [6] Present study, NNS Present study, FNS, (˛ D 0:24)

Lower wall r=H 8:5 7:16 8:50

Upper wall s=H 7:5 5:93 7:06

FNS fractional Navier–Stokes, NNS classical Navier–Stokes

Table 3.4 Summarized results for the reattachment lengths with Re D 2425

Reattachment length ratio r=H

Present study, FNS,

Reynolds number Exp. [2] k� � [2] RNG k � � [2] SA [2] SST [2] ˛ D 0:4

2425 9:2 6:3 6:93 8:54 9:4 9:06

FNS fractional Navier–Stokes, NNS classical Navier–Stokes

Reynolds number Re D 2425. We made some comparison with other predictions
with different turbulence models and measurements [2] and summarized the results
in Table 3.4.

3.4 Conclusion

We introduced a new turbulence model in this work by assuming that the variations
of shear stresses are random variables and their distributions are Lévy-type. In this
way we use two new parameter for the governing equations: the fluid memory and
a stability parameter. The most important task in the practical computations was to
choose correctly the stability parameter, while the length of the memory is not so
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important in numerical calculations. We could predict well the reattachment lengths
in a classical benchmark problem by a proper setting of the stability parameter, this
we made with a simple trial and error procedure by hand.

We observed that for small Reynolds numbers the choice of parameter ˛ D 0,
which corresponds to the classical Navier–Stokes equations, gives good accordance
with the real measurements. If only the Reynolds number is increased and con-
sequently, the flow becomes turbulent, the parameter ˛ has to be also increased.
For example, if Re D 800, we found that the choice ˛ D 0:06 is optimal for the
simulation. This corresponds to the fact, that turbulent flows can be described rather
statistically than explicitly, and in the long run we can consider the present model
also a statistical one.

Our future aim is to find experimentally the values ˛ corresponding to the
Reynolds number. It would also be important to compare this result with numerical
experiments on further test problems.

Acknowledgements The author acknowledges the financial support of the Hungarian National
Research Fund OTKA (grant K112157) and the useful advice for Ferenc Izsák and Gergő Nemes.

Appendix

Proof (Theorem 3.1) Let ˛ 2 C be any fixed complex number. Let x be a real or
complex number such that jxj < 1, then

.1 � x/˛ D
1X

ND0
.�1/N

 
˛

N

!

xN : (3.24)

It is easy to see that

.1 � x/˛�1 D .1 � x/˛�1

1 � x
D

1X
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kD0
.�1/k

 
˛

k

!!

xN : (3.25)

On the other hand
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N
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xN ; (3.26)

whence equating the coefficients of xN�1, we obtain
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Thus

lim
N!1N˛

N�1X

kD0
.�1/k

 
˛

k

!

D lim
N!1

N˛� .N � ˛/
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D 1

� .1 � ˛/ lim
N!1
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� .N/
D 1

� .1 � ˛/ ;
(3.28)

where we have used Stirling’s formula (or the known asymptotics for gamma
function ratios) in the last step.
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Chapter 4
A Parallel Numerical Solution Approach
for Nonlinear Parabolic Systems Arising
in Air Pollution Transport Problems

János Karátson and Balázs Kovács

Abstract The subject of this chapter is the numerical treatment of nonlinear
parabolic systems, which arise in various mathematical models of time-dependent
reaction-convection-diffusion transport systems. Such coupled nonlinearities fre-
quently arise in environmental modeling, in particular, in the study of the transport
of air pollutants, and these systems may consist of a huge number of equations.
In this chapter we extend our previously developed approach, based on operator
preconditioning, to problems with mixed boundary conditions and localized inter-
face conditions. The mixed boundary conditions allow that the flux is prescribed
on a part of the boundary, whereas the presence of interface conditions allows
the inclusion of a localized reaction on some subdomain modelled by a curve
or polygon. The overall method consists of four parts: time discretization, space
discretization, outer iteration for the nonlinear systems and inner iteration for the
linearized systems. The preconditioning step arises in the last part, in which the
preconditioning matrix has a block-diagonal structure due to the used uncoupled
equivalent operator preconditioning. The auxiliary problems can thus be solved
in parallel and with a cost proportional to that of a single PDE, further, the
method exhibits mesh independent superlinear convergence of the preconditioned
iteration.

Keywords Air pollution • Nonlinear parabolic systems • Parallel numerical solu-
tion • Transport problems
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4.1 Introduction

The subject of this chapter is the numerical treatment of nonlinear parabolic
systems, which arise in various situations in the mathematical modeling of time-
dependent reaction-convection-diffusion transport systems, in particular those
describing meteorological phenomena and the effect of air pollution [5, 6, 12–
14]. Such systems normally lead to large-scale and computationally complicated
problems, hence it is important to develop efficient and mathematically solid
numerical solution algorithms.

We consider systems which contain nonlinear coupling in the reaction terms,
further, involving mixed boundary conditions and localized interface conditions as
well. That is, in the general case we consider a system of the form

@ui
@t � div.Ki rui/C bi � rui C Ri.x; u1; : : : ; u`/ D fi

Ki rui � �ˇˇ
�N�RC D �i

ui
ˇ
ˇ
�D�RC D gi

ŒKi rui � ���int�RC D %i

Œ ui��int�RC D 0

ui
ˇ
ˇ
tD0 D u.0/i

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

.i D 1; : : : ; `/;

(4.1)

where t � 0 is the time variable and x is the space variable in a d-dimensional
bounded domain ˝ (where d D 1; 2 or 3). A precise formulation of the conditions
and notations of the problem will be given in the next section. Such coupled
nonlinearities frequently arise in environmental modeling, in particular, in the study
of the transport of air pollutants, where ui are concentrations of chemical species.
These systems may consist of a huge number of equations, e.g. in [13] a model with
more than 70 chemical reaction is analysed in details, but larger models can also
occur. We have considered such problems with only Dirichlet boundary conditions
and without interface conditions in [9]. Thereby a compound algorithm was defined
and its efficiency was demonstrated by numerical tests.

Our goal is to extend the approach of [9] to problems with mixed boundary
conditions and interface conditions. The mixed boundary conditions allow that the
flux is prescribed on a part of the boundary, whereas the presence of interface
conditions allows the inclusion of a localized reaction on some subdomain modelled
by a curve or polygon. Similarly as in [9], we first apply time-discretization,
thus a coupled elliptic system has to be solved on each time level. Since the
system of ODEs that stems from the chemical part is generally stiff, the usage of
implicit time-discretization schemes is inevitable, hence a nonlinearity appears in
the elliptic problems. We propose an outer-inner iteration (outer damped inexact
Newton method with inner preconditioned conjugate gradient, CG, method) for
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solving the FEM discretization of the nonlinear elliptic problems. The main part of
this method is preconditioning using the discretization of an `-tuple of independent
scalar elliptic operators as preconditioner. This implies that the preconditioning
matrix has a block-diagonal structure, and the auxiliary problems can be solved
with a cost proportional to that of a single PDE, in contrast to solving the linearized
PDE systems. The advantages of such operator preconditioning is discussed in [2].
In particular, the usage of independent scalar operators as preconditioner allows
parallelization of the method, which was illustrated for linear elliptic systems in
[10].

We note that when similar problems are handled numerically on computers, a
very popular and often used approach in this field involves some kind of splitting
technique (for example, the Marchuk-Strang splitting). Thereby the problem is split
into proper subproblems. In our method no splitting is used, since the role of
separation to subproblems is played by the above mentioned preconditioning via
parallel scalar operators.

The description of the method will consist of four parts: time discretization, space
discretization, outer iteration for the nonlinear systems and inner iteration for the
linearized systems. The preconditioning step arises in the last part, and we derive
mesh independent superlinear convergence of the preconditioned iteration.

4.2 The Numerical Solution Process and its Convergence

We consider system (4.1) under the following conditions.

Assumptions 4.1

1. (Domain:) the domain ˝ is a bounded polytope in Rd with Lipschitz boundary;
�N ; �D 	 @˝ are disjoint subsets, relatively open with respect to @˝ and with
piecewise C1 boundary, such that @˝ D � D[� N , further, the interface�int 	 ˝

is a piecewise C1 surface lying in ˝ . Here � is the outward normal vector and
Œ :��int denotes the jump (i.e., the difference of the limits from the two sides of the
interface �int) of a function.

2. (Smoothness:) for any i D 1; : : : ; `, Ki 2 L1.˝/, bi 2 C1.˝/d, fi 2 L2.˝/, gi
is the trace of a Dirichlet lift Qgi 2 H1.˝/, �i 2 L2.�N/ and %i 2 L2.�int/. Further,
the function R D .R1; : : : ;R`/ W ˝ � R` ! R` is measurable and bounded w.r.
to the variable x 2 ˝ and C1 in the variable � 2 R`.

3. (Boundedness from below:) there is m > 0 such that Ki � m holds for all
i D 1; : : : ; `, further, using the notation R0

�.x; �/ WD @R.x;�/
@�

, there exists ˛ 2 R
such that

R0
�.x; �/ � � � � 1

2

�
max

i
div bi.x/

� j�j2 � ˛ j�j2 (4.2)

for any .x; �/ 2 ˝ � R` and � 2 R`.



60 J. Karátson and B. Kovács

4. (Local Lipschitz continuity:) let 3 � p (if d D 2) or 3 � p � 6 (if d D 3), then
there exist constants c1; c2 � 0 such that for any .x; �1/ and .x; �2/ 2 ˝ � Rl,

�
�
�R0

�.x; �1/ � R0
�.x; �2/

�
�
� �

�
c1 C c2 .max j�1j; j�2j/p�3�j�1 � �2j:

First let us formulate our problem using a vector notation, i.e. we set for brevity

u WD u.x; t/ D .u1.x; t/; u2.x; t/; : : : ; u`.x; t//;

which satisfies the semilinear parabolic system

@u
@t

� div.Kru/C b � ru C R.x;u/ D f ;

K ru � �ˇˇ
�N�RC D � ;

u
ˇ
ˇ
�D�RC D g;

ŒK ru � ���int�RC D %;

Œu��int�RC D 0

u
ˇ̌
tD0 D u.0/:

(4.3)

The numerical solution starts by using Röthe’s method, see [7], where the PDE
system is first discretized in time, in general by a Runge–Kutta method, but in our
situation it is proper to use the implicit (backward) Euler method. Then the resulting
nonlinear equation will be discretized by finite elements and solved by an iterative
method combined with a preconditioning process (as an inner iteration).

4.2.1 Time Discretization

First we apply time discretization on the continuous level to system (4.3). For
stability reasons we apply the implicit Euler method. The convergence for general
time discretizations of quasilinear Cauchy problems is found e.g. in the paper [11].
For ease of presentation we use constant step size � . (We denote vn WD v.:; n�/ for
any continuous function.)
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This results in the following nonlinear elliptic system on each time level, for
n � 1:

�� div
�
KrunC1�C �b � runC1 C �R.x;unC1/C unC1 D �f nC1 C un;

K runC1 � �ˇˇ
�N

D �nC1;

unC1ˇˇ
�D

D gnC1;
�
K runC1 � ��

�int
D %nC1;

�
unC1�

�int
D 0:

(4.4)

4.2.2 FEM Discretization in Space

First, the weak formulation of the problem is done after homogenization of the
boundary conditions (i.e. we set ui ! ui � Qgi, where Qgi is the Dirichlet lift for
gi). Defining the Sobolev space

H1
D.˝/ WD fu 2 H1.˝/ W uj�D D 0g

that corresponds to the decomposition to �N and �D, we will use the product space
H1

D.˝/
` for system (4.1). Thereby we use the following nonlinear operator: for any

u 2 H1
D.˝/

` let

hF.u/; viH1D.˝/` D
Z

˝

X̀

iD1

�
�Ki runC1

i � rvi C �
�
bi � runC1

i

�
vi

C �Ri.x;unC1/vi C unC1
i vi

�

D
Z

˝

�
�K runC1 � rv C �

�
b � runC1� � v

C �R.x;unC1/ � v C unC1 � v
� �

v 2 H1
D.˝/

`
�
:

The weak form of the right hand side can be represented as follows, where for
simplicity we define

� WD �N [ �int;
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and we extend the functions �i and %i to � as constant zero on the other component.
Thus for all v 2 H1

D.˝/
` we let

hB; viH1D.˝/` D
Z

˝

X̀

iD1

�
� f nC1

i vi C uni vi
�

dx C �

Z

�

X̀

iD1

�
�ivi C %ivi

�
d

D
Z

˝

�
�f nC1 � v C un � v

�
C �

Z

�

X̀

iD1

�
� � v C % � v

�
d:

(4.5)

Therefore (4.4) is equivalent to the following abstract operator equation:

hF.u/; viH1D.˝/` D hB; viH1D.˝/` .v 2 H1
D.˝/

`/ (4.6)

We consider the FEM discretization of (4.6) over a quasi-uniform triangulation of
the domain˝ , i.e. regular triangular finite elements are used in the two-dimensional
case, while tetrahedral finite elements are needed in the three-dimensional case.
The maximal meshwidth is denoted by h. The corresponding finite element space
Vh 	 V D H1

D.˝/ is spanned by continuous, piecewise linear basis functions
'1; '2; : : : ; 'N that are continuous on ˝ and linear on each finite element, vanising
on �D, and 'j.xk/ D ıjk holds for each node xk (not sitting on �D). Then the finite
element solution to (4.6) can be simply written as uh 2 V`h satisfying

hF.uh/; vhiH1D.˝/` D hB; vhiH1D.˝/` .vh 2 V`h/:

The convergence of FEM discretization is well-known, see e.g. [3].

4.2.3 Outer Iteration: Damped Newton’s Method

The operator Fh W V`h ! V`h and the function gh 2 V`h are defined by the identities

hFh.uh/; vhiH10 D hF.uh/; vhiH10
�
vh 2 V`h

�
;

hgh; vhiH10 D
Z

˝

g � vh
�
vh 2 V`h

�

via the Riesz representation theorem, thus the problem can be written as a nonlinear
algebraic system

Fh.uh/ D gh: (4.7)
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We apply the damped inexact Newton method (DIN) for the iterative solution of
problem (4.7). The construction of the DIN method and the related convergence
results are well-known, for completeness we briefly summarize them as follows.

Algorithm 4.2.1 (DIN) Let u0 2 V`h be arbitrary. The sequence .un/ 	 V`h is
constructed as follows:

• Denoting the residual by rh D gh � Fh.un/, the vector pn is the approximate
solution of problem F0

h.un/pn D rh, i.e.

��F0
h.un/pn � rh

��
H10

� ın krhkH10 with 0 < ın � ı0 < 1;

• n D min

�
1;

1 � ın
.1C ın/2

� K2

L kFh.un/ � ghkH10


,

• unC1 D un C npn.

Under suitable smoothness, growth and coercivity conditions the following theorem
holds, for the proof see [4, Theorem 5.12] in a more general setting.

Theorem 4.1 If ın � c � kFh.un/� ghk�H10 with some 0 < � � 1, then the

convergence is locally of order 1 C � , that is the convergence is linear for n0 steps
until kFh.un/� ghk�H10 � ", where " � .1 � ı0/

K2

2L (here and in the definition of n

the constant L comes from the Lipschitz continuity of F0), and further on (as n � 1)

kun � uhkH10 � d1q
.1C�/n�n0

with some d1 > 0, 0 < q < 1.

4.2.4 Inner Iteration: Preconditioned CG Method Using
Equivalent Operator Preconditioning

In each step the construction of un requires the approximate solution of the
linearized problem

F0
h.un/ph D rh: (4.8)

Applying the previously mentioned homogenization and linearization, and dividing
by � , it is easy to see that the linearized system is equivalent to the FEM solution in
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V`h of a linear elliptic system of the following structure:

� div.Ki rpi/C bi � rpi C P̀

jD1
ORijpj D Ofi

Ki rpi � �ˇˇ
�N

D O�i
pi
ˇ
ˇ
�D

D 0

ŒKi rpi � ���int D O%i
Œ pi��int D 0

9
>>>>>>>>>>=

>>>>>>>>>>;

.i D 1; : : : ; `/; (4.9)

where the coefficients of the pj are

ORij.x/ WD @jRi
�
x; un.x/C Qgi.x/

�C 1

�
ıij

(where ıij denotes the Kronecker symbol). The weak form of problem (4.9) on the
continuous level is

Z

˝

X̀

iD1

�
Ki rpi � rvi C .bi � rpi/ vi C

X̀

jD1
ORijpjvi

�

D
Z

˝

X̀

iD1
Ofividx C

Z

�

X̀

iD1

�
O�ivi C O%ivi

�
d .vh 2 V`h/: (4.10)

Denoting by c and d the coefficient vectors of ph and rh with respect to the FEM
basis f	1; : : : ; 	Ng, and by L.n/h the stiffness matrix corresponding to the left-hand
side of (4.9), Eq. (4.8) turns into the linear algebraic system

L.n/h c D d: (4.11)

The theory of equivalent operators (cf. [2]) can be applied to the auxiliary linear
problem (4.9) which can be solved by a proper CG type method using a suitable
preconditioner. We propose the CGN method for the nonsymmetric system (4.9),
see e.g. [2]. Letting �i 2 L1.˝/, �i � 0 be suitable functions, we introduce the
symmetric linear elliptic operators

Sipi WD � div.Ki rpi/C �ipi .i D 1; : : : ; `/ (4.12)

in H1
D.˝/, and then define the `-tuple of independent elliptic operators

Sp D �
S1p1 S2p2 : : : S`p`

�
(4.13)
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as preconditioning operator. The preconditioning matrix for the discrete sys-
tem (4.11) is defined as the stiffness matrix Sh of S in H1

0.˝/
`. Then we apply

the CGN algorithm for the preconditioned system

S�1
h L.n/h c D Qd; (4.14)

where Qd WD S�1
h d. According to the main idea of preconditioning, system (4.14) is

equivalent to (4.11), but the spectrum of the matrix S�1
h L.n/h is much more clustered

than the spectrum of L.n/h . Therefore, when we apply the CGN algorithm for system
(4.14), we obtain fast convergence, which will be analyzed below. Altogether, in
each Newton step the linearized system (4.9) is preconditioned by the discretization
of independent (i.e. decoupled) symmetric scalar elliptic operators. This means
that the preconditioning matrix Sh has a block-diagonal structure. This enables
parallel computation of the solution of the auxiliary problems in the CGN, which
was demonstrated for a linear elliptic test system in [10]. Moreover, combining
the convergence results for the CGN and the DIN Algorithm 4.2.1, the combined
iteration provides mesh independent convergence, with superlinear convergence rate
for both the inner and outer iterations. This was given in Theorem 4.1 for the outer
iteration, and it can be derived as follows for the inner iteration.

Theorem 4.2

(1) The left-hand side of Eq. (4.10) can be represented as

Z

˝

X̀

iD1

�
Ki rpi � rvi C .bi � rpi/ vi C

X̀

jD1
ORijpjvi

�
D h.I C Q/p; viH1D.˝/` ;

for any p; v 2 H1
D.˝/

`, where Q W H1
D.˝/

` ! H1
D.˝/

` is a compact linear
operator and I is the identity on H1

D.˝/
`.

(2) The right-hand side of Eq. (4.10) can be represented as

Z

˝

X̀

iD1
Ofividx C

Z

�

X̀

iD1

�
O�ivi C O%ivi

�
d D hr; viH1D.˝/` .v 2 H1

D.˝/
`/

for a proper element r 2 H1
D.˝/

`.

Proof

(1) Let us introduce the weighted inner product

hu; viH1D.˝/` WD
Z

˝

X̀

iD1

�
Ki rui � rvi C �iuivi

�

in the space H1
D.˝/

`, which is equivalent to the standard one. Defining Q via

hQp; viH1D.˝/` WD
Z

˝

X̀

iD1

�
.bi � rpi/ vi C

X̀

jD1
ORijpjvi ��ipivi

�
.p; v 2 H1

D.˝/
`/;
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the representation is obvious under the used weighted inner product. The
compactness of Q follows from the fact that it is the sum of the weak forms
of first and zeroth order scalar operators, for which the compactness was shown
under the similar form in [1].

(2) The continuous embedding of L2.˝/ and L2.� / into H1
D.˝/ implies that each

term in the right-hand side of (4.10) is a bounded linear functional on H1
D.˝/

w.r.t the variable vi. Hence the sum of these terms is a bounded linear functional
on H1

D.˝/
` w.r.t the variable v. Then the Riesz representation theorem yields

the existence and uniqueness of the proper element r 2 H1
D.˝/

`.

Theorem 4.3 Let us apply the CGN algorithm for system (4.14) under the Sh-inner
product h:; :iSh . Then the residual errors satisfy

	krkkSh
kr0kSh


1=k
� "k (4.15)

where

"k WD 2

km2

kX

iD1

�ˇ̌
�i.Q

� C Q/
ˇ̌C �i.Q

�Q/
�

! 0 as k ! 1 (4.16)

(with Q being the compact operator above, and m being the ellipticity constant of
I C Q), and "k is a sequence independent of Vh.

Proof Due to Theorem 4.3, we can rewrite Eq. (4.10) as

.I C Q/p D r (4.17)

in H1
D.˝/

`, i.e. an operator equation with a compact preturbation of the identity.
Similarly, since we have the decomposition

L.n/h D Sh C Q.n/
h

(where respectively S.n/h and Q.n/
h are the stiffness matrices for the weighted inner

product and compact operator Q, defined in Theorem 4.3), we obtain that (4.14) can
be rewritten as

.Ih C S�1
h Q.n/

h / c D Qd

(where Qd WD S�1
h d/. That is, we obtain a proper projection of (4.17) in V`h , and

Proposition 7.5 of [2] yields the desired convergence result.
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4.3 Some Examples in Air Pollution Models

Systems of the type (4.1) typically arise in air pollution models, involving diffusion,
convection and chemical reactions related to the polluting materials (pollutants), see
e.g. [12, 13]. A simplified model involving the 10 main arising pollutants involves
the following vector, describing the concentrations of the considered species:

u D �
uNO2 ; uO3 ; uNO; uO2 ; uO1D; uH2O; uOH; uCO; uH; uHO2

�T
:

Then the reaction terms, given through the coordinate functions of R, are as follows:

RNO2 .u/ D � J1uNO2uhv C k2uNOuO3 � k5uOHuNO2 C k8uHO2uNO

RO3 .u/ D J1uNO2uhv � k2uNOuO3 � J3uO3uhv C k9.T/uO1DuM

RNO.u/ D J1uNO2uhv � k2uNOuO3 � k8uHO2uNO

RO2 .u/ D k2uNOuO3 C J3uO3uhv

RO1D.u/ D J3uO3uhv � k4uO1DuH2O � k9.T/uO1DuM

RH2O.u/ D � k4uO1DuH2O C k10uHCHOuOH

ROH.u/ D 2k4uO1DuH2O � k5uOHuNO2 � k6uOHuCO C k8uHO2uNO

� k10uHCHOuOH

RCO.u/ D � k6uOHuCO C k10uHCHOuOH C J11uHCHOuhv

C J12uHCHOuhv

RH.u/ D k6uOHuCO � k7.T/uHuO2uM

RHO2 .u/ D k7.T/uHuO2uM � k8uHO2uNO C k10uHCHOuOH

C 2J11uHCHOuhv:

Here kj are the reaction rates, and the photolysis rates are defined as

Jj D aje
�bj sin.�/�1 :

Let us list some possible situations covered by our system (4.1). This shows that
our given numerical algorithm can be used for the computation of the desired
concentrations. The initial conditions have the same general form

ui
ˇ̌
tD0 D u.0/i

as in (4.1) in each problem below, hence it is omitted in the formulas.
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Example 4.3.1. Dirichlet boundary conditions in 2D:

@ui
@t � div.Ki rui/C bi � rui C Ri.x; u1; : : : ; u`/ D fi

ui
ˇ
ˇ
@˝�RC D gi

)

.i D 1; : : : ; `/:

(4.18)

In this case the values of concentrations are given from a larger-scale model on
the boundary of the considered, typically rectangular domain. The exact boundary
conditions are of course unknown in real situations, therefore these values should
be taken from a model treated on a much larger spatial domain. Some kind of
interpolation may be needed because the larger models are normally handled on the
coarser grids, see details in [13]. This model was studied in [9], and the efficiency of
the similar approach was demonstrated by numerical test, involving a rotating wind
field test problem taken from [5].

Example 4.3.2. Mixed boundary conditions in 3D:

@ui
@t � div.Ki rui/C bi � rui C Ri.x; u1; : : : ; u`/ D fi

Ki rui � �ˇˇ
�N�RC D 0

ui
ˇ̌
�D�RC D gi

9
>>=

>>;
.i D 1; : : : ; `/:

(4.19)

Here ˝ is a 3D rectangle, �N is the union of the horizontal faces of the domain and
there the flux is assumed to be zero, i.e. no horizontal transmission occurs, whereas
�D has the same role as in the previous example.

Example 4.3.3. Mixed boundary conditions in 2D, point source:

@ui
@t � div.Ki rui/C bi � rui C Ri.x; u1; : : : ; u`/ D fi

Ki rui � �ˇˇ
�N�RC D �i

ui
ˇ
ˇ
�D�RC D gi

9
>>=

>>;
.i D 1; : : : ; `/:

(4.20)

Here �D is a small circle inside ˝ representing a chimney which is a(n almost)
point source of the pollution, gi are given large values, and �N is the outer boundary
where the flux is given.

Example 4.3.4. Dirichlet boundary conditions in 2D and interface conditions on
a curve:

@ui
@t � div.Ki rui/C bi � rui C Ri.x; u1; : : : ; u`/ D fi

ui
ˇ
ˇ
@˝�RC D gi

ŒKi rui � ���int�RC D %i

Œ ui��int�RC D 0

9
>>>>>=

>>>>>;

.i D 1; : : : ; `/;

(4.21)
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Here Example 4.3.1 is completed such that the diffusion coefficient is different
on the two sides of an interior curve �int that separates two subregions, e.g. the
boundary of a lake.

In addition, our results might be extended to include reaction terms also on the
interface �int, which we did not do for simplicity. Then one can consider problems
like

@ui
@t � div.Ki rui/C bi � rui C Ri.x; u1; : : : ; u`/ D fi

ui
ˇ
ˇ
@˝�RC D gi

ŒKi rui � � C si.x; u1; : : : ; u`/��int�RC D %i

Œ ui��int�RC D 0

9
>>>>>=

>>>>>;

.i D 1; : : : ; `/;

(4.22)

in which given chemical reactions, described by functions si, take place on the
interior curve as considered e.g. in [8]. Such a curve can model a localized site
of catalysis, or a polluted highway etc. The formal conditions for the functions si
are similar as for Ri.

Finally we note that it is not the goal of this chapter to include computer tests,
since we have focused on the general approach to construct methods for a class of
problems. It will be the subject of forthcoming papers to implement such algorithms
for specific problems like in the above examples. We expect as similarly efficient
behaviour for such problems as found in the tests for the pure Dirichlet problem in
our cited paper [9].
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Part II
Air Quality Modelling

Atmospheric modelling covers the modelling of air quality as well. To demonstrate
its importance, it is enough to mention the growing air pollution in metropolises,
the toxic emission of industrial areas and power plants, the danger of radioactive
gases after an accident in a nuclear power plant, but even the natural hazards,
such as the drift of ash after a volcanic eruption. In all of these cases the fast and
accurate forecast of the pollutant’s trajectory is indispensable. Air quality models
have their own difficulties when solving the corresponding partial differential
equations, moreover, they are usually coupled with a numerical weather prediction
model which provides the actual weather situation and the values of meteorological
variables being of interest for computing the pollutant’s trajectory and the chemical
reactions taking place on its way. The main difficulty of solving air pollution
transport models is the mathematical description of the complicated chemical
reactions, which lead to nonlinear coupling between the equations. This part of the
issue is devoted to present several numerical methods aiming at overcoming this and
other challenges.

Chapter 5 deals with atmospheric dispersion processes which occur on several
temporal and spatial scales with the complexity of chemistry ranging from passive
tracers (e.g., dust) to chemically active species. The authors give an introduction to
and analyse the two basic groups of atmospheric dispersion models: the Eulerian
(deterministic) and the Lagrangian (stochastic) ones.

Chapter 6 treats the hydrodynamic modelling of industrial pollutants spreading
in the atmosphere. An efficient methodology for the numerical solution of the
problems is elaborated under real weather conditions. The results of numerical
experiments, weather forecast, and the modelling of pollutants in the atmosphere
verify this approach.

Chapter 7 gives a coordinate transformation which transforms differential prob-
lems imposed on unbounded domains to bounded ones. One of the main advantages
of this approach is that by its application the numerical solution preserves the
required qualitative property of non-negativity of the pollutants’ concentration.

Chapter 8 considers the impact of climatic changes on pollution levels. The
climatic changes might be linked to the increased frequency of extreme events in
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many different areas. One of the most important consequences is the clear trend for
global increase of the temperature. The chapters’ results indicate that the climatic
changes will lead to an increase of the pollution levels related to ozone in many
parts of Europe.

As seen from the summary above, the chapters are mainly devoted to the efficient
selection of numerical algorithms being appropriate to the given problem. Thus, the
improvement of the existing numerical schemes as well as the development of new
and even more efficient methods are still extremely important for the applications,
such as air quality modelling. Hence, the chapters in Part II show how numerical
methods, such those presented in Part I, are applied for modelling the transport and
climatic changes of air pollution in real situations.



Chapter 5
Eulerian and Lagrangian Approaches
for Modelling of Air Quality

Ádám Leelőssy, Tamás Mona, Róbert Mészáros, István Lagzi,
and Ágnes Havasi

Abstract Simulation of the dispersion, chemical and physical transformations of
air pollutants in the atmosphere is one of the most important and challenging tasks in
environment science. Computations should be fast and the results should be precise
to be used in decision support. There are two main approaches to solve atmospheric
transport equations that describe the spatiotemporal variation of the concentrations
of the air pollutants. These are Eulerian and Lagrangian models, and usually both
models can be used in simulations. However, there are some cases where one of
them can perform better than the other one. An appropriate choice and usage of a
proper approach should be crucial to obtain sufficiently accurate results in a cost-
efficient way.

Keywords Air quality • Atmospheric transport equation • Eulerian model •
Lagrangian model • Operator splitting

5.1 Introduction

The aim of the application of air quality models is usually twofold. First is to
estimate the concentration of air pollutants arising from emission sources. In this
case we use models that have a better spatial and temporal representativeness than

Á. Leelőssy • T. Mona • R. Mészáros
Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
e-mail: leelossyadam@gmail.com; motpaat@caesar.elte.hu; mrobi@nimbus.elte.hu

I. Lagzi
Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
e-mail: istvanlagzi@gmail.com

Á. Havasi (�)
Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University,
Budapest, Hungary

MTA-ELTE Numerical Analysis and Large Networks Research Group, Budapest, Hungary
e-mail: havasia@cs.elte.hu

© Springer International Publishing Switzerland 2016
A. Bátkai et al. (eds.), Mathematical Problems in Meteorological Modelling,
Mathematics in Industry 24, DOI 10.1007/978-3-319-40157-7_5

73

mailto:leelossyadam@gmail.com
mailto:motpaat@caesar.elte.hu
mailto:mrobi@nimbus.elte.hu
mailto:istvanlagzi@gmail.com
mailto:havasia@cs.elte.hu


74 Á. Leelőssy et al.

a monitoring network and based on this information a load of air pollutants can be
estimated (e.g., photochemical air pollution). Second is to predict the dispersion of
air pollutants to mitigate a possible damage of air pollutants on environment and
human health (e.g., accidental release).

Dispersion of air pollutants in the atmosphere can be described by the atmo-
spheric transport equation (ATE). Mathematically, ATE is a set of second-order
partial differential equations and it has the form:

@ci
@t

D �div.uci/C div.K � grad.ci//C Ri C Ei C Di (5.1)

where ci is the concentration of the i-th air pollutant, u is the three-dimensional wind
field and K is the matrix of the turbulent diffusion. The first term in the equation
describes the effect of advection (wind field). The second term incorporates the
mass transport due to turbulence occurring in the atmosphere. Ri denotes chemical
reaction and radioactive decay (in case of radionuclides). Ei and Di describe the
emission sources and deposition processes in the atmosphere, respectively.

To estimate and predict the transport and transformation of air pollutants, ATE
should be solved numerically. The solution of ATE (equipped with appropriate
initial and boundary conditions) provides the spatiotemporal variation of the
concentrations of air pollutants. There are two types of models that can be used,
namely the Lagrangian and the Eulerian models [18].

The aim of this chapter is to provide a brief introduction to dispersion modelling
and to show a few case studies for Eulerian and Lagrangian models. We will discuss
the advantages and drawbacks of these two approaches.

5.2 Eulerian Models

The main idea in Eulerian models is to solve numerically the ATE (5.1) with
the corresponding initial and boundary conditions in a fixed coordinate frame.
As a result we obtain the space and time dependent concentration function c D
c.t; x; y; z/. There are several numerical methods to solve this system. Usually, a grid
is defined on the space domain of interest, and the spatial derivatives are discretized
over the grid. As a result of the spatial discretization, at each grid-point we obtain a
system of ordinary differential equations (ODE’s) for the unknown, time-depending
functions approximating the concentrations at the given point. (This procedure is
called semi-discretization.) The obtained system of ODE’s with the corresponding
initial values (i.e., a Cauchy problem) is then solved numerically.

An example of Eulerian models is the Danish Eulerian Model (DEM), which
has been developed at the National Environmental Research Institute of Denmark
(NERI) [30]. The spatial domain of this model covers the whole of Europe.
All important chemical species (sulphur pollutants, nitrogen pollutants, ammonia-
ammonium, ozone, as well as many radicals and hydrocarbons) can be studied
by this model. The chemical reactions are described by using the well-known
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condensed CBM IV scheme. Today 56 chemical species are involved in the model,
but its latest version, called UNI-DEM [1–3, 31], is able to treat 168 different
species.

The advantages of the Eulerian approach are as follows:

• All physical and chemical processes can be taken into account, since the full
transport equations, describing all the important physical and chemical processes,
are solved.

• It is straightforward to use these models in 3-D.

The disadvantages are:

• Eulerian models lead to huge computational tasks. For example, in the case of a
10 km � 10 km horizontal resolution and 10 vertical layers in the Danish Eulerian
Model, the number of grid points is several million. Moreover, if a time step of
2.5 s is used, then for a 1 year long run more than 12 million time steps are to be
taken. By such a high resolution, discretization of the transport equations leads
to a huge system of (non-linear) equations.

• It is not possible to study directly relationships between sources and receptor
points (areas). This latter disadvantage can be overcome by using long sequences
of scenarios, which, however, is rather time-consuming. Another possibility is to
use inverse Eulerian transport models for the identification of source regions on
global and continental scales.

The numerical treatment of large Eulerian models requires extra care [32].
The equations to be solved are rather complicated, since the right-hand sides of
the equations contain terms of different mathematical properties. If some off-
the-shelf numerical method is applied directly to the system, we cannot obtain
a sufficiently accurate numerical solution within reasonable computational time.
Therefore, operator splitting is usually applied [6]. During this procedure the
right-hand side of the original system is divided into a few simple terms, and
the corresponding systems—which are connected to each other through the initial
conditions—are solved one after the other in each time step of the numerical
integration. In this manner, we replace the original model with one in which the
different sub-processes take place successively in time. This de-coupling procedure
allows us to solve a few simpler systems instead of the original, complicated one.
For example, in the DEM the subsystems describe the horizontal advection (5.2),
the horizontal diffusion (5.3), the chemical reactions to which also emissions are
added (5.4), the deposition (5.5) and the vertical exchange (5.6):

@c.1/i

@t
D �@.uc

.1/
i /

@x1
� @.vc.1/i /

@x2
; (5.2)
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@c.3/i

@t
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for i D 1; : : : ;m, where m denotes the number of chemical species, and the
superscripts refer to the number of the given sub-problem. Assume that some
approximation to the concentration vector .c1; : : : ; cm/ at the beginning of the time
step has been found. The first system is solved by using this vector as a starting
vector. The obtained solution will serve as the initial vector in the treatment of
the second system and so on. The solution of the fifth system is accepted as an
approximation to the concentration vector at the end of the time step.

The DEM splitting is based on a separation of the different physical processes of
the air pollution transport and a separation of the vertical and horizontal directions
for advection and diffusion. An alternative of the DEM splitting is the so-called
physical splitting, where the sub-operators belong to the five basic air pollution
processes, and there is no directional separation. In spite of the commonly used
terminology, the DEM splitting is also based on a physical principle: the distinction
of the vertical and horizontal directions is natural in shallow atmospheres, and
makes it easier to switch on to the 2-D version of the model.

There are two approaches that can be used to increase the accuracy of the
numerical solution and to resolve problems arising from the steep concentration
gradient especially near a point source. These are nested and adaptive grids. Nested
grid is static and uses a finer resolution subgrid near the point source. In the
simulations using adaptive gridding, the density of grid cells changes in space and
time according to a user defined algorithm that identifies regions of high numer-
ical error. There are two types of adaptive gridding strategies, h-refinement and
r-refinement [10]. In h-refinement the number of grid cells changes spatiotemporally
according to an algorithm. However, in r-refinement—in contrast to the previous
case—the number of grid cells remains constant, but the characteristic grid size
changes (grid relocation). Both techniques have been successfully applied in air
quality modeling [10, 15, 16]. Figure 5.1 shows an example of the usage of an
h-refinement in case of an accidental release from the Paks Nuclear Power Plant
(NPP) [15].

In this example, the grid cells are refined and coarsened by an algorithm that
calculates the difference between the low and high order solutions thus providing
a measure for spatial error. A refinement indicator for the jth cell is defined by a
scaled error serrj:

serrj D ej.t/

atol=Aj C rtol � cj (5.7)



5 Eulerian and Lagrangian Approaches for Modelling of Air Quality 77

Fig. 5.1 Evolution of mesh structure in the surface layer ((a), (b), (c), (d)) and the activity of the
131I ((e), (f), (g), (h)) in an accidental release simulation from the Paks NPP using an h-refinement.
Reprinted from Lagzi et al. [15] with kind permission of Elsevier. Simulation started from 2 August
1998, at 0.00. (a)–(d) The adaptive mesh at t0 C 12, t0 C 24, t0 C 36, t0 C 48 h; (e)–(h) activity in
the surface layer at t0 t0 C 12, t0 C 24, t0 C 36, t0 C 48 h
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where atol and rtol are the absolute and relative error tolerances, respectively, ej.t/
is the local error estimate of the radionuclide over element j, cj is the concentration
of radionuclide over grid cell j and Aj is the area of jth cell.

There is a continuous plume from the point source in the first 12 h, because a
continuous release was assumed for that time period. After the first 12 h, the plume
is separated from the point source. It can be seen that the region of higher grid
resolution continuously follows the path of the contaminated air. Typically the grid
size in the simulation changed from 
 106 to 6.6 km by the adaptation routine
allowing better spatial resolution in areas with high numerical error. It should be
noted that always an extra computational time is required for adaptive gridding,
because the mathematical algorithm should estimate numerical errors.

5.3 Lagrangian Models

Contrary to the deterministic partial differential equations of Eulerian models,
the Lagrangian approach is based on stochastic ordinary differential equations to
estimate the solution of the dispersion equation, see e.g. [8, 25]. Instead of the
Eulerian concentration field, the model variables are position vectors of elementary
units of the pollutant, often referred to as “particles” or “puffs”. Model equations
are equations of motion for each particle:

dv
dt

D g � k.v � va � vt/; (5.8)

where v is the particle velocity vector, va is the grid-scale wind (“advection”), and
vt is the subgrid-scale wind fluctuation (“turbulence”). Sedimentation is taken into
account with the g gravitational acceleration, and k is a function of the particle
size, density and fluid viscosity, usually calculated based on Stokes’ law. In case of
gas tracers, the “particle” is only theoretical and thus particle size has no physical
relevance. In this case, particle motion is assumed to follow the streamlines:

v D va C vt: (5.9)

The grid-scale wind va is obtained from numerical weather prognostic model
outputs, however, in a Lagrangian model, particle locations do not fit on the regular
grid of meteorological data. This requires interpolation of meteorological fields for
every particle location at every timestep, which can become the costliest part of a
Lagrangian simulation.

The Lagrangian approach provides an intuitive way of simulation by following
the pathway of the pollutants through the atmosphere from the source to the
receptor. However, these trajectories are stochastic due to turbulent motions, and
therefore different particles can follow significantly different trajectories even with
equal initial conditions. The turbulent velocities are assumed to follow a Markov
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process described by the Langevin equation, where the deviations of velocities
i and Lagrangian timescales of autocorrelation TLi are parameterized based on
precomputed Monin–Obukhov length and planetary boundary layer height [25]:

dvt;i D �vt;i
TL;i

dt C
s

2

TL;i
idW; (5.10)

where dW is the incremental component of a Wiener process with zero mean and dt
variance.

The ODEs are usually integrated with a simple first-order method. Higher-order
solvers are applicable, however, numerical error is also limited by the order of
meteorological data interpolation [8]. The �t computational timesteps are adjusted
based on the vertical Lagrangian timescale TLw to provide sufficient temporal
resolution for the calculation of vertical turbulence, the turbulent process with the
shortest timescale. For most applications, the setting �t D 0:1TLw is a reasonable
selection of the timestep [25].

The timescale TLw defines the strength of autocorrelation of vertical turbu-
lent motions, and is in principle calculated from parameterizations. However, to
save computational time, autocorrelation is often underestimated with a manually
defined �t, which results in a weaker representation of turbulence, but provides
an acceptable approximation for large-scale simulations [25]. For computational
representation of the Wiener process in the Langevin equation, normally distributed
pseudorandom numbers are generated with the Mersenne-Twister algorithm. Ran-
dom number generation contributes to the computational cost, and becomes a
significant issue in parallel simulations, especially on GPUs [23].

The concentration field can be estimated from the spatial distribution of a
large number of particles, treated as probability distribution of random variables.
Depending on the scale, splitting the released mass of pollutants among 1000–
10,00,000 particles can provide an acceptable accuracy in concentration results.

Trajectory models have been used to simulate the transport of pollution from
industrial accidents [17], the dispersion of radioactive pollution originating from
Fukushima [20, 26], and volcanic ash clouds like the one from Eyjafjallajökull [5,
13]. Another application of Lagrangian simulations is the atmospheric transport of
wind-driven vectors of diseases. Trajectory models provided important information
during the foot-and-mouth disease epidemics [11, 22].

Lagrangian simulations are popular tools of source identification and to explore
source-receptor sensitivities [9, 26]. Backward trajectories are a plausible way to
follow the atmospheric transport process from the receptor to the possible source
points. This method has important applications in several fields of environmental
modeling, like source identification in air quality protection [14, 21] as well as
continental to global scale airmass climatology, aerosol or precipitation source
estimation [7, 28].
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5.3.1 Puff Models

Besides their position, each particle represents an amount of mass (or activity
in case of radioactive materials) that changes through deposition and chemical
reactions. These ODEs are solved at each timestep after the equations of motion.
However, as each particle is treated independently, only local effects (in-particle
reactions, simple decay and deposition) can be taken into account. The easiest and
computationally cheapest way of concentration forecast with Lagrangian models is
the puff approach that merges Gaussian and Lagrangian turbulence approach. Puff
models regard particles as independent pollutant plumes, “puffs” with an extended
volume. These puffs grow in size due to turbulent mixing in the atmosphere,
with an inner concentration field following the normal distribution. This approach
calculates grid-scale turbulence in Lagrangian, and subgrid-scale turbulence in
Gaussian way [27]:

c.x1; x2; x3/ D 1

.2�/
3
2

NP

iD1
mi

1;i2;i3;i
�

� exp

	
�.x1;i�x1/2

221;i
C �.x2;i�x2/2

222;i
C �.x3;i�x3/2

223;i



;

(5.11)

where c is the concentration at a given location, mi is the mass represented by the ith
particle, .x1;i; x2;i; x3;i/ is the particle location and N is the number of particles. The
 deviations are functions of atmospheric turbulence, and calculated from timestep
to timestep through additional ODEs. Despite the new equations, the puff approach
requires significantly smaller number of puffs to estimate the concentration field,
which largely accelerates the simulation.

Puff models merge the advantages of Lagrangian trajectories with Gaussian
speed and simplicity of simulations. Therefore they are widely used in regulatory
models in environmental protection and risk assessment [12, 19]. One of the most
popular Lagrangian models, HYSPLIT is also often used in puff mode for dispersion
simulations [17]. HYSPLIT improved the simple puff approach with separating
horizontal and vertical mixing schemes. It also provides a “top-hat puff” method,
using a horizontally normally distributed, vertically uniformly mixed puff [8].

5.3.2 Trajectory Models

Concentration field can be estimated from calculation of density based on a large
number of single particle locations and their representative masses:

c.kernel/ D

KP

iD1
mi

Vkernel
(5.12)
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Fig. 5.2 Trajectory and concentration results of a Lagrangian model 24 h after the beginning of
the Bugac wildfire in Hungary, 29 April 2012

where the concentration is assumed to be homogeneous within a kernel, and
calculated with the total mass represented by all K particles within the kernel divided
by the kernel volume. The density is usually calculated on a rectangular kernel that
provides concentration output similar to that of an Eulerian model [8].

A large advantage of Lagrangian models, however, is that model integration
requires no spatial discretization, thus the calculation of concentration values on
a grid is only a diagnostic step. The primary model results are independent of the
output grid, and concentrations can be obtained on different grids without rerunning
the model. It allows a flexible grid setup with increased near-source resolution
or non-rectangular grids [25]. The kernel shape and size can be user-defined [8],
estimated from meteorological parameters or with clustering of particles. This
makes Lagrangian models especially suitable for near-source simulations, where
large gradients would require an extremely fine mesh in an Eulerian model [4]. An
example of primary trajectory results and the derived concentration field is presented
in Fig. 5.2.

Chemical reactions among different pollutants depend on their concentration at
each timestep, which is not a prognostic variable in a Lagrangian model. Simple
chemical processes, like deposition or decay can be modeled locally within each
particle, however, for cases with complex chemistry, capabilities of Lagrangian
models are limited and they are often coupled or replaced with Eulerian models [24].

As particle densities are calculated independently at each grid point, compu-
tational cost can be largely reduced if only a few receptor points are taken into
account. This is an efficient solution if calculating the concentration field for the
whole domain is unnecessary, especially in source-receptor sensitivity studies, e.g.
the impact of factories or dust sources on the air quality of cities or environmental
protection areas [29].
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5.4 Conclusion

Atmospheric dispersion processes occur on several temporal and spatial scales
with the complexity of chemistry ranging from passive tracers (e.g. dust) to non-
linear interaction of millions of reactants (e.g. urban air). Therefore, significantly
different modeling approaches have been developed to handle this wide range of
environmental problems. In the present work, we have briefly introduced the two
main groups of atmospheric dispersion models: the Eulerian (deterministic) and the
Lagrangian (stochastic) approach. While both model types solve the atmospheric
transport equation, their fitness for a particular purpose is very different. In general,
Eulerian models are more appropriate for handling complex chemistry and detailed
time- and space-continuous emission inventories. They are easily coupled either
one-way or two-way with numerical weather prognostic models. On the other hand,
Lagrangian models are usually applied for backward simulations, to explore source-
receptor relationships and for near-source concentration estimations.

A more detailed comparison is presented in Table 5.1.
Both type of atmospheric dispersion models have important applications in

environmental science and policy making. Regulatory and decision support models
have saved several lives and large value of property in recent events like the
Fukushima nuclear accident or the foot-and-mouth disease epidemics. On the other

Table 5.1 Comparison of Eulerian and Lagrangian dispersion models

Eulerian Lagrangian

Turbulence Deterministic Stochastic

Prognostic variable Concentration field Particle location vectors

Discretization Discrete in space and time Discrete in time, continuous in
space

Chemistry Complex chemistry can be
easily treated in the model

Chemical reactions require an
extra diagnostic step at each
timestep

Meteorological models Possibility of integration
with numerical weather
prognostic models

Meteorological data must be
interpolated to each particle
location at each time step

Emission data Handling source data from
continuous large-scale
emission inventories

Mostly applied for point or area
emissions bounded in space and
time

Resolution Numerical solution and
computational cost is highly
dependent on mesh
resolution

Numerical solution is
independent of the output grid,
might depend on input data
resolution

Output Concentration is prognostic
variable, output grid is the
same as computational
mesh

Primary model results are
particle locations. Kernels for
concentration are either
user-defined or calculated in a
diagnostic way

(continued)
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Table 5.1 (continued)

Eulerian Lagrangian

Near-source treatment Large near-source errors
due to cell averaging

Numerical solution is
continuous in space,
near-source output kernels can
be refined without extra
computational cost

Source-receptor studies Inverse modelling and
source-receptor
relationships require
extensive model
modifications and/or
diagnostics

Simple calculation of
source-receptor sensitivities
and backward trajectories

Main area of
applications

Regulatory models with
complex chemistry and/or
continuous releases (e.g.
urban areas)

Fast response regulatory
models with simple chemistry
(e.g. nuclear accidents,
volcanic ash)

Source-receptor sensitivity
studies, source identification

Integrated atmospheric
chemistry transport models

Airmass identification,
exploration of atmospheric
transport pathways on
climatological scales

hand, the better understanding of large-scale atmospheric transport pathways of
aerosols and greenhouse gases has become a key priority in environmental modeling
from urban air quality protection to climate change. With the improvement of
computational performance and the increasing scientific interest in atmospheric
transport processes, the range of atmospheric dispersion model applications is
largely widening. Therefore, understanding of modeling principles and finding the
best model for the particular purpose as well as further development of both Eulerian
and Lagrangian dispersion models is of a high importance.
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Chapter 6
Hydrodynamic Modeling of Industrial
Pollutants Spreading in Atmosphere

Vitaliy A. Prusov and Anatoliy Y. Doroshenko

Abstract An efficient methodology for numerical solving problems of hydro-
dynamic modeling of spreading atmospheric pollutants from towering stationary
sources of emissions under real weather conditions is described. The methodology
is based on the “one-way interaction” approach, implemented on embedded grids
and characterized by high accuracy and low computational expenses. The results
of numerical experiments, weather forecast and modeling of impurities in the
atmosphere are presented.

Keywords Hydrodynamic modeling • Atmospheric processes • Air pollution •
Numerical methods

6.1 Introduction

Emissions from industrial plants often are stationary and focused in a particular
place. Suspended impurities from these emissions are distributed by air flows
depending on wind direction, turbulence intensity and atmospheric stratification.
Studying the role of atmospheric physical-chemical and kinetic processes in the
spreading of the aerosol particles, the transformation of trace gas components of
natural and anthropogenic origin has begun yet in the second half of the last century.
In that time the data of massive observations made in the inhabited localities were
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compiled and statistically analyzed to identify the role of meteorological conditions
and other factors influencing the level of pollution. As indicators of air pollution
there were average and maximum permissible concentration, the frequency of
concentrations exceeding the maximum permissible concentration and the duration
of increased levels of air pollution.

According to [1], the impurity distribution in space near a source point is
described by a Gaussian law. The discrepancy between the experimental and
calculated values of concentrations at a considerable distance from the emission
source has been unsuccessfully tried to eliminate by introducing a dependence
of the horizontal component of the diffusion coefficient on the distance from the
source. To describe the distribution of atmospheric pollutant concentrations it is
often used logarithmic normal law (LNL) [2] used long ago in a number of papers
(e.g. [3]). It was found that 75 % of the points of the probability distribution lay near
the straight line. This suggested that the distribution of the impurity concentration
in the atmosphere obeys LNL and in this connection the implementation of such
a distribution was considered as a criterion of verification of the observational
concentrations of impurities in a tested region.

Statistical analysis of the occurrence repeatability of specific pollutant concen-
tration values, as well as the average values of the concentrations of impurities,
without relying on LNL have found application in [4, 5]. Some methods of statistical
analysis studied multiple correlation, i.e. accounting impact of a combination of
factors. However, as the practice of their application has shown, detecting the main
factors was not always possible and the effectiveness of this approach was limited.
Therefore, the researchers essentially concerned studying correlation between the
impurity concentration at one or several locations and individual factors, excluding
the effect of other factors.

In the analysis of random fields in various meteorological studies sometimes
there was used the method of decomposition of the initial information on statistically
orthogonal system of functions [6]. It allows calculating the impurity scattering in
the atmosphere, as a rule, at open and extra-urban areas in the presence of a relatively
small number of sources of air pollution.

Constructing a detailed field of concentrations, especially in unfavorable weather
conditions, is obviously much easier to carry out with hydrodynamic models than by
calculation being based on empirical data [7–12]. Advanced computer technologies
have led to the inclusion in the task of modeling the laws of propagation
of impurities and the characteristics of their spatial and temporal distribution
of meteorological aspects that are associated primarily with the simulation of
atmospheric convection and diffusion [13–23].

Objectives of environmental monitoring require the use of modern high-
performance computing resources due to the need to process large amount of
data, particularly, in sorting and preprocessing for further use in complex numerical
algorithms related to the transport of pollutants in the environment. Creating models
of estimation of concentration fields and source parameters, using observational
data and model representations of pollution spreading from a lot of sources of
emissions, would monitor more reliably the main parameters of anthropogenic
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pollution areas [9]. This approach makes it possible to determine the information
content of the observing systems and to optimize the position and the number of
sampling points. The task of identifying relevant sources of pollution is important
as its decision can determine the contribution of individual sources (companies,
cities, countries) in air pollution or soil at a given point. This should be considered
when creating new sources of pollution while commissioning of new industrial
enterprises and the management of existing emissions to the total amount that does
not exceed the established norms.

This chapter presents an efficient methodology developed by the authors in
Ukrainian Hydro-meteorological Institute and Institute of Software Systems of
National Academy of Sciences of Ukraine, for numerical solving problems of
hydrodynamic modeling of spreading of atmospheric pollutants from towering
stationary sources of emissions under real weather conditions. The numerical
method developed here for meteorological processes of regional scale differs from
existing ones by high accuracy of the fourth order, low computational expenses and
excellent stability property.

The methodology is based on the “one-way interaction” approach [24–27]. Since
late 1960s researchers have seen importance of use of sufficiently fine computational
grids in regional models of forecasting meteorological phenomena. It was proposed
to do forecasting within “telescopic” scheme of the system of successively smaller
areas with increasing resolution where one-way interaction method is obtained
in the case of models when unsteady boundary conditions are taken from the
“near-field” system of larger grid. Likely reasoned formulation of meteorological
conditions in the “near-field” allows to linearize the problems of pollution near the
sources of emissions and to solve it analytically for a virtually unlimited number of
sources.

The main advantages of the presented model of regional atmospheric processes
and its use for modeling pollutants spreading in atmosphere, what differ it from
other models, are high accuracy and low cost numerical method obtained from
combining the concept of “one-way interaction” and interpolation techniques.

6.2 General Hydrodynamic Model of Air Circulation

Contemporary ecology, that studies among others the state of atmosphere of Earth,
is to a great extent an important subdiscipline of continuum mechanics closely
related to many other sections of physics. Purely statistical methods being used in
theoretical research of meteorological processes in the first half of twentieth century
could not represent adequately substantially nonlinear properties of atmospheric
processes and that is why were unsuccessful. They have been replaced by hydro-
dynamic methods which have given rise numerical modeling of complex problems
with ecological-meteorological one as a top application.

Modern nonlinear theory of continuous media based on the approach of Newton
liquid allows presenting a very complicated problem as the system of equations cor-
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responding physical laws that are well tested in many applied areas of hydrodynam-
ics. In general case these laws are mathematically expressed by following equations:

• Continuity

d�

dt
C �r � V D 0I (6.1)

• hydrodynamics in vector form

dV
dt

C 2�� V D 1

�
rp C g C r � E�nI (6.2)

• spreading heat in the atmosphere

d�

dt
D r � .kTr� � Frad/C

	
p00
p


R=Cp L

Cp
QHI (6.3)

• spreading specific humidity

dq

dt
D r � .kdrq/C QH I (6.4)

• spreading condensed moisture (water content)

dı

dt
D r � .kdr•/ � QHI (6.5)

• distribution of concentrations of suspended impurities

ds

dt
D r � .kdrs/� Ss � JsI (6.6)

• state

p D R�T: (6.7)

Following denotations are accepted in the system of Eqs. (6.1), (6.2), (6.3), (6.4),
(6.5), (6.6), and (6.7): t is time; � is the air density; E�n is friction tension tensor when
moving air, T is the absolute temperature of air; � D T. p00=p/

R=Cp is the potential
temperature of air; p is the atmospheric pressure of air, p00 is the atmospheric
pressure on the underlying surface; R is the universal gas constant for dry air; Cp

is the specific heat capacity at a constant pressure; q is the specific humidity (mass
of water vapor in a unit of mass of air); ı is the specific water content (mass of the
condensate moisture in a unit of mass of air); s is the concentration of impurities
in air; � is the angular velocity of Earth rotation; g D .0; 0; g/ is the acceleration
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of gravity; kT is the molecular coefficient of heat conductivity; kd is the molecular
coefficient; Frad is the density of radiation stream of energy, depending on factors of
absorption, radiation, reflection and dispersion; L is the latent heat of evaporation;
QH is the change of specific humidity q and specific water content ı in a volume
unit of air in those parts of atmosphere where phase transitions of the first kind take
place (evaporation and condensation, melting and crystallization, sublimation and
desublimation); Ss is the change of concentration of impurities in a volume unit of
air moving in that part of atmosphere where chemical reactions take place; Js is the
speed of washing out of impurities by precipitation.

Except the denotations above in the system of Eqs. (6.1), (6.2), (6.3), (6.4), (6.5),
(6.6), and (6.7) other generally accepted dependences are used:

div V D r � V D @v1
@x1

C @v2
@x2

C @v3
@x3

D @vj

@xj
. j D 1; 2; 3/ I

grad ˆ D rˆ D i@ˆ=@xi .i D 1; 2; 3/ I

dR
dt

D @R
@t

C v1
@R
@x1

C v2
@R
@x2

C v3
@R
@x3

� @R
@t

C vi
@R
@xi

.i D 1; 2; 3/ I

divE�n D r � E�n D @E�1
@x1

C @E�2
@x2

C @E�3
@x3

D @E� j
@xj

. j D 1; 2; 3/ I

�
divE�n

�
i D �r � E�n

�
i D @E� i1

@x1
C @E� i2
@x2

C @E� i3
@x3

D @E� ij
@xj

. j D 1; 2; 3/ ;

where V D .v1; v2; v3/ is the velocity of moving continuous environment, X D
.x1; x2; x3/ are the coordinates of an elementary volume of air; for short, in every
equality above there is carried out adding up on a twice repetitive index in a
monomial.

The system of Eqs. (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), and (6.7) describes the
turbulent streams of impulse, heats and the masses, and also elements character-
izing the sources (sinks) of mass and energies due to phase transformations of
atmospheric moisture and radiation processes. Direct involving of these micro- and
meso-scale processes into the model of circulation of atmosphere is unreasonable
for two major reasons.

First, not all these processes can be described by means of exact differential
equations. The actual picture of turbulent flows of impulse, heats and the masses in
a boundary layer, phase and radiation processes in the real atmosphere is extremely
complicated. It depends on geometrical and optical features of the underlying
surface, vertical gradients of heat and humidity, convective motions in layers
with moisture-adiabatic instability and in inverse layers. It depends also on the
structure of clouds, plenty of gaseous and fine-grained constituents of air with
different spectral properties of absorption, radiation, dispersions of and others.



92 V.A Prusov and A.Y Doroshenko

Contemporary mathematical models of atmosphere cannot adequately reproduce all
this multiparameter stochastic picture of turbulent, phase and radiation processes.

Second, numerical realization of the model would require diminishing step of
a grid to the size which would entail the increase of general amount of points of
the grid in the areas of decision and, consequently, numeral integration of the model
would be unreal even for the most powerful modern computers. Therefore processes
of interaction of atmosphere and the underlying surface, radiant and phase heat
exchange, convection and formation of clouds attribute to subscale processes, and
solving problem of modelling subscale processes is of great importance.

6.3 A Model of Turbulence

An initial point for mathematical description of atmospheric processes in the most
general case, including turbulent processes, is acceptability for their interpreta-
tion by the system of Eqs. (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), and (6.7) that
describes instantaneous motion of atmospheric air. In recent years there is increasing
application of modelling turbulence based on the method of direct numerical
simulation (DNS). Basic assumption of DNS is that Eqs. (6.1), (6.2), (6.3), (6.4),
(6.5), (6.6), and (6.7) adequately describe not only laminar but also turbulent
processes. Accordingly, within the framework of this approach, calculation of
turbulent processes is performed by the direct (without some preliminary averaging)
numerical solving Eqs. (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), and (6.7). In doing
so regardless of the process is two-dimensional or three-dimensional, stationary
or non-stationary, three-dimensional non-stationary Eqs. (6.1), (6.2), (6.3), (6.4),
(6.5), (6.6), and (6.7) must be used since turbulence is fundamentally the three-
dimensional and non-stationary phenomenon. In addition, for exact enough decision
of all spatial-temporal scales for turbulence DNS suggests three-dimensional non-
stationary computation on grids fine enough even in those cases when the purpose
of computation is determining only parameters of averaging processes. Because
of extreme computational complexity of this approach its practical realization in
solving intricate problems of dynamic meteorology is actually not feasible. So
seemingly, during the nearest decades as a basic working instrument for solving
applied problems of dynamic meteorology there will be semi-empiric methods of
RANS (Reynolds Averaged Navier–Stokes) based on use of averaged on Reynolds
equations of Navier–Stokes in combination with different semi-empiric models of
turbulence.

One of the families of turbulence models widely used in practice is based on
conception of eddy viscosity and turbulent diffusion. Following Boussinesq [28],
Reynolds’ tensions are determined as product of the eddy viscosity and constituents
of the tensor of averaged speeds of deformation:

�v0
iv

0
j D �t

	
@vi

@xj
C @vj

@xi



� 2

3
ıijk: (6.8)
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Equation (6.8) itself does not involve the turbulence model and only characterizes
the structure of such model; the basic task here is the task of definition of the
function � t. Unlike the coefficient of molecular viscosity �, the coefficient � t is
determined by the state of turbulence and is not connected with properties of liquid.
It can vary greatly from point to point dependently on the type of flow.

The model of turbulent viscosity suggests that the transfer of amount of motion
takes place like the transfer due to molecular motion. Exposed to criticism as
physically groundless, this model, however, is used widely as it allows getting fully
acceptable results in meteorological practice. By direct analogy with the turbulent
transfer of amount of motion the concept of turbulent diffusion supposes following
relation of the transfer of substance H (masses, heats, moistures or admixtures) and
the gradient of this substance H:

�u0
jH

0 D dt
@H

@xj
; (6.9)

where dt is the coefficient of turbulent diffusion. Like turbulent viscosity dt is not
intrinsic property of environment and depends on the state of turbulence. According
to the hypothesis of Reynolds about an analogy on the turbulent transfer of mass or
heat and amount of motion, following relation takes place:

dt D �t

t
: (6.10)

The quantity  t is called the turbulent number of Prandtl or Schmidt. Unlike the
coefficients of turbulent diffusion and turbulent viscosity  t poorly changes both
within the limits of the stream and from a process to another process. Therefore the
value of  t is accepted in a number of models as a constant, near to 1, though it
experiences influence of floatation and curvature of the stream lines. Consequently,
the basic problem of turbulence closure is a method of determining the coefficient
of turbulent viscosity � t.

An important merit of turbulent viscosity models is their relative simplicity, clar-
ity and computational efficiency. Within the framework of Boussinesq’s approach
the closure problem is reduced to determining one scalar value (of turbulent
viscosity) instead of six components of the tensor E�n.

There are a few different models of turbulence [29–31]. These models have a
different degree of complexity, beginning from the simple one in which � t, kT , kd are
expressed through local descriptions of averaged fields of velocity, temperatures and
concentrations, up to complicated enough models that include equations of transfer
for characteristic velocities and linear scales of turbulent flows.

The most widely used in hydrodynamic models has become a semi-empiric
model known in scientific community as (k–") model of turbulence [30]. Its
practical use showed satisfactory results in the process of modelling complicated
three-dimensional flows including recirculation ones at the same values of empiric
constants. However, application of (k–") model of turbulence in dynamic meteorol-
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ogy leads to difficult problems at integrating differential equations, that constitute
the basis of (k–") model, where there is a necessity to formulate initial and border
conditions for variables k and " along with ordinary requirements to the variables
of averaged motion (i.e. to the meteorological values). It is mostly not a trivial
task, especially at setting initial conditions for k and ", as meteorological values
of the averaged motion are not exact. This problem remains also in the case of other
models which are combinations of density of kinetic energy of turbulence k and
scale of length l like f D k˛lˇ .

One way to remove the problem of formulation of initial and border conditions in
the model of turbulence is the method which allows changing value of eddy viscosity
� t by independent differential equation describing the transfer of this value. In
papers [29, 32–37] some modifications of this model of turbulence are offered in
which connection between turbulent viscosity and parameters of averaged flow is
set directly by non-stationary nonlinear equation for turbulent viscosity � t:

@�t

@t
C uj

@�t

@xj
D D�t C G�t � "�t ; j D 1; 2; 3; (6.11)

where D�t is diffusion of turbulent viscosity � t; G�t is a generation of � t due to a
wind shear and forces of floatation; "�t is the decay of � t due to dissipation process.

Presently the most popular model with one Eq. (6.11) is the model [37] in which
instead of eddy viscosity � t a relative variable Qv D �t=f�1 is used where fv1 D
NQv3=

� NQv3 C C3v1

�
; NQv D Qv=�; Cv1 D 0:71: Diffusion of turbulent viscosity Q� looks

like

D�t D 1



@

@xj

�
.� C Q�/ @ Qv
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�
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I

or
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@

@xj

�
.� C Qv/ @ Qv

@xj

�
C cb2

@ Qv
@xj

@ Qv
@xj


; cb2 D 0; 622;

as turbulent viscosity is not a fundamental physical entity and it is not subject to
obligations of conservation laws.

In the member describing a generation of Qv the derivative of velocity is replaced
by an invariant tensor expression G�t D cb1 QS Qv where QS D S C Qvfv2=

�
�2d2

�
, S Dp

2�ij�ij, �ij D �
@vi=@xj � @vj=@xi

�
=2, � D 0:41, d is the distance from a solid

surface, fv2 D 1 � NQv= �1C NQvfv1
�
.

Dissipative member "�t on right side of (6.11) is determined by following
expression

"�t D
�
cw1fw � cb1

k2
ft2
�	 Qv

dw


2
;
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in which dw is the height of the first calculated level above the underlying surface; k
is Carman’s constant;

fw D � �
	
1C c6w3
�6 C c6w3


1=6
; � D "

�
1C cw2

�
"5 � 1

��
; " D Qv

QSk2d2w
:

The function ft2, providing suppression of the so-called “spontaneous” or “numer-
ical” transition from laminar to turbulent motion mode in the boundary layer, is
determined by the expression

ft2 D ct3 � exp
��ct4�

2
�
:

The most complete model of Spalart and Allmaras [37] contains in the right side of
(6.11) the term ft1�U2, intended to initiate the laminar-turbulent transition in given
point, is calculated by means of the formulas:

ft1 D ct1�t � exp

�
�ct2


2t
�U2

�
d2w C �td

2
t

��
;

�t D min

	
0; 1I �U

$t
lt



; $t D !W;trip;

d2t D �
x � xtrip

�2 C �
y � ytrip

�2 C �
z � ztrip

�2
;

�U D ˇ
ˇV � Vtrip

ˇ
ˇ :

Here the bottom index of “trip” relates to quantities determined in that point on the
line of transition which is on minimum distance from the examined point of flow;

lt D �
�x2 C�y2

�1=2
is the diagonal length of the cell of the grid on the streamlined

surface in this point, and U is equal to the module of the difference of vectors of
speed in the examined point and the point of transition (in the case of motionless
underlying surface �U D jVj)).

The empiric constants of model are equal:

 D 2=3I k D 0; 41I cb1 D 0; 1355I cb2 D 0; 622I

cw1 D cb1
k2

C 1C cb2


I cw2 D 0; 3I cw3 D 2I

ct1 D 1I ct2 D 2I ct3 D 1; 2I ct4 D 0; 5:

Border terms to Eq. (6.11) are set as follows. The modified turbulent viscosity, as
well as true one, must apply in zero, Qv D 0; on the solid underlying surface. On
an input area of the lateral border of calculation area there must be set boundary
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condition of the first kind for Qv, and on an output area the value of Qv should be
extrapolated on the border from the internal points of the area.

When calculating motion of atmospheric air under an inverse layer the choice of
value of Qv on the external border of the inverse layer is carried out as follows. If
a point (line) of transition from laminar to turbulent motion mode is known from
the preliminary calculation of vertical profile of temperature, then Qv on the external
border of inverse layer of calculation area becomes equal to some small value (about
10�3 of molecular viscosity) the exact account of which does not matter. Thus, due
to the “trip” term in Eq. (6.11), a transition from laminar to turbulent flow mode
takes place in the small vicinity of a given point (line) of transition.

In those cases when position of transit point (lines) is unknown beforehand but
an inverse layer is however present, so that it is possible to disregard the laminar
area of boundary layer on the laying surface, it is possible to use “fully turbulent”
approach to description of the transition. In this case on the external border of the
inverse layer of calculation area a high enough level of Qv ( Qv D .1� 5/ �) is set, and
Eq. (6.11) provides the rapid (during a few steps of grid) transition to the developed
turbulent flow in the boundary layer.

Note, finally, that for “diagnostics” of the state of boundary layer during carrying
out calculation it is useful to exploit the so-called index of turbulence the value
of which in the developed turbulent boundary layer is near by 1. The index of
turbulence is calculated with the formula from [37]

i D 1

kv�
@ Qv
@n
;

where “speed of friction” in general case of three-dimensional flow is calculated
as v� D p

�! (! is the module of rotationality in the examined point on a laying
surface).

When modelling of squall winch (the eddy of horizontal axis) and tornado
(the eddy of vertical axis), curvature of lines of flow and rotation of flow have
substantial influence on turbulence characteristics and can result both in its signif-
icant intensification or suppression. Within the framework of the examined model
special amendments are needed for their account. The most successful from such
amendments, presumably, there is amendment of Spalart and Shur [38–40] that takes
into account single nature of effects of curvature of lines and rotation of flow and is
applicable, generally speaking, to any linear model.

Within the framework of model (6.11) a generating member G� is modified by
multiplying by an empiric function

fr1 D 2r� .1C cr1/

1C r� Œ1 � cr3arctg .cr2Qr/� � cr1;

which depends on two parameters r* and Qr being, respectively, the measure of
curvature of lines and rotation of flow. Expressions for these parameters look like:
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r� D
ˇ
ˇ̌
ˇ
S

!

ˇ
ˇ̌
ˇ ; Qr D 2!ikSjk.DS=Dt/ij

D4
:

Here (DS/Dt)ij is corresponding component of complete derivative with respect to
time of the tensor of speeds of deformations, and a value of D is determined by
expression:

D2 D 1

2

�
S2 C !2

�
;

where

S D �
2SijSij

�1=2
; Sij D 1

2

	
@ui
@xj

C @uj
@xi



;

! D �
2!ij!ij

�1=2
; !ij D 1

2

	
@ui
@xj

� @uj
@xi



:

Three new constants included in the last expressions have next values:

cr1 D 1; cr2 D 12; cr3 D 1:

6.4 A Model of Cloud and Precipitation

If atmosphere is saturated by water vapor then the terms of stability of dry
atmosphere take place only for moist air which moves to a higher temperature
area (goes down), because amount of moisture, which the examined volume can
contain, as a rule, increases at heating (lowering). Vice versa, in the air which
moves to a lower temperature area (raises) the amount of moisture, which can
be hold in a volume, diminishes, what results in the processes of condensation
(crystallizations) and heat release. As a consequence the floatation of an air volume
increases in comparison to that which would be observed in absence of condensation
(crystallizations). The condensation, which results to cloudiness and precipitation
refers to be the nondeterministic process, and therefore is described as prognostic
and circulation patterns in the atmosphere models by means of parameterization.

To derive the parameterization equations we represent the temperature T, specific
humidity q and the specific conductivity of ı as a sum:

T D QT C JT; q D Qq C Jq; ı D Qı C Jı;
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where QT , Qq and Qı are variables whose values are changed due to convection-diffusion
processes and which are described by following homogeneous equations:

d Q�
dt

D r �
�
kTr Q� � Frad

�
; (6.30)

d Qq
dt

D r � .kdr Qq/ (6.40)

dı

dt
D r � .kdr•/ I (6.50)

JT, Jq and Jı are variables whose values are changed solely due to moisture phase
transitions of the first kind and are described by the equations:

@ J�
@t

D
	
p00
p


R=Cp L

Cp
QH; (6.300)

@Jq
@t

D QH ; (6.400)

@ Jı
@t

D �QH : (6.500)

Changing the amount of saturated water vapor per unit of volume per time unit (the
rate of condensation) QH we define follows:

QH D
�

0; if q < qsI
� @qs

@t otherwise;

where qs is the specific humidity at saturation.
For the equilibrium of the system “water – water vapor or ice – water vapor” it is

necessary, that the vapor pressure in air would correspond to saturation. Dependence
of pressure of the saturated vapor E on temperature T in differential form can be
given on the basis of thermodynamics laws, described by equation of Clausius-
Clapeyron

dE

dT
D LE

RwT2
dE

dT
D LE

R…T2
D LE

1; 6RT2
; (6.12)

where Rw D 461:50 J kg-1 kcal-1 is the universal gas constant for water vapor.
For determination of pressure of the saturated vapor over water we will perform

integration of (6.12) from the temperature T0 D 273:15 K and corresponding value
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of pressure of the saturated vapor E0 D 6:1078 of Mb to some values T and E.
Accepting the first approach approximation as L D const, we will get

ln
E

E0
D � L

1:6R

	
1

T
� 1

T0



D L

1:6RT0

T � T0
T

; (6.13a)

or

E D E0 exp

	
Cw

T � T0
T



; (6.13b)

where CW D L
1;6RT0

.
When determining the dependence of resilience of the saturated steam on

temperature over ice Ei it is necessary to take the heat of sublimation Ls D L C Lm
instead of heat of evaporation L, where Lm D 335:008 J kg-1, is a heat of melting
of ice. Then like (6.13a) we will get:

ln
Ei

E0
D �L C Lm

1:6R

	
1

T
� 1

T0



D L C Lm
1:6RT0

T � T0
T

; (6.14a)

or performing the same transformation as above, we will find

Ei D E0 exp

	
Ci

T � T0
T



; (6.14b)

where

Ci D L C Lm
1; 6RT0

:

Now we will find the difference between the saturated vapor resilience over
overcooled water E and the saturated vapor resilience over ice Ei at the same
temperature. This difference, in view of (6.13b) and (6.14b) can be written as:

�E D E0

�
exp

	
Cw

T � T0
T



� exp

	
Ci

T � T0
T


�
:

To find extreme of the function�E(T) we hold differentiation left and right sides of
the resulting equation with respect to T and equate @ (�E) /@T to zero:

T0E0
T2

�
Cw exp

	
Cw

T � T0
T



� Ci exp

	
Ci

T � T0
T


�
D 0:
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Factor T0E0/T2 is not equal to zero, so the expression in square brackets is equal to
zero. Hence we obtain:

T D T0

�
1 � ln .Cw=Ci/

Ci � Cw

��1
: (6.15)

The result is that when CW D 19.80 and Ci D 22:46 maximum value of the differ-
ence �E(T) is about 0.269 Mb and corresponds to the point with the temperature
T � 260.4 K or t� �12.6 ıC. Subsequently, the value of this temperature we will
take as the critical temperature below of which the condensation process is replaced
by crystallization.

We will assume that the change of the temperature of some elementary volume
of moist air, in which steam is reached saturation state qs and condensation (or
crystallization) takes place, occurs without the exchange of heat between the
dedicated air mass and the environment. Assume also that the condensation (or
crystallization) products are still left inside the considered volume element of air.
Then its total moisture content does not change but only its ratio in the gas and the
condensed water vapor phases. In other words we will consider only the case of the
moist-adiabatic process in which the temperature change associated with the change
in humidity dqs(p,T) in saturated air, according to the first law of thermodynamics,
is described by the equation cpd JT � 1

�
dp C Ldqs D 0 which can be converted to

cp JT
J� d J� C Ldqs D 0:

From this ovseration we obtain

d J� D � L

cps

	
p00
p


Rs=cps

dqs; (6.16)

where cps D 4Rs is the specific heat of water vapor at constant pressure.
Here, as in the system of equations for the mathematical model of the atmo-

spheric circulation, L is the latent heat of vaporization, which is calculated by the
formula [41]

L D .2500:8� 2:3t/ � 103 J � kg�1: (6.17a)

At temperature being t < �12.6 ıC, when the ice is formed instead of water, qs is
replaced by the corresponding value for ice qi, and instead of the latent heat of
vaporization we introduce the latent heat of sublimation [41]:

L D 2:839 � 106 � 3:6.t C 35/2 J � kg�1: (6.17b)
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In general, when the value of qs is changing, the value of coefficient

A D � L

cps

	
p00
p


Rs=cps

In the Eq. (6.16) is also changing. But for a fixed value qs coefficient A is a number
that does not depend on dqs. From the calculus it is known that if A¤ 0, that is if
d J� ¤ 0, then the differentiability of J� at qs means that the main part of the increase
of the function � J� at qs is a linear function with respect to �Jq. The increase and
the differential are equivalent infinitesimal when�Jq ! 0. Thus, the differential Eq.
(6.16) can be written as

� J� D � L

cps

	
p00
p


Rs=cps

�qs C ˛ .�qs/ : (6.18)

where ˛ .�qs/ D 0 .�qs/ when �qs ! 0:

The Eq. (6.18) allows determining the amount of change in temperature if we
know the amount of change of humidity �qs D q � qs; which occurs as a result of
phase transitions in the wet air when water vapor is saturated to qs.

Many experimental research efforts carried out in laboratory and in vivo indicate,
that to condensate water vapor in the atmosphere the vapor resilience in the air e is
needed to be greater than the vapor resilience E over the surface being formed by
new phase particles, and that there should be fine particles in the air that could
serve as nuclei of condensation. And droplets formed at the nuclei can grow to
form cloud droplets only with oversaturation, i.e., when the relative air humidity
f D e=E will be greater than 1. For the crystallization process in the presence of
ice crystals oversaturation must be determined with respect to the surface of the
ice. Since the vapor resilience over the ice is less than over the water, then at low
negative temperatures oversaturation can occur at a relative humidity in the air less
than 1 with respect to the flat surface of the overcooled water.

We introduce the so-called critical relative humidity fcr above which there will
always be the condensation of water vapor in the atmosphere. We associate fcr with a
ratio of saturated vapor resilience over ice Ei and the same quantity over overcooled
water E at the same temperature:

fcr D Ei.T/=E.T/: (6.19)

The values of E and Ei calculated by formulas (6.13b) and (6.14b) do not coincide
with the experimental data. On the basis of the experimental data presented in the
Smithsonian meteorological tables there have been offered empirical formulas [42].
According to these tables saturation vapor resilience E(T)—the pressure of saturated
water vapor—over a flat surface water at temperatures in the range of ˙40 ıC can
be calculated by the formula

E.T/ D � exp Œ.0:08006T � 20:047/= .0:00412T � 0:12476/� (6.20)
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The value of the factor ” in (6.20) considered to atmospheric conditions is within
1 � 1.006, and can be found using the following equation:

� D 1C p
h
4:5C 0:0006.T � T0/

2
i

� 10�6: (6.21)

Saturated vapor tension ¨i(T) above the flat surface of ice at temperatures ranging
from 0 to �40 ıC satisfies the condition

Ei.T/ D E.T/ exp .0:00422T � 1:15206/ : (6.22)

Values calculated by formulae (6.20) and (6.22) coincide with values from Smithso-
nian meteorological tables№94 and№96 accordingly [42] providing absolute error
0.0002 mbar within temperature range of �40 to C40 ıC. Substituting equalities
(6.20) and (6.22) into (6.19) we obtain:

fcr D Ei.T/=E.T/ D exp .0:00422T � 1:15206/ : (6.23)

It can be seen from the resulting dependence that the relative humidity fcr sig-
nificantly increases with temperature. For example, at the temperature tD 0 ıC
relative humidity fcr D 1 and at tD �30 ıC it drops to values fcr D 0.88. In
numerical simulation of clouds we will take that saturation, i.e. condensation (at
t� �12.6 ıC) or crystallization (at t < �12.6 ıC) of water vapor occurs when the
relative humidity is greater than or equal to fcr value calculated using the formula
(6.23).

In this connection let us return to the question of calculating the amount of
change in the specific humidity �qs, which is part of the Eq. (6.18), for moist air
in which water vapor is reached saturation. We will carry out following chain of
elementary transformations:

�qs D q � qs D �

�
e

p � .1 � �/ e � E

p � .1 � �/E

�

D �
E

p � .1 � �/E

�
e

E

p � .1 � �/E

p � .1 � �/ e � 1

�
� �

E

p � .1 � �/E .f � fcr/ ;

(6.24)

where ŸDR/Rw D 0.62197 and take into account that indeed there is always p>>e
and p>>E.

When calculating the temperature change by the formula (6.18) and changes in
specific humidity by the formula (6.24) occurring as a result of phase transitions in
the humid air in which water vapor reached a state of saturation, it is necessary to
take into account that a change in temperature leads to a change in the conditions
of saturation. Hence, these calculations should be performed using the method of
successive approximations (iterations).
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From the system of Eqs. (6.300), (6.400), and (6.500) and the equalityQH D �@qs=@t
it follows:

@ J�
@t

D �
	
p00
p


R=Cp L

Cp

@qs
@t
;

@Jq
@t

D �@qs
@t
;

@ Jı
@t

D @qs
@t
:

Integrating this system of equations in the interval t D �
0; tpr

�
, we find that the

temperature, specific humidity and specific conductivity will change during the time
tpr, respectively, by an amount of:

� J� D �
	
p00
p


R=Cp L

Cp
�qs; �Jq D ��qs; � Jı D �qs: (6.25)

In constructing a mathematical model of precipitation we will assume that indepen-
dently of the origin of clouds and cloud systems (frontal, convective, orographic,
etc.), there are known the power of clouds (vertical dimension) hcl and the rate
of change of the specific water content @ Kı=@t. Expected rainfall I, dropped from a
single column of clouds during the period of time tpr, is estimated by the formula:

I D
tprZ

0

hclZ

0

@ Kı
@t
dx3dt: (6.26)

Integrating (6.26) with respect to t in the interval t D �
0; tpr

�
, we obtain for � Jı D

�qs:

I D
hclZ

0

�qsdx3: (6.27)

6.5 Numerical Method for Solving the Non-stationary
Problem with a Prehistory Based on Interpolation
with Multiple Nodes

Consider the global atmospheric circulation in the macro-scale area }(r) that is
determined by the vector of discrete values < .r; t/ D .v1; v2; v3; p; �; q; ı; s; �t/ of
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analysis and forecast prepared on the basis of this macro-scale model. To distinguish
the time grid from the spatial grid, the value assigned to the individual points of
time will be marked by superscripts, and the values specified in the nodes of the
spatial grid will be marked by subscripts. As before, the state vector <(r, t) in
the field }(r) is defined by vector of discrete values < .r; t�/ D <�.r/ at time
points t D t� .� D 0; 1; ::; n/, �� D t� � t��1 is the step of the increment.
Thus, to determine the state of the atmosphere in a limited area } at 8t 2�
tn�1; tn

�
we need to solve the problem which in the vector representation has the

form:

@< .r; t/
@t

D D< .r; t/ ; 8t 2 �tn�1; tn
�
;8r 2 } (6.28)

< .r; t�/ D <�.r/; � D 0; 1; ::; n

where

D< .r; t/ D @

@xi

�	
� C �t





@R
@xi

�
� vi

@R
@xi

C F:

Suppose that in the area }(r) of coordinate system r D .x1; x2; x3/ the independent
continuous variables x1, x2, x3 take the values: ˛1 � x1 � ˛2; ˇ1 � x2 � ˇ2, and
&1 � x3 � &2. The spatial grid «H in this area is formed by the decomposition
of segments [˛1,˛2], [ˇ1,ˇ2] and [−1, −2] into a set of I–1 elements �(x1)i, J–
1 elements �(x2)j and elements K–1 of �(x3)k respectively. Values of the vector
<(r, t) at the nodes of this grid «H are:

.x1/i D ˛1 C
i�1X

�D1
�.x1/�; 1 � i � II

.x2/j D ˇ1 C
j�1X

�D1
�.x2/�; 1 � j � JI (6.29)

.x3/k D &1 C
k�1X

�D1
�.x3/�; 1 � k � K

at the time t D t� .� D 0; 1; ::; n/ that we will denote as <�
i,j,k.

We define in the macroscale area }(r) a mesoscale area solutions }.r/ with
horizontal dimensions ˛1 � x1 � ˛2; ˇ1 � x2 � ˇ2 such that ˛1 � ˛1, ˛2 � ˛2,
ˇ1 � ˇ1, ˇ2 � ˇ2. Hence G.r/ 	 G.r/. In the field of small-scale solutions G.r/
we construct a fine-grained grid $h by dividing the area G into a set of N1 � 1

elements of �.x1/i, N2 � 1 elements of �.x2/j and N3 � 1 elements of �.x3/k.
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We will construct a vector frijkg defining a continuous variable r only at the points
i .1 � i � N1/, j .1 � j � N2/, k .1 � k � N3/. As a result, we obtain:

.x1/i D ˛1 C
i�1X

�D1
�.x1/�; 1 � i � N1I

.x2/j D ˇ1 C
j�1X

�D1
�.x2/�; 1 � j � N2I (6.30)

.x3/k D &1 C
k�1X

�D1
�.x3/�; 1 � k � N3:

Then, to determine the state of the atmosphere in a point rijk of the grid $h in a
bounded domain } at 8t 2 �tn�1; tn

�
it is necessary to solve the problem:

@<ijk

@t
D ƒ<ijk;8t 2 �tn�1; tn

�
; (6.31)

<ijk .t
�/ D <�

ijk;8rijk 2 $ h; � D 0; 1; ::; n; (6.32)

where� is the difference representation of the differential operator D, and �<ijk is
the numerical value of the right-hand side of Eq. (6.28) at a point rijk in the grid$h

of the area }.
For results below we accept following convention: the initial value problem

(6.28) for the ordinary differential equation with specific values i, j, k and the initial
value problem (6.31)–(6.32) for the differential-difference equation with the same
values i, j, k are equivalent.

With this convention finding values rijk(t) within the interval
�
tn�1; tn

�
can

be solved as a problem of interpolation “with multiple nodes” (using Hermit
polynomial) because function values Rijk D Rijk .t�/ and the value of its derivative
ƒ
�Rijk .t�/

� D @Rijk=@t
ˇ
ˇ
tDt�

at the points t D t� .� D 1; 2; : : : ; n/ are known.
To reduce the bulkiness of the formulas cited below we introduce the notation

fn � f .tn/ D Rijk .tn/, f
.1/
n D @Rijk=@t

ˇ
ˇ
tDtn

.
Hermit interpolation polynomial

P2n.t/ D
nX

iD1

p�1X

˛D0

f .˛/i

˛Š
� !p

n .t/

.t � ti/p

p�1�˛X

jD0
Ci
j

�
t � ti

�jC˛
;
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constructed by values f (˛)
i , i D 1; 2; : : : ; n, ˛ D 0; 1; : : : ; p of the function f (t) and

its derivatives of order p, satisfying the condition

d˛P.t/

dt˛
D d˛f .t/

dt˛

ˇ
ˇ̌
ˇ
tDti
; i D 1; 2; : : : ; n; ˛ D 0; 1;

looks like

P2n.t/ D
nX

iD1

!2.t/
�
.t � ti/ !0

i

�2

��
1 � �

t � ti
� !00

i

!0
i

�
f .0/i C �

t � ti
�
f .i/i


; (6.33)

where !i.t/ D �
t � t1

� � �t � t2
�
: : : .t � tn/.

It is known (see e.g. [43]) the uniqueness of such the polynomial P2n(t),
satisfying the conditions listed above, as well as the order of error when inter-
polating with Hermite polynomial of degree n. Naturally, the increase in the
value of n increases the cost of the solution especially concerning modeling
atmospheric circulation and/or weather forecast. So, the choice of a particular
value of n strongly depends on the nature of the problem being solved. It is
hardly advisable to use large values of n in cases of methods that are applicable
to the limited value of n and when it is not expected significant improvement of
results.

For n D 3 the interpolation polynomial (6.33) takes the form:

P6.t/ D
�

t3�t
t3�t2

�2�
t�t2

t3�t2

�2 h�
1C 3

4

� �
t�t2

t3�t2

�
f .0/1 C 1

4

�
t � t1

�
f .1/1

i

C
�

t3�t
t3�t2

�2�
t�t1

t2�t1

�2 h
f .0/2 C �

t � t2
�
f .1/2

i

C
�

t�t1

t2�t1

�2�
t�t2

t3�t2

�2 h�
1 � 3

4

� �
t�t2

t3�t2

�
f .0/3 � 1

4

�
t3 � t

�
f .1/3

i
;

and for n D 2 it is further to be simplified to the form

P4.t/ D
�

t2�t
t2�t1

�2 h�
1C 2 t�t2

t3�t2

�
f .0/1 C �

t � t1
�
f .1/1

i

C
�

t�t1

t2�t1

�2 h�
1C 2 t2�t

t2�t1

�
f .0/2 C �

t2 � t
�
f .1/2

i
:

Everybody can make sure that the last formula gives accurate results for the func-
tions depending on the cube argument. For functions depending on the argument in
the fourth degree, the maximum error of the interval (0, 1) is equal to �0:0625. Note
that maximum error of interpolation using the formula Bessel with the same number
of given values of functions fi is equal to �0:5625.

The main advantages of interpolation formulas (6.33) built on the basis of given
values of the function fi and its derivatives f (˛)

i , i D 1; 2; : : : ; n, ˛ D 0; 1; : : : ; p are:

• they have a greater accuracy than any formula that use only the value fi;
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• for the interpolation over the interval
�
tn�1; tn

�
they do not require the data outside

the right boundary of the interpolation interval and therefore can be used for the
rightmost interval;

value function and its derivatives f (˛)
i , i D 1; 2; : : : ; n, ˛ D 0; 1; : : : ; p can be

defined on a nonuniform grid ti.

6.6 Interpolating Functions, Specified in Macro-Scale Grid
Nodes, into the Meso-Scale Grid

Nodes of vertical grids of macro-scale prediction models usually are defined in
standard geopotential surfaces: sea level, 850, 700, 500, : : : hPa. This grid is too
coarse for meso-scale problems, especially in the boundary layer of the atmosphere
where there are all the processes of turbulent exchange.

We divide the height x3 D H of the area of meso-scale solution of the problem
G.r/ on two levels z0 � x3 � h and h � x3 � H where z0 is roughness of
the underlying surface and h is the height agreed as the height of the atmospheric
boundary layer where the atmospheric pressure is 850 hPa.

Values of meteorological variables at all nodes of meso-scale horizontal grid $h

and in the segment h � x3 � H of vertical interval computational grid can be
interpolated by one of the known schemes of polynomial splines. Obviously, there
is no interpolation formulas which would provide both the solution uniqueness and
the required accuracy for the problem of interpolation on the interval z0 � x3 � h.
Therefore interpolation of meteorological data given in macro-scale grid nodes into
meso-scale grid will be based on the model of a vertical column of the atmosphere.

We introduce a nondegenerate coordinate transformation associated with the
geometry of the domain of solving the problem

x D x1; y D x2;  D H Œx3 � F .x1; x2/� = ŒH � F .x1; x2/� ; (6.34)

where F D F .x1; x2/ is the equation of the profile (relief) of the underlying surface,
H is the height of the top layer. Coordinate transformation (6.34) maps the area
of solving the problem to the rectangular prism whose height is H. The inverse
transformation is given by the relations:

x1 D x; x2 D y; x3 D F .x1; x2/C  ŒH � F .x1; x2/� =H:

Communication between the operators of the first derivatives with respect to
coordinates in the old (x1, x2, x3) and new (x, y,) variables can be expressed by
known formulas:

@

@x1
D @

@x
� @F

@x

H � 

H � F

@

@
;

@

@x2
D @

@y
� @F

@y

H � 
H � F

@

@
;

@

@x3
D H

H � F

@

@
:

(6.35)
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We take following processes as the main factors influencing the interaction of
the atmosphere with the underlying surface: turbulent exchange; forced convective
motions generated by the relief of the underlying surface; free convective motions
caused by the lifting force of Archimedes. Let the components of the velocity v1,
v2, v3 relate to the coordinates as follows: v1 is in the direction of increasing x
(East direction), v2 is in the direction of increasing y (North direction), v3 is in
the direction of growth of ¢ (the direction opposite to the gravitational force, i.e.
upwards). Then, introducing the notation

 D H
x3 � F .x; y/

H � F .x; y/
; w D H

H � F .x; y/

�
v3 � H � 

H

	
v1
@F

@x
C v2

@F

@y


�

(6.36)

and considering the area G.r/ to have quite justifiable horizontal homogeneity of
meteorological fields in the free atmosphere, we obtain the system of equations of
the form:
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@
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@q
@
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C QH ;

@ı
@t C w @ı

@
D H2

.H�F/2
@
@

�
.� C �t/

@ı
@

� � QH;

(6.37)

where t plays the role of an iteration parameter.
We construct the vertical grid comprising M < N3 counting levels with uneven

distribution of the grid step size as following

z D x3
h

D 1� ln fŒˇ C 1 � .x3=h/� = Œˇ � 1C .x3=h/�g
ln Œ.ˇ C 1/ = .ˇ � 1/� (6.38)

The values of ˇ are in the range of 1 < ˇ < 1. The proposed formula allows to
place as greater the number of nodes near the z D x3=h D 0 as the value of ˇ is
closer to 1.

Equation (6.37) apply to all interior points of the vertical layer 0 < x3 < h and
the boundary conditions are imposed at the boundary points x3 D z0 and x3 D h. At
the level of x3 D z0 there are formulated boundary conditions of the first kind, and
at the level of x3 D h there are formulated the boundary conditions of the third kind
what provides that the conditions of conjugation.
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Thus, the combination of an interpolation method for filling range of x3 > h
and the numerical solution of Eq. (6.37) on the interval [0, h] with boundary con-
ditions formulated above allow determining the vertical profiles of meteorological
variables on the computational grid according to their values known at standard
levels.

The quality of filling the vertical profiles of meteorological variables on the
limited input information is shown in Fig. 6.1. Radio sounding data on standard
levels at ground level, 850, 700, 500, 400, 300 hPa are shown as stars, computed
filled results in inner layers are shown as a solid line. The results of filling on the
segment [0, h] are compared with intermediate radio sounding data, which are also
plotted in the form of dots.

6.7 Approximation of Constituent Members
of the Convection-Diffusion

For a discrete function Rn
ijk � Rijk .tn/ ; 1 � i � N1; 1 � j � N2; 1 � k � N3,

for the sake of simplicity we restrict ourselves to one-dimensional counterpart qnj ,

j D �
1; N2

�
, and determine the approximate values of the partial derivative  j D

.@q=@x2/
n
j on the basis of following equations

 jC1 C 2
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j

j D 2; 3; : : : ; J � 1;

(6.39)

obtained by expanding the function in a Taylor series in the neighborhood of the
points x2j, j D �

2;N2 � 1
�
, where hj .j D 2; 3; : : : ; J/ are grid steps and  j D

.@q=@x2/
n
j .j D 2; 3; : : : ; J/ are derivatives at the n-th time layer. From (6.39) one

can see that these relations have the third order when hj ¤ hj�1 and the fourth
order when hj D hj�1. The derivatives  j D .@q=@x2/

n
j that we are interested in

are included in (6.39) implicitly. They can be calculated from the given values qnj ,

j D �
1;N2

�
by solving systems of algebraic equations with a tridiagonal matrix

method.
Similarly we can get the approximate values � j of the partial derivative of the

second order
�
@
�
�C�t

@q=@x2

�
=@x2

�n
j

as .@#=@x2/
n
j by representing the function

�
@
�
�C�t

@q=@x2

�
=@x2

�n
j

as #j D vCvt

 j.

It should be noted the main advantage of the proposed method of approxima-
tion of derivatives included in the differential equations of convective diffusion
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Fig. 6.1 Filling vertical
profiles of meteorological
variables according to the
radio sounding: stared lines
stand for observation data,
continuous lines stand for
numerical forecasting
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approximation in comparison with the standard pointwise approximation. Since
the solution qj of systems of algebraic Eq. (6.39) at all points j depends on the
values q at other points, it depends on xj globally, not locally, as in the case of
the standard “local three-point” difference approximations of first and second order
derivatives.

The general form of difference expressions for the first-order and second-order
derivatives of Eq. (6.39) can be written as:

AjUjC1 C BjUj C CjUj�1 D Fj; j D 2; 3; : : : ; N2 � 1; (6.40)

where

U D
�
 

�


; Aj D 1; Bj D 2
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1 �

�
hj

hj�1
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9
>>=

>>;
:

Since Aj > 0; Bj > 0; Cj > 0; Bj > Aj CCj; the value of rounding errors in the
implementation of the tridiagonal matrix method by recurrence relations

Uj D EjUjC1 C Dj; j D J � 1; J � 2; : : : ; 1I (6.41a)

Ej D � �j

Bj C AjEj�1
; j D 1; 2; : : : ; J � 1I (6.41b)

Dj D Fj � AjDj�1
Bj C AjEj�1

; j D 1; 2; : : : ; J � 1 (6.41c)

will not grow [44]. The boundary conditions at the left boundary allow to determine
the value E0 D 0; D0 D U1, and boundary conditions on the right boundary make
possible to determine the value of UN2 .

Thus, the approximation of partial derivatives of first and second order (6.39),
(6.40), and (6.41) allows to obtain very accurate (fourth order on a uniform grid) grid
representation of the components of convection-diffusion equation of the members
of (6.28) in coordinate direction x2. Similarly, one can get a grid representation of
components of convection-diffusion equation members of (6.28) in the coordinate
directions x1 and x3. It remains to generate the required algebraic computation to
move to the problem (6.31) and (6.32) taking in account the obtained discrete values
of the terms in Eq. (6.28).
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6.8 Solution of the Problem of Impurities Dispersion
in the “Near Field”

Emission of impurities to the atmosphere is carried out from sources of certain
geometrical size. However, these sizes are small compared to distances at which
generated concentration fields are investigated. Therefore, one can take the assump-
tion that real sources are considered dotted. This assumption allows to replace the
impurity scattering problem of the tube diameter with d and height x3

0, located at
the point x1

0, x2
0, by the problem of pollution from a point source displaced from the

axis of the tube at some “effective” distance �s D �
�x12 C�x22

�1=2
and elevated

above the tube at some effective height �x3. In this case the law of conservation
of mass implies that the average concentration of the impurities away from the
mouth of the tube is proportional to r�2 (r is effective local radius of the cone).
In this formulation of the problem point source activity is described by ı� function
and, if the effective coordinates are denoted x1ef D x10 C �x1, x2ef D x20 C �x2,
x3ef D x30 C�x3, initial condition takes the form

Vq D Mı
�
x1 � x1

ef
�
ı
�
x2 � x2

ef
�
ı
�
x3 � x3

ef
�
; (6.42)

where M is the emission of matter from a source in time unit.
For determination of effective displacements of co-ordinates of source there was

used vast experimental material [44] on dependence of trajectory of central point of
active part of the stream being blown out under the corner of 90ı on values of the
parameter

R D
	
�q

�1


	
Vq

V1

2
; (6.43)

where, as well as above, �q, Vq are, respectively, density and speed of gas-air mixture
and �1 ; V1 are, respectively, density and speed of surrounding atmospheric air.

A sample of our experimental data is presented on the Fig. 6.2. Generalization
of this experience and that of [45] allowed to get a universal empiric formula for
computing effective co-ordinates of beginning of passive area of the jet x1ef D x10C
�x1, x2ef D x20 C�x2, x3ef D x30 C�x3,

�x3
dj

D 1:2
Vq

V1

r
�q

�1
ln

"	
�s

dj


0:57
C 1;

#

(6.44)

where dj is the diameter of the mouth of the emission source. The effective
height �x3 of the passive portion of the plume is determined from the condition
d�x3=ds ! 0.

Thus, in the simulation of the processes of forming of concentration fields from
stationary point source of emission there must be specified the coordinates and the
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Fig. 6.2 The jet trajectories
injected into the blowing air
flow at various values of R
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physical parameters on the passport data of industrial enterprises and then calculated
by (6.44) the effective coordinates taken as the initial data for the passive area of the
jet.

Spatial discretization of regional weather forecast model is very rough for the
numerical solution of the problem of scattering impurities in the atmosphere,
especially near emission sources. Since the point of emission sources is described
by ı� function, the impurity concentration, while approaching the source, grows
indefinitely and in the source point becomes infinitely large. For the corresponding
approximation in the vicinity of the source requires unlimited refinement of the
grid. This leads to the main problems arising in the numerical solution of the joint
meteorological and environmental problems due to the fact that their scales differ
by several orders of magnitude.

The current practice of analyzing observational data allows assuming fields of
meteorological variables within time period of � D 1 h to be constant and locally
homogeneous. It is these meteorological data averaged over this period is applied
to the surface weather maps. Therefore, when t � � the processes of transport and
diffusion of the impurity in the atmosphere from industrial sources can be regarded
as constant, so @q=@t D 0. At assumptions about the constancy of wind velocity
V D .v1; v2; v3/ and the eddy viscosity � t decision problems of pollution within
t � � in the so-called “near-field” can be found on the basis of known analytical
formulas for linear equations of convective diffusion [45]
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s D
"

1

2
p
�� .t � t0/

#3
exp

(

�
3X

iD1

h
xi � xefi � vi .t � t0/

i2
=4� .t � t0/

)

;

where it is assumed that � D �1 � �1=� D �2 � �2=� D �3 � �3=� D const, i.e.
near the source of emission atmosphere is considered as of a homogeneous isotropic
medium. The analytical solution assumes calculation of concentration fields from
given pollution emission sources on terms t� .� D 1; 2; : : : ; n/ with subsequent
general numerical solution of meteorological and environmental problems (6.31)
and (6.32) inside the interval Œtn�1; tn� [46].

Examples of numerical experiments on weather forecast and simulation of
distribution in the atmosphere are presented elsewhere [46].

6.9 Conclusion

Presented mathematical model of regional atmospheric processes and its use for
modeling pollutants spreading in atmosphere is based on the concept of “one-way
interaction” and is characterized by high efficiency and accuracy of computation
provided by:

• solving ordinary differential equations of the first order, which are obtained from
the original equations of the model, is performed by interpolating with multiple
nodes with Hermite polynomial of the fifth order;

• difference approximation of the spatial derivatives of first and second order
contained in the operators of convective diffusion is carried out on the 3-point
pattern using the finite-difference operators of the fourth order.

The initial and boundary conditions for a regional task are defined by the
vector of discrete values of the analysis and prediction of meteorological variables
derived from the numerical solution of the macro-scale problem. The accuracy of
interpolating theses values at the nodes of the regional grid is consistent with the
accuracy of the numerical method of the regional forecast.

Formulation of additional conditions in the environmental task is performed by
calculating the concentration fields of impurities generated from a priori known
number of point sources of a given power, based on the method of separation of
variables and fundamental solutions of linear equations of convective diffusion. It
has been justified the use of the linear convective diffusion equation with constant
coefficients as the model of impurity outspread in the so-called “near-field” where
within 1 h period the values of meteorological variables remain constant.

The high efficiency and accuracy of the proposed numerical method for solving
equations of convective diffusion have been justified in Ukrainian Hydromete-
orological Center for simulating the formation of the fields of pollution in the
atmosphere from given number of stationary sources of impurity under real weather
conditions [11]. It appeared that proposed here mathematical models and numerical
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methods allow solving the problem of monitoring and controlling the state of the
atmosphere experienced the impact of man-made industrial enterprises provided
their normal work. These models can be used in the control of transboundary
transport of pollutants in the atmosphere.
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Chapter 7
Coordinate Transformation Approach
for Numerical Solution of Environmental
Problems

Tatiana Chernogorova, Ivan Dimov and Lubin Vulkov

Abstract We consider numerical solution of 1D and 2D advection-diffusion
equations that arise, among others, in environmental modeling. Since the problems
are posed on the unbounded domains we use coordinate transformations to confine
the computational region. Well-posedness of the new problems and properties of
the solution are studied. Finite volume difference schemes (FVDS) are discussed.
Positive splitting numerical method is proposed.

Keywords Advection-diffusion equations • Air-pollution • Difference scheme •
Non-negativity preservation • Splitting • Transformation • Unbounded domain

7.1 Introduction

Many problems of air pollution transport are described by partial differential
equations on unbounded domains and must be treated numerically. The process of
pollutant transport and diffusion in the atmosphere (and, in the water, as well) is
described by advection-diffusion equations [4, 8, 12]. For this kind of problems
the main difficulty is the unboundedness of the domain. Standard numerical
methods, such as the finite difference and finite element methods, cannot be
applied directly to these problems. In this chapter we discuss the coordinate
transformation method, first proposed in [7] according to our best knowledge. What
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type of coordinate transformation is suitable? It should satisfy the following basic
requirements:

• the reduced problem is well-posed, i.e. the reduced problem has a unique solution
and the solution depends continuously on the boundary value (and initial value);

• the solution of reduced problem is the same as the solution of the original
problem, or it is a good approximation of the solution of the original problem;

• the bounded computational domain should be as small as possible, in order to
reduce the computational work and memory requirement.

Let us consider one-to-one transform, the parameter a is a positive scaling factor
and l > 0 is arbitrary but fixed:

z D g.�I a/; a > 0; � 2 ˝ D .0; l/ or .�l; l/; z 2 D D .0;C1/ or .�1;1/;

such that

z0 D g0
�.�I a/ > 0; a > 0; � 2 ˝

and

g.�l; a/ D 0; g.lI a/ D C1 if DD .0;C1/I g.˙lI a/ D ˙1 if D 2 .�1;1/:

Several typical mappings that have been proposed and used in practice are of the
above type, see e. g. [11] and the references there in. In the present chapter we will
use the logarithmic mapping

z D 1

2a
log

	
l C �

l � �



; � 2 ˝ D .0; l/ , � D l

e2az � 1
e2az C 1

; z 2 .0;1/: (7.1)

The convection-diffusion equations of the environmental models describe
physical and chemical processes. The numerical approximations must reproduce
their behavior adequately. For example, considering the process of pollutant
transport and diffusion in the atmosphere (and in the water, as well) the
concentration of pollutants cannot be negative, so that the numerical method
is required to have the so called property of non-negativity preservation
[3, 6].

The chapter is organized as follows. The next Sect. 7.2 presents some theoretical
and numerical results for a 1D model of the convection-diffusion problem. In
Sect. 7.3 we discuss the well-posedness and non-negativity of the solution of a non-
stationary 2D problem. Positive numerical method is proposed in Sect. 7.4. Finally,
Sect. 7.5 summarizes our conclusions.

The present contribution is based on the previously published contribution [2].
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7.2 A Stationary Model of Air Pollution

The stationary model of determining the concentration of pollutants described in
[3] is reduced to the following problem:

u
@'

@x
� wg

@'

@z
� @

@z

	
�.z/

@'

@z



C ' D 0; x > 0; z > 0; (7.2a)

u'.0; z/ D Qı.z � H/; z > 0; (7.2b)

@'

@z
.x; 0/ D ˛'.x; 0/; x > 0; lim

z!1'.x; z/ D 0; x > 0; (7.2c)

where ı.z/ denotes the Dirac delta function and ˛ D const � 0 is a coefficient
characterizing the reflection and adsorption of the bedding surface. Equation (7.2a)
is parabolic advection-diffusion equation, where x plays the role of the time
variable. To problem (7.2a)–(7.2c) we apply transformation (7.1) taking for clarity
l D 1 and using the notation  .x; �/ � '.x; z.�//, namely:

L � v.�/
@ 

@x
� @

@�

	
p.�/

@ 

@�
C q.�/ 



C . C r.�// D 0; (7.3a)

.x; �/ 2 QX � .0;X/ � .0; 1/;
p.�/ D a2.1 � �2/2�.�/; q.�/ D a.1 � �2/Œ2a��.�/C wg�;

r.�/ D 2a2.1 � 3�2/�.�/C 2a2�.1 � �2/@�.�/
@�

� 2awg�;

v.�/ .0; �/ D Qı .� � �H/ ; � 2 ˝; �H D e2aH � 1
e2aH C 1

; (7.3b)

l0 D a
@ 

@�
.x; 0/� ˛ .x; 0/ D 0; x 2 .0;X/; (7.3c)

l1 D  .x; 1/ D 0; x 2 .0;X/: (7.3d)

Further, to handle the degeneracy in Eq. (7.3a) at � D 1, we introduce the
weighted inner product and corresponding norm on L2;w.˝/ by

.u; v/0;w D
Z 1

0

.1 � �/2uvd�; kvk0;w D
p
.v; v/w D

	Z 1

0

.1 � �/2v2d�

1=2

:

The space of all weighted square-integrable functions is defined as L2;w.˝/ D
fv W kvk0;w < 1g. By using a standard argument it is easy to show that the
pair .L2;w.˝/; .�; �/w/ is a Hilbert space. Using L2.˝/ and L2;w.˝/, we define the
following weighted Sobolev space

H1
w.˝/ WD fv 2 L2.˝/; v

0 2 L2;w.˝/g; v0 D @v=@�
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with the corresponding inner product. Also, it is easy to prove that the pair
.H1

w.˝/; .�; �/H1w/ is a Hilbert space with the norm

kvk1;w WD fkv0k20;w C kvk22g1=2 D f�.1� �/2v0; v0�C .v; v/g1=2:

For  ; � 2 H1
w.˝/ we define the bilinear form

A. ; �I x/ WD
Z 1

0

�
p.�/

@ 

@�

@�

@�
C q.�/ 

@�

@�
C . C r.�// �

�
d� (7.4)

Ca.˛�.0/C wg/ .x; 0/�.0/:

For reason of computations we will assume that the condition (7.3b) is regularized

v.�/ .0; �/ D  0.�/; � 2 ˝ (7.5)

and at least  0 2 L2.˝/. Find  2 L1..0;X/IH1
w/ \ C..0;X/IL2.˝// satisfying

the initial condition (7.5) such that for all � 2 H1
w.˝/

Z 1

0

v
@ 

@x
�d� C A. ; �I x/ D 0 a. e. in .0;X/:

Theorem 7.1 ([2]) Let  0 2 L1..0;X/IH1
w/ \ C..0;X/IL2.˝//. There exists a

unique solution  2 H1
w.˝/ to problem (7.3a), (7.5), (7.3c), (7.3d).

Let V.QX/ be the Banach space consisting of all functions f 2 H0;1
w .QX/ D

C..0;X/IH1
w.˝// having finite norm

kfkV2.QX/ D sup0�x�Xkf .x; �/kL2.˝/ C
"Z

QX

.1 � �/2
	
@f

@�


2
d�dx

#1=2
:

A function  2 V.QX/ is said to satisfy weakly (7.3a), (7.5), (7.3c), (7.3d) if for
any non-negative function � 2 H1;1

w .QX/ D H1..0;T/IH1
w.˝//

Z 1

0

v.�/ .x; �/�.�; x/d� �
Z 1

0

v.�/ 0.�/�.0; �/d� �
ZZ

Qx

v �xd�dx

C
Z x

0

A. ; �I s/ds � 0

for almost every x 2 .0;X/. Here Qx D .0; x/ �˝ .
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Theorem 7.2 ([2]) Let  .x; �/ be in V.QX/ and satisfy (7.3a)–(7.3d). Then
 .x; �/ � 0 in QX.

Let the interval Œ0; 1� be subdivided into N intervals Ii D Œ�i; �iC1�, i D 1; 2; : : : ;N
with 0 D �1 < �2 < : : : < �N < �NC1 D 1 and hi D �iC1 � �i for i D 1; 2; : : : ;N.
We set �i�1=2 D 0:5.�i�1 C �i/, �iC1=2 D 0:5.�i C �iC1/, „i D �iC1=2 � �i�1=2
for i D 2; 3; : : : ;N [10]. In order to discretize with respect to x we introduce
the mesh 0 D x1 < x2 < : : : < xj < xjC1 < : : : < xMC1 D X, �xj D
xjC1 � xj. Then in [2] the weighted �-scheme is derived for the solution of the
problem (7.3a), (7.5), (7.3c), (7.3d)

�
�
v1

�xj

h1
2

C �e1;1

�
 

jC1
1 C �e1;2 

jC1
2 D

�
� v1

�xj

h1
2

C .1 � �/e1;1

�
 

j
1

�.1 � �/e1;2 j
2;  

jC1
NC1 D 0;

�ei;i�1 jC1
i�1 �

�
vi

�xj
„i C �ei;i

�
 

jC1
i C �ei;iC1 jC1

iC1 D �.1 � �/ei;i�1 j
i�1

C
�
� vi

�xj
„i C .1 � �/ei;i

�
 

j
i � .1 � �/ei;iC1 j

iC1; i D 2; 3; : : : ;N;

e1;1 D
.1 � �23=2/b3=2

�
1C�1
1��1

� ˛1
2

�
1C�2
1��2

� ˛1
2 �

�
1C�1
1��1

� ˛1
2

C a
�
˛�.�1/C wg

�C h1
2
. C r.�1//;

e1;2 D
.1 � �23=2/b3=2

�
1C�2
1��2

� ˛1
2

�
1C�2
1��2

� ˛1
2 �

�
1C�1
1��1

� ˛1
2

; ei;i�1 D
.1 � �2i�1=2/bi�1=2

�
1C�i�1
1��i�1

� ˛i�1
2

�
1C�i
1��i

� ˛i�1
2 �

�
1C�i�1
1��i�1

� ˛i�1
2

;

ei;iC1 D
.1 � �2iC1=2/biC1=2

�
1C�iC1

1��iC1

� ˛i
2

�
1C�iC1

1��iC1

� ˛i
2 �

�
1C�i
1��i

� ˛i
2

; ei;i D
.1 � �2iC1=2/biC1=2

�
1C�i
1��i

� ˛i
2

�
1C�iC1

1��iC1

� ˛i
2 �

�
1C�i
1��i

� ˛i
2

C
.1 � �2i�1=2/bi�1=2

�
1C�i
1��i

� ˛i�1
2

�
1C�i
1��i

� ˛i�1
2 �

�
1C�i�1
1��i�1

� ˛i�1
2

C „i . C r.�i// ; i D 2; 3; : : : ;N � 1I

eN;N�1 D
.1 � �2N�1=2/bN�1=2

�
1C�N�1

1��N�1

� ˛N�1
2

�
1C�N
1��N

� ˛N�1
2 �

�
1C�N�1

1��N�1

� ˛N�1
2

; eN;NC1 D 1

2
.1 � �2NC1=2/
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� �NcNC1=2 C bNC1=2
�
; eN;N D 1

2
.1 � �2NC1=2/

�NcNC1=2 � bNC1=2
�

C
.1 � �2N�1=2/bN�1=2

�
1C�N
1��N

� ˛N�1
2

�
1C�N
1��N

� ˛N�1
2 �

�
1C�N�1

1��N�1

� ˛N�1
2

C „N . C r.�N// :

Theorem 7.3 (Corollary in [2]) Let Q > 0. Then for 0 < � � 1 and � D
max1�j�M 4xj sufficiently small, the discrete solution f jC1

i g is nonnegative.

7.3 A Non-stationary Two-Dimensional Problem

The model is based on the time-dependent advection-diffusion equation:

@C

@t
C u.z/

@C

@x
� ws

@C

@z
D kx.z/

@2C

@x2
C @

@z

	
kz.z/

@C

@z



C f .x; z/ (7.6)

on .�1;1/ � .z0; 1/ and subjected to the boundary and initial conditions

C.˙1; z; t/ D 0;

	
kz.z/

@C

@z
C wsC




zDz0;1

D 0; C.x; z; 0/ D 0; (7.7)

where C is the concentration of the pollutant, z0 is the boundary roughness height,
ws is the setting velocity and f .x; z/ D ı.x/ı.z � zp/, i.e. a point source is located at
.x; z/ D .0; zp/.

Following the transformation (7.1) the model becomes

@C

@t
C u.z/a.1� �2/

@C

@�
� a2k�.z/.1 � �2/

�
.1 � �2/

@2C

@�2
� 2� @C

@�

�

D @

@z

	
kz.z/

@C

@z



C ws

@C

@z
C ı.�/ı.z � zp/; (7.8a)

l˙.C/ � C.˙1; z; t/ D 0; (7.8b)

lz0;1.C/ �
�
kz.z/

@C

@z
C wsC

�

zDz0;1

D 0; (7.8c)

C.�; z; 0/ D C0.�; z/ D 0: (7.8d)

The parabolic equation (7.8a) belongs to the second order PDEs with non-negative
characteristic form [9]. The main character of such kind of equations is the
degeneracy. It can easily be seen that at � D �1 Eq. (7.8a) degenerates into two
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parabolic one-dimensional equations:

@C

@t
D @

@z

	
kz.z/

@C

@z



C ws

@C

@z
; .z; t/ 2 .z0; 1/ � .0;T�:

We rewrite Eq. (7.8a) in divergent form:

@C

@t
� LC C p.�; z/C D fR.�; z/ for .�; z; t/ 2 QT D ˝ � .0;T�; (7.9)

LC D r � .ArC C bC/ ; ˝ D .�1; 1/ � .z0; 1/;

A D
	
a11 0

0 a22



; a11 D a2k�.z/.1 � �2/2; a22 D kz.z/;

	
b1.�; z/

b2



D
	
.1 � �2/a

�
2�ak�.z/ � u.z/

�

ws



;

p.�; z/ D 2a2k�.z/.1 � 3�2/C 2�au.z/;

and fR.�; z/ is a regularization of the delta function ı.�/ı.z � zp/.
We introduce the inner product and corresponding norm on L2;w.˝/ by

.u; v/w WD
ZZ

˝

.1� �2/2uvd�dz; kvk0;w D
p
.v; v/w D

0

@
ZZ

˝

.1 � �2/2v2d�dz

1

A

1
2

:

Using L2.˝/ and L2;w.˝/ we define the following weighted Sobolev space:

H1
w.˝/ WD

�
v 2 L2.˝/;

@v

@�
2 L2;w.˝/ and

@v

@z
2 L2.˝/


:

It is also easy to prove that H1
w.˝/ is a Hilbert space with the norm

kvk1;w WD
"Z

˝

 

v2 C .1 � �2/2
	
@v

@�


2
C
	
@v

@z


2!

d�dz

#1=2
:

Next, for C, � 2 H1
w.˝/ define the bilinear form

A.C; �/ �
Z

˝

	
a11
@C

@�

@�

@�
C a22

@C

@z

@�

@z
C b1C

@�

@�
C b2C

@�

@z
C pC�



d�dz:



124 T. Chernogorova et al.

The following variational problem corresponding to (7.9) and (7.8b)–(7.8d): find
C 2 H1

w.˝/ satisfying the initial condition (7.8d) such that for all � 2 H1
w.˝/

Z

˝

@C

@t
�d�dz C A.C; �/ D

Z

˝

fR�d�dz; a. e. in .0;T�:

Theorem 7.4 ([1]) There exists a unique solution C 2 H1
w.˝/ to problem

(7.9), (7.8b)–(7.8d).

Let V2.QT/ be the Banach space consisting of all functions in H1;0
w .QT/ D

C..0;T/IH1
w.˝// having finite norm

kvkV2.QT / D sup
0�t�T

kv.�; �I t/kL2.˝/ C
	Z T

0

kvkH1w.˝/.t/dt

1=2

:

Theorem 7.5 ([1]) Let C.�; z; t/ be in V2.QT/ and satisfy integral identity above.
Then C.�; z; t/ � 0 in QT.

Further a FVDS for approximation of the problem (7.8a)–(7.8d) (that is an extension
to the 1D scheme in the previous section) is constructed and analyzed in [1].

7.4 Positive Splitting Numerical method

Four types splitting procedures for air pollution models are defined and studied
numerically in [5].

On the base of the considerations of Sects. 7.2 and 7.3 we will propose a positive
splitting numerical method for the 2D non-stationary model of air pollution [4]

@'

@t
D @

@x

	
kx.x; z/

@'

@x



C @

@z

	
kz.x; z/

@'

@z



� u

@'

@x
� �

w � wg
� @'
@z

� ';

x > 0; z > 0; 0 < t � T;

u'.t; 0; z/ D Qı.z � H/;
@'

@z
.t; x; 0/ D ˛'.t; x; 0/;

lim
x!1'.t; x; z/ D 0; lim

z!1'.t; x; z/ D 0;

'.0; x; z/ D 0:

Here ' is the concentration of pollutants, .u;w/ are the components of the wind
velocity, wg D const > 0 is the falling velocity of the pollutants by gravity,
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 D const � 0 is the transformation coefficient of pollutants and kx, kz are the
horizontal and vertical diffusion coefficients.

After logarithmic transformations

x D 1

2a
log

	
1C �

1� �



; � 2 .0; 1/ , � D e2ax � 1

e2ax C 1
; x 2 .0;1/;

z D 1

2b
ln

	
1C �

1 � �


; � 2 .0; 1/ , � D e2bz � 1

e2bz C 1
; z 2 .0;1/;

function  .t; �; �/ D '.t; x.�/; z.�// satisfies the following equation and additional
conditions:

@ 

@t
D a2

�
1 � �2

�2
kx
@2 

@�2
C a

�
1 � �2�

�
a
�
1 � �2

� @kx
@�

� 2a�kx � u

�
@ 

@�

Cb2
�
1 � �2�2 kz @

2 

@�2
C b

�
1 � �2

� �
b
�
1 � �2

� @kz
@�

� 2b�kz � �
w � wg

�� @ 
@�

� (7.10a)

u .t; 0; �/ D Qı

	
� � e2bH � 1

e2bH C 1



; � 2 Œ0; 1�; t 2 Œ0;T�; (7.10b)

b
@ 

@�
.t; �; 0/ D ˛ .t; �; 0/; � 2 Œ0; 1�; t 2 Œ0;T�; (7.10c)

 .t; 1; �/ D 0; � 2 Œ0; 1�; t 2 Œ0;T�; (7.10d)

 .t; �; 1/ D 0; � 2 Œ0; 1�; t 2 Œ0;T�; (7.10e)

 .0; �; �/ D 0: (7.10f)

Following the same line as in the previous section, the well-posedness of the
differential problem (7.10a)–(7.10f) and the non-negativity of its solution can be
studied.

For the problem (7.10a)–(7.10f) we construct a splitting method. Let us intro-
duce a uniform mesh in the interval Œ0;T�: N!� D ˚

tj D j�; j D 0; 1; : : : ;M
�
.

Problem (7.10a)–(7.10f) can be reduced to consequently solving (in the rows and
columns of a two-dimensional mesh, introduced in the unit square) the following
1D problems, in which the differential equation is written in divergent form:

Problem A:

L1 1 � 1

2

@ 1

@t
� @

@�

	
p1.�; �/

@ 1

@�
C q1.�; �/ 1



C .0:5 C r1.�; �// ;

� 2 Œ0; 1�; � 2 Œ0; 1�; tj < t � tjC1=2;
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u 1.t; 0; �/ D Qı

	
�� e2bH � 1

e2bH C 1



;  1.t; 1; �/ D 0;

 1.0; �; �/ D 0;  1.tjC1; x; z/ D  2.tjC1; x; z/;

where

p1.�; �/ D a2.1 � �2/2kx.�; �/; q1.�; �/ D a.1 � �2/ Œ2a�kx.�; �/ � u� ;

r1.�; �/ D 2a2.1 � 3�2/kx.�; �/C 2a2�
�
1 � �2

� @kx.�; �/
@�

C 2au�I

Problem B:

L2 2 � 1

2

@ 2

@t
� @

@�

	
p2.�; �/

@ 2

@�
C q2.�; �/ 2



C .0:5 C r2.�; �// ;

� 2 Œ0; 1�; � 2 Œ0; 1�; tjC1=2 < t � tjC1;

 2.tjC1=2; x; z/ D  1.tjC1=2; x; z/;

b
@ 2

@�
.t; �; 0/ D ˛ 2.t; �; 0/;  2.t; �; 1/ D 0;

where

p2.�; �/ D b2.1 � �2/2kz.�; �/; q2.�; �/ D b.1� �2/
�
2b�kz.�; �/ � �

w � wg
��
;

r2.�; �/ D 2b2.1 � 3�2/kz.�; �/C 2b2�
�
1 � �2

� @kz.�; �/
@�

C 2b.w � wg/�:

For approximation of the problems A and B one can apply the FVDS method from
Sect. 7.2.

7.5 Conclusions

We have briefly discussed a 1D coordinate transformation often used in computation
of differential problems on unbounded domains. We theoretically investigated one
1D and another 2D problem transformed on finite domains using appropriate
weighted numerical methods that preserve the non-negativity of the solution of the
differential problem (D concentrations of pollutants in environmental models). We
continue our theoretical investigations of the positive splitting numerical method
and will present various computational results in a forthcoming paper.
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As a future plan, it will be interesting to consider extensions of the present results
to nonlinear convection-diffusion problems including real models, for example, the
Unified Danish Eulerian Model.
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Chapter 8
Impact of Climatic Changes on Pollution Levels

Zahari Zlatev, István Faragó, and Ágnes Havasi

Abstract The climatic changes are already causing more and more extreme
weather events in many different areas of the Earth. One of the most important
consequences of these changes, which has different impacts, is the clear trend for
global increase of the temperature. This increase has also some influence on the
pollution levels, mainly because (a) many of the damaging pollutants participate in
chemical reactions which depend strongly on the temperature and (b) the pollution
levels depend also on the natural (biogenic) emissions, which in general are
increased when the temperature becomes higher. Therefore, some pollution levels,
which are not very dangerous at present, could become harmful in the near future.
This is why the influence of the climate changes on the pollution levels should be
studied carefully.

Some results related to the influence of the climatic changes on some critical
levels related to ozone concentrations are reported in this chapter. The mathematical
tool applied in this investigation is a large-scale air pollution model developed
and used to study pollution levels in Europe. The model is described by a system
of partial differential equations. The discretization of this system leads to huge
computational tasks and it is difficult to handle it even when some of the fastest
computers are used. Several difficult tasks must be resolved in the efforts to make
the model tractable on the computers available at present. It is necessary to resolve
the following four tasks: (A) to apply advanced numerical methods, (B) to introduce
some splitting techniques, (C) to parallelize the computational process and (D) to
exploit the cache memories efficiently.
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Some results, which are obtained when the four requirements (A)–(D) are
satisfied, are presented and analysed in the chapter. The results show clearly that
the climatic changes will lead to some increase of pollution levels, thus these could
become dangerous for human beings.

Keywords Air pollution modelling • EU ozone directive • Non-linear system of
partial differential equations • Operator splitting • UNI-DEM

8.1 Introduction

Increased temperatures in different parts of the Earth would certainly lead to some
changes of the concentrations of many of the damaging chemical species (see the
conclusions drawn in [10, 30]). There are two major reasons for the increase of the
pollution levels: (1) the chemical reactions, in which the pollutants are involved,
depend on the temperature and (2) the relative parts of the natural (biogenic)
emissions in the sums of all emissions (human-made + natural) are becoming bigger
in many areas when the temperature is higher. This is why the global warming will
in general cause some increase of the dangerous effects of the concentrations of
pollutants in the atmosphere on human beings, animals and plants. Therefore, the
relationship between the global increase of the temperature and the pollution levels
should be carefully studied. In this chapter the area of interest is both Europe as a
whole and also some specific parts of it. The major topics discussed in the chapter
are (a) the influence of the climate changes on the pollution levels in some European
areas, (b) the changes of the pollution levels that are due to a combination of the
warming effect with some other important factors and (c) the contribution of air
pollution transported from some European countries to other countries. The study
was carried out by using 14 elaborated scenarios. Most of the selected scenarios
were also discussed in [11, 12, 34, 37, 42, 43]. These scenarios were run over
a long time period (consisting of 16 consecutive years) with a powerful large-
scale mathematical tool for studying complex environmental problems, the Unified
Danish Eulerian Model (UNI-DEM), which is fully described in [2, 4, 6, 31, 33–
39, 41–43]. It should additionally be mentioned here that this air pollution model
was used in several other advanced studies which were related to (1) the Balkan
Peninsula [43], (2) Bulgaria [38, 39], (3) Denmark [6, 32, 37, 41], (4) England
[1], (5) Europe [4, 6, 11, 12, 32, 34–36], (6) Hungary [20, 21, 42] and (7) the
North Sea [18]. A previous version of UNI-DEM was additionally used in some
inter-comparisons of several well-known European large-scale air pollution models
[19, 28].

Three climatic scenarios are introduced in Sect. 8.2. The particular model used
in the computations, UNI-DEM is briefly described in Sect. 8.3. The complexity
of the computational process when the effects due to climatic changes are studied
is discussed in Sect. 8.4. In Sect. 8.5 it is explained why (A) the inter-annual
variations of the meteorological conditions and (B) the relations between human-



8 Impact of Climatic Changes on Pollution Levels 131

made (anthropogenic) and natural (biogenic) emissions must be taken into account.
Numerical result are presented in Sect. 8.6. Some concluding remarks are given in
the last section, Sect. 8.7.

8.2 Development of Three Climatic Scenarios

The total number of scenarios used during this study is 14. Not all of the results
obtained by using these scenarios are presented here, but most of them are taken
into account when conclusions are drawn. All scenarios are fully discussed in
[11, 34, 37, 42, 43]. It should also be mentioned here that some of the principles as
well as some of the data reported in [7–10, 13, 14, 16, 19, 22–25, 28] were applied
during the preparation of the 14 scenarios.

For this study the climatic scenarios are most important and these scenarios will
be shortly discussed in this section. The results from the IPCC SRES A2 Scenario
were used in the preparation of the climatic scenarios. Some other and more general
conclusions from the reports [23, 30], as for example the statement that “the diurnal
temperature range in the future will be reduced in the land areas” were also taken
into account. This will be explained in the remaining part of this section when
the three climatic scenarios will be discussed. The major rules, which are actually
applied in the development of these scenarios, are sketched below.

8.2.1 Climate Scenario 1 (Taking into Account Only the
Future Changes of the Temperatures)

The predicted annual changes of the temperature according to the IPCC SRES
A2 Scenario, see [23], are used to produce the first climatic scenario (it should
be mentioned that according to the newest conclusions, [30], the changes are
accelerating and becoming greater, but this fact is only indicating that the pollution
levels will become even higher than those that are shown in Sect. 8.6). The changes
of the temperature in Europe resulting from the IPCC SRES A2 Scenario are shown
in Fig. 8.1. Consider any cell of the grid used to create the plot shown in Fig. 8.1
and assume that this cell is located in a region in Fig. 8.1 where the increase of the
temperature is in the interval Œa; b�. The temperature in the chosen cell at hour n
(n being any hour in the interval from 1989 to 2004) is increased by an amount
aCc.n/, where c.n/ is randomly generated and uniformly distributed in the interval
Œ0; b � a� so that the mathematical expectation of the increase of the annual mean
of the temperature at any cell of the space domain is .b � a/=2. This means that (a)
only temperatures are varied in this scenario and (b) the mean value of the annual
change of the temperature at a given point will tend to be the same as that prescribed
by the IPCC SRES A2 Scenario.
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Fig. 8.1 Temperature changes in Europe according to the IPCC Scenario SRES A2 from [22]

8.2.2 Climate Scenario 2 (Taking into Account Some
Additional Factors)

The extreme cases will become even stronger in the future climate; see Table 9.6 on
p. 575 in [23]. It is expected that: (a) there will be higher maximum temperatures and
more hot days over the land areas, (b) there will be higher minimum temperatures,
fewer cold days and fewer frost days over nearly all land areas and (c) the diurnal
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temperature range will be reduced over land areas. In order to satisfy these three
requirements, the conditions (a)–(c) taken from [23], we increased the temperatures
during the night-time with a factor larger than the factor by which the day-time
temperatures were increased. In this way the second and the third requirements are
satisfied. The first requirement is satisfied as follows: during the summer periods
the day-time temperatures are increased by a larger amount in hot days. All these
changes are carried out only over land. Furthermore, the temperatures are varied in
such a way that the annual means of the changes remained the same, at all cells, as
those in the first climatic scenario (i.e., the same as those prescribed in the IPCC
SRES A2 Scenario). We also reduced (by 10 %) the cloud covers over land during
the summer periods.

8.2.3 Climate Scenario 3 (Taking into Account More
Additional Factors)

It is also expected, as shown in Table 9.6 on p. 575 in [23], that there will be more
intense precipitation events but increased summer drying and associated risk of
drought. We increased the precipitation events during winter (both over land and
over water). During summer, the precipitation events in the continental parts of
Europe were reduced. Similar changes in the humidity data were made. The cloud
covers during winter were increased (by 10 %), while the same cloud covers as
those in the second climatic scenario were applied in the third climatic scenario
during summer. Again, as in the previous two climatic scenarios, the mathematical
expectation of the annual means of the changes of the temperature remains the same
as the predictions made in the IPCC SRES A2 Scenario.

8.2.4 Some Remarks Related to the Climatic Scenarios

The major purpose with the three climatic scenarios can be explained as follows.
It is highly desirable to be able to compare directly the pollution levels (which are
obtained by using the predicted future temperatures) with the present state of the
pollution levels. We fixed the transport and varied only the temperatures and several
quantities closely related to the temperature in the efforts to achieve this aim. For
the sake of simplicity, assume, as was done in Climatic Scenario 1, that only the
temperature is varied. Then it becomes very clear that the approach discussed in
this chapter has an important advantage: it allows us to compare directly the present
pollution levels with the pollution levels obtained with the increased temperature.
Since the temperature is the only parameter that is varied, all changes of the ozone
levels are clearly caused by the increased temperature levels (the increase of the
temperature is the most important factor of the future climate changes and all other
effects can be considered as consequences of the global warming process).
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It is obvious that the same direct comparison can be performed also if the
emissions and some other parameters are also varied (the important issue being to
keep the transport the same during the comparisons).

We shall not discuss here the creation of the other eleven scenarios in spite of
the fact that some of them will be used in the next sections. Most of the remaining
scenarios are traditionally used (as, for example, the scenarios based on variations
of the emissions). Moreover, when the other scenarios are used, it will be clear how
these are created. Some short explanations will be given (when results calculated
by some of the other scenarios will be presented) if there will be some danger for
misunderstanding.

It is possible to apply another approach; meteorological data (including here wind
fields) that are obtained by a climatic model can be used in our model. Such an
action implies a requirement to run a big climatic model. However some difficulties
will unavoidably appear. The major problem is that it is not very clear in advance
how to compare directly the results so found with the results obtained with the Basic
Scenario (the scenario in which the actual meteorological data and emission sources
are used), because the changes will be caused both by the increased temperature
and by the different transport of the pollutants. On the other side, it will be possible
to draw other useful conclusions by performing runs over sufficiently long time-
periods. It must also be emphasized that the computational difficulties (which will
be discussed in Sect. 8.4) would be enormous when the fine discretization (10 km �
10 km surface cells) that is applied by us is to be preserved.

The computational problems and the problems related to the enormous amount
of data that are needed and must be kept and updated in the available computers
will become even more challenging if the air pollution model is fully coupled
with a climatic model. The advantage of such an approach will be the possibility
to investigate also the feedback from the increased pollution levels to the climatic
changes. At present it is not possible to resolve this very interesting and challenging
problem on the whole European domain when fine spatial resolution is to be used.
However, the computers are becoming more and more powerful and it will hopefully
be possible to resolve the last two problems in the near future.

Some more details about the use of other approaches in the study of the impact
of future climatic changes on air pollution levels can be found in [7, 10, 24] as well
as in some of the references given in these three papers.

8.3 Presentation of the Mathematical Model

It was stated in Sect. 8.1 that the Unified Danish Eulerian Model (UNI-DEM) is used
to calculate results with the different scenarios developed for this study. This model
is described mathematically by a non-linear system of partial differential equations
(PDEs). Five important physical and chemical processes are taken into account
during the derivation of the system of PDEs. These processes are: (a) horizontal
transport (advection), (b) horizontal diffusion, (c) non-linear chemical reactions plus
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emission sources, (d) dry and wet deposition and (e) vertical exchange. The non-
linear system of PDEs is written in the following form:
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The first two terms in the right-hand-side of Eq. (8.1) describe the horizontal
advection, while the next two represent the horizontal diffusion. The terms in the
second row of this equation are describing the chemical reactions, the emissions
sources in the model domain and the deposition respectively. The vertical processes,
vertical advection and vertical deposition, are given in the third row of Eq. (8.1).
The number of equations in the system of PDEs represented by Eq. (8.1) is equal
to the number q of the chemical species which are to be studied by the model. The
concentrations of the chemical species at point .x; y; z/ of the spatial domain and at
time t are denoted by ci D ci.t; x; y; z/. The notation u D u.t; x; y; z/, v.t; x; y; z/
and w.t; x; y; z/ is used for the wind velocities along the Ox, Oy and Oz axes
respectively. The diffusivity coefficients are Kx D Kx.t; x; y; z/, Ky D Ky.t; x; y; z/
and Kz D Kz.t; x; y; z/ (the first two of them being normally non-negative constants,
while the third one is a function, the calculation of which is rather complicated;
see, for example, [29, 31]). The deposition rates are denoted by ki1 D ki1.t; x; y; z/
for the dry deposition and ki2 D ki2.t; x; y; z/ for the wet deposition. The non-linear
terms Qi.t; x; y; z; c1; c2; : : : ; cq/ in the second line of Eq. (8.1) describe the chemical
reactions. Finally, the terms Ei.t; x; y; z/ are describing emission sources, including
both human-made (anthropogenic) emissions and natural (biogenic) emissions.

The spatial domain is a parallelepiped and the parameters Nx, Ny and Nz are
used in the discretization (Nx, Ny and Nz being the numbers of grid-points along
the three coordinate axes). For the runs carried out in connection with this study
Nx D Ny D 480 and Nz D 10 are used. The grids in the horizontal planes are
equidistant; actually this leads to 10 km � 10 km horizontal cells. In the vertical
direction the grid is not equidistant; the distance between the grid-points are small
close to the surface and become larger and larger when the height is increased. The
size of the surface horizontal plane (the bottom of the spatial domain) is 4800 km �
4800 km and it is covering the whole of Europe together with parts of the Atlantic
Ocean, Arctic, Asia and Africa. The number of chemical species used in most of
the runs is Ns D q D 56. The number of equations that are to be handled at each
time-step is equal to Nx � Ny � Nz � Ns D 142;518;376 when this choice is made.
A run over a time-period of 1 year with a time stepsize �t D 2:5 s will result
in Nt D 213;120 time-steps. These figures indicate very clearly that the arising
computational tasks are enormous. Therefore, the following three conditions must
be satisfied; it is necessary (a) to select fast but sufficiently accurate numerical
methods, (b) to exploit efficiently the caches of the available computer and (c) to
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parallelize carefully the code in the efforts to make it tractable on the available
computer architectures. It should be mentioned that it may be impossible to handle
some very large environmental models on the computers available at present even
when the above three conditions are satisfied. Therefore, it is also necessary to use
appropriate splitting procedures. UNI-DEM is split (as described in [2, 36]) into the
following three sub-models and an attempt to select optimal numerical algorithms
for every sub-model is carried out:
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The vertical exchange, the combination of the horizontal transport (the advection)
with the horizontal diffusion and the chemical reactions together with the emission
sources in the studied domain and the deposition terms are described in the right-
hand-sides of Eqs. (8.2), (8.3), (8.4), respectively. There are three major advantages
of the splitting procedure: (A) the large problem (1) is replaced by long sequences
of small problems, which can be handled independently of each other, (B) the small
problems can be treated in parallel (i.e., parallel tasks appear in a natural way;
moreover, the amount of data needed during the treatment of each of the small
tasks is not large, which implies that these data will often stay in cache while the
small tasks are handled and (C) optimal numerical methods can be applied in the
numerical solution of each of the three sub-models. It should be added that the
particular splitting procedure described by (2), (3) and (4) does not require extra
and artificial boundary conditions. It is fair to mention here that there is also one
drawback: the accuracy of the splitting procedures is normally low (if the above
three sub-models are handled in a sequential way, then the order of accuracy is one).

The first sub-model consists of Nx �Ny �Ns independent tasks (the tasks along
each vertical grid-line and each of the chemical species are independent). The
spatial derivatives in the first sub-model are discretized (along the vertical grid-
lines) by linear finite elements, while the �-method with � D 0:75 is used in the
time-steps.
The second sub-model is decoupled into Nz �Ns separate tasks (the task related
to each grid-plane and to each chemical species are independent). The spatial
derivatives are discretized by applying finite elements, while predictor-corrector
schemes with several different correctors are used (with a stability control check)
in the time-steps.
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The third sub-model is containing Nx � Ny � Nz independent tasks (the tasks
related to the grid-points of the spatial domain are independent; the chemical
species react with each other at a given grid-point, but do not react with chemical
species from the neighbouring grid-points). The chemical part is the most
difficult and time-consuming sub-model. Different methods for the treatment of
the third model were tested extensively in [32, 36].

The above short discussion indicates very clearly that there are indeed a lot
of parallel tasks, which appear in a quite natural way when splitting procedures
are used. Unfortunately, these tasks are not well-balanced. Some of them, the
tasks which arise in the first and the third sub-models, are too small (and, thus,
bigger tasks must be created by combining several of them), others (the tasks
arising in the second sub-model) are too big and some search for finding well-
balanced parallel sub-tasks have to be carried out. Different ways for resolving the
additional problems arising during the parallelization of the model are discussed in
[2, 17, 26, 27].

Much more details about the computer treatment of UNI-DEM can be found
[32, 36]. It should be mentioned that some other numerical methods, as, for example,
those applied in [40] for spectroscopic models, can also be applied in air pollution
models.

8.4 Additional Computational Difficulties Arising in the
Climatic Runs

The great computational difficulties arising when a large-scale environmental model
is to be run were discussed in the previous section. The computational process
becomes much more complicated when climatic studies are to be carried out. There
are several reasons for this: (a) runs over a long time-period have to be performed,
(b) many scenarios are needed in order to investigate the influence of different
important input parameters on the model results and (c) the calculated data have
to be stored and carefully analysed. The difficulties become enormous when fine
resolution has also to be used. It was explained in the previous section that in the
latter case it is necessary to handle 142,518,376 equations during 213,120 time-steps
at each run. When the above conditions are satisfied then many hundreds of runs
have to be performed. Therefore, the global task becomes extraordinarily difficult
even when the requirements formulated after formula (4) in the previous section are
satisfied. We should mention here that it took more than 2 years to compute output
data from all 2688 runs (14 scenarios � 16 years � 12 months) carried out in this
study. This fact illustrates the great computational difficulties that are related to the
investigation of various impacts of climatic changes on pollution levels. It must be
added that the storage requirements (the need for huge input and output files) are
also enormous.
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One can now ask an important question: Is it necessary to run the model
on such a fine grid? Two examples are given below in an attempt to show that
high precision is indeed needed, especially when the situation in some small areas
is studied. In Figs. 8.2 and 8.5 emission fields in two different parts of Europe
(Denmark and Bulgaria) are given. In Figs. 8.3 and 8.6 the concentration fields
calculated by using a crude resolution are drawn. The corresponding fields obtained
when a fine resolution is applied are given in Figs. 8.4 and 8.7. It can be seen
immediately that the results shown in Figs. 8.3 and 8.6 do not reflect correctly the
real situation (the highest concentrations should be greater where the emissions are
biggest). On the other side, the results in Figs. 8.4 and 8.7 are at least qualitatively
correct (the concentrations are highest where the biggest emission sources are
located in Figs. 8.2 and 8.5).

However, it is also possible to apply another approach. One can improve the
spatial resolution gradually; starting with some crude grid and zooming several
times gradually to the desired sub-area by using finer and finer grids in the nested
sub-regions and by calculating boundary conditions for any of the nested sub-areas
by using the results calculated by using the previous sub-region, in spite of the fact
that these data are less accurate because cruder resolution is used in the previous
sub-regions. Then the calculations in the last sub-area will be carried out by using
a sufficiently high resolution. The big question is whether this approach should
be preferred? The answer to this question is not very easy and, in our opinion, it is
not possible to answer it only with “yes” or only with “no”. If there are big emission
sources in the sub-region of interest, then the most important transformations will
take place there and the accuracy of the boundary conditions will not be very
critical. In such a situation the use of nested sub-domains will be efficient. On
the other hand, if most of transformations in the sub-area of interest are due to
transport from the outside, then accurate boundary conditions are required and,
therefore, boundary conditions calculated by using the less accurate concentrations
calculated in the previous sub-domain will most probably not be sufficient to ensure
the required accuracy. The results presented in Fig. 8.8 show that the transport of
pollutants to some parts of Europe (in this particular case to the Balkan Peninsula) is
rather considerable. Two runs with UNI-DEM were performed in order to calculate
the results shown in this figure. The Basic Scenario with meteorological data
and emissions for 1997 is used in the first run. All human-made (anthropogenic)
emissions in the Balkan countries are set to zero in the second run (the emissions in
the remaining part of Europe are not changed). Then the quantities 100.B � A/=B
are calculated for each surface cell, where A is the ozone concentration obtained
during the second run, while B is the corresponding concentrations calculated during
the first run. This means that the contributions caused by transport to the Balkan
countries from outside measured in percent are presented in Fig. 8.8. It is clearly
seen that these contributions are rather high; more than 50 % nearly everywhere in
the Balkan Peninsula. This is why we prefer the other approach: to run every time
when it is possible the model on a fine grid in the whole spatial domain. It should
be mentioned here that this approach has a very valuable advantage: it becomes
possible to concentrate our attention to each particular sub-domain: there is no need
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Fig. 8.2 Distribution of the annual averaged human-made NO2 emissions in Denmark and its
surroundings. It is clearly seen that the biggest emissions are around the capital Copenhagen and
the big Swedish city Malmö as well as around Aarhus and Odense, the second largest and the third
largest cities in Denmark

to carry out additional runs with other nested sub-domains when it is necessary
to change the sub-domain which is of interest. This is demonstrated by presenting
results both for the Danish area and for the Bulgarian area (Figs. 8.2–8.8).



140 Z. Zlatev et al.

 29  30  31  32  33  34  35  36  37  38  39  40  41  42  43

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

Fig. 8.3 Distribution of the annual averaged NO2 concentrations in Denmark and its surroundings
when UNI-DEM is run on a 96 � 96 horizontal grid resulting in 50 km � 50 km surface cells
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Fig. 8.4 Distribution of the annual averaged NO2 concentrations in Denmark and its surroundings
when UNI-DEM is run on a 480 � 480 horizontal grid resulting in 10 km � 10 km surface cells
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Fig. 8.5 Distribution of the annual averaged human-made SO2 emissions in Bulgaria and its
surroundings
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Fig. 8.6 Distribution of the annual averaged SO2 concentrations in Bulgaria and its surroundings
when UNI-DEM is run on a 96 � 96 horizontal grid resulting in 50 km � 50 km surface cells
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Fig. 8.7 Distribution of the annual averaged SO2 concentrations in Bulgaria and its surroundings
when UNI-DEM is run on a 480 � 480 horizontal grid resulting in 10 km � 10 km surface cells
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Fig. 8.8 Influence of the transport of ozone from European countries to Bulgaria obtained by
running UNI-DEM on a 480 � 480 � 10 grid resulting in 10 km � 10 km surface cells
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8.5 Inter-Annual Variations of the Meteorological Conditions
and Some Other Issues

It is shown in this section that the inter-annual variations of the meteorological
conditions and some other issues that are related to the emissions, both the human-
made (anthropogenic) emissions and the natural (biogenic emissions) must be
carefully taken into account during the preparation of the scenarios. This leads to an
increase of the scenarios, but it allows us to draw more and better conclusions.

Very often one runs an air pollution model over several years with the actual
meteorology and emissions. A second run with meteorology and emissions pre-
scribed by a climatic model is performed. Then one compares the average con-
centrations received in the two runs. The conclusion is nearly always that the
pollution levels do not depend too much on the climatic changes. We shall explain
in this section that this is not a very correct approach. Annual variations of both
meteorological conditions and the emissions must be carefully incorporated in the
used scenarios.

8.5.1 Why Are the Inter-Annual Variations of the
Meteorological Conditions Important?

First we shall demonstrate the necessity to take the inter-annual variations into
account. The great inter-annual variations of the averaged daily ozone maxima
around the Bulgarian capital Sofia are demonstrated in Fig. 8.9. It should be pointed
out that rather large variations of annual averages of concentrations were observed
also in other parts of Europe and for other pollutants too; see [4, 6, 11, 12, 32–
36, 41–43].

The variations of the ammonium + ammonia levels in the Danish area are shown
in Fig. 8.10. Results obtained with five different scenarios are shown in this figure.
The Basic Scenario is run with the actual emissions and meteorological conditions.
Two other scenarios are also used. The 2010 Scenario is run by using levels of
the anthropogenic emissions, which were prescribed (in the end of the twentieth
century) for year 2010. The MFR (Maximum Feasible Reduction) Scenario assumes
that the anthropogenic emissions will be reduced very significantly (up to 90 % in
some countries). Both scenarios were developed at IIASA (the International Institute
for Applied System Analysis in Laxenburg, Austria; see more details in [3]).The
two corresponding climatic scenarios are based on the use of the recommendations
proposed in the IPCC SRES A2 Scenario in Scenario 2010 and in the MFR
Scenario. The following conclusions can be drawn from the results presented in
Fig. 8.10 as well as from results presented in some previous studies [4, 6, 11, 12, 32–
36, 41–43]: (a) the inter-annual variations remain for all five scenarios, (see again
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Fig. 8.9 Variations of the averaged daily maxima of the ozone concentrations during a period of
16 years

[4, 6, 11, 12, 32–36, 41–43]), (b) the differences between the results obtained by
the Basic Scenario and those found when Scenario 2010 and Climate Scenario 2010
are used are rather small for this pollutant, while the MFR Scenario leads to a large
decrease of the pollution levels and (c) the influence of the climate changes is not
very significant when annual values of ammonia + ammonium concentrations are
studied.

8.5.2 Need for Scenarios with Human-Made and Natural
Emissions

The fact that the European human-made (anthropogenic) emissions were reduced
during the studied period has to be taken into account in this investigation.
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Fig. 8.10 Variations of the yearly averages of the ammonia-ammonium concentrations in Den-
mark

The reduction of the Bulgarian emissions is shown in Fig. 8.11. It is seen that
the reduction of the emissions in this country is rather significant (up to 60 % for
some of the emissions). It must be emphasized that the reduction of the Bulgarian
emissions during this period was not an isolated case. The reduction of the emissions
in Europe as a whole is shown in Fig 8.12. It can be seen immediately that the
trend is the same. More examples, which show that the emissions in the European
countries were reduced in this period are given in [11].

The decrease of the human-made (anthropogenic) emissions leads to an increase
of the relative part and, thus, of the importance of the natural (biogenic) emissions.
The biogenic emissions in the Unified Danish Eulerian Model are created by using
ideas described in [16, 25, 29]. Similar ideas are also used in some other air pollution
models. However, it should be mentioned here that some scientists claim that the
natural emissions are greatly underestimated; see, for example, [5, 8, 9]. Therefore, it
was also useful to develop and apply some scenarios in which the natural (biogenic)
emissions are varied.
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Fig. 8.11 Changes of the Bulgarian human-made emissions during the period from 1989 to 2004

It should furthermore be emphasized that both the emission sources and the
meteorological data are very important. This is illustrated by the results presented in
Fig. 8.13, which were obtained by running three emission scenarios. It is seen that if
the emissions sources are kept constant, then one can see the annual variations but
not the decreasing trend of the concentrations (caused by the decreased emissions).
If the meteorological conditions are kept constant, then it is not possible to see
the annual variations, but the decreasing trend is preserved. Therefore, all scenarios
were run with the actual emissions and with the actual wind fields (which is also true
for the climatic scenarios). This allows us both to compare the differences between
the results obtained by different scenarios for every chosen year from the selected
time-interval of 16 years and to demonstrate very clearly the fact that there are
considerably large inter-annual variations of the pollution levels.
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Fig. 8.12 Changes of the European human-made emissions during the period from 1989 to 2004

8.6 Influence of the Climatic Changes on Pollution Levels

The Basic Scenario was extensively compared with the three climatic scenarios
that were discussed in the previous section. Some results from this comparison are
presented in Figs. 8.9 and 8.10. Much more results for other parts of Europe can be
found in [11, 12, 31–36, 41, 43]. All results indicate that (a) the daily maxima of
the ozone concentrations obtained when the climatic scenarios are used are often
(but not always) greater than those obtained by the Basic Scenarios and (b) the
differences between the daily maxima of the ozone concentrations obtained with
the climatic scenarios and those obtained with the Basic Scenario are rather small.
It is shown in this section that the second statement, statement (b), is not necessarily
true when “bad days” (to be defined below), which might cause damages on human
beings, are considered instead of averaged annual concentrations. In the latter case
the differences can be considerably larger. The main conclusion is that it is much
more relevant to consider not the annual means of the concentrations but directly the
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Fig. 8.13 The Basic Scenario versus scenarios with constant emissions and meteorological
conditions

numbers of “bad days”, which can be dangerous for our environment when exceed
certain limits. Furthermore, it is important to establish whether the critical levels for
these quantities, the “bad days”, which are established by the EU Directive [15],
are really exceeded or not. Assume that cmax is the maximum of the 8-h averages
of the ozone concentrations calculated by some model or measured at some station
in a given day at some site A. If the condition cmax > 60 ppb is satisfied at least
once during the day under consideration, then the expression a “bad day” will be
used for such a day at site A. “Bad days” can have damaging effects on some
groups of human beings (people who suffer from asthmatic diseases). Therefore,
the number of such days should be reduced as much as possible. Two important
aims are stated in the Ozone Directive issued by the EU Parliament issued in 2002,
[15]. Target aim: The number of “bad days” in any site of the European Union
should in principle not exceed 25 after year 2010 and Long-term aim: No “bad
day” should occur in the European Union.
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Fig. 8.14 Comparing numbers of “bad days” obtained by using the Basic Scenario and Climatic
Scenario 3

The model results (including here model results reported in previous papers)
indicate that these critical levels are greatly overestimated.

The numbers of “bad days” obtained in Dobrich (a town in the north-eastern
part of Bulgaria, which is not very polluted) are given in Fig. 8.14. It is seen that
the numbers of “bad days” for the Climatic Scenario 3 are always greater than the
corresponding numbers for the Basic Scenario. Moreover, the critical level of no
more than 25 “bad days” is exceeded for many years of the studied period of 16
years.

One may ask the question whether the increases shown in Fig. 8.14 are big or
small. The differences of the bad days obtained by the two scenarios were calculated
and plotted in Fig. 8.15. It is seen that for the town Dobrich these differences vary
in the interval from three to seven. It is quite clear that such differences are at least
considerable, because they show that sometimes the critical level may be exceeded
in the Climatic Scenario 3, while the results for the Basic Scenario are acceptable.
Results presented in [34] indicate that the situation is the same (or at least similar)
in many other parts of Europe. This fact is demonstrated in Fig. 8.16.
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Fig. 8.15 Comparing differences of “bad days” obtained by using the Basic Scenario and Climatic
Scenario 3

The distribution of the numbers of “bad days” in the Balkan Peninsula for the
last year in the studied period, year 2004, is shown in Fig. 8.17. It is seen that the
critical level prescribed in the directive issued by the European Union is exceeded
in all regions of the Balkan Peninsula. It should also be noted that the numbers of
“bad days” in the western part of the studied area are in general larger than those
in the eastern part. This is caused by the transportation of ozone pollutants from
European sources and, thus, should be expected. The increases (in percent) of the
numbers of “bad days” in 2004 on the territory of the Balkan Peninsula when the
Climatic Scenario 3 is used instead of the Basic Scenario are shown in Fig. 8.18. It
is clearly seen that in a very large part of the peninsula the increases are greater than
15 %, which is a rather considerable amount.

Some scenarios with increased biogenic emissions (including here not only
increases of the biogenic emissions created by forest trees, but also assuming the
existence of biogenic emissions created by crops) were developed and tested. The
changes were made by following some recommendations made in [5, 8, 9]. One
of the 14 scenarios, the Climatic Scenario 3 combined with Increased Biogenic
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Fig. 8.16 Comparing differences of “bad days” in the surroundings of eight big European cities
which are obtained by using the Basic Scenario and Climatic Scenario 3

Emissions was compared with the Basic Scenario. Results obtained in runs for 2004
are presented in Fig. 8.19. It is seen that now the percentages of “bad days” found in
the comparison of the results from this scenario with those calculated with the Basic
scenario are greater than 15 % in nearly the whole territory of the Balkan Peninsula.
This indicates that if the claims that the biogenic emissions are underestimated
are correct, then the climatic changes will cause much greater increases of some
pollution levels.

It must be emphasized here that the results shown in Figs. 8.17, 8.18 and 8.19 are
for year 2004. The code was run (as stated in the previous sections) for all 16 years
in the period from 1989 to 2004 and the trend remains the same for every year. In
fact, for many years the increases are even bigger than those shown in these three
figures.
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Fig. 8.17 Distribution of the numbers of “bad days” in the different regions of Balkan Peninsula
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Fig. 8.18 Climatic Scenario 3 versus the Basic Scenario: increases (in percent) of the numbers of
bad days
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Fig. 8.19 Additional increases when the biogenic emissions are increased
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8.7 Conclusions

The results presented in this chapter indicate very clearly that the climatic changes
will lead to an increase of the pollution levels related to ozone in many parts of
Europe. Similar results were reported in [11, 12], and [29–36, 41–43] for many
other parts of the continent and also for other pollutants. The important fact is that
the general trend does not change too much. Indeed, results obtained for areas from
Russia and Ukraine to England and Spain and from Sweden and Denmark to Italy
and Greece show clearly that independently of the fact that the pollution levels vary a
lot in the different countries, the general tendency remains the same: the increase of
the temperature will cause increases of many pollution levels. Therefore, the policy-
makers must take into account the global warming effect during the preparation of
strategies for keeping the future pollution levels under the prescribed critical levels.
It is interesting to find a reliable answer of the following question: By how much
the amount of the anthropogenic emissions should be reduced in order to keep the
pollution levels under the prescribed in the EU Ozone Directive [15] critical levels?

It should also be noted that a systematic application of algorithms based on
advanced sensitivity analysis will improve very much both the presentation of the
results and the understanding of the trends related to the increase of the pollution
levels.

It must be emphasized here that better definitions related to critical levels of
potentially dangerous pollutants are needed. Indeed, many of the critical levels,
including here most of the critical levels that are required in the EU Ozone Directive
[15], are not very carefully defined. For example, the determination of the quantity
used in this chapter, the “bad days”, might be an extremely unstable process
because in some situations it might be enormously sensitive to very small (even
negligible) errors of model results or measurements. This fact creates difficulties in
the preparation of reliable and robust control strategies. Therefore, it is necessary to
try to stabilize somehow the definitions used in the definitions of the critical levels.
In connection with the “bad days”, the use of the sharp limit of 60 ppb is clearly not
a very good decision (in an extreme situation, the transition of the 8-h average of the
ozone concentration from 59.99 to 60.01 ppb will cause a shift from a “good day”
to a “bad day”). It would be much more appropriate to introduce an uncertainty
zone (let us call it, as in [34], a “grey zone”). For example, if the maximal 8-h
averaged ozone concentration is in the range from 40 to 80 ppb then the day under
consideration should be considered as belonging to the “grey zone”. If this number
is under 40 ppb it will be appropriate to declare the day as a “good day”, while
it will certainly be a “bad day” if this number is greater that 80 ppb. By applying
this procedure, all the uncertain cases will be accumulated in the “grey zone”. The
question is what to do with the “grey days”. The simplest (but perhaps not the best)
strategy will be to declare that n “grey days” are equivalent to one “bad day”. It will
be necessary to perform a long series of systematic experiments in order to decide
what value of n should be chosen. More elaborated strategies can also be tried. For
example, it is possible to use some weight coefficients (smaller weight coefficients
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Fig. 8.20 The grey zone which appears in connection with the German station in Langebrugge

should be used when the maximal 8-h averaged ozone concentration is closer to the
lower limit of 40 ppb and larger weight coefficients in the opposite case). Finally, it
is also possible to apply two upper limits: one for the “proper bad days” (say, zero
days) and one for the “grey days” (say 50 days). An illustration of the fact that most
of the “bad days” are in fact in the “grey zone” is given in Fig. 8.20.
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Part III
Meteorological Data Assimilation

and Probabilistic Forecasting

Numerical modelling of the Earth system is one of the most rapidly evolving field in
meteorology. Numerical Weather Prediction (NWP) and climate models are able to
provide realistic estimates of the future states of the atmosphere/climate system and
they are essential tools for serving forecast information for decision makers. In the
last decade enormous progress was achieved in the quantification of uncertainties
in weather forecasts and climate projections in the form of probabilistic forecast
information and the users understand and appreciate more and more the added value
of uncertainty estimates attached to the forecasts/projections.

The intrinsic characteristic of the atmosphere and the climate system is that
they behave as chaotic systems. Consequently, meteorological forecasts sensitively
depend on the initial conditions, in other words small errors in the model initial
conditions might lead to large forecast errors. The NWP data assimilation systems
provide initial conditions for the numerical model. The determination of model
initial conditions is a complex mathematical optimisation problem and the initial
state of the atmosphere can be estimated only with some uncertainties. These
uncertainties must be taken into account, while constructing Ensemble Prediction
Systems (EPS), where not only a single forecast, but an ensemble of forecasts is
exploited having each model integration differing (at least) in its initial conditions.
The ensemble method is now far more extended, since not only the initial condition
uncertainties, but all the quantifiable atmospheric/climate uncertainties are taken
into account, while designing and producing an EPS.

Due to the application of ensemble data assimilation methods the data assim-
ilation and probabilistic forecasting research and development efforts cannot be
fully disentangled any more. Initial condition uncertainties are described by the
adequate initial condition perturbations of an ensemble prediction system and EPS
can provide valuable information on the background error characteristics used in
the data assimilation process. This makes the two areas inseparable in modern
meteorological research.

In Part III, both data assimilation and probabilistic forecasting in meteorology
are introduced and also several examples are shown to demonstrate the interplay
between these two NWP modelling areas.
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Chapter 9 gives an introduction to the basic data assimilation methods. It aims at
presenting the mathematical derivation of the various methods and their application
to test problems.

Chapter 10 provides the mathematical study of data assimilation methods, and
suggests the use of a novel cost function.

Chapter 11 introduces the idea of ensemble forecasting, and shows how it is used
in NWP models. The authors also present how ensemble forecasting can be applied
in meteorological data assimilation.

Chapter 12 is dedicated to specify the leading uncertainties in climate projections
on different time scales, geographical areas and meteorological variables.



Chapter 9
An Invitation to Meteorological Data
Assimilation

Ágnes Bodó and Petra Csomós

Abstract The chapter introduces the basic data assimilation methods used in
meteorological modelling. After briefly recalling the mathematical notions and
tools needed, we present the optimal interpolation, the variational methods, and the
Kálmán Filter techniques in one and more dimensions. In order to illustrate the use
of the methods introduced, we present the results of numerical experiments done for
simple models.

Keywords Data assimilation • Ensemble transform Kálmán filter • Kálmán
filter • Optimal interpolation • Variational method

9.1 Introduction

The present chapter serves as an introduction to data assimilation methods used
in meteorological modelling. Our aim is to present the mathematical derivation of
the various methods and their applications to simple test models. Data assimilation
literally means that one aims at combining information from several sources
leading to a result which is better in some sense than the original data. Since
we are after the best weather forecast possible, meteorological data assimilation
aims at combining all the information being gathered about the present state of
the atmosphere: observations, numerical prediction, climatological data, etc. The
mathematical question is then how to combine all these data in order to get a result
being nearest to the true state of atmosphere. For a detailed introduction in this field
we refer to Kalnay [13] and Evensen [5] and the references therein.
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For the sake of simplicity, we consider only two information sources being
typical in meteorology: observations and numerical forecast obtained by a numerical
prediction model. Both of them can be considered as vectors containing the values
of the seven meteorological variables, that is, temperature, wind velocity in three
directions, pressure, density, and relative humidity, at each point of a certain three-
dimensional spatial mesh covering the whole atmosphere or its smaller region.
Let x 2 R

n denote the vector of numerical forecast and y 2 R
m the vector of

observations. In practice we usually have m  n (nowadays n � 107, m �
105). Hence, we are looking for that combination of x and y, called analysis in
meteorology, which approximates best the true state of the atmosphere. Since the
analysis at time t is the best approximation of the true state of the atmosphere at that
time, it plays two roles. On one hand, it serves as the weather forecast for time t,
being presented to the public. On the other hand, it is the best candidate for the initial
value of a numerical weather prediction model computing the numerical forecast for
the next time level, that is, for time t C�t with some time step �t > 0. Due to its
latter role, it should be compatible with the model’s variables, that is, it should be a
vector of size n. Hence, we denote the analysis by xa 2 R

n.
In the present chapter we introduce the basic data assimilation methods used

in numerical weather prediction models, such as optimal interpolation, variational
methods, and Kálmán Filter techniques. In Sect. 9.2 we summarise the mathematical
tools needed later on. In Sects. 9.3 and 9.4 the optimal interpolation and the varia-
tional method are introduced in one and more dimensions, respectively. Section 9.5
serves as an introduction to the various Kálmán Filter techniques, and in Sect. 9.6 we
present two test models and with the help of numerical experiments we compare the
data assimilation methods. Section 9.7 serves as an outlook on various procedures
used in nonlinear data assimilation.

9.2 Mathematical Background

In what follows we introduce the notions from mathematical statistics needed later
on.

Definition 9.1 Let ˝ ¤ ; denote the sample space being the space of all possible
outcomes and let a -algebra E denote the set of all events where each event is a
set containing zero or more outcomes, that is, an event is a subset of the sample
space ˝ . Then the function P W E ! Œ0; 1� is called a probability function if it
possesses the following properties: P.˝/ D 1 and it is countably additive, that is,
for all An 2 E , n D 1; : : : ;N with Ai \ Aj, i ¤ j one has

P
� N[

nD1
An

�
D

NX

nD1
P.An/:
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The triple .˝; E ;P/ is called a probability space. The measurable function x W ˝ !
R is called a real-valued random variable if f! 2 ˝ W x.!/ � rg 2 E for all r 2 R

meaning that the set of events !, for which x.!/ � r holds, is again an event, that is,
we can talk about its probability. We will use the expression vector-valued random
variable x 2 R

n, if the coordinate functions of x W ˝ ! R
n are real-valued random

variables.

By having a random variable at hand, one can define its statistical quantities which
play an important role in data assimilation. From now on we suppose that ˝ is the
finite union of the intervals Ij 	 R for j D 1; : : : ; n with n 2 N.

Definition 9.2 Let .˝; E ;P/ be a probability space and x D .x.1/; : : : ; x.n// W ˝ !
R

n be a vector-valued random variable. We define the following quantities.

1. The cumulative distribution function Fx W Rn ! R of the vector-valued random
variable x is defined as

Fx.�
.1/; : : : ; �.n// D P.x.1/ < �.1/; : : : ; x.n/ < �.n//

for all � D .�.1/; : : : ; �.n// 2 R
n. Two random variables are called identically

distributed if they possess the same distribution function.
2. The probability density function fx W R

n ! R (if exists) of the vector-valued
random variable x is the function which fulfills

Fx.�/ D
Z �.1/

�1
: : :

Z �.n/

�1
fx.t

.1/; : : : ; t.n//dt.n/ : : : dt.1/

for any � D .�.1/; : : : ; �.n// 2 R
n.

In what follows we define the most important notions characterising a random
variable. Its expectation is intuitively the long-run average value of repetitions of
the experiment it represents. The variance measures how far a set of numbers is
spread out, and the covariance measures how much two random variables depend
on each other.

Definition 9.3

1. The expectation E of the vector-valued random variable x 2 R
n is defined as

E.x/ WD �
E.x.1//; : : : ;E.x.n//

�
with

E.x.i// WD
Z

Ij

tfx.i/ .t/dt for all i D 1; : : : ; n

(if exists). Let X D .x1; : : : ; xk/ 2 R
n�k be the matrix containing the k pieces of

vector-valued random variables x1; : : : ; xk 2 R
n in its columns. Then the notation

E.X/ means .E.X//i;j WD E.x.i/j / for all i D 1; : : : ; n and j D 1; : : : ; k, i.e., we
take the expectation elementwise.
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2. Let x 2 R
n and y 2 R

m be vector-valued random variables. Their covariance is
defined as

cov.x; y/ WD E
�
.x � E.x//.y � E.y//>

� 2 R
n�m;

where > denotes the transposition, that is, xy> 2 R
n�m is the dyadic product of

the vectors x 2 R
n and y 2 R

m. We note that V.x/ WD cov.x; x/ 2 R
n�n is called

the variation of the random variable x. Since we have

�
V.x/

�
i;j

D cov
�
x.i/; x. j/

�
for all i; j D 1; : : : ; n;

that is, the entries of V.x/ are the covariances of the elements of x, V.x/ is also
called the covariance matrix of the random variable x.

The following properties will be used frequently.

1. The expectation E is a linear function.
2. The matrix V.x/ is symmetric and positive semidefinite for all random variables

x (whenever it exists).

One often investigates the jointly behaviour of two random variables but the
knowledge of their distribution functions is usually not sufficient. Therefore, we
need to define the joint distribution function of two random variables.

Definition 9.4

1. The joint distribution function Fx;y W Rn � R
m ! R of the vector-valued random

variables x 2 R
n and y 2 R

m is defined as

Fx;y.�; �/ WD P
�
x.1/ < �.1/; : : : ; x.n/ < �.n/; y.1/ < �.1/; : : : ; y.m/ < �.m/

�

for all � 2 R
n, � 2 R

m.
2. The vector-valued random variables x 2 R

n and y 2 R
m are called independent

if

Fx;y.�; �/ D Fx.�/Fy.�/ for all � 2 R
n; � 2 R

m:

3. The vector-valued random variables x 2 R
n and y 2 R

m are called uncorrelated
if

cov.x; y/ D 0 2 R
n�m:

We note that if two random variables are independent, then they are uncorrelated
as well.

In some cases the random variable x is unknown and it is approximated by another
random variable Qx called an estimator of x with the following properties.
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Definition 9.5 Let x be a vector-valued random variable and Qx one of its
estimators.

1. The estimator Qx is called unbiased if E.Qx/ D E.x/.
2. The estimator Qx is called optimal if the trace trE..Qx � x/.Qx � x/>/ is minimal

among all possible estimators.

We note that for a real-valued random variable x 2 R, the optimal estimator Qx
possesses the minimal variance V.Qx/.

The sample (or empirical) mean and the sample covariance are statistics com-
puted from one or more random variables. These will be important later on when
the data assimilation methods are introduced.

Definition 9.6

1. The sample mean Ex1:::xk of the vector-valued random variables x1; : : : ; xk 2 R
n

is defined as

Ex1:::xk WD 1

k

kX

jD1
xj 2 R

n:

2. The sample covariance matrix V of the vector-valued random variables
x1; : : : ; xk 2 R

n is defined as

V WD 1

k � 1
kX

jD1
.xj � Ex1:::xk/.xj � Ex1:::xk /

> 2 R
n�n:

When introducing the basic data assimilation methods used in meteorology, we will
need the following result presented e.g. in Johnson and Wichern [11]

Proposition 9.1 Let x be a vector-valued random variable and x1; : : : ; xk its
mutually independent and identically distributed estimators. Then the following
assertions hold.

1. The sample mean Ex1:::xk is an unbiased estimator of the expectation E.x/.
2. The sample covariance matrix V is an unbiased estimator of the covariance

matrix V.x/.

9.3 Optimal Interpolation and Variational Method in One
Dimension

This section is devoted to the introduction of the basic data assimilation methods
when applied to one-dimensional problems, for example estimating the unknown
true temperature xt 2 R at a point. To do so we make two measurements, that is,
we take the real-valued random variables x; y and look for their (in some sense
best) combination, that is, the real-valued estimator xa. In meteorological data
assimilation, we always suppose the following.
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Assumptions 9.1 Let x and y be real-valued random variables and let xa be an
estimator of the constant true state xt 2 R. We suppose the following.

1. The estimator xa is the linear combination of x and y, that is, xa D ˛1x C ˛2y for
some constants ˛1; ˛2 2 R.

2. The estimator xa is unbiased, that is, E.xa/ D E.xt/ D xt.
3. The estimator xa is optimal, that is, the E..xa � xt/2/ is minimal.
4. The measurements x and y are unbiased, that is, E.x/ D E.y/ D xt.
5. The measurements x and y are uncorrelated, that is, cov.x; y/ D 0.
6. The values of the variances V.x/ and V.y/ are given.

We present first the result of the optimal interpolation being a least mean square
estimate.

Theorem 9.1 Under Assumptions 9.1, the estimator xa has the form

xa D x C V.x/

V.x/C V.y/
.y � x/: (9.1)

Proof Instead of just checking Assumptions 9.1, we present a constructive proof.
From the linearity of the expectation E and the estimator xa in x and y, it follows
that for some ˛1; ˛2 2 R the following identity holds

E.xa/ D E.˛1x C ˛2y/ D ˛1E.x/C ˛2E.y/ D .˛1 C ˛2/xt:

Since the estimator xa is unbiased, we have that ˛1 C ˛2 D 1, hence, we obtain the
form

xa D .1 � ˛/x C ˛y D x C ˛.y � x/

for some constant ˛ 2 R. In order to minimize the variance V.xa/, we note first that
Definition 9.3 implies

V.xa/ D E
�
.xa � E.xa//

2
� D E

�
.xa � xt/

2
�
;

and similarly for V.x/ D E."2x/ and V.y/ D E."2y/, where "x WD x � xt and "y WD
y� xt denote the errors of the measurements x and y, respectively, being real-valued
random variables as well. Hence, we have the identity

V.xa/ D E..xa � xt/
2/ D E

�
.x C ˛.y � x/� xt/

2
�

DE
�
.xt C "x C ˛.xt C "y � xt � "x/� xt/

2
� D E

�
"x C ˛."y � "x//2

�

DE
�
.1 � ˛/2"2x C ˛2"2y � 2˛.1 � ˛/"x"y

�

D.1 � ˛/2E."2x/C ˛2E."2y/� 2˛.1 � ˛/E."x"y/:
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Since the measurements x and y are unbiased and uncorrelated, we have

0 D cov.x; y/ D E
�
.x � E.x//.y � E.y//

� D E..x � xt/.y � xt// D E."x"y/

by Definitions 9.4 and 9.5. This implies the result

V.xa/ D .1 � ˛/2V.x/C ˛2V.y/;

which is minimal if its derivative with respect to the parameter ˛ vanishes:

0 D d
d˛V.xa/ D d

d˛ .1 � ˛/2V.x/C ˛2V.y/ D �2.1� ˛/V.x/C 2˛V.y/

which implies

˛ D V.x/

V.x/C V.y/

completing the proof.

We note that formula (9.1) contains all the information given: the measurements x,
y and their variances V.x/, V.y/. In cases when the formula above is not feasible
to compute (e.g. in more dimensions presented later on), usually a statistical cost
function is minimised. As before, let x and y be estimators for the true state xt with
probability density functions fx and fy, respectively. The analysis xa is then derived
by maximising the maximum likelihood function L W z 7! fx.z/fy.z/ for the real-
valued random variable z. Such methods are called variational methods.

Assumptions 9.2 We suppose that the real-valued random variables x and y are
equally distributed and are of normal distribution with given variances V.x/ and
V.y/.

Theorem 9.2 Under Assumptions 9.1 and 9.2, the solution of the maximum
likelihood method leads to the same solution (9.3) as the optimal interpolation.

Proof Since x and y are of normal distribution, the maximum likelihood function
has the following form for any � 2 R:

L.�/ D fx.�/fy.�/

D 1p
2�V.x/

e� 1
2
.x��/2

V.x/ 1p
2�V.y/

e� 1
2
.y��/2

V.y/

D 1

2�
p
V.x/V.y/

e� 1
2
.x��/2

V.x/ � 1
2
.y��/2

V.y/ :
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The function L is maximal if the absolute value of the exponent

J.�/ WD 1

2

.x � �/2
V.x/

C 1

2

.y � �/2
V.y/

(9.2)

is minimal, that is, its derivative with respect to � vanishes. Hence, we obtain

xa D V.y/

V.x/C V.y/
x C V.x/

V.x/C V.y/
y D x C V.x/

V.x/C V.y/
.y � x/

which completes the proof.

The function J defined by formula (9.2) is called cost function in meteorological
data assimilation. We note that it is a quadratic function.

9.4 Optimal Interpolation and Variational Method in More
Dimensions

In the previous section we have seen how the optimal interpolation and the
variational method work in one dimension. Since in meteorology one aims at
estimating the true state of the whole atmosphere, or at least the true values of
the meteorological variables in the spatial grid points, the measurements x and y
are (quite long) vectors. Hence, in this section we seek the best combination of the
model’s forecast x 2 R

n and the observations y 2 R
m by supposing the same as in

Assumption 9.1 in the appropriate form. To do so, we introduce first the operator
H W Rn ! R

m, called observation operator, which maps the forecast vector x onto
the grid of the observations’ vector y.

Assumptions 9.3 Let x 2 R
n and y 2 R

m be vector-valued random variables with
m � n and xa 2 R

n be an estimator of the constant true state xt 2 R
n.

1. The estimator xa is a linear function of x and y, that is, there exists a matrix
K 2 R

n�m such that

xa D x C K.y � H.x//: (9.3)

2. The estimator xa and the data x, y are unbiased, that is, E.xa/ D E.x/ D xt and
E.y/ D H.xt/, and are of normal distribution.

3. The estimator xa is optimal in the sense of Definition 9.5.
4. The data are uncorrelated, that is, cov.x; y/ D 0.
5. The values of the variances V.x/ and V.y/ are given.
6. The observation operator H D H 2 R

m�n is linear.

Remark 9.1 Let "x WD x � xt 2 R
n and "y WD y � H.xt/ 2 R

m denote the errors of
x and y, respectively, being vector-valued random variables as well. Since the data x
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and y are unbiased, the variances have the form

V.x/ D E
�
.x � E.x//.x � E.x//>

� D E
�
.x � xt/.x � xt/

>
� D E."x"

>

x /

and similarly for V.y/ D E."y"
>

y /. Hence, they are usually called error covariance
matrices. Moreover, since the data x and y are uncorrelated, we have

0 D cov.x; y/ D E
�
.x � E.x//.y � E.y//>

� D E..x � xt/.y � xt/
>/ D E."x"

>

y /

and similarly E."y"
>

x / D 0.

The next question is how to choose the matrix K, called Kálmán gain matrix, in
order to obtain an optimal estimator xa.

Theorem 9.3 Under Assumptions 9.3, the Kálmán gain matrix K in formula (9.3)
has the form

K D V.x/H>.V.y/C HV.x/H>/�1: (9.4)

Proof Since the vector-valued random variables x 2 R
n and y 2 R

m are of normal
distribution, their probability density functions have the following form for any
� 2 R

n:

fx.�/ D 1p
2�jV.x/j e

� 1
2 .x��/>V.x/�1.x��/;

fy.�/ D 1p
2�jV.y/j e

� 1
2 .y�H�/>V.y/�1.y�H�/;

where j � j denotes the determinant of the corresponding matrix. Thus, the maximum
likelihood function reads as

L.�/ WD fx.�/fy.�/

D 1p
2�jV.x/jjV.y/j e

� 1
2 .x��/>V.x/�1.x��/� 1

2 .y�H�/>V.y/�1.y�H�/:

The function L is maximal if the absolute value of the exponent

J.�/ WD 1
2
.x � �/>

V.x/�1.x � �/C 1
2
.y � H�/>

V.y/�1.y � H�/ (9.5)

is minimal, that is, if its derivative vanishes:

d
d� J.�/ D V.x/�1.x � �/C H>

V.y/�1.y � H�/ D 0:

Hence, we obtain

xa D x C �
V.x/�1 C H>

V.y/�1H
��1

H>
V.y/�1.y � Hx/:
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From the identities

�
V.x/�1 C H>

V.y/�1H
��1

H>
V.y/�1 D V.x/H>

�
V.y/C HV.x/H>

��1

and

H>
V.y/�1

�
HV.x/H> C V.y/

� D �
V.x/�1 C H>

V.y/�1H
�
V.x/H>;

we have that

�
V.x/�1 C H>

V.y/�1H
��1

H>
V.y/�1 D V.x/H>

�
V.y/C HV.x/H>

��1
;

which completes the proof.

Theorem 9.4 Under Assumptions 9.3, for any matrix K 2 R
n�m, the analysis error

covariance matrix V.xa/ is given by

V.xa/ D �
I � KH

�
V.x/

�
I � KH

�> C KV.y/K>: (9.6)

If the Kálmán gain matrix K has the special form defined in (9.4), the expression
becomes

V.xa/ D �
I � KH

�
V.x/: (9.7)

Proof From formula (9.3), we obtain for the errors that

"a � "x D xa � xt � x C xt D K.y � Hx/

D K."y C Hxt � Hx/ D K."y C H.xt � x//

D K."y � H"x/;

which implies

"a D "x C K"y � KH"x D .I � KH/"x C K"y:

Hence, the error covariance matrix V.xa/ of the analysis can be expressed as

V.xa/ D cov."a/ D E
�
."a � E."a//."a � E."a//

>
�

DE
�
..I � KH/"x C K"y/..I � KH/"x C K"y/

>
�

D.I � KH/E."x"
>

x /.I � KH/> C .I � KH/E."x"
>

y /K
>

C KE."y"
>

x /.I � KH/> C KE."y"
>

y /K
>:
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Remark 9.1 further implies

V.xa/ D �
I � KH

�
V.x/

�
I � KH

�> C KV.y/K>

D V.x/� V.x/H>K> � KHV.x/C KHV.x/H>K> C KV.y/K>

D V.x/� KHV.x/� KHV.x/C KHV.x/H>K> C KV.y/K> (9.8)

D .I � KH/V.x/C 4

with 4 WD �KHV.x/ C KHV.x/H>K> C KV.y/K>. We only have to prove now
that 4 D 0 hold. From formula (9.4) we have

K D V.x/H>
�
HV.x/H> C V.y/

��1 D V.x/>H>
�
.HV.x/H> C V.y//�1

�>
;

which implies

K> D �
HV.x/H> C V.y/

��1
HV.x/

and

HV.x/ D �
HV.x/H> C V.y/

�
K> D HV.x/H>K> C V.y/K>:

Then from the identity

KHV.x/ D KHV.x/H>K> C KV.y/K>

we finally conclude the proof with

0 D �KHV.x/C KHV.x/H>K> C KV.y/K> D 4:

By inserting the form (9.4) of K into formula (9.6), one obtains the identity (9.7)
which was to prove.

Besides the specific form (9.3) of the analysis xa, we will show its optimality as
well. To do so we will need the following technical Lemma.

Lemma 9.1 Let g W Rn�m ! R be a continuously differentiable function, and A 2
R

m�a, B 2 R
m�m be arbitrary fixed matrices for some m; a 2 N. Then the following

holds for its derivative for any K 2 R
n�m.

1. For g.K/ D trKA one has @g
@K D A>.

2. For g.K/ D trKBK> one has @g
@K D KB> C KB.

Proof For the whole proof we refer to Schönemann [16]. For the conviction of the
reader we note that since the function g is continuously differentiable with respect
to K D .Kjk/j;k 2 R

n�m (j D 1; : : : ; n and k D 1; : : : ;m), its derivative can be
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expressed as

@g

@K
D

0

B
B
@

@g
@K11

: : : @g
@K1m

::: : : :
:::

@g
@Kn1

: : :
@g
@Knm

1

C
C
A : (9.9)

We can now state the main result of this section.

Theorem 9.5 Under Assumptions 9.3, the analysis xa, given by the formula (9.3)
with the Kálmán gain matrix (9.4), is optimal in the sense of Definition 9.5.

Proof The analysis xa is optimal if the trace of the matrix

E..xa � xt/.xa � xt/
>/

is minimal. Since xa is an unbiased estimate, this is equivalent to the minimisation
of trV.xa/. Formula (9.7) in Theorem 9.4 implies that

V.xa/ D .I � KH/V.x/;

therefore, its trace is given in (9.8) as

trV.xa/ D trV.x/C trKHV.x/H>K> � 2 trKHV.x/C trKV.y/K>:

Since the expression above is minimal if its derivative with respect to the matrix
K vanishes, we need to compute @ trV.xa/

@K . We use Lemma 9.1/2 first for the matrix
B WD HV.x/H>, and obtain

@ trKHV.x/H>K>

@K
D K.HV.x/H>/> C KHV.x/H>

D .HV.x/H>K>/> C KHV.x/H>:

Similarly, for the choice B WD V.y/, Lemma 9.1/2 implies

@ trKV.y/K>

@K
D .V.y/K>/> C KV.y/:

Finally, for the matrix A WD HV.x/, Lemma 9.1/1 implies

@ trKHV.x/

@K
D V.x/>H>:
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So the derivative of trV.xa/ is given by

@ trV.xa/

@K
D.HV.x/H>K>/> C KHV.x/H> C KV.y/

C .V.y/K>/> � 2V.x/>H>

D2KHV.x/H> C 2KV.y/� 2V.x/H>;

which is zero if and only if

K D V.x/H>.HV.x/H> C V.y//�1

holds, which completes the proof.

Since formula (9.3) together with formula (9.4) is the best linear unbiased estimate,
this method is called BLUE from the initials. We note that if the observation operator
H is nonlinear but linearisable around xa (i.e. there exists H 2 R

m�n being the first
derivative of H at xa) then formula BLUE reads as

xa D x C K.y � H.x//

and together with (9.4) yield an approximatively optimal estimate to xa, being
however the only analysis which is possible to compute in practice in this way.

9.5 Kálmán Filter Techniques

In the previous section we presented the two basic data assimilation methods used
in meteorology. From formulae BLUE (9.3) and (9.4) one can see how important
role the error covariance matrices V.x/ and V.y/ play. Their computation, however,
is a challenging task in practice. As a first attempt, they are usually supposed to
be constant in time, however, in reality they may strongly depend on the weather
situation. In the present study we focus on V.x/ and assume that V.y/ is constant
in time. This can be supposed, because the spatial propagation of that part of xa
which causes the changes to x (called analysis increment) is based on V.x/ solely.
We present now a procedure due to Kálmán [12] to update the value of the error
covariance matrix V.x/ of the model’s forecast in each time step. To do so, we need
to introduce a model operator. Since the model operator describes time-dependent
processes, we denote it by Mi W Rn ! R

n acting between the time levels i and iC1.
It contains the spatially and temporally discretised version of the partial differential
equations describing the atmosphere’s dynamics and the physical parametrisations.
By applying the BLUE data assimilation method, the numerical forecast xfiC1g at
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time level i C 1 is then obtained from the analysis xfig
a valid at the ith time level as

xfiC1g D Mi.x
fig
a /;

xfiC1g
a D xfiC1g C KiC1.yfiC1g � H.xfiC1g//

for all i 2 N, where x.0/a is a given initial value (e.g. from another numerical weather
prediction model) and the Kálmán gain matrix is defined by formula (9.4), that is,

Ki D V.xfig/H>

i

�
V.yfig/C HiV.x

fig/H>

i

��1

for all i 2 N, where Hi denotes the linear observation operator. We note that if one
takes the derivative of the nonlinear observation operator H at xfig

a instead of H
itself, the method described above only leads to an approximation to xfiC1g

a at the ith

time level. We denote the model’s error at time level i by "fig
M and its error covariance

matrix by V.Mi.x
fig
t // WD E."

fig
M."

fig
M/>/. As before, we suppose that the various

errors are uncorrelated.

Assumptions 9.4 We suppose that the model’s error and the error of the other
data x and y are uncorrelated. We further suppose that the model operator and
the observation operator are linear for all i 2 N, that is, Mi D Mi 2 R

n�n and
Hi D Hi 2 R

m�n.

In what follows we present the Kálmán Filter method for updating the error
covariance matrix.

Theorem 9.6 Under Assumptions 9.4, the update of the forecast’s error covariance
matrix reads as

V.xfiC1g/ D MiV.x
fig
a /M

>

i C V.Mix
fig
t / for all i 2 N: (9.10)

Proof We consider the following two relations:

8
<

:

xfiC1g D Mix
fig
a ;

xfiC1g
t D Mix

fig
t � "fig

M;

where xfig
t denotes the (unknown) true state at the ith time level. By subtracting the

second equation from the first, one obtains

xfiC1g � xfiC1g
t D Mix

fig
a � Mix

.t/
t C "

fig
M:

Due to the linearity of the observation and the model operators, we can write

xfiC1g � xfiC1g
t D Mi

�
xfig
a � x.t/t

�C "
fig
M:
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Since xfig
a � x.t/t D "fig

a for all i 2 N, we have

V.xfiC1g/ DE
�
"fiC1g
x ."fiC1g

x />
�

DE
��
Mi
�
xfig
a � x.t/t

�C "
fig
M
��
Mi
�
xfig
a � x.t/t

�C "
fig
M
�>�

DE
��
Mi"

fig
a C "

fig
M
��
Mi"

fig
a C "

fig
M
�>�

DMiE
�
"fig
a ."

fig
a /

>
�
M>

i C E
�
"M">

M
�

C E
�
"M."fig

a /
>
�
M>

i C MiE
�
"fig
a ."

fig
M/>

�
:

Since the different kinds of data are uncorrelated and from Definition 9.3, we obtain
for all i 2 N that

V.xfiC1g/ D MiV.x
fig
a /M

>

i C V.Mix
fig
t /;

which completes the proof.

We remark that if the model operator Mi is nonlinear but linearisable, for-
mula (9.10) stays valid but gives only an approximation to the update of the error
covariance matrix. We note that in meteorologyMi and M>

i are called tangent linear
and adjoint model, respectively.

Formula (9.10) seems to be promising but it is absolutely not feasible for
meteorological purposes. Due to the large number of grid points, n � 107, that
is, the size n times n of the matrix Mi and its transpose makes the matrix product
impossible to compute in a reasonable time. Hence, some other procedures are
needed to approximate its effect. All the attempts in this direction originate from
the ensemble predictions so far. Instead of taking only one initial analysis xfig

a , let us

consider k 2 N pieces of them, that is, we take xfig
a;j for j D 1; : : : ; k. At the end of the

section we list some techniques how they are generated in practice. Proposition 9.1
implies that the error covariance matrix V.xfig

a / of the analysis can be estimated by

V
fig
xa;1:::xa;k

WD 1

k � 1

kX

jD1

�
xfig
a;j � 1

k

kX

jD1
xfig
a;j

��
xfig
a;j � 1

k

kX

jD1
xfig
a;j

�>

(9.11)

for all i 2 N. Formula (9.11) is the basic of all presented methods approximating
the effect of the Kálmán Filter (9.10). In what follows we will sometimes drop the
index of the time level in order to ease the notation.

Ensemble Kálmán Filter enables us to update the forecast’s error covariance
matrix by multiplying smaller matrices, that is, it desires much less computational
effort than the original Kálmán Filter (9.10), see e.g. in Houtekamer and Mitchell
[10] and Evensen [5]. Given the analysis ensemble members xfig

a;j for j D 1; : : : ; k
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we compute their sample mean from Definition 9.6 as

E
fig
xa;1:::xa;k WD 1

k

kX

jD1
xfig
a;j for all i 2 N:

We define the matrices Zfig
a ;Z

fig
x 2 R

n�k of the analysis and forecast perturbations,
respectively, such that they contain the vectors

1p
k�1
�
xfig
a;j � E

fig
xa;1:::xa;k

�
and 1p

k�1
�
xfig
j � E

fig
x1:::xk

�

in their jth column, respectively, for all j D 1; : : : ; k and i 2 N. Proposition 9.1
implies that

V.xfig
a;j / � V

fig
xa;1:::xa;k

D Zfig
a .Z

fig
a /

> 2 R
n�n and

V.xfig
j / � V

fig
x1:::xk D Zfig

x .Z
fig
x /

> 2 R
n�n

for any j D 1; : : : ; k, where the approximation sign means an unbiased estimate.
The forecast ensemble is now generated by updating the analysis perturbations by
the model, that is,

ZfiC1g
x D MiZ

fig
x for all i 2 N: (9.12)

Then we automatically obtain formula (9.10) for negligible V.Mix
fig
t / as

V.xfiC1g/ D ZfiC1g
x

�
ZfiC1g
x

�> D MiZ
fig
a

�
Zfig
a Mi

�>

D MiZ
fig
a

�
Zfig
a

�>
M>

i D MiV.x
fig
a /M

>

i :

Ensemble Kálmán Filter’s advantage is that one needs to integrate with the model
only k times in formula (9.12). We note that in the original setting the ensemble
members xa;j stem from the application of multiply analyses, i.e., application of
the BLUE estimate (9.3) multiple times with a set explicitly perturbed observations
(with a perturbation size in the range of the observation error variances) and a set
of implicitly perturbed forecasts. In this case the estimate is optimal. If the model
Mi is nonlinear but linearisable, formula (9.12) reads as ZfiC1g

x D Mi.Zfig
x /, and

formula (9.10) gives only an approximation to the error covariance matrix.
Ensemble Transform Kálmán Filter is a technique which not only updates the

forecast’s error covariance matrix but also generates ensemble members for the next
assimilation step. It is based on the idea that, as in the case of Ensemble Kálmán
Filter, there is a relation between the analysis’s and the forecast’s perturbations.
From the analysis ensemble, the new forecast members xfiC1g

j are obtained by

integrating with the model. By introducing the matrix Zfig
x 2 R

k�k as before, we
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are after the transformation matrix T 2 R
k�k for which ZfiC1g

a D Zfig
x Tfig holds for

all i 2 N. Bishop et al. [1] showed that T D V.�C I/�1=2 with

Z>

x H
>
V.y/�1HZx D V�V>:

Thus, matrix V contains the normalised eigenvectors and � the eigenvalues of the
matrix on the left-hand side. Therefore, an eigenvalue decomposition has to be
solved in each time step. By choosing a control member xfig

a;1, the columns of the

matrix Zfig
a contain the perturbations to be added to xfig

a;1 in order to generate the

ensemble members. Given the analysis ensemble xfig
a;j for j D 1; : : : ; k and i 2 N,

the algorithm of the Ensemble Transform Kálmán Filter together with BLUE data
assimilation (9.3) and optimal Kálmán gain matrix (9.4) is the following for all
i 2 N:

xfiC1g
j WD Mi.x

fig
a;j / for j D 1; : : : ; k

�
ZfiC1g
x

�
j
WD 1p

k�1
�
xfiC1g
j � E

fiC1g
x1:::xk

�
for j D 1; : : : ; k

.ZfiC1g
x />H>

iC1V.yfiC1g/�1HiC1ZfiC1g
x D VfiC1g�fiC1g.VfiC1g/>

TfiC1g WD VfiC1g.�fiC1g C I/�1=2

ZfiC1g
a WD ZfiC1g

x TfiC1g

V
fiC1g
x1:::xk WD ZfiC1g

x .ZfiC1g
x />

KiC1 WD V
fiC1g
x1:::xkH

>

iC1
�
V.yfiC1g/C HiC1VfiC1g

xk :::xkH
>

iC1
��1

xfiC1g
a;1 WD xfiC1g

1 C KiC1
�
yfiC1g � H.xfiC1g

1 /
�

xfiC1g
a;j WD xfiC1g

a;1 C �
ZfiC1g
a

�
j

generating the new analysis ensemble members xfiC1g
a;j and the updated approximate

value VfiC1g
x1:::xk of the forecast’s error covariance matrix.

We note again that the same procedure works for nonlinear model and observa-
tion operators Mi and Hi as well, however, it only leads to an approximative time
evolution of the error covariance matrix. For more methods in the nonlinear case we
refer to Sect. 9.7.

Previously, we supposed that there existed k pieces of analysis perturbations xfig
a;j ,

j D 1; : : : ; k being valid at time level i. The question arises how they are generated
in practice. The perturbation of the observations has already been mentioned. One
can of course randomly perturb the actual analysis xfig

a field itself. The time-lagged
approach uses a mixture of two analyses initiated from two different time levels
but being valid at the same time level, see e.g. in Hoffman and Kalnay [9]. This
latter techniques will, however, not necessarily lead to perturbations being near to
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the directions along that the model stretches the most, which would be one of the
most beneficial requirements.

To this end, the breeding method was initiated where some initial random
perturbations are added to the nonlinear model, and these models integrate the same
initial analysis field xf0g

a . The solution to the unperturbed model is then subtracted
from the other solutions at each step, and the appropriately scaled differences are
added to the unperturbed solution again to generate the new analysis perturbations
for the next step. After some time, breeding method yields the so-called bred vectors
approximating the directions in phase space where the instabilities grow fastest. The
technique is described e.g. in Tóth and Kalnay [18, 19], and Kalnay [13].

Another popular perturbation generating technique is the method of singular
vectors. The idea behind the method is the following. One considers a spatially
discretised partial differential equation leading to an ordinary differential equation
of the form d

dt x.t/ D N .x.t//, t � t0 for the continuously differentiable functions
x W RC

0 ! R
n, N W Rn ! R

n for some n 2 N. If the initial value x.t0/ D x0 is
oppressed by a certain error e0, a first-order approximation to the time evolution of
the error term e.t/ can be obtained from the linearised equation d

dt e.t/ D J .t/e.t/
with the initial value e.t0/ D e0, where J .t/ D N 0.x.t// denotes the Jacobian of N
taken at the state x.t/ for all t � t0. Then there exists a matrix �.t/ 2 R

n�n such
that the solution to this problem has the form x.t/ D e�.t�t0/x0 for all t � t0. Since
the matrix �.t/ is difficult to compute exactly (it is the sum of infinitely many terms
containing the integral of various commutators of J .t/), certain approximation is
computed in practice (e.g., Magnus method). By choosing the initial error term such
that ke0k D " for some " > 0, that is, being on the surface on the n dimensional
sphere of radius ". Our aim is now to determine how this sphere evolves subject the
nonlinear model N . To this end, we denote the propagator by E.t; t0/ WD e�.t�t0/

and the scalar product in R
n by h�; �i. We compute now

ke.t/k2 D kE.t; t0/e0k2 D hE.t; t0/e0;E.t; t0/e0i D hE.t; t0/>E.t; t0/e0; e0i:

Due to the norm inequality we also have that

ke.t/k2 D kE.t; t0/e0k2 � kE.t; t0/k2ke0k2 D "2kE.t; t0/k2:

Altogether we have hE.t; t0/>E.t; t0/e0; e0i � "2kE.t; t0/k2, that is,

hE.t/e0; e0i � 1 (9.13)

with the matrix

E.t/ D 1

"2kE.t; t0/k2E.t; t0/
>E.t; t0/:

Formula (9.13) gives the equation of an ellipsoid. The directions of its axes are given
by the eigenvectors of the matrix E.t/. These directions give, namely, the directions
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along which the nonlinear model N stretches/compresses the error function e.t/
initially lying on the sphere. When generating the analysis perturbations, one is
interested in that directions where the stretching the larger is. The direction of the
largest stretching is given by the eigenvector belonging to the largest eigenvalue
of the matrix E.t/, and so on. Since the eigenvectors/eigenvalues of the matrix
E.t; t0/>E.t; t0/ are called singular vectors/values of the matrix E.t; t0/, we call
this procedure the method of singular vectors. In order to get the singular vectors
belonging to the leading singular values, one needs to integrate with the tangent
linear model forward in time and then with the adjoint model backward in time
many times, see e.g. in Errico [4].

We note, however, that in numerical weather prediction, the method of singular
vector is always combined with either ensemble analyses with perturbed observa-
tions (EDA) or with perturbations generated by the Ensemble Transform Kálmán
Filter. As we have already mentioned, Ensemble Transform Kálmán Filter generates
not only the forecast’s error covariance matrix V

fiC1g but the analysis perturbations
as well. Comparisons between breeding method and Ensemble Transform Kálmán
Filter, between singular vectors and EDA, and between EDA and Ensemble
Transform Kálmán Filter are presented in Wang and Bishop [2, 24], and [7],
respectively.

9.6 Numerical Experiments

In order to illustrate the use of the methods introduced above, we present the results
of numerical experiments done for simple models. The reason of choosing these
models for the experiments is twofold. On one hand, they are of low dimensions with
n D 1 and n D 3, respectively, therefore, Kálmán Filter can directly be applied and
there is no need to apply one of its approximations (such as Ensemble or Ensemble
Transform Kálmán Filter). On the other hand, the exact solution of the first system
is known, therefore, the behaviour of the data assimilation methods can easily be
explained. Although the second system does not admit a known exact solution,
it shares certain properties with the meteorological models (such us nonlinearity,
sensitivity to the initial values, etc.), making it a perfect test model to study the
performance of data assimilation methods.

9.6.1 Linear Iteration

We consider the system xfiC1g D xfig for xfig 2 R and i 2 N with xf0g D 1. One can
see that the true state equals xt D xf0g D 1. We suppose that the observations are
unbiased and normally distributed perturbations of the true state:

yfig D xt C N.0;V.y// for all i 2 N (9.14)
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where V.y/ D 0:3 is given. The simulations aim at illustrating the effect of the
forecast’s error covariance matrix V.x/. Since V.x/ represents the reliability of the
forecast, we can study how the solution changes depending on how much we rely on
the forecast. Another goal is to show the advantage of Kálmán Filter, therefore, we
present the same numerical experiments using BLUE (9.3)(9.4) and BLUE together
with Kálmán Filter (9.10). This enables us to study how the analysis, being initially
xf0g
a D 2 far away from the true state xt D 1, evolves in time in the two different

cases.
In Figs. 9.1, 9.2, and 9.3 the numerical results are shown for three values of the

error covariance matrix V.x/ D 10�4; 10�2; 10, respectively. Figure 9.1 illustrates
the case when we trust the forecast very much: The results of both the BLUE and
the Kálmán Filter methods are far from the true value xt D 1 and follow the initial
(wrong) analysis value xf0g

a D 2. Figure 9.2 corresponds to the case when we treat
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Fig. 9.1 Linear iteration with V.x/ D 10�4
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Fig. 9.2 Linear iteration with V.x/ D 10�2
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Fig. 9.3 Linear iteration with V.x/ D 10

the observations more reliable than in the latter case but still less reliable than the
forecast. One can see that we obtain better results: Both methods converge to the
true value xt D 1. Figure 9.3 illustrates the case when V.x/ has a much greater
initial value than V.y/, that is, we believe the observations much more reliable than
the forecast. Then the numerical results of the BLUE method completely follows
the observations, while the Kálmán Filter method updates V.x/ in a perfect way: Its
result finds the true solution very quickly.

9.6.2 Lorenz System

Our second example is the nonlinear three-dimensional Lorenz system. In 1963
Edward Lorenz developed a simplified mathematical model for atmospheric con-
vection in [14]. The model is a system of three ordinary differential equations now
known as the Lorenz equations:

d
dt x.t/ D .y.t/ � x.t//; (9.15)

d
dt y.t/ D x.t/.� � x.t// � y.t/; (9.16)

d
dt x.t/ D x.t/y.t/ � ˇx.t/; (9.17)

where x; y; z W .0;1/ ! R are the unknown functions, and ; �; ˇ 2 R are
parameters with specific values  D 10; � D 28; ˇ D 8

3
. Since its exact solution is

not known, we solve the system numerically by using the first-order Euler method
and the fourth-order Runge–Kutta method with time step �t D 0:01. We consider
the latter as the observations y at each time step. The solution with the Euler method
is considered as the model’s forecast. In the simulations we fix the covariance
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Fig. 9.4 The different trajectories in the phase space with parameters V.Mi.xt// D 10�2 , t D 2,
N D 10

matrices as V.y/ D .�t/8 � I 2 R
3�3 and V.x/ D 1

2
V.y/. Our aim is to investigate

the role of the covariance matrix of the model’s error V.Mi.xt//, therefore, we set
it to the following three value: V.Mi.xt// D 1; 10�2; 10�10. As before, we apply
BLUE (9.3), (9.4) with and without Kálmán Filter (9.10).

Figure 9.4 shows the trajectories in the phase space .x; y; z/ from the initial point
.2; 5; 10/ by applying the fourth-order Runge–Kutta (RK4) method and the explicit
Euler method with data assimilation method BLUE with and without Kálmán Filter.
One can immediately see that the three solutions differ, a more detailed study will
follow. We analyse first how the solution depends on the frequency of the data
assimilation, that is, on the number N of the time steps after which the analysis
xa is computed. Figure 9.5 shows the results when the data assimilations methods
are performed in each time step. One can see that all the three trajectories are
closed to each other at the beginning, however, the Kálmán Filter method performs
better then the BLUE method alone. Figure 9.6 illustrates the case when the data
assimilation methods are performed only at every 10th time step. One can see
that both methods have greater distance form the observations (RK4) as before.
Furthermore, they experience “jumps” after each 10 time steps when their solutions
are forced to follow the reliable observations by the data assimilation procedure. The
same phenomena can be observed in Fig. 9.7 when data assimilation is performed
in each 50th time steps. Both Figs. 9.6 and 9.7 show that the solutions cover each
other at the beginning, hence, the Kálmán Filter benefits from the update of the error
covariance matrix V.x/ only after the first data assimilation step.

In Fig. 9.8 the relative error of BLUE

errfig WD kxfig
a � yfigk2
kyfigk2
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Fig. 9.5 Lorenz system with
data assimilation frequency
N D 1

RK4

Euler+Blue

Euler+Blue+Kalman

Fig. 9.6 Lorenz system with
data assimilation frequency
N D 10

RK4

Euler+Blue

Euler+Blue+Kalman

with and without Kálmán Filter is shown. One can see that the Kálmán Filter always
performs better then the BLUE alone.

We investigated the effect of the model’s error covariance matrix V.Mi.xt//
as well. Figure 9.9 shows our results for the values V.Mi.xt// D 1, 10�8, and
10�16, respectively. One can see that in the first case the solutions follow almost
the same trajectories. The explanation is that in this case V.Mi.xt// D 1, that is,
the model is considered unreliable, therefore, the solutions rely on the measurements
(obtained by the fourth-order Runge–Kutta method RK4). If the value of V.Mi.xt//
is decreased, the data assimilation methods treat the model more reliable and try to
follow its trajectory. In the case V.Mi.xt// D 10�16 the situation is clear: The
BLUE method still follows the measurements (because V.Mi.xt// does not play
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Fig. 9.7 Lorenz system with data assimilation frequency N D 50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
:)

t

re
la

tiv
e 

er
ro

r

 

 

Blue

Blue+Kalman

Fig. 9.8 Relative error of the BLUE method with and without Kálmán Filter technique

any role in its computation), however, the Kálmán Filter method tries to converge to
the model’s trajectory.

The explanation of the expected behaviour is the following. The measurements
stem from the use of the fourth-order Runge–Kutta method being more accurate
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Fig. 9.9 Lorenz system with V.Mi.xt// D 1; 10�8; 10�16, respectively

than the first-order Euler method which provides the model’s forecast. Without
applying any data assimilation methods, the model’s forecast (indicated by “Euler”
in the Figures) differs very much from the (more accurate) measurements (indicated
by “RK4” in the Figures). Hence, contrary to the case of the models used in
numerical weather prediction where the true state of the atmosphere is somewhere
“between” the measurements and the model’s forecast, in this setting it is clearly
known that the (unknown) exact solution is nearer to the measurements’ trajectory.
Application of a data assimilation method results in a more accurate solution which
approaches therefore the trajectory of the measurements. Exactly this scenario can
be observed in Fig. 9.9: Both data assimilation methods (BLUE and BLUE with
Kálmán Filter) improves the model’s forecast. In the third case, when the inaccurate
model is undeservedly trusted too much (i.e. its error covariance matrix is small,
V.Mi.xt// D 10�16), the Kálmán Filter follows the trajectory of the Euler method
causing a significant error in the analysis.

The results above illustrate that the use of a flow-dependent data assimilation
method (e.g. Kálmán Filter or its approximate versions) itself is not enough for
improving the weather forecast, setting the appropriate value of the model’s error
covariance matrix V.Mi.xt// is important as well. Since the model’s error includes
not only the numerical error originated from the space and time discretisation
of the corresponding partial differential equations, but also the error done by
the parametrisations of various physical processes and the error of the boundary
conditions, very little is known about the its covariance matrix V.Mi.xt//. It is
usually modelled by adding some noise with zero mean to the forecast (or to each
member of the forecast ensemble). Although there are several results related, see
e.g. in Raynaud et al. [15], Trémolet [20], Düben and Palmer [3] and the references
therein, the further study of this issue is highly anticipated.

The studies presented above aim at giving an insight how the parameters of
the data assimilation methods effect the solution’s accuracy. We showed that the
analysis xa depends very much on the frequency of the assimilation step and on the
corresponding error covariance matrices. Hence, their right choice is crucial for the
efficient use of data assimilation methods.
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9.7 Outlook: Nonlinear Data Assimilation

We have seen previously that the solution to the linear data assimilation prob-
lem (9.3) is known and given in formula (9.4). The solution to the nonlinear data
assimilation problem, that is, when the model and observation operators M and H
are nonlinear, is given and studied e.g. by van Leeuven and Evensen in [21]. Since
its derivation is based on Bayes’ theorem, and in practice the probability density
functions can be far from being Gaussian, there is a demand for new techniques
which (1) do not use linearisation and (2) lead to a nonlinear analysis.

In this section we present some ideas how to proceed when the system is not
linear. For a more detailed introduction, we refer the reader to van Leeuven [23].
The most common approaches of treating the nonlinearity are the use of incremental
variational analysis and the particle filter methods.

We present the incremental variational analysis by applying it to the four-
dimensional variational analysis (4D-Var), see e.g. in Talagrand and Courtier [17],
Trémolet [20], which belongs to the class of variational data assimilation techniques
presented in Sect. 9.4. Its cost function is similar to that presented in (9.5), however,
it takes into account the effect of the various observations at their proper time levels.
We consider the nonlinear model Mi, the nonlinear observation operator Hi, the
observations yfig at the ith time level, and the previous forecast x being valid at the
time level t0. Then the cost function J.�/ of the 4D-Var method reads as

J.�0/ W D 1
2
.x � �/>

V.x/�1.x � �0/

C 1
2

IX

iD0
.yfig � Hi.�

fig//>
V.y/�1.yfig � Hi.�

fig//
(9.18)

with �fig subject the nonlinear model �fig D Mi�1.�fi�1g/, i D 1; : : : ; I. By denoting
ı0 WD K.y � H.x//, the identity (9.1) reads as xa D x C ı0, hence, formula (9.18)
can be rewritten as

J.ı0/ WD 1
2
ı>

0 V.x/
�1ı0 C 1

2

IX

iD0
.yfig � Hi.�

fig//>
V.y/�1.yfig � Hi.�

fig//:

The terms in the sum can be approximated by using the linearisation of the nonlinear
operators Mi and Hi around the state �fi�1g WD �fig � ıfi�1g with the vector-valued
random variables ıi 2 R

n, i D 0; : : : ; I:

Mi.�
fig/ � Mi�1.�fi�1g/C M0

i�1.�fi�1g/ıfi�1g; i D 1; : : : ; I;

Hi.�
fig/ � Hi�1.�fi�1g/C H0

i�1.�fi�1g/ıfi�1g; i D 1; : : : ; I:
(9.19)

Putting these formulas together, one obtains an approximative cost function those
minimisation leads to an approximation to Qı0. In order to take the linear operators
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M0
i.�

fig/ and H0
i.�

fig/ at the proper time levels, one needs an outer loop to compute
the linearisations (9.19) at each time level.

The inner loop contains then the minimisation of the cost function, that is, we
seek that state xa WD � for which d

d� J.�/ D 0. This problem can be rewritten

in the form Aı D b where matrix A contains the linear operators M0
i.�

fig/ and
H0

i.�
fig/ as well, and the vector b contains the terms yfig � Hi.�

fig/. Such problems
are usually solved by the conjugate gradient method which global error depends
on the condition number � WD kAkkA�1k, that is, it converges fast if � is small
enough. There exist several preconditioning technics used to reduce the condition
number of the problem and to obtain faster convergence, see e.g. in Faragó and
Karátson [6]. A survey about the (pre)conditioning of the model operators appearing
in meteorological modelling can be found e.g. in Haben et al. [8].

Another approach to treat nonlinearity is the particle filtering. The idea behind it
is already presented in Sect. 9.5 about Ensemble Kálmán Filter, that is, the model’s
probability density function is approximated by using random ensemble members
(also called as particles). More precisely, in this case we need to approximate
the conditional density function which measures the probability density of the
atmosphere’s actual state given the specific observations. Then the conditional
density function is represented as the weighted sum of Dirac functions positioned
at the various particles (i.e., model states). Intuitively, we choose various particles
and make them propagate with time subject the nonlinear model. For the next step
we consider only those particles which “arrived” near to the observations, and by
a resampling procedure we generate new particles from them. The weights in the
sum correspond to the particles’ distance from the observations. Then we repeat
the cycle with the same amount of particles as in initial step. Since the derivation
of particle filtering is based on the conditional probability theory (e.g. Bayesian
statistics, stochastic filtering, Monte–Carlo methods), this is out of the scope of the
present chapter, however, a detailed introduction can be found in van Leeuven [22].
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Chapter 10
Analysis of the Data Assimilation Methods
from the Mathematical Point of View

Tamás Szentimrey

Abstract The Bayes estimation theory is the mathematical background of the data
assimilation methods in meteorology. According to the Bayes theorem, the condi-
tional density function of atmospheric state, given observations and background,
can be expressed by the conditional density function of atmospheric state, given
background, and the conditional density function of observations, given atmospheric
state. Assuming joint normal distribution and certain premise for the conditional
expectation of atmospheric state, given background, can be obtained the variation
cost function applied at the data assimilation methods. We present some discussion
of the above premise for conditional expectation, furthermore some examination
of the background and observation error covariance matrices at the cost function.
These terms are key issues at the data assimilation methods and we think them to be
related to the climate statistical parameters.

Keywords Bayes estimation • Conditional covariance matrix • Conditional
expectation • Cost function • Data assimilation • Interpolation • Normal
conditional density function

10.1 Introduction

The author is a mathematician who is interested to develop adequate mathematics
for the statistical climatology in accordance with the theory of probability and
mathematical statistics. The preferred topics are the homogenization and quality
control of data series, spatial interpolation etc. that with their connections between
each other are presented on Fig. 10.1. Our software based on the developed math-
ematics are MASH and MISH. The software package MASH (Multiple Analysis
of Series for Homogenization; [4, 5]) can be applied for homogenization of daily
and monthly data series of several meteorological variables e.g. temperature and
precipitation. The software package MISH (Meteorological Interpolation based on
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Fig. 10.1 Block diagram for the possible connections between various basic meteorological topics
and systems

Surface Homogenized Data Basis; [3, 6]) is suitable for spatial interpolation of the
meteorological variables.

The meteorological data assimilation is also presented on the block diagram
of Fig. 10.1 since it can be considered as a cross-border procedure between the
climatology and the forecast or in respect of methodology it is between math-
ematical statistics and the dynamics modelling. However the mathematical basis
of the data assimilation is the probability theory, namely the Bayesian estimation.
Therefore we will examine this basis together with the analysis of the most relevant
mathematical properties, theorems since the theoretical results make possible to
develop the procedures applied in the practice. The [2] is recommended for an
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introduction to a general overview of the various data assimilation models and
procedures.

10.2 Data Assimilation Model Applied in the Meteorological
Practice

10.2.1 The Cost function of Data Assimilation

The purpose of data assimilation is to determine a best possible atmospheric state
using observations and short range forecasts. The typical way applied in practice to
estimate the true atmospheric state is the minimization of the following variational
cost function:

J.x/ D .x � xb/
TB�1 .x � xb/C .y0 � Hx/TR�1 .y0 � Hx/ ; (10.1)

where the vectors and the parameter matrices are as follows:

x D Œx1; x2; ::::; xn�
T: the atmospheric state, the realization of the n-dimensional

random vector variable X D ŒX1; : : : ;Xn�
T;

xa: analysis i.e. the solution of the minimization, xa D arg min
x

J.x/ ;

xb D Œxb1; xb2; ::::; xbn�
T: the background i.e. short range forecasts, the realization

of the n-dimensional random vector variable Xb D ŒXb1; : : : ;Xbn�
T;

y0 D Œy01; y02; ::::; y0m�
T: the observations of the atmospheric state, the realization

of the m-dimensional random vector variable Y0 D ŒY01; : : : ;Y0m�
T;

H: forward operator,
B: background error covariance matrix,
R: observation error covariance matrix.

10.2.2 Problems with the Cost Function

The cost function (10.1) is known and referred by the forecasting community as
it is based on the Bayesian estimation theory (e.g. [1] and [7]). However as we
will see that there are some mathematical omissions and simplifications at the
cost function (10.1). For example this formula includes implicitly the assumption
that the conditional expectation of X, given Xb D xb is identical with xb i.e.
E .X j Xb D xb/ D xb: Or the relation of the background error covariance matrix
B and the climate is in general not well understood. Consequently the necessary
climate statistical parameters are also neglected at the data assimilation procedures
applied in practice. In the following sections we will overview the mathematical
background of the data assimilation procedure together with the most relevant
mathematical properties, theorems since the theoretical results make it possible to
develop the procedures applied in the practice.
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10.2.3 Problems with the Reanalysis Data Based on Data
Assimilation

The data assimilation technique is used also to produce reanalysis data series in
order to monitor the climate change based on past observation series. However
beside the above mentioned inadequacies there are further sources of errors for
reanalysis data. One of them is the inhomogeneity of the used station data series i.e.
these series are often affected by artificial shifts due to changes in the measurement
conditions (relocations, instrumentation). Another problem may be the little spatial
representativity i.e. relatively few station data series are used for production of
reanalysis data series as a consequence of the data policy between the countries.

10.3 Derivation of the Bayesian Cost Function for Data
Assimilation

10.3.1 Application of the Bayes Theorem

The formula (10.1) is based on the Bayes theorem with the assumption of the joint
distribution of vector variables X ,Xb,Y0 being normal.

First we have to express the conditional density function of the atmospheric state,
given the background and the observations.

Lemma 10.1 The conditional density function of X, given Xb D xb; Y0 D y0, can
be written as

f .x j xb; y0/ D f .y0 j x; xb/ � f .x j xb/ � 1

f .y0 j xb/ ; (10.2)

f ( y0j x, xb): conditional density function of Y0, given X D x, Xb D xb,
f ( x j xb): conditional density function of X, given Xb D xb,
f ( y0j xb): conditional density function of Y0, given Xb D xb.

Proof According to the Bayes theorem the joint density function of vector variables
X ,Xb,Y0 can be expressed equivalently as

f .x; xb; y0/ D f .y0 j x; xb/ � f .x j xb/ � f .xb/ ;
f .x; xb; y0/ D f .x j xb; y0/ � f .y0 j xb/ � f .xb/ :

Consequently, f .x j xb; y0/ � f .y0 j xb/ D f .y0 j x; xb/ � f .x j xb/ :
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Then using Lemma 10.1 the conditional density function of X, given Xb D
xb; Y0 D y0, can be written in the following simple form:

f .x j xb; y0/ D f .y0 j x/ � f .x j xb/ � 1

f .y0 j xb/ ; (10.3)

since it can be assumed f .y0 j x; xb/ D f .y0 j x/, where f ( y0j x) is the conditional
density function of Y0, given X D x.

Consequently the Bayes estimation for the realization of X, given Xb D
xb; Y0 D y0, that is:

xa D arg max
x

f .x j xb; y0/ ;

is equivalent to the following maximization:

xa D arg max
x

f .y0 j x/ � f .x j xb/ : (10.4)

10.3.2 The Normal Conditional Density Functions
and their Properties

Since it is assumed that the joint distribution of vector variablesX ,Xb,Y0 is normal,
therefore the conditional density functions f ( x j xb), f ( y0j x) are also normal. It
means:

f .x j xb/ D
exp

�
� 1
2
.x � E .X j Xb D xb//

TB�1 .x � E .X j Xb D xb//
�

p
.2�/n det .B/

;

(10.5)

f .y0 j x/ D
exp

�
� 1
2
.y0 � E .Y0 j X D x//TR�1 .y0 � E .Y0 j X D x//

�

p
.2�/m det .R/

;

(10.6)

where we have the following notations:

E .X j Xb D xb/: conditional expectation of X, given Xb D xb;
B D Cov ŒX j Xb D xb�: conditional covariance matrix of X, given Xb D xb,
E .Y0 j X D x/: conditional expectation of Y0, given X D x;
R D Cov ŒY0 j X D x�: conditional covariance matrix of Y0, given X D x:
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Theorem 10.1 The properties of the conditional covariance matrices are as
follows:

1. B D Cov ŒX � E .X j Xb/�: covariance matrix of X � E .X j Xb/ :

2. B D Cov ŒX � E .X j Xb/� D Cov ŒX� � Cov ŒE .X j Xb/�.
3. R D Cov ŒY0 � E .Y0 jX/�: covariance matrix of Y0 � E .Y0 j X/ :
4. R D Cov ŒY0 � E .Y0 j X/� D Cov ŒY0�� Cov ŒE .Y0 j X/�.
Proof

1. B D Cov ŒX j Xb D xb� and
Cov

�
X
ˇ
ˇ Xb

� D E
��
X � E

�
X
ˇ
ˇ Xb

�� �
X�E

�
X
ˇ
ˇ Xb

��T ˇˇ Xb
� D

D E
��
X� E

�
X
ˇ
ˇ Xb

�� �
X� E

�
X
ˇ
ˇ Xb

��T�DCov
�
X�E

�
X
ˇ
ˇ Xb

��
;

since in case of normal distribution the arbitrary functions g .X � E .X j Xb//

and Xb are independent, consequently the conditional expectations are
E .g .X � E .X j Xb// j Xb/ D E .g .X � E .X j Xb///.

2. Cov ŒX� D E
�
.X � E .X// .X � E .X//T

�
D

D E
�
..X � E .X j Xb//C .E .X j Xb/� E .X///

..X � E .X j Xb//C .E .X j Xb/� E .X///T
�

D
D E

�
.X � E .X j Xb// .X � E .X j Xb//

T
�

CE
�
.E .X j Xb/ � E .X// .E .X j Xb/� E .X//T

�
D

D Cov ŒX � E .X j Xb/�C Cov ŒE .X j Xb/� ;

since X � E .X j Xb / ; E .X j Xb / � E .X/ are independent with 0

expectations, therefore E
�
.X � E .X j Xb // .E .X j Xb / � E .X//T

�
D

E
�
.E .X j Xb / � E .X// .X � E .X j Xb //

T
�

D 0.

3. The proof is the same as 1.
4. The proof is the same as 2.

10.3.3 The General Form of the Cost Function

Returning to the Bayes estimation for the realization of X, given Xb D xb; Y0 D y0;
at Eq. (10.4), the following maximization can be obtained by logarithmization:

xa D arg max
x

.ln f .x j xb/C ln f .y0 j x// : (10.7)

Substituting the conditional density functions (10.5) and (10.6) in the formula
(10.7), the final general form of the cost function to be minimized with respect
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to x is:

J.x/ D .x � E .X j Xb D xb//
TB�1 .x � E .X j Xb D xb//C

C .y0 � E .Y0 j X D x//TR�1 .y0 � E .Y0 j X D x// ;
(10.8)

and the analysis is, xa D arg min
x

J.x/.

The conditional expectations and the parameter matrices are as follows:

E .X j Xb D xb/: conditional expectation of X, given Xb D xb,
B D Cov ŒX � E .X j Xb/�: covariance matrix of X � E .X j Xb/,
E .Y0 j X D x/: conditional expectation of Y0, given X D x,
R D Cov ŒY0 � E .Y0 jX/�: covariance matrix of Y0 � E .Y0 j X/.
Remark 10.1 According to the theorems of the probability theory the conditional
expectations E(X jXb), E(Y0jX) are linear functions if the joint distribution of
vector variables X ,Xb,Y0 is normal:

E .X j Xb D xb/ D E .X/C C .xb � E .Xb// ; (10.9)

E .Y0 j X D x/ D E .Y0/C H .x � E .X// ; (10.10)

where E(X) , E(Xb), E(Y0) are the expectations and C,H are certain coefficient
matrices.

A special case is the cost function (10.1) where the identity E .X j Xb D xb/ D
xb is assumed implicitly. However this assumption seems to be doubtful, therefore
we will analyze the possibilities for modelling of the statistical relationship between
the atmospheric state and the forecast.

10.4 The Properties of the General Cost Function

10.4.1 Examination of E .X j Xb D xb/
and B D Cov ŒX � E .X j Xb/�

In the following theorem some basic properties are formulated.

Theorem 10.2

1. If the expectations of X and Xb are identical i.e. E .Xb/ D E .X/ ()
E .X � Xb/ D 0 then according to Eq. (10.9):

E .X j Xb D xb/ D E .X/C C .xb � E .X// :
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2. If 1, and E .Xi j Xb D xb/ D E .Xi j Xb;i D xb;i/ .i D 1; : : : ; n/ then

E .Xi j Xb D xb/ D E .Xi/C ˇi .xb;i � E .Xi// :

3. If 2, and ˇi D ˇ
�
i D 1; : : : ; n

��
then

E .X j Xb D xb/ D E .X/C ˇ � .xb � E .X// :

Special case applied at cost function (10.1): ˇ D 1 ) E .X j Xb D xb/
D xb.

4. If 3, that is E .X j Xb/ D E .X/ C ˇ � .Xb � E .X// then according to equation
Theorems 10.1 and 10.2:

B D Cov ŒX � E .X j Xb/� D Cov ŒX� � Cov ŒE .X j Xb/� D Cov ŒX�� ˇ2 � Cov ŒXb� :

5. If 4, and the covariance matrices of X and Xb are identical i.e.:

Cov ŒXb� D Cov ŒX� then B D �
1 � ˇ2� Cov ŒX�

�
ˇ2 � 1

�
:

Remark 10.2 If we have the natural assumptions of Theorem 10.2 then the obtained
model is:

E .X j Xb D xb/ D E .X/C ˇ � .xb � E .X// ; B D �
1 � ˇ2

�
Cov ŒX� ; (10.11)

where expectations E(X), covariance matrix Cov[X] are climate statistical parame-
ters!

This result implies that more climate information should be used for the data
assimilation! The expectations and the covariance structure of the atmospheric state
should be built in the data assimilation model.

In practice the special case E .X j Xb D xb/ D xb i.e. E .X j Xb/ D Xb is
assumed implicitly according to the cost function (10.1). Let us assume further
the forecast variable Xb has the same covariance structure as the variable X of the
atmospheric state. Then we have the following unexpected result.

Theorem 10.3 The conditional expectation of X, given Xb is identical with Xb i.e.
E .X j Xb/ D Xb andCov ŒXb� D Cov ŒX� if and only if Xb D X, that is the forecast
values are always perfect!

Proof If E .X j Xb/ D Xb and Cov ŒXb� D Cov ŒX� then formulas (10.11) can be
used, where ˇ D 1. Consequently 0 D B D Cov ŒX � E .X j Xb/� D Cov ŒX � Xb�

that is possible if and only if Xb D X since E .X � Xb/ D 0.
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10.4.2 Examination of the Structure of Cost Function

At this examination we assume that we have forecasts also for the locations of
observations y0 i.e. xb;0 	 xb and the appropriate atmospheric data are x0 	 x.
The appropriate random variables having the realizations xb,0, x0 are Xb;0 	 Xb,
X0 	 X.

Then the difference y0 � x0 can be taken as an observation error vector with the
properties

E .Y0 j X D x/ D x0;R D Cov ŒY0 � E .Y0 jX/� D Cov ŒY0 � X0� D 2 I;

where I is the identity matrix.
Then according to Eq. (10.8) using the assumptions of Theorem 10.2, the cost

function for x is:

J.x/ D .x � E .X j Xb D xb//
TB�1 .x � E .X j Xb D xb//C 1

2
ky0 � x0k2;

(10.12)

where E .X j Xb D xb/ D E .X/ C ˇ � .xb � E .X// and B D �
1 � ˇ2� Cov ŒX��

ˇ2 < 1
�
.

Moreover since it can be assumed that E .Y0 j X0;Xb;0/ D E .Y0 j X0/,
therefore E .Y0 j Xb;0/ D E .E .Y0 j X0;Xb;0/ j Xb;0/ D E .E .Y0 j X0/ j Xb;0/ D
E .X0 j Xb;0/ that is:

E .Y0 j Xb;0 D xb;0/ D E .X0 j Xb;0 D xb;0/ D E .X0/C ˇ � .xb;0 � E .X0// :
(10.13)

Then again the analysis is:

xa D arg min
x

J.x/ : (10.14)

The second term of cost function (10.12) is a quality control for y0, while the first
term is an interpolation.

10.4.2.1 Examination of the First Term
.x � E .X j Xb D xb//

TB�1 .x � E .X j Xb D xb//

Let us assume for this part of analysis xa;0 	 xa that xa;0 D Oy0, where ŷ0 is the
corrected y0. Then the solution xa given at Eq. (10.14) may be written as:

xa D arg min
x

J.x/ D arg min
x if x0Dxa;0

.x � E .X j Xb D xb//TB�1 .x � E .X j Xb D xb// ;
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that is equivalent with an interpolation:

xa D E .X j Xb D xb/C ƒ .xa;0 � E .X0 jXb;0 D xb;0// ;

where coefficient matrix ƒ depends on Cov[X] according to Eq. (10.12).
This interpolation can be also written as:

xa D xc C ˇ � .xb � xb;c/ (10.15)

where xc is the climatological interpolation with predictors xa;0 D Oy0:

xc D E .X/C ƒ .xa;0 � E .X0// D E .X/C ƒ .Oy0 � E .X0// ; (10.16)

and xb,c is the same interpolation with predictors xb,0:

xb;c D E .X/C ƒ .xb;0 � E .X0// : (10.17)

10.4.2.2 Interpolation with Background Information in Climatology

We emphasize the strong relationship with climatology. For example at our software
MISH the climatological interpolation module is Eq. (10.16) with quality controlled
observations ŷ0, while in case of having background information—e.g. forecast,
satellite, radar data—just the interpolation procedure (10.15) is applied using Eqs.
(10.16) and (10.17). The necessary interpolation parameters are calculated from
modelled values of the statistical parameters E(X), Cov[X], while the coefficient
ˇ can be estimated by using the following equality obtained from (10.13):

E
� OY0 j Xb;0 D xb;0

�
D E .X0 j Xb;0 D xb;0/ D E .X0/C ˇ � .xb;0 � E .X0// ;

(10.18)

where Ŷ0 is the random variable of the controlled observations with the realiza-
tion ŷ0.

10.5 The Problem of Conditional Expectation
of Atmospheric State, Given Forecasts

As it was mentioned the identity E .X j Xb D xb/ D xb i.e. E .X j Xb/ D Xb is
assumed implicitly at the cost function (10.1) applied in the practice generally.
This assumption seems to be doubtful and unrealistic especially in the light of
the Theorem 10.3. In addition an interesting counterexample can be constructed
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mathematically. Let us assume we have different forecast fields Xb,k with the above
property:

E .X j Xb;k/ D Xb;k .k D 1; : : :K/ :

Let an ensemble prediction be: Xb;p D
KX

kD1
pkXb;k,

KX

kD1
pk D 1, pk > 0.

The expected mean square errors (MSE) are:

H2
k D E

�
kX � Xb;kk2

�
; H2

p D E

	�
�
�X � Xb;p

�
�
�
2


:

Theorem 10.4 If Xb,k (kD 1, : : :K) are not identical i.e. P .Xb;1 D :::: D Xb;K/ < 1

then

1. H2
p <

KX

kD1
pkH

2
k , consequently if H

2
k D H2 .k D 1; : : :K/ then H2

p < H2.

2. But the assumption used generally is not true: E
�
X
ˇ
ˇ
ˇ Xb;p

�
¤ Xb;p!

Proof

1. H2
p D E

	�
��X � Xb;p

�
��
2



D E

0

@

�
�
��
�

KX

kD1
pk .X � Xb;k/

�
�
��
�

2
1

A <

< E

 
KX

kD1
pkkX � Xb;kk2

!

D
KX

kD1
pkH

2
k , as a consequence of Lemma 10.2 below

and Markov inequality, if Xb;k .k D 1; : : :K/ are not identical.
2. If E .X j Xb;k/ D Xb;k then E

�
XT

b;kX j Xb;k
� D XT

b;kE .X j Xb;k/ D XT
b;kXb;k.

Consequently E
�
XT

b;kX
� D E

�
E
�
XT

b;kX j Xb;k
�� D E

�
XT

b;kXb;k
�
. Similarly, if

E
�
X
ˇ
ˇ̌ Xb;p

�
D Xb;p then E

�
X

T
b;pX

�
D E

�
X

T
b;pXb;p

�
. However,

E
�
X

T
b;pX

�
D E

0

@
 

KX

kD1
pkXb;k

!T

X

1

A D E

 
KX

kD1
pkXT

b;kX

!

D E

 
KX

kD1
pkXT

b;kXb;k

!

D

D E

 
KX

kD1
pkkXb;kk2

!

> E

0

@

�
�
�
�
�

KX

kD1
pkXb;k

�
�
�
�
�

2
1

A D E
�
X

T
b;pXb;p

�
;

as a consequence of the next, well-known Lemma 10.2 and Markov inequality, if
Xb;k .k D 1; : : :K/ are not identical, that is a contradiction was obtained.

Lemma 10.2 Let us suppose zp D
KX

kD1
pkzk;

KX

kD1
pk D 1; pk > 0.
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Then
�
�zp
�
�2 �

KX

kD1
pkkzkk2 with equality if and only if zk D zp .k D 1; : : :K/.

Proof

0 �
KX

kD1
pk
�
�zk � zp

�
�2 D

KX

kD1
pk
�
kzkk2 � zT

k zp � zT
pzk C �

�zp
�
�2
�

D

D
KX

kD1
pkkzkk2 � 2 zT

pzp C �
�zp
�
�2 D

KX

kD1
pkkzkk2 � �

�zp
�
�2:

10.6 Summary and Conclusion

Referring to Eq. (10.12) we suggest considering the following cost function:

J.x/ D .x � E .X j Xb D xb//
TŒCov ŒX���1 .x � E .X j Xb D xb//C �2 � ky0 � x0k2;

where E .X j Xb D xb/ D E .X/C ˇ � .xb � E .X// and �2 D 1�ˇ2
2
;
�
ˇ2 � 1

�
.

Then the expectation vector E(X) and the covariance matrix Cov[X] are climate
statistical parameters that must be modelled by statistical climatological procedures
based on long term observed data series. Modelling at least the first two moments
of the present climate should be a basic task of the statistical climatology as it is
indicated at the second block on Fig. 10.1. As regards the other unknown parameters
the coefficient ˇ can be estimated by using y0 and xb,0 on the basis of the formula
(10.13) and it can characterize the quality of the forecast. The estimation of  can
be based on long-term experience related to the expected observation error.
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Chapter 11
Ensemble Methods in Meteorological Modelling

Mihály Szűcs, András Horányi, and Gabriella Szépszó

Abstract Numerical modelling is a continuously developing discipline in mete-
orology, which provides meteorological forecasts and climate change projections
based on the numerical solutions of the set of equations describing the processes
in the atmosphere and the related spheres. The progress in numerical weather
prediction (NWP) and climate modelling has been enormous in the last few decades
thanks to the improved theoretical understanding of the meteorological processes,
the growing number of observations and the increasing available computer power.
In spite of the steady progress, meteorological forecasts cannot be fully perfect due
to the intrinsic characteristics of the atmosphere and the climate system. Weather
forecast uncertainties exist in initial conditions and in the model formulations
themselves and evolve rapidly with lead time. In climate change projections the
initial conditions have negligible role, but the internal climate variability and the
unknown future evolution of the anthropogenic activity are additional sources of
uncertainties. Since they cannot be avoided (just minimized), their representation
and quantification are essential tasks both in numerical weather prediction and
climate research. Currently the only feasible way to challenge this problem is
the ensemble approach, which delivers probabilistic information and attributes
uncertainty information to the numerical weather forecasts and climate projections.
This additional uncertainty estimation is a valuable bonus for the users and can be
efficiently applied in decision-making.
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11.1 Introduction

The main objective of this chapter is to give a general overview of the present state
of ensemble forecasting methods based on already existing references. Ensemble
approaches applied in short-range and climate time scale are introduced in detail,
together with ensemble visualization and interpretation possibilities, which are used
at the Hungarian Meteorological Service (HMS).

The present chapter contains five sections. After the introduction, Sect. 11.2
provides a general description of uncertainties in atmospheric weather prediction
models and climate models and gives motivation for using probabilistic forecasts.
Sect. 11.3 focuses on ensemble designs that are quantifying the previously described
uncertainties. Specific techniques are detailed which define different kinds of
perturbations in an ensemble system. Section 11.4 represents how operational
ensemble systems can be constructed and how ensemble methods can be applied
in the practice of climate modelling research. Furthermore, this section gives
examples for the interpretation and visualization of ensemble probabilistic products.
Section 11.5 is a short summary of the chapter.

11.2 Uncertainties in Numerical Weather Predictions
and Climate Projections

Theoretically, the error sources in NWP can be divided into two main groups
[39]. First group is called “God-given errors” which refers to the intrinsic chaotic
characteristic of the atmosphere and the climate system. Similarly to simple low-
dimensional systems described by non-linear equations [30], the atmosphere is also
very sensitive to its initial conditions. Small differences in the current initial states
can cause large differences among the future ones. In other words, even small uncer-
tainties can grow rapidly and might have significant impact on the weather forecast
outputs. Since perfect initial conditions cannot be given, predictability has been
always limited in numerical weather predictions. Evolution of the climate system
also has sensitivity to its initial state, however, within this initial condition descrip-
tion of the oceans and ice sheets is also included. The other group of errors can be
called “man-made errors” which refers to the incomplete human knowledge about
the system to be described and technical limitations about its modelling. Numerical
models are not perfect counterparts of the Earth system and they contain many
approximations, for instance the underlying mathematical equations are solved
numerically with temporal and spatial discretization. In practice these two main
types of errors cannot be separated and they affect each other in a very complex way.

The initial conditions of NWP models are mostly produced by complex data
assimilation methods which are using observations and background information.
This background is usually a short-range forecast valid at the analysis time and
consequently imperfect. Observations can also contain errors, since there might be
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instrument errors or they might not be representative for their vicinity. Additionally,
there might be significant spatial and temporal inhomogeneities in the observations.
The assimilation algorithms themselves also use approximations providing another
source of errors. Specifying initial conditions for climate simulations faces similar
challenges, but it requires measurements and background information about the
climate system, (e.g., the deep ocean) making the data assimilation procedure even
more complex.

Governing model equations are partial differential equations which cannot be
solved analytically, thus they are discretized and then solved numerically. Taking
the available computer resources into account, the discretization is limited. In spite
of the fact that the current supercomputers are extremely powerful, the model grid
is still unable to directly resolve all the meteorological phenomena at the desired
spatial scales, consequently some of the processes have to be parameterized. These
parametrizations can only give an estimation of the net effect of sub-grid scale pro-
cesses. Models also need lower and upper boundary conditions and their specifica-
tion can be particularly difficult for the surface. Additionally, in limited area models
the proper treatment of lateral boundary conditions (LBCs), which are used to con-
nect the processes inside and outside the regional domain, is non-trivial and a poten-
tial source of error. In climate modelling, not only natural processes are represented
in approximate way but also human activity has to be taken into account as the forc-
ing factor of future climate change. Anthropogenic activity is quantified in climate
model simulations via hypothetic emission scenarios (discussed in Sect. 11.3.3).

It is important to underline that atmospheric predictability is highly varying
and affected by the weather situation (Fig. 11.1a, b), meaning that it is higher
in stable conditions. It also depends on the forecasted parameter. For instance,
500 hPa geopotential field describes the large synoptic-scale motions and it is
more predictable than precipitation, which is influenced by local effects and
small-scale phenomena like convection. Although non-hydrostatic models can
describe convection explicitly, predictability is overall lower towards smaller
scales.

All these uncertainties reveal the necessity of providing not only single-forecasts
and single-projections but probabilistic information corresponding to the pre-
dictability of the given atmospheric state and limitations of modelling. Since
smaller-scale phenomena have lower predictability, the importance of probabilistic
forecasts is growing along with the increased model resolution and continuous
model improvements.

11.3 Ensemble Methods

Nowadays the only feasible way to produce probabilistic forecasts is to conduct an
ensemble of model integrations. In ensemble prediction systems (EPS) not only
a single model run predicts the future state, but an ensemble of forecasts gives
many possible realizations of the atmospheric (climate) system. The members of
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Fig. 11.1 (a) An example of the plume diagram from the results of LAMEPS at the HMS. It
shows the time evolution of the 6 h total precipitation values predicted by the ensemble members.
Forecasts were run at 18UTC 15 March 2014. Blue curves belong to the perturbed members while
orange denotes the control member and grey is the ensemble mean. (b) The same as (a) but forecast
was started at 18UTC 15 May 2014

such ensemble in NWP can differ slightly from each other in their initial conditions
or model formulations. These small differences are called perturbations and they
are supposed to be large enough to produce sufficient ensemble spread within the
existing uncertainties. There are many perturbation generation methods that are
dedicated for special types of possible uncertainties mentioned in the previous
section. These methods are divided into two main groups: the first one focuses on
initial condition perturbations (see Sect. 11.3.1), while the second one represents
model uncertainties (see Sect. 11.3.2). There are some practical ways to generate
ensemble systems, which are detailed in Sects. 11.3.2–11.3.4.

Generally an EPS contains 10–50 members, which would make an enormous
computational growth if the high resolution operational model versions were
applied in the ensemble system. To avoid this extraordinary cost, a compromise
is needed and EPS members run usually at a coarser resolution. The member using
unperturbed initial condition and model formulation is called control. Usually EPS
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is designed in a way that perturbed initial conditions have a symmetric structure
around the control.

Let us present the partial differential equation system of the atmosphere in a very
schematic way for the better understanding of the perturbation generation methods
detailed in the present section.

dx
dt D F .xI t/

x .t D 0/ D x0
(11.1)

In Eq. (11.1) vector x contains the state variables (e.g., pressure, temperature,
wind component, humidity) describing the atmospheric state, F denotes the forecast
model and x0 is the corresponding initial condition of the equation. The model state
at time T is the time integral of Eq. (11.1):

x.T/ D
TZ

tD0
F .xI t/ dt D

TZ

tD0
.A .xI t/C P .xI t//dt (11.2)

In Eq. (11.2) F can be divided into two parts: the explicitly handled non-
parameterized (A) and the parameterized small-scale processes (P). The latter
processes are typically convection in non-hydrostatic models, turbulence, micro-
physics and radiation. This separation is important because the second term (P)
is more uncertain than the first one (A). The unperturbed control member of an
ensemble system can be directly described by Eqs. (11.1) and (11.2), while modified
equations are needed to explain the various perturbation generation methods.

11.3.1 Initial Condition Perturbations

Historically the first and currently the most commonly used methods to create
ensemble prediction systems are perturbing the initial conditions of NWP models.
These methods are mostly based on either finding the most unstable perturbations,
which are growing fastest during the model forecasts, or determining and quantify-
ing the model initial condition (analysis) error sources. In the next sections the most
popular methods are briefly summarized, like the computation of Singular Vectors
(SV), the determination of the Breeding Vectors (BV) and the application of the
Ensemble of Data Assimilations (EDA) method.

If these methods are applied then the initial condition equation of Eq. (11.1)
should be modified with an additional perturbation term. Consequently, the initial
condition of an arbitrary j-th ensemble member can be written as

xj .t D 0/ D x0 C yj .t D 0/ : (11.3)

Below different ways of defining yj are explained.



212 M. Szűcs et al.

11.3.1.1 Singular Vectors

The computation of singular vectors is one of the first perturbation generation
methods and was developed at the European Centre for Medium-Range Weather
Forecasts (ECMWF) in the early 1990s [6]. The basic idea is to find such directions
of the phase space (defined by the state variables of the model), where perturbations
can grow fastest in the early forecast evolution when the linear approximation is still
valid, normally the first 12–48 h of the forecast.

Let us consider the system described by Eq. (11.1) and its initial condition
perturbation y(tD 0) as defined by Eq. (11.3) which will result in the solution
x(t) C y(t) at time t. If y(t) is sufficiently small then the Taylor-series of the right-
hand-side function F around x(t) can be written as

F .x.t/C y.t// D F .x.t//C dF

dX
y.t/C O

�
y2.t/

�
: (11.4)

Equations (11.1) and (11.4) can be combined as

d .x.t/C y.t//

dt
D dx.t/

dt
C dF

dX
y.t/C O

�
y2.t/

�
; (11.5)

which can be further simplified into the tangent linear equation considering the
linear approximation:

dy.t/

dt
D dF

dX
y.t/: (11.6)

The general solution of the tangent-linear equation can be also formulated by
the propagator matrix (denoted as M in Eqs. (11.7)–(11.11)), which holds the
relationship between perturbations at the initial t0 and final t1 instants:

y .t1/ D My .t0/ : (11.7)

As mentioned above, the main idea of the SV method is to find the fastest growing
perturbations in a linear system (so the assumption of linearity is important while
considering the SVs). This linear perturbation growth in the [t0; t1] time-interval can
be quantified with a properly selected norm. For the perturbation growth the ratio
described by Eq. (11.8) must be maximized.

ky .t1/kE
ky .t0/kE

D kMy .t0/kE
ky .t0/kE

(11.8)
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The proper choice of the norm E is crucial in practice. Note that the norm defined
in the initial and final time instants might be different. This norm can be defined in
association with an inner product <;>E as follows:

kyk2E D hyIEyiE: (11.9)

In Eq. (11.9) E is a positive definite Hermitian matrix. In case of Euclidean norm
this E matrix becomes the identity and consequently all the state vector variables are
combined with the same weight. The use of Euclidean norm provides an unphysical
metric since the state variables with larger units would dominate in the norm,
e.g., temperature. Therefore, a norm is desirable which has physical meaning when
combining the various model state variables. For instance, the total energy is widely
used as a physically sound norm, where the weights are provided according to the
contribution of the given variable to the total energy. There are also experiments
with CAPE (convective available potential energy) norm in limited area models
[42].

It can be noted that the norm might also contain a geographic projection operator
calculated over a given area of interest. The definition of such target areas can help to
focus e.g. on the tropics, where the perturbations are often improperly represented
by the global models [40]. Targeted SVs also allow to focus on such areas where
dynamically downscaled limited area ensemble systems run (see in the next section).

If in Eq. (11.9) the size of the initial perturbation jjy(t0)jjE is defined as a unit,
then the goal is to find the maximum of jjy(t1)jjE. The formula of Eq. (11.9) can
be deduced after considering the propagator Eq. (11.7) and transforming the norms
into scalar products and using the definition of the adjoint of the propagator matrix
M*:

ky .t1/k2E D kMy .t0/k2E D hMy .t0/ IMy .t0/iE D hM � My .t0/ I y .t0/iE: (11.10)

Equation (11.10) shows that the search of the fastest growing perturbations is
equivalent to finding the vi(t0) eigenvectors of the M*M matrix having the largest
eigenvalue of  i

2:

M � Mvi .t0/ D 2i vi .t0/ : (11.11)

The square roots of the  i
2 eigenvalues are called singular values and the

eigenvectors vi(t0) are the singular vectors of M. The eigenvectors belonging to the
largest eigenvalues show those directions of the phase space, where the perturbations
have the largest growth in the [t0;t1] time interval based on the E norm. In realistic
atmospheric models the dimension of the eigenvalue problem is huge, therefore its
solution is non-trivial and it is obtained through special numerical algorithms. In
meteorology generally the Lanczos-algorithm is applied [29]. The initial condition
perturbations of Eq. (11.3) can be computed as one solution with combining the
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largest singular vectors of the different target areas:

xj D x0 C ySV D x0 C
NTAX

kD1

NSVX

iD1
˛kivki: (11.12)

In Eq. (11.12) NTA is the number of target areas, NSV is the number of used singular
vectors and ˛ is a parameter scaling the perturbation to the size of the estimated
analysis error.

11.3.1.2 Breeding Method and Kalman Filter

The breeding method [46] was developed in the US simultaneously to the above-
mentioned singular vector technique. The main conceptual difference of the breed-
ing method with respect to the singular vectors is that the largest uncertainties are
sought in the past (in the assimilation cycle) and not in the near future. This is
achieved by “breeding” of past perturbations with retaining only the most unstable
ones. The applied procedure is iterative. First, some small, random perturbations
are generated and added to the NWP analysis. Then short range numerical forecasts
are run based on the unperturbed control and the perturbed initial conditions. The
evolution of these initial perturbations is monitored by tracking the differences
between the control and perturbed forecasts. Cyclically, these perturbations are
rescaled and then added again to a new analysis. After that new forecasts are
started from the newly perturbed initial condition and the process restarts. In such
an iterative procedure after few steps the system is able “to breed” the necessary
perturbations (Fig. 11.2), with selecting the perturbations growing fastest during the
assimilation cycle. They can be used for perturbing the model initial conditions and
create a forecast ensemble.

The original implementation of the breeding method was built on the top of a data
assimilation cycle, so forecast perturbations were rescaled in every 6 h having the
same size as in initial time and they were added to a regular analysis. In further tests
even longer time periods were applied (12 or 24 h) to find the fastest growing modes

Fig. 11.2 The schematic
description of the breeding
method in case of two
members. x1 denotes the
unperturbed and x2 the
perturbed member, di refers
to the rescaled perturbations
and df to the bred
perturbations at the end of
each breeding cycle
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of the perturbations [47]. These tests also underlined the weakness of the method,
namely that a globally constant rescaling factor is not able to reflect geographical
variation and accuracy of the observing system. One possible solution can be
the so called masked breeding method where a latitude and longitude dependent
rescaling factor is defined. Although none of the above described breeding method
realizations can correctly take into account the forecast error variances.

This problem can be handled by Kalman Filter (KF) based methods. The classic
KF concept provides relationship between forecast and analysis error covariances
via the linear model, its transposed version and the model error covariance matrix.
Such a relationship can help to iteratively evolve the analysis and background error
covariance matrices through the data assimilation cycles and take into account flow
dependent errors. While the classic KF method is computationally expensive the
Ensemble Transform Kalman Filter (ETKF) was introduced. In ETKF a special
transformation matrix is defined by the estimation of background error covariance
matrix (given by the forecast perturbations of an ensemble system) and the
observation error covariance matrix. Such a transformation matrix can be used to
upgrade the error covariance matrices in a data assimilation system, but moreover
it is possible to use it to transform forecast perturbations into analysis perturbations
again [1]. Such a transformation has the advantage against the breeding method that
it can reflect the background error variances.

The Ensemble Kalman Filter (EnKF) can be also mentioned as a data assimi-
lation related application of ensemble systems. In EnKF both the forecast and the
analysis error covariances are estimated from the spread of the forecast and analysis
perturbations, respectively. Unlike to KF, EnKF uses the nonlinear model operator
to evolve the analysis state into the forecast state [20].

11.3.1.3 Ensemble of Data Assimilations

The main idea behind the Ensemble of Data Assimilations technique is the
simultaneous execution of more data assimilation cycles [24]. The differences
among these data assimilation cycles are provided by the quantified uncertainties
in the data assimilation system. The knowledge of these uncertainties provides a
clue about the realistic error sources of the system and makes possible to compute
analysis and short range error statistics. The analysis error statistics can be used to
define suitable perturbations to an ensemble prediction system and the short range
error statistics can be used for computing the background error covariances for the
data assimilation system.

For the better understanding, first we will show how a variational data assim-
ilation system can be formulated by defining a cost function, which measures
the deviations of the analysis from the various information sources used in the
assimilation process. The solution of the variational problem can be obtained
by minimization of a cost function ensuring that the meteorological analysis is
optimally near to all the ingredients of the assimilation system taking into account
their corresponding reliabilities. The two most important sources of information in



216 M. Szűcs et al.

a data assimilation system are the observations and the background fields (short
range NWP forecasts valid at the analysis time). The cost function of the variational
system can be written as:

J.x/ D .x � xb/
TB�1 .x � xb/C .o � H.x//TR�1 .o � H.x// : (11.13)

In Eq. (11.13) x is the model state, B is the background error covariance matrix,
xb is the background state, o contains the observations, R is the observation error
covariance matrix and H is the observation operator (which establishes relationship
between model space and observation space). The B and R covariance matrices
are essential ingredients of the system, providing proper weighting between the
observation and background information.

In such data assimilation system considering the linear approximation the
analysis update can be defined as follows:

xka D xkb C Kk
�
ok � Hkxkb

�

xkC1b D Mkxka:
(11.14)

In Eq. (11.14) superscript k refers to the assimilation cycling and the gain matrix Kk

can be written as:

Kk D Bb
kH

T
k

�
HkB

b
kH

T
k C Rk

��1
: (11.15)

In practice the uncertainties taken into account in EDA are related to the
observations, to the background fields, to the model formulation and to the lower
boundary conditions. In an EDA system, the observations are usually perturbed
by a random number �k drawn from a Gaussian distribution which has zero
mean (no systematic errors are assumed) and its standard deviation equals to the
estimated standard deviation of the observation error. Consequently, the formula of
the perturbed analysis can be written as a modification of Eq. (11.14):

.Qx/ka D .Qx/kb C Kk
�
ok C �k � Hk.Qx/kb

�

�k 2 N .0IR/ : (11.16)

The background fields are not explicitly perturbed since they will be automat-
ically different during the assimilation cycles through the evolved perturbations
coming from the previous step (Fig. 11.3). Additionally, model uncertainties can
be also quantified in the assimilation cycle by perturbing the model formulation
(M0) and consequently the modified equation of the forecast step of the analysis Eq.
(11.14) can be written as:

.Qx/kC1b D M0.Qx/ka: (11.17)
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Fig. 11.3 The schematic representation of the Ensemble of Data Assimilations (EDA) system.
Only the control member (x) and an arbitrary perturbed member (x0) are visualized with the
corresponding unperturbed (y) and perturbed (y0) observations

Model error representation methods will be detailed in Sect. 11.3.2. It has to be
noted that boundary condition uncertainties can be taken into account in the above-
mentioned forecast step. A possible lower boundary condition perturbation method
is described and the perturbed lateral boundary conditions of the limited area models
are mentioned in Sect. 11.4.1.

If the R observation error covariance matrix is properly estimated and the
perturbed M0 model formulation gives back the model errors correctly, then the
perturbations of the data assimilation system realistically represent the uncertainties
of the system.

ya � Qxa � xa
yb � Qxb � xb

(11.18)

In practice perturbed EPS members can be directly initialized by the perturbed
analysis. In this case Eq. (11.3) can be rewritten in a very simple way:

xj D x0 C yEDA D xa C ya: (11.19)

Another possibility is to define EDA perturbations as a difference between the
perturbed background fields and their ensemble mean. These perturbations can be
added to an analysis, which is produced independently from the EDA system (let
us denote as xA). This procedure has the advantage that this additional analysis can
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have better quality (finer resolution or created by a more sophisticated assimilation
method) and there is no need to wait for the most recent analysis of the EDA
members. In this case the perturbed initial condition of the arbitrary j-th member
of an EPS containing N members can be written as:

xj D x0 C yEDA D xA C �Qxj � xb
� D xA C Qxj � 1

N

NX

iD1
Qxbi: (11.20)

If the perturbations of EDA are correctly defined using adequate observation
and background error statistics then EDA shows those directions of the phase
space, where the data assimilation uncertainties are the largest. Therefore these
perturbations can effectively contribute to the initial condition perturbations used
for an EPS. Some more details of the ECMWF specific application is described in
Sect. 11.4.1.

11.3.2 Representation of Model Uncertainties

As already mentioned in Sect. 11.2 there are many sources of uncertainties
related to the atmospheric models. Although in principle, inflated initial condition
perturbations can partly account for model imperfections, they are not designed for
that goal and therefore other methods should be used to represent model-related
uncertainties. For that purpose, generally model formulations are not identical for
every ensemble member and their variety will result in such perturbations which
represent the model uncertainties in an ensemble system. Based on these model
formulation differences Eq. (11.2) can be modified for perturbed ensemble members
as follows:

xj.T/ D
TZ

tD0
F0 �xjI t

�
dt: (11.21)

In Eq. (11.21) the F forecast model is replaced by its perturbed counterpart F0.
The multi-model method simply uses more types of models and then combine their
results, which means that in Eq. (11.21) F0 represents a set of the applied NWP
models (see below). Other methods try to identify perturbations from the most
uncertain parts of the model, which are the various parameterizations of the sub-
grid scale processes. Following this concept the parts of F0 can be separated like it
was the case in Eq. (11.2).

xj.T/ D
TZ

tD0
F0 �xjI t

�
dt D

TZ

tD0

�
A
�
xjI t

�C P0 �xjI t
��
dt (11.22)
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In Eq. (11.22) P0 represents the perturbed contribution of the parametriza-
tion schemes while the contribution of non-parametrized processes A remains
unchanged. Similarly to the multi-model method, these perturbations can be gen-
erated simply by using more parametrization schemes (multi-physics method, see
below) or using the same scheme but with perturbed settings (perturbed parameter
method, see below) or applying identical schemes with stochastic modifications in
their net contribution (stochastic physics, see below).

11.3.2.1 Multi-Model, Multi-Physics and Perturbed Parameter Method

In current NWP modelling practice there is no superior model, which performing
best in all conditions: all models have strengths and weaknesses. Different models
are better or worse depending on multiple factors like the current weather situation
or forecasted variable for instance. This variety of model performances motivates
experts to use several numerical models at the same time and provide information
from all of them to the users of forecast and climate model outputs (e.g., forecasters,
end users). The integrations of these models can be handled as members of an
ensemble system and they can provide information about forecast uncertainty
[10]. This ensemble generation method is called multi-model approach which
is rather a practical way to express model uncertainties without defining model
perturbations in a scientifically rigorous manner. This technique is often applied to
estimate uncertainties in climate projections, since running simulations on decadal
or longer time frame requires huge computational capacity, especially on global
scale. Therefore, climate ensembles are usually created by merging single (or
at best a few) climate experiments of individual institutes. Results of the most
typical multi-model climate ensemble are published in assessment reports of the
Intergovernmental Panel on Climate Change (IPCC; e.g., IPCC AR5 WGI, 2013),
however, several ensemble systems composed of regional climate simulations are
also available (see Sect. 11.4.1).

It should be mentioned that even inside an NWP model there are more avail-
able parameterization schemes which performance is also situation and variable
dependent. As already mentioned and described by Eq. (11.22) these parameterized
processes are the most uncertain parts of the model formulations and they can
be perturbed while non-parameterized processes stay unchanged. A practical way
to take into account this uncertainty is provided by multi-physics method where
different parameterization schemes are paired to different members of an ensemble
system [51].

A practical disadvantage of the multi-model and multi-physics methods is that
forecast centres cannot easily maintain many models at the same time or construct
large number of equally reliable parametrization schemes and consequently ensure
the sufficient ensemble population.

In a well-designed model and parametrization system there are large number
of tuning parameters which are empirically defined and their precise tuning is
uncertain. The main idea behind the perturbed parameter approach is to keep the



220 M. Szűcs et al.

same model and physical parameterization schemes for every ensemble member and
perturb only the most uncertain parameters. These parameters can be set differently
for all members or their value can vary stochastically between realistic thresholds
[8].

11.3.2.2 Stochastic Physics

The original stochastic physics scheme was developed in ECMWF and later it was
referred to as BMP scheme [5]. Similarly to the previously described approaches
it is supposed that sub-grid scale processes (described by model physics) are more
uncertain than the large-scale motions (described by the model dynamics on the
model grid). Due to this reason the total contribution of parametrization schemes is
perturbed by multiplying its original value with a random number. In this case P0 of
Eq. (11.22) can be described as follows:

P0 �xjI t
� D ˝

rj .�; 	; t/
˛
D;T � P

�
xjI t

�
: (11.23)

In the BMP scheme rj values are uniformly distributed in the [1�ˇ; 1Cˇ]
interval. ˇ is an important parameter of the scheme which can control the scale
of the perturbation and in practice it is usually set to 0.5. The rj values are kept
constant in several grid boxes over a D�D large geographical domain and for more
time steps over a T time interval. Their typical values vary between some hundreds
of kilometers for D and between 3 and 12 h for T. A disadvantage of the BMP
scheme is that rj values are independently picked random numbers which might
lead to unphysical spatial and temporal jumpiness in the perturbed tendency fields.

This deficiency is addressed by the revised version of stochastic physics scheme
which is called as Stochastically Perturbed Parameterized Tendencies (SPPT)
scheme. Its main aim is to ensure well-defined temporal and spatial correlation
between the rj values of the different model grid boxes.

P0 �xjI t
� D �

1C ˛rj
� � P

�
xjI t

�
(11.24)

If the SPPT scheme is applied in spectral models, then rj fields can be generated
in spectral space and then transformed to grid point space where the actual
parameterization computations are performed. Therefore rj is described by spherical
harmonics in a spectral global model [38] and by bi-Fourier functions in a spectral
limited area model [3]. The rj field is evolved by a so-called spectral pattern
generator where its spectral coefficients (rj0)mn are described by a first order auto-
regressive [AR(1)] process which ensures the temporal correlation.

�
r0
j

�

mn
.t C�t/ D 'r0

mn.t/C �mn.t/

' D exp .��t=�/
(11.25)
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In the AR(1) process described by Eq. (11.25) all the new (rj0)mn values are
calculated from two parts. The first part is the previous value multiplied by ®
which is the one-timestep correlation set by the decorrelation-timescale � . In the
second part ( values are independent random numbers picked from a Gaussian
distribution with 0 mean, 1 variance and bounded into the [�2; 2] interval. These
values are multiplied by the  parameter which is responsible for the size of the
perturbations and it is (similarly to the original BMP scheme) most commonly set
to 0.5. While rj fields are represented in spectral space, the horizontal correlation of
grid-point values are ensured after the spectral transformation. In the spectral pattern
generator the so-called space correlation length (L) can control the “smoothness”
of rj fields (Fig. 11.4). In practice horizontal and temporal correlation are set
according to the characteristic scale of the errors in the atmospheric processes
which is represented by the scheme. There are experiments where two rj fields are
combined [38]: one of them represents fast evolving synoptic-scale errors ( D 0.5,
� D 6 h, LD 500 km) and the other one represents slow evolving planetary-scale
errors ( D 0.2, � D 30 days, LD 2500 km).

In Eq. (11.24) ˛ is an additional height-dependent function which can modify
the vertical structure of the perturbations. In the recent implementations it is set to

Fig. 11.4 An example for rj field used in SPPT scheme and evolved by the spectral pattern
generator of the ALADIN model. The horizontal correlation length is set to 500 km
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1 except near to the surface and near to the model top where it smoothly relaxes
to 0. This relaxation is necessary to avoid numerical instabilities coming from
inconsistencies between the surface (top of the model) and the perturbed low-level
(high-level) atmospheric tendencies. Although experiments are started recently to
apply SPPT also in boundary layer [37].

As it is expected and experienced, SPPT scheme is able to improve ensemble
systems by ensuring sufficient spread through the model integration by the perturbed
model formulations. It can be also noted that its positive impact can be measured
in the quality improvement of model climatology (especially in the case of
precipitation and in the tropics; [38]). It is related to the fact that SPPT not only
takes into account the model uncertainty but it can recover the variety of the sub-
grid scale process tendencies which is often hidden by the “deterministic” nature of
the parameterization schemes.

11.3.3 Representation of Uncertainties Related
to Anthropogenic Activity

On multi-decadal and longer time scales, besides the natural drivers, anthropogenic
activity is also an important forcing of the climate system, consequently, climate
models must take them into account. Human activity can contribute to the climate
change in several ways: e.g., through the emissions of greenhouse gases (GHG) and
aerosol particles, land use or demographic change. These effects can be considered
in climate models uniquely through meteorological parameters, e.g., via equivalent
carbon dioxide concentration as external forcings. An important type of climate
simulations is when CO2 level is changed to a fixed value (e.g., to its double) and
the model is run until a new equilibrium. Such an experiment does not provide
information about the temporal evolution and the dynamics of climate change,
however, it allows exploring (and possibly explaining) the sensitivity of different
models to a given radiative forcing.

With the increasing computational capacity, the so-called transient method was
introduced: climate model integrations are forced with time-dependent atmospheric
greenhouse gas and aerosol concentration levels. Transient model runs can simulate
a number of important aspects of climate variability, like North Atlantic Oscillation,
monsoon systems, El Nino events. Most importantly, it can be applied to study
the future climate change trends and their impacts. Time series of concentrations
derived by Integrated Assessment Models (IAMs), which calculate GHG concen-
trations as response to the assumed environmental and economic processes (and
vice versa). Since there are several possible pathways of the global future socio-
economic developments, the most likely future concentration equivalents can be
described only with limitations. Therefore, climate simulations based on these
scenarios are called and treated as projections (instead of forecasts).
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An important scenario family is SRES (Special Report on Emissions Scenarios;
[36]) which consists of four basic scenario sets distinct in assumed global population
change and main features of the economic and technological developments from
2001 onwards along the twenty-first century. It was widely applied in global
climate model (GCM) experiments providing scientific basis for the third and
fourth assessment reports of Intergovernmental Panel on Climate Change [21, 22].
Measurements of the anthropogenic emissions in the last decade urged the need
to review the SRES scenarios. The RCP (Representative Concentration Pathways;
[35]) scenarios were constructed following a new methodology: using selected
pathways of radiative forcings or equivalent CO2 concentration levels, Earth System
Models (i.e., climate models) and IAMs are integrated simultaneously and interac-
tively to estimate the future response of climate and socio-economic conditions to
the varying atmospheric and radiative forcings. RCPs cannot be identified with any
given socio-economic scenario: they are referred to their radiation forcing value
for 2100, which can be resulted along several socio-economic development paths.
RCPs have four representative versions depending on their radiative forcing levels
considered for 2100 from pre-industrial value (Fig. 11.5). The RCP scenario family
has been used in the GCM simulations serving results for [23].

Fig. 11.5 Time evolution of the total anthropogenic radiative forcing relative to pre-industrial
(about 1765) level between 2000 and 2300 for RCP scenarios, and SRES scenarios (until 2100) as
computed by the Integrated Assessment Modelling Consortium (IAMC) [23]
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11.3.4 Other Methods

Multi-model and multi-physics methods have already been described in Sect. 11.3.2.
This list can be supplemented with other methods following a similar basic idea. For
instance multi-analysis methods start forecasts from various analyses computed by
different forecast centres. This technique can be also combined with the multi-model
method or with the multi-LBC approach used in limited area ensemble systems,
where EPS members can be coupled to different global models [10, 12]. Such multi-
LBC methods are addressing uncertainties of the lateral boundary conditions.

Considering that many meteorological services and forecast centres run their
own EPS, a logical step can be combining them and generating a more populous
ensemble. Such systems are able to represent many types of uncertainties due to
the big variety of the applied methods and the large number of EPS members. In
practice, the setup of multi-ensembles (ensemble of ensembles) can be technically
challenging because of the significant data transfers between forecast centres. In
case of limited area ensembles, the different integration domains can add additional
difficulties. Due to the mentioned issues multi-ensembles are more used for research
and quality control purposes [14].

11.4 Applications of Ensemble Forecasts

In the past decades ensemble systems have become increasingly popular tools to
provide probabilistic forecasts and projections both in numerical weather prediction
and in climate applications.

The ensemble method was first implemented in medium-range global models
(see below). Later many national meteorological services started to run ensembles
with their limited area models (LAMEPS) to refine global probabilistic forecasts
on a shorter time range and for a smaller area of interest (see below). Recently
the focus of research and development is shifted towards the so-called convection-
permitting ensembles, where such fine-resolution, non-hydrostatic models are used
and are able to resolve deep convection explicitly [12, 34, 50]. The prediction of
small-scale meteorological events is very uncertain due to their low predictability.
This fact motivates the use of probabilistic forecasts on finer resolution even more.

Adaptation to climate change impacts requires high-cost efforts from the eco-
nomics and societies. Therefore, credibility of the climate information providing
input for these actions has great importance. Due to long-term consequences of
the adaptation strategies, the most essential aspect of this credibility is to quantify
the uncertainties of climate model simulations. In climate projections targeting
multi-decadal and centennial time scales, uncertainties are mainly originated from
approximations used in description of physical and anthropogenic processes. It
means in practice that climate ensembles are constructed with choosing different
anthropogenic scenarios and different climate models. The huge computational
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requirements and the limited national resources motivate the international co-
operations in establishing climate ensembles. The first climate ensemble system was
composed of GCM simulations in 1995. Although limited area models have been
used for climate purpose since the 1990s [13], the first ensemble system consisting
of regional climate model simulations was organized only in mid-2000s.

11.4.1 Some Examples of Ensemble Systems

11.4.1.1 The ECMWF Ensemble Prediction System

The ECMWF operational Ensemble Prediction System (ENS) produces 51 forecasts
(1 control and 50 perturbed members) for the quantification of the forecast
uncertainties in the Integrated Forecasting System (IFS). The forecast uncertainties
are quantified as the result of initial and model perturbations.

The initial perturbations of the ENS are determined by adding a combination of
EDA and SV perturbations to the unperturbed analysis (which is the high resolution
ECMWF analysis) described by Eq. (11.26).

xj D x0 C yEDA C ySV (11.26)

EDA perturbations (yEDA) are generated by computing differences between the
6 h EDA forecasts and the EDA mean, like in Eq. (11.20). The 6 h EDA forecasts
are chosen since the latest EDA is not yet available at the time of analysis. The
SVs are computed by the optimization of the total energy growth in a 48 h time
interval using various target areas for the extra-tropics and the tropics. The SVs
are linearly combined (see Eq. (11.12)) and the perturbations are scaled to have
an amplitude locally similar to the analysis error estimation obtained from 4D-Var
(4- dimensional variational data assimilation).

The uncertainties of the lower boundary conditions can be also considered in an
ensemble of data assimilation cycles. The method applied in ECMWF generates
perturbations with errors correlated with the sea surface temperature fields [49].
Model uncertainties are taken into account by adding stochastic perturbations to
the physics parameterization tendencies using SPPT (see Sect. 11.3.2) and Spectral
Kinetic Energy Backscatter (SKEB) schemes [38].

11.4.1.2 Limited Area EPS Activity at Hungarian Meteorological Service

The operational regional EPS of the Hungarian Meteorological Service (HMS)
is based on the hydrostatic ALADIN model [18] and runs with 8 km horizontal
resolution over a continental European domain (Fig. 11.6a). The system has a
control and 10 perturbed members which are the dynamical downscaling of the
first 11 members of the French global EPS, called PEARP (Prévision d’Ensemble
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Fig. 11.6 (a) ALADIN model domain. (b) AROME model domain
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ARPEGE). In that global system initial condition perturbations are generated as
a combination of EDA and SV perturbations and model uncertainty is taken into
account by the multi-physics approach [11]. Global perturbations have impact
in the limited area system through the downscaled initial and lateral boundary
conditions. The operational LAMEPS can provide useful probabilistic guidance for
the forecasters and the end-users as it is shown on some examples in Sect. 11.4.2.
Some experiments showed the efficiency of targeted singular vectors which can
inject locally efficient perturbations into the global system. These perturbations can
also penetrate into the limited area model domain through the downscaling process
[15]. The slightly positive impact of an EDA implementation was also shown where
only near-surface observations were perturbed in an ensemble of surface optimal
interpolations [19].

HMS has also started its convection-permitting ensemble research based on the
AROME non-hydrostatic model [41, 44]. Integrations run with 2.5 km horizontal
resolution over a domain covering the Carpathian Basin (Fig. 11.6b). Most of the
tests were launched (similar to the operational LAMEPS) with 10C1 members
coupled to the PEARP or in some cases to the ECMWF’s EPS. Such a convection-
permitting ensemble system is able to properly describe the small-scale structure
of thunderstorms and help in the early warning of hazardous events as will be
demonstrated in Sect. 11.4.2.

The EDA scheme was extensively tested and its positive impact was quantified
[44]. In the applied configuration 10C1 EDA members were used to initialize the
10C1 EPS members in accordance with Eq. (11.19). During the data assimilation
cycles all the observations were perturbed both in atmospheric variational assimila-
tion and in surface optimal interpolation. The quality of the single members were
improved by the impact of data assimilation itself and the spread of the ensemble
system was increased by the injected initial condition perturbations.

The influence of the SPPT scheme was also examined in AROME-EPS [44].
The parameters of the SPPT scheme were tuned in a way to attribute smaller scale
errors to the perturbations which are adequate to the finer model resolution of a
non-hydrostatic model ( D 0.5, � D 2 h, LD 500 km or 125 km). The impact of the
scheme proved to be more neutral than generally in global systems.

11.4.1.3 Coupled Model Intercomparison Projects (CMIPs)

The climate system is composed of atmosphere, hydrosphere, cryosphere, land sur-
face and biosphere, including highly non-linear feedbacks between them. Weather
prediction is concentrating primarily on short- and medium-range description of
the atmosphere, which is the most well-known and rapidly changing part of the
Earth system. Climate models simulate the asymptotic behaviour of the complex
climate system, where their components have a variety of adjustment time scales
changing from years to hundreds of thousand years. Consequently, response of
the climate system to an external forcing can be determined by coupled models,
which incorporate mainly atmospheric and ocean model components, simulating not
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only the atmospheric and ocean motions but also sea-ice processes and interactions
between them. Even though the first realistic atmosphere–ocean general circulation
model (AOGCM) experiment dates back to 1975 [31], systematic collection of
AOGCM output of leading climate centres was started in mid-1990s by the
Working Group on Coupled Modelling of WCRP.1 Simulations were based on a
common protocol in order to establish a database supporting the climate community
to study, validate, evaluate and intercompare AOGCM results. While CMIP12

[28] and CMIP2 [9] were composed of control runs (i.e., experiments for the
past climate with observed forcing) and idealized forcing scenario runs (i.e.,
experiments with 1 % CO2 concentration increase per year), respectively, series
of realistic climate change simulations were started with CMIP3 [32] in 2005.
These model runs described not only the natural forcings for the past, but the
future projections were preceded by comprehensive scenario constructions resulted
in SRES emission scenarios. Experiments focused on three emission scenarios
(SRES A2, A1B and B1), each of them representing a substantially different future
pathway of anthropogenic activity (indicating approximately 850, 700, 550 ppm
CO2 concentration by 2100, respectively). Results are freely available in CMIP3
database and provided input to the IPCC Fourth Assessment Report [22]. CMIP3
was followed directly by CMIP5 [45] in 2010; a new numbering was introduced
referring to the corresponding IPCC reports (since CMIP5 results served as input for
IPCC AR5; [23]). CMIP5 model simulations have already applied RCP scenarios
for prescribing future anthropogenic forcings. Experiments addressed three main
issues: (1) to assess the scientific background of model differences in carbon cycle
and clouds feedbacks, (2) to examine climate predictability on decadal time scales,
(3) to identify reasons for different responses produced by similarly forced models.
The sixth phase of CMIP [33] is still under design: simulations will be carried out
with Earth System models extended with additional model components and their
main focus will be on model biases, predictability and uncertainty issues.

11.4.1.4 Ensembles of Regional Climate Model Simulations

The first ensemble of regional climate model simulations in Europe were produced
in the PRUDENCE3 FP54 project [7]. The time horizon of the RCM experiments
was 2071–2100 and 1961–1990 was chosen as reference. Due to limited com-
puter resources, time-slice simulations were achieved, meaning that RCM runs
concentrated only on the selected two time frames. This is scientifically sound
in regional modelling (especially if the RCM contains exclusively an atmospheric

1World Climate Research Programme
2First phase of Coupled Model Intercomparison Project
3Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks
and Effects
45th Framework Programme of European Union
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model component), since regional models provide dynamical downscaling of GCM
outputs and the downscaled outcomes are basically independent of initial date of
the integration. The regional experiments focused on Europe with 50 km horizontal
resolution using two largely different SRES emission scenarios (A2 and B2, with
approx. 850 and 600 ppm CO2 concentration levels in 2100, respectively). Contrary
to PRUDENCE, in the ENSEMBLES FP6 project (2004–2009) transient climate
simulations (cf. transient method in Sect. 11.3.3) were accomplished for the period
of 1951–2100 covering Europe on 25 km horizontal resolution [48]. The simulations
were conducted with various RCMs driven by outputs of various GCMs. More focus
was put on precipitation projections: the finer resolution and the improved model
features led to better representation of related fine scale structures and temporal
distribution [2]. The main target of studies was 2021–2050, and it is known based
on Hawkins and Sutton [16, 17] that choice of emission scenario has no significant
impact to the range of climate projection uncertainties in this time frame. Therefore,
the same scenario forcing was applied in most RCM experiments, which is SRES
A1B considered as a medium scenario by the end of the century. Consequently,
ensemble of ENSEMBLES represents the model uncertainties, which is of key
essence in case of precipitation projections (see also Chap. 12 of Szabó and Szépszó
in the same volume, [43]). At the same time, this ensemble was not fully well-
balanced, because the majority of the RCMs were driven only by two GCMs. Since
lateral boundary conditions have great importance on regional outcomes, over-
representation of 1 or 2 selected GCMs in the ensemble may bias the probabilistic
information.

Recently, the most important cooperation in regional climate modelling is
CORDEX [26], initiated by WCRP in 2009. Its original objective was to cover the
poorly researched continents (especially Africa) with high- (12–50 km) resolution
regional climate model experiments. Nowadays, CORDEX has lots of branches
focusing on different regions of the Earth, for instance EURO-CORDEX [25] for
Europe. The unprecedented fine-resolution simulations with most recent climate
models show improved performance over Europe with respect to the ENSEMBLES
outputs [27]. Forcings and lateral boundary conditions for CORDEX RCM exper-
iments are provided by CMIP5 results using different RCP scenarios. As a result,
the CORDEX ensemble represents both model and scenario uncertainties, moreover
it makes possible to study the impact of emission scenario families (through inter-
comparisons with earlier results obtained by PRUDENCE or ENSEMBLES).

11.4.2 Visualization Methods

In this section some visualization methods are shown which are connected to the
above-described applications. The primary aim of these interpretation methods
is generally to concisely summarize all the information which is provided by
the ensemble members. They can for instance quantify the uncertainty of the

http://dx.doi.org/10.1007/978-3-319-40157-7_12
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forecasts or represent them in a probabilistic way or underline the likelihood of
any meteorological event of interest.

11.4.2.1 Plume Diagram

Plume diagrams have been already referred to in Sect. 11.2 as the demonstration of
flow-dependent uncertainty. These plots show the values of a given meteorological
variable in all the ensemble members as a function of time for a given geographic
location. They are very informative about the growth of the forecast uncertainty and
the range of possible future values of a given variable.

The precipitation values predicted by the LAMEPS of the HMS can be compared
in a forecast started from 18UTC on 15th of March 2014 (Fig. 11.1a) and in another
case, exactly 2 months later (Fig. 11.1b). In the first case a light cold front crossed
Hungary which precipitation pattern was rather certain and consequently similar
in all the EPS members. In the second case the so-called Yvette storm hit the
whole Central European region causing damages by its strong wind gusts and large
precipitation amounts. A very complex precipitation field belonged to this cyclone
which had low predictability and therefore the ensemble members showed large
spread.

Climate projections can also be visualized similarly to the plume diagrams.
Figure 11.7 shows the evolution of global mean annual temperature as projected by
an ensemble of climate models. The first panel depicts temperature change relative
to 1961–1990 based on results of 15 GCM simulations, in which the future CO2

concentration values were uniquely prescribed according to SRES A1B emission
scenario. So the 15 projections were conducted with different global climate models
taking the same external forcing into account. The annual mean temperature change
is foreseen to be in the ranges of 1.0–2.2 ıC by 2050 and 2.2–3.8 ıC by 2100. In the
second panel of Fig. 11.7, projections are extended with outputs of 30 additional
experiments achieved with the same GCMs, but applying two additional SRES
emission scenarios, A2 and B1. It can be noticed that uncertainty is growing using
significantly different scenarios. This enhancement is not uniform in time, scenario
choice has greater impact during the second part of the twenty-first century: the
projected interval of mean temperature change does not increase significantly (0.5–
2.2 ıC) until 2050, while warming is expected to be between 1.7 and 4.5 ıC until
2100 considering all the three emission scenarios. This means that in projections
for the next few decades there is larger departure between results of simulations
obtained with different GCMs but with the same emission scenario than vice
versa. (What is not surprising considering that CO2 concentration levels in different
scenarios start to diverge from around 2030.)
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Fig. 11.7 (a) Global annual mean temperature change (ıC) relative to 1961–1990 based on results
of 15 global climate model simulations using SRES A1B emission scenario for description of
future anthropogenic activity. (b) Same as (a), but results are based on 45 global climate model
simulations using three different SRES emission scenarios (red: A2, green: A1B, blue: B1). Thick
curves represent the multi-model means within the given scenarios, grey and black curves indicate
the results of control runs and their multi-model mean, respectively

11.4.2.2 Probabilistic Map

Probabilities can be computed based on the individual EPS members, where mostly
the members are taken into account with equal weight. First a meteorological
variable (or a climate parameter) and a corresponding threshold value should be
defined; for instance temperature below zero degree (or mean precipitation change
over zero percent, i.e., precipitation increase). Then the probability of reaching
such a threshold can be calculated from the ensemble members at every point of
a given domain. The geographical visualization of those probabilities represents the
likelihood of the occurrence of a given meteorological event or a climatological
tendency.

Probabilistic maps can draw attention to extreme or dangerous meteorological
events. On 14th of March, 2013 the probability of a devastating snowstorm was
studied in the LAMEPS of the HMS (see Fig. 11.8). The probability of this event
can be defined by the joint probability distribution of more meteorological variables
(such as temperature, the amount of fresh snow and wind gust) which provide
the necessary conditions for the occurrence of a snowstorm. For every variable a
different threshold can be defined and some of their combinations can be used.
In this way the probability and strength of such complex weather event can be
determined together with its geographic extension. From the top left panel to the
bottom right panel of Fig. 11.8 the thresholds of fresh snow amount and wind gust
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Fig. 11.8 Probability of devastating snowstorm defined as joint probability reaching given
thresholds for temperature, fresh snow and wind gust. On all the maps the threshold of temperature
was set to 0ı, while the amount of fresh snow in 12 h is increasing from left to right (5, 10, 15 cm)
and wind gust is increasing from top to bottom (10, 15, 20 m/s). Colors refer to the level of the
threat and orange shows the probability of reaching the highest thresholds. Figures were drawn
from a 12h forecast of LAMEPS run at 18UTC 14 March 2013

values increase, i.e., the joint probabilities show the likelihood of conditions with
increased threat.

A probabilistic map can also be used in climate applications and its construction
is based on the same methodology. Nevertheless, one has to be careful with inter-
preting this information in the same way as in weather prediction: while ensemble
members in NWP represent equally likely forecasts, this cannot be considered
for climate projections. In long-term projections, uncertainty due to scenario-
type description of anthropogenic activity becomes more and more important
with increasing lead time. However, probabilities cannot be associated to these
scenarios, since future aspects of human activity strongly depend on socio-economic
decisions and cannot be specified with any accuracy [4]. Consequently, the resulted
projections are evaluated rather as possible (instead of probable) outcomes with
given conditions. Figure 11.9 was created using results of 17 RCM simulations
of ENSEMBLES, each of them applied 25 km horizontal resolution and the A1B
emission scenario. Percentage values correspond to the ratio between the numbers
of model experiments producing winter mean precipitation increase and decrease
from 1961–1990 to 2021–2050. Assuming A1B emission pathway as realistic
and probable emission pathway, it can be stated that probability of winter mean
precipitation increase exceeds 70 % North from Hungary, whereas in Southern and
Eastern Europe increase and decrease are equally likely.
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Fig. 11.9 Probability of winter mean precipitation increase (%) for 2021–2050 with respect to
1961–1990 based on results of 17 RCM experiments available in ENSEMBLES database

11.4.2.3 Stamp Diagram

It is possible to visualize all the ensemble members next to each other for a given
meteorological variable. These diagrams cannot be informative about the details but
they are able to warn forecasters on the possibility of hazardous weather, even if it
appears only in a limited number of members.

As it was already mentioned the predictability of such small-scale phenomena
like thunderstorms is rather low but at the same time they might mean risk in
terms of disaster management. That was the case on the evening of 20th of August,
2013 when several events with mass public participation were held in Hungary and
which were threatened by the convective activity. In the test version of convection-
permitting EPS of HMS (AROME-EPS, see Sect. 11.4.1) almost all the members
predicted thunderstorms with small-scale structure (Fig. 11.10). While the existence
of precipitation seemed very certain its localization and intensity showed a large
variability from member to member. Stamp diagram can easily warn the decision-
makers if any of the members predicts hazardous thunderstorm for a given area and
possibly suggest the cancellation or postponement of an event.

11.5 Summary

In this work the recent ensemble approaches have been reviewed both in the
numerical weather prediction and climate projection fields. The uncertainties of
atmospheric and Earth system modelling were underlined giving the motivation for
using probabilistic forecasts. Ensemble methods were presented as the only feasible
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Fig. 11.10 The stamp diagram of forecast for 3-h precipitation amount between 21 UTC on
20th and 00UTC on 21st of August, 2013. Top left panel shows precipitation estimated from
radar measurements, while other panels represent the members of convection-permitting ensemble
system tested at the HMS (AROME-EPS)

way to get probabilistic information, meaning not only a single but an ensemble of
model runs are taken into account.

The key issue in ensemble prediction systems is how differences between the
members of an ensemble are defined. Various methods can perturb the initial condi-
tions of the atmosphere, while other methods can represent the model formulation
uncertainties. In climate projections, the initial state of the system is less important,
but anthropogenic activity is an additional source of uncertainty taken into account
through different emission scenarios.

Some examples have been given how the described ensemble approaches can be
used in NWP and climate projection systems. It was noted that despite the recent
model improvements, uncertainties cannot be neglected. As the resolution of the
applied models is getting finer, the smaller-scale motions are resolved explicitly in
the dynamical equations. Predictability of these motions is also limited resulting
that probabilistic forecasts will be important in the future.
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Chapter 12
Quantifying Sources of Uncertainty
in Temperature and Precipitation Projections
over Different Parts of Europe

Péter Szabó and Gabriella Szépszó

Abstract In this study, uncertainties emerging from natural climate variability,
the description of physical processes in models and future anthropogenic activity
are quantified for mean temperature and precipitation projections over various
regions in Europe. Results of global climate models from CMIP3 dataset were
used for 1951–2100 with SRES emission scenarios over the twenty-first century.
We are concentrating on three main issues: (1) fractions of total uncertainty and
its seasonal variation over the Carpathian Basin, Northern and Southern Europe;
(2) limitations in theoretically reducible uncertainty through model development;
(3) quantifying the ratio of projected change and total uncertainty (signal-to-noise
ratio, when results are significant) and time horizons when changes exceed natural
variability (time of emergence, when major impacts happen more likely). Internal
variability is the dominant uncertainty factor for the Carpathian Basin, especially
in winter due to the intensive circulation activity. Scenario uncertainty has lower
impact for the Carpathian Basin than for Northern and Southern Europe, where
it has importance for temperature results in the second half of the century. For
precipitation, emission scenarios are less meaningful. Fraction of model uncertainty
is continuously growing by 2100, especially for precipitation. The smaller the
area, the later the mean temperature change surpasses total uncertainty. Signal-
to-noise ratio is not significant for precipitation projections over Southern Europe
and Carpathian Basin, and over Northern Europe it is only for winter and spring.
Seasonal temperature changes exceed natural variability between 2020 and 2045
for the Carpathian Basin, and one-two decades earlier over Northern and Southern
Europe. Precipitation projections do not emerge from natural variability over the
Carpathian Basin; they do only in summer over Southern Europe, and all the other
seasons over Northern Europe by the end of the century.
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12.1 Introduction

The establishment of an ensemble of global climate model (GCM) results was
initiated in the 1990s: the Working Group on Coupled Modelling of WCRP1

elaborated a common simulation protocol in order to build up a database from
atmosphere–ocean general circulation model (AOGCM) outputs of leading climate
centers. The main objective of CMIP2 was to support the climate researchers to
study and compare the AOGCM results. CMIP3 [16] was the first in the CMIP
phases where future simulations were based on a variety of emission scenarios
allowing to assess the impact of different socio-economic pathways and possible
future evolution of climate change.

The quantification of uncertainties has been naturally a key focus of climate
modelling research since the construction of the first ensemble of global climate
model results. Focusing on CMIP3 data, Hawkins and Sutton [7] carried out a com-
prehensive analysis for temperature projections based on 15 coupled models and 3
different SRES3 emission scenarios [19]. They quantified uncertainties as from three
independent sources: (1) internal variability existing in climate system without any
external forcing; (2) model uncertainty resulting by different formulation of climate
models; (3) scenario uncertainty due to various greenhouse gas emission pathways
used for description of future anthropogenic activity. The main conclusions of
Hawkins and Sutton were as follows: (1) decadal internal variability and model
uncertainty are the competing leading uncertainty factor in projections for the
next decades, particularly on continental scales, whereas the role of the scenario
uncertainty starts to increase in the second half of the twenty-first century; (2) GCMs
provide valuable temperature projections over most investigated region measured
quantitatively by the ratio of decadal-averaged climate change signal and total
uncertainty. A similar assessment was done for precipitation projections [8] indicat-
ing that they have different uncertainty characteristics as found for temperature. The
main difference is the low impact of emission scenario choice, which is especially
minor on continental scale. Consequently, uncertainties in precipitation projections
are chiefly caused by decadal internal variability and model uncertainty (in the
latter case by the parameterization schemes applied for description of precipitation-
related physical processes; [6]). The background of internal variability and the role
of internally versus externally forced climate change was extensively discussed by
Deser et al. [3]. It is found based on the CMIP3 multi-model ensemble that internal
variability accounts for at least half of the inter-model spread in projected climate
trends before 2060s and forced (i.e., scenario-driven) changes can be detected earlier
in temperature than in atmospheric circulation and precipitation. The dominant
source of natural variability is the coupled ocean–atmosphere variability in the

1World Climate Research Programme
2Coupled Model Intercomparison Project
3Special Report on Emissions Scenarios
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tropics and the internal atmospheric variability associated with the annular modes
of circulation variability in the extratropics. Further studies [1, 4] proved that role of
natural variability is varying over different geographical regions and there are areas
with low climate predictability due to large variability and vice versa (spatial scope
of assessments in [5] was North America).

Hawkins and Sutton made fundamental assumptions such as the independence of
the abovementioned three sources of uncertainty or that the ensemble of CMIP3 is
a collection of independent GCMs. Yip et al. [25] showed that globally the model–
scenario interaction effect is an important contribution to uncertainty with long lead
time. Masson and Knutti [15] investigated the confidence of climate projections
considering their performances over a control period. Study of Pennell and Reichler
[20] indicated that due to similarities in GCM error patterns CMIP3 does not
represent and underestimates the full range of projection uncertainty. Sanderson
et al. [21] concluded the same for the newest available global projections (CMIP5;
[23]) and proposed a weighting method for filtering out the co-dependence among
the GCMs. Zubler et al. [26] also assessed dependence of CMP5 outputs focusing
on the Alpine region and proved that temperature change signal over this territory
is largely sensitive to the selection methods (e.g., clustering or averaging results of
similar GCMs).

Coupled general circulation models (and earth system models) are the only
scientific tool to explore the response of climate system to any assumed external
forcing. The development of GCMs is continuous, today they are providing more
and more realistic description of features related to climate variability on large scale:
they are able to reproduce mean temperature variance on interannual to centennial
time scales, the statistics of the global monsoon, the North Atlantic Oscillation, the
El Niño-Southern Oscillation, the Quasi-Biennial Oscillation etc. [22]. It is naturally
raising the question whether improvement of GCMs is accompanied by a reduction
of uncertainty ranges in projections, or at least by change of its decomposition. This
chapter makes some effort to partly answer this question. In the present chapter we
intend to investigate the following issues:

1. Carpathian Basin is largely influenced by climate change [13] and the Hungarian
Meteorological Service provides information about the future changes based on
regional climate model (RCM) results for the users. According to multi-model
results of the ENSEMBLES project [24], future precipitation change over Europe
is substantially different over Northern and Southern Europe. Present study is
addressing the question what the key uncertainty factor is in GCM projections
(driving the RCMs) for seasonal temperature and precipitation over Northern
and Southern Europe. To go further in investigation of this issue, we examine
the composition of projection uncertainties over the zone of zero precipitation
change with focus on the territory of Carpathian Basin. In the assessment the
above-mentioned methodology of [7], hereafter HS, was adapted with some
applied modifications.

2. It was shown by outcomes of HS, that continental-scale GCM projections are
characterized by less significance than on global scale even considering decadal
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change. Is there any limit of spatial and time-scales on which GCM results do
not contain valuable information about climate change any more? Two measures
were calculated for seasonal temperature and precipitation data: (1) signal-to-
noise ratio quantifying the ratio of projected change and total uncertainty (defined
as sum of the internal variability, model uncertainty and scenario uncertainty) is
a measure whether the information is valuable for users; (2) time of emergence
showing the year when projected change exceeds magnitude of the internal
variability (i.e., natural and unavoidable part of the uncertainty) is a useful
sign when an act is needed since the change is not due to variability. Another
important aspect of the second question is in what extent development of global
climate models is able to potentially reduce the uncertainty range of projections.

The chapter is structured as follows: Sect. 12.2 gives a detailed overview about
the utilized procedure specifying the differences compared to method of HS.
Section 12.3 introduces the GCM data involved in the analysis and the spatial scope
of the study. Results are presented in Sect. 12.4: different uncertainties are explored
first through raw temperature and precipitation time series; their contributions to
the total uncertainty are analyzed in quantitative way over Northern and Southern
Europe and the Carpathian Basin; a calculation was made in order to test what the
theoretical range is to reduce the uncertainties via model development or following
rigorously an emission scenario; finally we calculated some measures (signal-to-
noise ratio, time of emergence) interesting for decision making. The chapter is
closed with a short summary and a brief outlook.

12.2 Methods

The methods following the article of HS to quantify uncertainty of climate model
results were implemented with some minor changes at the Hungarian Meteorologi-
cal Service. Below the methodology used in our study is introduced with indicating
the modifications applied on HS.

1. A fourth-order polynomial fit was adjusted to the raw temperature (XT(t), T index
refers to temperature) and precipitation (XP(t), P index refers to precipitation)
data from 1951 to 2100 following Eqs. (12.1) and (12.2):

XT.t/ D �T.t/C NT C ".t/ (12.1)

XP.t/ D
	
�P.t/C 100

100



� NP �

	
".t/C 100

100



; (12.2)

where NT and NP are the temperature and precipitation polynomial averages for
the reference period of 1971–2000, �T(t) and �P(t) denote the departure of
polynomial values from this reference with t time (years) and "(t) values are
the residuals of raw model results from the polynomial fits, representing the
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variability component. Note that units in Eq. (12.1) are all degrees Celsius, while
in Eq. (12.2)XP(t) and NP are in mm,�P(t) and "(t) in percentage. Conventionally,
percentage change is usually taken when providing precipitation information for
the impact studies or end-users, thus we decided to use relative changes.

2. Internal variability [V(t)] is quantified as the variance of the residuals:

V.t/ D varm;s;t".t/
ˇ
ˇ
ˇ t D �

1951 : : : 1980
� ! �

2071 : : : 2100
�
; (12.3)

where m stands for models, s represents scenarios. Contrary to HS, internal
variability was not taken constant through the whole analyzed time period, in
our study it was re-calculated in every year for the previous 30-year period. This
was needed since internal variability is found not to be constant according to
the observations over the Carpathian Basin. Applying the same fitting method
for the E-OBS data set [10] from 1951 to 2010, it is concluded that seasonal
range of internal variability within this period is 0.6–1.7 K for temperature and
19–29 % for precipitation. Fourth-order polynomial fits appeared to be the best
choice since it conserves the signal while eliminates the variability. Furthermore,
fluctuation in the internal variability also appears in the future model results for
the Carpathian Basin (see Fig. 12.4c). It should be noted that internal variability
results were smoothed with a moving average applying a 10-year window to get
rid of small fluctuations. This smoothing was also applied for the Northern and
Southern European results to stay consistent.

3. Model uncertainty [M(t)] and scenario uncertainty [S(t)] were calculated after
Eqs. (12.4) and (12.5), respectively, while the sum of Eqs. (12.3), (12.4) and
(12.5) provides total uncertainty [T(t)] in Eq. (12.6). Note that in Eqs. (12.4),
(12.5) and later in (12.7) for precipitation calculations, �P(t) should be applied
instead of �T(t).

M.t/ D 1

Ns

X

s

varm �T.t/ (12.4)

S.t/ D vars

 
1

Nm

X

m

�T.t/

!

(12.5)

T.t/ D V.t/C M.t/C S.t/ (12.6)

where Ns is the number of scenarios (i.e., 3), Nm is the number of models (i.e.,
15 or 14); s and m indices in summa run from 1 to Ns and Nm, respectively; varm
and vars represent variance across the results of different models for a given
scenario and of different scenarios for the multi-model average, respectively.
Concerning temporal evolution of the different uncertainty factors, yearly annual
and seasonal means were applied instead of the decadal averages used by
HS. The uncertainties were calculated without weighting of models, i.e., time
series were treated as equally possible realizations for the future. On the one
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hand, weighting could be specified based on validation results, however, model
performance is not necessarily preserved for the future and HS proved for global
results that validation-based model weighting does not have big influence on the
uncertainties. On the other hand, weighting could also be done through model
dependence with putting less emphasize to the results of models derived from
the same model family (e.g., using same physical parameterizations) in order
to receive a more robust estimation of model uncertainty related to differences
between model formulations [26]. We did not apply this either since same
weights are not ensured over different regions. Nevertheless, this chapter has
no intention to study this issue.

4. An important score, signal-to-noise ratio [STN(t), Eq. (12.8)] is the rate of the
average temperature or precipitation change [G(t), Eq. (12.7)] against the root
mean of total uncertainty (noise) per se. We introduce a differently defined
measure with a slightly distinctive meaning, the time of emergence [TOE, Eq.
(12.9)]. TOE (in actual years) is the first year when the ratio of the average
change and only the root mean of the internal variability as the adherent part
of the total noise is larger than a selected threshold.

G.t/ D 1

NmNs

X

m;s

�T.t/ (12.7)

STN.t/ D G.t/
p
T.t/

(12.8)

TOE D t; when
G.t/
p
V.t/

� �; (12.9)

where � is a certain threshold appropriate for impacts, usually C1 or �1.
In HS, the STN was concerned with significance test with a 90 % confidence

level. In our study it was neglected since for precipitation over smaller regions
very large total noise would occur against the average change of the polynomial
fits mainly as result of large internal variability. STN ratio would never be
significant for precipitation results, and we dismissed it for temperature results
to keep consistency. Concordantly, we neglected significance for TOE as well.

12.3 Data

We used annual and seasonal temperature and precipitation time series of 45 and 42
CMIP3 experiments for 1951–2100 carried out by 15 (for temperature) and 14 (for
precipitation) different global models driven by three SRES emission scenarios (A2,
A1B and B1) from 2001. The reference period was selected as the last available
30 years before the scenario runs, thus 1971–2000 was used in all runs (which is
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Table 12.1 List of selected CMIP3 models, with horizontal resolution of their atmospheric
component (degrees) and number of their gridpoints over the Carpathian Basin

Model Institution Resolution (X � Y) Points

BCM2.0a Bjerknes Centre for Climate Research
(Norway)

2.8 � 2.8 6

CCSM3 National Center for Atmospheric
Research (USA)

1.4 � 1.4 21

CGCM3.1 Centre for Climate Modeling and
Analysis (Canada)

3.75 � 3.75 3

CNRM-CM3 Météo France (France) 2.8 � 2.8 6
CSIRO-Mk3.0 CSIRO Marine and Atmospheric

Research (Australia)
1.9 � 1.9 15

ECHAM5/MPI-OM Max-Planck Institute for Meteorology
(Germany)

1.9 � 1.9 15

ECHO-G Meteorological Institute of Bonn
University (Germany)

3.75 � 3.75 3

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory
(USA)

2.5 � 2.0 12

GFDL-CM2.1 GFDL (USA) 2.5 � 2.0 12
HadCM3 Hadley Centre for Climate Prediction

and Research (UK)
3.75 � 2.5 6

INM-CM3.0 Institute for Numerical Mathematics
(Russia)

5.0 � 4.0 2

IPSL-CM4 Institut Pierre Simon Laplace (France) 3.75 � 2.5 6
MIROC3.2 (med) Center for Climate System Research

(Japan)
2.8 � 2.8 6

MRI-CGCM2.3.2 Meteorological Research Institute
(Japan)

2.8 � 2.8 6

PCM1 NCAR (USA) 2.8 � 2.8 6
aThe model results were not available for precipitation

still common in the observational community as well). All results in the chapter
are presented after 2000. Note that there was no selection of models, but taking all
available information. The horizontal resolution of the atmospheric component in
single models varies from 1.4 � 1.4 degrees to 5 � 4 degrees (Table 12.1).

All calculations were done for Northern and Southern Europe and for a domain
over the Carpathian Basin, as well (Fig. 12.1). Investigations of HS were repeated
also for global scale in order to check the reproducibility: results were quantitatively
almost equivalent to HS ones (not shown). Europe was divided into Northern
and Southern Europe due to their largely different precipitation change signal
(both in direction and magnitude). Based on the ENSEMBLES results [24] where
the annual ensemble mean for the end of the twenty-first century shows zero
precipitation change zone between 45 and 50oN (seasonally varying between 40 and
55oN), precipitation increase on higher latitudes and decrease on lower latitudes,
we decided to separate Northern Europe and Southern Europe at 47oN in our
study. Our main area of interest is the Carpathian Basin including our country
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a) Northern and Southern Europe b) Carpathian Basin

80 km

Fig. 12.1 The analysis domains for (a) Northern and Southern Europe (separated by the yellow
line) and (b) the Carpathian Basin (also red rectangle on panel a)

(Hungary). Its area is over 400,000 km2 with varying elevation features. Regarding
seasonal precipitation changes, this territory is located in the zero change zone
of ENSEMBLES results implying the large uncertainty in regional projections.
Therefore, we aim at studying this issue in global climate model results.

12.4 Results

12.4.1 Future Temperature and Precipitation Trends

Temperature projections of the investigated global models show a clear increasing
annual trend for the twenty-first century for all the analyzed regions including
Northern (N) and Southern (S) Europe and the Carpathian Basin (Fig. 12.2). The
mean regional warming for 2071–2100 over the Carpathian Basin is almost as big
(3.1 K) as one over the halves of the continent (3.1 K over N-Europe and 2.8 K over
S-Europe). Results over the Carpathian Basin derived from four locally-run regional
climate models driven by SRES A1B and B2 scenarios are showing slightly larger
signal than resulted from the global models: the projected change by the end of the
century is 3.5 K [13]. European RCM results can only qualitatively be compared
with the GCM results, but for S-Europe warming signal projected by ENSEMBLES
models is definitely larger than by GCMs.

We cannot easily distinct the regional mean values calculated from different
emission scenario-driven experiments unlike in case of global means. The multi-
model mean of simulations driven by optimistic (B1) scenario sharply deviates from
the other two around the middle of the century, while the results with medium
(A1B) and the pessimistic (A2) scenarios evolve together and start to diverge
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a) Northern Europe b) Southern Europe

c) Carpathian Basin
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Fig. 12.2 Annual temperature change (in K) between 2001 and 2100 with respect to the reference
period of 1971–2000 over 3 regions obtained from results of 45 CMIP3 simulations achieved by
15 GCMs driven with three SRES scenarios. Anthropogenic forcings were taken from SRES A2,
A1B and B1 emission scenarios, and the multi-model means for each scenario are represented with
curves

only around 2070–2080 regardless of the investigated area. Model results spread
through the different scenarios even around the end of the century, especially over
N-Europe and Carpathian Basin. Cooler temperature values than in the reference
period could occur in some years until the middle of the century over S-Europe,
but even afterwards over N-Europe and Carpathian Basin. Warming shows similar
seasonality over Southern Europe and the Carpathian Basin and the opposite over
Northern Europe. Temperature rise is the highest for the first two regions in JJA
(June–July–August, 4.1 K), while the lowest in DJF (December–January–February,
2.7 K) and MAM (March–April–May). On the contrary, biggest warming over N-
Europe can be seen in DJF and lowest in JJA can be seen in DJF and lowest in JJA,
4.3 and 3 K, respectively (not shown).

Dispersion of raw model results increases with lead time, but N-Europe and
Carpathian Basin has already bigger spread than S-Europe. Annual results for
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Fig. 12.3 Same as Fig. 12.2 but for precipitation change (in %) using results of 42 CMIP3
simulations

S-Europe have 1–4 K spread from the beginning to the end of the century, while
over N-Europe and Carpathian Basin have 3–6 K. This time-dependent increase in
uncertainty stems both from the scenario diversity and from the changing (or already
larger) natural variability after detrending the data.

Annual precipitation projections (Fig. 12.3) are very much different for Northern
and Southern Europe. Precipitation means for N-Europe show a small positive trend
for all three scenarios, and the average change reaches 9 % by 2100 with respect
to 1971–2000, in agreement with the ENSEMBLES results. Distinction in the three
analyzed scenarios never occurs. Annual projections for S-Europe show a significant
decrease, on average reaching �14 % by 2100. Scenarios cannot be clearly separated
from each other, only to a certain extent in the last decades. Seasonally, DJF
precipitation for N-Europe is projected to have the highest increase (10–20 %),
while in JJA no change is foreseen. Results for S-Europe are clearly different: means
for DJF are slightly below zero and the greatest decrease is expected in JJA with
(�40)–(�20)% (not shown).

Results for the Carpathian Basin are somewhat between the two European
domain ones, giving relevance for its separate analysis. No apparent up- or
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downward trend can be concluded for the Carpathian Basin, but there is a slight
negative annual change of �4 % by 2100 thanks to mainly the significant JJA
decrease (between �5 and �20 % by 2100). Average change of other seasons by
the end of the century is around zero, while in DJF a 5–20 % increase is projected
(not shown). This corresponds with the locally-run RCM results [13].

The model spread is different for precipitation results than in case for temper-
ature: basically the models span through the three scenarios (except for S-Europe
around the end of the century, when medium and pessimistic scenario outputs
project larger reduction). We can clearly see that the magnitude of variability
increases with lead time over S-Europe and the Carpathian Basin. Their amounts
almost double from 30–40 % to 70–75 % from the beginning to the end of the
century, which can stem also from scenario uncertainty over S-Europe. In case of
Northern Europe, increase of the spread is much less (from 20 to 30 % from the
beginning to the end of the century), even though scenarios stick together.

12.4.2 Internal Variability

Internal variability is an important feature of the climate system and it is evolving
over time, according to both observations for the past and climate simulations for
the future. Using gridded E-OBS measurements for the Carpathian Basin, seasonal
temperature variability before 2000 is overestimated in the GCMs except DJF (not
shown). The variance of seasonal temperature values between 2001 and 2100 is
around 0.5–0.7 K for Southern Europe (Fig. 12.4b), and it does not vary much with
time. For Northern Europe (Fig. 12.4a), the highest values of internal variability
also occur in DJF (with double values than for S-Europe) mainly caused by the
more intensified large-scale circulation. The lowest values are in JJA which may be
due to the fact that large-scale synoptic situations are more stable and affect little
the temperature variability in summer, while effect of the local convective activity
occurring mostly in summer is described weakly by GCM parameterization. Based
on the investigated GCM results, internal variability of future temperature averaged
over the Carpathian Basin has similar design with even higher values than over
N-Europe (Fig. 12.4c). The measured trend of the temperature variability between
1951 and 2010 was increasing for JJA and SON (September–October–November),
while in other seasons no trend was apparent (not shown). According to [1], natural
variability of temperature is decreasing with warming mainly for all extratropical
latitudes, resulting in a better scenario- and model-dependent predictability in those
areas. This is valid for N-Europe and the Carpathian Basin except in JJA: internal
variability shows a decrease of �5 to �20 % in MAM, SON and DJF, while JJA
values increase with 10–30 % (meaning C0.06 K for N-Europe and C0.33 K for
the Carpathian Basin) by the end of the twenty-first century. For S-Europe, only
variability is decreasing in DJF to some extent, whereas in other seasons it is not
changing for the future.
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Fig. 12.4 Internal variability of seasonal temperature and precipitation change (in K and %) over
3 regions based on results of the analysed 45 and 42 CMIP3 simulations, respectively. Note that
the variances were calculated on a 30-year moving window and the results are smoothed with a
10-year moving average

Taking E-OBS precipitation observations for the Carpathian Basin, internal
variability is overestimated in JJA, while in SON and DJF it is underestimated by
the GCMs (not shown). Even though variability of global precipitation is almost
constant in time, it was proved that regional variability enhances parallel with
warming over most extratropical areas [1]. It is the case for S-Europe and the
Carpathian Basin, as well: natural seasonal fluctuations are around 14–25 % in
2001 and 5–25 % relative increase is foreseen by 2100, with higher variability in
JJA (Fig. 12.4b, c). In contrast, a fully flat interannual precipitation variability is
shown for the future over N-Europe: it is just around 8 % regardless of the season,
possible due to the more stable circulation patterns throughout the year (Fig. 12.4a).
Consequently, there is no trend over N-Europe apart from JJA (relative change
10 %), which results in a slightly more variable precipitation in JJA by 2100 than in
DJF.
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12.4.3 Fractions of Uncertainty

The fractions of total temperature uncertainty are different over Northern and South-
ern Europe compared to global temperature outcomes. On the one hand, magnitude
of internal variability is naturally higher since a smaller area is assessed and taking
annual means instead of decadal ones naturally results in higher variability. As a
consequence, the contributions of model and scenario uncertainties are smaller than
in global case. Even though seasonal natural variability is significantly higher in
absolute terms for N-Europe than for S-Europe, it has almost the same fraction
within total uncertainty over the two regions by the end of the century (Fig. 12.5a, d).
Scenario uncertainty grows higher for all seasons over Southern Europe than over
North. For northern part of Europe it is smaller than model uncertainty in DJF
and JJA. Over southern part of Europe, the warmer the season is, the earlier the
scenario surpasses the role of model uncertainty (around 2075, Fig. 12.5b, e). Model
uncertainty is very significant in JJA for both regions, and it peaks around 2070 for
N-Europe and 2050 for S-Europe (in other seasons it has no peak). The latter region
shares lower values for model importance for all seasons than N-Europe, which can

Fig. 12.5 Fractions of total uncertainty (in %) in mean JJA and DJF temperature projections
explained by the 3 sources of uncertainty based on results of the analysed 45 CMIP3 simulations
over 3 regions
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be caused by the larger model sensitivity in the North to more intense circulation
changes.

Temperature projections over the Carpathian Basin are more similar to N-
European temperature results than to the S-European ones, but have significantly
higher natural variability than at larger continental scales. It is the most important
source of uncertainty for all seasons and almost all lead times (Fig. 12.5c, f).
Scenario uncertainty emerges with a fraction of 10 % between 2060 and 2070,
and its ratio does not exceed 35 % even in JJA (when the highest values occur)
by 2100. The fraction of model uncertainty is small compared to the results over
either part of Europe and has no peak during the twenty-first century, may be due
to the lower importance of the scenario uncertainty appearing from 2050s. The
proportion of model uncertainty increases slowly and almost continuously with lead
time, reaching maximum with 25–35 % fraction by the end of the century.

The main differences between temperature and precipitation projections are
that internal variability plays for precipitation a more important role and scenario
uncertainty becomes less dominant. This implies that for few decades ahead we can
only conclude for decision makers that high natural variability is the main source of
uncertainty in global precipitation projections.

Seasonal precipitation results over Southern Europe show much higher fractional
values for internal variability than over Northern Europe (Fig. 12.6a, b and
Fig. 12.6d, e, JJA and DJF are shown), and it is responsible in both regions for
the largest part of the uncertainty for all seasons and for all lead times. Even though
fraction of scenario uncertainty is mainly zero or very small for MAM, JJA and SON
over N-Europe, it is still a relevant factor (accounting for 15 %) in DJF at the end of
the century (Fig. 12.6d). Results show the opposite for S-Europe: scenario choice is
not important for DJF (Fig. 12.6e), but in the other seasons this uncertainty has 10 %
contribution to the total uncertainty by 2100. Model uncertainty plays significantly
bigger role for either parts of Europe: its fraction shows a continuously increasing
trend without a peak, and its contribution is the highest (20 and 40 %) in JJA over
both European areas, and the lowest (maximum 20 %) for DJF and MAM over N-
Europe. Note that there is no remarkable difference between the different seasons
regarding the proportion of model uncertainty in S-Europe, while it has in North.
In general, using several global models seems more important in Northern Europe
than in Southern Europe to portray a better spectrum of the uncertainties.

Over the Carpathian Basin, internal variability is the dominant source of uncer-
tainty for seasonal precipitation projections during the entire twenty-first century
with the highest values in JJA (Fig. 12.6c) and SON. Values are similar, but slightly
lower than for S-Europe. Scenario uncertainty is literally zero for DJF (Fig. 12.6f),
and even with the highest proportion it is only 5 % in JJA at the end of the
century. Due to the significantly dominant internal variability, model uncertainty
accounts only for 30 % of the total uncertainty in JJA and less in the other seasons,
without any peak. Therefore, on continental and regional level, global climate model
outputs should be handled and interpreted with care since internal variability is
a significant uncertainty factor. Socio-economic scenarios are basically negligible
in the precipitation projections, consequently, model improvements are very much
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Fig. 12.6 Same as Fig. 12.5 but for precipitation and based on results of the analysed 42 CMIP3
simulations

needed, especially in the field of parameterisations of physical processes related to
precipitation formation.

12.4.4 Potentially Reducible Uncertainty

Internal variability cannot be omitted from the climate system, neither its resulted
uncertainty from the projection results (apart from initial years of the integration;
[7]). In this section we show two short theoretical studies raised by HS, focusing on
how the total uncertainty could be reduced to the largest extent:

1. Having a perfect model: we selected one climate model from the 14/15-member
ensemble, considered its 3 simulations driven by the 3 scenarios and took their
variance. We made this calculation for every model and picked the GCMs with
maximum and minimum spread among scenarios. This study gives information
on model sensitivity to the anthropogenic forcings.

2. Rigorously following a scenario: we selected one emission scenario, considered
14/15 model simulations driven within the chosen scenario and took their
variance. We made this calculation for each scenario and picked the ones with
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Table 12.2 Spread difference between maximum and minimum variance using a single model
and a single scenario in temperature and precipitation change (in K and %) for 2050 and 2100
over the Carpathian Basin

Temperature (K) Precipitation (%)
Single model Single scenario Single model Single scenario

MAM 2050 0.4 0.1 5 1
2100 2.0 0.7 15 7

JJA 2050 0.6 0.1 12 2
2100 2.5 0.7 18 7

SON 2050 0.5 0.2 5 3
2100 1.3 0.3 14 7

DJF 2050 0.5 0.1 3 2
2100 1.7 0.3 10 1

maximum and minimum model spread. This alternative provides information on
sensitivity of spread in model ensemble to scenario choice.

The outcomes indicate that model sensitivity to scenarios is more influential
in the total uncertainty, than how the model ensemble spreads with a given
anthropogenic forcing. For the Carpathian Basin, substantial reduction of total
uncertainty in temperature and precipitation projections could be obtained by
cautiously selecting (and developing) a single model than following a scenario
both for 2050 and 2100, disregard the seasons. Model sensitivity to scenarios in
temperature change response in 2100 is the highest for JJA (2.5 K) and lowest
in SON (1.3 K), while in precipitation change response in 2100 it is the highest
in JJA (18 %) and lowest in DJF (10 %) (Table 12.2). Comparing to the model
ensemble spread within a scenario, we have considerably lower values: 0.3–0.7 K
for temperature and 1–7 % for precipitation throughout the different seasons. Even
though results are shown only for the Carpathian Basin, Northern and Southern
Europe share the same direction of outcomes and conclusions.

In the above study we aimed at exploring in what extent model improvement or
following a given scenario could potentially reduce the uncertainty. Nevertheless,
we must note that it is a very theoretical question which practically can be never
answered for several reasons. Firstly, we cannot guarantee that model improvement
achieved for the past climate will be valid in the changing future climate. Secondly,
significant reduction of the model uncertainty in the total uncertainty is feasible
with using a prefect model. To approach a perfect model via improvements does not
seem realistic within next decades considering the large number of the difficulties
in description of the physical processes acting in the climate system. Nevertheless,
first part of the above study gives hints about the range of the sensitivity of existing
GCMs to different anthropogenic forcings over a region. However, we do not know
what magnitude the real sensitivity should be and it could be even out of the range
concluded. Consequently, it is still fundamental to use different and several GCMs
in climate model ensembles to depict the real model uncertainty.
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12.4.5 Signal-to-Noise Ratio and Time of Emergence

The commonly used signal-to-noise ratio [STN, Eq. (12.8)] measures the signifi-
cance and robustness of climate projections. An important threshold for the STN
is when the projected change signal based on the multi-model mean equals the
degree of total uncertainty (STN D 1, for temperature and precipitation increase or
STN D �1 for precipitation decrease). A climate change signal is considered robust
when the signal is at least twice as much as the total uncertainty in the results [18].

For temperature projections over Northern and Southern Europe, STN ratio
exceeds the threshold of 1 between 2010 and 2030, and it becomes robust between
2030 and 2070 (Fig. 12.7a, b). STN ratios for S-Europe exceed the thresholds
slightly before than for N-Europe, and peaks around 2060–2080. This peak is due
to the balance between the continuously growing temperature and the divergence of
the projections driven by different scenarios. STN ratios are lower for the Carpathian
Basin mainly caused by higher internal variability (Fig. 12.7c). For JJA, when
the strongest warming is expected, STN ratio exceeds 1 after 2025. For DJF, this
happens 20 years later, mostly due to high internal variability. For this region STN
ratio stays below the threshold of 2 (robustness) through the whole century, showing
its peak between 2080 and 2100.

Seasonal precipitation results have substantially different characteristics. Besides
1 and 2, �1 and �2 are important thresholds for STN, since precipitation projections
show also negative trends. Positive STN ratio stands for Northern Europe (for JJA
around zero; Fig. 12.7a) reaching 1 in DJF around 2060 and in MAM around 2080.
Southern Europe has only negative STN ratios (Fig. 12.7b) but they are never below
�1. For the Carpathian Basin, seasonal STN ratios are positive in DJF and negative
in JJA and SON during the entire century (Fig. 12.7c). None of the thresholds is
reached in any of the seasons for this small region. All this means, that precipitation
projections have lower significance and robustness compared to the temperature
projections. Even if we theoretically omitted the internal variability as the largest
uncertainty in future precipitation results over the Carpathian Basin (not shown),
signal-to-noise containing only scenario and model uncertainty will reach 1 only
for DJF season (and not �1 for JJA decrease). This implies that not only the natural
variability is responsible for low “trust” in the GCM results over a smaller region.

Time of emergence [TOE, Eq. (12.9)] is slightly different, but yet a useful
measure for policy makers and risk assessments, meaning when the warming or
precipitation change from the mean of 1971–2000 is higher than internal variability,
which cannot be eliminated from the model results [9]. When rate of the change
and the internal variability is above 1 (below �1 in case of negative change), it
is drawing the attention of decision makers that an act is needed since the so-far
measured change is not solely caused by the internal variability. Threshold of 2 (a
more radical signal) could be interpreted as an “urgent act” since major impacts are
most likely to arise rapidly, depending on the impacts even more thresholds could
be specified [14]. Even though there is also a large uncertainty in TOE between
different models [12], their average is shown in Table 12.3. The actual years are
simply estimated warnings for the expected rate of change from the reference period.
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Fig. 12.7 Seasonal signal-to-noise ratio (without unit) taking into account all three sources
of uncertainty based on temperature and precipitation results of the analysed 45/42 CMIP3
simulations

Consequently, TOE like other measures in the study is also highly dependent on
the choice of the reference period. Note that TOE for global temperature change
signal has already happened before the analyzed twenty-first century. Over Northern
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Table 12.3 Time (year) of emergence when ratio of mean (temperature and precipitation) change
and internal variability is above/below a threshold of 1/�1 or 2

Northern Europe Southern Europe Carpathian Basin

Temperature >1 >2 >1 >2 >1 >2
Annual 2012 2029 2003 2017 2015 2038
MAM 2024 2049 2015 2036 2035 2073
JJA 2013 2034 2007 2022 2021 2053
SON 2017 2037 2009 2027 2027 2059
DJF 2026 2053 2023 2050 2044 2082
Precipitation >1 <�1 >1 <�1 >1 <�1
Annual 2040 Noa No 2062 No No
MAM 2076 No No No No No
JJA No No No 2095 No No
SON 2080 No No No No No
DJF 2054 No No No No No

aThe ratio did not reach the threshold until the last analyzed year of 2100

Europe, due to higher internal variability TOE has a bit of delay (around 3–9 years)
compared to S-Europe. Naturally, annual means reach the threshold earlier than
seasonal ones thanks to its smaller fluctuation: TOE is the earliest for JJA and the
latest for DJF seasons. The delay induced by enhanced variability (since change is
similar to the European means) is much larger for the Carpathian Basin: TOE in DJF
and MAM is around 2040, while in JJA and SON around 2025. It means practically
when providing information about regional temperature change in periods earlier
than 2021–2050 for local policymakers, scientists should communicate with users
that internal variability is a meaningful component. Urgent act is needed for the
Carpathian Basin in the second half of the century (after 2050 and 2080).

The time of emergence for the precipitation change signal differs from that of
temperature, since precipitation shows high variation both in space and in time.
Globally, TOE is reached after the first decade. Over Northern Europe, in MAM,
SON and DJF (when positive changes are projected) TOE (�1) happens in the
second half of the century, while in JJA (when decrease is foreseen) no TOE (��1)
happens until 2100. It is rather the opposite for Southern Europe: we must draw the
attention of policymakers only for summer decrease around the end of the century,
in the other season projected precipitation increase/decrease does not exceed the
internal variability. For the Carpathian Basin, seasonal and annual precipitation
change signals do not go beyond internal variability, i.e., there is no TOE until
2100. On the one hand, it means that precipitation results from global models for
a smaller area should be considered reservedly since they might be insufficient to
provide valuable information above such a small and complex region. On the other
hand, the fact that internal variability is higher than the precipitation signal can be
detected also in E-OBS (although for a shorter time period, from 1951 to 2010, not
shown). This could lead to the conclusion that it is the behaviour of the climate
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system itself and the Carpathian Basin belongs to regions of the Earth characterized
with low predictability in precipitation.

12.5 Summary

In the recent chapter we quantitatively assessed the uncertainties of temperature and
precipitation projections, which are (1) the unavoidable natural climate variability,
resulted by feedbacks in the climate system; (2) the scenario uncertainty, emerging
from different socio-economic paths; (3) and the model uncertainty, stemming from
various climate model formulations. This study is based on the methodology of
Hawkins and Sutton [7, 8]. We used all possible global climate model results
from the CMIP3 multi-model data set, available for 3 different SRES emission
scenarios. Fourth-order polynomials were fitted onto the raw time series then the
different kinds of uncertainties were calculated: internal variability as variance of
the residuals, model uncertainty as variance of model spread within a scenario
and scenario uncertainty as variance of scenario spread for model average. We
applied some modifications compared to the reference articles, though. Namely,
all models were considered equal without any weighting; internal variability were
re-calculated in 30 years instead of taking a constant value throughout the whole
150-year time period; annual and seasonal means were computed instead of decadal
averages; no confidence level was applied during the calculation of signal-to-noise
ratio. In HS annual and DJF results were mainly published, our analysis was
completed with investigation of seasonal time series. Besides signal-to-noise ratio,
we estimated time of emergence providing information about necessity of an urgent
act as response to the climate change. Applying this coherently modified method,
assessments were made for four different geographical areas: for global average for
testing the implementation (not shown here), for Northern and Southern Europe to
have continental scale results (since their future climate signal is different) and for
the Carpathian Basin (Central Europe) to investigate usefulness of GCM results at
local scale.

Our key findings are the followings:

1. Internal variability is the most important uncertainty factor in projections for
the Carpathian Basin (especially for DJF) irrespective of taking precipitation or
temperature results. It is also the dominant source of uncertainty for temperature
over Northern and Southern Europe until the middle of the century and for
precipitation until 2100.

2. Scenario uncertainty is considerable for temperature results in the second half
of the century over both parts of Europe and it is less important in precipitation
results, furthermore, it is even less emphasized at local scales.

3. Model uncertainty is relatively large compared to scenario one for precipitation
results. On the one hand, it has higher proportion within the total uncertainty for
temperature results, on the other hand, it is comparable with scenario uncertainty
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proportion around the end of the century (and slightly higher for Northern Europe
and the Carpathian Basin than scenario uncertainty by 2100).

4. Selecting a multi-model ensemble driven with the same emission scenario
generates larger uncertainty range regarding both precipitation and temperature
change than forcing the same GCM with more scenarios (both for continental and
at regional scales). Selecting hypothetically the model with the lowest sensitivity
to scenarios against the model with highest sensitivity, the range of uncertainty
could be narrower by 10–18 % for precipitation and by 1.3–2.5 K for temperature
(depending on the seasons) over the Carpathian Basin by 2100. All this could
show the potential reducibility of the total uncertainty via model improvement.
However, the conclusions can be interpreted just very conditionally assuming
that with current developments we will reach a perfect model in the future.

5. Climate model results are often considered valuable after a certain lead time,
since the smaller the area, the later the mean temperature change (signal) sur-
passes total uncertainty (noise). A stricter criteria is when seasonal temperature
changes exceed natural variability (i.e., time of emergence). Time of emergence
is between 2020 and 2040 for the Carpathian Basin, and 1–2 decades earlier
in the European results (earlier over Southern Europe). During the analyzed
time period, this significance is never reached in precipitation results over
the Carpathian Basin due to high internal variability. Over Northern Europe,
adaptation steps and act are needed in seasons with precipitation increase in the
second half of the century, while for Southern Europe results demand serious
action only in the driest season (JJA) at the end of the century.

It was shown that CMIP3 global model ensemble might be limited in assessing
the real extent of the climate change uncertainty even on a global scale since
models cannot be treated independently [20]. Thus our next step is to continue
the assessment with results of the newest available global projections (CMIP5,
[23]) with taking into account both performance and dependency of GCMs [26].
In CMIP5 experiment, a new set of scenarios was developed for describing future
anthropogenic activity. RCPs (Representative Concentration Pathways; [17]) have
four representative scenarios and in CMIP5 model simulations two of them were
applied widely.

The outcomes above are based on global model outputs, confirming that their
100–500 km horizontal resolution and physical parameterizations are not sufficient
to result in significant or robust precipitation projections beyond a continental scale
of Europe. Nevertheless, the results point out the key uncertainty factors on regional
scale. Regional climate models are the sound options for dynamical downscaling
of the global climate model response over a target area, though Déqué et al. [2]
showed that lateral boundary conditions have key role in performance of regional
estimations. Our further step is to investigate the results of RCMs focusing to assess
which uncertainties are represented by the ensembles of RCMs available for Europe
(e.g., ENSEMBLES and EURO-CORDEX; [11]).
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